WorldWideScience

Sample records for coupled reactor physics

  1. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    Science.gov (United States)

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-01-01

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

  2. Predictive modeling of coupled multi-physics systems: II. Illustrative application to reactor physics

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel; Badea, Madalina Corina

    2014-01-01

    Highlights: • We applied the PMCMPS methodology to a paradigm neutron diffusion model. • We underscore the main steps in applying PMCMPS to treat very large coupled systems. • PMCMPS reduces the uncertainties in the optimally predicted responses and model parameters. • PMCMPS is for sequentially treating coupled systems that cannot be treated simultaneously. - Abstract: This work presents paradigm applications to reactor physics of the innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS)” developed by Cacuci (2014). This methodology enables the assimilation of experimental and computational information and computes optimally predicted responses and model parameters with reduced predicted uncertainties, taking fully into account the coupling terms between the multi-physics systems, but using only the computational resources that would be needed to perform predictive modeling on each system separately. The paradigm examples presented in this work are based on a simple neutron diffusion model, chosen so as to enable closed-form solutions with clear physical interpretations. These paradigm examples also illustrate the computational efficiency of the PMCMPS, which enables the assimilation of additional experimental information, with a minimal increase in computational resources, to reduce the uncertainties in predicted responses and best-estimate values for uncertain model parameters, thus illustrating how very large systems can be treated without loss of information in a sequential rather than simultaneous manner

  3. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  4. Sensitivity and Uncertainty Analysis of Coupled Reactor Physics Problems : Method Development for Multi-Physics in Reactors

    NARCIS (Netherlands)

    Perkó, Z.

    2015-01-01

    This thesis presents novel adjoint and spectral methods for the sensitivity and uncertainty (S&U) analysis of multi-physics problems encountered in the field of reactor physics. The first part focuses on the steady state of reactors and extends the adjoint sensitivity analysis methods well

  5. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  6. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  7. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  8. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  9. Reactor physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1998-01-01

    Progress in research on reactor physics in 1997 at the Belgian Nuclear Research Centre SCK/CEN is described. Activities in the following four domains are discussed: core physics, ex-core neutron transport, experiments in Materials Testing Reactors, international benchmarks

  10. An assessment of coupling algorithms for nuclear reactor core physics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Steven, E-mail: hamiltonsp@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Berrill, Mark, E-mail: berrillma@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Clarno, Kevin, E-mail: clarnokt@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Pawlowski, Roger, E-mail: rppawlo@sandia.gov [Sandia National Laboratories, MS 0316, P.O. Box 5800, Albuquerque, NM 87185 (United States); Toth, Alex, E-mail: artoth@ncsu.edu [North Carolina State University, Department of Mathematics, Box 8205, Raleigh, NC 27695 (United States); Kelley, C.T., E-mail: tim_kelley@ncsu.edu [North Carolina State University, Department of Mathematics, Box 8205, Raleigh, NC 27695 (United States); Evans, Thomas, E-mail: evanstm@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

    2016-04-15

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.

  11. Reactor physics experiments in PURNIMA sub critical facility coupled with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Kumar, Rajeev; Degweker, S.B.; Patel, Tarun; Bishnoi, Saroj; Adhikari, P.S.

    2011-01-01

    Accelerator Driven Sub-critical Systems (ADSS) are attracting increasing worldwide attention due to their superior safety characteristics and their potential for burning actinide and fission product waste and energy production. A number of countries around the world have drawn up roadmaps/programs for development of ADSS. Indian interest in ADSS has an additional dimension, which is related to the planned utilization of our large thorium reserves for future nuclear energy generation. A programme for development of ADSS is taken up at the Bhabha Atomic Research Centre (BARC) in India. This includes R and D activities for high current proton accelerator development, target development and Reactor Physics studies. As part of the ADSS Reactor Physics research programme, a sub-critical facility is coming up in BARC which will be coupled with an existing D-D/D-T neutron generator. Two types of cores are planned. In one of these, the sub-critical reactor assembly consists of natural uranium moderated by high density polyethylene (HDP) and reflected by BeO. The other consists of natural uranium moderated by light water. The maximum neutron yield of the neutron source with tritium target is around 10 10 neutron per sec. Various reactor physics experiments like measurement of the source strength, neutron flux distribution, buckling estimation and sub-critical source multiplication are planned. Apart from this, measurement of the total fission power and neutron spectrum will also be carried out. Mainly activation detectors will be used in all in-core neutron flux measurement. Measurement of the degree of sub-criticality by various deterministic and noise methods is planned. Helium detectors with advanced data acquisition card will be used for the neutron noise experiments. Noise characteristics of ADSS are expected to be different from that of traditional reactors due to the non-Poisson statistical features of the source. A new theory incorporating these features has been

  12. Progress and challenges in the development and qualification of multi-level multi-physics coupled methodologies for reactor analysis

    International Nuclear Information System (INIS)

    Ivanov, K.; Avramova, M.

    2007-01-01

    Current trends in nuclear power generation and regulation as well as the design of next generation reactor concepts along with the continuing computer technology progress stimulate the development, qualification and application of multi-physics multi-scale coupled code systems. The efforts have been focused on extending the analysis capabilities by coupling models, which simulate different phenomena or system components, as well as on refining the scale and level of detail of the coupling. This paper reviews the progress made in this area and outlines the remaining challenges. The discussion is illustrated with examples based on neutronics/thermohydraulics coupling in the reactor core modeling. In both fields recent advances and developments are towards more physics-based high-fidelity simulations, which require implementation of improved and flexible coupling methodologies. First, the progresses in coupling of different physics codes along with the advances in multi-level techniques for coupled code simulations are discussed. Second, the issues related to the consistent qualification of coupled multi-physics and multi-scale code systems for design and safety evaluation are presented. The increased importance of uncertainty and sensitivity analysis are discussed along with approaches to propagate the uncertainty quantification between the codes. The incoming OECD LWR Uncertainty Analysis in Modeling (UAM) benchmark is the first international activity to address this issue and it is described in the paper. Finally, the remaining challenges with multi-physics coupling are outlined. (authors)

  13. Progress and challenges in the development and qualification of multi-level multi-physics coupled methodologies for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, K.; Avramova, M. [Pennsylvania State Univ., University Park, PA (United States)

    2007-07-01

    Current trends in nuclear power generation and regulation as well as the design of next generation reactor concepts along with the continuing computer technology progress stimulate the development, qualification and application of multi-physics multi-scale coupled code systems. The efforts have been focused on extending the analysis capabilities by coupling models, which simulate different phenomena or system components, as well as on refining the scale and level of detail of the coupling. This paper reviews the progress made in this area and outlines the remaining challenges. The discussion is illustrated with examples based on neutronics/thermohydraulics coupling in the reactor core modeling. In both fields recent advances and developments are towards more physics-based high-fidelity simulations, which require implementation of improved and flexible coupling methodologies. First, the progresses in coupling of different physics codes along with the advances in multi-level techniques for coupled code simulations are discussed. Second, the issues related to the consistent qualification of coupled multi-physics and multi-scale code systems for design and safety evaluation are presented. The increased importance of uncertainty and sensitivity analysis are discussed along with approaches to propagate the uncertainty quantification between the codes. The incoming OECD LWR Uncertainty Analysis in Modeling (UAM) benchmark is the first international activity to address this issue and it is described in the paper. Finally, the remaining challenges with multi-physics coupling are outlined. (authors)

  14. Nuclear reactor multi-physics simulations with coupled MCNP5 and STAR-CCM+

    International Nuclear Information System (INIS)

    Cardoni, Jeffrey Neil; Rizwan-uddin

    2011-01-01

    The MCNP5 Monte Carlo particle transport code has been coupled to the computational fluid dynamics code, STAR-CCM+, to provide a high fidelity multi-physics simulation tool for pressurized water nuclear reactors. The codes are executed separately and coupled externally through a Perl script. The Perl script automates the exchange of temperature, density, and volumetric heating information between the codes using ASCII text data files. Fortran90 and Java utility programs assist job automation with data post-processing and file management. The MCNP5 utility code, MAKXSF, pre-generates temperature dependent cross section libraries for the thermal feedback calculations. The MCNP5–STAR-CCM+ coupled simulation tool, dubbed MULTINUKE, was applied to a steady state, PWR cell model to demonstrate its usage and capabilities. The demonstration calculation showed reasonable results that agree with PWR values typically reported in literature. Temperature and fission reaction rate distributions were realistic and intuitive. Reactivity coefficients were also deemed reasonable in comparison to historically reported data. The demonstration problem consisted of 9,984 CFD cells and 7,489 neutronic cells. MCNP5 tallied fission energy deposition over 3,328 UO_2 cells. The coupled solution converged within eight hours and in three MULTINUKE iterations. The simulation was carried out on a 64 bit, quad core, Intel 2.8 GHz microprocessor with 1 GB RAM. The simulations on a quad core machine indicated that a massively parallelized implementation of MULTINUKE can be used to assess larger multi-million cell models. (author)

  15. Review of multi-physics temporal coupling methods for analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Zerkak, Omar; Kozlowski, Tomasz; Gajev, Ivan

    2015-01-01

    Highlights: • Review of the numerical methods used for the multi-physics temporal coupling. • Review of high-order improvements to the Operator Splitting coupling method. • Analysis of truncation error due to the temporal coupling. • Recommendations on best-practice approaches for multi-physics temporal coupling. - Abstract: The advanced numerical simulation of a realistic physical system typically involves multi-physics problem. For example, analysis of a LWR core involves the intricate simulation of neutron production and transport, heat transfer throughout the structures of the system and the flowing, possibly two-phase, coolant. Such analysis involves the dynamic coupling of multiple simulation codes, each one devoted to the solving of one of the coupled physics. Multiple temporal coupling methods exist, yet the accuracy of such coupling is generally driven by the least accurate numerical scheme. The goal of this paper is to review in detail the approaches and numerical methods that can be used for the multi-physics temporal coupling, including a comprehensive discussion of the issues associated with the temporal coupling, and define approaches that can be used to perform multi-physics analysis. The paper is not limited to any particular multi-physics process or situation, but is intended to provide a generic description of multi-physics temporal coupling schemes for any development stage of the individual (single-physics) tools and methods. This includes a wide spectrum of situation, where the individual (single-physics) solvers are based on pre-existing computation codes embedded as individual components, or a new development where the temporal coupling can be developed and implemented as a part of code development. The discussed coupling methods are demonstrated in the framework of LWR core analysis

  16. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics

    International Nuclear Information System (INIS)

    Seker, V.; Thomas, J. W.; Downar, T. J.

    2007-01-01

    The interest in high fidelity modeling of nuclear reactor cores has increased over the last few years and has become computationally more feasible because of the dramatic improvements in processor speed and the availability of low cost parallel platforms. In the research here high fidelity, multi-physics analyses was performed by solving the neutron transport equation using Monte Carlo methods and by solving the thermal-hydraulics equations using computational fluid dynamics. A computation tool based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR' along with the verification and validation efforts. McSTAR is written in PERL programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STAR-CD for every region. Three different methods were investigated and two of them are implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. The necessary input file manipulation, data file generation, normalization and multi-processor calculation settings are all done through the program flow in McSTAR. Initial testing of the code was performed using a single pin cell and a 3X3 PWR pin-cell problem. The preliminary results of the single pin-cell problem are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code De

  17. Development of safety analysis methodology for moderator system failure of CANDU-6 reactor by thermal-hydraulics/physics coupling

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Jin, Dong Sik; Chang, Soon Heung

    2013-01-01

    Highlights: • Developed new safety analysis methodology of moderator system failures for CANDU-6. • The new methodology used the TH-physics coupling concept. • Thermalhydraulic code is CATHENA, physics code is RFSP-IST. • Moderator system failure ends to the subcriticality through self-shutdown. -- Abstract: The new safety analysis methodology for the CANDU-6 nuclear power plant (NPP) moderator system failure has been developed by using the coupling technology with the thermalhydraulic code, CATHENA and reactor core physics code, RFSP-IST. This sophisticated methodology can replace the legacy methodology using the MODSTBOIL and SMOKIN-G2 in the field of the thermalhydraulics and reactor physics, respectively. The CATHENA thermalhydraulic model of the moderator system can simulate the thermalhydraulic behaviors of all the moderator systems such as the calandria tank, head tank, moderator circulating circuit and cover gas circulating circuit and can also predict the thermalhydraulic property of the moderator such as moderator density, temperature and water level in the calandria tank as the moderator system failures go on. And these calculated moderator thermalhydraulic properties are provided to the 3-dimensional neutron kinetics solution module – CERBRRS of RFSP-IST as inputs, which can predict the change of the reactor power and provide the calculated reactor power to the CATHENA. These coupling calculations are performed at every 2 s time steps, which are equivalent to the slow control of CANDU-6 reactor regulating systems (RRS). The safety analysis results using this coupling methodology reveal that the reactor operation enters into the self-shutdown mode without any engineering safety system and/or human interventions for the postulated moderator system failures of the loss of heat sink and moderator inventory, respectively

  18. Coupled study of the Molten Salt Fast Reactor core physics and its associated reprocessing unit

    International Nuclear Information System (INIS)

    Doligez, X.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Ghetta, V.

    2014-01-01

    Highlights: • The limit on the reprocessing is due to the redox potential control. • Alkali and Earth-alkaline elements do not have to be extracted. • Criticality risks have to be studied in the reprocessing unit. • The neutronics properties are not sensitive to chemical data. • The reprocessing chemistry, from a pure numerical point of view, is an issue. - Abstract: Molten Salt Reactors (MSRs) are liquid-fuel reactors, in which the fuel is also the coolant and flows through the core. A particular configuration presented in this paper called the Molten Salt Fast Reactor consists in a Molten Salt Reactor with no moderator inside the core and a salt composition that leads to a fast neutron spectrum. Previous studies showed that this concept (previously called Thorium Molten Salt Reactor – Nonmoderated) has very promising characteristics. The liquid fuel implies a special reprocessing. Each day a small amount of the fuel salt is extracted from the core for on-site reprocessing. To study such a reactor, the materials evolution within the core has to be coupled to the reprocessing unit, since the latter cleans the salt quasi continuously and feeds the reactor. This paper details the issues associated to the numerical coupling of the core and the reprocessing. It presents how the chemistry is introduced inside the classical Bateman equation (evolution of nuclei within a neutron flux) in order to carry a numerical coupled study. To achieve this goal, the chemistry has to be modeled numerically and integrated to the equations of evolution. This paper presents how is it possible to describe the whole concept (reactor + reprocessing unit) by a system of equations that can be numerically solved. Our program is a connection between MCNP and a homemade evolution code called REM. Thanks to this tool; constraints on the fuel reprocessing were identified. Limits are specified to preserve the good neutronics properties of the MSFR. In this paper, we show that the limit

  19. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  20. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics

    International Nuclear Information System (INIS)

    Seker, V.; Thomas, J.W.; Downar, T.J.

    2007-01-01

    A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k eff and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport

  1. Geometrical modification transfer between specific meshes of each coupled physical codes. Application to the Jules Horowitz research reactor experimental devices

    International Nuclear Information System (INIS)

    Duplex, B.

    2011-01-01

    The CEA develops and uses scientific software, called physical codes, in various physical disciplines to optimize installation and experimentation costs. During a study, several physical phenomena interact, so a code coupling and some data exchanges between different physical codes are required. Each physical code computes on a particular geometry, usually represented by a mesh composed of thousands to millions of elements. This PhD Thesis focuses on the geometrical modification transfer between specific meshes of each coupled physical code. First, it presents a physical code coupling method where deformations are computed by one of these codes. Next, it discusses the establishment of a model, common to different physical codes, grouping all the shared data. Finally, it covers the deformation transfers between meshes of the same geometry or adjacent geometries. Geometrical modifications are discrete data because they are based on a mesh. In order to permit every code to access deformations and to transfer them, a continuous representation is computed. Two functions are developed, one with a global support, and the other with a local support. Both functions combine a simplification method and a radial basis function network. A whole use case is dedicated to the Jules Horowitz reactor. The effect of differential dilatations on experimental device cooling is studied. (author) [fr

  2. IRPhE/STEK, Reactor Physics Experiments from Fast-Thermal Coupled Facility

    International Nuclear Information System (INIS)

    Dietze, Klaus; Klippel, Henk Th.; Koning, Arjan; Jacqmin, Robert

    2003-01-01

    1 - Description: The STEK-experiments have been performed to check neutron data of the most important reactor materials, especially of fission product nuclides, fuel isotopes and structural materials. The measured central reactivity worths (CRW) of small samples were compared with calculated values. These C/E-ratios have been used then for data corrections or in adjustment procedures. The reactors STEK (ECN Petten/ Netherlands) was a fast-thermal coupled facility of zero power. The annular thermal drivers were filled by fuel assemblies and moderated by water. The inner insertion lattices were loaded with pellets of fuel and other materials producing the fast neutron flux. The characteristics of the neutron and adjoint spectra were obtained by special arrangements of these pellets in unit cells. In this way, a hard or soft neutron spectrum or a special energy behavior of the adjoint function could be reached. The samples were moved by means of tubes to the central position (pile-oscillation technique). The original information about the facility and measurements is compiled in RCN-209, ECN-10 The 5 STEK configurations cover a broad energy range due to their increasing softness. The experiments are very valuable because of the extensive program of sample reactivity measurements with many fission product nuclides important in reactor burn-up calculations. At first, analyses of the experiments have been performed in Petten. Newer analyses were done later in Cadarache / CEA France using the European scheme for reactor calculation JEF-2.2 / ECCO / ERANOS (see Note Techniques and JEF/DOC-746). Furthermore, re-analyses were performed in O-arai / JNC Japan with the JNC standard route JENDL-3.2 / SLAROM / CITATION / PERKY. Results obtained with both code systems and different data evaluations (JEF-2.2 and JENDL-3.2) are compared in JEF/DOC-861. It contains the following documents: 31 Reports, 2 publications, 5 JEF documents, 4 conferences. 2 - Related or auxiliary programs

  3. IRPhE/RRR-SEG, Reactor Physics Experiments from Fast-Thermal Coupled Facility

    International Nuclear Information System (INIS)

    Weiss, Frank-Peter; Dietze, Klaus; Jacqmin, Robert; Ishikawa, Makoto

    2003-01-01

    1 - Description: The RRR-SEG-experiments have been performed to check neutron data of the most important reactor materials, especially of fission product nuclides, fuel isotopes and structural materials. The measured central reactivity worths (CRW) of small samples were compared with calculated values. These C/E-ratios have been used then for data corrections or in adjustment procedures. The reactor RRG-SEG (at RC Rossendorf / Germany) was a fast-thermal coupled facility of zero power. The annular thermal drivers were filled by fuel assemblies and moderated by water. The inner insertion lattices were loaded with pellets of fuel and other materials producing the fast neutron flux. The characteristics of the neutron and adjoint spectra were obtained by special arrangements of these pellets in unit cells. In this way, a hard or soft neutron spectrum or a special energy behavior of the adjoint function could be reached. The samples were moved by means of tubes to the central position (pile-oscillation technique). The original information about the facility and measurements is compiled in Note Technique SPRC/LEPh/93-230 (SEG) The SEG experiments are considered 'clean' integral experiments, simple and clear in geometry and well suited for calculation. In all SEG configurations only a few materials were used, most of these were standards. Due to the designed adjoint function (energy-independent or monotonously rising), the capture or scattering effect was dominant, convenient to check separately capture or scattering data. At first, analyses of the experiments have been performed in Rossendorf. Newer analyses were done later in Cadarache / CEA France using the European scheme for reactor calculation JEF-2.2 / ECCO / ERANOS (see Note Techniques and JEF/DOC-746). Furthermore, re-analyses were performed in O-arai / JNC Japan with the JNC standard route JENDL-3.2 / SLAROM / CITATION / PERKY. Results obtained with both code systems and different data evaluations (JEF-2.2 and

  4. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  5. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  6. WWER reactor physics code applications

    International Nuclear Information System (INIS)

    Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.

    1994-01-01

    The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs

  7. Coupled multi-physics simulation frameworks for reactor simulation: A bottom-up approach

    International Nuclear Information System (INIS)

    Tautges, Timothy J.; Caceres, Alvaro; Jain, Rajeev; Kim, Hong-Jun; Kraftcheck, Jason A.; Smith, Brandon M.

    2011-01-01

    A 'bottom-up' approach to multi-physics frameworks is described, where first common interfaces to simulation data are developed, then existing physics modules are adapted to communicate through those interfaces. Physics modules read and write data through those common interfaces, which also provide access to common simulation services like parallel IO, mesh partitioning, etc.. Multi-physics codes are assembled as a combination of physics modules, services, interface implementations, and driver code which coordinates calling these various pieces. Examples of various physics modules and services connected to this framework are given. (author)

  8. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  9. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  10. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  11. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  12. Phenomena-based Uncertainty Quantification in Predictive Coupled- Physics Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Marvin [Texas A & M Univ., College Station, TX (United States)

    2017-06-12

    This project has sought to develop methodologies, tailored to phenomena that govern nuclearreactor behavior, to produce predictions (including uncertainties) for quantities of interest (QOIs) in the simulation of steady-state and transient reactor behavior. Examples of such predictions include, for each QOI, an expected value as well as a distribution around this value and an assessment of how much of the distribution stems from each major source of uncertainty. The project has sought to test its methodologies by comparing against measured experimental outcomes. The main experimental platform has been a 1-MW TRIGA reactor. This is a flexible platform for a wide range of experiments, including steady state with and without temperature feedback, slow transients with and without feedback, and rapid transients with strong feedback. The original plan was for the primary experimental data to come from in-core neutron detectors. We made considerable progress toward this goal but did not get as far along as we had planned. We have designed, developed, installed, and tested vertical guide tubes, each able to accept a detector or stack of detectors that can be moved axially inside the tube, and we have tested several new detector designs. One of these shows considerable promise.

  13. Phenomena-based Uncertainty Quantification in Predictive Coupled- Physics Reactor Simulations

    International Nuclear Information System (INIS)

    Adams, Marvin

    2017-01-01

    This project has sought to develop methodologies, tailored to phenomena that govern nuclearreactor behavior, to produce predictions (including uncertainties) for quantities of interest (QOIs) in the simulation of steady-state and transient reactor behavior. Examples of such predictions include, for each QOI, an expected value as well as a distribution around this value and an assessment of how much of the distribution stems from each major source of uncertainty. The project has sought to test its methodologies by comparing against measured experimental outcomes. The main experimental platform has been a 1-MW TRIGA reactor. This is a flexible platform for a wide range of experiments, including steady state with and without temperature feedback, slow transients with and without feedback, and rapid transients with strong feedback. The original plan was for the primary experimental data to come from in-core neutron detectors. We made considerable progress toward this goal but did not get as far along as we had planned. We have designed, developed, installed, and tested vertical guide tubes, each able to accept a detector or stack of detectors that can be moved axially inside the tube, and we have tested several new detector designs. One of these shows considerable promise.

  14. Mechanical core coupling and reactors stability

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2006-01-01

    Structural parts of nuclear reactors are complex mechanical systems, able to vibrate with a set of proper frequencies when suitably excited. Cyclical variations in the strain state of the materials, including density perturbations, are produced. This periodic changes may affect reactor reactivity. But a variation in reactivity affects reactor thermal power, thus modifying the temperature field of the abovementiones materials. If the variation in temperature fields is fast enough, thermal-mechanical coupling may produce fast variations in strain states, and this, at its turn, modifies the reactivity, and so on. This coupling between mechanical vibrations of the structure and the materials of the core, with power oscillations of the reactor, not only may not be excluded a priori, but it seems that it has been present in some stage of the incidents or accidents that happened during the development of nuclear reactor technology. The purpose of the present communication is: (a) To review and generalize some mathematical models that were proposed in order to describe thermal-mechanical coupling in nuclear reactors. (b) To discuss some conditions in which significant instabilities could arise, including large amplitude power oscillations coupled with mechanical vibrations whose amplitudes are too small to be excluded by conventional criteria of mechanical design. Enough Certain aspects of thr physical safety of nuclear power reactors, that are objected by people that opposes to the renaissance of nucleoelectric generation, are discussed in the framework of the mathematical model proposed in this paper [es

  15. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  16. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  17. Reactor physics of CANFLEX

    International Nuclear Information System (INIS)

    Sim, K. S.; Min, Byung Joo.

    1997-07-01

    Characteristic of reactor physics for CANFLEX-NU fuel core were calculated using final fuel design data. The results of analysis showed that there was no impact on reactor operations and safety. The above results of calculations and analysis were described in the physics design for CANFLEX-NU core. Various fuel models were evaluated for selecting high burnup fuel using recovered uranium. It is judged to be worse effects for reactor safety. Hence, the use of graphite within fuel was proposed and its results showed to be better. The analysis system of reactor physics for design and analysis of high burnup fuel was evaluated. Lattice codes and core code were reviewed. From the results, the probability of WIMS-AECL and HELIOS is known to be high for analysis of high burnup fuel. For the core code, RFSP, it was evaluated that the simplified 2 group equation should be replaced by explicit 2 group equation. This report also describes about the status of critical assemblies in other countries. (author). 58 refs., 41 tabs., 126 figs

  18. Reactor physics computations

    International Nuclear Information System (INIS)

    Shapiro, A.

    1977-01-01

    Those reactor-core calculations which provide the effective multiplication factor (or eigenvalue) and the stationary (or fundamental mode) neutron-flux distribution at selected times during the lifetime of the core are considered. The multiplication factor is required to establish the nuclear composition and configuration which satisfy criticality and control requirements. The steady-state flux distribution must be known to calculate reaction rates and power distributions which are needed for the thermal, mechanical and shielding design of the reactor, as well as for evaluating refueling requirements. The calculational methods and techniques used for evaluating the nuclear design information vary with the type of reactor and with the preferences and prejudices of the reactor-physics group responsible for the calculation. Additionally, new methods and techniques are continually being developed and made operational. This results in a rather large conglomeration of methods and computer codes which are available for reactor analysis. The author provides the basic calculational framework and discusses the more prominent techniques which have evolved. (Auth.)

  19. A model for steady-state and transient determination of subcooled boiling for calculations coupling a thermohydraulic and a neutron physics calculation program for reactor core calculation

    International Nuclear Information System (INIS)

    Mueller, R.G.

    1987-06-01

    Due to the strong influence of vapour bubbles on the nuclear chain reaction, an exact calculation of neutron physics and thermal hydraulics in light water reactors requires consideration of subcooled boiling. To this purpose, in the present study a dynamic model is derived from the time-dependent conservation equations. It contains new methods for the time-dependent determination of evaporation and condensation heat flow and for the heat transfer coefficient in subcooled boiling. Furthermore, it enables the complete two-phase flow region to be treated in a consistent manner. The calculation model was verified using measured data of experiments covering a wide range of thermodynamic boundary conditions. In all cases very good agreement was reached. The results from the coupling of the new calculation model with a neutron kinetics program proved its suitability for the steady-state and transient calculation of reactor cores. (orig.) [de

  20. Studies on reactor physics

    International Nuclear Information System (INIS)

    1960-01-01

    Most of the peaceful applications of atomic energy are inherently dependent on advances in the science and technology of nuclear reactors, and aspects of this development are part of a major programme of the International Atomic Energy Agency. The most useful role that the Agency can play is as a co-ordinating body or central forum where the trends can be reviewed and the results assessed. Some of the basic studies are carried out by members of the Agency's own scientific staff. The Agency also convenes groups of experts from different countries to examine a particular problem in detail and make any necessary recommendations. Some of the important subjects are discussed at international scientific meetings held by the Agency. One of the subjects covered by such studies is the physics of nuclear reactors and a specific topic recently discussed was Codes for Reactor Computations, on which a seminar was held in Vienna in April this year. Another The members of the Panel described the development of heavy water reactors, the equipment and methods of research currently used, and plans for further development in their respective countries meeting of Panel of Experts on Heavy Water Lattices was held in Vienna in August 1959

  1. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  2. Reactor physics problems on HCPWR

    International Nuclear Information System (INIS)

    Ishiguro, Yukio; Akie, Hiroshi; Kaneko, Kunio; Sasaki, Makoto.

    1986-01-01

    Reactor physics problems on high conversion pressurized water reactors (HCPWRs) are discussed. Described in this report are outline of the HCPWR, expected accuracy for the various reactor physical qualities, and method for K-effective calculation in the resonance energy area. And requested further research problems are shown. The target value of the conversion ratio are also discussed. (author)

  3. Research on reactor physics data

    International Nuclear Information System (INIS)

    1961-01-01

    In the early years of nuclear reactor research, each national program tended to develop its own reactor physics information. The Government of Norway proposed to the Agency the undertaking of a joint program in reactor physics utilizing the facilities and staff of its zero power reactor NORA then under construction. Following the approval by the Board of Governors in February, the Agency invited Member States to submit the names and qualifications of scientists they wished to suggest for the project. All the results and information gained through the program, which is expected to last about three years, will be placed at the disposal of the Agency's Member States

  4. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  5. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  6. Internal multi-scale multi-physics coupled system for high fidelity simulation of light water reactors

    International Nuclear Information System (INIS)

    Ivanov, A.; Sanchez, V.; Stieglitz, R.; Ivanov, K.

    2014-01-01

    Highlights: • The current paper focuses on a optimized method for performing coupled Monte-Carlo/thermal–hydraulics calculations. • Innovative on-the-fly method for supplying the temperature and density distributions is presented. • Convergence acceleration method is presented. It is proven applicable by generalizing the Robbins-Monro theorem. • Tallying is optimized by using collision probability estimator for the power profile estimation. - Abstract: In order to increase the accuracy and the degree of spatial and energy resolution of core design studies, coupled 3D neutronic (multi-group deterministic and continuous energy Monte-Carlo) and 3D thermal–hydraulic (CFD and subchannel) codes are being developed worldwide. At KIT, both deterministic and Monte-Carlo codes were coupled with subchannel codes and applied to predict the safety-related design parameters such as minimal critical power ratio (MCPR), maximal cladding and fuel temperature, departure from nuclide boiling ratio (DNBR). These coupling approaches were revised and considerably improved. Innovative method of internal on-the-fly thermal feedback interchange between the codes was implemented. It no longer relies on explicit material definitions and allows the modeling of temperature and density distributions based on the cell coordinates. In contrast to all existing coupled schemes, this method uses only standard MCNP geometry input and requires only proper definition of the geometrical dimensions. The initial material definition is arbitrary and is determined on-the-fly during the neutron transport by the thermal–hydraulic feedback. Another key issue addressed is the optimal application of parallel computing and the implementation of less time consuming tally estimators. Using multi-processor computer architectures and implementing collision density flux estimator, it is possible to reduce the Monte-Carlo running time and obtain converged results within reasonable time limit. The coupled

  7. Physical security at research reactors

    International Nuclear Information System (INIS)

    Clark, R.A.

    1977-01-01

    Of the 84 non-power research facilities licensed under 10 CFR Part 50, 73 are active (two test reactors, 68 research reactors and three critical facilities) and are required by 10 CFR Part 73.40 to provide physical protection against theft of SNM and against industrial sabotage. Each licensee has developed a security plan required by 10 CFR Part 50.34(c) to demonstrate the means of compliance with the applicable requirements of 10 CFR Part 73. In 1974, the Commission provided interim guidance for the organization and content of security plans for (a) test reactors, (b) medium power research and training reactors, and (c) low power research and training reactors. Eleven TRIGA reactors, with power levels greater than 250 kW and all other research and training reactors with power levels greater than 100 kW and less than or equal to 5,000 kW are designated as medium power research and training reactors. Thirteen TRIGA reactors with authorized power levels less than 250 kW are considered to be low power research and training reactors. Additional guidance for complying with the requirements of 73.50 and 73.60, if applicable, is provided in the Commission's Regulatory Guides. The Commission's Office of Inspection and Enforcement inspects each licensed facility to assure that an approved security plan is properly implemented with appropriate procedures and physical protection systems

  8. Fast reactor physics - an overview

    International Nuclear Information System (INIS)

    Lee, S.M.

    2004-01-01

    An introduction to the basic features of fast neutron reactors is made, highlighting the differences from the more conventional thermal neutron reactors. A discussion of important feedback reactivity mechanisms is given. Then an overview is presented of the methods of fast reactor physics, which play an important role in the successful design and operation of fast reactors. The methods are based on three main elements, namely (i) nuclear data bases, (ii) numerical methods and computer codes, and (iii) critical experiments. These elements are reviewed and the present status and future trends are summarized. (author)

  9. Physics of pressurized water reactors

    International Nuclear Information System (INIS)

    Gruen, A.

    1980-01-01

    The objective of this lecture is to demonstrate typical problems and solutions encountered in the design and operation of PWR power plants. The examples selected for illustration refer to PWR's of KWU design and to results of KWU design methods. In order to understand the physics of a power reactor it is necessary to have some knowledge of the structure and design of the power plant system of which the reactor is a part. It is therefore assumed that the reader is familiar with the design of the more important components and systems of a PWR, such as fuel assemblies, control assemblies, core lay-out, reactor coolant system, instrumentation. (author)

  10. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  11. Reactors and physics education

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1992-01-01

    This paper discussed some ideas for using neutrons in physics education, including experiments which demonstrate diffraction and optical refraction, divergence imaging, Zeeman splitting, polarization, Larmor precession, and neutron spin-echo. (author)

  12. Physical experiments. Reactor theory

    International Nuclear Information System (INIS)

    Korn, H.; Werle, H.; Bluhm, H.; Fieg, G.; Kappler, F.; Kuhn, D.; Lalovic, M.; Woll, D.; Kuefner, K.; Woznicki, Z.; Buckel, G.; Stehle, B.; Borgwaldt, H.

    1975-01-01

    The γ-spectrum in SNEAK 9C-1 and 9C-2 was measured by means of Si(Li) solid state detectors for verification of methods of shielding calculation. The blanket spectra turned out to be slightly harder than the spectra in the fissile zone; the plutonium spectra are slightly harder than the respective uranium spectra. This result is expected to be explained by studies to be carried out on the basis of a γ-transport program. For reactor theoretical calculations two 2-dimensional diffusion programs were compared with each other, and a 3-dimensional diffusion program was compared with a flux synthesis program. An improved source iteration scheme was drafted for the Karlsruhe Monte Carlo code. (orig.) [de

  13. TRIGA reactor health physics considerations

    International Nuclear Information System (INIS)

    Johnson, A.G.

    1970-01-01

    The factors influencing the complexity of a TRIGA health physics program are discussed in details in order to serve as a basis for later consideration of various specific aspects of a typical TRIGA health physics program. The health physics program must be able to provide adequate assistance, control, and safety for individuals ranging from the inexperienced student to the experienced postgraduate researcher. Some of the major aspects discussed are: effluent release and control; reactor area air monitoring; area monitoring; adjacent facilities monitoring; portable instrumentation, personnel monitoring. TRIGA reactors have not been associated with many significant occurrences in the area of health physics, although some operational occurrences have had health physics implications. One specific occurrence at OSU is described involving the detection of non-fission-product radioactive particulates by the continuous air monitor on the reactor top. The studies of this particular situation indicate that most of the particulate activity is coming from the rotating rack and exhausting to the reactor top through the rotating rack loading tube

  14. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  15. Operational power reactor health physics

    International Nuclear Information System (INIS)

    Watson, B.A.

    1987-01-01

    Operational Health Physics can be comprised of a multitude of organizations, both corporate and at the plant sites. The following discussion centers around Baltimore Gas and Electric's (BG and E) Calvert Cliffs Nuclear Power Plant, located in Lusby, Maryland. Calvert Cliffs is a twin Combustion Engineering 825 MWe pressurized water reactor site with Unit I having a General electric turbine-generator and Unit II having a Westinghouse turbine-generator. Having just completed each Unit's ten-year Inservice Inspection and Refueling Outge, a total of 20 reactor years operating health physics experience have been accumulated at Calvert Cliffs. Because BG and E has only one nuclear site most health physics functions are performed at the plant site. This is also true for the other BG and E nuclear related organizations, such as Engineering and Quality Assurance. Utilities with multiple plant sites have corporate health physics entity usually providing oversight to the various plant programs

  16. HTR characteristics affecting reactor physics

    International Nuclear Information System (INIS)

    Ehlers, K.

    1980-01-01

    A physical description of high-temperature has-cooled reactors is given, followed by an overview of HTR characteristics. The emphasis is placed on the HTR fuel cycle alternatives and thermohydraulics of pebble bed core. Some prospects of HTRs in the Federal Republic of Germany are also presented

  17. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  18. Tightly Coupled Multiphysics Algorithm for Pebble Bed Reactors

    International Nuclear Information System (INIS)

    Park, HyeongKae; Knoll, Dana; Gaston, Derek; Martineau, Richard

    2010-01-01

    We have developed a tightly coupled multiphysics simulation tool for the pebble-bed reactor (PBR) concept, a type of Very High-Temperature gas-cooled Reactor (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation Environment library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly with a Newton-based approach. Expensive Jacobian matrix formation is alleviated via the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to minimize Krylov iterations. Motivation for the work is provided via analysis and numerical experiments on simpler multiphysics reactor models. We then provide detail of the physical models and numerical methods in PRONGHORN. Finally, PRONGHORN's algorithmic capability is demonstrated on a number of PBR test cases.

  19. Multimedia on nuclear reactors physics

    International Nuclear Information System (INIS)

    Dies, Javier; Puig, Francesc

    2010-01-01

    The paper present an example of measures that have been found to be effective in the development of innovative educational and training technology. A multimedia course on nuclear reactor physics is presented. This material has been used for courses at master level at the universities; training for engineers at nuclear power plant as modular 2 weeks course; and training operators of nuclear power plant. The multimedia has about 785 slides and the text is in English, Spanish and French. (authors)

  20. Physical protection of power reactors

    International Nuclear Information System (INIS)

    Darby, J.L.

    1979-01-01

    Sandia Laboratories has applied a systematic approach to designing physical protection systems for nuclear facilities to commercial light-water reactor power plants. A number of candidate physical protection systems were developed and evaluated. Focus is placed on the design of access control subsystems at each of three plant layers: the protected area perimeter, building surfaces, and vital areas. Access control refers to barriers, detectors, and entry control devices and procedures used to keep unauthorized personnel and contraband out of the plant, and to control authorized entry into vital areas within the plant

  1. Reactor physics using a microcomputer

    International Nuclear Information System (INIS)

    Murray, R.L.

    1983-01-01

    The object of the work reported is to develop educational computer modules for all aspects of reactor physics. The modules consist of a description of the theory, mathematical method, computer program listing, sample calculations, and problems for the student, along with a card deck. Modules were first written in FORTRAN for an IBM 360/75, then later in BASIC for microcomputers. Problems include: limitation of equipment, choice of format for the program, the variety of dialects of BASIC used in the different microcomputer and peripherals brands, and knowing when to quit in the process of developing a program

  2. Physics and kinetics of TRIGA reactor

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This training module is written as an introduction to reactor physics for reactor operators. It assumes the reader has a basic, fundamental knowledge of physics, materials and mathematics. The objective is to provide enough reactor theory knowledge to safely operate a typical research reactor. At this level, it does not necessarily provide enough information to evaluate the safety aspects of experiment or non-standard operation reviews. The material provides a survey of basic reactor physics and kinetics of TRIGA type reactors. Subjects such as the multiplication factor, reactivity, temperature coefficients, poisoning, delayed neutrons and criticality are discussed in such a manner that even someone not familiar with reactor physics and kinetics can easily follow. A minimum of equations are used and several tables and graphs illustrate the text. (author)

  3. Reactor physics challenges in GEN-IV reactor design

    International Nuclear Information System (INIS)

    Driscoll, Michael K.; Hejzlar, Pavel

    2005-01-01

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources

  4. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  5. Reactor physics challenges in GEN-IV reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael K.; Hejzlar, Pavel [Massachusetts Institute of Technology, MA (United States)

    2005-02-15

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.

  6. Physical model of reactor pulse

    International Nuclear Information System (INIS)

    Petrovic, A.; Ravnik, M.

    2004-01-01

    Pulse experiments have been performed at J. Stefan Institute TRIGA reactor since 1991. In total, more than 130 pulses have been performed. Extensive experimental information on the pulse physical characteristics has been accumulated. Fuchs-Hansen adiabatic model has been used for predicting and analysing the pulse parameters. The model is based on point kinetics equation, neglecting the delayed neutrons and assuming constant inserted reactivity in form of step function. Deficiencies of the Fuchs-Hansen model and systematic experimental errors have been observed and analysed. Recently, the pulse model was improved by including the delayed neutrons and time dependence of inserted reactivity. The results explain the observed non-linearity of the pulse energy for high pulses due to finite time of pulse rod withdrawal and the contribution of the delayed neutrons after the prompt part of the pulse. The results of the improved model are in good agreement with experimental results. (author)

  7. Opportunities for reactor scale experimental physics

    International Nuclear Information System (INIS)

    1999-01-01

    A reactor scale tokamak plasma will exhibit three areas of physics phenomenology not accessible by contemporary experimental facilities. These are: (1) instabilities generated by energetic alpha particles; (2) self-heating phenomena; and (3) reactor scale physics, which includes integration of diverse physics phenomena, each with its own scaling properties. In each area, selected examples are presented that demonstrate the importance and uniqueness of physics results from reactor scale facilities for both inductive and steady state reactor options. It is concluded that the physics learned in such investigations will be original physics not attainable with contemporary facilities. In principle, a reactor scale facility could have a good measure of flexibility to optimize the tokamak approach to magnetic fusion energy. (author)

  8. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  9. Activity report of Reactor Physics Division - 1993

    International Nuclear Information System (INIS)

    Indira, R.

    1994-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs

  10. Activity report of Reactor Physics Division-1995

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1996-01-01

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1995 are reported. The activity are arranged under the headings: Nuclear Data Processing and Validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. refs., figs., tabs

  11. Activity report of Reactor Physics Division - 1993

    Energy Technology Data Exchange (ETDEWEB)

    Indira, R [ed.; Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-12-31

    The research and development (R and D) activities of the Reactor Physics Division of Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1993 are reported. The activities are arranged under the headings: Nuclear Data Processing and validation, Core Physics and Operation Studies, Reactor Kinetics and Safety analysis, Reactor Noise Analysis and Radiation Transport and Shielding Studies. List of publication is given at the end. (author). refs., figs., tabs.

  12. Reactor physics methods development at Westinghouse

    International Nuclear Information System (INIS)

    Mueller, E.; Mayhue, L.; Zhang, B.

    2007-01-01

    The current state of reactor physics methods development at Westinghouse is discussed. The focus is on the methods that have been or are under development within the NEXUS project which was launched a few years ago. The aim of this project is to merge and modernize the methods employed in the PWR and BWR steady-state reactor physics codes of Westinghouse. (author)

  13. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  14. The physics of nuclear reactors

    CERN Document Server

    Marguet, Serge

    2017-01-01

    This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: •   The slowing-down of neutrons in matter •   The charged particles and electromagnetic rays •   The calculation scheme, especially the simplification hypothesis •   The concept of criticality based on chain reactions •   The theory of homogeneous and heterogeneous reactors •   The problem of self-shielding �...

  15. Conceptual research on reactor core physics for accelerator driven sub-critical reactor

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Ding Dazhao; Liu Guisheng; Fan Sheng; Shen Qingbiao; Zhang Baocheng; Tian Ye

    2000-01-01

    The main properties of reactor core physics are analysed for accelerator driven sub-critical reactor. These properties include the breeding of fission nuclides, the condition of equilibrium, the accumulation of long-lived radioactive wastes, the effect from poison of fission products, as well as the thermal power output and the energy gain for sub-critical reactor. The comparison between thermal and fast system for main properties are carried out. The properties for a thermal-fast coupled system are also analysed

  16. Activity report of Reactor Physics Division - 1988

    International Nuclear Information System (INIS)

    Keshavamurthy, R.S.

    1989-01-01

    This report highlights the progress of activities carried out during the year 1988 in Reactor Physics Division in the form of brief summaries. The topics are organised under the following subject categories:(1) nuclear data evaluation , processing and validation, (2) core physics and analysis, (3) reactor kinetics and safety analysis, (4) noise analysis and (5) radiation transport and shielding. List of publications by the members of the Division and the Reactor Physics Seminars held during the year 1988, is included at the end of report. (author). refs., figs., tabs

  17. Reactor physics for non-nuclear engineers

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2011-01-01

    A one-term undergraduate course in reactor physics is described. The instructional format is strongly influenced by its intended audience of non-nuclear engineering students. In contrast to legacy treatments of the subject, the course focuses on the physics of nuclear power reactors with no attempt to include instruction in numerical methods. The multi-physics of power reactors is emphasized highlighting the close interactions between neutronic and thermal phenomena in design and analysis. Consequently, the material's sequencing also differs from traditional treatments, for example treating kinetics before the neutron diffusion is introduced. (author)

  18. General remarks on fast neutron reactor physics

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1980-01-01

    The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered

  19. CRDIAC: Coupled Reactor Depletion Instrument with Automated Control

    International Nuclear Information System (INIS)

    Logan, Steven K.

    2012-01-01

    When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its depletion

  20. Neutron calculation scheme for coupled reactors

    International Nuclear Information System (INIS)

    Porta, Jacques.

    1980-11-01

    The CABRI and PHEBUS cores are of the low enrichment rod type in which the fuel is made up of uranium oxide pellets encased in tubular cladding but the SCARABEE core has high enrichment plates, the fuel, an aluminium-uranium alloy (UAl) is metal, rolled into plate form. These three cores in well described rectangular geometry, receive in their centres the very heterogeneous cylindrical test loops (numerous containments of different kinds, large void spaces acting as lagging). After a detailed study of these three reactors, it is found that the search for a calculation scheme (common to the three projects) leads to the elimination of the scattering approximation in our calculations. It is therefore necessary to review the various existing models from a theoretical angle and then to select a particular method, according to the available data processing tools, a choice that will be dictated by the optimization of the parameters: cost in calculation time, difficulties (or ease) of use and accuracy achieved. A problem of experiment interpretation by calculation is dealt with in Chapter 3. The determination of the coupling by calculation is closely linked to the geometrical and energy modelization chosen. But from the experimental angle the determination of the coupling also gives rise to problems with respect to the interpretation of the experimental values obtained by thermal balance determinations, counting of the gamma emission of the fission products of fissile detectors and counting of lanthane 140 in the fuel fission products. The method of calculation is discussed as is the use made of detectors and the counting procedures. In chapter 4, it is not a local modelization that is discussed but an overall one in an original three dimensional calculation [fr

  1. OKLO: Fossil nuclear reactors. Physical study

    International Nuclear Information System (INIS)

    Naudet, R.

    1991-04-01

    This book presents a study of Oklo reactors, based essentially on physics and particularly neutronics but reviewing also all what is known on this topic, regrouping observations, measurement results and interpretative calculations. A remarkable characteristic of the study is the use of sophisticated reactor calculation methods for analysis of what happened two billion years ago in a uranium deposit. 200 refs [fr

  2. FOREWORD: Imaging from coupled physics Imaging from coupled physics

    Science.gov (United States)

    Arridge, S. R.; Scherzer, O.

    2012-08-01

    Due to the increased demand for tomographic imaging in applied sciences, such as medicine, biology and nondestructive testing, the field has expanded enormously in the past few decades. The common task of tomography is to image the interior of three-dimensional objects from indirect measurement data. In practical realizations, the specimen to be investigated is exposed to probing fields. A variety of these, such as acoustic, electromagnetic or thermal radiation, amongst others, have been advocated in the literature. In all cases, the field is measured after interaction with internal mechanisms of attenuation and/or scattering and images are reconstructed using inverse problems techniques, representing spatial maps of the parameters of these perturbation mechanisms. In the majority of these imaging modalities, either the useful contrast is of low resolution, or high resolution images are obtained with limited contrast or quantitative discriminatory ability. In the last decade, an alternative phenomenon has become of increasing interest, although its origins can be traced much further back; see Widlak and Scherzer [1], Kuchment and Steinhaur [2], and Seo et al [3] in this issue for references to this historical context. Rather than using the same physical field for probing and measurement, with a contrast caused by perturbation, these methods exploit the generation of a secondary physical field which can be measured in addition to, or without, the often dominating effect of the primary probe field. These techniques are variously called 'hybrid imaging' or 'multimodality imaging'. However, in this article and special section we suggest the term 'imaging from coupled physics' (ICP) to more clearly distinguish this methodology from those that simply measure several types of data simultaneously. The key idea is that contrast induced by one type of radiation is read by another kind, so that both high resolution and high contrast are obtained simultaneously. As with all

  3. Standards for reference reactor physics measurements

    International Nuclear Information System (INIS)

    Harris, D.R.; Cokinos, D.M.; Uotinen, V.

    1990-01-01

    Reactor physics analysis methods require experimental testing and confirmation over the range of practical reactor configurations and states. This range is somewhat limited by practical fuel types such as actinide oxides or carbides enclosed in metal cladding. On the other hand, this range continues to broaden because of the trend of using higher enrichment, if only slightly enriched, electric utility fuel. The need for experimental testing of the reactor physics analysis methods arises in part because of the continual broadening of the range of core designs, and in part because of the nature of the analysis methods. Reactor physics analyses are directed primarily at the determination of core reactivities and reaction rates, the former largely for reasons of reactor control, and the latter largely to ensure that material limitations are not violated. Errors in these analyses can be regarded as being from numerics, from the data base, and from human factors. For numerical, data base, and human factor reasons, then, it is prudent and customary to qualify reactor physical analysis methods against experiments. These experiments can be treated as being at low power or at high power, and each of these types is subject to an American National Standards Institute standard. The purpose of these standards is to aid in improving and maintaining adequate quality in reactor physics methods, and it is from this point of view that the standards are examined here

  4. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1986-03-01

    These technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded

  5. Reactor physics activities in NEA member countries

    International Nuclear Information System (INIS)

    1990-01-01

    This document is a compilation of National activity reports presented at the thirty-third Meeting of the NEA Committee on Reactor Physics, held at OECD Headquarters, Paris, from 15th - 19th October 1990

  6. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  7. Development of physical conceptions of fast reactors

    International Nuclear Information System (INIS)

    Khomyakov, Yu.S.; Matveev, V.I.; Moiseev, A.V.

    2013-01-01

    • Russian experience in developing fast reactors has proved clearly scientific justification of conceptual physical principles and their technical feasibility. • However, the potential of fast reactors caused by their physical features has not been fully realized. • In order to assure the real possibility of transition to the nuclear power with fast reactors by about 2030 it is necessary to consistently update fast reactor designs for solving the following key problems: - increasing of self-protection level of reactor core; - improvement of technical and economical characteristics; - solution of the problems related to the fuel supply of nuclear power and assimilation of closed nuclear fuel cycle; - disposal of long lived radioactive waste and transmutation of minor actinides. • Russian program (2010-2020) on the development of basic concepts of the new generation reactors implies successive solution of the above problems. • New technical decisions will be demonstrated by development and assimilation of the new reactors: - BN-800 – development of the fuel cycle infrastructure and mastering of the new types of fuel; - BN-1200 reactor – demonstration economical efficiency of fast reactor and new level of safety; - BREST development and demonstration new heavy liquid metal coolant technology and alternative design concept

  8. Physics and safety of advanced research reactors

    International Nuclear Information System (INIS)

    Boening, K.; Hardt, P. von der

    1987-01-01

    Advanced research reactor concepts are presently being developed in order to meet the neutron-based research needs of the nineties. Among these research reactors, which are characterized by an average power density of 1-10 MW per liter, highest priority is now generally given to the 'beam tube reactors'. These provide very high values of the thermal neutron flux (10 14 -10 16 cm -2 s -1 ) in a large volume outside of the reactor core, which can be used for sample irradiations and, in particular, for neutron scattering experiments. The paper first discusses the 'inverse flux trap concept' and the main physical aspects of the design and optimization of beam tube reactors. After that two examples of advanced research reactor projects are described which may be considered as two opposite extremes with respect to the physical optimization principle just mentioned. The present situation concerning cross section libraries and neutronic computer codes is more or less satisfactory. The safety analyses of advanced research reactors can largely be updated from those of current new designs, partially taking advantage of the immense volume of work done for power reactors. The paper indicates a few areas where generic problems for advanced research reactor safety are to be solved. (orig.)

  9. Physics of high-temperature reactors

    International Nuclear Information System (INIS)

    Massimo, L.

    1976-01-01

    The subject is covered in chapters entitled: general description of the HTR core; general considerations about reactor physics; neutron cross-sections; basic aspects of transport and diffusion theory; methods for the solution of the diffusion equation; slowing-down and thermalization in graphite; resonance absorption; spectrum calculations and cross-section averaging; burn-up; core design; fuel management and cost calculations; temperature coefficient; core dynamics and accident analysis; reactor control; peculiarities of HTR physics; analysis of calculational accuracy; sequence of reactor design calculations. (U.K.)

  10. Activity report of Reactor Physics Section - 1985

    International Nuclear Information System (INIS)

    John, T.M.

    1986-01-01

    This Activity Report contains brief summaries of different studies made in Reactor Physics Section during the year 1985. These are presented under the headings Nuclear Data Processing and Validation, Reactor Design and Analysis, Safety and Noise Analysis, Radiation Transport and Shielding, Reactor Physics Experiments and Statistical Physics. The work on nuclear data during this period comprises primarily of validation of data of 232 Th and 233 U as a part of participation in the Co-ordinated Research Programme (CRP) under IAEA research contract. The most significant event during 1985 at this centre has been the first criticality of FBTR (Fast Breeder Test Reactor), which was achieved on the 18th of October. Reactor Physics Section has played a key role in this event by carrying out the first approach to criticality with fuel loading in a safe manner and conducting some low power reactor physics experiments which are discussed. The studies made in the field reactor safety and shielding are also connected mainly with the FBTR problems in addition to some work on the PFBR (Prototype Fast Breeder Reactor) detailed design of which has been just started. Studies pertaining to the other two Co-ordinated Research Programmes (CRP) under IAEA contract, namely (1) on the comparative assessment of processing techniques for the analysis of sodium boiling noise detection and, (2) on the contribution of advanced reactors to energy supply have been continued during this year. At the end of this report, a list of publications made by the members of the section and also the sectional seminars held during this period is included. (author)

  11. Operational reactor physics analysis codes (ORPAC)

    International Nuclear Information System (INIS)

    Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi

    2007-07-01

    For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)

  12. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    International Nuclear Information System (INIS)

    Hussein, M.S; Lewis, B.J.; Bonin, H.W.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k eff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k eff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k eff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  13. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S, E-mail: mohamed.hussein@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada); Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k{sub eff} calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k{sub eff} calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k{sub eff} calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  14. Coupled IVPs to Investigate a Nuclear Reactor Poison Burn Up

    Science.gov (United States)

    Faghihi, F.; Saidi-Nezhad, M.

    2009-09-01

    A set of coupled IVPs that describe the change rate of an important poison, in a nuclear reactor, has been written herein. Specifically, in this article, we have focused on the samarium-149 (as a poison) burnup in a desired pressurized water nuclear reactor and its concentration are given using our MATLAB-linked "solver."

  15. Coupled IVPs to Investigate a Nuclear Reactor Poison Burn Up

    International Nuclear Information System (INIS)

    Faghihi, F.

    2009-01-01

    A set of coupled IVPs that describe the change rate of an important poison, in a nuclear reactor, has been written herein. Specifically, in this article, we have focused on the samarium-149 (as a poison) burnup in a desired pressurized water nuclear reactor and its concentration are given using our MATLAB-linked 'solver'.

  16. Activity report of Reactor Physics Division : 1990

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1991-01-01

    The major Research and Development and Project activities carried out during the year 1990 in Reactor Physics Division are presented in the form of summaries in this report. The various activities are organised under the following areas : (1) Nuclear Data Evaluation, Processing and Validation, (2) Core Physics and Analysis, (3) Reactor Kinetics and Safety Analysis, (4) Noise Analysis, and (5) Radiation Transport and Shielding. FBTR was restarted in July 1990 and the power was raised upto 500 kW. A number of low power physics experiments on reactivity coefficients, kinetics and noise, neutron flux and gamma dose in B cells, were performed, which are discussed in this report. (author). figs., tabs

  17. Physics: A New Reactor Physics Analysis Toolkit

    International Nuclear Information System (INIS)

    Rabiti, C.; Wang, Y.; Palmiotti, G.; Hiruta, H.; Cogliati, J.; Alfonsi, A.

    2011-01-01

    In the last year INL has internally pursued the development of a new reactor analysis tool: PHISICS. The software is built in a modular approach to simplify the independent development of modules by different teams and future maintenance. Most of the modules at the time of this summary are still under development (time dependent transport driver, depletion, cross section I/O and interpolation, generalized perturbation theory), while the transport solver INSTANT (Intelligent Nodal and Semi-structured Treatment for Advanced Neutron Transport) has already been widely used1, 2, 3, 4. For this reason we will focus mainly on the presentation of the transport solver INSTANT

  18. Physics of Coupled CME and Flare Systems

    Science.gov (United States)

    2016-12-21

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0162 TR-2016-0162 PHYSICS OF COUPLED CME AND FLARE SYSTEMS K. S. Balasubramaniam, et al. 21 December 2016 Final...30 Sep 2016 4. TITLE AND SUBTITLE Physics of Coupled CME and Flare Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F...objectives for this task were: (i) derive measureable physical properties and discernible structural circumstances in solar active regions that

  19. Nuclear reactor safety: physics and engineering aspects

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1982-01-01

    In order to carry out the sort of probabilistic analysis referred to by Farmer (Contemp. Phys.; 22:349(1981)), it is necessary to have a good understanding of the processes involved in both normal and accident conditions in a nuclear reactor. Some of these processes, for a variety of different reactor systems, are considered in sections dealing with the neutron chain reaction, the removal of heat from the reactor, material problems, reliability of protective systems and a number of specific topics of particular interest from the point of view of physics or engineering. (author)

  20. IRPhEP-handbook, International Handbook of Evaluated Reactor Physics Benchmark Experiments

    International Nuclear Information System (INIS)

    Sartori, Enrico; Blair Briggs, J.

    2008-01-01

    experimental series that were performed at 17 different reactor facilities. The Handbook is organized in a manner that allows easy inclusion of additional evaluations, as they become available. Additional evaluations are in progress and will be added to the handbook periodically. Content: FUND - Fundamental; GCR - Gas Cooled (Thermal) Reactor; HWR - Heavy Water Moderated Reactor; LMFR - Liquid Metal Fast Reactor; LWR - Light Water Moderated Reactor; PWR - Pressurized Water Reactor; VVER - VVER Reactor; Evaluations published as drafts 2 - Related Information: International Criticality Safety Benchmark Evaluation Project (ICSBEP); IRPHE/B and W-SS-LATTICE, Spectral Shift Reactor Lattice Experiments; IRPHE-JAPAN, Reactor Physics Experiments carried out in Japan ; IRPHE/JOYO MK-II, JOYO MK-II core management and characteristics database ; IRPhE/RRR-SEG, Reactor Physics Experiments from Fast-Thermal Coupled Facility; IRPHE-SNEAK, KFK SNEAK Fast Reactor Experiments, Primary Documentation ; IRPhE/STEK, Reactor Physics Experiments from Fast-Thermal Coupled Facility ; IRPHE-ZEBRA, AEEW Fast Reactor Experiments, Primary Documentation ; IRPHE-DRAGON-DPR, OECD High Temperature Reactor Dragon Project, Primary Documents; IRPHE-ARCH-01, Archive of HTR Primary Documents ; IRPHE/AVR, AVR High Temperature Reactor Experience, Archival Documentation ; IRPHE-KNK-II-ARCHIVE, KNK-II fast reactor documents, power history and measured parameters; IRPhE/BERENICE, effective delayed neutron fraction measurements ; IRPhE-TAPIRO-ARCHIVE, fast neutron source reactor primary documents, reactor physics experiments. The International Handbook of Evaluated Reactor Physics Benchmark Experiments was prepared by a working party comprised of experienced reactor physics personnel from Belgium, Brazil, Canada, P.R. of China, Germany, Hungary, Japan, Republic of Korea, Russian Federation, Switzerland, United Kingdom, and the United States of America. The IRPhEP Handbook is available to authorised requesters from the

  1. Activity Report of Reactor Physics Division - 1997

    International Nuclear Information System (INIS)

    Singh, Om Pal

    1998-01-01

    The research and development activities of the Reactor Physics Division of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 1997 are reported. The activities are arranged under the headings: nuclear data processing and validation, PFBR and KAMINI core physics, FBTR core physics, radioactivity and shielding and safety analysis. A list of publications of the Division and seminars delivered are included at the end of the report

  2. Reactor physics needs in developing countries

    International Nuclear Information System (INIS)

    Solanilla, R.

    1980-01-01

    The aim of this paper the identification of needs on Reactor Physics in developing countries embarked in the installation and later on in the operation of Commercial Nuclear Power Plants. In this context the main task of Reactor Physics should be focused in the application of Physical models with inclusion of thermohydraulic process to solve the various realistic problems which appear to ensure a safe, economical and reliable core design and reactor operation. The first part of the paper deals with the scope of Reactor Physics and its interrelation with other disciplines as seen from the view point of developing countries possibilities. Needs requiring a quick response, i.e., those demands coming during the development of a specific Nuclear Power Plant Project, are summarized in the second part of the lecture. Plant startup has been chosen as reference to separate two categories of requirements: Requirements prior to startup phase include reactor core verification, licensing aspects review and study of fuel utilization alternatives; whereas the period during and after startup mainly embraces codes checkup and normalization, core follow-up and long term prediction

  3. SERPENT Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    Leppaenen, J.

    2010-01-01

    SERPENT is a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, developed at VTT Technical Research Centre of Finland since 2004. The code is specialized in lattice physics applications, but the universe-based geometry description allows transport simulation to be carried out in complicated three-dimensional geometries as well. The suggested applications of SERPENT include generation of homogenized multi-group constants for deterministic reactor simulator calculations, fuel cycle studies involving detailed assembly-level burnup calculations, validation of deterministic lattice transport codes, research reactor applications, educational purposes and demonstration of reactor physics phenomena. The Serpent code has been publicly distributed by the OECD/NEA Data Bank since May 2009 and RSICC in the U. S. since March 2010. The code is being used in some 35 organizations in 20 countries around the world. This paper presents an overview of the methods and capabilities of the Serpent code, with examples in the modelling of WWER-440 reactor physics. (Author)

  4. The dissolver paradox as a coupled fast-thermal reactor

    International Nuclear Information System (INIS)

    Lutz, H.F.; Webb, P.S.

    1993-05-01

    The dissolver paradox is treated as coupled fast-thermal reactors. Each reactor is sub-critical but the coupling is sufficient to form a critical system. The practical importance of the system occurs when the fast system by itself is mass limited and the thermal system by itself is volume limited. Numerous 1D calculations have been made to calculate the neutron multiplication parameters of the separate fast and thermal systems that occur in the dissolver paradox. A model has been developed to describe the coupling between the systems. Monte Carlo calculations using the MCNP code have tested the model

  5. Activity report of Reactor Physics Division - 1989

    International Nuclear Information System (INIS)

    1990-01-01

    The highlights of the various studies carried out during the year 1989 in Reactor Physics Division are presented in this report in the form of summaries. The topics are organised under the following subjects: (1) nuclear data evaluation, processing and validation, (2) core physics and analysis, (3) reacto r kinetics and safety analysis, (4) noise analysis, and radiation transport and shielding. It is observed that with the restart and operation of FBTR at low power for some time, some of the low power physics experiments were completed and plans and procedures for the remaining physics experiments at intermediate and high power (upto 10 MWt) have been prepared. The lists of publications by the members of Division and the Reactor Physics Seminars held during the year 19 89, are included at the end of the report. (author). refs., figs., tabs

  6. Physics design of the upgraded TREAT reactor

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Lell, R.M.; Liaw, J.R.; Ulrich, A.J.; Wade, D.C.; Yang, S.T.

    1980-01-01

    With the deferral of the Safety Test Facility (STF), the TREAT Upgrade (TU) reactor has assumed a lead role in the US LMFBR safety test program for the foreseeable future. The functional requirements on TU require a significant enhancement of the capability of the current TREAT reactor. A design of the TU reactor has been developed that modifies the central 11 x 11 fuel assembly array of the TREAT reactor such as to provide the increased source of hard spectrum neutrons necessary to meet the functional requirements. A safety consequence of the increased demands on TU is that the self limiting operation capability of TREAT has proved unattainable, and reliance on a safety grade Plant Protection System is necessary to ensure that no clad damage occurs under postulated low-probability reactivity accidents. With that constraint, the physics design of TU provides a means of meeting the functional requirements with a high degree of confidence

  7. The past, present, and future of test and research reactor physics

    International Nuclear Information System (INIS)

    Ryskamp, J.M.

    1992-01-01

    Reactor physics calculations have been performed on research reactors since the first one was built 50 yr ago under the University of Chicago stadium. Since then, reactor physics calculations have evolved from Fermi-age theory calculations performed with slide rules to three-dimensional, continuous-energy, coupled neutron-photon Monte Carlo computations performed with supercomputers and workstations. Such enormous progress in reactor physics leads us to believe that the next 50 year will be just as exciting. This paper reviews this transition from the past to the future

  8. New trends in reactor physics design methods

    International Nuclear Information System (INIS)

    Jagannathan, V.

    1993-01-01

    Reactor physics design methods are aimed at safe and efficient management of nuclear materials in a reactor core. The design methodologies require a high level of integration of different calculational modules of many a key areas like neutronics, thermal hydraulics, radiation transport etc in order to follow different 3-D phenomena under normal and transient operating conditions. The evolution of computer hardware technology is far more rapid than the software development and has rendered such integration a meaningful and realizable proposition. The aim of this paper is to assess the state of art of the physics design codes used in Indian thermal power reactor applications with respect to meeting the design, operational and safety requirements. (author). 50 refs

  9. Reactor physics calculations in the Nordic countries

    International Nuclear Information System (INIS)

    Hoeglund, R.

    1995-01-01

    The seventh biennial meeting on reactor physics calculations in the Nordic countries was arranged by VTT Energy on May 8-9, 1995. 26 papers on different subjects in the field of reactor physics were presented by 45 participants representing research establishments, technical universities, utilities, consultants and suppliers. Resent development and verification of the program systems of ABB Atom, Risoe, Scandpower, Studsvik and VTT Energy were the main topic of the meeting. Benchmarking of the two assembly codes CASMO-4 and HELIOS is proceeding. Cross section data calculated with CASMO-HEX have been validated for the Loviisa reactors. On core analysis ABB atom gives a description on its latest core simulator version POLCA7 with the calculation Core Master 2 and the BWR core supervision system Core Watch. Transient calculations with HEXTRAN, HEXTRAN- PLIM, TRAB, RAMONA, SIMULATE-3K and a code based on PRESTO II/POLCA7 were also presented

  10. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  11. Technical specifications: Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1979-02-01

    The technical specifications define the key limitations that must be observed for safe operation of the Health Physics Research Reactor (HPRR) and an envelope of operation within which there is assurance that these limits will not be exceeded. The specifications were written to satisfy the requirements of the Department of Energy (DOE) Manual Chapter 0540, September 1, 1972

  12. Physical measurements in Marcoule reactors (1962)

    International Nuclear Information System (INIS)

    Teste du Bailler, A.

    1962-01-01

    A brief description of the physical measurements in Marcoule reactors is given here. During commissioning and subsequent years of operation, various experiments ha been carried out to check design data, and improve the operating conditions and also test theoretical models for kinetic studies. (author) [fr

  13. Reactor physics calculations on HTR type configurations

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.).

  14. Reactor physics calculations on HTR type configurations

    International Nuclear Information System (INIS)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.)

  15. Neutronic/Thermal-hydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    International Nuclear Information System (INIS)

    Ragusa, Jean; Siegel, Andrew; Ruggieri, Jean-Michel

    2010-01-01

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  16. Neutronic/Thermalhydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jean Ragusa; Andrew Siegel; Jean-Michel Ruggieri

    2010-09-28

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  17. Coupled fast-thermal system at the 'RB' nuclear reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    1987-04-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  18. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  19. Ad hoc committee on reactor physics benchmarks

    International Nuclear Information System (INIS)

    Diamond, D.J.; Mosteller, R.D.; Gehin, J.C.

    1996-01-01

    In the spring of 1994, an ad hoc committee on reactor physics benchmarks was formed under the leadership of two American Nuclear Society (ANS) organizations. The ANS-19 Standards Subcommittee of the Reactor Physics Division and the Computational Benchmark Problem Committee of the Mathematics and Computation Division had both seen a need for additional benchmarks to help validate computer codes used for light water reactor (LWR) neutronics calculations. Although individual organizations had employed various means to validate the reactor physics methods that they used for fuel management, operations, and safety, additional work in code development and refinement is under way, and to increase accuracy, there is a need for a corresponding increase in validation. Both organizations thought that there was a need to promulgate benchmarks based on measured data to supplement the LWR computational benchmarks that have been published in the past. By having an organized benchmark activity, the participants also gain by being able to discuss their problems and achievements with others traveling the same route

  20. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  1. A series of lectures on operational physics of power reactors

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.; Rastogi, B.P.

    1982-01-01

    This report discusses certain aspects of operational physics of power reactors. These form a lecture series at the Winter College on Nuclear Physics and Reactors, Jan. - March 1980, conducted at the International Centre for Theoretical Physics, Trieste, Italy. The topics covered are (a) the reactor physics aspects of fuel burnup (b) theoretical methods applied for burnup prediction in power reactors (c) interpretation of neutron detector readings in terms of adjacent fuel assembly powers (d) refuelling schemes used in power reactors. The reactor types chosen for the discussion are BWR, PWR and PHWR. (author)

  2. Hydrogen Process Coupling to Modular Helium Reactors

    International Nuclear Information System (INIS)

    Shenoy, Arkal; Richards, Matt; Buckingham, Robert

    2009-01-01

    The U.S. Department of Energy (DOE) has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the concept to be used for the Next Generation Nuclear Plant (NGNP), because it is the most advanced Generation IV concept with the capability to provide process heat at sufficiently high temperatures for production of hydrogen with high thermal efficiency. Concurrently with the NGNP program, the Nuclear Hydrogen Initiative (NHI) was established to develop hydrogen production technologies that are compatible with advanced nuclear systems and do not produce greenhouse gases. The current DOE schedule for the NGNP Project calls for startup of the NGNP plant by 2021. The General Atomics (GA) NGNP pre-conceptual design is based on the GA Gas Turbine Modular Helium Reactor (GT-MHR), which utilizes a direct Brayton cycle Power Conversion System (PCS) to produce electricity with a thermal efficiency of 48%. The nuclear heat source for the NGNP consists of a single 600-MW(t) MHR module with two primary coolant loops for transport of the high-temperature helium exiting the reactor core to a direct cycle PCS for electricity generation and to an Intermediate Heat Exchanger (IHX) for hydrogen production. The GA NGNP concept is designed to demonstrate hydrogen production using both the thermochemical sulfur-iodine (SI) process and high-temperature electrolysis (HTE). The two primary coolant loops can be operated independently or in parallel. The reactor design is essentially the same as that for the GT-MHR, but includes the additional primary coolant loop to transport heat to the IHX and other modifications to allow operation with a reactor outlet helium temperature of 950 .deg. C (vs. 850 .deg. C for the GT-MHR). The IHX transfers a nominal 65 MW(t) to the secondary heat transport loop that provides the high-temperature heat required by the SI-based and HTE-based hydrogen production facilities. Two commercial nuclear hydrogen plant variations were evaluated with

  3. Introduction to nuclear power reactors and their health physics systems

    International Nuclear Information System (INIS)

    Brtis, J.S.

    1982-01-01

    This paper provides an introduction to: (1) the major systems of Boiling Water Reactors (BWR's) and Pressurized Water Reactors (PWR's), (2) the production and distribution of radiation sources in BWR's and PWR's, (3) the regulatory and functional requirements for nuclear power reactor design from a health physics standpoint, (4) the health physics systems provided to meet such requirements, and (5) a bibliography of documents germane to power reactor health physics design

  4. Reactor physics computations for nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Huria, H.C.

    1989-01-01

    The undergraduate program in nuclear engineering at the University of Cincinnati provides three-quarters of nuclear reactor theory that concentrate on physical principles, with calculations limited to those that can be conveniently completed on programmable calculators. An additional one-quarter course is designed to introduce the student to realistic core physics calculational methods, which necessarily requires a computer. Such calculations can be conveniently demonstrated and completed with the modern microcomputer. The one-quarter reactor computations course includes a one-group, one-dimensional diffusion code to introduce the concepts of inner and outer iterations, a cell spectrum code based on integral transport theory to generate cell-homogenized few-group cross sections, and a multigroup diffusion code to determine multiplication factors and power distributions in one-dimensional systems. Problem assignments include the determination of multiplication factors and flux distributions for typical pressurized water reactor (PWR) cores under various operating conditions, such as cold clean, hot clean, hot clean at full power, hot full power with xenon and samarium, and a boron concentration search. Moderator and Doppler coefficients can also be evaluated and examined

  5. Coupled hydro-neutronic calculations for fast burst reactor accidents

    International Nuclear Information System (INIS)

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  6. NURESIM lecture on reactor physics (visual aids)

    International Nuclear Information System (INIS)

    Nguyen Tien Nguyen

    1998-01-01

    The purpose of the NURESIM software (NUclear REactor SIMulation) is to be used as a computer guide in quick view of the texts and pictures in the fields of nuclear reactor physics. This software is designed so that it can be used by users of different knowledge levels. Students could find here elementary concepts, researchers - important calculation codes as GRACE, PEACO, THERMOS, HEX120. The NURESIM software is composed of four parts: units, pictures, simulations and calculations. In the terminology of IAEA-TECDOC-314 (1984) the first three parts may be classified as a level 2 of sophistication IFM code package: ''Code package useful as a first introduction for nuclear engineers''. The last one (calculations) is classified as a level higher. Details about each part are explained in Paragraph 2. A users guide is in Paragraph 3. (author)

  7. IRT-type research reactor physical calculation methodology

    International Nuclear Information System (INIS)

    Carrera, W.; Castaneda, S.; Garcia, F.; Garcia, L.; Reyes, O.

    1990-01-01

    In the present paper an established physical calculation procedure for the research reactor of the Nuclear Research Center (CIN) is described. The results obtained by the method are compared with the ones reported during the physical start up of a reactor with similar characteristics to the CIN reactor. 11 refs

  8. EBR-II Reactor Physics Benchmark Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Chad L. [Idaho State Univ., Pocatello, ID (United States); Lum, Edward S [Idaho State Univ., Pocatello, ID (United States); Stewart, Ryan [Idaho State Univ., Pocatello, ID (United States); Byambadorj, Bilguun [Idaho State Univ., Pocatello, ID (United States); Beaulieu, Quinton [Idaho State Univ., Pocatello, ID (United States)

    2017-12-28

    This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.

  9. Physics of Plutonium Recycling in Thermal Reactors

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1967-01-01

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of 240 Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  10. Physics of Plutonium Recycling in Thermal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kinchin, G. H. [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1967-09-15

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of {sup 240}Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  11. Development of a three dimension multi-physics code for molten salt fast reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2014-01-01

    Molten Salt Reactor (MSR) was selected as one of the six innovative nuclear reactors by the Generation IV International Forum (GIF). The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper: a new coupling model is presented that physically describes the inherent relations between the neutron flux, the delayed neutron precursor, the heat transfer and the turbulent flow. Based on the model, integrating nuclear data processing, CAD modeling, structured and unstructured mesh technology, data analysis and visualization application, a three dimension steady state simulation code system (MSR3DS) for the can-type molten salt fast reactor is developed and validated. In order to demonstrate the ability of the code, the three dimension distributions of the velocity, the neutron flux, the delayed neutron precursor and the temperature were obtained for the simplified MOlten Salt Advanced Reactor Transmuter (MOSART) using this code. The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor. Furthermore, the code can well predict the flow effect of fuel salt and the transport effect of the turbulent diffusion. (authors)

  12. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu, Xinhe; Yang, Xiaoyong; Wang, Jie

    2017-01-01

    Highlights: • The features of three different power generation schemes, including closed Brayton cycle, non-reheating combined cycle and reheating combined cycle, coupled with high temperature gas-cooled reactor (HTGR) were investigated and compared. • The effects and mechanism of reactor core outlet temperature, compression ratio and other key parameters over cycle characteristics were analyzed by the thermodynamic models.. • It is found that reheated combined cycle has the highest efficiency. Reactor outlet temperature and main steam parameters are key factors to improve the cycle’s performance. - Abstract: With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactors (HTGRs). In this paper, different cycle power generation schemes for HTGRs were systematically studied. Physical and mathematical models were established for these three cycle schemes: closed Brayton cycle, simple combined cycle, and reheated combined cycle. The effects and mechanism of key parameters such as reactor core outlet temperature, reactor core inlet temperature and compression ratio on the features of these cycles were analyzed. Then, optimization results were given with engineering restrictive conditions, including pinch point temperature differences. Results revealed that within the temperature range of HTGRs (700–900 °C), the reheated combined cycle had the highest efficiency, while the simple combined cycle had the lowest efficiency (900 °C). The efficiencies of the closed Brayton cycle, simple combined cycle and reheated combined cycle are 49.5%, 46.6% and 50.1%, respectively. These results provide insights on the different schemes of these cycles, and reveal the effects of key parameters on performance of these cycles. It could be helpful to understand and develop a combined cycle coupled with a high temperature reactor in the future.

  13. Effect of hydroelastic coupling on the response of a nuclear reactor to ground acceleration

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Skinner, D.A.

    1977-01-01

    The dynamical characteristics of a nuclear reactor vessel and its internal components is affected by the coolant inside the vessel. Recent studies in flow-induced vibration of reactor internal components show that the effect of the entrapped coolant can be properly accounted for by adding a 'hydrodynamic mass' matrix to the physical mass of the fluid structure system. In the past few years, analytical expressions for this hydrodynamic mass matrix have been derived, usually under greatly simplifying assumptions on the geometry of the structure. Typical examples are slender-cylinder and simply-supported-cylinder assumptions. While expressions derived based on these assumptions can still bring out the general characteristics of hydroelastic coupling of structure, their application to seismic analysis of reactor components is limited because these structutres, even though generally cylindrical, are usually neither slender nor simply supported. This paper presents an anlytical and experimental study of the effects of hydroelastic coupling on the seismic response of a reactor vessel and its internal components. The hydrodynamic mass matrix for cylindrical shell structures with arbitrary D/l ratios. Two specific examples are included to illustrate the effect of hydroelastic coupling on the response of a PWR to ground acceleration. (Auth.)

  14. Experiments utilizing two coupled TRIGA-type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, G [Southern California Edison Co., Rosemead, CA (United States); Jones, B G; Miley, G H [University of Illinois (United States)

    1974-07-01

    An experimental study has been performed on a coupled-core system consisting of two reactors each of which can be made critical by itself, coupled neutronically by a graphite thermal column. Both steady-state and transient measurements were performed on the system. The steady-state measurement consisted of measuring the coupling coefficient between the two reactors. Also, series of measurements were performed while one of the cores was far subcritical and the coupling between the two cores was varied between 1.6 x 10{sup -2} and 1.6 x 10{sup -5} cents by the insertion of a water gap and from 1.6 x 10{sup -2} cents to 6.0 x 10{sup -4} cents by the insertion of a cadmium sheet between the cores. The transient portion of the study was performed by pulsing one of the reactors (the Illinois Advanced TRIGA) and following the pulse into the passive core (the Low Power Reactor Assembly). The first pulse series measured the pulse as it emerged from the thermal column and propagated through the water, where no fuel was present. This provided an analysis of the neutron source to the passive core. The second pulse series was performed with the passive core far subcritical (k{sub eff} {approx_equal} 0.94) and investigated the effects on the transient coupling of the insertion of water gaps of up to 9 inches or a cadmium sheet ({sigma}T = 3.2) between the two cores. Spatial measurements of the pulse in the far subcritical assembly also were performed. The third series of pulses investigated the characteristics of the pulse in the passive core when it was subcritical, just critical, and supercritical, The effects on the FWHM of the pulse in the passive core and on the delay time between the peak of the pulse in the TRIGA and the passive core were measured for the passive core having a k{sub eff} from 0.936 to 1.0015 and the initial period of the pulse in TRIGA varying from 15.6 {+-} .7 ms to 3.58 {+-} .05 ms. The FWHM increased from 13.5 {+-} 0.5 ms to 18.8 {+-} 0.5 ms and delay

  15. Lessons from feedback of safety operating experience for reactor physics

    International Nuclear Information System (INIS)

    Suchomel, J.; Rapavy, S.

    1999-01-01

    Analyses of events in WWER operations as a part of safety experience feedback provide a valuable source of lessons for reactor physics. Examples of events from Bohunice operation will be shown such as events with inadequate approach to criticality, positive reactivity insertions, expulsion of a control rod from shut-down reactor, problems with reactor protection system and control rods. (Authors)

  16. Applications in nuclear data and reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.; Muranaka, R.; Schmidt, J.

    1986-01-01

    This book presents the papers given at a conference on reactor kinetics and nuclear data collections. Topics considered at the conference included nuclear data processing, PWR core design calculations, reactor neutron dosimetry, in-core fuel management, reactor safety analysis, transients, two-phase flow, fuel cycles of research reactors, slightly enriched uranium, highly enriched uranium, reactor start-up, computer codes, and the transport of spent fuel elements

  17. Pyrolysis treatment of waste tire powder in a capacitively coupled RF plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Department of Environmental Engineering, Guangdong University of Technology, Waihuanxi Road, Guangzhou 510006 (China); Tang, L. [Department of Civil Engineering, Guangzhou University, Waihuanxi Road, Guangzhou 510006 (China)

    2009-03-15

    A capacitively coupled radio-frequency (RF) plasma reactor was tested mainly for the purpose of solid waste treatment. It was found that using a RF input power between 1600 and 2000 W and a reactor pressure between 3000 and 8000 Pa (absolute pressure), a reactive plasma environment with a gas temperature between 1200 and 1800 K can be reached in this lab scale reactor. Under these conditions, pyrolysis of tire powder gave two product streams: a combustible gas and a pyrolytic char. The major components of the gas product are H{sub 2}, CO, CH{sub 4}, and CO{sub 2} The physical properties (surface area, porosity, and particle morphology) as well as chemical properties (elemental composition, heating value, and surface functional groups) of the pyrolytic char has also been examined. (author)

  18. Advances in Reactor Physics, Mathematics and Computation. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, Volume 2, are divided into 7 sessions bearing on: - session 7: Deterministic transport methods 1 (7 conferences), - session 8: Interpretation and analysis of reactor instrumentation (6 conferences), - session 9: High speed computing applied to reactor operations (5 conferences), - session 10: Diffusion theory and kinetics (7 conferences), - session 11: Fast reactor design, validation and operating experience (8 conferences), - session 12: Deterministic transport methods 2 (7 conferences), - session 13: Application of expert systems to physical aspects of reactor design and operation.

  19. Advanced methods for nuclear reactor gas laser coupling

    International Nuclear Information System (INIS)

    Miley, G.H.; Verdeyen, J.T.

    1978-06-01

    Research is described that led to the discovery of three nuclear-pumped lasers (NPLs) using mixtures of Ne--N 2 , He--Hg, and He or Ne with CO or CO 2 . The Ne--N 2 NPL was the first laser obtained with modest neutron fluxes from a TRIGA reactor (vs fast burst reactors used elsewhere in such work), the He--Hg NPL was the first visible nuclear-pumped laser, while the Ne--CO and He--CO 2 lasers are the first to provide energy storage on a millisecond time scale. Important potential applications of NPLs include coupling and power transmission from remote power stations such as nuclear plants in satellites and neutron-feedback operation of inertial confinement fusion plants

  20. DOE fundamentals handbook: Nuclear physics and reactor theory

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance

  1. Advances in U.S. reactor physics standards

    International Nuclear Information System (INIS)

    Cokinos, Dimitrios

    2008-01-01

    The standards for Reactor Design, widely used in the nuclear industry, provide guidance and criteria for performing and validating a wide range of nuclear reactor calculations and measurements. Advances, over the past decades in reactor technology, nuclear data and infrastructure in the data handling field, led to major improvements in the development and application of reactor physics standards. A wide variety of reactor physics methods and techniques are being used by reactor physicists for the design and analysis of modern reactors. ANSI (American National Standards Institute) reactor physics standards, covering such areas as nuclear data, reactor design, startup testing, decay heat and fast neutron fluence in the pressure vessel, are summarized and discussed. These standards are regularly undergoing review to respond to an evolving nuclear technology and are being successfully used in the U.S and abroad contributing to improvements in reactor design, safe operation and quality assurance. An overview of the overall program of reactor physics standards is presented. New standards currently under development are also discussed. (authors)

  2. Reactor physics in support of the naval nuclear propulsion programme

    International Nuclear Information System (INIS)

    Lisley, P.G.; Beeley, P.A.

    1994-01-01

    Reactor physics is a core component of all courses but in particular two postgraduate courses taught at the department in support of the naval nuclear propulsion programme. All of the courses include the following elements: lectures and problem solving exercises, laboratory work, experiments on the Jason zero power Argonaut reactor, demonstration of PWR behavior on a digital computer simulator and project work. This paper will highlight the emphasis on reactor physics in all elements of the education and training programme. (authors). 9 refs

  3. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  4. Advances in reactor physics education: Visualization of reactor parameters

    International Nuclear Information System (INIS)

    Snoj, L.; Kromar, M.; Zerovnik, G.

    2012-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

  5. Reactor physics experiment plan using TCA

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors, which aims at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. This report is to plan critical experiments using TCA in JAERI. Critical Experiments performed so far in Europe and Japan are reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modifications of equipment are needed for use of MOX fuel rods. This report describes the preliminary plan of physics experiments. The number of MOX-fuel rods used in the experiments is obtained by calculations and modification of the equipment for the experiments are shown. New MOX fuel and UO{sub 2} fuel rods are necessary for the RMWR critical experiments. Number of MOX fuel rods is 1000 for Plutonium fissile enrichment of 5 wt%, 1000 for 10 wt%, 1500 for 15 wt% and 500 for 20 wt%, respectively. Depleted UO{sub 2} fuel rods for blanket/buffer region are 4000. Driver fuel rods of 4.9 wt% UO{sub 2} are 3000. Modification of TCA facility is requested to treat the large amount of MOX fuels from safety point of view. Additional shielding device at the top of the tank for loading the MOX fuels and additional safety plates to ensure safety are requested. The core is divided into two regions by inserting an inner tank to avoid criticality in MOX region only. The test region is composed by MOX fuel rods in the inner tank. Criticality is established by UO{sub 2} driver fuel rods outside of the inner tank. (Tsuchihashi, K.)

  6. Criticality calculations in reactor accelerator coupling experiment (Race)

    International Nuclear Information System (INIS)

    Reda, M.A.; Spaulding, R.; Hunt, A.; Harmon, J.F.; Beller, D.E.

    2005-01-01

    A Reactor Accelerator Coupling Experiment (RACE) is to be performed at the Idaho State University Idaho Accelerator Center (IAC). The electron accelerator is used to generate neutrons by inducing Bremsstrahlung photon-neutron reactions in a Tungsten- Copper target. This accelerator/target system produces a source of ∼1012 n/s, which can initiate fission reactions in the subcritical system. This coupling experiment between a 40-MeV electron accelerator and a subcritical system will allow us to predict and measure coupling efficiency, reactivity, and multiplication. In this paper, the results of the criticality and multiplication calculations, which were carried out using the Monte Carlo radiation transport code MCNPX, for different coupling design options are presented. The fuel plate arrangements and the surrounding tank dimensions have been optimized. Criticality using graphite instead of water for reflector/moderator outside of the core region has been studied. The RACE configuration at the IAC will have a criticality (k-effective) of about 0,92 and a multiplication of about 10. (authors)

  7. Communication and computer technologies for teaching physics in nuclear reactors

    International Nuclear Information System (INIS)

    Murua, C; Chautemps, A; Odetto, J; Keil, W; Trivino, S; Rossi, F; Perez Lucero, A

    2012-01-01

    In order to train personnel inn order to train personnel in Embalse Nuclear Power Plant, and provided that such training given primarily on the location of such a facility, we designed a pedagogical strategy that combined the use of conventional resources with new information technologies. Since the Nuclear Reactor RA-0 is an ideal tool for teaching Reactor Physics, priority was the use of it, both locally remotely. The teaching strategy is based on four pillar: -Lectures on the Power Plant (using a virtual classroom to support); -Remote monitoring of Ra-0 Nuclear Reactor parameters while operating (RA0REMOTO); -Use, through the Internet, of the Ra-0 Nuclear Reactor Simulator (RA0SIMUL); -Made in the Nuclear Reactor RA-0 of Reactor Physics practical. The work emphasizes RA0REMOTO and RA0SIMUL systems. The RA0REMOTO system is an appendix of the Electronic Data Acquisition System (SEAD) of the Nuclear Reactor RA-0. This system acquires signals from Reactor instrumentation and sends them to a server running the software that 'publish' the reactor parameters on the internet. Students may, during the lectures, monitor any parameter of the reactor while it operates, which allows teachers to compare theory with reality. RA0SIMUL is a simulator on the RA-0, which allows students to 'operate' a reactor analyzing the underlying physics concepts (author)

  8. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  9. Coupling the modular helium reactor to hydrogen production processes

    International Nuclear Information System (INIS)

    Richards, M.B.; Shenoy, A.S.; Schultz, K.R.

    2004-01-01

    Steam reforming of natural gas (methane) currently produces the bulk of hydrogen gas used in the world today. Because this process depletes natural gas resources and generates the greenhouse gas carbon dioxide as a by-product, there is a growing interest in using process heat and/or electricity generated by nuclear reactors to generate hydrogen by splitting water. Process heat from a high temperature nuclear reactor can be used directly to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg C to 950 deg C can drive the sulphur-iodine (S-I) thermochemical process to produce hydrogen with high efficiency. The S-I process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents. Electricity can also 1)e used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high temperature capability, advanced stage of development relative to other high-temperature reactor concepts, and passive-safety features, the modular helium reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate the coupling of the MHR to the S-I process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  10. The application of a multi-physics tool kit to spatial reactor dynamics

    International Nuclear Information System (INIS)

    Clifford, I.; Jasak, H.

    2009-01-01

    Traditionally coupled field nuclear reactor analysis has been carried out using several loosely coupled solvers, each having been developed independently from the others. In the field of multi-physics, the current generation of object-oriented tool kits provides robust close coupling of multiple fields on a single framework. This paper describes the initial results obtained as part of continuing research in the use of the OpenFOAM multi-physics tool kit for reactor dynamics application development. An unstructured, three-dimensional, time-dependent multi-group diffusion code Diffusion FOAM has been developed using the OpenFOAM multi-physics tool kit as a basis. The code is based on the finite-volume methodology and uses a newly developed block-coupled sparse matrix solver for the coupled solution of the multi-group diffusion equations. A description of this code is given with particular emphasis on the newly developed block-coupled solver, along with a selection of results obtained thus far. The code has performed well, indicating that the OpenFOAM tool kit is suited to reactor dynamics applications. This work has shown that the neutronics and simplified thermal-hydraulics of a reactor May be represented and solved for using a common calculation platform, and opens up the possibility for research into robust close-coupling of neutron diffusion and thermal-fluid calculations. This work has further opened up the possibility for research in a number of other areas, including research into three-dimensional unstructured meshes for reactor dynamics applications. (authors)

  11. Advances in Reactor Physics, Mathematics and Computation. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume one, are divided into 6 sessions bearing on: - session 1: Advances in computational methods including utilization of parallel processing and vectorization (7 conferences) - session 2: Fast, epithermal, reactor physics, calculation, versus measurements (9 conferences) - session 3: New fast and thermal reactor designs (9 conferences) - session 4: Thermal radiation and charged particles transport (7 conferences) - session 5: Super computers (7 conferences) - session 6: Thermal reactor design, validation and operating experience (8 conferences).

  12. An overview of reactor physics standards: Past, present and future

    International Nuclear Information System (INIS)

    Cokinos, D.M.

    1992-07-01

    This report discusses for determining key static reactor physics parameters which have been developed by groups of experts (working groups) under the aegis of ANS-19, the ANS Reactor Physics Standards Committee. Following a series of sequential reviews, augmented by feedback from potential users, a proposed standard is brought into final form by the working group before it is adopted as a formal standard by the American National Standards Institute (ANSI); Reactor Physics standards are intended to provide guidance in the performance and qualification of complex sequences of reactor calculations and/or measurements and are regularly reviewed for possible updates and/or revisions. The reactor physics standards developed to date are listed and standards now being developed by the respective working groups are also provided

  13. Nuclear Data Processing for Reactor Physics Calculation

    International Nuclear Information System (INIS)

    Suwoto; Zuhair; Pandiangan, Tumpal

    2003-01-01

    Nuclear data processing for reactor physics calculation has been done. Raw nuclear data cross-sections on file ENDF should be prepared and processed before it used in neutronic calculation. The processing code system such as NJOY-PC code has been used from linearization of nuclear cross-sections data and background contribution of resonance parameter (MF2) using RECONR module (0K) with energy range from 10 -5 to 10 7 eV. Afterward, the neutron cross-sections data should be processed and broadened to desire temperature (i.e. 293K) by using BROADR module. The Grouper and Therma modules will be applied for multi-groups calculation which suitable for WIMS/D4 (69 groups) and thermalization of nuclear constants. The final stage of processing nuclear cross-sections is updating WIMS/D4 library. The WIMSR module in NJOY-PC and WILLIE code will be applied in this stage. The evaluated nuclear data file, especially for 1 H 1 isotope, was taken from JENDL-3.2 and ENDF/B-VI for preliminary study. The results of nuclear data processing 1 H 1 shows that the old-WIMS (WIMS-lama) library have much discrepancies comparing with JENDL-3.2 or ENDF/B-VI files, especially in energy around 5 keV

  14. Reactor physics special problem in 11. ENFIR

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    1997-01-01

    In this report, the computation method and the results of the work performed of the special topic on reactor physics proposed for the 11. ENFIR is presented. MCNP 4.2 has been adopted as the only code to perform the calculations. The full core of the IPEN-MB-1 critical unit has been modelled without important approximations. The specifications given by the Organizer Commission of the Special Topic were followed. The nuclear libraries adopted were those included on the MCNPDAT package, mainly from ENDF/B-V, except indium data, not included in this package. For indium, data obtained from LANL, based on ENDF/B-VI were used. The results are: critical position of the control banks assuming simultaneous movement: percent of extraction: (49±1)% ; excess of reactivity of the core: ρ =( 3590 ±50)pcm ; total reactivity of the one control rod bank: ρ= (4000±50) pcm. The reactivity curve of the control rods is included also. (author)

  15. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    Science.gov (United States)

    Mkhabela, Peter Tshepo

    The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis

  16. Investigation of the basic reactor physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Khang, Ngo Phu [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The Dalat nuclear research reactor was reconstructed from TRIGA MARK II reactor, built in 1963 with nominal power of 250 KW, and reached its planned nominal power of 500 kW for the first time in Feb. 1984. The Dalat reactor has some characteristics distinct from the former TRIGA reactor. Investigation of its characteristics is carried out by the determination of the reactor physics parameters. This paper represents the experimental results obtained for the effective fraction of the delayed photoneutrons, the extraneous neutron source left after the reactor is shut down, the lowest power levels of reactor critical states, the relative axial and radial distributions of thermal neutrons, the safe positive reactivity inserted into the reactor at deep subcritical state, the reactivity temperature coefficient of water, the temperature on the surface of the fuel elements, etc. (author). 10 refs., 10 figs., 2 tabs.

  17. Reactor physics and thermodynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1990-01-01

    Neutron kinetics and thermodynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focussed on the properties of the fuel gas, the stationary temperature distribution, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  18. Annual progress report for 1982 of Theoretical Reactor Physics Section

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Kumar, Vinod

    1983-01-01

    The progress of work done in the Theoretical Reactor Physics Section of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1982 is reported in the form of write-ups and summaries. The main thrust of the work has been to master the neutronic design technology of four different types of nuclear reactor types, namely, pressurized heavy water reactors, boiling light water reactors, pressurized light water reactors and fast breeder reactors. The development work for the neutronic analysis, fuel design, and fuel management of the BWR type reactors of the Tarapur Atomic Power Station has been completed. A new reactor simulator system for PHWR design analysis and core follow-up was completed. Three dimensional static analysis codes based on nodal and finite element methods for the design work of larger size (500-750 MWe) reactors have been developed. Space link kinetics codes in one, two and three dimensions for above-mentioned reactor systems have been written and validated. Fast reactor core disruptive analysis codes have been developed. In the course of R and D work concerning various types of reactor projects, investigations were also carried in the allied areas of Monte Carlo techniques, integral transform methods, path integral methods, high spin states in heavy nuclei and a hydrodynamics model for a laser driven fusion system. (M.G.B.)

  19. Twenty years of health physics research reactor operation

    International Nuclear Information System (INIS)

    Sims, C.S.; Gilley, L.W.

    1983-01-01

    The Health Physics Research Reactor at the Oak Ridge National Laboratory has been in regular use for more than two decades. Safe operation of this fast reactor over this extended period indicates that (1) fundamental design, (2) operational procedures, (3) operator training and performance, (4) maintenance activites, and (5) management have all been eminently satisfactory. The reactor and its uses are described, the operational history and significant events are reviewed, and operational improvements and maintenance are discussed

  20. Processes of hydrogen production, coupled with nuclear reactors: Economic perspectives

    International Nuclear Information System (INIS)

    Werkoff, Francois; Avril, Sophie; Mansilla, Christine; Sigurvinsson, Jon

    2006-01-01

    Hydrogen production, using nuclear power is considered from a technic-economic (TE) point of view. Three different processes are examined: Alkaline electrolysis, High-temperature steam electrolysis (HTE) and the thermochemical Sulphur-Iodine (S/I) cycle. The three processes differ, in the sense that the first one is operational and both last ones are still at demonstration stages. For them, it is at present only possible to identify key points and limits of competitiveness. The cost of producing hydrogen by alkaline electrolysis is analysed. Three major contributions to the production costs are examined: the electricity consumption, the operation and maintenance expenditures and the depreciation capital expenditures. A technic-economic evaluation of hydrogen production by HTE coupled to a high-temperature reactor (HTR) is presented. Key points appear to be the electrolyser and the high temperature heat exchangers. The S/I thermochemical cycle is based on the decomposition and the re-composition of H 2 SO 4 and HI acids. The energy consumption and the recovery of iodine are key points of the S/I cycle. With the hypothesis that the hydrogen energy will progressively replace the fossil fuels, we give a first estimate of the numbers of nuclear reactors (EPR or HTR) that would be needed for a massive nuclear hydrogen production. (authors)

  1. Reactor physics activities in France. October 1983 - September 1984

    International Nuclear Information System (INIS)

    Golinelli, C.; Salvatores, M.

    1984-10-01

    The major activities of the Fast Reactor Physics Program during the period October 1983 - September 1984 are reviewed: experimental and theoretical studies, computer codes. The LWR program brought improvements in the field of the Advanced Reactors and of the plutonium re-use on French PWRs. Are reviewed experimental studies and facilities, theoretical studies (transport theory, radioactive decay library)

  2. Fast reactor physics at CEA: present studies and future prospects

    International Nuclear Information System (INIS)

    Hammer, P.

    1980-09-01

    This paper aims at giving a general survey of the fast reactor core physics and shielding studies wich are in progress at CEA (1979-1983) in order to solve the neutronic problems related to: - core design optimization, - reactor operation and fuel management, - safety, for the development of fast commercial breeders in France after the SUPER-PHENIX 1 construction is achieved

  3. An evaluation of reactor cooling and coupled hydrogen production processes using the modular helium reactor

    International Nuclear Information System (INIS)

    Harvego, E.A.; Reza, S.M.M.; Richards, M.; Shenoy, A.

    2006-01-01

    The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using either thermochemical or high-temperature electrolysis (HTE) processes. Using heat from the MHR to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been the subject of a U.S. Department of Energy sponsored Nuclear Engineering Research Initiative (NERI) project led by General Atomics, with participation from the Idaho National Laboratory (INL) and Texas A and M University. While the focus of much of the initial work was on the SI thermochemical production of hydrogen, recent activities included development of a preconceptual design for an integral HTE hydrogen production plant driven by the process heat and electricity produced by a 600 MW MHR. This paper describes ATHENA analyses performed to evaluate alternative primary system cooling configurations for the MHR to minimize peak reactor vessel and core temperatures while achieving core helium outlet temperatures in the range of 900-1000 deg. C that are needed for the efficient production of hydrogen using either the SI or HTE process. The cooling schemes investigated are intended to ensure peak fuel temperatures do not exceed specified limits under normal or transient upset conditions, and that reactor vessel temperatures do not exceed American Society of Mechanical Engineers (ASME) code limits for steady-state or transient conditions using standard light water reactor vessel materials. Preconceptual designs for SI and HTE hydrogen production plants driven by one or more 600 MW MHRs at helium outlet temperatures in the range of 900-1000 deg. C are described and compared. An initial SAPHIRE model to evaluate the reliability, maintainability, and availability of the SI hydrogen production plant is also described. Finally, a preliminary flowsheet for a conceptual design of an HTE hydrogen production plant coupled to a 600 MW modular helium reactor is presented and

  4. Reactor Physics Behind the Chernobyl Accident

    International Nuclear Information System (INIS)

    Reisch, F.

    1999-01-01

    There are some fourteen Chernobyl type of power reactors (1000 MWe) in operation at five different sites in Eastern Europe. In Russia; in St. Petersburg (4). in Smolensk (3). and in Kursk (4) in the Ukraine in Chernobyl (l) and in Lithuania in Ignalina (2). The oldest one is west of St. Petersburg and the most powerful one is in Ignalina. The reactors at St. Petersburg and in Lithuania are near to the Baltic sea. An intricate reactor construction was the most important cause of the accident. There were other reasons too: human error. politics and economics

  5. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  6. Compilation of reactor physics data of the year 1984, AVR reactor

    International Nuclear Information System (INIS)

    Werner, H.; Bergerfurth, A.; Thomas, F.; Geskes, B.

    1985-12-01

    The 'AVR reactor physics data' is a documentation published once a year, the data presented being obtained by a simulation of reactor operation using the AVR-80 numerical model. This model is constantly updated and improved in response to new results and developments in the field of reactor theory and thermohydraulics, and in response to theoretical or practical modifications of reactor operation or in the computer system. The large variety of measured data available in the AVR reactor simulation system also makes it an ideal testing system for verification of the computing programs presented in the compilation. A survey of the history of operations in 1984 and a short explanation of the computerized simulation methods are followed by tables and graphs that serve as a source of topical data for readers interested in the physics of high-temperature pebble-bed reactors. (orig./HP) [de

  7. Compilation of reactor physics data of the year 1983, AVR reactor

    International Nuclear Information System (INIS)

    Werner, H.; Bergerfurth, A.; Thomas, F.; Geskes, B.

    1985-06-01

    The 'AVR reactor physics data' is a documentation published once a year, the data presented being obtained by a simulation of reactor operation using the AVR-80 numerical model. This model is constantly updated and improved in response to new results and developments in the field of reactor theory and thermohydraulics, and in response to theoretical or practical modifications of reactor operation or in the computer system. The large variety of measured data available in the AVR reactor simulation system also makes it an ideal testing system for verification of the computing programs presented in the compilation. A survey of the history of operations in 1983 and a short explanation of the computerized simulation methods are followed by tables and graphs that serve as a source of topical data for readers interested in the physics of high-temperature pebble-bed reactors. (orig./HP) [de

  8. Progress of the DUPIC fuel compatibility analysis (I) - reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Jeong, Chang Joon; Roh, Gyu Hong; Rhee, Bo Wook; Park, Jee Won

    2003-12-01

    Since 1992, the direct use of spent pressurized water reactor fuel in CANada Deuterium Uranium (CANDU) reactors (DUPIC) has been studied as an alternative to the once-through fuel cycle. The DUPIC fuel cycle study is focused on the technical feasibility analysis, the fabrication of DUPIC fuels for irradiation tests and the demonstration of the DUPIC fuel performance. The feasibility analysis was conducted for the compatibility of the DUPIC fuel with existing CANDU-6 reactors from the viewpoints of reactor physics, reactor safety, fuel cycle economics, etc. This study has summarized the intermediate results of the DUPIC fuel compatibility analysis, which includes the CANDU reactor physics design requirements, DUPIC fuel core physics design method, performance of the DUPIC fuel core, regional overpower trip setpoint, and the CANDU primary shielding. The physics analysis showed that the CANDU-6 reactor can accommodate the DUPIC fuel without deteriorating the physics design requirements by adjusting the fuel management scheme if the fissile content of the DUPIC fuel is tightly controlled.

  9. Hamiltonian circuited simulations in reactor physics

    International Nuclear Information System (INIS)

    Rio Hirowati Shariffudin

    2002-01-01

    In the assessment of suitability of reactor designs and in the investigations into reactor safety, the steady state of a nuclear reactor has to be studied carefully. The analysis can be done through mockup designs but this approach costs a lot of money and consumes a lot of time. A less expensive approach is via simulations where the reactor and its neutron interactions are modelled mathematically. Finite difference discretization of the diffusion operator has been used to approximate the steady state multigroup neutron diffusion equations. The steps include the outer scheme which estimates the resulting right hand side of the matrix equation, the group scheme which calculates the upscatter problem and the inner scheme which solves for the flux for a particular group. The Hamiltonian circuited simulations for the inner iterations of the said neutron diffusion equation enable the effective use of parallel computing, especially where the solutions of multigroup neutron diffusion equations involving two or more space dimensions are required. (Author)

  10. Occupational health physics at a fusion reactor

    International Nuclear Information System (INIS)

    Shank, K.E.; Easterly, C.E.; Shoup, R.L.

    1975-01-01

    Future generation of electrical power using controlled thermonuclear reactors will involve both traditional and new concerns for health protection. A review of the problems associated with exposures to tritium and magnetic fields is presented with emphasis on the occupational worker. The radiological aspects of tritium, inventories and loss rates of tritium for fusion reactors, and protection of the occupational worker are discussed. Magnetic fields in which workers may be exposed routinely and possible biological effects are also discussed

  11. Current status of fast reactor physics

    International Nuclear Information System (INIS)

    Hummel, H.H.

    1979-01-01

    The subject of calculation of reactivity coefficients for fast reactors is developed, starting with a discussion of the status of relevant nuclear data and proceeding to the subjects of group cross section generation and of methods of obtaining reactivity coefficients from group cross sections. Reactivity coefficients measured in critical experiments are compared with calculated values. Dependence of reactivity coefficients on reactor design is discussed. Finally, results of the recent international comparison of calculated reactivity coefficients are presented

  12. International Conference on Physics and Technology of Reactors and Applications

    International Nuclear Information System (INIS)

    2011-01-01

    Full text : The international conference on physics and technology of reactors is organized by the Moroccan Association for Nuclear enggineering and Reactor Technology (GMTR) with the collaboration of the Centre for Energy and Nuclear Sciences and Techniques (CNESTEN) and under the auspices of the ministry of Energy, Mining, Water and Environment. The programme of the PHYTRA2 conference covers a wide variety of topics. The conference is organised in one plenary session, eight oral technical sessions and one poster session. The oral and poster technical sessions covers the usual topics of nuclear engineering including one session on research reactors utilisation and computational methods for research reactors

  13. Experimental Equipment for Physics Studies in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G; Blomberg, P E; Dubois, P O

    1967-03-15

    Comprehensive physics measurements were carried out in connection with the start up of the Agesta reactor. For this purpose special experimental equipment was constructed and installed in the reactor. Parts of this were indispensable and/or time-saving for the reactivity control during the core build-up period and during the first criticality studies. This report gives mainly a detailed description of the experimental equipment used, but also the relevant physics background and the experience gained during the performance.

  14. Experimental Methods Related to Coupled Fast-Thermal Systems at the RB Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    In addition to the review of RB reactor characteristics this presentation is focused on the coupled fast-thermal systems achieved at the reactor. The following experimental methods are presented: neutron spectra measurements; steady state experiments and kinetic measurements ( β eff ) related to the coupled fast-thermal cores

  15. On the research activities in reactor and neutron physics using the first egyptian research reactor

    International Nuclear Information System (INIS)

    Hassan, A.M.

    2000-01-01

    A review on the most important research activities in reactor and neutron physics using the first Egyptian Research Reactor (ET-RR-1) is given. An out look on: neutron cross-sections, neutron flux, neutron capture gamma-ray spectroscopy, neutron activation analysis, neutron diffraction and radiation shielding experiments, is presented

  16. Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Obabko, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States); Tautges, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, Jerome [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferencz, Robert Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models of a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.

  17. Coupled CFD - system-code simulation of a gas cooled reactor

    International Nuclear Information System (INIS)

    Yan, Yizhou; Rizwan-uddin

    2011-01-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  18. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K. A.; Schubring, D. [Univ. of Florida, Florida (United States); Girardin, G.; Pautz, A. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    2013-07-01

    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  19. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    International Nuclear Information System (INIS)

    Jordan, K. A.; Schubring, D.; Girardin, G.; Pautz, A.

    2013-01-01

    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  20. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  1. Numerical verification of the theory of coupled reactors for a deuterium critical assembly using MCNP5

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors and the coupling coefficients were investigated by changing of the water levels in the inner and outer cores. The numerical results of the model developed with MCNP5 code were validated and verified against published results and the mathematical model based on coupled reactor theory. (author)

  2. Discussion of the use of the Dragon reactor as a facility for integral reactor physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gutmann, H

    1972-06-05

    The purpose and use of the Dragon Reactor Experiment (DRE) has changed considerably during the years of its operation. The original purpose was to show that the principle of a High Temperature Reactor is sound and demonstrate its operation. After this achievement, the purpose of the Dragon reactor changed to the use as a fuel testing facility. During recent years, a new use of the DRE has been added to its use as a fuel testing facility, namely Fuel Element Design Testing. The current report covers reactor physics experiments aspects.

  3. Advanced methods in teaching reactor physics

    International Nuclear Information System (INIS)

    Snoj, Luka; Kromar, Marjan; Zerovnik, Gasper; Ravnik, Matjaz

    2011-01-01

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  4. Advanced methods in teaching reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kromar, Marjan, E-mail: marjan.kromar@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Zerovnik, Gasper, E-mail: gasper.zerovnik@ijs.s [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Ravnik, Matjaz [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2011-04-15

    Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software.

  5. Summary of the progress of reactor physics in Japan reviewing the activities related to NEA Committee on Reactor Physics

    International Nuclear Information System (INIS)

    Hirota, Jitsuya

    1984-09-01

    The progress of fast and thermal reactor physics, fusion neutronics and shielding researches in these twenty years can be clearly recognized in the reviews of reactor physics activities in Japan which had been perpared by the Special Committee on Reactor Physics: the joint committee under Atomic Energy Society of Japan and JAERI. Many topics of those discussed at the NEACRP meetings concerned fast reactor physics. Information exchange on the topics such as adjustment of group cross sections by integral data, central worth discrepancy, sodium void effect and heterogeneous core stimulated the researches in Japan. And achievements in Japan including those in the JAERI Fast Critical Facility FCA were reported and contributed largely to the international co-operation. In addition, the contribution from Japan was also made concerning a study of fusion blanket. Among various specialists' meetings recommended by NEACRP, those on nuclear data and benchmarks for reactor shielding were often held since 1973 and helpful to the progress of shielding researches in Japan. The Third Specialists' Meeting on Reactor Noise (SMORN-III) was held in Tokyo in 1981, indicating the recent progress in safety-related applications of reactor noise analysis. The NEACRP benchmark tests were quite useful to the progress of reactor physics in Japan, which included the benchmark calculations of BWR lattice cell, key parameters and burn-up characteristics of a large LMFBR, FBR and PWR shielding, and so on. It may be noted that the benchmark test on reactor noise analysis methods was successfully conducted by Japan in connection with SMORN-III. In addition, the co-operation was positively made to the compilation of light water lattice data, and the preparation of reviews on actinide production and burn-up, and blanket physics. (J.P.N.)

  6. Physics experiments with the operating reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cullington, G R; King, D C

    1973-09-27

    Experimental techniques have been developed and used on Dragon to give consistent information on excess reactivity and shut down margin. The reactivity measurements have been correlated with the theoretical calculations and have led to improvements in the calculations. The methods used and the results obtained are accepted by the Safety Committee as sufficient evidence for compliance with the fuel loading safety rules. Although the reactor was not designed as an experimental facility, flux and dose measurements experiments have been successfully carried out. Mass flow and negative reactivity transient measurements have been carried out. These are valuable for demonstration of the flexibility of the reactor system and for giving confidence in theoretical calculations.

  7. Physics experiment on the Dragon reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, C.

    1974-10-15

    The paper describes a set of DRAGON experiments planned to measure burn-up effects in DRAGON irradiated fuel. Irradiated fuel elements from DRAGON are to be subjected to reactivity measurements in the HECTOR experimental reactor to infer the residual U235 content followed by isotopic analyses at CEA laboratories in 1975. Fast neutron damage to DRAGON graphite is compared to fast neutron dose measurements using Ni58 (n,p) Co58 activation wires in both DRAGON and the DIDO MTR. Gamma scanning of irradiated fuel elements are used to compare axial power profiles to those derived from two-dimensional and three-dimensional calculations of the DRAGON reactor.

  8. Physical Characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    1994-10-01

    The operation of the TRIGA MARK II reactor of nominal power 250 KW has been stopped as all the fuel elements have been dismounted and taken away in 1968. The reconstruction of the reactor was accomplished with Russian technological assistance after 1975. The nominal power of the reconstructed reactor is of 500 KW. The recent Dalat reactor is unique of its kind in the world: Russian-designed core combined with left-over infrastructure of the American-made TRIGA II. The reactor was loaded in November 1983. It has reached physical criticality on 1/11/1983 (without central neutron trap) and on 18/12/1983 (with central neutron trap). The power start up occurred in February 1984 and from 20/3/1984 the reactor began to be operated at the nominal power 500 KW. The selected reports included in the proceedings reflect the start up procedures and numerous results obtained in the Dalat Nuclear Research Institute and the Centre of Nuclear Techniques on the determination of different physical characteristics of the reactor. These characteristics are of the first importance for the safe operation of the Dalat reactor

  9. Investigation for calculation methods used in analyzing the physics characteristics of nuclear power reactor

    International Nuclear Information System (INIS)

    Nguyen Tuan Khai; Hoang Van Khanh; Phan Quoc Vuong; Tran Viet Phu; Tran Vinh Thanh; Nguyen Thi Mai Huong; Nguyen Thi Dung; Le Tran Chung; Nguyen Minh Tuan; Tran Quoc Duong

    2014-01-01

    The project aims at nuclear human resource development and enhancement in research capability in reactor physics and kinetics at Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat). The main research items of the project can be summarized as follows: i) Considering possibility on using modern calculation techniques and methods in investigating neutronic characteristics and neutronics-thermal hydraulics coupling. This item is proposed to carry out based on international collaboration with Prof. Le Trong Thuy, San Jose University, US; ii) Carrying out the collaborative activities in research and training between Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat); iii) Opening two-week training course on nuclear reactor engineering (25 Nov - 12 Dec 2013) in collaboration with Japan Atomic Energy Agency (JAEA). (author)

  10. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    International Nuclear Information System (INIS)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-01-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean/US/laboratory/university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program

  11. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  12. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given

  13. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given. (author)

  14. Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL

    Directory of Open Access Journals (Sweden)

    A. Rais

    2015-01-01

    Full Text Available In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.

  15. Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul; Evans, Thomas; Tautges, Tim

    2012-12-24

    This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well

  16. Brief history of the reactor physics activities at ICN Pitesti

    International Nuclear Information System (INIS)

    Dumitrache, I.

    2004-01-01

    The Institute was established 33 years ago, in April 1971. Several specialists from the Institute for Atomic Physics - Bucharest came at the new research entity and the reactor physics activities had a successful start. One can identify three distinct periods: 1971-1980, the Bucharest years, 1980-1996, solving critical problems years and 1977-present (2004), technical support years. The first period is usually seen as a training one. This is only partially true. Most of the physicists came from University in 1971 and 1972 years. A significant number of them were trained abroad, in France, Germany, Italy, USA, Canada etc., usually under IAEA Vienna fellowships. The work was really pleasant and the progress was exciting. Unfortunately, the main task (to design a thermal reactor and a fast reactor, both for research activities) was, probably, much too difficult from the technical point of view and, in addition, required an unrealistic economic effort. In the Fall of the 1976 year, most of the reactor physicists were removed from Bucharest to Pitesti. One year later, all the remaining specialists were concentrated in Pitesti. The dual core TRIGA reactors were commissioned in the last months of the 1979 year. The CYBER 720 mainframe computer was available in December 1980. Between 1980 and 1992 years, practically all the Romanian activities related to reactor physics were performed in Pitesti, Mioveni compound. The details related to critical problems will be presented in the paper. We mention here four of the problems that have a significant impact even today, namely: -Final dimensioning of the adjuster rods for the Cernavoda NPP, Unit 2. The rods were manufactured in USA and Canada, using the AECL design and the final dimensions have been specified by ICN Pitesti; -Use of the LEU fuel in TRIGA-SSR Reactor, instead of the original HEU fuel; -Design of the irradiation experiments in TRIGA cores, in order to provide the required conditions during the test, according to

  17. Research on the reactor physics and reactor safety of VVER reactors. AER Symposium 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    2017-09-15

    The selected paperscan be attributed to the following main subjects: Reactor start-up tests and use of corresponding data for code validation, code development and application, approaches for safety analyses, closure of nuclear fuel cycle, prospective reactor concepts.

  18. The research reactors their contribution to the reactors physics; Les reacteurs de recherche leur apport sur la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J C [Electricite de France (EDF), 75 - Paris (France); Zaetta, A [CEA/Cadarache, Direction des Reacteurs Nucleaires, DRN, 13 - Saint-Paul-lez-Durance (France); Johner, J [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Mathoniere, G [CEA/Saclay, DEN, 91 - Gif sur Yvette (France); and others

    2000-07-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  19. Nuclear physics from strong coupling QCD

    CERN Document Server

    Fromm, Michael

    2009-01-01

    The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.

  20. Health physics in fusion reactor design

    International Nuclear Information System (INIS)

    Wong, K.Y.; Dinner, P.J.

    1984-06-01

    Experience in the control of tritium exposures to workers and the public gained through the design and operation of Ontario Hydro's nuclear stations has been applied to fusion projects and to design studies on emerging fusion reactor concepts. Ontario Hydro performance in occupational tritium exposure control and environmental impact is reviewed. Application of tritium control technologies and dose management methodology during facility design is highlighted

  1. Physical properties of organic nuclear reactor coolants

    Energy Technology Data Exchange (ETDEWEB)

    Elberg, S.; Friz, G.

    1963-03-15

    Diphenyl and terphenyls with different high-boiler content were studied up to temperatures of 450 deg C. Data from high boiler reactors show viscosity (strong influence), thermal conductivity (medium influence), density and specific heat (small influence). The vapor pressure is rn the most affected property (important influence of low boilers). Also viscosity shows an effect. Some data for pure highboilers are also presented. New results were obtained with direct measurements of the latent heat ot vaporization. (P.C.H.)

  2. Operating manual for the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    1985-11-01

    This manual is intended to serve as a guide in the operation and maintenance of the Health Physics Researh Reactor (HPRR) of the Health Physics Dosimetry Applications Research (DOSAR) Facility. It includes descriptions of the HPRR and of associated equipment such as the reactor positioning devises and the derrick. Procedures for routine operation of the HPRR are given in detail, and checklists for the various steps are provided where applicable. Emergency procedures are similarly covered, and maintenance schedules are outlined. Also, a bibliography of references giving more detailed information on the DOSAR Facility is included. Changes to this manual will be approved by at least two of the following senior staff members: (1) the Operations Division Director, (2) the Reactor Operations Department Head, (3) the Supervisor of Reactor Operations TSF-HPRR Areas. The master copy and the copy of the manual issued to the HPRR Operations Supervisor will always reflect the latest revision. 22 figs

  3. Integrated approach for fusion multi-physics coupled analyses based on hybrid CAD and mesh geometries

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yuefeng, E-mail: yuefeng.qiu@kit.edu; Lu, Lei; Fischer, Ulrich

    2015-10-15

    Highlights: • Integrated approach for neutronics, thermal and structural analyses was developed. • MCNP5/6, TRIPOLI-4 were coupled with CFX, Fluent and ANSYS Workbench. • A novel meshing approach has been proposed for describing MC geometry. - Abstract: Coupled multi-physics analyses on fusion reactor devices require high-fidelity neutronic models, and flexible, accurate data exchanging between various calculation codes. An integrated coupling approach has been developed to enable the conversion of CAD, mesh, or hybrid geometries for Monte Carlo (MC) codes MCNP5/6, TRIPOLI-4, and translation of nuclear heating data for CFD codes Fluent, CFX and structural mechanical software ANSYS Workbench. The coupling approach has been implemented based on SALOME platform with CAD modeling, mesh generation and data visualization capabilities. A novel meshing approach has been developed for generating suitable meshes for MC geometry descriptions. The coupling approach has been concluded to be reliable and efficient after verification calculations of several application cases.

  4. An optimization method for parameters in reactor nuclear physics

    International Nuclear Information System (INIS)

    Jachic, J.

    1982-01-01

    An optimization method for two basic problems of Reactor Physics was developed. The first is the optimization of a plutonium critical mass and the bruding ratio for fast reactors in function of the radial enrichment distribution of the fuel used as control parameter. The second is the maximization of the generation and the plutonium burnup by an optimization of power temporal distribution. (E.G.) [pt

  5. Nuclear data and reactor physics activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Liem, P.H. [National Atomic Energy Agency, Tangerang (Indonesia). Center for Multipurpose Reactor

    1998-03-01

    The nuclear data and reactor physics activities in Indonesia, especially, in the National Atomic Energy Agency are presented. In the nuclear data field, the Agency is now taking the position of a user of the main nuclear data libraries such as JENDL and ENDF/B. These nuclear data libraries become the main sources for producing problem dependent cross section sets that are needed by cell calculation codes or transport codes for design, analysis and safety evaluation of research reactors. In the reactor physics field, besides utilising the existing core analysis codes obtained from bilateral and international co-operation, the Agency is putting much effort to self-develop Batan`s codes for reactor physics calculations, in particular, for research reactor and high temperature reactor design, analysis and fuel management. Under the collaboration with JAERI, Monte Carlo criticality calculations on the first criticality of RSG GAS (MPR-30) first core were done using JAERI continuous energy, vectorized Monte Carlo code, MVP, with JENDL-3.1 and JENDL-3.2 nuclear data libraries. The results were then compared with the experiment data collected during the commissioning phase. Monte Carlo calculations with both JENDL-3.1 and -3.2 libraries produced k{sub eff} values with excellent agreement with experiment data, however, systematically, JENDL-3.2 library showed slightly higher k{sub eff} values than JENDL-3.1 library. (author)

  6. Study of plutonium recycling physics in light water reactors

    International Nuclear Information System (INIS)

    Reuss, Paul

    1979-10-01

    A stock of plutonium from the reprocessing of thermal neutron reactor fuel is likely to appear in the next few years. The use of this plutonium as fuel replacing 235 U in thermal reactors is probably more interesting than simple stock-piling storage: immobilization of a capital which moreover would deteriorate by radioactive decay of isotope 241 also fissile and present to an appreciable extend in plutonium from reprocessing (half-life 15 years); recycling, on the other hand, will supply energy without complete degradation of the stock for fast neutron reactor loads, the burned matter having been partially renewed by conversion; furthermore the use of plutonium will meet the needs created by a temporary pressure on the naturel and/or enriched uranium market. For these two reasons the recycling of plutonium in thermal neutron reactors is being considered seriously today. The present work is confined to neutronic aspects and centres mainly on pressurized water-moderated reactors, the most highly developed at present in France. Four aspects of the problem are examined: 1. the physics of a plutonium-recycling reactor special features of neutronic phenomena with respect to the 'conventional' scheme of the 235 U burning reactor; 2. calculation of a plutonium-recycling reactor: adaptation of standard methods; 3. qualification of these calculations from the viewpoint of both data and inevitable approximations; 4. the fuel cycle and particularly the equivalence of fissile matters [fr

  7. Applicability of Coupled Thermalhydraulic Codes for Safety Analysis of Nuclear Reactors

    International Nuclear Information System (INIS)

    Gairola, A.; Bhowmik, P. K.; Shamim, J. A.; Suh, K. Y.

    2014-01-01

    To this end computational codes like RELAP and TRACE are used to model thermal-hydraulic response of nuclear power plant during an accident. By careful modeling and significant user experience these system codes are able to simulate the behavior of primary system and the containment to a reasonable extent. Comparatively decoupled simulation is simple but might not produce reality and the physics involved in an accurate manner. Thus simulation using two different system codes is interesting as the whole system is coupled through the pressure in the containment and flow through the break. Using this methodology it might be possible to get new insight about the primary and containment behavior by the precise simulation of the accident both in the current reactors and future Gen-III/III+ reactors. Couple thermalhydraulic code methodology is still new and require further investigations. Applicability of such methodology to the GEN-II plants have met with limited success, however a number of situations in which this methodology could be applied are still unexplored and thus provides a room for improvement and modifications

  8. Applicability of Coupled Thermalhydraulic Codes for Safety Analysis of Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gairola, A.; Bhowmik, P. K.; Shamim, J. A.; Suh, K. Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    To this end computational codes like RELAP and TRACE are used to model thermal-hydraulic response of nuclear power plant during an accident. By careful modeling and significant user experience these system codes are able to simulate the behavior of primary system and the containment to a reasonable extent. Comparatively decoupled simulation is simple but might not produce reality and the physics involved in an accurate manner. Thus simulation using two different system codes is interesting as the whole system is coupled through the pressure in the containment and flow through the break. Using this methodology it might be possible to get new insight about the primary and containment behavior by the precise simulation of the accident both in the current reactors and future Gen-III/III+ reactors. Couple thermalhydraulic code methodology is still new and require further investigations. Applicability of such methodology to the GEN-II plants have met with limited success, however a number of situations in which this methodology could be applied are still unexplored and thus provides a room for improvement and modifications.

  9. DUPIC fuel performance from reactor physics viewpoint

    International Nuclear Information System (INIS)

    Choi, H.; Rhee, B.W.; Park, H.

    1995-01-01

    A preliminary study was performed for the evaluation of Stress Corrosion Cracking (SCC) parameters of nominal DUPIC fuel in CANDU reactor. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increase of the 43-element DUPIC fuel in the equilibrium core are below the SCC thresholds of CANDU natural uranium fuel. For 4-bundle shift refueling scheme, the envelope of element ramped power and power increase upon refueling are 8% and 44% higher than those of 2-bundle shift refueling scheme on the average, respectively, and both schemes are not expected to cause SCC failures. (author)

  10. Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Salt Fast Reactor (MSFR)

    International Nuclear Information System (INIS)

    Laureau, A.; Rubiolo, P.R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.

    2013-01-01

    Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor (MSFR) are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated. (authors)

  11. XII seminar on problems of reactor physics

    International Nuclear Information System (INIS)

    Kryuchkov, Eh.F.; Naumov, V.I.

    2003-01-01

    Results of the XII seminar Physical problems of effective and safety use of nuclear materials taking place on the basis of MEPI (September, 2002) are discussed. Reports on the directions: physical problems of advanced nuclear-energetic technologies; account, control and nuclear material management; effective and safety use of nuclear materials at NPP; programming and software for the analysis of physical processes are performed. Of particular interest is reports on actual problems of nuclear energetics and fuel cycle, on ill-intentioned use of fissile materials, efficiency of long-lived isotopes transmutation and spent fuel management [ru

  12. Reactor physics verification of the MCNP6 unstructured mesh capability

    International Nuclear Information System (INIS)

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-01-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  13. Neutron physics of a high converting advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Berger, H.D.

    1985-01-01

    The neutron physics of an APWR are analysed by single pin-cell calculations as well as two-dimensional whole-reactor computations. The calculational methods of the two codes employed for this study, viz. the cell code SPEKTRA and the diffusion-burnup code DIBU, are presented in detail. The APWR-investigations carried out concentrate on the void coefficient characteristics of tight UO 2 /PuO 2 -lattices, control rod worths, burnup behaviour and spatial power distributions in APWR cores. The principal physics design differences between advanced pressurized water reactors and present-day PWRs are identified and discussed. (orig./HP) [de

  14. The use of personal computers in reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1988-01-01

    This paper points out that personal computers are now powerful enough (in terms of core size and speed) to allow them to be used for serious reactor physics applications. In addition the low cost of personal computers means that even small institutes can now have access to a significant amount of computer power. At the present time distribution centers, such as RSIC, are beginning to distribute reactor physics codes for use on personal computers; hopefully in the near future more and more of these codes will become available through distribution centers, such as RSIC

  15. Reactor physics verification of the MCNP6 unstructured mesh capability

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C.; Martz, R. L. [X-Computational Physics Division, Monte Carlo Codes Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  16. Cold fusion reactors and new modern physics

    OpenAIRE

    Huang Zhenqiang Huang Yuxiang

    2013-01-01

    The author of the "modern physics classical particle quantization orbital motion model general solution", referred to as the “new modern physics” a book. “The nuclear force constraint inertial guidance cold nuclear fusion collides” patent of invention referred to as the “cold nuclear fusion reactor” detailed technical data. Now provide to you, hope you help spread and the mainstream of modern physics of academic and fusion engineering academic communication. We work together to promote the c...

  17. Impact of confinement physics on reactor design and economics

    International Nuclear Information System (INIS)

    DeFreece, D.A.; Campbell, R.B.; Waganer, L.M.

    1977-01-01

    A variety of confinement laws were employed in a transient, zero dimensional plasma code, which was coupled to the TOCOMO systems code. The purpose was to determine the impact of the confinement laws on reactor design, power costs and changes in the utility interface. A satisfactory reactor and power plant has been defined for the large majority of combinations of confinement law, power plant size and plasma shape. Trapped ion mode (TIM) has been the easiest to work with, since the plasma is thermally stable with a good power density and minimal alpha particle build up. Neoclassical and pseudoclassical along with TEMII result in satisfactory reactor performance, but require active feedback control (by injecting impurities) to prevent plasma temperature excursions. These laws also require some form and degree of confinement time spoiling to allow long burn times, otherwise, alpha particles build up to an unacceptable level. TEM I results in thermal equilibrium at 5 keV and must be driven to provide a reactor quality plasma. The continuous injected power required for a 4300 MW thermal reactor is 540 MW. This added to the other circulating loads results in a net power output of 600 MWe at a very high relative cost. Daughney (empirical) confinement results in a satisfactory, competitive reactor

  18. Assessing reactor physics codes capabilities to simulate fast reactors on the example of the BN-600 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir [Scientific and Engineering Centre for Nuclear and Radiation Safety (SES NRS), Moscow (Russian Federation); Bousquet, Jeremy [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work aims to assess the capabilities of reactor physics codes (initially validated for thermal reactors) to simulate fast sodium cooled reactors. The BFS-62-3A critical experiment from the BN-600 Hybrid Core Benchmark Analyses was chosen for the investigation. Monte-Carlo codes (KENO from SCALE and SERPENT 2.1.23) and the deterministic diffusion code DYN3D-MG are applied to calculate the neutronic parameters. It was found that the multiplication factor and reactivity effects calculated by KENO and SERPENT using the ENDF/B-VII.0 continuous energy library are in a good agreement with each other and with the measured benchmark values. Few-groups macroscopic cross sections, required for DYN3D-MG, were prepared in applying different methods implemented in SCALE and SERPENT. The DYN3D-MG results of a simplified benchmark show reasonable agreement with results from Monte-Carlo calculations and measured values. The former results are used to justify DYN3D-MG implementation for sodium cooled fast reactors coupled deterministic analysis.

  19. Network topology and Turing instabilities in small arrays of diffusively coupled reactors

    International Nuclear Information System (INIS)

    Horsthemke, Werner; Lam, Kwan; Moore, Peter K.

    2004-01-01

    We study the effect of the network structure on the diffusion-induced instability to nonuniform steady states in arrays of diffusively coupled reactors. The kinetics is given by the Lengyel-Epstein model, and we derive the conditions for Turing instabilities in all arrays of two, three, and four reactors

  20. Optimal power and distribution control for weakly-coupled-core reactor

    International Nuclear Information System (INIS)

    Oohori, Takahumi; Kaji, Ikuo

    1977-01-01

    A numerical procedure has been devised for obtaining the optimal power and distribution control for a weakly-coupled-core reactor. Several difficulties were encountered in solving this optimization problem: (1) nonlinearity of the reactor kinetics equations; (2) neutron-leakage interaction between the cores; (3) localized power changes occurring in addition to the total power changes; (4) constraints imposed on the states - e.g. reactivity, reactor period. To obviate these difficulties, use is made of the generalized Newton method to convert the problem into an iterative sequence of linear programming problems, after approximating the differential equations and the integral performance criterion by a set of discrete algebraic equations. In this procedure, a heuristic but effective method is used for deriving an initial approximation, which is then made to converge toward the optimal solution. Delayed-neutron one-group point reactor models embodying transient temperature feed-back to the reactivity are used in obtaining the kinetics equations for the weakly-coupled-core reactor. The criterion adopted for determining the optimality is a norm relevant to the deviations of neutron density from the desired trajectories or else to the time derivatives of the neutron density; uniform control intervals are prescribed. Examples are given of two coupled-core reactors with typical parameters to illustrate the results obtained with this procedure. A comparison is also made between the coupled-core reactor and the one-point reactor. (auth.)

  1. Reactor physics computer code development for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs

    International Nuclear Information System (INIS)

    Rastogi, B.P.

    1989-01-01

    This report discusses various reactor physics codes developed for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs. These code packages have been utilized for nuclear design of 500 MWe and new 235 MWe PHWRs. (author)

  2. Multi-physic simulations of irradiation experiments in a technological irradiation reactor

    International Nuclear Information System (INIS)

    Bonaccorsi, Th.

    2007-09-01

    A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)

  3. On coupling fluid plasma and kinetic neutral physics models

    Directory of Open Access Journals (Sweden)

    I. Joseph

    2017-08-01

    Full Text Available The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.

  4. Compilation of reactor-physical data of the AVR experimental reactor for 1982

    International Nuclear Information System (INIS)

    Werner, H.; Wawrzik, U.; Grotkamp, T.; Buettgen, I.

    1983-12-01

    Since the end of 1981 the calculation model AVR-80 has been taken as a basis for compiling reactor-physical data of the AVR experimental reactor. A brief outline of the operation history of 1982 is given, including the beginning of a large-scale experiment dealing with change-over from high enriched uranium to low enriched uranium. Calculations relative to spectral shift, diffusion, temperature, burnup, and recirculation of the fuel elements are described in brief. The essential results of neutron-physical and thermodynamic calculations and the characteristical data of the various types of fuel used are shown in tables and illustrations. (RF) [de

  5. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, John D.; Marshall, Margaret A.; Gorham, Mackenzie L.; Christensen, Joseph; Turnbull, James C.; Clark, Kim

    2011-01-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) (1) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) (2) were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  6. International Conference on Physics and Technology of Reactors and Applications

    International Nuclear Information System (INIS)

    2007-01-01

    The first international conference on physics and technology of reactors and applications (PHYTRA 1) which took place in Marrakech (Morocco) from 14 to 16 March 2007, was designed to bring together scientists, teachers and students from universities, research centres and industry and other institutions to exchange knowledge and to discuss ideas and future issues. The programmes of the PHYTRA 1 conference covers a wide variety topics, the conference was organised in three plenary sessions, ten oral technical sessions and two poster sessions. The plenary sessions covers the following topics : The prospects of nuclear energy, The situation of nuclear sciences and energy in Morocco and Africa, and the new development in reactor physics and reactor design [fr

  7. An Overview of the International Reactor Physics Experiment Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Gulliford, Jim

    2014-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  8. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, T.

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design

  9. The under-critical reactors physics for the hybrid systems

    International Nuclear Information System (INIS)

    Schapira, J.P.; Vergnes, J.; Zaetta, A.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  10. Safety coupling for a control rod of a nuclear reactor

    International Nuclear Information System (INIS)

    Mindnich, F.R.; Friedrichs, H.; Schoettle, J.

    1978-01-01

    A coupling is presented between a control rod and the drive shafft arranged below. The construction of this coupling is designed in such a way that the usual sealing maesures against the escape of coolant are reduced. (TK) [de

  11. Design precautions for coupling interfaces between nuclear heating reactor and heating grid or desalination plant

    International Nuclear Information System (INIS)

    Zheng Wenxiang

    1998-01-01

    Nuclear heating reactor (NHR) has been developed by INET since the early eighties. To achieve its economic viability and safety goal, the NHR is designed with a number of advanced and innovative features, including integrated arrangement, natural circulation, self-pressurized performance, dynamically hydraulic control rod drive and passive safety systems. As a new promising energy system, the NHR can serve for district heating, air conditioning, sea-water desalination and other industrial processes. For all of these applications, it is vital that the design and performance of the coupling interfaces shall insure protection of user ends against radioactive contamination. Therefore, an intermediate circuit is provided in the NHR as a physical barrier, and the operating pressure in the intermediate circuit is higher than that in the primary system. In addition, the radioactivity in the intermediate circuit is monitored continuously, and there are also other protection measures in the design for isolating the intermediate circuit and the heating grid or desalination plant under some emergency conditions. The excellent performance of the above design precautions for the coupling interfaces has been demonstrated by operational practice from the NHR-5, a 5 MW(thermal) experimental NHR, which was put into operation in 1989. This paper presents the main design features of the NHR as well as the special provisions taken in the design for coupling the NHR to the heating grid or desalination plant and some operating experience from the NHR-5. (author)

  12. Coupling between a multi-physics workflow engine and an optimization framework

    Science.gov (United States)

    Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.

    2016-03-01

    A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.

  13. Successful vectorization - reactor physics Monte Carlo code

    International Nuclear Information System (INIS)

    Martin, W.R.

    1989-01-01

    Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)

  14. Numerical analysis of magnetoelastic coupled buckling of fusion reactor components

    International Nuclear Information System (INIS)

    Demachi, K.; Yoshida, Y.; Miya, K.

    1994-01-01

    For a tokamak fusion reactor, it is one of the most important subjects to establish the structural design in which its components can stand for strong magnetic force induced by plasma disruption. A number of magnetostructural analysis of the fusion reactor components were done recently. However, in these researches the structural behavior was calculated based on the small deformation theory where the nonlinearity was neglected. But it is known that some kinds of structures easily exceed the geometrical nonlinearity. In this paper, the deflection and the magnetoelastic buckling load of fusion reactor components during plasma disruption were calculated

  15. Neutron noise measurement technique in a coupled reactor

    International Nuclear Information System (INIS)

    Genoud, J.P.

    1976-01-01

    Describes work carried out on the swimming pool reactor at the Physikalisch-Technische Bundesanstalt at Braunschweig. The reactor has two multiplying zones, is light water moderated, with 90% enriched 235 U fuel. There is a D 2 0 reservoir between the two parts of the reactor. Signal/noise ratio obtained by means of ionisation chamber type neutron detectors of 10 -13 amp/u.f. sensitivity is of the order of 40 dB and band frequency 1.5 kHz. Spectral density of the interzone interaction energy was obtained by use of Fourier transforms, previously corrected by a Hanning window. (S.W.)

  16. Advances in Reactor physics, mathematics and computation. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume 3, are divided into sessions bearing on: - poster sessions on benchmark and codes: 35 conferences - review of status of assembly spectrum codes: 9 conferences - Numerical methods in fluid mechanics and thermal hydraulics: 16 conferences - stochastic transport and methods: 7 conferences.

  17. Methodology for reactor core physics analysis - part 2

    International Nuclear Information System (INIS)

    Ponzoni Filho, P.; Fernandes, V.B.; Lima Bezerra, J. de; Santos, T.I.C.

    1992-12-01

    The computer codes used for reactor core physics analysis are described. The modifications introduced in the public codes and the technical basis for the codes developed by the FURNAS utility are justified. An evaluation of the impact of these modifications on the parameter involved in qualifying the methodology is included. (F.E.). 5 ref, 7 figs, 5 tabs

  18. Prevalence of Physical and Psychological Violence among Heterosexual Couples

    Directory of Open Access Journals (Sweden)

    Laura López Angulo

    2015-09-01

    Full Text Available Background: there are few studies at the population level on the prevalence of violence in heterosexual relationships. This study demonstrated the reality of this phenomenon in our context. Objective: to determine the prevalence of psychological and physical violence among heterosexual couples in the city of Cienfuegos in 2010. Methods: a cross-sectional study of adults aged 15 to 74 years was conducted in six health areas. An equal probability sample of 1873 subjects was selected. The variables included psychological and physical violence, sex, age, skin color, marital status, educational level and history of living in troubled homes. The results were processed using SPSS 15.0. Results: prevalence of psychological and physical violence among couples was approximately six out of ten with different frequency levels. Psychological violence rose to 82.3 % and physical violence to 96.3 % when the couple lived together. Women reported being victims of violence from age 35 to 44 and men from age 25 to 34. Seventy point eight percent of couples who had middle school education reported suffering physical violence while 63 % of those with university education reported psychological violence. Fifty-one point eight percent of the study population was victim of physical violence during childhood. Conclusions: prevalence of psychological and physical violence among heterosexual couples in the sample studied in Cienfuegos is higher than the mean in the general population.

  19. Applicability of Avery's coupled reactor theory to estimate subcriticality of test region in two region system

    International Nuclear Information System (INIS)

    Kugo, Teruhiko

    1992-01-01

    The author examined the validity to estimate the subcriticality of a test region in a coupled reactor system using only measurable quantities on the basis of Avery's coupled reactor theory. For the purpose, we analyzed coupled reactor experiments performed at the Tank-type Critical Assembly in Japan Atomic Energy Research Institute by using two region systems and evaluated the subcriticality of the test region through a numerical study. Coupling coefficients were redefined at the quasi-static state because their definitions by Avery were not clear. With the coupling coefficients obtained by the numerical calculation, the multiplication factor of the test region was evaluated by two formulas; one for the evaluation using only the measurable quantities and the other for the accurate evaluation which contains the terms dropped in the former formula by assuming the unchangeableness for the perturbation induced in a driver region. From the comparison between the results of the evaluations, it was found that the estimation using only the measurable quantities is valid only for the coupled reactor system where the subcriticality of the test region was very small within a few dollars in reactivity. Consequently, it is concluded that the estimation using only the measurable quantities is not applicable to a general coupled reactor system. (author)

  20. Preliminary analysis of basic reactor physics of the Dual Fluid Reactor - 15270

    International Nuclear Information System (INIS)

    Wang, X.; Macian-Juan, R.; Seidl, M.

    2015-01-01

    The Dual Fluid Reactor (DFR) is a novel fast nuclear reactor concept invented by the IFK based on the Generation IV Molten Salt Reactor and the Liquid Metal Cooled Reactor. The DFR uses a chloride based molten fuel salt in order to harden the neutron spectrum. The molten fuel salt is cooled with a separated liquid lead loop, which in principle allows for higher power densities and better breeding performance. The DFR does not combine heat removal and breeding into a single circuit but separates the two functions into two independent circuits. Since there are attractive features mentioned in this design, the main task of this paper is to verify the model of the whole reactor based on this concept. For this purpose several calculations are presented, including steady state calculations, sensitivity calculations with regard to the nuclide cross sections, the temperature and geometry coefficient of k eff as well as the burnup calculation. The Monte Carlo calculation codes MCNP, SERPENT and SCALE are used for the analysis. As expected the study shows a significant negative reactivity feedback with temperature in the overall fission zone. For the coupled coolant and reflector design the temperature feedback is rather small for practical purposes such as reactor control during normal operation. In the view of these results the DFR in principle can be self-regulated totally by the temperature change of its own fuel salt and consequently can rely on fully passive safety systems for accident management

  1. Nuclear data and integral experiments in reactor physics

    International Nuclear Information System (INIS)

    Farinelli, U.

    1980-01-01

    The material given here broadly covers the content of the 10 lectures delivered at the Winter Course on Reactor Theory and Power Reactors, ICTP, Trieste (13 February - 10 March 1978). However, the parts that could easily be found in the current literature have been omitted and replaced with the appropriate references. The needs for reactor physics calculations, particularly as applicable to commercial reactors, are reviewed in the introduction. The relative merits and shortcomings of fundamental and semi-empirical methods are discussed. The relative importance of different nuclear data, the ways in which they can be measured or calculated, and the sources of information on measured and evaluated data are briefly reviewed. The various approaches to the condensation of nuclear data to multigroup cross sections are described. After some consideration to the sensitivity calculations and the evaluation of errors, some of the most important type of integral experiments in reactor physics are introduced, with a view to showing the main difficulties in the interpretation and utilization of their results and the most recent trends in experimentation. The conclusions try to assign some priorities in the implementation of experimental and calculational capabilities, especially for a developing country. (author)

  2. Physics and engineering aspects of the EBT reactor

    International Nuclear Information System (INIS)

    Uckan, N.A.; Bettis, E.S.; Hedrick, C.L.; Santoro, R.T.; Watts, H.L.; Yeh, H.T.

    1977-01-01

    The ELMO Bumpy Torus (EBT) reactor has the advantage of high-β, steady-state operation. The first reactor study based on the EBT confinement concept was initiated in 1976. It provided the required starting point for continued assessment of the validity of the concept. A new design based on the present physics understanding, practical design approaches, and present and near-term technologies has been established. One of the important factors in an EBT reactor is the large aspect ratio (large toroidal major radius as well). This leads to a power plant with a comparatively large total energy output, usually in the range of 2000-6000 MW(th) for a conventional neutron wall loading of 1-2 MW/m 2 (the high value of β in an EBT device provides a net cost per unit energy roughly equal to or somewhat less than that for a Tokamak system). The large aspect ratio also provides very simple engineering and design requirements because of good access and small force loading asymmetries. Another important factor is the steady-state operation. In an EBT system, less power handling, energy storage, and filtering equipment will be needed. An EBT reactor is less likely to be subject to thermal and mechanical fatigue than reactors with large pulsed magnetic fields and short bursts of fusion power. The details of the key design elements and critical scientific and technology factors which are substantially different from other fusion reactor approaches are described

  3. CANDU reactor core simulations using fully coupled DRAGON and DONJON calculations

    International Nuclear Information System (INIS)

    Varin, E.; Marleau, G.

    2006-01-01

    The operating CANDU-6 reactors are refueled on-power to compensate for the reactivity loss due to fuel burnup. In order to predict the core behavior, fuel bundle burnups and local parameter information need to be tracked. The history-based approach has been developed to follow local parameter as well as history effect in CANDU reactors. The finite reactor diffusion code DONJON and the lattice code DRAGON have been coupled to perform reactor follow-up calculations using a history-based approach. A coupled methodology that manages the transfer of information between standard DONJON and DRAGON data structures has been developed. Push-through refueling can be taken into account directly in cell calculations. Using actual on-site information, an isotopic core content database has been generated with coupled DONJON and DRAGON calculations. Moreover calculations have been performed for different local parameters. Results are compared with those obtained using standard cross section generation approaches

  4. Proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic

    International Nuclear Information System (INIS)

    1986-01-01

    The proceedings of the 6. National Meeting of Reactor Physics and Thermohydraulic - 6. ENFIR - allow to evaluate the present status of development in reactor physics and thermohydraulic fields. The mathematical models and methods for calculating neutronic of nuclear reactors, safety reactor analysis, measuring methods of neutronic parameters, computerized simulation of accidents, transients and thermohydraulic analysis are presented. (M.C.K.) [pt

  5. Final Physics Report for the Engineering Test Reactor

    International Nuclear Information System (INIS)

    Wolfe, I. B.

    1956-01-01

    This report is a summary of the physics design work performed on the Engineering Test Reactor. The ETR presents computational difficulties not found in other reactors because of the large number of experimental holes in the core. The physics of the ETR depends strongly upon the contents of the in-core experimental facilities. In order to properly evaluate the reactor' taking into account the experiments in the core, multi-region, two-dimensional calculations are required. These calculations require the use of a large computer such as the Remington Rand Univac and are complex and expensive enough to warrant a five-stage program: 1. In the early stages of design, only preliminary two-dimensional calculations were performed .in order to obtain a rough idea of the general behavior of the reactor and its critical mass with tentative experiments in place. 2. A large amount of work was carried out in which the reactor was approximated as one with a uniform homogeneous core. With this model, detailed studies were carried out to investigate the feasibility and to obtain general design data on such points as the design and properties of the gray and black control rods, the design of the beryllium reflector, gamma and neutron heating, the use of burnable poisons, etc. In performing these calculations, use was made of the IBM 650 PROD code obtained from KAPL. 3. With stages 1 and 2 carried out, two-dimensional calculations of the core at start-up conditions were performed on the Univac computer. 4. Detailed two-dimensional calculations of the properties of the ETR with a proposed first set of experiments in place were carried out. 5. A series of nuclear tests were performed at the reactivity measurements facility at the MTR site in order to confirm the validity of the analytical techniques in physics analysis. In performing the two-dimensional Univac calculations, the MUG code developed by KAPL and the Cuthill code developed at the David Taylor Model Basin were utilized. In

  6. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  7. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    International Nuclear Information System (INIS)

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered

  8. Reactor physics innovations of the advanced CANDU reactor core: adaptable and efficient

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Hopwood, J.M.; Bonechi, M.

    2003-01-01

    The Advanced CANDU Reactor (ACR) is designed to have a benign, operator-friendly core physics characteristic, including a slightly negative coolant-void reactivity and a moderately negative power coefficient. The discharge fuel burnup is about three times that of natural uranium fuel in current CANDU reactors. Key features of the reactor physics innovations in the ACR core include the use of H 2 O coolant, slightly enriched uranium (SEU) fuel, and D 2 O moderator in a reduced lattice pitch. These innovations result in substantial improvements in economics, as well as significant enhancements in reactor performance and waste reduction over the current reactor design. The ACR can be readily adapted to different power outputs by increasing or decreasing the number of fuel channels, while maintaining identical fuel and fuel-channel characteristics. The flexibility provided by on-power refuelling and simple fuel bundle design enables the ACR to easily adapt to the use of plutonium and thorium fuel cycles. No major modifications to the basic ACR design are required because the benign neutronic characteristics of the SEU fuel cycle are also inherent in these advanced fuel cycles. (author)

  9. Reactor physical experimental program EROS in the frame of the molten salt applying reactor concepts development

    International Nuclear Information System (INIS)

    Hron, Miloslav; Kyncl, Jan; Mikisek, Miroslav

    2009-01-01

    After the relatively broad program of experimental activities, which have been involved in the complex R and D program for the Molten Salt Reactor (MSR) - SPHINX (SPent Hot fuel Incinerator by Neutron fluX) concept development in the Czech Republic, there has been a next stage (namely large-scale experimental verification of design inputs by use of MSR-type inserted zones into the existing light water moderated experimental reactor LR-0 called EROS project) started, which will be focused to the experimental verification of the rector physical or neutronic properties of other types of reactor concepts applying molten salts in the role of liquid fuel and/or coolant. This tendency is based on the recently accepted decision of the MSR SSC of GIF to consider for further period of its activity two baseline concepts- fast neutron molten salt reactor non-moderated (FMSR-NM) as a long-term alternative to solid fuelled fast neutron reactors and simultaneously, advanced high temperature reactor (AHTR) with pebble bed type solid fuel cooled by liquid salts. There will be a brief description of the prepared and performed experimental programs in these directions (as well as the preliminary results obtained so far) introduced in the paper. (author)

  10. Current status of the reactor physics code WIMS and recent developments

    International Nuclear Information System (INIS)

    Lindley, B.A.; Hosking, J.G.; Smith, P.J.; Powney, D.J.; Tollit, B.S.; Newton, T.D.; Perry, R.; Ware, T.C.; Smith, P.N.

    2017-01-01

    Highlights: • The current status of the WIMS reactor physics code is presented. • Applications range from 2D lattice calculations up to 3D whole core geometries. • Gamma transport and thermal-hydraulic feedback models added. • Calculations methodologies described for several Gen II, III and IV reactor types. - Abstract: The WIMS modular reactor physics code has been under continuous development for over fifty years. This paper discusses the current status of WIMS and recent developments, in particular developments to the resonance shielding methodology and 3D transport solvers. Traditionally, WIMS is used to perform 2D lattice calculations, typically to generate homogenized reactor physics parameters for a whole core code such as PANTHER. However, with increasing computational resources there has been a growing trend for performing transport calculations on larger problems, up to and including 3D full core models. To this end, a number of the WIMS modules have been parallelised to allow efficient performance for whole core calculations, and WIMS includes a 3D method of characteristics solver with reflective and once-through tracking methods, which can be used to analyse problems of varying size and complexity. A time-dependent flux solver has been incorporated and thermal-hydraulic modelling capability is also being added to allow steady-state and transient coupled calculations to be performed. WIMS has been validated against a range of experimental data and other codes, in particular for water and graphite moderated thermal reactors. Future developments will include improved parallelization, enhancing the thermal-hydraulic feedback models and validating the WIMS/PANTHER code system for BWRs and fast reactors.

  11. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Kourachenkov, A.V.

    1998-01-01

    The general issues regarding NHR and desalination facility joint operation for potable water production are briefly considered. AST-500 reactor plant and DOU GTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. Similarity of NHR operation for a heating grid and a desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author)

  12. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Gureyeva, L.V.; Egorov, V.V.; Podberezniy, V.L.

    1997-01-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab

  13. Coupling of AST-500 heating reactors with desalination facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gureyeva, L V; Egorov, V V [OKBM, Nizhny Novgorod (Russian Federation); Podberezniy, V L [Scientific Research Inst. of Machine Building, Ekaterinburg (Russian Federation)

    1997-09-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab.

  14. Physics design of an ultra-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Ogawa, Y.; Inoue, N.; Wang, J.; Yamamoto, T.; Okano, K.

    1993-01-01

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  15. A simulated test of physical starting and reactor physics on zero power facility of PWR

    International Nuclear Information System (INIS)

    Yao Zewu; Ji Huaxiang; Chen Zhicheng; Yao Zhiquan; Chen Chen; Li Yuwen

    1995-01-01

    The core neutron economics has been verified through experiments conducted at a zero power reactor with baffles of various thickness. A simulated test of physical starting of Qinshan PWR has been introduced. The feasibility and safety of the programme are verified. The research provides a valuable foundation for developing physical starting programme

  16. Physical and technical aspects of lead cooled fast reactors safety

    International Nuclear Information System (INIS)

    Orlov, V.V.; Smirnov, V.S.; Filin, A.I.

    2001-01-01

    The safety analysis of lead-cooled fast reactors has been performed for the well-developed concept of BREST-OD-300 reactor. The most severe accidents have been considered. An ultimate design-basis accident has been defined as an event resulting from an external impact and involving a loss of leak-tightness of the lead circuit, loss of forced circulation of lead and loss of heat sink to the secondary circuit, failure of controls and of reactor scram with resultant insertion of total reactivity margin, etc. It was assumed in accident analysis that the protective feature available for accident mitigation was only reactivity feedback on the changes in the temperatures of the reactor core elements and coolant flow rate, and in some cases also actuation of passive protections of threshold action in response to low flow rate and high coolant temperature at the core outlet. It should be noted that the majority of the analyzed accidents could be overcame even without initiation of the above protections. It has been demonstrated that a combination of inherent properties of lead coolant, nitride fuel, physical and design features of fast reactors will ensure natural safety of BREST and are instrumental for avoiding by a deterministic approach the accidents associated with a significant release of radioactivity and requiring evacuation of people in any credible initiating event and a combination of events. (author)

  17. Neutron physics computation of CERCA fuel elements for Maria Reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.J.; Kulikowska, T.; Marcinkowska, Z.

    2008-01-01

    Neutron physics parameters of CERCA design fuel elements were calculated in the framework of the RERTR (Reduced Enrichment for Research and Test Reactors) program for Maria reactor. The analysis comprises burnup of experimental CERCA design fuel elements for 4 cycles in Maria Reactor To predict the behavior of the mixed core the differences between the CERCA fuel (485 g U-235 as U 3 Si 2 , 5 fuel tubes, low enrichment 19.75 % - LEU) and the presently used MR-6 fuel (430 g as UO 2 , 6 fuel tubes, high enrichment 36 % - HEU) had to be taken into account. The basic tool used in neutron-physics analysis of Maria reactor is program REBUS using in its dedicated libraries of effective microscopic cross sections. The cross sections were prepared using WIMS-ANL code, taking into account the actual structure, temperature and material composition of the fuel elements required preparation of new libraries.The problem is described in the first part of the present paper. In the second part the applicability of the new library is shown on the basis of the fuel core computational analysis. (author)

  18. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  19. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    International Nuclear Information System (INIS)

    Heeger, Karsten M.

    2014-01-01

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta . Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  20. Coupled MCNP - SAS-SFR calculations for sodium fast reactor core at steady-state - 15460

    International Nuclear Information System (INIS)

    Ponomarev, A.; Travleev, A.; Pfrang, W.; Sanchez, V.

    2015-01-01

    The prediction of core parameters at steady state is the first step when studying core accident transient behaviour. At this step thermal hydraulics (TH) and core geometry parameters are calculated corresponding to initial operating conditions. In this study we present the coupling of the SAS-SFR code to the Monte-Carlo neutron transport code MCNP at steady state together with application to the European Sodium Fast Reactor (ESFR). The SAS-SFR code employs a multi-channel core representation where each channel represents subassemblies with similar power, thermal-hydraulics and pin mechanics conditions. For every axial node of every channel the individual geometry and material compositions parameters are calculated in accord with power and cooling conditions. This requires supplying the SAS-SFR-code with nodal power values which should be calculated by neutron physics code with given realistic core parameters. In the conventional approach the neutron physics model employs some core averaged TH and geometry data (fuel temperature, coolant density, core axial and radial expansion). In this study we organize a new approach coupling the MCNP neutron physics models and the SAS-SFR models, so that calculations of power can be improved by using distributed core parameters (TH and geometry) taken from SAS-SFR. The MCNP code is capable to describe cores with distributed TH parameters and even to model non-uniform axial expansion of fuel subassemblies. In this way, core TH and geometrical data calculated by SAS-SFR are taken into account accurately in the neutronics model. The coupling implementation is done by data exchange between two codes with help of processing routines managed by driver routine. Currently it is model-specific and realized for the ESFR 'Reference Oxide' core. The Beginning-Of-Life core state is considered with 10 channel representation for fuel subassemblies. For this model several sets of coupled calculations are performed, in which different

  1. Health physics aspects of a research reactor fuel shipment

    International Nuclear Information System (INIS)

    Dodd, B.; Johnson, A.G.; Anderson, T.V.

    1984-01-01

    In June 1982, 92 irradiated fuel elements were shipped from the Oregon State University TRIGA Reactor to Westinghouse Hanford Corporation to be used in the Fuel Materials Examination Facility, This paper describes some of the health physics aspects of the planning, preparation and procedures associated with that shipment. In particular, the lessons learned are described in order that the benefits of the experience gained may be readily available to other small institutions. (author)

  2. Flux-limited diffusion coefficients in reactor physics applications

    International Nuclear Information System (INIS)

    Pounders, J.; Rahnema, F.; Szilard, R.

    2007-01-01

    Flux-limited diffusion theory has been successfully applied to problems in radiative transfer and radiation hydrodynamics, but its relevance to reactor physics has not yet been explored. The current investigation compares the performance of a flux-limited diffusion coefficient against the traditionally defined transport cross section. A one-dimensional BWR benchmark problem is examined at both the assembly and full-core level with varying degrees of heterogeneity. (authors)

  3. Coupling of 3-D core computational codes and a reactor simulation software for the computation of PWR reactivity accidents induced by thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Raymond, P.; Caruge, D.; Paik, H.J.

    1994-01-01

    The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs

  4. Proceedings on the Second Autumn School on Reactor Physics EROEFI II

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A [ed.

    1996-12-31

    The main topics of the Reactor Physics School were neutron and reactor physical calculations, reactor safety, systems theory, simulation of accidents, reactor monitoring system, computer codes and procedures for solving specific problems in the field of nuclear reactors (especially safety). A special attention was paid to the AGNES project. Papers falling in the INIS scope have been abstracted and indexed individually for the INIS database. (K.A.).

  5. Proceedings on the Second Autumn School on Reactor Physics EROEFI II

    International Nuclear Information System (INIS)

    Racz, A.

    1995-01-01

    The main topics of the Reactor Physics School were neutron and reactor physical calculations, reactor safety, systems theory, simulation of accidents, reactor monitoring system, computer codes and procedures for solving specific problems in the field of nuclear reactors (especially safety). A special attention was paid to the AGNES project. Papers falling in the INIS scope have been abstracted and indexed individually for the INIS database. (K.A.)

  6. Summary of ORSphere critical and reactor physics measurements

    Directory of Open Access Journals (Sweden)

    Marshall Margaret A.

    2017-01-01

    Full Text Available In the early 1970s Dr. John T. Mihalczo (team leader, J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF with highly enriched uranium (HEU metal (called Oak Ridge Alloy or ORALLOY to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP. Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.

  7. Summary of ORSphere Critical and Reactor Physics Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A.; Bess, John D.

    2016-09-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J. J. Lynn, and J. R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is summary summarize all the critical and reactor physics measurements evaluations and, when possible, to compare them to GODIVA experiment results.

  8. Summary of ORSphere critical and reactor physics measurements

    Science.gov (United States)

    Marshall, Margaret A.; Bess, John D.

    2017-09-01

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. This critical configuration has been evaluated. Preliminary results were presented at ND2013. Since then, the evaluation was finalized and judged to be an acceptable benchmark experiment for the International Criticality Safety Benchmark Experiment Project (ICSBEP). Additionally, reactor physics measurements were performed to determine surface button worths, central void worth, delayed neutron fraction, prompt neutron decay constant, fission density and neutron importance. These measurements have been evaluated and found to be acceptable experiments and are discussed in full detail in the International Handbook of Evaluated Reactor Physics Benchmark Experiments. The purpose of this paper is to summarize all the evaluated critical and reactor physics measurements evaluations.

  9. Features of supercritical carbon dioxide Brayton cycle coupled with reactor

    International Nuclear Information System (INIS)

    Duan Chengjie; Wang Jie; Yang Xiaoyong

    2010-01-01

    In order to obtain acceptable cycle efficiency, current helium gas turbine power cycle technology needs high cycle temperature which means that the cycle needs high core-out temperature. The technology has high requirements on reactor structure and fuel elements materials, and also on turbine manufacture. While utilizing CO 2 as cycle working fluid, it can guarantee to lower the cycle temperature and turbo machine Janume but achieve the same cycle efficiency, so as to enhance the safety and economy of reactor. According to the laws of thermodynamics, a calculation model of supercritical CO 2 power cycle was established to analyze the feature, and the decisive parameters of the cycle and also investigate the effect of each parameter on the cycle efficiency in detail were obtained. The results show that supercritical CO 2 power cycle can achieve quite satisfied efficiency at a lower cycle highest temperature than helium cycle, and CO 2 is a promising working fluid. (authors)

  10. Study of Physical Protection System at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ina, I.; Zarina Masood

    2016-01-01

    Physical protection program at PUSPATI TRIGA Reactor (RTP) which is located at Nuklear Malaysia, Bangi Complex has been strengthened and upgraded from time to time to accommodate current situation needs. However, there is always room for improvement. Hence, study have been made to look deeper into physical protection components such as delay systems, external sensors, PPS intruder alarm sensors, use of video system, personnel security or insider threats, access control operation system operation rules and security culture that may need to take into consideration. (author)

  11. The Multi一physics Research on I ron一Core Vibration Noise of Power Reactor

    Directory of Open Access Journals (Sweden)

    LI U Ja

    2017-02-01

    Full Text Available On the basis of theoretical research releted to the magnetostriction and maxwell’.s equations,the fi- nite element coupling in the transient electromagnetic field coupling,structure and sound field coupling has been developed In thts paper by using the flnlte element sOftWare CO}IS01., Whleh establish a serles three-phase COT’e re- actor model, to analyzing the power frequency magnetic field distribution,core magnetostrictive displacement,max- well force displacement and sound pressure level of the three-phase series core reactor under the power frequency working state. According to transient magnetic field distribution in the simulation of the reactor,the magnetic flux density distribution inside the reactor and the vibration displacement distribution are calculated,the acoustic field distribution is measured alao. It is shown that physical field simulation results and measured data are basically in consisent by experiment,it is proved multi-physics coupling is an effective method for forecast of noise.

  12. Predictive modeling of coupled multi-physics systems: I. Theory

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2014-01-01

    Highlights: • We developed “predictive modeling of coupled multi-physics systems (PMCMPS)”. • PMCMPS reduces predicted uncertainties in predicted model responses and parameters. • PMCMPS treats efficiently very large coupled systems. - Abstract: This work presents an innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS).” This methodology takes into account fully the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PMCMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This “maximum entropy”-approximate a priori distribution is combined, using Bayes’ theorem, with the “likelihood” provided by the multi-physics simulation models. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PMCMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially

  13. Proceedings of 2. Yugoslav symposium on reactor physics, Part 1, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 1 of the Proceedings of 2. Yugoslav symposium on reactor physics includes nine papers dealing with the following topics: reactor kinetics, reactor noise, neutron detection, methods for calculating neutron flux spatial and time dependence in the reactor cores of both heavy and light water moderated experimental reactors, calculation of reactor lattice parameters, reactor instrumentation, reactor monitoring systems; measuring methods of reactor parameters; reactor experimental facilities

  14. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  15. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo

    2011-01-01

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  16. Contribution to the optimization of the coupling of nuclear reactors to desalination processes

    International Nuclear Information System (INIS)

    Dardour, S.

    2007-04-01

    This work deals with modelling, simulation and optimization of the coupling between nuclear reactors (PWR, modular high temperature reactors) and desalination processes (multiple effect distillation, reverse osmosis). The reactors considered in this study are PWR (Pressurized Water Reactor) and GTMHR (Gas Turbine Modular Helium Reactor). The desalination processes retained are MED (Multi Effect Distillation) and SWRO (Sea Water Reverse Osmosis). A software tool: EXCELEES of thermodynamic modelling of coupled systems, based on the Engineering Algebraic Equation Solver has been developed. Models of energy conversion systems and of membrane desalination processes and distillation have been developed. Based on the first and second principles of thermodynamics, these models have allowed to determine the optimal running point of the coupled systems. The thermodynamic analysis has been completed by a first economic evaluation. Based on the use of the DEEP software of the IAEA, this evaluation has confirmed the interest to use these types of reactors for desalination. A modelling tool of thermal processes of desalination in dynamic condition has been developed too. This tool has been applied to the study of the dynamics of an existing plant and has given satisfying results. A first safety checking has been at last carried out. The transients able to jeopardize the integrated system have been identified. Several measures aiming at consolidate the safety have been proposed. (O.M.)

  17. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  18. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  19. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    International Nuclear Information System (INIS)

    Alameri, Saeed A.; King, Jeffrey C.

    2013-01-01

    Nuclear power plants operate most economically at a constant power level, providing base load electric power. In an energy grid containing a high fraction of renewable power sources, nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling a nuclear reactor to a large thermal energy storage block will allow the reactor to better respond to variable power demands. In the system described in this paper, a Prismatic core Advanced High Temperature Reactor supplies constant power to a lithium chloride molten salt thermal energy storage block that provides thermal power as needed to a closed Brayton cycle energy conversion system. During normal operation, the thermal energy storage block stores thermal energy during the night for use in the times of peak demand during the day. In this case, the nuclear reactor stays at a constant thermal power level. After a loss of forced circulation, the reactor reaches a shut down state in less than half an hour and the average fuel, graphite and coolant temperatures remain well within the design limits over the duration of the transient, demonstrating the inherent safety of the coupled system. (author)

  20. Fusion reactors: physics and technology. Annual progress report

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-08-01

    Fusion reactors are designed to operate at full power and generally at steady state. Yet experience shows the load variations, licensing constraints, and frequent sub-system failures often require a plant to operate at fractions of rated power. The aim of this study has been to assess the technology problems and design implications of startup and fractional power operation on fusion reactors. The focus of attention has been tandem mirror reactors (TMR) and we have concentrated on the plasma and blanket engineering for startup and fractional power operation. In this report, we first discuss overall problems of startup, shutdown and staged power operation and their influence on TMR design. We then present a detailed discussion of the plasma physics associated with TMR startup and various means of achieving staged power operation. We then turn to the issue of instrumentation and safety controls for fusion reactors. Finally we discuss the limits on transient power variations during startup and shutdown of Li 17 Pb 83 cooled blankets

  1. Calculation system for physical analysis of boiling water reactors

    International Nuclear Information System (INIS)

    Bouveret, F.

    2001-01-01

    Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)

  2. Advanced multi-physics simulation capability for very high temperature reactors

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Tak, Nam Il; Jo Chang Keun; Noh, Jae Man; Cho, Bong Hyun; Cho, Jin Woung; Hong, Ser Gi

    2012-01-01

    The purpose of this research is to develop methodologies and computer code for high-fidelity multi-physics analysis of very high temperature gas-cooled reactors(VHTRs). The research project was performed through Korea-US I-NERI program. The main research topic was development of methodologies for high-fidelity 3-D whole core transport calculation, development of DeCART code for VHTR reactor physics analysis, generation of VHTR specific 190-group cross-section library for DeCART code, development of DeCART/CORONA coupled code system for neutronics/thermo-fluid multi-physics analysis, and benchmark analysis against various benchmark problems derived from PMR200 reactor. The methodologies and the code systems will be utilized a key technologies in the Nuclear Hydrogen Development and Demonstration program. Export of code system is expected in the near future and the code systems developed in this project are expected to contribute to development and export of nuclear hydrogen production system

  3. Core Flow Distribution from Coupled Supercritical Water Reactor Analysis

    Directory of Open Access Journals (Sweden)

    Po Hu

    2014-01-01

    Full Text Available This paper introduces an extended code package PARCS/RELAP5 to analyze steady state of SCWR US reference design. An 8 × 8 quarter core model in PARCS and a reactor core model in RELAP5 are used to study the core flow distribution under various steady state conditions. The possibility of moderator flow reversal is found in some hot moderator channels. Different moderator flow orifice strategies, both uniform across the core and nonuniform based on the power distribution, are explored with the goal of preventing the reversal.

  4. A Multi-Physics simulation of the Reactor Core using CUPID/MASTER

    International Nuclear Information System (INIS)

    Lee, Jae Ryong; Cho, Hyoung Kyu; Yoon, Han Young; Cho, Jin Young; Jeong, Jae Jun

    2011-01-01

    KAERI has been developing a component-scale thermal hydraulics code, CUPID. The aim of the code is for multi-dimensional, multi-physics and multi-scale thermal hydraulics analysis. In our previous papers, the CUPID code has proved to be able to reproduce multidimensional thermal hydraulic analysis by validated with various conceptual problems and experimental data. For the numerical closure, it adopts a three dimensional, transient, two-phase and three-field model, and includes physical models and correlations of the interfacial mass, momentum, and energy transfer. For the multi-scale analysis, the CUPID is on progress to merge into system-scale thermal hydraulic code, MARS. In the present paper, a multi-physics simulation was performed by coupling the CUPID with three dimensional neutron kinetics code, MASTER. The MASTER is merged into the CUPID as a dynamic link library (DLL). The APR1400 reactor core during control rod drop/ejection accident was simulated as an example by adopting a porous media approach to employ fuel assembly. The following sections present the numerical modeling for the reactor core, coupling of the kinetics code, and the simulation results

  5. Coupled Physics Environment (CouPE) library - Design, Implementation, and Release

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Vijay S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-30

    Over several years, high fidelity, validated mono-­physics solvers with proven scalability on peta-­scale architectures have been developed independently. Based on a unified component-­based architecture, these existing codes can be coupled with a unified mesh-­data backplane and a flexible coupling-­strategy-­based driver suite to produce a viable tool for analysts. In this report, we present details on the design decisions and developments on CouPE, an acronym that stands for Coupled Physics Environment that orchestrates a coupled physics solver through the interfaces exposed by MOAB array-­based unstructured mesh, both of which are part of SIGMA (Scalable Interfaces for Geometry and Mesh-­Based Applications) toolkit. The SIGMA toolkit contains libraries that enable scalable geometry and unstructured mesh creation and handling in a memory and computationally efficient implementation. The CouPE version being prepared for a full open-­source release along with updated documentation will contain several useful examples that will enable users to start developing their applications natively using the native MOAB mesh and couple their models to existing physics applications to analyze and solve real world problems of interest. An integrated multi-­physics simulation capability for the design and analysis of current and future nuclear reactor models is also being investigated as part of the NEAMS RPL, to tightly couple neutron transport, thermal-­hydraulics and structural mechanics physics under the SHARP framework. This report summarizes the efforts that have been invested in CouPE to bring together several existing physics applications namely PROTEUS (neutron transport code), Nek5000 (computational fluid-dynamics code) and Diablo (structural mechanics code). The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging

  6. A multi-physics analysis for the actuation of the SSS in opal reactor

    Directory of Open Access Journals (Sweden)

    Ferraro Diego

    2018-01-01

    Full Text Available OPAL is a 20 MWth multi-purpose open-pool type Research Reactor located at Lucas Heights, Australia. It was designed, built and commissioned by INVAP between 2000 and 2006 and it has been operated by the Australia Nuclear Science and Technology Organization (ANSTO showing a very good overall performance. On November 2016, OPAL reached 10 years of continuous operation, becoming one of the most reliable and available in its kind worldwide, with an unbeaten record of being fully operational 307 days a year. One of the enhanced safety features present in this state-of-art reactor is the availability of an independent, diverse and redundant Second Shutdown System (SSS, which consists in the drainage of the heavy water reflector contained in the Reflector Vessel. As far as high quality experimental data is available from reactor commissioning and operation stages and even from early component design validation stages, several models both regarding neutronic and thermo-hydraulic approaches have been developed during recent years using advanced calculations tools and the novel capabilities to couple them. These advanced models were developed in order to assess the capability of such codes to simulate and predict complex behaviours and develop highly detail analysis. In this framework, INVAP developed a three-dimensional CFD model that represents the detailed hydraulic behaviour of the Second Shutdown System for an actuation scenario, where the heavy water drainage 3D temporal profiles inside the Reflector Vessel can be obtained. This model was validated, comparing the computational results with experimental measurements performed in a real-size physical model built by INVAP during early OPAL design engineering stages. Furthermore, detailed 3D Serpent Monte Carlo models are also available, which have been already validated with experimental data from reactor commissioning and operating cycles. In the present work the neutronic and thermohydraulic

  7. A multi-physics analysis for the actuation of the SSS in opal reactor

    Science.gov (United States)

    Ferraro, Diego; Alberto, Patricio; Villarino, Eduardo; Doval, Alicia

    2018-05-01

    OPAL is a 20 MWth multi-purpose open-pool type Research Reactor located at Lucas Heights, Australia. It was designed, built and commissioned by INVAP between 2000 and 2006 and it has been operated by the Australia Nuclear Science and Technology Organization (ANSTO) showing a very good overall performance. On November 2016, OPAL reached 10 years of continuous operation, becoming one of the most reliable and available in its kind worldwide, with an unbeaten record of being fully operational 307 days a year. One of the enhanced safety features present in this state-of-art reactor is the availability of an independent, diverse and redundant Second Shutdown System (SSS), which consists in the drainage of the heavy water reflector contained in the Reflector Vessel. As far as high quality experimental data is available from reactor commissioning and operation stages and even from early component design validation stages, several models both regarding neutronic and thermo-hydraulic approaches have been developed during recent years using advanced calculations tools and the novel capabilities to couple them. These advanced models were developed in order to assess the capability of such codes to simulate and predict complex behaviours and develop highly detail analysis. In this framework, INVAP developed a three-dimensional CFD model that represents the detailed hydraulic behaviour of the Second Shutdown System for an actuation scenario, where the heavy water drainage 3D temporal profiles inside the Reflector Vessel can be obtained. This model was validated, comparing the computational results with experimental measurements performed in a real-size physical model built by INVAP during early OPAL design engineering stages. Furthermore, detailed 3D Serpent Monte Carlo models are also available, which have been already validated with experimental data from reactor commissioning and operating cycles. In the present work the neutronic and thermohydraulic models, available for

  8. The reactor physics computer programs in PC's era

    International Nuclear Information System (INIS)

    Nainer, O.; Serghiuta, D.

    1995-01-01

    The main objective of reactor physics analysis is the evaluation of flux and power distribution over the reactor core. For CANDU reactors sophisticated computer programs, such as FMDP and RFSP, were developed 20 years ago for mainframe computers. These programs were adapted to work on workstations with UNIX or DOS, but they lack a feature that could improve their use and that is 'user friendly'. For using these programs the users need to deal with a great amount of information contained in sophisticated files. To modify a model is a great challenge. First of all, it is necessary to bear in mind all the geometrical dimensions and accordingly, to modify the core model to match the new requirements. All this must be done in a line input file. For a DOS platform, using an average performance PC system, could it be possible: to represent and modify all the geometrical and physical parameters in a meaningful way, on screen, using an intuitive graphic user interface; to reduce the real time elapsed in order to perform complex fuel-management analysis 'at home'; to avoid the rewrite of the mainframe version of the program? The author's answer is a fuel-management computer package operating on PC, 3 time faster than on a CDC-Cyber 830 mainframe one (486DX/33MHz/8MbRAM) or 20 time faster (Pentium-PC), respectively. (author). 5 refs., 1 tab., 5 figs

  9. Nuclear energy renaissance and reactor physics. Enlightenment of PHYSOR'08

    International Nuclear Information System (INIS)

    Peng Feng

    2010-01-01

    In relation to world's growing energy demands and concerns on global warming, nuclear energy as a sustainable resource is in its new period of renaissance. This is reflected in the record number of 447 papers on the International Conference on the Physics of Reactors--PHYSOR'08 held in Switzerland in 2008. The contents of these papers include the developments and frontiers in various directions of reactor physics. Featured by vast area of subjects, these emphasize the fact that the scope of the reactor physicist's R and D interests has expands considerably in recent years. The main keynote addresses and technical plenary lectures are briefly introduced. Some items concerned by the conference, such as: the status and perspective of nuclear energy's R and D, deployment and policy in main nuclear nations, the potential role of nuclear energy in mitigation global warming and slow down the GHG release, the sustainability of resource for nuclear energy utilization. Status and outlook about the needs of research and test facilities required in nuclear energy development, etc. are discussed. (authors)

  10. Correlation and flux tilt measurements of coupled-core reactor assemblies

    International Nuclear Information System (INIS)

    Harries, J.R.

    1976-01-01

    The systematics of coupling reactivity and time delay between cores have been investigated with a series of coupled-core assemblies on the AAEC Split-table Critical Facility. The assemblies were similar to the Universities' Training Reactor (UTR), but had graphite coupling region thickness of 450 mm, 600 mm and 800 mm. The coupling reactivity measured by both the cross-correlation of reactor noise and the flux tilt methods was stronger than for the UTRs, but showed a similar trend with core spacing. The cross-correlograms were analysed using the two-node model to derive the time delays between the cores. The time delays were compared with thermal neutron wave propagation, and found to be consistent when the time delays were added to the individual node response-function delays. (author)

  11. New applications of neutron noise theory in power reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  12. New applications of neutron noise theory in power reactor physics

    International Nuclear Information System (INIS)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  13. Reactor physics calculations on the Dutch small HTR concept

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Klippel, H.T.; Hogenbirk, A.; Oppe, J.; Sciolla, C.M.; Stad, R.C.L. van der; Zhang, B.C.

    1997-06-01

    As part of the activities within the framework of the development of INCOGEN, a 'Dutch' conceptual design of a smaller HTR, the ECN reactor physics code system has been extended with the capability to perform combined neutronics and thermal hydraulics steady-state, burnup and transient core calculations on pebble-bed type HTRs, by joining the general purpose reactor code PANTHER and the HTR thermal hydraulics code THERMIX/DIREKT in the PANTHERMIX code combination. The validation of the ECN code system for HTR applications is still in progress, but some promising first calculation results on unit cell and whole core geometries are presented, which indicate that the extended ECN code system is quite suitable for performing the pebble-bed HTR core calculations, required in the INCOGEN core design and optimization process. (orig.)

  14. Reactor physics calculations on the Dutch small HTR concept

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Hass, J.B.M. De; Klippel, H.Th.; Hogenbirk, A.; Oppe, J.; Sciolla, C.; Stad, R.C.L. Van Der; Zhang, B.C.

    1997-01-01

    As part of the activities within the framework of the development of INCOGEN, a ''Dutch'' conceptual design of a small HTR, the ECN reactor physics code system has been extended with the capability to perform combined neutronics and thermal hydraulics steady-state, burnup and transient core calculations on pebble-bed type HTRS, by joining the general purpose reactor code PANTHER and the HTR thermal hydraulics code THERMIX/DIREKT in the PANTHERMIX code combination. The validation of the ECN code system for HTR applications is still in progress, but some promising first calculation results on unit cell and whole core geometries are presented, which indicate that the extended ECN code system is quite suitable for performing the pebble-bed HTR core calculations, required in the INCOGEN core design and optimization process. (author)

  15. Quantized orbits in weakly coupled Belousov-Zhabotinsky reactors

    Science.gov (United States)

    Weiss, S.; Deegan, R. D.

    2015-06-01

    Using numerical and experimental tools, we study the motion of two coupled spiral cores in a light-sensitive variant of the Belousov-Zhabotinsky reaction. Each core resides on a separate two-dimensional domain, and is coupled to the other by light. When both spirals have the same sense of rotation, the cores are attracted to a circular trajectory with a diameter quantized in integer units of the spiral wavelength λ. When the spirals have opposite senses of rotation, the cores are attracted towards different but parallel straight trajectories, separated by an integer multiple of λ/2. We present a model that explains this behavior as the result of a spiral wavefront-core interaction that produces a deterministic displacement of the core and a retardation of its phase.

  16. Initial Testing of the Microscopic Depletion Implementation in the MAMMOTH Reactor Physics Application

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ganapol, B. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, F. N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, M. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Present and new nuclear fuels that will be tested at the Transient Reactor Test (TREAT) facility will be analyzed with the MAMMOTH reactor physics application, currently under development, at Idaho National Laboratory. MAMMOTH natively couples the BISON, RELAP-7, and Rattlesnake applications within the MOOSE framework. This system allows the irradiation of fuel from beginning of life in a nuclear reactor until it is placed in TREAT for fuel testing within the same analysis mesh and, thus, retaining a very high level of resolution and fidelity. The calculation of the isotopic distribution in fuel requires the solution to the decay and transmutation equations coupled to the neutron transport equation. The Chebyshev Rational Approximation Method (CRAM) is the current state-of-the-art in the field, as was chosen to be the solver for the decay and transmutation equations. This report shows that the implementation of the CRAM solver within MAMMOTH is correct with various analytic benchmarks for decay and transmutation of nuclides. The results indicate that the solutions with CRAM order 16 achieve the level of precision of the benchmark. The CRAM solutions show little sensitivity to the time step size and consistently produce a high level of accuracy for isotopic decay for time steps of 1x10^11 years. Comparisons to DRAGON5 with 297 isotopes yield comparable results, but some differences need to be further analyzed.

  17. Nuclear engineering laboratory self regulated power oscillation experiments at the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    Miller, L.F.; Mihalczo, J.T.; Bailiff, E.G.; Woody, N.D.; Gardner, G.D.

    1983-01-01

    Self regulated power oscillation experiments with a variety of initial conditions have been performed with the ORNL Health Physics Research Reactor (HPRR) by undergraduate nuclear engineering students from The University of Tennessee for several years. These experiments demonstrate the coupling between reactor kinetics and heat transfer and show how the temperature coefficient of reactivity affects reactor behavior. A model that consists of several coupled first order nonlinear differential equations is used to calculate the temperature of the core center and surface and power as a function of time which are compared with the experimental data; also, the model is also used to study the effects of various model parameters and initial conditions on the amplitude, frequency and damping of the power and temperature oscillations. A previous paper presented some limited experimental results and demonstrated the correspondence between a simple point model and the experimental data. This paper presents the results of experiments for: (1) the initial power fixed at 9 kW with central core temperatures of 300 0 F and 500 0 F, annd (2) the initial central core temperature fixed at 500 0 F with initial powers of 6 and 8 kW

  18. Reactor physics tests of TRIGA Mark-II Reactor in Ljubljana

    International Nuclear Information System (INIS)

    Ravnik, M.; Mele, I.; Trkov, A.; Rant, J.; Glumac, B.; Dimic, V.

    2008-01-01

    TRIGA Mark-II Reactor in Ljubljana was recently reconstructed. The reconstruction consisted mainly of replacing the grid plates, the control rod mechanisms and the control unit. The standard type control rods were replaced by the fuelled follower type, the central grid location (A ring) was adapted for fuel element insertion, the triangular cutouts were introduced in the upper plate design. However, the main novelty in reactor physics and operational features of the reactor was the installation of a pulse rod. Having no previous operational experience in pulsing, a detailed and systematic sequence of tests was defined in order to check the predicted design parameters of the reactor with measurements. The following experiments are treated in this paper: initial criticality, excess reactivity measurements, control rod worth measurement, fuel temperature distribution, fuel temperature reactivity coefficient, pulse parameters measurement (peak power, prompt energy, peak temperature). Flux distributions in steady state and pulse mode were measured as well, however, they are treated only briefly due to the volume of the results. The experiments were performed with completely fresh fuel of 12 w% enriched Standard Stainless Steel type. The core configuration was uniform (one fuel element type, including fuelled followers) and compact (no irradiation channels or gaps), as such being particularly convenient for testing the computer codes for TRIGA reactor calculations. Comparison of analytical predictions, obtained with WIMS, SLXTUS, TRIGAP and PULSTRI codes to measured values showed agreement within the error of the measurement and calculation. The paper has the following contents: 1. Introduction; 2. Steady State Experiments; 2.1. Core loading and critical experiment; 2.2. Flux range determination for tests at zero power; 2.3. Digital reactivity meter checkout; 2.4. Control rod worth measurements; 2.5. Excess reactivity measurement; 2.6. Thermal power calibration; 2

  19. International Reactor Physics Experiment Evaluation (IRPhE) Project

    International Nuclear Information System (INIS)

    2013-01-01

    The International Reactor Physics Experiment Evaluation (IRPhE) Project aims to provide the nuclear community with qualified benchmark data sets by collecting reactor physics experimental data from nuclear facilities, worldwide. More specifically the objectives of the expert group are as follows: - maintaining an inventory of the experiments that have been carried out and documented; - archiving the primary documents and data released in computer-readable form; - promoting the use of the format and methods developed and seek to have them adopted as a standard. For those experiments where interest and priority is expressed by member countries or working parties and executive groups within the NEA provide guidance or co-ordination in: - compiling experiments into a standard international agreed format; - verifying the data, to the extent possible, by reviewing original and subsequently revised documentation, and by consulting with the experimenters or individuals who are familiar with the experimenters or the experimental facility; - analysing and interpreting the experiments with current state-of-the-art methods; - publishing electronically the benchmark evaluations. The expert group will: - identify gaps in data and provide guidance on priorities for future experiments; - involve the young generation (Masters and PhD students and young researchers) to find an effective way of transferring know-how in experimental techniques and analysis methods; - provide a tool for improved exploitation of completed experiments for Generation IV reactors; - coordinate closely its work with other NSC experimental work groups in particular the International Criticality Safety Benchmark Evaluation Project (ICSBEP), the Shielding Integral Benchmark Experiment Data Base (SINBAD) and others, e.g. knowledge preservation in fast reactors of the IAEA, the ANS Joint Benchmark Activities; - keep a close link with the working parties on scientific issues of reactor systems (WPRS), the expert

  20. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Science.gov (United States)

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... perform their duties. (6) Prior to entry into a material access area, packages shall be searched for...

  1. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  2. Tightly coupled simulation of nuclear reactor transients with artificial intelligence

    International Nuclear Information System (INIS)

    Makowitz, H.; Ragheb, M.; Laats, E.T.; Bray, M.A.

    1985-01-01

    The authors' current efforts are directed toward exploring new avenues of research in simulation of nuclear reactor kinetics transients with artificial intelligence (AI). Being examined are advanced graphics systems such as the Nuclear Plant Analyzer designed to run in parallel with the RELAP5 code, faster than real-time best-estimate simulations, the utilization of the multi-CPU super computers, and simulation as knowledge by attempting to develop new assessment methodologies for artificial intelligence systems and their associated interfaces. This new and fertile area of research should be viewed by the educational and university community as an indication of the future possibilities for AI developments in a number of academic and engineering disciplines

  3. Transport-diffusion coupling for Candu reactor core follow-Up

    International Nuclear Information System (INIS)

    Varin, E.; Marleau, G.; Chambon, R.

    2003-01-01

    We couple the finite reactor diffusion code DONJON and the lattice code DRAGON, called for simplicity DD, to perform reactor follow-up calculations using a history-based approach. In order to do this, a new DD module is developed. This module manages the transfer of information between standard DONJON and DRAGON data structures. Moreover, it stores in a history data structure the global and local parameters required for cell calculations as well as the isotopic composition of the various materials present in each cell of the reactor. We then implement in DD a parallel algorithm to perform history-based Candu reactor calculations. Here, we assign to each processor a specific number of fuel channels to be analyzed. The DRAGON cell calculations for each of the fuel bundles associated with the specified channels are performed on the same processor in order to minimize communication time. Only the macroscopic cross section libraries are exchanged between the processor. Since the amount of data exchanged is relatively small, we expect to obtain an ideal speed-up. The coupling is tested for the analysis of a simplified Candu reactor model with 4 x 4 channels each containing 4 bundles. A 100 full-power days core tracking sequence with 16 refueling steps is studied. Results are coherent with those obtained using more approximate approaches. Parallel speed-up is near optimal indicating that the use of this approach for more realistic reactor calculations should be pursued. (authors)

  4. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  5. Chemical and physical analysis of core materials for advanced high temperature reactors with process heat applications

    International Nuclear Information System (INIS)

    Nickel, H.

    1985-08-01

    Various chemical and physical methods for the analysis of structural materials have been developed in the research programmes for advanced high temperature reactors. These methods are discussed using as examples the structural materials of the reactor core - the fuel elements consisting of coated particles in a graphite matrix and the structural graphite. Emphasis is given to the methods of chemical analysis. The composition of fuel kernels is investigated using chemical analysis methods to determine the heavy metals content (uranium, plutonium, thorium and metallic impurity elements) and the amount of non-metallic constituents. The properties of the pyrocarbon and silicon carbide coatings of fuel elements are investigated using specially developed physiochemical methods. Regarding the irradiation behaviour of coated particles and fuel elements, methods have been developed for examining specimens in hot cells following exposures under reactor operating conditions, to supplement the measurements of in-reactor performance. For the structural graphite, the determination of impurities is important because certain impurities may cause pitting corrosion during irradiation. The localized analysis of very low impurity concentrations is carried out using spectrochemical d.c. arc excitation, local laser and inductively coupled plasma methods. (orig.)

  6. HTGR reactor physics, thermal-hydraulics and depletion uncertainty analysis: a proposed IAEA coordinated research project

    International Nuclear Information System (INIS)

    Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin

    2011-01-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)

  7. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Blaise, P. [CEA, DEN, DER, SPEX Experimental Programs Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physics calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)

  8. Research on reactor physics using the Very High Temperature Reactor Critical Assembly (VHTRC)

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1988-01-01

    The High Temperature Engineering Test Reactor (HTTR), of which the research and development are advanced by Japan Atomic Energy Research Institute, is planned to apply for the permission of installation in fiscal year 1988, and to start the construction in the latter half of fisical year 1989. As the duty of reactor physics research, the accuracy of the nuclear data is to be confirmed, the validity of the nuclear design techniques is to be inspected, and the nuclear safety of the HTTR core design is to be verified. Therefore, by using the VHTRC, the experimental data of the reactor physics quantities are acquired, such as critical mass, the reactivity worth of simulated control rods and burnable poison rods, the temperature factor of reactivity, power distribution and so on, and the experiment and analysis are advanced. The cores built up in the VHTRC so far were three kinds having different lattice forms and degrees of uranium enrichment. The calculated critical mass was smaller by 1-5 % than the measured values. As to the power distribution and the reactivity worth of burnable poison rods, the prospect of satisfying the required accuracy for the design of the HTTR core was obtained. The experiment using a new core having axially different enrichment degree is planned. (K.I.)

  9. Development of a new physics data library for the SRS reactors

    International Nuclear Information System (INIS)

    Niemer, K.A.

    1993-01-01

    The Savannah River Site (SRS) reactors have historically operated at power levels of -2500 MW; thus, previous reactor physics data libraries were created based on that constant power. However, as a result of recent lower power operation, the existing physics data libraries are no longer adequate. Therefore, a new power-dependent physics library was needed to model the reactor at different power levels. The design and development of a new power-dependent physics data library is discussed in this paper

  10. Enhancement of safety analysis reliability for a CANDU-6 reactor using RELAP-CANDU/SCAN coupled code system

    International Nuclear Information System (INIS)

    Kim, Man Woong; Choi, Yong Seog; Sin, Chul; Kim, Hyun Koon; Kim, Hho Jung; Hwang, Su Hyun; Hong, In Seob; Kim, Chang Hyo

    2005-01-01

    In LOCA analysis of the CANDU reactor, the system thermal-hydraulic code, RELAP-CANDU, alone cannot predict the transient behavior accurately. Therefore, the best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. To perform on-line calculation of safety analysis for CANDU reactor, a coupled thermal hydraulics-neutronics code system was developed in such a way that the best-estimate thermal-hydraulic system code for CANDU reactor, RELAP-CANDU, is coupled with the full three-dimensional reactor core kinetic code

  11. Coupled thermohydraulic-neutronic instabilities in boiling water nuclear reactors: a review of the state of the art

    International Nuclear Information System (INIS)

    March-Leuba, J.; Rey, J.M.

    1992-01-01

    This paper provides a review of the current state of the art on the topic of coupled neutronic-thermohydraulic instabilities in boiling water nuclear reactors (BWRs). The topic of BWR instabilities is of great current relevance since it affects the operation of a large number of commercial nuclear reactors. The recent trends towards introduction of high efficiency fuels that permit reactor operation at higher power densities with increased void reactivity feedback and decreased response times, has resulted in a decrease of the stability margin in the low-flow, high-power region of the operating map. This trend has resulted in a number of 'unexpected' instability events. For instance, United States plants have experienced two instability events recently, one of them resulted in an automatic reactor scram; in Spain, two BWR plants have experienced unstable limit cycle oscillations that required operator action to suppress. Similar events have been experienced in other European countries. In recent years, BWR instabilities has been one of the more exciting topics of work in the area of transient thermohydraulics. As a result, significant advances in understanding the physics behind these events have occurred, and a 'new and improved' state of the art has emerged recently. (authors). 6 figs., 57 refs., 1 appendix

  12. Using Vega Linux Cluster at Reactor Physics Dept

    International Nuclear Information System (INIS)

    Zefran, B.; Jeraj, R.; Skvarc, J.; Glumac, B.

    1999-01-01

    Experience using a Linux-based cluster for the reactor physics calculations are presented in this paper. Special attention is paid to the MCNP code in this environment and to practical guidelines how to prepare and use the paralel version of the code. Our results of a time comparison study are presented for two sets of inputs. The results are promising and speedup factor achieved on the Linux cluster agrees with previous tests on other parallel systems. We also tested tools for parallelization of other programs used at our Dept..(author)

  13. Basic experiments of reactor physics using the critical assembly TCA

    International Nuclear Information System (INIS)

    Obara, Toru; Igashira, Masayuki; Sekimoto, Hiroshi; Nakajima, Ken; Suzaki, Takenori.

    1994-02-01

    This report is based on lectures given to graduate students of Tokyo Institute of Technology. It covers educational experiments conducted with the Tank-Type Critical Assembly (TCA) at Japan Atomic Energy Research Institute in July, 1993. During this period, the following basic experiments on reactor physics were performed: (1) Critical approach experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, (5) Measurement of safety sheet worth by the rod drop method. The principle of experiments, experimental procedure, and analysis of results are described in this report. (author)

  14. Proceedings of the 10. Meeting on Reactor Physics and Thermal Hydraulics

    International Nuclear Information System (INIS)

    Santos Bastos, W. dos

    1995-01-01

    These proceedings presents all the Meeting papers emphasizing specific aspects on reactor physics method, criticality, fuel management, nuclear data, safety analysis, simulation and shielding, neutronics, thermal hydraulics, reactor operation and computational methods

  15. Coupled high fidelity thermal hydraulics and neutronics for reactor safety simulations

    International Nuclear Information System (INIS)

    Vincent A. Mousseau; Hongbin Zhang; Haihua Zhao

    2008-01-01

    This work is a continuation of previous work on the importance of accuracy in the simulation of nuclear reactor safety transients. This work is qualitative in nature and future work will be more quantitative. The focus of this work will be on a simplified single phase nuclear reactor primary. The transient of interest investigates the importance of accuracy related to passive (inherent) safety systems. The transient run here will be an Unprotected Loss of Flow (ULOF) transient. Here the coolant pump is turned off and the un-SCRAM-ed reactor transitions from forced to free convection (Natural circulation). Results will be presented that show the difference that the first order in time truncation physics makes on the transient. The purpose of this document is to illuminate a possible problem in traditional reactor simulation approaches. Detailed studies need to be done on each simulation code for each transient analyzed to determine if the first order truncation physics plays an important role

  16. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  17. Proceedings of the 1992 topical meeting on advances in reactor physics

    International Nuclear Information System (INIS)

    1992-01-01

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements ampersand Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  18. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klain, Kimberly L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set of multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the

  19. Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor

    International Nuclear Information System (INIS)

    Vakili, R.; Pourazadi, E.; Setoodeh, P.; Eslamloueyan, R.; Rahimpour, M.R.

    2011-01-01

    Compared to some of the alternative fuel candidates such as methane, methanol and Fischer-Tropsch fuels, dimethyl ether (DME) seems to be a superior candidate for high-quality diesel fuel in near future. The direct synthesis of DME from syngas would be more economical and beneficial in comparison with the indirect process via methanol synthesis. Multifunctional auto-thermal reactors are novel concepts in process intensification. A promising field of applications for these concepts could be the coupling of endothermic and exothermic reactions in heat exchanger reactors. Consequently, in this study, a double integrated reactor for DME synthesis (by direct synthesis from syngas) and hydrogen production (by the cyclohexane dehydrogenation) is modelled based on the heat exchanger reactors concept and a steady-state heterogeneous one-dimensional mathematical model is developed. The corresponding results are compared with the available data for a pipe-shell fixed bed reactor for direct DME synthesis which is operating at the same feed conditions. In this novel configuration, DME production increases about 600 Ton/year. Also, the effects of some operational parameters such as feed flow rates and the inlet temperatures of exothermic and endothermic sections on reactor behaviour are investigated. The performance of the reactor needs to be proven experimentally and tested over a range of parameters under practical operating conditions.

  20. Progress report on reactor physics research program, January 1963 - February 1964

    International Nuclear Information System (INIS)

    1964-02-01

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics

  1. Progress report on reactor physics research program, January 1963 - February 1964

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-02-15

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics.

  2. Proceedings of the nineteenth symposium of atomic energy research on WWER reactor physics and reactor safety

    International Nuclear Information System (INIS)

    Vidovszky, I.

    2009-10-01

    The present volume contains 55 papers, presented on the nineteenth symposium of atomic energy research, held in Varna, Bulgaria, 21-25 September 2009. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  3. Multi-physics design and analyses of long life reactors for lunar outposts

    Science.gov (United States)

    Schriener, Timothy M.

    event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete

  4. International Thermonuclear Experimental Reactor: Physics issues, capabilities and physics program plans

    International Nuclear Information System (INIS)

    Wesley, J.C.

    1997-01-01

    Present status and understanding of the principal plasma-performance determining physics issues that affect the physics design and operational capabilities of the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2 (International Atomic Energy Agency, Vienna, 1994)] are presented. Emphasis is placed on the five major physics-basis issues emdash energy confinement, beta limit, density limit, impurity dilution and radiation loss, and the feasibility of obtaining partial-detached divertor operation emdash that directly affect projections of ITER fusion power and burn duration performance. A summary of these projections is presented and the effect of uncertainties in the physics-basis issues is examined. ITER capabilities for experimental flexibility and plasma-performance optimization are also described, and how these capabilities may enter into the ITER physics program plan is discussed. copyright 1997 American Institute of Physics

  5. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  6. Seawater desalination plant using nuclear heating reactor coupled with MED process

    International Nuclear Information System (INIS)

    Wu Shaorong; Dong Duo; Zhang Dafang; Wang Xiuzhen

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. this seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. the intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10-200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m 3 /d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented

  7. Methods for reactor physics calculations for control rods in fast reactors

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Rowlands, J.L.

    1988-12-01

    The IAEA Specialists' Meeting on ''Methods for Reactor Physics Calculations for Control Rods in Fast Reactors'' was held in Winfrith, United Kingdom, on 6-8 December, 1988. The meeting was attended by 23 participants from nine countries. The purpose of the meeting was to review the current calculational methods and their accuracy as assessed by theoretical studies and comparisons with measurements, and then to identify the requirements for improved methods or additional studies and comparisons. The control rod properties or effects to be considered were their reactivity worths, their effect on the power distribution through the core, and the reaction rates and energy deposition both within and adjacent to the rods. The meeting was divided into five sessions, in the first of which each national delegation presented a brief overview of their programme of work on calculational methods for fast reactor control rods. In the next three sessions a total of seventeen papers were presented describing calculational methods and assessments of their accuracy. The final session was a discussion to draw conclusions regarding the current status of methods and the further developments and validation work required. A separate abstract was prepared for each of the 23 papers presented at the meeting. Refs, figs and tabs

  8. Optimisation of the coupling of nuclear reactors and desalination systems in Morocco

    International Nuclear Information System (INIS)

    Tabet, M.; Htet, A.; Alami, A.M.

    2006-01-01

    This study has been undertaken in the framework of IAEA CRP on 'Optimisation of the Coupling of Nuclear Reactors and Desalination Systems in Morocco'. Two sites have been selected to host nuclear desalination plants, and different combinations with nuclear reactors have been investigated. Other combinations with fossil fuel plants have been examined for comparison. The results obtained showed the competitiveness of nuclear energy, which could be a solution to supply the region that will suffer from water shortage. On the other hand, this study could help the decision makers in the management and planning of water, energy resources and supply. (author)

  9. Light-water-reactor coupled neutronic and thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1982-01-01

    An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented

  10. Reactor Network Synthesis Using Coupled Genetic Algorithm with the Quasi-linear Programming Method

    OpenAIRE

    Soltani, H.; Shafiei, S.; Edraki, J.

    2016-01-01

    This research is an attempt to develop a new procedure for the synthesis of reactor networks (RNs) using a genetic algorithm (GA) coupled with the quasi-linear programming (LP) method. The GA is used to produce structural configuration, whereas continuous variables are handled using a quasi-LP formulation for finding the best objective function. Quasi-LP consists of LP together with a search loop to find the best reactor conversions (xi), as well as split and recycle ratios (yi). Quasi-LP rep...

  11. Nuclear-Mechanical Coupling: Small Amplitude Mechanical Vibrations and High Amplitude Power Oscillations in Nuclear Reactors

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2008-11-01

    The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may produce changes in density. Changes in density modify the reactivity. Changes in reactivity modify thermal power. Modifications in thermal power produce variations in temperature fields. Variations in temperature produce variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small amplitude. A recently constructed, simple mathematical model of nuclear reactor kinetics, that improves the one due to A.S. Thompson, is reviewed. It was constructed in order to study, in a first approximation, the stability of the reactor: a nonlinear nuclear-thermal oscillator (that corresponds to reactor point kinetics with thermal-elastic feedback and with frozen delayed neutron effects) is coupled nonlinearly with a linear mechanical-thermal oscillator (that corresponds to the first normal mode of mechanical vibrations excited by thermo-elastic effects). This mathematical model is studied here from the standpoint of mechanical vibrations. It is shown how, under certain conditions, a suitable mechanical perturbation could elicit fast and growing oscillatory instabilities in the reactor power. Applying the asymptotic method due to Krylov, Bogoliubov and Mitropolsky, analytical formulae that may be used in the calculation of the time varying amplitude and phase of the mechanical oscillations are given, as functions of the mechanical, thermal and nuclear parameters of the reactor. The consequences for the mechanical integrity of the reactor are assessed. Some conditions, mainly, but not exclusively

  12. A study on criticality of coupled fast-thermal core HERBE at RB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Zavaljevski, M; Milosevic, M; Stefanovic, D; Nikolic, D; Avdic, S [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia); Popovic, D; Marinkovic, P [Faculty of Electrical Engineering, Beograd (Yugoslavia)

    1991-07-01

    The coupled fast-thermal core HERBE at the RB zero power heavy water reactor in Vinca was designed with the aim of improving the experimental possibilities in fast neutron fields. The requirements for minimum modifications in the RB construction and the use available fuel, restricted design flexibility of the coupled system. The following core is considered optimal in the light of the foregoing constraints: the central fast core of natural uranium is surrounded by a neutron filter zone (cadmium and natural uranium) and a converter zone (enriched uranium fuel, without moderator). The coupling region is heavy water. The thermal core in the form of the RB heavy water 80% enriched uranium lattice with 12 cm pitch. The criticality of the system is obtained by adjusting the moderator level. The critical heavy water levels were measured for normal reactor operation and some simulated accidental conditions. These data were analyzed by a computer code for the design of thermal and coupled fast-thermal reactor recently developed in IBK Nuclear Engineering Laboratory. Good agreement between the computations and experimental data was achieved. (author)

  13. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    Science.gov (United States)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  14. A study on criticality of coupled fast-thermal core HERBE at RB reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Zavaljevski, M.; Milosevic, M.; Stefanovic, D.; Nikolic, D.; Avdic, S.; Popovic, D.; Marinkovic, P.

    1991-01-01

    The coupled fast-thermal core HERBE at the RB zero power heavy water reactor in Vinca was designed with the aim of improving the experimental possibilities in fast neutron fields. The requirements for minimum modifications in the RB construction and the use available fuel, restricted design flexibility of the coupled system. The following core is considered optimal in the light of the foregoing constraints: the central fast core of natural uranium is surrounded by a neutron filter zone (cadmium and natural uranium) and a converter zone (enriched uranium fuel, without moderator). The coupling region is heavy water. The thermal core in the form of the RB heavy water 80% enriched uranium lattice with 12 cm pitch. The criticality of the system is obtained by adjusting the moderator level. The critical heavy water levels were measured for normal reactor operation and some simulated accidental conditions. These data were analyzed by a computer code for the design of thermal and coupled fast-thermal reactor recently developed in IBK Nuclear Engineering Laboratory. Good agreement between the computations and experimental data was achieved. (author)

  15. Methodology and results of investigations of physical parameters of high-temperature reactors

    International Nuclear Information System (INIS)

    Cherepnin, Yu.S.; Chertkov, Yu.B.

    1995-01-01

    A physical investigations of reactors of stand complexes Baikal-1 and IGR have been carrying out more 30 years. Measuring methods of the physical investigations were divided into 2 groups: 1) methods for measuring of reactivity effects; 2) methods for measuring relative and absolute values of neutron flux and power release. The physical investigations on the reactors IVG-1 and IGR were carryied out under following conditions: during physical starts-up of regular variants of reactor cores; during energy starts-up of the reactors; before beginning of new loop chanel tests of the reactors; during research hot starts-up of the reactors the physical parameters were controled. The most full and authentic information about studied reactor have been providing by physical investigations. In 1984 physical investigations were carryied out on the IGR reactor and then the hot start-up of the mostest power and mostest large on fuel loading loop chanel was carryied out. This chanel contained 6 fuel assemblies with the summary fuel loading 3,06 kilogrammes of uranium and it was calculated for power equal to 20 MW. In 1988 the physical investigations for selection of project process chanels destined for new water cooled reactor core were carryied out. In 1993 the neutron-physical calculation on possibility of tests for the rector Nerva fuel element was carryied out. 9 refs., 4 figs

  16. International Reactor Physics Experiment Evaluation (IRPhE) Project. IRPhE Handbook - 2015 edition

    International Nuclear Information System (INIS)

    Bess, John D.; Gullifor, Jim

    2015-03-01

    The purpose of the International Reactor Physics Experiment Evaluation (IRPhE) Project is to provide an extensively peer-reviewed set of reactor physics-related integral data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next-generation reactors and establish the safety basis for operation of these reactors. This work of the IRPhE Project is formally documented in the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments', a single source of verified and extensively peer-reviewed reactor physics benchmark measurements data. The evaluation process entails the following steps: Identify a comprehensive set of reactor physics experimental measurements data, Evaluate the data and quantify overall uncertainties through various types of sensitivity analysis to the extent possible, verify the data by reviewing original and subsequently revised documentation, and by talking with the experimenters or individuals who are familiar with the experimental facility, Compile the data into a standardized format, Perform calculations of each experiment with standard reactor physics codes where it would add information, Formally document the work into a single source of verified and peer reviewed reactor physics benchmark measurements data. The International Handbook of Evaluated Reactor Physics Benchmark Experiments contains reactor physics benchmark specifications that have been derived from experiments that were performed at nuclear facilities around the world. The benchmark specifications are intended for use by reactor designers, safety analysts and nuclear data evaluators to validate calculation techniques and data. Example calculations are presented; these do not constitute a validation or endorsement of the codes or cross-section data. The 2015 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments contains data from 143 experimental series that were

  17. Coupled neutronics/thermal-hydraulics for analysis of molten salt reactor

    International Nuclear Information System (INIS)

    Guo, Zhangpeng; Zhou, Jianjun; Zhang, Dalin; Chaudri, Khurrum Saleem; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2013-01-01

    Highlights: ► A multiple-channel analysis code (MAC) is developed to be coupled with MCNP. ► 1/8 of core is simulated in MCNP and thermal-hydraulic code. ► The coupling calculation can achieve stable state after a few iterations. ► The coupling calculation results are in reasonable agreement with the analytic solutions of the ORNL. ► Parametric studies of MSR are performed to provide valuable information for future design MSR. -- Abstract: The Generation IV International Forum (GIF) selected molten salt reactor (MSR) among six advanced reactor types. It is characterized by a liquid circulating fuel that also serves as coolant. In this study, a multiple-channel analysis code (MAC) is developed and it is coupled with MCNP4c to analyze the neutronics/thermal-hydraulics behavior of molten salt reactor experiment (MSRE). The MAC calculates thermal-hydraulic parameters, such as temperature distribution, flow distribution and pressure drop. MCNP4c performs the analysis of effective multiplication factor, neutron flux and power distribution. A linkage code is developed to exchange data between MAC and MCNP to implement coupling iteration process until the power convergence is achieved. The coupling calculation can achieve converged solution after a few iterations. The results are in reasonable agreement with the analytic solutions from the ORNL. For further design analysis, parametric studies are performed to provide valuable information for new design of MSR. The effect of inlet temperature, graphite to molten salt volume ratio (G/Ms) from varying channel diameter and different power levels on the effective multiplication factor, neutron flux, graphite lifetime and temperature distribution are discussed in detail

  18. Physically - engineering problems of the Salaspils Nuclear reactor: Solutions and their topicality

    International Nuclear Information System (INIS)

    Mozgirs, Z.V.

    2005-01-01

    The paper generalizes technical solutions of physically-engineering problems of the Salaspils nuclear research reactor, experience of its modernization and exploitation. New equipment and the related technical solutions have been tested at the Salaspils reactor during its operation time and are now recommended for further use at nuclear reactors. (author)

  19. Global physical and numerical stability of a nuclear reactor core

    International Nuclear Information System (INIS)

    Morales-Sandoval, Jaime; Hernandez-Solis, Augusto

    2005-01-01

    Low order models are used to investigate the influence of integration methods on observed power oscillations of some nuclear reactor simulators. The zero-power point reactor kinetics with six-delayed neutron precursor groups are time discretized using explicit, implicit and Crank-Nicholson methods, and the stability limit of the time mesh spacing is exactly obtained by locating their characteristic poles in the z-transform plane. These poles are the s to z mappings of the inhour equation roots and, except for one of them, they show little or no dependence on the integration method. Conditions for stable power oscillations can be also obtained by tracking when steady state output signals resulting from reactivity oscillations in the s-Laplace plane cross the imaginary axis. The dynamics of a BWR core operating at power conditions is represented by a reduced order model obtained by adding three ordinary differential equations, which can model void and Doppler reactivity feedback effects on power, and collapsing all delayed neutron precursors in one group. Void dynamics are modeled as a second order system and fuel heat transfer as a first order system. This model shows rich characteristics in terms of indicating the relative importance of different core parameters and conditions on both numerical and physical oscillations observed by large computer code simulations. A brief discussion of the influence of actual core and coolant conditions on the reduced order model is presented

  20. Coupling of impedance functions to nuclear reactor building for soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Danisch, R.; Delinic, K.; Trbojevic, V.M.

    1991-01-01

    Finite element model of a nuclear reactor building is coupled to complex soil impedance functions and soil-structure-interaction analysis is carried out in frequency domain. In the second type of analysis applied in this paper, soil impedance functions are used to evaluate equivalent soil springs and dashpots of soil. These are coupled to the structure model in order to carry out the time marching analysis. Three types of soil profiles are considered: hard, medium and soft. Results of two analyzes are compared on the same structural model. Equivalent soil springs and dashpots are determined using new method based on the least square approximation. (author)

  1. Further developments of multiphysics and multiscale methodologies for coupled nuclear reactor simulations

    International Nuclear Information System (INIS)

    Gomez Torres, Armando Miguel

    2011-01-01

    This doctoral thesis describes the methodological development of coupled neutron-kinetics/thermal-hydraulics codes for the design and safety analysis of reactor systems taking into account the feedback mechanisms on the fuel rod level, according to different approaches. A central part of this thesis is the development and validation of a high fidelity simulation tool, DYNSUB, which results from the ''two-way-coupling'' of DYN3D-SP3 and SUBCHANFLOW. It allows the determination of local safety parameters through a detailed description of the core behavior under stationary and transient conditions at fuel rod level.

  2. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  3. Educational reactor-physics experiments with the critical assembly TCA

    International Nuclear Information System (INIS)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki; Horiki, Oichiro; Suzaki, Takenori.

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for 1) Critical approach and Exponential experiment, 2) Measurement of neutron flux distribution, 3) Measurement of power distribution, 4) Measurement of fuel rod worth distribution, and 5) Measurement of safety plate worth by the rod drop method. (author)

  4. SILOETTE, a training centre for reactor physics at the Nuclear Research Centre of Grenoble

    International Nuclear Information System (INIS)

    Destot, M.

    1983-10-01

    The Reactor Department of Grenoble has created, based on Siloette, an activity of training in reactor physics, wich is running since 1975 to meet the important needs generated by the development of electronuclear power stations. Its essential goal is to provide an initiation to the basic physical phenomena which determine the operation of the reactors. For that purpose, a rather comprehensive program of practical works on reactor (SILOETTE) and on nuclear power station simulators (PWR, UNGG) is proposed besides lectures and conferences, general and specialized teaching on the reactor operation principle, kinetics, dynamics and thermics

  5. Optimization by simulation of the coupling between a sub-critical reactor and its spallation source. Towards a pilot reactor

    International Nuclear Information System (INIS)

    Kerdraon, D.

    2001-10-01

    Accelerator Driven Systems (ADS), based on a proton accelerator and a sub-critical core coupled with a spallation target, offer advantages in order to reduce the nuclear waste radiotoxicity before repository closure. Many studies carried out on the ADS should lead to the definition of an experimental plan which would federate the different works in progress. This thesis deals with the neutronic Monte Carlo simulations with the MCNPX code to optimize such a system in view of a pilot reactor building. First, we have recalled the main neutronic properties of an hybrid reactor. The concept of gas-cooled eXperimental Accelerator Driven System (XADS) chosen for our investigations comes from the preliminary studies done by the Framatome company. In order to transmute minor actinides, we have considered the time evolution of the main fuels which could be reasonably used for the demonstration phases. The neutronic parameters of the reactor, concerning minor actinide transmutation, are reported. Also, we have calculated the characteristic times and the transmutation rates in the case of 99 Tc and 129 I isotopes. We have identified some neutronic differences between an experimental and a power ADS according to the infinite multiplication coefficient, the shape factor and the level of flux to extend the demonstrator concept. We have proposed geometric solutions to keep the radial shape factor of a power ADS acceptable. In the last part, beyond the experimental XADS scope, we have examined the possible transition towards an uranium/thorium cycle based on Molten Salt Reactors using a power ADS in order to generate the required 233 U proportion. (author)

  6. Integrated CFD Model for Nanoparticle Production in Inductively Coupled Plasma Reactor: Implementation and Application

    OpenAIRE

    Benros Santos Lopes, Silvania

    2016-01-01

    Nanoparticles represent a very exciting new area of research. Their small size, ranging from several nanometers to tens of nanometers, is responsible for many changes in the structural, thermal, electromagnetic, optical and mechanical properties in comparison with the bulk solid of the same materials. However, promoting the use of such material requires well-controlled synthesis techniques to be developed. Inductively coupled thermal plasma (ICTP) reactors have been shown to offer unique adva...

  7. Development of a coupled containment-reactor coolant system methodology for the analysis of IRIS small break LOCA

    International Nuclear Information System (INIS)

    Manfredini, Antonio; Oriolo, Francesco; Paci, Sandro; Oriani, Luca

    2003-01-01

    The main purpose of the present work is to identify the most relevant physical phenomena for the IRIS (International Reactor Innovative and Secure) containment system and the development of an integrated methodology for the simultaneous safety analysis of both the reactor and containment with available computer codes. Specific objectives are: (a) to assess the limitations of the lumped parameter codes on predictions of complex situations; (b) to identify alternatives to classical containment analysis techniques. The characteristic features of an integral reactor like IRIS present a much greater challenge to code developers than conventional, loop type PWRs. In particular, the integral primary system and the containment are strongly coupled during postulated accident conditions and thus an integrated simulation of both systems is required to obtain a reliable phenomenological representation. The comparison of the results obtained in the application of two containment codes (GOTHIC and integrated FUMO) on 'ad hoc' IRIS related benchmarks will also be described. These preliminary calculations were used to test the IRIS containment concept and cooling strategies, at the same time highlighting the most relevant issues that require a more refined investigation. Finally, this activity allowed to perform more refined calculations, in progress at the moment, aimed at showing that the IRIS safety systems and containment design solutions perform their intended functions. (author)

  8. Opportunities for physics research at Australia's replacement research reactor

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2003-01-01

    Full text: The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has 'space' for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in January 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 6 out of 8 instruments have been specified and costed. At present the instrumentation project carries ∼15% contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments. In December 2002, ANSTO formed the Bragg Institute, with the intent of nurturing strong external partnerships, and covering all aspects of neutron and X-ray scattering, including research using synchrotron radiation. I will discuss the present status and predicted performance of the neutron-beam facilities at the Replacement Reactor, synergies with the synchrotron in Victoria, in-house x-ray facilities that we intend to install in the Bragg

  9. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    Tanskanen, A.

    1998-01-01

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  10. A small floating seawater desalination plant using a nuclear heating reactor coupled with the MED process

    International Nuclear Information System (INIS)

    Dong Duo; Wu Shaorong; Zhang Dafang; Wu Zongxin

    1997-01-01

    A small floating seawater desalination plant using a nuclear heating reactor coupled with a multi-effect distillation (MED) process was designed by the Institute of Nuclear Energy Technology, Tsinghua University of China. It was intended to supply potable water to remove coastal areas or islands where both fresh water and energy are severely lacking, and also to serve as a demonstration and training facility. The design of a small floating plant coupled two proven technologies in the cogeneration mode: a nuclear heating reactor (NHR-10), with inherent, passive safety features based on NHR-5 experience, and a low temperature MED process. The secondary loop was designed as a safety barrier between the primary loop and the steam loop. With a 10 MW(th) heating reactor, the floating plant could provide 4,000 m 3 /d of potable water and 750 kW of electricity. The design concept and parameters, safety features, coupling scheme and floating plant layout are presented in the paper. (author). 3 refs, 4 figs, 3 tabs

  11. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  12. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR

    International Nuclear Information System (INIS)

    CHENG, L.; HANSON, A.; DIAMOND, D.; XU, J.; CAREW, J.; RORER, D.

    2004-01-01

    Detailed reactor physics and safety analyses have been performed for the 20 MW D 2 O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core

  13. Review of PSI studies on reactor physics and thermal fluid dynamics of pebble bed reactors

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael

    2014-01-01

    density ratios are expected in air ingress scenarios at an HTR. As a spin-off from aerosol studies for severe accidents, theoretical studies were started on graphite dust in pebble bed reactors. Wear and tear of the fuel spheres can produce significant quantities of graphite dust. Simulations of the pebble flow in a random package have been carried out in a generic full-size reactor geometry (440’000 pebbles) using the discrete-element method (DEM). The simulations provide the residence time distribution of the pebbles and the spatial distribution of wear. The model is ready for an implementation of a dust production term. In parallel, preliminary results on dust deposition were obtained for a particle laden flow around a single sphere and a linear arrangement of spheres. For this purpose a RANS turbulence model was coupled with a continuous random walk model for the integration of the particle trajectories in Lagrangian coordinates. Based on the outlined expertise, PSI plans to intensify the work on HTR in the future. (author)

  14. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  15. Development and verification of a three-dimensional core model for WWR type reactors and its coupling with the accident code ATHLET. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Lucas, D.; Mittag, S.; Rohde, U.

    1995-04-01

    The main goal of the project was the coupling of the 3D core model DYN3D for Russian VVER-type reactors, which has been developed in the RCR, with the thermohydraulic code ATHLET. The coupling has been realized on two basically different ways: - The implementation of only the neutron kinetics model of DYN3D into ATHLET (internal coupling), - the connection of the complete DYN3D core model including neutron kinetics, thermohydraulics and fuel rod model via data interfaces at the core top and bottom (external coupling). For the test of the coupling, comparative calculations between internal and external coupling versions have been carried out for a LOCA and a reactivity transient. Complementary goals of the project were: - The development of a DYN3D version for burn-up calculations, - the verification of DYN3D on benchmark tasks and experimental data on fuel rod behaviour, - a study on the extension of the neutron-physical data base. The project contributed to the development of advanced tools for the safety analysis of VVER-type reactors. Future work is aimed to the verification of the coupled code complex DYN3D-ATHLET. (orig.) [de

  16. Preliminary Coupling of MATRA Code for Multi-physics Analysis

    International Nuclear Information System (INIS)

    Kim, Seongjin; Choi, Jinyoung; Yang, Yongsik; Kwon, Hyouk; Hwang, Daehyun

    2014-01-01

    The boundary conditions such as the inlet temperature, mass flux, averaged heat flux, power distributions of the rods, and core geometry is given by constant values or functions of time. These conditions are separately calculated and provided by other codes, such as a neutronics or a system codes, into the MATRA code. In addition, the coupling of several codes in the different physics field is focused and embodied. In this study, multiphysics coupling methods were developed for a subchannel code (MATRA) with neutronics codes (MASTER, DeCART) and a fuel performance code (FRAPCON-3). Preliminary evaluation results for representative sample cases are presented. The MASTER and DeCART codes provide the power distribution of the rods in the core to the MATRA code. In case of the FRAPCON-3 code, the variation of the rod diameter induced by the thermal expansion is yielded and provided. The MATRA code transfers the thermal-hydraulic conditions that each code needs. Moreover, the coupling method with each code is described

  17. Study on development of virtual reactor core laboratory (1). Development of prototype coupled neutronic, thermal-hydraulic and structural analysis system

    International Nuclear Information System (INIS)

    Uto, Nariaki; Sugaya, Toshio; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sakai, Takaaki

    1999-09-01

    A study on development of virtual reactor core laboratory, which is to conduct numerical experiments representative of complicated physical phenomena in practical reactor core systems on a computational environment, has progressed at Japan Nuclear Cycle Development Institute (JNC). The study aims at systematic evaluation of these phenomena into which nuclear reactions, thermal-hydraulic characteristics, structural responses and fuel behaviors combine, and effective utilization of the obtained comprehension for core design. This report presents a production of a prototype computational system which is required to construct the virtual reactor core laboratory. This system is to evaluate reactor core performance under the coupled neutronic, thermal-hydraulic and structural phenomena, and is composed of two analysis tools connected by a newly developed interface program; 1) an existing space-dependent coupled neutronic and thermal-hydraulic analysis system arranged at JNC and 2) a core deformation analysis code. It acts on a cluster of several DEC/Alpha workstations. A specific library called MPI1 (Message Passing Interface 1) is incorporated as a tool for communicating among the analysis modules consisting of the system. A series of calculations for simulating a sequence of Unprotected Loss Of Heat Sink (ULOHS) coupled with rapid drop of some neutron absorber devices in a prototype fast reactor is tried to investigate how the system works. The obtained results show the core deformation behavior followed by the reactivity change that can be properly evaluated. The results of this report show that the system is expected to be useful for analyzing sensitivity of reactor core performance with respect to uncertainties of various design parameters and establishing a concept of passive safety reactor system, taking into account space distortion of neutron flux distribution during abnormal events as well as reactivity feedback from core deformation. (author)

  18. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors

    International Nuclear Information System (INIS)

    Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W.

    2016-01-01

    This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.

  19. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2016-05-15

    This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.

  20. A theory manual for multi-physics code coupling in LIME.

    Energy Technology Data Exchange (ETDEWEB)

    Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-03-01

    The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.

  1. Job analysis of nuclear power reactor health physics technicians

    International Nuclear Information System (INIS)

    Davis, L.T.; Mazour, T.J.; Clark, P.V.; Todd, R.C.; Marotta, F.J.

    1984-06-01

    This report describes a project, an industry-wide Job Analysis of Nuclear Power Reactor Health Physics Technicians (HPTs), conducted by Brookhaven National Laboratory and Analysis and Technology, Inc. to provide the industry with job-performance data that can be used in systematically defining training programs in terms of required job functions responsibilities, and performance standards. The job-analysis methodology is consistent with that used by the Institute of Nuclear Power Operations (INPO) in similar industry-wide projects and includes administration of over 850 job task questionnaires to utility and contractor Health Physics Technicians throughout the country. Data collected includes task performance (difficulty, importance, and frequency) and industry-wide demographics (job levels, experience, education, and training). The results of this project discussed herein include model job descriptions for HPT positions, summaries of HPT experience, education, and training, industry-wide task listings with task-performance characteristics, and recommendations of selected tasks as a basis for HPT training development. Finally, potential future applications of the data base by utility and contractor organizations in training program development and evaluation and personnel qualifications are discussed

  2. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    International Nuclear Information System (INIS)

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.

    2012-01-01

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  3. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui; Alotaibi, Hamad S.; Sun, Haiding; Lin, Ronghui; Guo, Wenzhe; Torres-Castanedo, Carlos G.; Liu, Kaikai; Galan, Sergio V.; Li, Xiaohang

    2018-01-01

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  4. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    KAUST Repository

    Li, Kuang-Hui

    2018-02-23

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  5. Research on the reactor physics using the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    1986-10-01

    The Kyoto University Critical Assembly [KUCA] is a multi-core type critical assembly established in 1974, as a facility for the joint use study by researchers of all universities in Japan. Thereafter, many reactor physics experiments have been carried out using three cores (A-, B-, and C-cores) in the KUCA. In the A- and B-cores, solid moderator such as polyethylene or graphite is used, whereas light-water is utilized as moderator in the C-core. The A-core has been employed mainly in connection with the Cockcroft-Walton type accelerator installed in the KUCA, to measure (1) the subcriticality by the pulsed neutron technique for the critical safety research and (2) the neutron spectrum by the time-of-flight technique. Recently, a basic study on the tight lattice core has also launched using the A-core. The B-core has been employed for the research on the thorium fuel cycle ever since. The C-core has been employed (1) for the basic studies on the nuclear characteristics of light-water moderated high-flux research reactors, including coupled-cores, and (2) for a research related to reducing enrichment of uranium fuel used in research reactors. The C-core is being utilized in the reactor laboratory course experiment for students of ten universities in Japan. The data base of the KUCA critical experiments is generated so far on the basis of approximately 350 experimental reports accumulated in the KUCA. Besides, the assessed KUCA code system has been established through analyses on the various KUCA experiments. In addition to the KUCA itself, both of them are provided for the joint use study by researchers of all universities in Japan. (author)

  6. Physical aspects of liquid-impelled loop reactors

    NARCIS (Netherlands)

    Sonsbeek, van H.

    1992-01-01

    The liquid-impelled loop reactor (LLR) is a reactor that consists of two parts : the main tube and the circulation tube. Both parts are in open connection at the bottom and at the top. The reactor is filled with a liquid phase: the continuous phase. Another liquid phase is injected in the

  7. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  8. Coupled 3D neutron kinetics and thermalhydraulic characteristics of the Canadian supercritical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, David William, E-mail: hummeld@mcmaster.ca; Novog, David Raymond

    2016-03-15

    Highlights: • A coupled spatial kinetics and thermalhydraulics model of the PT-SCWR was created. • Positive power excursions were demonstrated during accident-like transients. • The reactor will inherently self-shutdown in such transients with some delay. • A fast-acting shutdown system would limit the consequences of the power pulse. - Abstract: The Canadian Supercritical Water-cooled Reactor concept, as an evolution of the CANada Deuterium Uranium (CANDU) reactor, includes both pressure tubes and a low temperature heavy water moderator. The current Pressure Tube type SCWR (PT-SCWR) concept features 64-element fuel assemblies placed within High Efficiency Re-entrant Channels (HERCs) that connect to core inlet and outlet plena. Among current SCWR concepts the PT-SCWR is unique in that the HERC separates multiple coolant and moderator regions, giving rise to coupled neutronic-thermalhydraulic feedbacks beyond those present in CANDU or contemporary Light Water Reactors. The objective of this work was thus to model the coupled neutronic-thermal hydraulic properties of the PT-SCWR to establish the impact of these multiple regions on the core's transient behavior. To that end, the features of the PT-SCWR were first modeled with the neutron transport code DRAGON to create a database of homogenized and condensed cross-sections and thermalhydraulic feedback coefficients. These were used as input to a core-level neutron diffusion model created with the code DONJON. The behavior of the primary heat transport system was modeled with the thermalhydraulic system code CATHENA. A procedure was developed to couple the outputs of DONJON and CATHENA, facilitating three-dimensional spatial neutron kinetics and coupled thermalhydraulic analysis of the PT-SCWR core. Several postulated transients were initiated within the coupled model by changing the core inlet and outlet boundary conditions. Decreasing coolant density around the fuel was demonstrated to produce positive

  9. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  10. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors

  11. IRPhE - International Reactor Physics Experiments database

    International Nuclear Information System (INIS)

    Sartori, E.

    2004-01-01

    The OECD/NEA Nuclear Science Committee (NSC) has identified the need to establish international databases containing all the important experiments that are available for sharing among the specialists and has set up or sponsored specific activities to achieve this. The aim is to preserve them in an agreed standard format in computer accessible form, to use them for international activities involving validation of current and new calculational schemes including computer codes and nuclear data libraries, for assessing uncertainties, confidence bounds and safety margins, and to record measurement methods and techniques. It is a significant saving results from disseminating a standard benchmark set to be used worldwide. A framework for professionals that use the standard benchmark set to validate and verify modeling codes and data for radiation transport, criticality safety and reactor physics applications guarantees a comparative set of analyses. It represents also a good basis for pinpointing important gaps and where efforts should be concentrated and ensures knowledge and competence preservation, management and transfer in nuclear science and engineering. A large number of experimentalists, physicists, evaluators, modelers have devoted large amounts of their efforts and competencies to produce the data on which the methods we are using today are based. These data are far from having been exploited fully for the different nuclear and radiation technologies. This wealth of information needs to be preserved in a form more easily exploitable by modern information technology and for use in connection with novel and refined computational models with limitations of the past removed. These data will form the basis for the studies of more advanced nuclear technology, will be instrumental in identifying areas where there is a lack of knowledge and thus provide support to justifying new experiments that would reduce design uncertainties and consequently costs. Improvement of

  12. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  13. Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations

    Science.gov (United States)

    Bang, Youngsuk

    hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.

  14. Coupling of RO-MSF hybrid desalination plants with nuclear reactors

    International Nuclear Information System (INIS)

    Al-Sulaiman, Khalil; Al-Mutaz, Ibrahim S.

    1999-01-01

    Full text.Reverse osmosis (RO) and multistage flash (MSF) desalination are the most widely commercial available processes. MSF utilizes stream in the brine heater as a primary source of energy. RO is derived mainly by electricity that pumps the feed water against the mambranes. Steam and electricity and be produced easily by nuclear reactors. Nuclear reactors may be coupled with deslination plants (MSF, RO or combined (hybrid) RO/MSF configuration). This integrated plant will be capable of producing power and water at reasonable cost. The capital and operating cost will be reduced and the excess power can be efficiently utilized. Maintenance and operating cost will drop significantly. In this paper, a techno-economic study of hybrid reverses osmosis /multistage flash desalination will be carried. The proposed configuration (hybrid RO/MSF) coupled with nuclear reactor is considered the most appropriate candidate system for the application of dual-purpose nuclear desalination plants. the design parameters for such a desalination hybrid system will be the applied pressure and recovery for reverse osmosis plant and the number of stages and the heat transfer areas for multistage flash plant

  15. Core map generation for the ITU TRIGA Mark II research reactor using Genetic Algorithm coupled with Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Türkmen, Mehmet, E-mail: tm@hacettepe.edu.tr [Nuclear Engineering Department, Hacettepe University, Beytepe Campus, Ankara (Turkey); Çolak, Üner [Energy Institute, Istanbul Technical University, Ayazağa Campus, Maslak, Istanbul (Turkey); Ergün, Şule [Nuclear Engineering Department, Hacettepe University, Beytepe Campus, Ankara (Turkey)

    2015-12-15

    Highlights: • Optimum core maps were generated for the ITU TRIGA Mark II Research Reactor. • Calculations were performed using a Monte Carlo based reactor physics code, MCNP. • Single-Objective and Multi-Objective Genetic Algorithms were used for the optimization. • k{sub eff} and ppf{sub max} were considered as the optimization objectives. • The generated core maps were compared with the fresh core map. - Abstract: The main purpose of this study is to present the results of Core Map (CM) generation calculations for the İstanbul Technical University TRIGA Mark II Research Reactor by using Genetic Algorithms (GA) coupled with a Monte Carlo (MC) based-particle transport code. Optimization problems under consideration are: (i) maximization of the core excess reactivity (ρ{sub ex}) using Single-Objective GA when the burned fuel elements with no fresh fuel elements are used, (ii) maximization of the ρ{sub ex} and minimization of maximum power peaking factor (ppf{sub max}) using Multi-Objective GA when the burned fuels with fresh fuels are used. The results were obtained when all the control rods are fully withdrawn. ρ{sub ex} and ppf{sub max} values of the produced best CMs were provided. Core-averaged neutron spectrum, and variation of neutron fluxes with respect to radial distance were presented for the best CMs. The results show that it is possible to find an optimum CM with an excess reactivity of 1.17 when the burned fuels are used. In the case of a mix of burned fuels and fresh fuels, the best pattern has an excess reactivity of 1.19 with a maximum peaking factor of 1.4843. In addition, when compared with the fresh CM, the thermal fluxes of the generated CMs decrease by about 2% while change in the fast fluxes is about 1%.Classification: J. Core physics.

  16. Preliminary Development of the MARS/FREK Spatial Kinetics Coupled System Code for Square Fueled Fast Reactor Applications

    International Nuclear Information System (INIS)

    Bae, Moo Hoon; Joo, Han Gyu

    2009-01-01

    Incorporation of a three-dimensional (3-D) reactor kinetics model into a system thermal-hydraulic (T/H) code enhances the capability to perform realistic analyses of the core neutronic behavior and the plant system dynamics which are coupled each other. For this advantage, several coupled system T/H and spatial kinetics codes, such as RELAP/PARCS, RELAP5/ PANBOX, and MARS/MASTER have been developed. These codes, however, so far limited to LWR applications. The objective of this work is to develop such a coupled code for fast reactor applications. Particularly, applications to lead-bismuth eutectic (LBE) cooled fast reactor are of interest which employ open square lattices. A fast reactor kinetics code applicable to square fueled cores called FREK is coupled the LBE version of the MARS code. The MARS/MASTER coupled code is used as the reference for the integration. The coupled code MARS/FREK is examined for a conceptual reactor called P-DEMO which is being developed by NUTRECK. In order to check the validity of the coupled code, however, the OECD MSLB benchmark exercise III calculation is solved first

  17. Modernization of the NESTLE-CANDU reactor simulator and coupling to scale-processed cross sections

    International Nuclear Information System (INIS)

    Hart, S.; Maldonado, G.I.

    2012-01-01

    The original version of the NESTLE computer code for CANDU applications, herein referred as the NESTLE-CANDU or NESTLE-C program, was developed under sponsorship by the CNSC as a “stand-alone” program. In fact, NESTLE-C emerged from the original version of NESTLE, applicable to light water reactors, which was written in FORTRAN 77 to solve the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). Accordingly, NESTLE-C can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source or eigenvalue initiated transient problems for CANDU reactor fuel arrangements and geometries. This article reports a recent conversion of the NESTLE-C code to the Fortran 90 standard, in addition, we highlight other code updates carried out to modularize and modernize NESTLE-C in a manner consistent with the latest updates performed with the parent NESTLE code for light water reactor (LWR) applications. Also reported herein, is a simulation of a CANDU reactor employing 37-element fuel bundles, which was carried out to highlight the SCALE to NESTLE-C coupling developed for two-group collapsed and bundle homogenized cross-section generation. The results presented are consistent with corresponding simulations that employed HELIOS generated cross-sections. (author)

  18. Modernization of the NESTLE-CANDU reactor simulator and coupling to scale-processed cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hart, S.; Maldonado, G.I. [Univ. of Tennessee, Knoxville, Tennessee (United States)

    2012-07-01

    The original version of the NESTLE computer code for CANDU applications, herein referred as the NESTLE-CANDU or NESTLE-C program, was developed under sponsorship by the CNSC as a “stand-alone” program. In fact, NESTLE-C emerged from the original version of NESTLE, applicable to light water reactors, which was written in FORTRAN 77 to solve the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). Accordingly, NESTLE-C can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source or eigenvalue initiated transient problems for CANDU reactor fuel arrangements and geometries. This article reports a recent conversion of the NESTLE-C code to the Fortran 90 standard, in addition, we highlight other code updates carried out to modularize and modernize NESTLE-C in a manner consistent with the latest updates performed with the parent NESTLE code for light water reactor (LWR) applications. Also reported herein, is a simulation of a CANDU reactor employing 37-element fuel bundles, which was carried out to highlight the SCALE to NESTLE-C coupling developed for two-group collapsed and bundle homogenized cross-section generation. The results presented are consistent with corresponding simulations that employed HELIOS generated cross-sections. (author)

  19. Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Ehsan; Sepanloo, Kamran [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor and Nuclear Safety School; Jahanfarnia, Golamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch

    2017-05-15

    This study is aimed to perform the coupled thermal-hydraulic/neutronic analysis of nanofluids as the coolant in the hot fuel assembly of VVER-1000 reactor core. Water-based nanofluid containing various volume fractions of Al{sub 2}O{sub 3} nanoparticle is analyzed. WIMS and CITATION codes are used for neutronic simulation of the reactor core, calculating neutron flux and thermal power distribution. In the thermal-hydraulic modeling, the porous media approach is used to analyze the thermal behavior of the reactor core and the subchannel analysis is used to calculate the hottest fuel assembly thermal-hydraulic parameters. The derived conservation equations for coolant and conduction heat transfer equation for fuel and clad are discretized by Finite volume method and solved numerically using visual FORTRAN program. Finally the analysis results for nanofluids and pure water are compared together. The achieved results show that at low concentration (0.1 percent volume fraction) alumina is the optimum nanoparticles for normal reactor operation.

  20. New physics contribution to neutral trilinear gauge boson couplings

    International Nuclear Information System (INIS)

    Dutta, Sukanta; Mamta; Goyal, Ashok

    2009-01-01

    We study the one-loop new physics effects to the CP even triple neutral gauge boson vertices γ * γZ, γ * ZZ, Z * Zγ and Z * ZZ in the context of Little Higgs models. We compute the contribution of the additional fermions in Little Higgs models in the framework of direct product groups where [SU(2) x U(1)] 2 gauge symmetry is embedded in SU(5) global symmetry and also in the framework of the simple group where SU(N) x U(1) gauge symmetry breaks down to SU(2) L x U(1). We calculate the contribution of the fermions to these couplings when T parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a ' and compare with the SM and Little Higgs models. (orig.)

  1. New physics contribution to neutral trilinear gauge boson couplings

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sukanta; Mamta [University of Delhi, SGTB Khalsa College, Delhi (India); Goyal, Ashok [University of Delhi, Department of Physics and Astrophysics, Delhi (India)

    2009-09-15

    We study the one-loop new physics effects to the CP even triple neutral gauge boson vertices {gamma}{sup *}{gamma}Z, {gamma}{sup *}ZZ, Z{sup *}Z{gamma} and Z{sup *}ZZ in the context of Little Higgs models. We compute the contribution of the additional fermions in Little Higgs models in the framework of direct product groups where [SU(2) x U(1)]{sup 2} gauge symmetry is embedded in SU(5) global symmetry and also in the framework of the simple group where SU(N) x U(1) gauge symmetry breaks down to SU(2){sub L} x U(1). We calculate the contribution of the fermions to these couplings when T parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a ' and compare with the SM and Little Higgs models. (orig.)

  2. Physics methods for calculating light water reactor increased performances

    International Nuclear Information System (INIS)

    Vandenberg, C.; Charlier, A.

    1988-01-01

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained

  3. Modelling of thermalhydraulics and reactor physics in simulators

    International Nuclear Information System (INIS)

    Miettinen, J.

    1994-01-01

    The evolution of thermalhydraulic analysis methods for analysis and simulator purposes has brought closer the thermohydraulic models in both application areas. In large analysis codes like RELAP5, TRAC, CATHARE and ATHLET the accuracy for calculating complicated phenomena has been emphasized, but in spite of large development efforts many generic problems remain unsolved. For simulator purposes fast running codes have been developed and these include only limited assessment efforts. But these codes have more simulator friendly features than large codes, like portability and modular code structure. In this respect the simulator experiences with SMABRE code are discussed. Both large analysis codes and special simulator codes have their advances in simulator applications. The evolution of reactor physical calculation methods in simulator applications has started from simple point kinetic models. For analysis purposes accurate 1-D and 3-D codes have been developed being capable for fast and complicated transients. For simulator purposes capability for simulation of instruments has been emphasized, but the dynamic simulation capability has been less significant. The approaches for 3-dimensionality in simulators requires still quite much development, before the analysis accuracy is reached. (orig.) (8 refs., 2 figs., 2 tabs.)

  4. KAMCCO, a reactor physics Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.

    1976-06-01

    KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.) [de

  5. Health physics aspects of advanced reactor licensing reviews

    International Nuclear Information System (INIS)

    Hinson, C.S.

    1995-01-01

    The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on open-quotes next-generationclose quotes reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These open-quotes next-generationclose quotes reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four open-quotes next-generationclose quotes reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four open-quotes next-generationclose quotes reactor designs currently being reviewed by the NRC

  6. Health physics aspects of advanced reactor licensing reviews

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, C.S. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-03-01

    The last Construction Permit to be issued by the U.S. Nuclear Regulatory Commission (NRC) for a U.S. light water reactor (LWR) was granted in the late 1970s. In 1989 the NRC issued 10 CFR Part 52 which is intended to serve as a framework for the licensing of future reactor designs. The NRC is currently reviewing four different future on {open_quotes}next-generation{close_quotes} reactor designs. Two of these designs are classified as evolutionary designs (modified versions of current generation LWRs) and two are advanced designs (reactors incorporating simplified designs and passive means for accident mitigation). These {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs incorporate many innovative design features which are intended to maintain personnel doses ALARA and ensure that the annual average collective dose at these reactors does not exceed 100 person-rems (1 person-sievert) per year. This paper discusses some of the ALARA design features which are incorporated in the four {open_quotes}next-generation{close_quotes} reactor designs currently being reviewed by the NRC.

  7. Research on reactor physics analysis method based on Monte Carlo homogenization

    International Nuclear Information System (INIS)

    Ye Zhimin; Zhang Peng

    2014-01-01

    In order to meet the demand of nuclear energy market in the future, many new concepts of nuclear energy systems has been put forward. The traditional deterministic neutronics analysis method has been challenged in two aspects: one is the ability of generic geometry processing; the other is the multi-spectrum applicability of the multigroup cross section libraries. Due to its strong geometry modeling capability and the application of continuous energy cross section libraries, the Monte Carlo method has been widely used in reactor physics calculations, and more and more researches on Monte Carlo method has been carried out. Neutronics-thermal hydraulics coupling analysis based on Monte Carlo method has been realized. However, it still faces the problems of long computation time and slow convergence which make it not applicable to the reactor core fuel management simulations. Drawn from the deterministic core analysis method, a new two-step core analysis scheme is proposed in this work. Firstly, Monte Carlo simulations are performed for assembly, and the assembly homogenized multi-group cross sections are tallied at the same time. Secondly, the core diffusion calculations can be done with these multigroup cross sections. The new scheme can achieve high efficiency while maintain acceptable precision, so it can be used as an effective tool for the design and analysis of innovative nuclear energy systems. Numeric tests have been done in this work to verify the new scheme. (authors)

  8. Coupled map lattice (CML) approach to power reactor dynamics (I) - preservation of normality

    International Nuclear Information System (INIS)

    Konno, H.

    1996-01-01

    An application of coupled map lattice (CML) model for simulating power fluctuations in nuclear power reactors is presented. (1) Preservation of Gaussianity in the point model is studied in a chaotic force driven Langevin equation in conjunction with the Gaussian-white noise driven Langevin equation. (2) Preservation of Guassianity is also studied in the space-dependent model with the use of a CML model near the onset of the Hopf bifurcation point. It is shown that the spatial dimensionality decreases as the maximum eigenvalue of the system increases. The result is consistent with the observation of neutron fluctuation in a BWR. (author)

  9. Heavy water reactors physics; Physique des reacteurs a eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Y; Lourme, P; Naudet, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    An important research programme on heavy water reactor physics has been carried out in France for quite a few years. The decision to build the EL 4 prototype and so to choose the heavy water gas cooled type has renewed the interest in this programme and at the same time given to it a more specific orientation A summary of the results gained in this field is presented in this paper. In the first part are described the experimental investigations, most of them were carried out in the criticality facility AQUILON II. The experiments are grouped in four parts - Systematic studies of lattices Buckling measurements. - Specific studies of gas-cooled lattices. - Fine structure, spectral indices measurements etc... - Measurements on lattices or samples containing Uranium of various enrichment or Plutonium. The second part is devoted to a summary of the theoretical studies. The whole results have allowed an improvement of the calculation methods, have led to a better understanding of the neutron balance in lattices, and have permitted the establishment of a set of formula to predict not only the clean fuel conditions but also the evolution of the nuclear properties with irradiation. Some specific studies on power reactor are quoted. (authors) [French] Un important programme d'etudes sur la physique des reacteurs a eau lourde est mene en France depuis assez longtemps. La decision de construire le prototype EL 4 et de s'engager ainsi dans la filiere des reacteurs a eau lourde refroidis par gaz a redonne un nouvel interet a ce programme et l'a en meme temps oriente dans une direction plus particuliere. La presente communication, rassemble les resultats des etudes faites dans ce domaine depuis la derniere conference de Geneve. Dans la premiere partie on decrit les etudes experimentales dont la plupart ont ete effectuees dans la pile d'experiences critiques Aquilon II. Les experiences sont groupees en quatre ensembles: etude systematique de reseaux (mesures de laplaciens) etudes

  10. GeN-Foam: a novel OpenFOAM{sup ®} based multi-physics solver for 2D/3D transient analysis of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fiorina, Carlo, E-mail: carlo.fiorina@psi.ch [Paul Scherrer Institut, Nuclear Energy and Safety Department, Laboratory for Reactor Physics and Systems Behaviour – PSI, Villigen 5232 (Switzerland); Clifford, Ivor [Paul Scherrer Institut, Nuclear Energy and Safety Department, Laboratory for Reactor Physics and Systems Behaviour – PSI, Villigen 5232 (Switzerland); Aufiero, Manuele [LPSC-IN2P3-CNRS/UJF/Grenoble INP, 53 avenue des Martyrs, 38026 Grenoble Cedex (France); Mikityuk, Konstantin [Paul Scherrer Institut, Nuclear Energy and Safety Department, Laboratory for Reactor Physics and Systems Behaviour – PSI, Villigen 5232 (Switzerland)

    2015-12-01

    Highlights: • Development of a new multi-physics solver based on OpenFOAM{sup ®}. • Tight coupling of thermal-hydraulics, thermal-mechanics and neutronics. • Combined use of traditional RANS and porous-medium models. • Mesh for neutronics deformed according to the predicted displacement field. • Use of three unstructured meshes, adaptive time step, parallel computing. - Abstract: The FAST group at the Paul Scherrer Institut has been developing a code system for reactor analysis for many years. For transient analysis, this code system is currently based on a state-of-the-art coupled TRACE-PARCS routine. This work presents an attempt to supplement the FAST code system with a novel solver characterized by tight coupling between the different equations, parallel computing capabilities, adaptive time-stepping and more accurate treatment of some of the phenomena involved in a reactor transient. The new solver is based on OpenFOAM{sup ®}, an open-source C++ library for the solution of partial differential equations using finite-volume discretization. It couples together a multi-scale fine/coarse mesh sub-solver for thermal-hydraulics, a multi-group diffusion sub-solver for neutronics, a displacement-based sub-solver for thermal-mechanics and a finite-difference model for the temperature field in the fuel. It is targeted toward the analysis of pin-based reactors (e.g., liquid metal fast reactors or light water reactors) or homogeneous reactors (e.g., fast-spectrum molten salt reactors). This paper presents each “single-physics” sub-solver and the overall coupling strategy, using the sodium-cooled fast reactor as a test case, and essential code verification tests are described.

  11. GeN-Foam: a novel OpenFOAM"® based multi-physics solver for 2D/3D transient analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Fiorina, Carlo; Clifford, Ivor; Aufiero, Manuele; Mikityuk, Konstantin

    2015-01-01

    Highlights: • Development of a new multi-physics solver based on OpenFOAM"®. • Tight coupling of thermal-hydraulics, thermal-mechanics and neutronics. • Combined use of traditional RANS and porous-medium models. • Mesh for neutronics deformed according to the predicted displacement field. • Use of three unstructured meshes, adaptive time step, parallel computing. - Abstract: The FAST group at the Paul Scherrer Institut has been developing a code system for reactor analysis for many years. For transient analysis, this code system is currently based on a state-of-the-art coupled TRACE-PARCS routine. This work presents an attempt to supplement the FAST code system with a novel solver characterized by tight coupling between the different equations, parallel computing capabilities, adaptive time-stepping and more accurate treatment of some of the phenomena involved in a reactor transient. The new solver is based on OpenFOAM"®, an open-source C++ library for the solution of partial differential equations using finite-volume discretization. It couples together a multi-scale fine/coarse mesh sub-solver for thermal-hydraulics, a multi-group diffusion sub-solver for neutronics, a displacement-based sub-solver for thermal-mechanics and a finite-difference model for the temperature field in the fuel. It is targeted toward the analysis of pin-based reactors (e.g., liquid metal fast reactors or light water reactors) or homogeneous reactors (e.g., fast-spectrum molten salt reactors). This paper presents each “single-physics” sub-solver and the overall coupling strategy, using the sodium-cooled fast reactor as a test case, and essential code verification tests are described.

  12. Three-dimensional multi-physics model of the European sodium fast reactor design applied to DBA analysis - 15293

    International Nuclear Information System (INIS)

    Lazaro, A.; Ordonez, J.; Martorell, S.; Przemyslaw, S.; Ammirabile, L.; Tsige-Tamirat, H.

    2015-01-01

    The sodium cooled fast reactor (SFR) is one of the reactor types selected by the Generation IV International Forum. SFR stand out due to its remarkable past operational experience in related projects and its potential to achieve the ambitious goals laid for the new generation of nuclear reactors. Regardless its operational experience, there is a need to apply computational tools able to simulate the system behaviour under conditions that may overtake the reactor safety limits from the early stages of the design process, including the three-dimensional phenomena that may arise in these transients. This paper presents the different steps followed towards the development of a multi-physics platform with capabilities to simulate complex phenomena using a coupled neutronic-thermal-hydraulic scheme. The development started with a one-dimensional thermal-hydraulic model of the European Sodium Fast Reactor (ESFR) design with point kinetic neutronic feedback benchmarked with its peers in the framework of the FP7-CP-ESFR project using the state-of-the-art thermal-hydraulic system code TRACE. The model was successively extended into a three-dimensional model coupled with the spatial kinetic neutronic code PARCS able to simulate three-dimensional multi-physic phenomena along with the comparison of the results for symmetric cases. The last part of the paper shows the application of the developed tool to the analysis of transients involving asymmetrical effects, such as the coast-down of a primary and secondary pump or the withdrawal of a peripheral control rod bank, demonstrating the unique capability of the code to simulate such transients and the capability of the design to withstand them under design basis

  13. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.; Powers, Jeffrey J.

    2016-01-01

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 "7LiF-BeF_2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  14. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Mueller, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  15. Coupled fast-thermal core 'HERBE', as the benchmark experiment at the RB reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2003-10-01

    Validation of the well-known Monte Carlo code MCNP TM against measured criticality data for the coupled fast-thermal HERBE. System at the RB research reactor is shown in this paper. Experimental data are obtained for regular HERBE core and for the cases of controlled flooding of the neutron converter zone by heavy water. Earlier calculations of these criticality parameters, done by combination of transport and diffusion codes using 2D geometry model are also compared to new calculations carried out by the MCNP code in 3D geometry, applying new detailed 3D model of the HEU fuel slug, developed recently. Satisfactory agreements in comparison of the HERBE criticality calculation results with experimental data, in spite complex heterogeneous composition of the HERBE core, are obtained and confirmed that HERBE core could be used as a criticality benchmark for coupled fast-thermal core. (author)

  16. Inspection methods for physical protection Task III review of other agencies' physical security activities for research reactors

    International Nuclear Information System (INIS)

    In Task I of this project, the current Nuclear Regulatory Commission (NRC) position-on physical security practices and procedures at research reactors were reviewed. In the second task, a sampling of the physical security plans was presented and the three actual reactor sites described in the security plans were visited. The purpose of Task III is to review other agencies' physical security activities for research reactors. During this phase, the actions, procedures and policies of two domestic and two foreign agencies other than the NRC that relate to the research reactor community were examined. The agencies examined were: International Atomic Energy Agency; Canadian Atomic Energy Control Board; Department of Energy; and American Nuclear Insurers

  17. Pebble Bed Reactor: core physics and fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Worley, B.A.

    1979-10-01

    The Pebble Bed Reactor is a gas-cooled, graphite-moderated high-temperature reactor that is continuously fueled with small spherical fuel elements. The projected performance was studied over a broad range of reactor applicability. Calculations were done for a burner on a throwaway cycle, a converter with recycle, a prebreeder and breeder. The thorium fuel cycle was considered using low, medium (denatured), and highly enriched uranium. The base calculations were carried out for electrical energy generation in a 1200 MW/sub e/ plant. A steady-state, continuous-fueling model was developed and one- and two-dimensional calculations were used to characterize performance. Treating a single point in time effects considerable savings in computer time as opposed to following a long reactor history, permitting evaluation of reactor performance over a broad range of design parameters and operating modes.

  18. Berkeley Nuclear Laboratories Reactor Physics Mk. III Experimental Programme. Description of facility and programme for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, R M; Waterson, R H; Young, J D

    1971-01-15

    Reactor physics experiments have been carried out at Berkeley Nuclear Laboratories during the past few years in support of the Civil Advanced Gas-Cooled Reactors (Mk. II) the Generating Board is building. These experiments are part of an overall programme whose objective is to assess the accuracy of the calculational methods used in the design and operation of these reactors. This report provides a description of the facility for the Mk. III experimental programme and the planned programme for 1971.

  19. Beam-plasma coupling physics in support of active experiments

    Science.gov (United States)

    Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.

    2017-12-01

    The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.

  20. Qualification of the nuclear reactor core model DYN3D coupled to the thermohydraulic system code ATHLET, applied as an advanced tool for accident analysis of VVER-type reactors. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.

    1998-03-01

    The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.) [de

  1. A novel integrated thermally coupled moving bed reactors for naphtha reforming process with hydrodealkylation of toluene

    International Nuclear Information System (INIS)

    Iranshahi, Davood; Saeedi, Reza; Azizi, Kolsoom; Nategh, Mahshid

    2017-01-01

    Highlights: • A novel thermally coupled reactor in CCR naphtha reforming process is modeled. • The required heat of Naphtha process is attained with toluene hydrodealkylation. • A new kinetic model involving 32 pseudo-component and 84 reactions is proposed. • The aromatics and hydrogen production increase 19% and 23%, respectively. - Abstract: Due to the importance of catalytic naphtha reforming process in refineries, development of this process to attain the highest yield of desired products is crucial. In this study, continuous catalyst regeneration naphtha reforming process with radial flow is coupled with hydrodealkylation of toluene to prevent energy loss while enhancing aromatics and hydrogen yields. In this coupled process, heat is transferred between hot and cold sections (from hydrodealkylation of toluene to catalytic naphtha reforming process) using the process integration method. A steady-state two-dimensional model, which considers coke formation on the catalyst pellets, is developed and 32 pseudo-components with 84 reactions are investigated. Kinetic model utilized for HDA process is homogeneous and non-catalytic. The modeling results reveal an approximate increase of 19% and 23% in aromatics and hydrogen molar flow rates, respectively, in comparison with conventional naphtha reforming process. The improvement in aromatics production evidently indicates that HDA is a suitable process to be coupled with naphtha reforming.

  2. COUPLED SIMULATION OF GAS COOLED FAST REACTOR FUEL ASSEMBLY WITH NESTLE CODE SYSTEM

    Directory of Open Access Journals (Sweden)

    Filip Osusky

    2018-05-01

    Full Text Available The paper is focused on coupled calculation of the Gas Cooled Fast Reactor. The proper modelling of coupled neutronics and thermal-hydraulics is the corner stone for future safety assessment of the control and emergency systems. Nowadays, the system and channel thermal-hydraulic codes are accepted by the national regulatory authorities in European Union for license purposes, therefore the code NESTLE was used for the simulation. The NESTLE code is a coupled multigroup neutron diffusion code with thermal-hydraulic sub-channel code. In the paper, the validation of NESTLE code 5.2.1 installation is presented. The processing of fuel assembly homogeneous parametric cross-section library for NESTLE code simulation is made by the sequence TRITON of SCALE code package system. The simulated case in the NESTLE code is one fuel assembly of GFR2400 concept with reflective boundary condition in radial direction and zero flux boundary condition in axial direction. The results of coupled calculation are presented and are consistent with the GFR2400 study of the GoFastR project.

  3. Thermal hydraulic and neutron kinetic coupled simulation of the IPR-R1 Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia; Silva, Clarysson A.M. da; Veloso, Maria Auxiliadora F.; Soares, Humbero V., E-mail: patricialire@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: clarysson@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: betovitor@ig.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq Rede), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The nuclear industry and the scientific community have turned the attention for the development of coupled 3D neutron kinetics (NK) and thermal-hydraulic (TH) system codes to investigate specific nuclear reactor transients. Improving in theoretical investigations of complex phenomena in nuclear reactor technology have been increased thanks to numerical methods and computational resources incorporated in nuclear codes. This paper presents a model for the IPR-R1 TRIGA research reactor using the RELAP5-3D 3.0 code. The development and the assessment of the thermal-hydraulic RELAP5 code model for the IPR-R1 have been validated for steady state and transient situations and the results were published in preceding works. Results of RELAP5-3D steady state and a transient case presented in this paper show good agreement with experimental data, validating then this model for point kinetic calculations. To supply adequate cross sections to the NK code, the WIMSD5 is being used. First results of steady state calculation using the 3D neutron modeling are being presented in this paper. (author)

  4. Design Configurations and Coupling High Temperature Gas-Cooled Reactor and Hydrogen Plant

    International Nuclear Information System (INIS)

    Chang H. Oh; Eung Soo Kim; Steven Sherman

    2008-01-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood

  5. Safety Philosophy in Process Heat Plants Coupled to High Temperature Reactors

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    With the future availability of fossil fuel resources in doubt, high temperature nuclear reactors have the potential to be an important technology in the near term. Due to a high coolant outlet temperature, high temperature reactors (HTR) can be used to drive chemical plants that directly utilize process heat. Additionally, the high temperature improves the thermodynamic efficiency of the energy utilization. Many applications of high temperature reactors exist as a thermal driving vector for endothermic chemical process plants. Hydrogen generation using the General Atomics (GA) sulfur iodine (SI) cycle is one promising application of high temperature nuclear heat. The main chemical reactions in the SI cycle are: 1. I 2 +SO 2 + 2H 2 O → 2HI + H 2 SO 4 (Bunsen reaction) 2. H 2 SO 4 → H 2 O + SO 2 + 1/2O 2 (Sulfuric acid decomposition) 3. 2HI → H 2 + I 2 (Hydrogen Iodide decomposition). With the exception of hydrogen and oxygen, all relevant reactants are recycled within the process. However, there are many unresolved safety and operational issues related to implementation of such a coupled plant

  6. 78 FR 50313 - Physical Protection of Irradiated Reactor Fuel in Transit

    Science.gov (United States)

    2013-08-19

    ... Irradiated Reactor Fuel in Transit AGENCY: Nuclear Regulatory Commission. ACTION: Orders; rescission. SUMMARY... the NRC published a final rule, ``Physical Protection of Irradiated Fuel in Transit,'' on May 20, 2013... of Irradiated Reactor Fuel in Transit'' (RIN 3150-AI64; NRC-2009-0163). The final rule incorporates...

  7. 78 FR 69139 - Physical Security-Design Certification and Operating Reactors

    Science.gov (United States)

    2013-11-18

    ... Operating Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan--draft section..., ``Physical Security--Design Certification and Operating Reactors.'' The public comment period was originally....regulations.gov and search for Docket ID NRC-2013-0225. Address questions about NRC dockets to Carol Gallagher...

  8. Fast neutron reactor noise analysis: beginning failure detection and physical parameter estimation

    International Nuclear Information System (INIS)

    Le Guillou, G.

    1975-01-01

    The analysis of the signals fluctuations coming from a power nuclear reactor (a breeder), by correlation methods and spectral analysis has two principal applications: on line estimation of physical parameters (reactivity coefficients); beginning failures (little boiling, abnormal mechanic vibrations). These two applications give important informations to the reactor core control and permit a good diagnosis [fr

  9. The development of the physical conceptions of the FBR type reactors control methods

    International Nuclear Information System (INIS)

    Matveev, V.I.; Ivanov, A.P.

    1984-01-01

    The physical concepts and specific problems of the control elements for LMFBR type reactors are discussed in this paper. Typical temperature coefficient of reactivity, its dependency on reactor power and burnup level are given. The authors give us the most advisable methods of the reactivity coefficient compensation

  10. EUROPAIRS: The European project on coupling of High Temperature Reactors with industrial processes

    International Nuclear Information System (INIS)

    Angulo, C.; Bogusch, E.; Bredimas, A.; Delannay, N.; Viala, C.; Ruer, J.; Muguerra, Ph.; Sibaud, E.; Chauvet, V.; Hittner, D.; Fütterer, M.A.; Groot, S. de; Lensa, W. von; Verfondern, K.; Moron, R.; Baudrand, O.; Griffay, G.; Baaten, A.; Segurado-Gimenez, J.

    2012-01-01

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. A strong alliance between nuclear and process heat user industries is a necessity for developing such a nuclear system for the conventional process heat market, just as the electro-nuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project ( (www.europairs.eu)) presently on-going in the frame of the Euratom 7th Framework Programme (FP7). Although small and of short duration (21 months), EUROPAIRS is of strategic importance: it generates the boundary conditions for rapid demonstration of collocating HTR with industrial processes as proposed by the European High Temperature Reactor Technology Network (HTR-TN). This paper presents the main goals, the organization and the working approach of EUROPAIRS. It also presents the status of the viability assessment studies for coupling HTR with industrial end-user systems as one of the main pillars of the project. The main goal of the viability assessment is to identify developments required to remove the last technological and licensing barriers for a viable coupling scheme. The study is expected to result in guidelines for directing the choice of an industrial scale prototype.

  11. Gas cooled fast reactor materials: compatibility and reaction kinetics of fuel/matrices couples

    International Nuclear Information System (INIS)

    Lechelle, J.; Aufore, L.; Basini, V.; Belin, R.; Vaudez, S.

    2004-01-01

    Fourth Generation Gas cooled Fast Reactor concept implies a fast neutron spectrum and aims to lead to an iso-generation of minor actinides. Criteria have been defined for these fuels such as: high core filling factor, efficient fuel cooling, low operation temperature, i.e. 400-850 deg C, good fission product retention, burn-ups in the range of 5-8 atom%, Pu content in the range of 15-25%. Materials matching this demand are considered: mixed uranium - plutonium nitrides and carbides as fuels, whereas TiN, TiC, ZrN, ZrC, SiC are investigated as inert matrices. Thermo-chemical compatibility studies have been carried out, mostly for (U,Pu)N/SiC and (U,Pu)N/TiN couples. They have been associated to matching diffusional studies. For the first studies, accidental reactor conditions have been chosen (1600 deg C) so as to select a couple. Results are presented in terms of nature and quantity of resulting phases identified by XRD and SEM for thermodynamical equilibrium experiments. (authors)

  12. EUROPAIRS: The European project on coupling of High Temperature Reactors with industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Angulo, C., E-mail: carmen.angulo@gdfsuez.com [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium); Bogusch, E. [AREVA NP GmbH, Paul-Gossen-Strasse 100, 91052 Erlangen (Germany); Bredimas, A. [LGI Consulting, 37 rue de la Grange aux Belles, 75010 Paris (France); Delannay, N. [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium); Viala, C. [AREVA NP SAS, 10 rue Juliette Recamier, 69456 Lyon Cedex 06 (France); Ruer, J.; Muguerra, Ph.; Sibaud, E. [SAIPEM S.A., 1/7 Avenue San Fernando, 78884 Saint Quentin en Yvelines Cedex (France); Chauvet, V. [LGI Consulting, 37 rue de la Grange aux Belles, 75010 Paris (France); Hittner, D. [AREVA NP Inc., 3315 Old Forest Road, Lynchburg, VA 24501 (United States); Fuetterer, M.A. [European Commission, Joint Research Centre, 1755ZG Petten (Netherlands); Groot, S. de [Nuclear Research and Consultancy Group, 1755ZG Petten (Netherlands); Lensa, W. von; Verfondern, K. [Forschungszentrum Juelich GmbH, Leo-Brandt-Strasse,52425 Juelich (Germany); Moron, R. [Solvay SA, rue du Prince Albert 33, 1050 Brussels (Belgium); Baudrand, O. [Institut de Radioprotection et de Surete Nucleaire (IRSN), BP 17, 92262 Fontenay-aux-Roses cedex (France); Griffay, G. [Arcelor Mittal Maizieres Research SA, rue Luigi Cherubini 1A5, 39200 Saint Denis (France); Baaten, A. [USG/Baaten Energy Consulting, Burgermeester-Ceulen-Straat 78, 6212CT Maastricht (Netherlands); Segurado-Gimenez, J. [Tractebel Engineering S.A. (GDF SUEZ), Avenue Ariane 7, 1200 Brussels (Belgium)

    2012-10-15

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. A strong alliance between nuclear and process heat user industries is a necessity for developing such a nuclear system for the conventional process heat market, just as the electro-nuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project ( (www.europairs.eu)) presently on-going in the frame of the Euratom 7th Framework Programme (FP7). Although small and of short duration (21 months), EUROPAIRS is of strategic importance: it generates the boundary conditions for rapid demonstration of collocating HTR with industrial processes as proposed by the European High Temperature Reactor Technology Network (HTR-TN). This paper presents the main goals, the organization and the working approach of EUROPAIRS. It also presents the status of the viability assessment studies for coupling HTR with industrial end-user systems as one of the main pillars of the project. The main goal of the viability assessment is to identify developments required to remove the last technological and licensing barriers for a viable coupling scheme. The study is expected to result in guidelines for directing the choice of an industrial scale prototype.

  13. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  14. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Science.gov (United States)

    2010-01-01

    ... fuel in transit. 73.37 Section 73.37 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.37 Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1...

  15. Benchmarking lattice physics data and methods for boiling water reactor analysis

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Edenius, M.; Harris, D.R.; Hebert, M.J.; Kapitz, D.M.; Pilat, E.E.; VerPlanck, D.M.

    1983-01-01

    The objective of the work reported was to verify the adequacy of lattice physics modeling for the analysis of the Vermont Yankee BWR using a multigroup, two-dimensional transport theory code. The BWR lattice physics methods have been benchmarked against reactor physics experiments, higher order calculations, and actual operating data

  16. Future view of total energy system and reactor engineering and reactor physics

    International Nuclear Information System (INIS)

    Ozawa, T.

    1974-01-01

    This paper outlines the present status of fission reactors and fusion reactors. The conversion ratio of light water reactors is 0.5, and the efficiency is 32% because of relatively low temperature. Both pressurized water reactors and boiling water reactors are technically well developed, their performances are well known, and the fuel cycle is well developed, so that both reactors have monopolized power reactor market. But the reprocessing of spent fuel and the treatment of their hazards are inevitable, and the construction and enlargement of reprocessing facilities are indispensable. In LMFBR's tight sealing is easy because they are non-pressurized, and the efficiency is 41%. But liquid sodium is strongly activated and recirculated, so that chemical obstruction due to the breakage of recirculating pumps, pipings, and heat exchangers may occur, and the hazard of plutonium is large. Regarding controlled thermo-nuclear fusion reactors, because Lawson criterion must be satisfied, two methods of plasma confinement are now experimented. One is the plasma confinement by strong magnetic field of 50 KG to 100 KG, and the other is the confinement by the implosion method with high-power laser beam. The latter has much more uncertainties than the former, but recently both methods have made much progress. (Tai, I)

  17. Research on acceleration method of reactor physics based on FPGA platforms

    International Nuclear Information System (INIS)

    Li, C.; Yu, G.; Wang, K.

    2013-01-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  18. Summary record of the 33. Meeting of NEA committee on reactor physics

    International Nuclear Information System (INIS)

    Martinelli, R.

    1991-01-01

    This paper is the summary record of the thirty-third meeting (Technical session) of the Nuclear Energy Agency Committee on Reactor Physics. A complete list of all the papers presented at this meeting is given in annex 4

  19. Design of data sampler in intelligent physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Wang Yinli; Ling Qiu

    2007-01-01

    It introduces the design of data sampler in intelligent physical start-up system for nuclear reactor. The hardware frame taking STμPSD3234A as the core and the firmware design based on USB interface are discussed. (authors)

  20. Reactor physics activities in NEA member countries October 1990-September 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This document is a compilation of National Activity Reports presented at the Thirty-Fourth Meeting of the NEA Committee on Reactor Physics, held at the Paul Scherrer Institute, Wuerenlingen, Switzerland, from 3rd-5th September 1991

  1. Experiences developing ALEGRA: A C++ coupled physics framework

    Energy Technology Data Exchange (ETDEWEB)

    Budge, K.G.; Peery, J.S.

    1998-11-01

    ALEGRA is a coupled physics framework originally written to simulate inertial confinement fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories. It has since grown into a large software development project supporting a number of computational programs at Sandia. As the project has grown, so has the development team, from the original two authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel supercomputer. The authors discuss the reasons for ALEGRA`s success, which include the intelligent use of object-oriented techniques and the choice of C++ as the programming language. They argue that the intelligent use of development tools, such as build tools (e.g. make), compiler, debugging environment (e.g. dbx), version control system (e.g. cvs), and bug management software (e.g. ClearDDTS), is nearly as important as the choice of language and paradigm.

  2. Experiences developing ALEGRA: A C++ coupled physics framework

    International Nuclear Information System (INIS)

    Budge, K.G.; Peery, J.S.

    1998-01-01

    ALEGRA is a coupled physics framework originally written to simulate inertial confinement fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories. It has since grown into a large software development project supporting a number of computational programs at Sandia. As the project has grown, so has the development team, from the original two authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel supercomputer. The authors discuss the reasons for ALEGRA's success, which include the intelligent use of object-oriented techniques and the choice of C++ as the programming language. They argue that the intelligent use of development tools, such as build tools (e.g. make), compiler, debugging environment (e.g. dbx), version control system (e.g. cvs), and bug management software (e.g. ClearDDTS), is nearly as important as the choice of language and paradigm

  3. Health physics aspects of activation products from fusion reactors

    International Nuclear Information System (INIS)

    Shoup, R.L.; Poston, J.W.; Easterly, C.E.; Jacobs, D.G.

    1975-01-01

    A review of the activation products from fusion reactors and their attendant impacts is discussed. This includes a discussion on their production, expected inventories, and the status of metabolic data on these products

  4. The physics of accelerator driven sub-critical reactors

    Indian Academy of Sciences (India)

    Accelerator driven systems (ADS) are attracting worldwide attention .... The region of interest (or the entire reactor core) is divided into a suitable number ..... have also presented the status of the theoretical and experimental activities being.

  5. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor

    International Nuclear Information System (INIS)

    Vaiana, F.

    2009-11-01

    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  6. Fully coupled multiphysics modeling of enhanced thermal conductivity UO{sub 2}–BeO fuel performance in a light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Zhou, W., E-mail: wenzzhou@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Shen, P. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Prudil, A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Chan, P.K. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario (Canada)

    2015-12-15

    Highlights: • LWR fuel performance modeling capability developed. • Fully coupled multiphysics studies for enhanced thermal conductivity UO{sub 2}–BeO fuel. • UO{sub 2}–BeO fuel decreases fuel temperature and lessens thermal stresses. • UO{sub 2}–BeO fuel facilitates a reduction in PCMI. • Reactor safety can be improved for UO{sub 2}–BeO fuel. - Abstract: Commercial light water reactor fuel UO{sub 2} has a low thermal conductivity that leads to the development of a large temperature gradient across the fuel pellet, limiting the reactor operational performance due to the effects that include thermal stresses causing pellet cladding interaction and the release of fission product gases. This study presents the development of a modeling and simulation for enhanced thermal conductivity UO{sub 2}–BeO fuel behavior in a light water reactor, using self-defined multiple physics models fully coupled based on the framework of COMSOL Multiphysics. Almost all the related physical models are considered, including heat generation and conduction, species diffusion, thermomechanics (thermal expansion, elastic strain, densification, and fission product swelling strain), grain growth, fission gas production and release, gap heat transfer, mechanical contact, gap/plenum pressure with plenum volume, cladding thermal and irradiation creep and oxidation. All the phenomenal models and materials properties are implemented into COMSOL Multiphysics finite-element platform with a 2D axisymmetric geometry of a fuel pellet and cladding. UO{sub 2}–BeO enhanced thermal conductivity nuclear fuel would decrease fuel temperatures and facilitate a reduction in pellet cladding interaction from our simulation results through lessening thermal stresses that result in fuel cracking, relocation, and swelling, so that the safety of the reactor would be improved.

  7. Proceedings of the symposium on the physics and technology of reactors

    International Nuclear Information System (INIS)

    1993-01-01

    The symposium aimed at providing the opportunity for promoting the subject and for developing the human resources in this important field in the Arab States. The symposium included 32 lectures on the following topics related to research reactors: design and development, training and operation, calculations of reactor parameters, nuclear reactions dynamics and control, reactor physics, neutron pyhsics, neutron activation analysis, in-core reactor radiation protection and shielding calculations. The lectures of the symposium were distributed over 7 sessions. An additional session was held by all participants for open discussion and recommendations

  8. Test on the reactor with the portable digital reactivity meter for physical experiment

    International Nuclear Information System (INIS)

    Huang Liyuan

    2010-01-01

    Test must be performed on the zero power reactor During the development of portable digital reactivity meter for physical experiment, in order to check its measurement function and accuracy. It describes the test facility, test core, test methods, test items and test results. The test results show that the instrument satisfy the requirements of technical specification, and satisfy the reactivity measurement in the physical experiments on reactors. (authors)

  9. Study and application of digital physical start-up system for nuclear reactor

    International Nuclear Information System (INIS)

    Qu Ronghong; Li Baoxiang; Xu Xiaolin

    2004-01-01

    The digital physical start-up system for nuclear reactor is introduced. The system was used successfully in physical start-up experiment of 10 MW high-temperature gas-cooled reactor. It is proved practically that the system not only runs reliably and calculates both rapidly and correctly and relieves the loads of operators, but also has the better characters of monitoring and showing the real-time results of experiments than the analog systems. (author)

  10. Development of a compact digital reactivity meter and a reactor physics data processor

    International Nuclear Information System (INIS)

    Shimazu, Y.; Nakano, Y.; Tahara, Y.; Okayama, T.

    1987-01-01

    Reactor physics tests at initial startup and after refuelings are performed to verify the nuclear design and to assure safe operation. Analog computers and instruments are widely used for the acquisition of data, and these data are reduced by hand. These conventional procedures, however, require much time and labor. Since there has been great progress in the development of digital computers and devices, these procedures are digitalized, which successfully reduces the time and labor required for reactor physics tests

  11. Physical characteristics of GE [General Electric] BWR [boiling-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Moore, R.S.; Notz, K.J.

    1989-06-01

    The physical characteristics of fuel assemblies manufactured by the General Electric Company for boiling-water reactors are classified and described. The classification into assembly types is based on the GE reactor product line, the Characteristics Data Base (CDB) assembly class, and the GE fuel design. Thirty production assembly types are identified. Detailed physical data are presented for each assembly type in an appendix. Descriptions of special (nonstandard) fuels are also reported. 52 refs., 1 fig., 6 tabs

  12. Validation of the U.S. NRC coupled code system TRITON/TRACE/PARCS with the special power excursion reactor test III (SPERT III)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. C.; Xu, Y.; Downar, T. [Dept. of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Ann Arbor, MI 48104 (United States); Hudson, N. [RES Div., U.S. NRC, Rockville, MD (United States)

    2012-07-01

    The Special Power Excursion Reactor Test III (SPERT III) was a series of reactivity insertion experiments conducted in the 1950's. This paper describes the validation of the U.S. NRC Coupled Code system TRITON/PARCS/TRACE to simulate reactivity insertion accidents (RIA) by using several of the SPERT III tests. The work here used the SPERT III E-core configuration tests in which the RIA was initiated by ejecting a control rod. The resulting super-prompt reactivity excursion and negative reactivity feedback produced the familiar bell shaped power increase and decrease. The energy deposition during such a power peak has important safety consequences and provides validation basis for core coupled multi-physics codes. The transients of five separate tests are used to benchmark the PARCS/TRACE coupled code. The models were thoroughly validated using the original experiment documentation. (authors)

  13. Proceedings of 2. Yugoslav symposium on reactor physics, Part 3, Herceg Novi (Yugoslavia), 27-29 Sep 1966

    International Nuclear Information System (INIS)

    1966-01-01

    This Volume 3 of the Proceedings of 2. Yugoslav symposium on reactor physics includes three papers describing the following: model for spatial synthesis of automated control system of the GCR type reactor; model for analysis of hydrodynamic processes at the BHWR type reactors; mathematical model for safety analysis of heavy water power reactor

  14. Detailed modeling of KALININ-3 NPP VVER-1000 reactor pressure vessel by the coupled system code ATHLET/BIPR-VVER

    International Nuclear Information System (INIS)

    Nikonov, S.P.; Velkov, K.; Pautz, A.

    2011-01-01

    The paper gives an overview of the recent developments of a new reactor pressure vessel (RPV) model of VVER-1000 for the coupled system code ATHLET/BIPR-VVER. Based on the previous experience a methodology is worked out for modeling the RPV in a pseudo-3D way with the help of a multiple parallel thermal-hydraulic channel scheme that follows the hexagonal fuel assembly structure from the bottom to the top of the reactor. The results of the first application of the new modeling are discussed on the base of the OECD/NEA coupled code benchmark for Kalinin-3 NPP transient. Coolant mass flow distributions in reactor volume of VVER 1000 reactor are presented and discussed. It is shown that along the core height a mass flow re-distribution of the coolant takes place starting approximately at an axial layer located 1 meter below the core outlet. (author)

  15. Overview of Experiments for Physics of Fast Reactors from the International Handbooks of Evaluated Criticality Safety Benchmark Experiments and Evaluated Reactor Physics Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bess, J. D.; Briggs, J. B.; Gulliford, J.; Ivanova, T.; Rozhikhin, E. V.; Semenov, M. Yu.; Tsibulya, A. M.; Koscheev, V. N.

    2017-07-01

    Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energy Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning

  16. Molten salt reactors and the oil sands: odd couple or key to north american energy independence?

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, D., E-mail: d_leblanc@rogers.com [Ottawa Valley Research Associates Ltd., Ottawa, Ontario (Canada); Quesada, M.; Popoff, C.; Way, D. [Penumbra Energy, Calgary, Alberta (Canada)

    2012-07-01

    liquid fuel reactors along with their obvious potential use in oil sands development for steam, electricity and thermochemical hydrogen production. While interest in MSRs with the public, governments and the financial sector is expanding, the major development funding required and lead times of at least 10 years hinders the proving of MSR's great potential. Oil Sands developers are quite familiar with long development programs, have no shortage of funding, and should be attracted by the new economic realities of combined MSR-Oil Sands Projects. The public and government should be similarly motivated by the promise of a step change in environmental performance in energy development, the stimulation of jobs and creation future tax revenues on the strength of our own innovation and resources. This 'odd couple' arrangement may prove a great partnership for all and a tremendous opportunity for Canada.

  17. Fusion reactor physics and technology. Progress report, October 1, 1978-June 30, 1979

    International Nuclear Information System (INIS)

    Conn, R.W.; Kulcinski, G.L.; Maynard, C.W.

    1979-01-01

    During the present contract period, work has been carried out in the following areas: (a) The NUWMAK tokamak reactor design was completed and distributed throughout the community. In particular, specific work was completed on divertorless tokamak operation in NUWMAK, Ti alloy assessment, materials resource implications of NUWMAK style reactors, and an economic analysis; (b) Tandem mirror reactor technology studies were carried out on tandem mirror physics, the role of rf heating, power balance studies, the design of high field magnets, and blanket/shield design in TMR's; (c) work at Wisconsin is contributing to the evolving picture of an optimum TMR; (d) the WHIST tokamak reactor plasma transport code developed at Wisconsin has been extended in two directions; (e) Work on ICRF heating in tokamak reactors, both in terms of physics and launching structure design, has been completed and published

  18. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  19. Status of computer codes available in AEOI for reactor physics analysis

    International Nuclear Information System (INIS)

    Karbassiafshar, M.

    1986-01-01

    Many of the nuclear computer codes available in Atomic Energy Organization of Iran AEOI can be used for physics analysis of an operating reactor or design purposes. Grasp of the various methods involved and practical experience with these codes would be the starting point for interesting design studies or analysis of operating conditions of presently existing and future reactors. A review of the objectives and flowchart of commonly practiced procedures in reactor physics analysis of LWRs and related computer codes was made, extrapolating to the nationally and internationally available resources. Finally, effective utilization of the existing facilities is discussed and called upon

  20. Influence of reactor vessel nodalization in the coupled code analysis of Asymmetric Main Feedwater Isolation

    International Nuclear Information System (INIS)

    Bencik, V.; Feretic, D.; Grgic, D.

    2001-01-01

    Asymmetric Main Feedwater Isolation (AMFWI) transient in one Steam Generator (SG) for NPP Krsko using RELAP5 standalone code and coupled code RELAP5- QUABOX/CUBBOX (R5QC) was analyzed. In the RELAP5 standalone calculation, a point kinetics model was used, while in the coupled code a three-dimensional (3D) neutronics model of QUABOX with different RELAP5 nodalization schemes of reactor vessel was used. Both code versions use best-estimate thermal-hydraulic system code for all components in the plant and include realistic description of plant protection and control systems. Two different types of calculations were performed: with and without automatic control rod system available. The AMFWI transient causes the great asymmetry of the transferred heat in the SGs and subsequently the asymmetry of the power produced across the core due to different reactivity feedback resulting from the thermal-hydraulic channels assigned to different loops. The work presented in the paper is a part of validation of the 3D coupled code R5QC in the analysis of asymmetric transients.(author)

  1. Coupling finite elements and reliability methods - application to safety evaluation of pressurized water reactor vessels

    International Nuclear Information System (INIS)

    Pitner, P.; Venturini, V.

    1995-02-01

    When reliability studies are extended form deterministic calculations in mechanics, it is necessary to take into account input parameters variabilities which are linked to the different sources of uncertainty. Integrals must then be calculated to evaluate the failure risk. This can be performed either by simulation methods, or by approximations ones (FORM/SORM). Model in mechanics often require to perform calculation codes. These ones must then be coupled with the reliability calculations. Theses codes can involve large calculation times when they are invoked numerous times during simulations sequences or in complex iterative procedures. Response surface method gives an approximation of the real response from a reduced number of points for which the finite element code is run. Thus, when it is combined with FORM/SORM methods, a coupling can be carried out which gives results in a reasonable calculation time. An application of response surface method to mechanics reliability coupling for a mechanical model which calls for a finite element code is presented. It corresponds to a probabilistic fracture mechanics study of a pressurized water reactor vessel. (authors). 5 refs., 3 figs

  2. Transient simulation of an endothermic chemical process facility coupled to a high temperature reactor: Model development and validation

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Seker, Volkan; Revankar, Shripad T.; Downar, Thomas J.

    2012-01-01

    Highlights: ► Models for PBMR and thermochemical sulfur cycle based hydrogen plant are developed. ► Models are validated against available data in literature. ► Transient in coupled reactor and hydrogen plant system is studied. ► For loss-of-heat sink accident, temperature feedback within the reactor core enables shut down of the reactor. - Abstract: A high temperature reactor (HTR) is a candidate to drive high temperature water-splitting using process heat. While both high temperature nuclear reactors and hydrogen generation plants have high individual degrees of development, study of the coupled plant is lacking. Particularly absent are considerations of the transient behavior of the coupled plant, as well as studies of the safety of the overall plant. The aim of this document is to contribute knowledge to the effort of nuclear hydrogen generation. In particular, this study regards identification of safety issues in the coupled plant and the transient modeling of some leading candidates for implementation in the Nuclear Hydrogen Initiative (NHI). The Sulfur Iodine (SI) and Hybrid Sulfur (HyS) cycles are considered as candidate hydrogen generation schemes. Three thermodynamically derived chemical reaction chamber models are coupled to a well-known reference design of a high temperature nuclear reactor. These chemical reaction chamber models have several dimensions of validation, including detailed steady state flowsheets, integrated loop test data, and bench scale chemical kinetics. The models and coupling scheme are presented here, as well as a transient test case initiated within the chemical plant. The 50% feed flow failure within the chemical plant results in a slow loss-of-heat sink (LOHS) accident in the nuclear reactor. Due to the temperature feedback within the reactor core the nuclear reactor partially shuts down over 1500 s. Two distinct regions are identified within the coupled plant response: (1) immediate LOHS due to the loss of the sulfuric

  3. Core management and reactor physics aspects of the conversion of the NRU reactor to LEU

    International Nuclear Information System (INIS)

    Atfield, M.D.

    1985-01-01

    Results of work done to assess the effects of converting the NRU reactor to LEU are presented. The effects are small, and the operational rules and safety analysis, appropriate to the HEU core, will still apply. (author)

  4. Development of a coupled reactor with a catalytic combustor and steam reformer for a 5 kW solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Kang, Sanggyu; Lee, Kanghun; Yu, Sangseok; Lee, Sang Min; Ahn, Kook-Young

    2014-01-01

    Highlights: • Proposes the scale-up strategy to develop a large-scale coupled reactor. • Investigation of performance of steam reformer coupled with catalytic combustor. • Experimental parameters are inlet temp., air excess ratio, SCR, fuel utilization. • Evaluation of the heat transfer distribution along the gas flow direction. • The mean value of methane conversion rate is approximately 93.4%. - Abstract: The methane (CH 4 ) conversion rate of a steam reformer can be increased by thermal integration with a catalytic combustor, called a coupled reactor. In the present study, a 5 kW coupled reactor has been developed based on a 1 kW coupled reactor in previous work. The geometric parameters of the space velocity, diameter and length of the coupled reactor selected from the 1 kW coupled reactor are tuned and applied to the design of the 5 kW coupled reactor. To confirm the scale-up strategy, the performance of 5 kW coupled reactor is experimentally investigated with variations of operating parameters such as the fuel utilization in the solid oxide fuel cell (SOFC) stack, the inlet temperature of the catalytic combustor, the excess air ratio of the catalytic combustor, and the steam to carbon ratio (SCR) in the steam reformer. The temperature distributions of coupled reactors are measured along the gas flow direction. The gas composition at the steam reformer outlet is measured to find the CH 4 conversion rate of the coupled reactor. The maximum value of the CH 4 conversion rate is approximately 93.4%, which means the proposed scale-up strategy can be utilized to develop a large-scale coupled reactor

  5. Benefits of reactor physics experiments for the HTGR industrial development - an attempt to a quantitative approach

    Energy Technology Data Exchange (ETDEWEB)

    Cuniberti, R; Graziani, G; Massino, L; Rinaldini, C; Zanantoni, C

    1972-10-15

    The available results of reactor physics experiments on HTGRs and their accuracies are briefiy reviewed. The physical quantities of interest are grouped into three categories: basic nuclear data, lattice parameters and integral design data. The last two are considered and their possible improvements in accuracy by means of experimental measurements are assessed. The cost penalty on fuel cycle and capital cost due to each physical quantity is then considered, and consequently the benefits of reactor physics experiments are evaluated for a number of hypotheses concerning the foreseeable HTGR development and the delay in taking practical advantage of experimental results. It is concluded that, at the present state of knowledge of basic nuclear data and with the available calculation methods, the economic incentive to new reactor physics experiments is small, and a previous careful analysis is recommended to those intending to perform such experiments.

  6. Advanced methodology to simulate boiling water reactor transient using coupled thermal-hydraulic/neutron-kinetic codes

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Christoph Oliver

    2016-06-13

    Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools. The generation of cross-section (XS) libraries, depending on the individual thermal-hydraulic state parameters, is of paramount importance for coupled simulations. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running commercial and user-friendly lattice codes such as CASMO and HELIOS. In this dissertation a computational route, based on the lattice code SCALE6/TRITON, the cross-section interface GenPMAXS, the best-estimate thermal-hydraulic system code TRACE and the core simulator PARCS, for best-estimate simulations of Boiling Water (BWR) transients has been developed and validated. The computational route has been supplemented by a subsequent uncertainty and sensitivity study based on Monte Carlo sampling and propagation of the uncertainties of input parameters to the output (SUSA code). The analysis of a single BWR fuel assembly depletion problem with PARCS using SCALE/TRITON cross-sections has been shown a good agreement with the results obtained with CASMO cross-section sets. However, to compensate the deficiencies of the interface program GenPMAXS, PYTHON scripts had to be developed to incorporate missing data, as the yields of Iodine, Xenon and Promethium, into the cross-section-data sets (PMAXS-format) generated by GenPMAXS from the SCALE/TRITON output. The results of the depletion analysis of a full BWR core with PARCS have indicated the importance of considering history effects, adequate modeling of the reflector region and the control rods, as the PARCS simulations for depleted fuel and all control rods inserted (ARI) differs significantly at the fuel assembly top and bottom. Systematic investigations with the coupled codes TRACE/PARCS have been performed to analyse the core behaviour at different thermal conditions using nuclear data (XS

  7. Activity report of working party on reactor physics of subcritical system. October 2001 to March 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Subcritical System (ADS-WP) was set in July 2001 to research reactor physics of subcritical system such as Accelerator-Driven System (ADS). The WP, at the first meeting, discussed a guideline of its activity for two years and decided to perform theoretical research for the following subjects: (1) study of reactor physics for a subcritical core, (2) benchmark problems for a subcritical core and their calculations, (3) study of physical parameters affecting to set subcriticality of ADS, and (4) study of measurement and surveillance methods of subcriticality of a subcritical core. The activity of ADS-WP continued up to March 2003. In this duration, the members of the WP met together eight times, including four meetings jointly held with the Workshop on Accelerator-Driven Subcritical Reactor at Kyoto University Research Reactor Institute. This report summarizes the result obtained by the above WP activity and research. (author)

  8. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Science.gov (United States)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  9. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G.; Perlado, J.M. E-mail: mperlado@denim.upm.es; Alonso, E.; Alonso, M.; Dominguez, E.; Rubiano, J.G.; Gil, J.M.; Gomez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martinez-Val, J.M.; Minguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P

    2001-05-21

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT{sub x} fuel with a small tritium initial content (x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures ({>=}100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower T{sub e} and to enhance radiation losses, reducing the plasma temperature, T{sub i}. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination

  10. Applications of Oregon State University's TRIGA reactor in health physics education

    International Nuclear Information System (INIS)

    Higginbotham, J.F.

    1990-01-01

    The Oregon State University TRIGA reactor (OSTR) is used to support a broad range of traditional academic disciplines, including anthropology, oceanography, geology, physics, nuclear chemistry, and nuclear engineering. However, it also finds extensive application in the somewhat more unique area of health physics education and research. This paper summarizes these health physics applications and briefly describes how the OSTR makes important educational contributions to the field of health physics

  11. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled molten salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Suizheng; Zhang, Dalin; Liu, Minghao; Liu, Limin; Xu, Rongshuan; Gong, Cheng; Su, Guanghui [Xi' an Jiaotong Univ. (China). State Key Laboratory of Multiphase Flow in Power Engineering

    2016-05-15

    Molten salt reactor (MSR) as one candidate of the Generation IV advanced nuclear power systems is attracted more attention in China due to its top ranked fuel cycle and thorium utilization. The MSRs are characterized by using liquid-fuel, which offers complicated coupling problem of neutronics and thermal hydraulics. In this paper, the fundamental model and numerical method are established to calculate and analyze the safety characteristics for liquid-fuel MSRs. The theories and methodologies are applied to the MOSART concept. The liquid-fuel flow effects on neutronics, reactivity coefficients and three operation parameters' influences at steady state are obtained, which provide the basic information for safety analysis. The unprotected loss of flow transient is calculated, the results of which shows the inherent safety characteristics of MOSART due to its strong negative reactivity feedbacks.

  12. Bifurcation in the Lengyel–Epstein system for the coupled reactors with diffusion

    Directory of Open Access Journals (Sweden)

    Shaban Aly

    2016-01-01

    Full Text Available The main goal of this paper is to continue the investigations of the important system of Fengqi et al. (2008. The occurrence of Turing and Hopf bifurcations in small homogeneous arrays of two coupled reactors via diffusion-linked mass transfer which described by a system of ordinary differential equations is considered. I study the conditions of the existence as well as stability properties of the equilibrium solutions and derive the precise conditions on the parameters to show that the Hopf bifurcation occurs. Analytically I show that a diffusion driven instability occurs at a certain critical value, when the system undergoes a Turing bifurcation, patterns emerge. The spatially homogeneous equilibrium loses its stability and two new spatially non-constant stable equilibria emerge which are asymptotically stable. Numerically, at a certain critical value of diffusion the periodic solution gets destabilized and two new spatially nonconstant periodic solutions arise by Turing bifurcation.

  13. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled molten salt reactors

    International Nuclear Information System (INIS)

    Qiu, Suizheng; Zhang, Dalin; Liu, Minghao; Liu, Limin; Xu, Rongshuan; Gong, Cheng; Su, Guanghui

    2016-01-01

    Molten salt reactor (MSR) as one candidate of the Generation IV advanced nuclear power systems is attracted more attention in China due to its top ranked fuel cycle and thorium utilization. The MSRs are characterized by using liquid-fuel, which offers complicated coupling problem of neutronics and thermal hydraulics. In this paper, the fundamental model and numerical method are established to calculate and analyze the safety characteristics for liquid-fuel MSRs. The theories and methodologies are applied to the MOSART concept. The liquid-fuel flow effects on neutronics, reactivity coefficients and three operation parameters' influences at steady state are obtained, which provide the basic information for safety analysis. The unprotected loss of flow transient is calculated, the results of which shows the inherent safety characteristics of MOSART due to its strong negative reactivity feedbacks.

  14. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    Science.gov (United States)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  15. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    International Nuclear Information System (INIS)

    Baratta, A.J.

    1997-01-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together

  16. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  17. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    International Nuclear Information System (INIS)

    Moiseyev, A.V.

    2008-01-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k eff , control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  18. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moiseyev, A.V. [SSC RF - IPPE, 1 Bondarenko Square, Obninsk, Kaluga Region 249033 (Russian Federation)

    2008-07-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k{sub eff}, control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  19. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems. Final report

    International Nuclear Information System (INIS)

    Harty, R.B.; Durand, R.E.

    1993-03-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage

  20. Granulation for Coking Wastewater Treatment in a Coupled Anaerobic-Aerobic Reactor

    Science.gov (United States)

    Dong, Chunjuan; Lv, Bingnan

    2018-06-01

    A coupled anaerobic-aerobic granular bio-film reactor was employed with two operation stages: Stage I, granular sludge was formed from digestion sludge using brewery wastewater, and Stage II, granular sludge was acclimatized using coking wastewater. Two oxygenation methods (i.e. A and B) were employed to acclimatize the granules. For method A, dissolved O 2 was supplied through a continuous oxygenation way of 800-15000ml-min-1 . And for method B, dissolved O2 was supplied of 800-15000ml-min-1 18-12 times at 20-60min intervals, 1h each time. The experimental results showed that granules could quickly form in 10d in the EGSB reactor seeded with digestion sludge and little loose granules lack of nutrition, and it was the key factor for granules forming to add little loose granules. It took only about 6 months for granules acclimation using coking wastewater. Both oxygenation methods could run well when acclimatizing the granules. However, method A could have comparatively high and stable operation effect. The actual coking wastewater had distinct inhibition effect on the granules, but the supplement of some oxygen could promote the recovery of SMA, and NaHCO3 supplement could also weaken the inhibition effect of the CWW. Method A had more strongly activity recovery ability than method B.

  1. Coupled fluid/structure response of a reactor cover to slug impact loading

    International Nuclear Information System (INIS)

    Smith, B.L.; Saurer, G.; Wanner, R.; Palsson, H.

    1983-05-01

    The response of an LMFBR roof structure to slug impact loads is investigated using a combined 2D and 3D approach based on the containment code SEURBNUK and the finite element structure code ADINA. A specimen roof design of box-type construction with concrete infill is adopted for the study, with dimensions appropriate to a commercial-sized fast reactor of the 'pool' type. Provision is made in the model for the location of the major roof penetrations, and the roof annulus is closed in the central section by a rigid, but movable plug concentric with the axis of symmetry. An interface between the codes SEURBNUK and ADINA is made possible by defining a 2D substitute roof model with material properties chosen to match the principal response characteristics of the detailed model. The SEURBNUK code, recently extended to account for coupling of roof loading and roof response, uses the 2D model, incorporated in an appropriate reactor geometry, to examine the fluid-structure interactions and to supply roof pressure loadings for the ADINA runs. A strategy for cross-checking the structural equivalence of the 2D and 3D roof models is developed, and this operates in parallel with the loading and response computations. The first exploratory SEURBNUK calculations are described in which the roof is represented by a simple homogeneous plate. (Auth.)

  2. Application of S-CO{sub 2} Cycle for Small Modular Reactor coupled with Desalination System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woong; Bae, Seong Jun; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean small modular reactor, SMART (System-integrated Modular Advanced ReacTor, 100MWe), is designed to achieve enhanced safety and improved economics through reliable passive safety systems, a system simplification and component modularization. SMART can generate electricity and provide water by seawater desalination. However, due to the desalination aspect of SMART, the total amount of net electricity generation is decreased from 100MWe to 90MWe. The authors suggest in this presentation that the reduction of electricity generation can be replenished by applying S-CO{sub 2} power cycle technology. The S-CO{sub 2} Brayton cycle, which is recently receiving significant attention as the next generation power conversion system, has some benefits such as high cycle efficiency, simple configuration, compactness and so on. In this study, the cycle performance analysis of the S-CO{sub 2} cycles for SMART with desalination system is conducted. The simple recuperated S-CO{sub 2} cycle is revised for coupling with desalination system. The three revised layout are proposed for the cycle performance comparison. In this results of the 3rd revised layout, the cycle efficiency reached 37.8%, which is higher than the efficiency of current SMART with the conventional power conversion system 30%.

  3. Improvement of inherent safety features in CSR (Coupled Spectrum Reactor) for treating MA

    International Nuclear Information System (INIS)

    Aziz, F.; Kitamoto, Asashi.

    1996-01-01

    Burning and/or transmutation (B/T) of MA is proposed here using a CSR (Coupled Spectrum Reactor) concept. CSR was based on a modified conventional 1150 MWe-PWR system, and consisted of two core regions for thermal and fast neutrons, respectively. The B/T fuel used was supposed such that MA discharged from 1 GWe-LWR were mixed homogeneously in LWR fuel. The geometry of B/T fuel in the outer region was left the same with that of PWR, while in the inner region the B/T fuel was arranged in a tight-lattice geometry that allowed a higher fuel to coolant volume ratio, (V m /V f ). In order to improve its inherent safety features, several cases of CSR were studied and compared, each case used different fuel type in the inner region. The result of the calculations showed that safety features can be improved by using composite fuel of ( 235 U-Pu- 238 U) in the inner region. The equilibrium of main isotopes in CSR can be achieved after about 5 recycle stages. This study also showed that the CSR can burn and transmute MA up to 808 kg/stage in a single reactor operated with a reactivity swing of 2.8 % Δk/kk'. (author)

  4. Application of S-CO_2 Cycle for Small Modular Reactor coupled with Desalination System

    International Nuclear Information System (INIS)

    Lee, Won Woong; Bae, Seong Jun; Lee, Jeong Ik

    2016-01-01

    The Korean small modular reactor, SMART (System-integrated Modular Advanced ReacTor, 100MWe), is designed to achieve enhanced safety and improved economics through reliable passive safety systems, a system simplification and component modularization. SMART can generate electricity and provide water by seawater desalination. However, due to the desalination aspect of SMART, the total amount of net electricity generation is decreased from 100MWe to 90MWe. The authors suggest in this presentation that the reduction of electricity generation can be replenished by applying S-CO_2 power cycle technology. The S-CO_2 Brayton cycle, which is recently receiving significant attention as the next generation power conversion system, has some benefits such as high cycle efficiency, simple configuration, compactness and so on. In this study, the cycle performance analysis of the S-CO_2 cycles for SMART with desalination system is conducted. The simple recuperated S-CO_2 cycle is revised for coupling with desalination system. The three revised layout are proposed for the cycle performance comparison. In this results of the 3rd revised layout, the cycle efficiency reached 37.8%, which is higher than the efficiency of current SMART with the conventional power conversion system 30%

  5. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  6. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  7. Complementarity of integral and differential experiments for reactor physics purposes

    International Nuclear Information System (INIS)

    Tellier, Henry.

    1981-04-01

    In this paper, the following topics are studied: uranium 238 effective integral; thermal range uranium 238 capture cross section; Americium 242 m capture cross section. The mentioned examples show that differential and integral experiments are both useful to the reactor physicists

  8. Coupling of aerosol behaviour and thermal-hydraulics. Reinforced concerted action on reactor safety source term project

    International Nuclear Information System (INIS)

    Bieder, U.; Fynbo, P.; Jokiniemi, J.; Paller, A.; Schatz, A.

    1993-12-01

    The status of the experimental work (LACE, KAEUER, FALCON test facilities, DEMONA and VANAM experiments) and the new generation of computer codes (eg. CONTAIN, FIPLOC-M, ITHACA, GOTHIC-M) for a coupled calculation of thermohydraulic and aerosol processes is reviewed and the lack of the present state of knowledge is summarized. The role of the coupled calculations with respect to advanced reactor design and to operating LWRs is also considered. (HP)

  9. A review of reactor physics uncertainties and validation requirements for the modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Baxter, A.M.; Lane, R.K.; Hettergott, E.; Lefler, W.

    1991-01-01

    The important, safety-related, physics parameters for the low-enriched Modular High-Temperature gas-Cooled Reactor (MHTGR) such as control rod worth, shutdown margins, temperature coefficients, and reactivity worths, are considered, and estimates are presented of the uncertainties in the calculated values of these parameters. The basis for the uncertainty estimate in several of the important calculated parameters is reviewed, including the available experimental data used in obtaining these estimates. Based on this review, the additional experimental data needed to complete the validation of the methods used to calculate these parameters is presented. The role of benchmark calculations in validating MHTGR reactor physics data is also considered. (author). 10 refs, 5 figs, 3 tabs

  10. Fast Reactor Physics. Vol. II. Proceedings of a Symposium on Fast Reactor Physics and Related Safety Problems

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held in Karlsruhe, 30 October - 3 November 1967. The meeting was attended by 183 scientists from 23 countries and three international organizations. Contents: (Vol.1) Review of national programmes (5 papers); Nuclear data for fast reactors (12 papers); Experimental methods (3 papers); Zoned systems (7 papers); Kinetics (7 papers). (Vol.11) Fast critical experiments (8 papers); Heterogeneity in fast critical experiments (5 papers); Fast power reactors (13 papers); Fast pulsed reactors (3 papers); Panel discussion. Each paper is in its original language (50 English, 11 French and 3 Russian) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  11. Validation of High-Fidelity Reactor Physics Models for Support of the KJRR Experimental Campaign in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nielsen, Joseph W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Norman, Daren R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-01

    The Korea Atomic Energy Research Institute is currently in the process of qualifying a Low-Enriched Uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the Northeast Flux Trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618g 235U) in comparison with historical ATR experiment standards (<1g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be well outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations. Accordingly it was necessary, prior to high-power irradiation of the KJRR fuel element in the ATR, to conduct an extensive set of new low-power physics measurements with the KJRR fuel element installed in the ATR Critical Facility (ATRC), a companion facility to the ATR that is located in an immediately adjacent building, sharing the same fuel handling and storage canal. The new measurements had the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future. The computational and experimental results demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well-understood, both in terms of its general effects on core excess reactivity and fission power distributions, its effects on the calibration of the core lobe power measurement system, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.

  12. An overview of the current status of resonance theory in reactor physics applications

    International Nuclear Information System (INIS)

    Hwang, R.N.

    1993-01-01

    The neutron resonance phenomena constitute one of the most fundamental subjects in nuclear physics as well as in reactor physics. It is the area where the concepts of nuclear interaction and the treatment of the neutronic balance in reactor lattices become intertwined. The later requires the detailed knowledge of resonance structures of many nuclide of practical interest to the development of nuclear energy. The key issue of the resonance treatment in reactor applications is directly associated with the use of the microscopic cross sections in the macroscopic reactor cells with a wide range of composition, temperature,and geometric configurations. It gives rise to the so called self-shielding effect. The accurate estimations of such a effect is essential not only in the calculation of the criticality of a reactor but also from the point of view of safety considerations. The latter manifests through the Doppler effect particularly crucial to the fast reactor development. The task of accurate treatment of the self-shielding effect, however, is by no means simple. In fact, it is perhaps the most complicated problem in neutron physics which, strictly speaking, requires the dependence of many physical variables. Two important elements of particular interest are : (1) a concise description of the resonance cross sections as a function of energy and temperature; (2) accurate estimation of the corresponding neutron flux where appropriate. These topics will be discussed from both the historical as well as the state-of-art perspectives

  13. First physical start-up for the first pulsed reactor in China

    International Nuclear Information System (INIS)

    Huang Wenlou; Tan Rilin; Xie Yuqi; Chai Songshan; Li Yingfa; He Qianming; Zhou Bin

    1993-01-01

    The characteristics and the test results of initial loading fuel and first physical start-up for the first pulsed reactor in China (PRC-1) are described. Safe measure to ensure safety of first physical start-up are also described. The experiments show that performances of PRC-1 are in accord with design requirements

  14. Franco-German cooperation for the physical protection of the EPR reactor

    International Nuclear Information System (INIS)

    Jalouneix, J.; Hagemann, A.

    2001-01-01

    This article presents the proceeding that has been followed in the EPR (European pressurized water reactor) project concerning physical protection against malevolent actions and robbery of nuclear materials. Before the different options of the nuclear island were definitely set, a task group had been constituted to examine if these options could hamper the setting of physical protection measures that are required by the legislation of the 2 countries. Another group composed of experts from IPSN/GRS (Institut de Protection et de Surete Nucleaire / Gesellschaft fur Anlagen und Reaktorsicherheit) had the task to define common requirements concerning the physical protection of reactors in Germany and in France. In this framework the EPR project team has prepared a technical document reviewing the different dispositions that have been retained to assure the physical protection of the reactor. (A.C.)

  15. Coupled thermo-mechanical creep analysis for boiling water reactor pressure vessel lower head

    International Nuclear Information System (INIS)

    Villanueva, Walter; Tran, Chi-Thanh; Kudinov, Pavel

    2012-01-01

    Highlights: ► We consider a severe accident in a BWR with melt pool formation in the lower head. ► We study the influence of pool depth on vessel failure mode with creep analysis. ► There are two modes of failure; ballooning of vessel bottom and a localized creep. ► External vessel cooling can suppress creep and subsequently prevent vessel failure. - Abstract: In this paper we consider a hypothetical severe accident in a Nordic-type boiling water reactor (BWR) at the stage of relocation of molten core materials to the lower head and subsequent debris bed and then melt pool formation. Nordic BWRs rely on reactor cavity flooding as a means for ex-vessel melt coolability and ultimate termination of the accident progression. However, different modes of vessel failure may result in different regimes of melt release from the vessel, which determine initial conditions for melt coolant interaction and eventually coolability of the debris bed. The goal of this study is to define if retention of decay-heated melt inside the reactor pressure vessel is possible and investigate modes of the vessel wall failure otherwise. The mode of failure is contingent upon the ultimate mechanical strength of the vessel structures under given mechanical and thermal loads and applied cooling measures. The influence of pool depth and respective transient thermal loads on the reactor vessel failure mode is studied with coupled thermo-mechanical creep analysis. Efficacy of control rod guide tube (CRGT) cooling and external vessel wall cooling as potential severe accident management measures is investigated. First, only CRGT cooling is considered in simulations revealing two different modes of vessel failure: (i) a ‘ballooning’ of the vessel bottom and (ii) a ‘localized creep’ concentrated within the vicinity of the top surface of the melt pool. Second, possibility of in-vessel retention with CRGT and external vessel cooling is investigated. We found that the external vessel

  16. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Chen-Long; Liu, Xiao; Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Shan, Bin, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

    2015-07-15

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas–solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al{sub 2}O{sub 3} films on spherical SiO{sub 2} NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  17. Python-based framework for coupled MC-TH reactor calculations

    International Nuclear Information System (INIS)

    Travleev, A.A.; Molitor, R.; Sanchez, V.

    2013-01-01

    We have developed a set of Python packages to provide a modern programming interface to codes used for analysis of nuclear reactors. Python classes can be classified by their functionality into three groups: low-level interfaces, general model classes and high-level interfaces. A low-level interface describes an interface between Python and a particular code. General model classes can be used to describe calculation geometry and meshes to represent system variables. High-level interface classes are used to convert geometry described with general model classes into instances of low-level interface classes and to put results of code calculations (read by low-interface classes) back to general model. The implementation of Python interfaces to the Monte Carlo neutronics code MCNP and thermo-hydraulic code SCF allow efficient description of calculation models and provide a framework for coupled calculations. In this paper we illustrate how these interfaces can be used to describe a pin model, and report results of coupled MCNP-SCF calculations performed for a PWR fuel assembly, organized by means of the interfaces

  18. A Physical Description of the Response of Coupled Beams

    DEFF Research Database (Denmark)

    Hugin, Claus Thomas

    1997-01-01

    An analytical method is presented for computing the vibrational response and the net transmitted power of bending wave fields in system consisting of coupled finite beams. The method is based on a wave approach that utilises the reflection and transmission coefficients of the different beam joint...... are valid for frequencies above which the influence of the reflected near fields for each of the beam elements is negligible. The method is demonstrated on different configurations of beams coupled in extension of each other....

  19. Achievements and future directions in the reactors physics and nuclear safety research

    International Nuclear Information System (INIS)

    Dumitrache, Ion

    2001-01-01

    A historical overlook is presented with respect to inception and development of reactor physics research and on the job training in Romania. First these activities were carried out at the Institute for Atomic Physics and Institute for Power Reactors (IRNE) in Bucharest and afterward at the Institute for Nuclear Technologies, later on transformed in the Institute of Nuclear Research at Pitesti. CYBER Computer installed at Pitesti allowed formation in as early as 1971 reactor specialists who worked out computer programs for neutron physics calculations. These specialists were able to assimilate the characteristic of CANDU 6 type reactor as well as the AECL methodology of simulating processes of CANDU reactor physics. At present four programs are under way. These are: 1. The nuclear reactor physics; 2. The nuclear facility safety; 3. Safety analyses for the transport and radioactive waste disposal; 4. Analyses for radiation shielding and biological protection. There are presented results of the work associated to the CANDU type reactor: 1. Adapting and improving the code system for neutron and thermohydraulic calculation for CANDU type reactor, as supplied by AECL; 2. The IRNE manual for CANDU reactor neutron designing; 3. Final sizing of shim rods of Cernavoda NPP Unit 2; 4. Tests and measurements of reactor physics at the Cernavoda NPP Unit 1 commissioning; 5. Simulation and independent analysis of thermosiphoning carried out at Cernavoda NPP Unit 1 commissioning; 6. Static and dynamical response of the detectors in the CANDU reactor core and their time evolution following the burnup in the neutron flux and their ageing effects; 7. PSA studies at Unit 1; 8. Safety analyses for the radioactive waste disposal at Saligny repository. Also, reported are the results of the work associated to the TRIGA reactor, as follows: 1. Flux measurements and neutron computations necessary in the reactor commissioning; 2. Cleaning up controversial issues relating to neutron flux

  20. Physics calculations for the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Kalimullah; Kier, P.H.; Hummel, H.H.

    1977-06-01

    Calculations of distributions of power and sodium void reactivity, unvoided and voided Doppler coefficients and steel and fuel worths have been performed using diffusion theory and first-order perturbation theory for the LWR discharge Pu-fueled CRBR at BOL, the FFTF-grade Pu-fueled CRBR at BOL and for the beginning and end of equilibrium cycle of the LWR-Pu-fueled CRBR. The results of the burnup and breeding ratio calculations performed for obtaining the reactor compositions during the equilibrium cycle are also reported. Effects of sodium and steel contents on the distributions of sodium void reactivity and steel worth have also been studied. Errors and uncertainties in the reactivity coefficients due to cross-sections and the two-dimensional geometric representations of the reactor used in the calculations have also been estimated. Comparisons of the results with those in the CRBR PSAR are also discussed

  1. Physics-magnetics trade studies for tandem mirror reactors

    International Nuclear Information System (INIS)

    Campbell, R.B.; Perkins, L.J.; Blackfield, D.T.

    1985-01-01

    We describe and present results obtained from the optimization package of the Tandem Mirror Reactor Systems Code. We have found it to be very useful in searching through multidimensional parameter space, and have applied it here to study the effect of choke coil field strength and net electric power on cost of electricity (COE) and mass utilization factor (MUF) for MINIMARS type reactors. We have found that a broad optimum occurs at B/sub choke/ = 26 T for both COE and MUF. The COE economy of scale approaches saturation at quite low powers, around 600 MW(e). The saturation is mainly due to longer construction times for large plants, and the associated time related costs. The MUF economy of scale does not saturate, at least for powers up to 2400 MW(e)

  2. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  3. Nuclear Data Measurements for 21st Century Reactor Physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rahmat Aryaeinejad; Jerald D. Cole; Mark W. Drigert; James K. Jewell; Christopher A. McGrath; David W. Nigg; Edward L. Reber

    2003-03-01

    The United States Department of Energy (DOE), Office of Nuclear Energy (NE) has embarked on a long-term program to significantly advance the science and technology of nuclear energy. This is in response to the overall national plan for accelerated development of domestic energy resources on several fronts, punctuated by recent dramatic events that have emphasized the need for the US to reduce its dependence on foreign petroleum supplies. Key aspects of the DOE-NE agenda are embodied in the Generation-IV (Gen-IV) advanced nuclear energy systems development program and in the Advanced Fuel Cycle (AFC) program. The planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current nuclear power reactor systems as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The success of the overall NE effort will depend not only on sophisticated system development and engineering, but also on the advances in the supporting sciences and technologies. Of these, one of the most important is the improvement of the relevant fundamental nuclear science data bases, especially the evaluated neutron interaction cross section files that serve as the foundation of all reactor system designs, operating strategies, and fuel cycle engineering activities. The new concepts for reactors and fuel cycles involve the use of transuranic nuclides that were previously of little interest, and where experimentally measured information is lacking. The current state of the cross section database for some of these nuclides is such that design computations for advanced fast-spectrum reactor systems and fuel cycles that incorporate such materials in significant quantities are meaningful only for approximate conceptual applications. No actual system could reliably be designed according to currently accepted standards, nor

  4. Nuclear Data Measurements for 21st Century Reactor Physics Applications

    International Nuclear Information System (INIS)

    Rahmat Aryaeinejad; Jerald D. Cole; Mark W. Drigert; James K. Jewell; Christopher A. McGrath; David W. Nigg; Edward L. Reber

    2003-01-01

    The United States Department of Energy (DOE), Office of Nuclear Energy (NE) has embarked on a long-term program to significantly advance the science and technology of nuclear energy. This is in response to the overall national plan for accelerated development of domestic energy resources on several fronts, punctuated by recent dramatic events that have emphasized the need for the US to reduce its dependence on foreign petroleum supplies. Key aspects of the DOE-NE agenda are embodied in the Generation-IV (Gen-IV) advanced nuclear energy systems development program and in the Advanced Fuel Cycle (AFC) program. The planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current nuclear power reactor systems as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The success of the overall NE effort will depend not only on sophisticated system development and engineering, but also on the advances in the supporting sciences and technologies. Of these, one of the most important is the improvement of the relevant fundamental nuclear science data bases, especially the evaluated neutron interaction cross section files that serve as the foundation of all reactor system designs, operating strategies, and fuel cycle engineering activities. The new concepts for reactors and fuel cycles involve the use of transuranic nuclides that were previously of little interest, and where experimentally measured information is lacking. The current state of the cross section database for some of these nuclides is such that design computations for advanced fast-spectrum reactor systems and fuel cycles that incorporate such materials in significant quantities are meaningful only for approximate conceptual applications. No actual system could reliably be designed according to currently accepted standards, nor

  5. Evaluation of the HTR-10 Reactor as a Benchmark for Physics Code QA

    International Nuclear Information System (INIS)

    William K. Terry; Soon Sam Kim; Leland M. Montierth; Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-01-01

    The HTR-10 is a small (10 MWt) pebble-bed research reactor intended to develop pebble-bed reactor (PBR) technology in China. It will be used to test and develop fuel, verify PBR safety features, demonstrate combined electricity production and co-generation of heat, and provide experience in PBR design, operation, and construction. As the only currently operating PBR in the world, the HTR-10 can provide data of great interest to everyone involved in PBR technology. In particular, if it yields data of sufficient quality, it can be used as a benchmark for assessing the accuracy of computer codes proposed for use in PBR analysis. This paper summarizes the evaluation for the International Reactor Physics Experiment Evaluation Project (IRPhEP) of data obtained in measurements of the HTR-10's initial criticality experiment for use as benchmarks for reactor physics codes

  6. Multi-component controllers in reactor physics optimality analysis

    International Nuclear Information System (INIS)

    Aldemir, T.

    1978-01-01

    An algorithm is developed for the optimality analysis of thermal reactor assemblies with multi-component control vectors. The neutronics of the system under consideration is assumed to be described by the two-group diffusion equations and constraints are imposed upon the state and control variables. It is shown that if the problem is such that the differential and algebraic equations describing the system can be cast into a linear form via a change of variables, the optimal control components are piecewise constant functions and the global optimal controller can be determined by investigating the properties of the influence functions. Two specific problems are solved utilizing this approach. A thermal reactor consisting of fuel, burnable poison and moderator is found to yield maximal power when the assembly consists of two poison zones and the power density is constant throughout the assembly. It is shown that certain variational relations have to be considered to maintain the activeness of the system equations as differential constraints. The problem of determining the maximum initial breeding ratio for a thermal reactor is solved by treating the fertile and fissile material absorption densities as controllers. The optimal core configurations are found to consist of three fuel zones for a bare assembly and two fuel zones for a reflected assembly. The optimum fissile material density is determined to be inversely proportional to the thermal flux

  7. Possible physics modifications to CIRUS reactor core for improved reactor utilization

    International Nuclear Information System (INIS)

    John, Benjamin; Khosla, S.K.; Narain, Rajendra.

    1976-01-01

    Two fuelling schemes for uprating the neutron flux in CIRUS reactor at Trombay, are studied. One scheme employs enriched uranium-aluminium alloy boosters, the second envisages employing thorium oxide enriched with 0.2% plutonium oxide. It is seen that the second scheme has the potential of in-situ thorium utilization. (M.G.B.)

  8. New approach to invariant-embedding methods in reactor physics calculations

    International Nuclear Information System (INIS)

    Forsbacka, M.J.; Rydin, R.A.

    1997-01-01

    Invariant-embedding methods offer an alternative approach to modeling physical phenomena and solving mathematical problems. Invariant embedding allows one to express traditional boundary-value problems as initial-value problems. In doing this, one effectively reformulates a problem to be solved in terms of an embedding parameter. In this paper, a hybrid method that consists of Monte Carlo-generated response functions that describe the neutronic properties of local spatial cells are coupled together in a global reactor model using the invariant embedding methodology, where the system multiplication factor k eff is used as the embedding parameter. Thus, k eff is computed directly rather than as the result of a secondary eigenvalue calculation. Because the response functions can represent any arbitrary material distribution within a local cell, this method shows promise to accurately assess the change in reactivity due to core disruptive accidents and other changes in system configuration such as changing control rod positions. This paper reports a series of proof-of-concept calculations that assess this method

  9. Hidden from view: coupled dark sector physics and small scales

    Science.gov (United States)

    Elahi, Pascal J.; Lewis, Geraint F.; Power, Chris; Carlesi, Edoardo; Knebe, Alexander

    2015-09-01

    We study cluster mass dark matter (DM) haloes, their progenitors and surroundings in a coupled dark matter-dark energy (DE) model and compare it to quintessence and Λ cold dark matter (ΛCDM) models with adiabatic zoom simulations. When comparing cosmologies with different expansions histories, growth functions and power spectra, care must be taken to identify unambiguous signatures of alternative cosmologies. Shared cosmological parameters, such as σ8, need not be the same for optimal fits to observational data. We choose to set our parameters to ΛCDM z = 0 values. We find that in coupled models, where DM decays into DE, haloes appear remarkably similar to ΛCDM haloes despite DM experiencing an additional frictional force. Density profiles are not systematically different and the subhalo populations have similar mass, spin, and spatial distributions, although (sub)haloes are less concentrated on average in coupled cosmologies. However, given the scatter in related observables (V_max,R_{V_max}), this difference is unlikely to distinguish between coupled and uncoupled DM. Observations of satellites of Milky Way and M31 indicate a significant subpopulation reside in a plane. Coupled models do produce planar arrangements of satellites of higher statistical significance than ΛCDM models; however, in all models these planes are dynamically unstable. In general, the non-linear dynamics within and near large haloes masks the effects of a coupled dark sector. The sole environmental signature we find is that small haloes residing in the outskirts are more deficient in baryons than their ΛCDM counterparts. The lack of a pronounced signal for a coupled dark sector strongly suggests that such a phenomena would be effectively hidden from view.

  10. Multimedia Course on Nuclear Reactors Physics, Application to a Tailored On the Job Training Course

    International Nuclear Information System (INIS)

    Dies, Javier

    2014-01-01

    In order to improve education and training quality, a Multimedia on Nuclear Reactor Physics has been developed. In some institutions, this course is called Fundamentals of Nuclear Reactor Operation. Nowadays, this multimedia has about 800 slides and the text is in Spanish, English, French and Russian. Until now about 126 institutions from 53 countries have applied for the multimedia. The teacher uses the multimedia during his lectures. Students use it at home to study this course

  11. Proceedings of the 1992 topical meeting on advances in reactor physics

    International Nuclear Information System (INIS)

    1992-01-01

    This document, Volume 1, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Code Benchmarks and Validation; Fuel Management; Nodal Methods for Diffusion Theory; Criticality Safety and Applications and Waste; Core Computational Systems; Nuclear Data; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual papers have been cataloged separately. (FI)

  12. Updates to the Generation of Physics Data Inputs for MAMMOTH Simulations of the Transient Reactor Test Facility - FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Benjamin Allen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick Nathan [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition, this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.

  13. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  14. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  15. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  16. Fully coupled modeling of burnup dependent light water reactor fuel performance using COMSOL Multiphysics

    International Nuclear Information System (INIS)

    Liu Rong; Zhou Wenzhong; Prudil, Andrew

    2015-01-01

    This paper presents the development of a light water reactor fuel performance code, which considers almost all the related physical models, including heat generation and conduction, species diffusion, thermomechanics (thermal expansion, elastic strain, densification, and fission product swelling strain), grain growth, fission gas production and release, gap heat transfer, mechanical contact, gap/plenum pressure with plenum volume, cladding thermal and irradiation creep and oxidation. All the equations are implemented into COMSOL Multiphysics finite-element platform with a 2D axisymmetric geometry of a fuel pellet and cladding. Comparisons are made for the simulation results between COMSOL and another simulation tool of BISON. The comparisons show the capability of our simulation tool to predict light water UO 2 fuel performances. In our modeling and simulation work, the performance of enhanced thermal conductivity UO 2 -BeO fuel and newly-adopted corrosion resistant SiC cladding material was also studied. UO 2 -BeO high thermal conductivity nuclear fuel would decrease fuel temperatures and facilitate a reduction in pellet cladding interaction through lessening thermal stresses that result in fuel cracking, relocation, and swelling. The safety of the reactor would be improved. However, for SiC cladding, although due to its high thermal expansion, the gap closure time is delayed, irradiation induced point defects and defect-clusters in the SiC crystal will dramatically decrease SiC thermal conductivity, and cause significant increase in the fuel temperature. (author)

  17. Higgs couplings: disentangling new physics with off-shell measurements.

    Science.gov (United States)

    Cacciapaglia, Giacomo; Deandrea, Aldo; La Rochelle, Guillaume Drieu; Flament, Jean-Baptiste

    2014-11-14

    After the discovery of a scalar resonance, resembling the Higgs boson, its couplings have been extensively studied via the measurement of various production and decay channels on the invariant mass peak. Recently, the possibility of using off-shell measurements has been suggested: in particular, the CMS Collaboration has published results based on the high-invariant mass cross section of the process gg→ZZ, which contains a contribution from the Higgs boson. While this measurement has been interpreted as a constraint on the Higgs width after very specific assumptions are taken on the Higgs couplings, in this Letter, we show that a much more model-independent interpretation is possible.

  18. Graphite reactor physics; Physique des piles a graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Noc, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm{sup 2}, channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [French] Entreprise il y a dix ans a l'occasion de la construction des piles de Marcoule, l'etude de la

  19. Physical particularities of nuclear reactors using heavy moderators of neutrons

    International Nuclear Information System (INIS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-01-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using "2"3"3U as a fissile nuclide and "2"3"2Th and "2"3"1Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  20. Physical particularities of nuclear reactors using heavy moderators of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.