WorldWideScience

Sample records for coupled quenched qed

  1. Quenched QED in the chiral limit

    International Nuclear Information System (INIS)

    Vandermark, S.W.

    1993-01-01

    The main goal in this project has been to understand, through analytical methods, whether there could be a continuum limit for QED. This possibility is motivated by recent lattice simulations on quenched QED which apparently exhibit a chiral phase transition at strong coupling in the chiral limit. Another goal is to develop a novel perturbation expansion which may also be usefully applied to other theories. The author begins with the general expression for the chiral order parameter, (bar ψψ), in the quenched limit of euclidean QED, where the number of fermion flavors goes to zero, using the path integral formulation. A cutoff scale, Λ, is introduced into the photon propagator and a new expansion, the open-quotes wormhole expansion,close quotes in powers of Λ 2 /m 2 , where m is the fermion mass, is derived. Graphical rules for the wormhole expansion of left-angle bar ψψ right-angle are described in detail. The author then devises algorithms to generate recursively the graphs at each successive order and to perform the loop momentum integral and γ matrix trace involved in the evaluation of each graph. These algorithms are implemented in Mathmatica and the left-angle bar ψψ right-angle expansion is carried out to order (Λ 2 / m 2 ) 6 . The author employs pade techniques to extrapolate this expansion to the chiral limit (Λ 2 /m 2 → ∞) and looks for a singularity at strong coupling to signal a phase transition. Indications have been found that there may be a phase transition but apparently there are not enough terms in the wormhole expansion to attain stability in our pade analysis. The author therefore cannot conclude that there is a chiral phase transition, although the results are consistent with the existence of one

  2. Dynamics of symmetry breaking in strongly coupled QED

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1988-10-01

    I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs

  3. The scalar-photon 3-point vertex in massless quenched scalar QED

    International Nuclear Information System (INIS)

    Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A

    2016-01-01

    Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)

  4. Physical pictures of symmetry breaking in quenched QED4

    International Nuclear Information System (INIS)

    Kogut, J.B.; Argonne National Lab., IL

    1989-01-01

    We discuss 'collapse of the wavefunction' as the phenomenon underlying chiral symmetry breaking in quenched QED4. The 1/r singularity in the 'collapsed' qanti q wavefunction causes 'catalyzed symmetry breaking' which is the field theoretic analog of 'monopole induced proton decay'. The evasion of mean field exponents by the quenched theory's chiral phase transition is emphasized. (orig.)

  5. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  6. From strong to ultrastrong coupling in circuit QED architectures

    Energy Technology Data Exchange (ETDEWEB)

    Niemczyk, Thomas

    2011-08-10

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  7. From strong to ultrastrong coupling in circuit QED architectures

    International Nuclear Information System (INIS)

    Niemczyk, Thomas

    2011-01-01

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  8. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems

    Science.gov (United States)

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-01-01

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654

  9. Proposed Quenching of Phonon-Induced Processes in Photoexcited Quantum Dots due to Electron-Hole Asymmetries

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    by photoluminescence excitation spectroscopy of a single quantum dot. We also investigate the implications for cavity QED, i.e., a coupled quantum dot-cavity system, and demonstrate that the phonon scattering may be strongly quenched. The quenching is explained by a balancing between the deformation potential...

  10. Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED.

    Science.gov (United States)

    Fodor, Z; Hoelbling, C; Krieg, S; Lellouch, L; Lippert, Th; Portelli, A; Sastre, A; Szabo, K K; Varnhorst, L

    2016-08-19

    In a previous Letter [Borsanyi et al., Phys. Rev. Lett. 111, 252001 (2013)] we determined the isospin mass splittings of the baryon octet from a lattice calculation based on N_{f}=2+1 QCD simulations to which QED effects have been added in a partially quenched setup. Using the same data we determine here the corrections to Dashen's theorem and the individual up and down quark masses. Our ensembles include 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashen's theorem, we obtain ϵ=0.73(2)(5)(17), where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, m_{u}=2.27(6)(5)(4) and m_{d}=4.67(6)(5)(4)  MeV in the modified minimal subtraction scheme at 2  GeV and the isospin breaking ratios m_{u}/m_{d}=0.485(11)(8)(14), R=38.2(1.1)(0.8)(1.4), and Q=23.4(0.4)(0.3)(0.4). Our results exclude the m_{u}=0 solution to the strong CP problem by more than 24 standard deviations.

  11. Chiral symmetry breaking in QED for weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.C. (Missouri Univ., Columbia, MO (USA). Dept. of Physics and Astronomy); Shen, T.C. (Illinois Univ., Urbana, IL (USA). Beckman Inst.)

    1991-05-01

    We examine the procedure for studying chiral symmetry breaking for weak coupling in QED. We note that while the lowest non-trivial order calculations using numerical solutions to the Schwinger-Dyson equation indicate a breaking of chiral symmetry, the neglected higher-order contributions to the effective potential have imaginary values which can indicate possible instabilities in the theory. (author).

  12. Chiral symmetry breaking in QED for weak coupling

    International Nuclear Information System (INIS)

    Huang, J.C.; Shen, T.C.

    1991-01-01

    We examine the procedure for studying chiral symmetry breaking for weak coupling in QED. We note that while the lowest non-trivial order calculations using numerical solutions to the Schwinger-Dyson equation indicate a breaking of chiral symmetry, the neglected higher-order contributions to the effective potential have imaginary values which can indicate possible instabilities in the theory. (author)

  13. Constraint on the QED vertex from the mass anomalous dimension γm = 1

    International Nuclear Information System (INIS)

    Bashir, A.; Pennington, M.R.

    1995-10-01

    We discuss the structure of the non-perturbative fermion-boson vertex in quenched QED. We show that it is possible to construct a vertex which not only ensures that the fermion propagator is multiplicatively renormalizable, obeys the appropriate Ward-Takahashi identity, reproduces perturbation theory for weak couplings and guarantees that the critical coupling at which the mass is dynamically generated is gauge independent but also makes sure that the value for the anomalous dimension for the mass function is strictly 1, as Holdom and Mahanta have proposed. (author). 8 refs

  14. Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED

    International Nuclear Information System (INIS)

    Sturm, Christian

    2013-01-01

    The running of the effective electromagnetic coupling is for many electroweak observables the dominant correction. It plays an important role for deriving constraints on the Standard Model in the context of electroweak precision measurements. We compute the four-loop QED corrections to the running of the effective electromagnetic coupling and perform a numerical evaluation of the different gauge invariant subsets

  15. Compact lattice QED with Wilson fermions

    International Nuclear Information System (INIS)

    Hoferichter, A.

    1994-08-01

    We study the phase structure and the chiral limit of 4d compact lattice QED with Wilson fermions (both dynamical and quenched). We use the standard Wilson gauge action and also a modified one suppressing lattice artifacts. Different techniques and observables to locate the chiral limit are discussed. (orig.)

  16. Critical number of flavors in QED

    International Nuclear Information System (INIS)

    Bashir, A.; Gutierrez-Guerrero, L. X.; Calcaneo-Roldan, C.; Tejeda-Yeomans, M. E.

    2011-01-01

    We demonstrate that in unquenched quantum electrodynamics (QED), chiral symmetry breaking ceases to exist above a critical number of fermion flavors N f . This is a necessary and sufficient consequence of the fact that there exists a critical value of electromagnetic coupling α beyond which dynamical mass generation gets triggered. We employ a multiplicatively renormalizable photon propagator involving leading logarithms to all orders in α to illustrate this. We study the flavor and coupling dependence of the dynamically generated mass analytically as well as numerically. We also derive the scaling laws for the dynamical mass as a function of α and N f . Up to a multiplicative constant, these scaling laws are related through (α,α c )↔(1/N f ,1/N f c ). Calculation of the mass anomalous dimension γ m shows that it is always greater than its value in the quenched case. We also evaluate the β function. The criticality plane is drawn in the (α,N f ) phase space which clearly depicts how larger N f is required to restore chiral symmetry for an increasing interaction strength.

  17. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  18. Algebraic renormalization of parity-preserving QED3 coupled to scalar matter II: broken case

    International Nuclear Information System (INIS)

    Cima, O.M. del; Franco, D.H.T.; Helayel-Neto, J.A.; Piguet, O.

    1996-11-01

    In this letter the algebraic renormalization method, which is independent of any kind of regularization scheme, is presented for the parity-preserving QED 3 coupled to scalar matter in the broken regime, where the scalar assumes a finite vacuum expectation value, =v. The model shows to be stable under radiative corrections and anomaly free. (author)

  19. Hopf-algebraic renormalization of QED in the linear covariant gauge

    Energy Technology Data Exchange (ETDEWEB)

    Kißler, Henry, E-mail: kissler@physik.hu-berlin.de

    2016-09-15

    In the context of massless quantum electrodynamics (QED) with a linear covariant gauge fixing, the connection between the counterterm and the Hopf-algebraic approach to renormalization is examined. The coproduct formula of Green’s functions contains two invariant charges, which give rise to different renormalization group functions. All formulas are tested by explicit computations to third loop order. The possibility of a finite electron self-energy by fixing a generalized linear covariant gauge is discussed. An analysis of subdivergences leads to the conclusion that such a gauge only exists in quenched QED.

  20. Thermal quench at finite 't Hooft coupling

    Directory of Open Access Journals (Sweden)

    H. Ebrahim

    2016-03-01

    Full Text Available Using holography we have studied thermal electric field quench for infinite and finite 't Hooft coupling constant. The set-up we consider here is D7-brane embedded in (α′ corrected AdS-black hole background. It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current will be produced and it will finally relax to its equilibrium value. We have studied the effect of different parameters of the system on equilibration time. As the most important results, for massless fundamental matter, we have observed a universal behaviour in the rescaled equilibration time in the very fast quench regime for different values of the temperature and α′ correction parameter. It seems that in the slow quench regime the system behaves adiabatically. We have also observed that the equilibration time decreases in finite 't Hooft coupling limit.

  1. First experience with the new Coupling Loss Induced Quench system

    CERN Document Server

    Ravaioli, E; Dudarev, A V; Kirby, G; Sperin, K A; ten Kate, H H J; Verweij, A P

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A new protection system called Coupling-Loss Induced Quench (CLIQ) was recently, developed and tested at CERN. This method provokes a fast change in the magnet transport current by means of a capacitive discharge. The resulting change in the local magnetic field induces inter-filament and inter-strand coupling losses which heat up the superconductor and eventually initiate a quench in a large fraction of the coil winding pack. The method is extensively tested on a Nb-Ti single-wire test solenoid magnet in the CERN Cryogenic Laboratory in order to assess its performance, optimize its operating parameters, and study new electrical configurations. Each parameter is thoroughly analyzed and its impact on the quench effi...

  2. Effective Lagrangian of QED

    International Nuclear Information System (INIS)

    Kaminski, J.Z.

    1981-01-01

    A renormalization group equation for the effective Lagrangian of QED is obtained. Starting from this equation, perturbation theory for the renormalization group equation (PTRGE) is developed. The results are in full agreement with the standard perturbation theory. Conjecturing that the asymptotic effective coupling constant is finite, the effective Lagrangian for a strong magnetic field is obtained, which is proportional to the Maxwellian Lagrangian. For the asymptotically free theories the situation is diametrically opposed to QED. In these cases the effective Lagrangian of the Yang-Mills system tends to infinity for very strong external Yang-Mills fields. (Auth.)

  3. Quench Protection and Magnet Powe Supply Requirements for the MICE Focusing and Coupling Magnets

    International Nuclear Information System (INIS)

    Green, Michael A.; Witte, Holger

    2005-01-01

    This report discusses the quench protection and power supply requirements of the MICE superconducting magnets. A section of the report discusses the quench process and how to calculate the peak voltages and hotspot temperature that result from a magnet quench. A section of the report discusses conventional quench protection methods. Thermal quench back from the magnet mandrel is also discussed. Selected quench protection methods that result in safe quenching of the MICE focusing and coupling magnets are discussed. The coupling of the MICE magnets with the other magnets in the MICE is described. The consequences of this coupling on magnet charging and quenching are discussed. Calculations of the quenching of a magnet due quench back from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. The conclusion of this report describes how the MICE magnet channel will react when one or magnets in that channel are quenched

  4. The Inductive Coupling of the Magnets in MICE and its Effect on Quench Protection

    International Nuclear Information System (INIS)

    Green, Michael A.; Witte, Holger

    2005-01-01

    The inductive coupling between various MICE magnet circuits is described. The consequences of this coupling on magnet charging and quenching are discussed. Magnet quench protection is achieved through the use of quench-back. Calculations of the quenching of a magnet due to quench-back resulting from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. This report describes how the MICE magnet channel will react when magnets in that channel are quenched

  5. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  6. Coupled continuous time-random walks in quenched random environment

    Science.gov (United States)

    Magdziarz, M.; Szczotka, W.

    2018-02-01

    We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.

  7. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  8. Atom-field dressed states in slow-light waveguide QED

    Science.gov (United States)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  9. Phase diagram of a QED-cavity array coupled via a N-type level scheme

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiasen; Rossini, Davide [CNR, NEST, Scuola Normale Superiore and Istituto di Nanoscienze, Pisa (Italy); Fazio, Rosario [CNR, NEST, Scuola Normale Superiore and Istituto di Nanoscienze, Pisa (Italy); National University of Singapore, Center for Quantum Technologies, Singapore (Singapore)

    2015-01-01

    We study the zero-temperature phase diagram of a one-dimensional array of QED cavities where, besides the single-photon hopping, an additional coupling between neighboring cavities is mediated by an N-type four-level system. By varying the relative strength of the various couplings, the array is shown to exhibit a variety of quantum phases including a polaritonic Mott insulator, a density-wave and a superfluid phase. Our results have been obtained by means of numerical density-matrix renormalization group calculations. The phase diagram was obtained by analyzing the energy gaps for the polaritons, as well as through a study of two-point correlation functions. (orig.)

  10. Dynamical Properties of Two Coupled Dissipative QED Cavities Driven by Coherent Fields

    International Nuclear Information System (INIS)

    Hou Bangpin; Sun Weili; Wang Shunjin; Wang Gang

    2007-01-01

    When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the environment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.

  11. Two-loop QED corrections to the Altarelli-Parisi splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Florian, Daniel de [International Center for Advanced Studies (ICAS), UNSAM,Campus Miguelete, 25 de Mayo y Francia (1650) Buenos Aires (Argentina); Sborlini, Germán F.R.; Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain)

    2016-10-11

    We compute the two-loop QED corrections to the Altarelli-Parisi (AP) splitting functions by using a deconstructive algorithmic Abelianization of the well-known NLO QCD corrections. We present explicit results for the full set of splitting kernels in a basis that includes the leptonic distribution functions that, starting from this order in the QED coupling, couple to the partonic densities. Finally, we perform a phenomenological analysis of the impact of these corrections in the splitting functions.

  12. Compact lattice QED with staggered fermions and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Hoferichter, A.; Mitrjushkin, V.K.; Mueller-Preussker, M.

    1994-07-01

    Different formulations of the 4d compact lattice QED with staggered fermions (standard Wilson and modified by suppression of lattice artifacts) are investigated by Monte Carlo simulations within the quenched approximation. We show that after suppressing lattice artifacts the system undergoes a phase transition from the Coulomb phase into a presumably weakly chirally broken phase only at (unphysical) negative β-values. (orig.)

  13. Electrical and Quench Performance of the First MICE Coupling Coil

    International Nuclear Information System (INIS)

    Tartaglia, M. A.; Carcagno, R.; Makulski, A.; Nogiec, Jerzy; Orris, D.; Pilipenko, R.; Sylvester, C.; Caspi, S.; Pan, H.; Prestemon, S.; Virostek, S.

    2014-01-01

    The first MICE Coupling Coil has been tested in a conduction-cooled environment in the new Solenoid Test Facility at Fermilab. We present an overview of the power and quench protection scheme, and report on the electrical and quench performance results obtained during cold power tests of the magnet

  14. Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.M.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; ONeale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2006-01-01

    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer through its effect on the angular spectrum of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This is the strongest direct evidence ever presented that the running of alpha is consistent with Standard Model expectations. The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running, and therefore provide the first clear experimental evidence that hadronic loops also contribute.

  15. Measurement of the running of the QED coupling in small angle Bhabha scattering with the OPAL detector

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, P.

    2005-06-01

    Using the high precision OPAL Silicon-Tungsten luminometer at LEP, the running of the effective QED coupling {alpha}(t) is measured for space-like momentum transfer 1.81 {<=} -t {<=} 6.07 GeV{sup 2} through its effect on the angular spectrum of small angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain a strong direct evidence that the running of {alpha}(t) is consistent with standard model expectations. The null hypothesis that {alpha} remains constant within the above interval of -t is excluded with a significance above 5{sigma}: {delta}{alpha}(-6.07 GeV{sup 2}) - {delta}{alpha}(-1.81 GeV{sup 2}) = 0.00450 {+-} 0.00079 The hadronic contribution to the running of the coupling has been estimated to be: {delta}{alpha}{sub had}(-6.07 GeV{sup 2}) - {delta}{alpha}{sub had}(-1.81 GeV{sup 2}) = 0.00248 {+-} 0.00079. This result is inconsistent at the level of more than 3{sigma} with the hypothesis that only leptonic loops contribute to the running, and therefore provide the first clear space-like experimental evidence that hadronic loops also contribute. (orig.)

  16. Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions

    OpenAIRE

    Chandrasekharan, Shailesh; Li, Anyi

    2010-01-01

    We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...

  17. Jet quenching parameters in strongly coupled nonconformal gauge theories

    International Nuclear Information System (INIS)

    Buchel, Alex

    2006-01-01

    Recently Liu, Rajagopal, and Wiedemann (LRW) [H. Liu, K. Rajagopal, and U. A. Wiedemann, hep-ph/0605178.] proposed a first principle, nonperturbative quantum field theoretic definition of 'jet quenching parameter' q-circumflex used in models of medium-induced radiative parton energy loss in nucleus-nucleus collisions at RHIC. Relating q-circumflex to a short-distance behavior of a certain lightlike Wilson loop, they used gauge theory-string theory correspondence to evaluate q-circumflex for the strongly coupled N=4 SU(N c ) gauge theory plasma. We generalize analysis of LRW to strongly coupled nonconformal gauge theory plasma. We find that a jet quenching parameter is gauge theory specific (not universal). Furthermore, it appears its value increases as the number of effective adjoint degrees of freedom of a gauge theory plasma increases

  18. Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime

    International Nuclear Information System (INIS)

    Li Chun-Yan; Li Yan-Song

    2011-01-01

    We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement states of photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a special polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed. (general)

  19. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A

    2017-01-01

    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  20. On the problem of unboundedness from below of the spinor QED Hamiltonian

    International Nuclear Information System (INIS)

    Zastavenko, L.G.

    1993-01-01

    It is show that the Hamiltonian H QED + H 2 , where H QED is the spinor QED Hamiltonian and H 2 is the positive transversal photon mass term, is unbounded from below if the electromagnetic coupling constant e 2 is small enough, e 2 0 2 , and the transversal photon squared mass parameter M 2 is not large: 0 2 2 (1 - e 2 /e 0 2 )l 2 , here, l is the cut-off parameter; and c and e 0 2 , positive constants which do not depend on any parameters. 7 refs

  1. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  2. Finite size effects and chiral symmetry breaking in quenched three-dimensional QED

    International Nuclear Information System (INIS)

    Hands, S.; Kogut, J.B.

    1990-01-01

    Finite size effects and the chiral condensate are studied in three-dimensional QED by the Lanczos and the conjugate-gradient algorithms. Very substantial finite size effects are observed, but studies on L 3 lattices with L ranging from 8 to 80 indicate the development of a non-vanishing chiral condensate in the continuum limit of the theory. The systematics of the finite size effects and the fermion mass dependence in the conjugate-gradient algorithm are clarified in this extensive study. (orig.)

  3. Quench dynamics of two coupled zig-zag ion chains

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, Andrea, E-mail: andrea.klumpp@physnet.uni-hamburg.de [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Liebchen, Benno [SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom); Schmelcher, Peter [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-08-06

    We explore the non-equilibrium dynamics of two coupled zig-zag chains of trapped ions in a double well potential. Following a quench of the potential barrier between both wells, the induced coupling between both chains due to the long-range interaction of the ions leads to the complete loss of order in the radial direction. The resulting dynamics is however not exclusively irregular but leads to phases of motion during which various ordered structures appear with ions arranged in arcs, lines and crosses. We quantify the emerging order by introducing a suitable measure and complement our analysis of the ion dynamics using a normal mode analysis showing a decisive population transfer between only a few distinguished modes. - Highlights: • Novel dynamical phenomenology of two coupled zig-zag ion chains following a trap quench is explored. • Transient ordered ion configurations are unraveled in non-equilibrium dynamics dominated by irregular behavior. • A measure for the diagnosis of this transient order is introduced and applied. • Energy transfer between a few eigen modes is identified as the key mechanism for the occurrence of the ordered configurations.

  4. Jet quenching in a strongly coupled anisotropic plasma

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2012-08-01

    The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.

  5. Decoherence in semiconductor cavity QED systems due to phonon couplings

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Mørk, Jesper

    2014-01-01

    We investigate the effect of electron-phonon interactions on the coherence properties of single photons emitted from a semiconductor cavity QED (quantum electrodynamics) system, i.e., a quantum dot embedded in an optical cavity. The degree of indistinguishability, governing the quantum mechanical...

  6. New Circuit QED system based on Triple-leg Stripline Resonator.

    Science.gov (United States)

    Kim, Dongmin; Moon, Kyungsun

    Conventional circuit QED system consists of a qubit located inside a linear stripline resonator, which has successfully demonstrated a strong coupling between a single photon and a qubit. Here we present a new circuit QED system, where the qubit is coupled to triple-leg stripline resonator (TSR). We have shown that TSR supports two-fold degenerate photon modes among others. By coupling them to a single qubit, we have obtained the dressed states of a coupled system of a single qubit and two-fold degenerate photon modes. By locating two qubits at two legs of TSR, we have studied a potential two-bit gate operation (e.g., CNOT gate) of the system. We will discuss the main advantage of utilizing two-fold degenerate photon modes This work is partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B01013756).

  7. On the screening of static electromagnetic fields in hot QED plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1995-01-01

    The screening of static magnetic and electric fields was studied in massless quantum electrodynamics (QED) and massless scalar electrodynamics (SQED) at temperature T. Various exact relations for the static polarization tensor are first reviewed, and then verified perturbatively to fifth order (in the coupling) in QED and fourth order in SQED, using different resummation techniques. The magnetic and electric screening masses squared, as defined through the pole of the static propagators, are also calculated to fifth order in QED and fourth order in SQED, and their gauge-independence and renormalisation-group invariance is checked. Finally, arguments are provided for the vanishing of the magnetic mass to all orders in perturbation theory. (author) 26 refs

  8. Gauge covariance of the fermion Schwinger–Dyson equation in QED

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shaoyang, E-mail: sjia@email.wm.edu [Physics Department, College of William & Mary, Williamsburg, VA 23187 (United States); Pennington, M.R., E-mail: michaelp@jlab.org [Physics Department, College of William & Mary, Williamsburg, VA 23187 (United States); Theory Center, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2017-06-10

    Any practical application of the Schwinger–Dyson equations to the study of n-point Green's functions in a strong coupling field theory requires truncations. In the case of QED, the gauge covariance, governed by the Landau–Khalatnikov–Fradkin transformations (LKFT), provides a unique constraint on such truncation. By using a spectral representation for the massive fermion propagator in QED, we are able to show that the constraints imposed by the LKFT are linear operations on the spectral densities. We formally define these group operations and show with a couple of examples how in practice they provide a straightforward way to test the gauge covariance of any viable truncation of the Schwinger–Dyson equation for the fermion 2-point function.

  9. A magnetically coupled quench detector for superconducting magnets

    International Nuclear Information System (INIS)

    Jaskierny, W.; Kristalinski, A.; Visser, A.T.

    1993-12-01

    This note describes a low voltage signal detector that is useful for detecting quenches or excessive lead voltages at superconducting magnets. It can also be used for other applications where it is needed to detect low level signals present on high voltage installations. The application of isolated operational amplifiers is often not practical for high voltage applications because of their limited input voltage rating, common mode rejection and sensitivity. The described detector can withstand 7.5 kV input to ground voltage. It has a typical common mode rejection of -150 dB at 60 Hz and an input sensitivity better than 1 mV. The magnetically coupled quench detector assembly is very sensitive to extremely small (order of 1 μAmp) current changes in the sense windings. The detector assembly can therefore also be referred to as a micro current detector

  10. Quasiparadoxes of massless QED

    International Nuclear Information System (INIS)

    Smilga, A.V.

    1990-04-01

    We show that the limit m e =0 in the conventional QED is not smooth. In contrast to the massless QED the massive QED, however small the mass is, involves finite probability chirality breaking processes. The chirality breaking effects may be observed provided the size of experimental installation is greater than the formation length ∼ E/m 2 . We discuss also the finite cross sections of virtual longitudinal photon production and scattering in massless QED recently found by Gorsky, Ioffe and Khodjamirian and argue that real longitudinal photons do not interact while the limit of zero virtuality is not smooth. (author). 23 refs, 4 figs

  11. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  12. Circuit QED with transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wulschner, Karl Friedrich; Puertas, Javier; Baust, Alexander; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Marx, Achim; Menzel, Edwin; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Weides, Martin [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2015-07-01

    Superconducting quantum bits are basic building blocks for circuit QED systems. Applications in the fields of quantum computation and quantum simulation require long coherence times. We have fabricated and characterized superconducting transmon qubits which are designed to operate at a high ratio of Josephson energy and charging energy. Due to their low sensitivity to charge noise transmon qubits show good coherence properties. We couple transmon qubits to coplanar waveguide resonators and coplanar slotline resonators and characterize the devices at mK-temperatures. From the experimental data we derive the qubit-resonator coupling strength, the qubit relaxation time and calibrate the photon number in the resonator via Stark shifts.

  13. Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange

    Science.gov (United States)

    Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang

    2017-10-01

    We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.

  14. QED effects on individual atomic orbital energies

    Science.gov (United States)

    Kozioł, Karol; Aucar, Gustavo A.

    2018-04-01

    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.

  15. Theory of superfluorescence-laser crossover in a cavity QED system

    Energy Technology Data Exchange (ETDEWEB)

    Sezaki, Riku; Ishikawa, Akira; Kobayashi, Kiyoshi [University of Yamanashi, Department of Science for Advanced Materials, Kofu, Yamanashi (Japan); Miyajima, Kensuke [Tokyo University of Science, Department of Applied Physics, Tokyo (Japan)

    2017-11-15

    Coherent emissions of photons, originating from coherently-coupled polarizations, are created by laser and superfluorescence, but the mechanisms remain obscure to be fully explored in nanophotonics from the application viewpoint to coherent-light sources. In this paper, we present a comprehensive full quantum theory to clarify the crossover between laser and superfluorescence caused by the competition between stimulated and spontaneous emissions in a cavity QED system. As a result, in case of steady-state emission, we show the feasibility of coherent-light emission by superfluorescence different from laser, depending on the quality factor of a cavity QED system. In particular, the coherence generation due to superfluorescence occurs in a shorter timescale in a cavity QED systems with a lower Q factor than laser due to stimulated emission. This result suggests that superfluorescence can be applied to a novel coherent-light source by a mechanism greatly different from laser. (orig.)

  16. Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED

    Directory of Open Access Journals (Sweden)

    Varun D. Vaidya

    2018-01-01

    Full Text Available Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.

  17. The QED Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, G.W.

    1994-07-01

    On May 18--20, 1994, Argonne National Laboratory hosted the QED Workshop. The workshop was supported by special funding from the Office of Naval Research. The purpose of the workshop was to assemble of a group of researchers to consider whether it is desirable and feasible to build a proof-checked encyclopedia of mathematics, with an associated facility for theorem proving and proof checking. Among the projects represented were Coq, Eves, HOL, ILF, Imps, MathPert, Mizar, NQTHM, NuPrl, OTTER, Proof Pad, Qu-Prolog, and RRL. Although the content of the QED project is highly technical rigorously proof-checked mathematics of all sorts the discussions at the workshop were rarely technical. No prepared talks or papers were given. Instead, the discussions focused primarily on such political, sociological, practical, and aesthetic questions, such as Why do it? Who are the customers? How can one get mathematicians interested? What sort of interfaces are desirable? The most important conclusion of the workshop was that QED is an idea worthy pursuing, a statement with which virtually all the participants agreed. In this document, the authors capture some of the discussions and outline suggestions for the start of a QED scientific community.

  18. Leading quantum gravitational corrections to QED

    OpenAIRE

    Butt, M. S.

    2006-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged spin-1/2 fermions in the combined theory of general relativity and QED. The coupled Dirac-Einstein system is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativi...

  19. Resonator QED experiments with single {sup 40}Ca{sup +} ions; Resonator-QED-Experimente mit einzelnen {sup 40}Ca{sup +}-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B.

    2006-12-20

    Combining an optical resonator with an ion trap provides the possibility for QED experiments with single or few particles interacting with a single mode of the electro-magnetic field (Cavity-QED). In the present setup, fluctuations in the count rate on a time scale below 30 seconds were purely determined by the photon statistics due to finite emission and detection efficiency, whereas a marginal drift of the system was noticeable above 200 seconds. To find methods to increase the efficiency of the photon source, investigations were conducted and experimental improvements of the setup implemented in the frame of this thesis. Damping of the resonator field and coupling of ion and field were considered as the most important factors. To reduce the damping of the resonator field, a resonator with a smaller transmissivity of the output mirror was set up. The linear trap used in the experiment allows for the interaction of multiple ions with the resonator field, so that more than one photon may be emitted per pump pulse. This was investigated in this thesis with two ions coupled to the resonator. The cross correlation of the emitted photons was measured with the Hanbury Brown-Twiss method. (orig.)

  20. Simulations of QCD and QED with C* boundary conditions

    Science.gov (United States)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  1. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  2. The parity-preserving massive QED3: Vanishing β-function and no parity anomaly

    Directory of Open Access Journals (Sweden)

    O.M. Del Cima

    2015-11-01

    Full Text Available The parity-preserving massive QED3 exhibits vanishing gauge coupling β-function and is parity and infrared anomaly free at all orders in perturbation theory. Parity is not an anomalous symmetry, even for the parity-preserving massive QED3, in spite of some claims about the possibility of a perturbative parity breakdown, called parity anomaly. The proof is done by using the algebraic renormalization method, which is independent of any regularization scheme, based on general theorems of perturbative quantum field theory.

  3. Optical Search for QED vacuum magnetic birefringence, Axions and photon Regeneration

    CERN Multimedia

    Pugnat, P; Hryczuk, A; Finger, M; Finger, M; Kral, M

    2007-01-01

    Since its prediction in 1936 by Euler, Heisenberg and Weisskopf in the earlier development of the Quantum Electrodynamic (QED) theory, the Vacuum Magnetic Birefringence (VMB) is still a challenge for optical metrology techniques. According to QED, the vacuum behaves as an optically active medium in the presence of an external magnetic field. It can be experimentally probed with a linearly polarized laser beam. After propagating through the vacuum submitted to a transverse magnetic field, the polarization of the laser beam will change to elliptical and the parameters of the polarization are directly related to fundamental constants such as the fine structure constant and the electron Compton wavelength. Contributions to the VMB could also arise from the existence of light scalar or pseudo-scalar particles like axions that couple to two photons and this would manifest itself as a sizeable deviation from the initial QED prediction. On one side, the interest in axion search, providing an answer to the strong-CP p...

  4. Resonator QED experiments with single 40Ca+ ions

    International Nuclear Information System (INIS)

    Lange, B.

    2006-01-01

    Combining an optical resonator with an ion trap provides the possibility for QED experiments with single or few particles interacting with a single mode of the electro-magnetic field (Cavity-QED). In the present setup, fluctuations in the count rate on a time scale below 30 seconds were purely determined by the photon statistics due to finite emission and detection efficiency, whereas a marginal drift of the system was noticeable above 200 seconds. To find methods to increase the efficiency of the photon source, investigations were conducted and experimental improvements of the setup implemented in the frame of this thesis. Damping of the resonator field and coupling of ion and field were considered as the most important factors. To reduce the damping of the resonator field, a resonator with a smaller transmissivity of the output mirror was set up. The linear trap used in the experiment allows for the interaction of multiple ions with the resonator field, so that more than one photon may be emitted per pump pulse. This was investigated in this thesis with two ions coupled to the resonator. The cross correlation of the emitted photons was measured with the Hanbury Brown-Twiss method. (orig.)

  5. Direct measurement of alpha_QED(mZ)at the FCC-ee

    CERN Document Server

    Janot, Patrick

    2016-02-08

    When the measurements from the FCC-ee become available, an improved determination of the standard-model "input" parameters will be needed to fully exploit the new precision data towards either constraining or fitting the parameters of beyond-the-standard-model theories. Among these input parameters is the electromagnetic coupling constant estimated at the Z mass scale, alpha_QED(mZ). The measurement of the muon forward- backward asymmetry at the FCC-ee, just below and just above the Z pole, can be used to make a direct determination of alpha_QED(mZ) with an accuracy deemed adequate for an optimal use of the FCC-ee precision data.

  6. The Hamiltonian of QED. Zero mode

    International Nuclear Information System (INIS)

    Zastavenko, L.G.

    1990-01-01

    We start with the standard QED Lagrangian. New derivation of the spinor QED Hamiltonian is given. We have taken into account the zero mode. Our derivation is faultless from the point of view of gauge invariance. It gives important corrections to the standard QED Hamiltonian. Our derivation of the Hamiltonian can be generalized to the case of QCD. 5 refs

  7. Circuit QED lattices: Towards quantum simulation with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sebastian [Institute for Theoretical Physics, ETH Zurich, 8093, Zurich (Switzerland); Koch, Jens [Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208 (United States)

    2013-06-15

    The Jaynes-Cummings model describes the coupling between photons and a single two-level atom in a simplified representation of light-matter interactions. In circuit QED, this model is implemented by combining microwave resonators and superconducting qubits on a microchip with unprecedented experimental control. Arranging qubits and resonators in the form of a lattice realizes a new kind of Hubbard model, the Jaynes-Cummings-Hubbard model, in which the elementary excitations are polariton quasi-particles. Due to the genuine openness of photonic systems, circuit QED lattices offer the possibility to study the intricate interplay of collective behavior, strong correlations and non-equilibrium physics. Thus, turning circuit QED into an architecture for quantum simulation, i.e., using a well-controlled system to mimic the intricate quantum behavior of another system too daunting for a theorist to tackle head-on, is an exciting idea which has served as theorists' playground for a while and is now also starting to catch on in experiments. This review gives a summary of the most recent theoretical proposals and experimental efforts. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Nonperturbative QED vacuum birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Dolgaya, E.E.; Sokolov, V.A. [Physics Department, Moscow State University,Moscow, 119991 (Russian Federation)

    2017-05-19

    In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.

  9. Lorentz and CPT violation in QED revisited: A missing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Del Cima, Oswaldo M., E-mail: wadodelcima@if.uff.b [Universidade Federal Fluminense (UFF), Polo Universitario de Rio das Ostras, Rua Recife s/n, 28890-000, Rio das Ostras, RJ (Brazil); Fonseca, Jakson M., E-mail: jakson.fonseca@ufv.b [Universidade Federal de Vicosa (UFV), Departamento de Fisica, Avenida Peter Henry Rolfs s/n, 36570-000, Vicosa, MG (Brazil); Franco, Daniel H.T., E-mail: daniel.franco@ufv.b [Universidade Federal de Vicosa (UFV), Departamento de Fisica, Avenida Peter Henry Rolfs s/n, 36570-000, Vicosa, MG (Brazil); Piguet, Olivier, E-mail: opiguet@pq.cnpq.b [Universidade Federal do Espirito Santo (UFES), Departamento de Fisica, Campus Universitario de Goiabeiras, 29060-900, Vitoria, ES (Brazil)

    2010-05-03

    We investigate the breakdown of Lorentz symmetry in QED by a CPT violating interaction term consisting of the coupling of an axial fermion current with a constant vector field b, in the framework of algebraic renormalization - a regularization-independent method. We show, to all orders in perturbation theory, that a CPT-odd and Lorentz violating Chern-Simons-like term, definitively, is not radiatively induced by the axial coupling of the fermions with the constant vector b.

  10. Lorentz and CPT violation in QED revisited: A missing analysis

    International Nuclear Information System (INIS)

    Del Cima, Oswaldo M.; Fonseca, Jakson M.; Franco, Daniel H.T.; Piguet, Olivier

    2010-01-01

    We investigate the breakdown of Lorentz symmetry in QED by a CPT violating interaction term consisting of the coupling of an axial fermion current with a constant vector field b, in the framework of algebraic renormalization - a regularization-independent method. We show, to all orders in perturbation theory, that a CPT-odd and Lorentz violating Chern-Simons-like term, definitively, is not radiatively induced by the axial coupling of the fermions with the constant vector b.

  11. Charged hadrons in local finite-volume QED+QCD with C* boundary conditions

    CERN Document Server

    Lucini, Biagio; Ramos, Alberto; Tantalo, Nazario

    2016-01-01

    In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C* boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C* boundary conditions. In particular we learn that a certain class of electrically-charged states can be constructed in this setup in a fully consistent fashion, without relying on gauge fixing. We argue that this class of states covers most of the interesting phenomenological applications in the framework of numerical simulations. We also calculate finite-volume corrections to the mass of stable charg...

  12. Evidence for a critical behavior in 4D pure compact QED

    International Nuclear Information System (INIS)

    Jersak, J.; Neuhaus, T.

    1995-01-01

    We present evidence about a critical behavior of 4D compact QED (CQED) pure gauge theory. Regularizing the theory on lattices homotopic to a sphere, we present evidence for a critical, i.e. second order like behavior at the deconfinement phase transition for certain values of the coupling parameter γ. ((orig.))

  13. Parton distributions with QED corrections

    NARCIS (Netherlands)

    Collaboration, The NNPDF; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Rojo, Juan

    2013-01-01

    We present a set of parton distribution functions (PDFs), based on the NNPDF2.3 set, which includes a photon PDF, and QED contributions to parton evolution. We describe the implementation of the combined QCD+QED evolution in the NNPDF framework. We then provide a first determination of the full set

  14. First Lattice Calculation of the QED Corrections to Leptonic Decay Rates

    Science.gov (United States)

    Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sachrajda, C. T.; Sanfilippo, F.; Simula, S.; Tantalo, N.

    2018-02-01

    The leading-order electromagnetic and strong isospin-breaking corrections to the ratio of Kμ 2 and πμ 2 decay rates are evaluated for the first time on the lattice, following a method recently proposed. The lattice results are obtained using the gauge ensembles produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks. Systematic effects are evaluated and the impact of the quenched QED approximation is estimated. Our result for the correction to the tree-level Kμ 2/πμ 2 decay ratio is -1.22 (16 )%, to be compared to the estimate of -1.12 (21 )% based on chiral perturbation theory and adopted by the Particle Data Group.

  15. Dual QED_3 at “N_F=1/2” is an interacting CFT in the infrared

    International Nuclear Information System (INIS)

    Roscher, Dietrich; Torres, Emilio; Strack, Philipp

    2016-01-01

    We study the fate of weakly coupled dual QED_3 in the infrared, that is, a single two-component Dirac fermion coupled to an emergent U(1) gauge field, but without Chern-Simons term. This theory has recently been proposed as a dual description of 2D surfaces of certain topological insulators. Using the renormalization group, we find that the interplay of gauge fluctuations with generated interactions in the four-fermi sector stabilizes an interacting conformal field theory (CFT) with finite four-fermi coupling in the infrared. The emergence of this CFT is due to cancellations in the β-function of the four-fermi coupling special to “N_F=1/2”. We also quantify how a possible “strong” Dirac fermion duality between a free Dirac cone and dual QED_3 would constrain the universal constants of the topological current correlator of the latter.

  16. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin–orbit coupling

    International Nuclear Information System (INIS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems. (paper)

  17. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    Science.gov (United States)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  18. Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (1) - implementation and matter dynamics -

    Science.gov (United States)

    Kounalakis, M.; Langford, N. K.; Sagastizabal, R.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.

    The field dipole coupling of quantum light and matter, described by the quantum Rabi model, leads to exotic phenomena when the coupling strength g becomes comparable or larger than the atom and photon frequencies ωq , r. In this ultra-strong coupling regime, excitations are not conserved, leading to collapse-revival dynamics in atom and photon parity and Schrödinger-cat-like atom-photon entanglement. We realize a quantum simulation of the Rabi model using a transmon qubit coupled to a resonator. In this first part, we describe our analog-digital approach to implement up to 90 symmetric Trotter steps, combining single-qubit gates with the Jaynes-Cummings interaction naturally present in our circuit QED system. Controlling the phase of microwave pulses defines a rotating frame and enables simulation of arbitrary parameter regimes of the Rabi model. We demonstrate measurements of qubit parity dynamics showing revivals at g /ωr > 0 . 8 for ωq = 0 and characteristic dynamics for nondegenerate ωq from g / 4 to g. Funding from the EU FP7 Project ScaleQIT, an ERC Grant, the Dutch Research Organization NWO, and Microsoft Research.

  19. Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED

    International Nuclear Information System (INIS)

    Goeckeler, M.; Horsley, R.; Rakow, P.; Schierholz, G.; Sommer, R.

    1992-01-01

    We investigate the ultra-violet behavior of non-compact lattice QED with light staggered fermions. The main question is whether QED is a non-trivial theory in the continuum limit, and if not, what is its range of validity as a low-energy theory. Perhaps the limited range of validity could offer an explanation of why the fine-structure constant is so small. Non-compact QED undergoes a second-order chiral phase transition at strong coupling, at which the continuum limit can be taken. We examine the phase diagram and the critical behavior of the theory in detail. Moreover, we address the question as to whether QED confines in the chirally broken phase. This is done by investigating the potential between static external charges. We then compute the renormalized charge and derive the Callan-Symanzik β-function in the critical region. No ultra-violet stable zero is found. Instead, we find that the evolution of charge is well described by renormalized perturbation theory, and that the renormalized charge vanishes at the critical point. The consequence is that QED can only be regarded as a cut-off theory. We evaluate the maximum value of the cut-off as a function of the renormalized charge. Next, we compute the masses of fermion-antifermion composite states. The scaling behavior of these masses is well described by an effective action with mean-field critical exponents plus logarithmic corrections. This indicates that also the matter sector of the theory is non-interacting. Finally, we investigate and compare the renormalization group flow of different quantities. Altogether, we find that QED is a valid theory only for samll renormalized charges. (orig.)

  20. The lattice spinor QED Hamiltonian critique of the continuous space approach

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Zastavenko, L.G.

    1993-01-01

    We give the irreproachable, from the point of view of gauge invariance, derivation of the lattice spinor QED Hamiltonian. Our QED Hamiltonian is manifestly gauge invariant. We point out important defects of the continuous space formulation of the QED that make, in our opinion, the lattice QED obviously preferable to the continuous space QED. We state that it is impossible to give a continuous space QED formulation which is compatible with the condition of gauge invariance. 17 refs

  1. QED at high energies

    International Nuclear Information System (INIS)

    Gastmans, R.

    1980-01-01

    This chapter demonstrates that to establish the validity of QED at the level of a few percent requires knowledge of the cross sections of the QED processes to the same accuracy. Discusses the virtual radiative corrections to the processes. Calculates the vertex correction effect to illustrate the technique. Examines the hadronic vacuum polarization because of its numerical significance. Calculates the effects of soft real photon bremsstrahlung, and shows that they cancel infrared divergences introduced by the virtual corrections. Outlines the analytical work and introduces the dimensional regularization of the infrared divergences as for the virtual photon case. Describes the calculation of the cross section for the bremsstrahlung processes in the ultra-relativistic limit. Shows the surprising simplicity of these cross sections. Discusses the phase space and the choice of integration variables in which the selection criteria must be expressed. Concludes with a comparison of some of the latest experiments on these QED reactions

  2. An architecture for integrating planar and 3D cQED devices

    Energy Technology Data Exchange (ETDEWEB)

    Axline, C.; Reagor, M.; Heeres, R.; Reinhold, P.; Wang, C.; Shain, K.; Pfaff, W.; Chu, Y.; Frunzio, L.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2016-07-25

    Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

  3. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Eder, Peter; Fischer, Michael; Goetz, Jan; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Muenchen (Germany); Haeberlein, Max; Wulschner, Karl Friedrich [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Fedorov, Kirill; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    In typical circuit QED systems, on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present studies on transmon qubits capacitively coupled to 3D cavities. The internal quality factors of our 3D cavities, machined out of high purity aluminum, are above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. For characterization of the sample, we perform dispersive shift measurements up to the third energy level of the qubit. We show simulations and data describing the effect of the transmon geometry on it's capacitive properties. In addition, we present progress towards an integrated quantum memory application.

  4. Status and prospects of (g-2)μ and ΔαQED

    International Nuclear Information System (INIS)

    Teubner, Thomas

    2008-01-01

    A brief review of the status of the anomalous magnetic moment of the muon, (g-2) μ , and the running of the electromagnetic coupling, α QED (q 2 ), is given. The discrepancy between the Standard Model prediction of g-2 and the measurement from BNL is discussed. The prospects for further improvements in the determination of the vacuum polarisation contributions are outlined.

  5. Quantum Simulation of the Ultrastrong-Coupling Dynamics in Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    D. Ballester

    2012-05-01

    Full Text Available We propose a method to get experimental access to the physics of the ultrastrong- and deep-strong-coupling regimes of light-matter interaction through the quantum simulation of their dynamics in standard circuit QED. The method makes use of a two-tone driving scheme, using state-of-the-art circuit-QED technology, and can be easily extended to general cavity-QED setups. We provide examples of ultrastrong- and deep-strong-coupling quantum effects that would be otherwise inaccessible.

  6. QED corrections to the Altarelli-Parisi splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Florian, Daniel de [Universidad de Buenos Aires, Departamento de Fisica and IFIBA, FCEyN, Capital Federal (Argentina); UNSAM, International Center for Advanced Studies (ICAS), Buenos Aires (Argentina); Sborlini, German F.R.; Rodrigo, German [Universitat de Valencia - Consejo Superior de Investigaciones Cientificas, Instituto de Fisica Corpuscular, Paterna, Valencia (Spain)

    2016-05-15

    We discuss the combined effect of QED and QCD corrections to the evolution of parton distributions. We extend the available knowledge of the Altarelli-Parisi splitting functions to one order higher in QED, and we provide explicit expressions for the splitting kernels up to O(α α{sub S}). The results presented in this article allow one to perform a parton distribution function analysis reaching full NLO QCD-QED combined precision. (orig.)

  7. QED revisited

    International Nuclear Information System (INIS)

    Hueffel, H.

    2003-01-01

    Full text: We perform the stochastic quantization of scalar as well as of fermionic QED based on a generalization of the stochastic gauge fixing scheme and its geometrical interpretation. It is shown that the stochastic quantization scheme agrees exactly with the usual path integral formulation. (author)

  8. The QED coupling at the Z pole and jet studies of small x dynamics

    International Nuclear Information System (INIS)

    Outhwaite, J.

    2000-12-01

    In the first half of this thesis, motivated by significant progress in both theoretical and empirical studies of e + e - annihilation into hadrons, we perform a reevaluation of the running of the QED coupling to the Z-pole, paying particular attention to the hadronic contribution to vacuum polarization. We use a comprehensive collection of the presently available data and perturbative QCD expressions. This new determination of the running of the coupling is then used as input into a global fit to electroweak data to estimate a preferred value of the Standard Model Higgs boson. An estimate is obtained of M H = 110 GeV, marginally above the zone excluded by direct searches at LEP2. We then investigate the potential for further constraining the hadronic contribution to the vacuum polarization function through mechanisms incorporating analytic continuation from the timelike domain of s > 0 around a large semicircle into the spacelike domain of s c = 1.4. In the latter half of the thesis, we examine forward jet and pion production in electron - proton deep inelastic scattering in the small x region of the HERA collider at DESY. We demonstrate the imposition of physically motivated dominant subleading corrections to all orders on the leading logarithmic BFKL equation, and that this leads to stable phenomenological predictions. We compare the calculations of differential cross-section distributions incorporating the higher order effects with the experimental profiles for a single jet, an identified π 0 and dijets in the very forward region and investigate the sensitivity of the calculation to residual parametric freedom. (author)

  9. Compact QED tree-level amplitudes from dressed BCFW recursion relations

    International Nuclear Information System (INIS)

    Badger, Simon D.; Henn, Johannes M.

    2010-05-01

    We construct a modified on-shell BCFW recursion relation to derive compact analytic representations of tree-level amplitudes in QED. As an application, we study the amplitudes of a fermion pair coupling to an arbitrary number of photons and give compact formulae for the NMHV and N 2 MHV case. We demonstrate that the new recursion relation reduces the growth in complexity with additional photons to be exponential rather than factorial. (orig.)

  10. Compact QED tree-level amplitudes from dressed BCFW recursion relations

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Henn, Johannes M. [Humboldt Univ., Berlin (Germany). Inst. fuer Physik

    2010-05-15

    We construct a modified on-shell BCFW recursion relation to derive compact analytic representations of tree-level amplitudes in QED. As an application, we study the amplitudes of a fermion pair coupling to an arbitrary number of photons and give compact formulae for the NMHV and N{sup 2}MHV case. We demonstrate that the new recursion relation reduces the growth in complexity with additional photons to be exponential rather than factorial. (orig.)

  11. Parton distribution functions with QED corrections in the valon model

    Science.gov (United States)

    Mottaghizadeh, Marzieh; Taghavi Shahri, Fatemeh; Eslami, Parvin

    2017-10-01

    The parton distribution functions (PDFs) with QED corrections are obtained by solving the QCD ⊗QED DGLAP evolution equations in the framework of the "valon" model at the next-to-leading-order QCD and the leading-order QED approximations. Our results for the PDFs with QED corrections in this phenomenological model are in good agreement with the newly related CT14QED global fits code [Phys. Rev. D 93, 114015 (2016), 10.1103/PhysRevD.93.114015] and APFEL (NNPDF2.3QED) program [Comput. Phys. Commun. 185, 1647 (2014), 10.1016/j.cpc.2014.03.007] in a wide range of x =[10-5,1 ] and Q2=[0.283 ,108] GeV2 . The model calculations agree rather well with those codes. In the latter, we proposed a new method for studying the symmetry breaking of the sea quark distribution functions inside the proton.

  12. Single atoms on demand for cavity QED experiments

    International Nuclear Information System (INIS)

    Dotsenko, I.

    2007-01-01

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the cavity

  13. Single atoms on demand for cavity QED experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, I.

    2007-09-06

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the

  14. Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (2) - light dynamics and light-matter entanglement -

    Science.gov (United States)

    Sagastizabal, R.; Langford, N. K.; Kounalakis, M.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.

    Light-matter interaction can lead to large photon build-up and hybrid atom-photon entanglement in the ultrastrong coupling (USC) regime, where the coupling strength becomes comparable to the eigenenergies of the system. Accessing the cavity degree of freedom, however, is an outstanding challenge in natural USC systems. In this talk, we directly probe light field dynamics in the USC regime using a digital simulation of the quantum Rabi model in a planar circuit QED chip with a transmon moderately coupled to a resonator. We produce high-accuracy USC light-matter dynamics, using second-order Trotterisation and up to 90 Trotter steps. We probe the average photon number, photon parity and perform Wigner tomography of the simulated field. Finally, we combine tomography of the resonator with qubit measurements to evidence the Schrödinger-cat-like atom-photon entanglement which is a key signature of light-matter dynamics in the USC regime. Funding from the EU FP7 Project ScaleQIT, the ERC Synergy Grant QC-lab, the Netherlands Organization of Scientic Research (NWO), and Microsoft Research.

  15. Perturbative renormalization of QED via flow equations

    International Nuclear Information System (INIS)

    Keller, G.; Kopper, C.

    1991-01-01

    We prove the perturbative renormalizability of euclidean QED 4 with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.)

  16. Chiral symmetry breaking and confinement in Minkowski space QED2+1

    International Nuclear Information System (INIS)

    Sauli, V.; Batiz, Z.

    2010-01-01

    extensions (largely anisotropic and nonrelativistic) of QED3 as an effective theories of the pseudogap insulator/superconducting phase transition. The finite temperature QED3 Euclidean action seems to be enough for the effective description of the phenomena. However the inequivalence between Euclidean and spacelike Minkowski subspace should be kept mind when trying to make some conclusion based on the naive continuation the real time metric. More interestingly, one can expect new outcomes when the similar ideology is applied to the strong coupling even dimensional theories, e.g. to the most successful theory of the strong interaction in the nature: QCD. Note, similar strategy in renormalizable theories is not so straightforward because of presented infinities. In this case, following the experience from QED2+1 here and proposing an approximations in Temporal Euclidean space can offer a simple guide which can be realistic enough to provide reasonable Minkowski space SDEs framework for low energy hadronic physics. (author)

  17. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Introduction

    Science.gov (United States)

    Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert

    2015-03-01

    High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.

  18. Implementation of Traveling Odd Schrödinger Cat States in Circuit-QED

    Directory of Open Access Journals (Sweden)

    Jaewoo Joo

    2016-10-01

    Full Text Available We propose a realistic scheme of generating a traveling odd Schrödinger cat state and a generalized entangled coherent state in circuit quantum electrodynamics (circuit-QED. A squeezed vacuum state is used as the initial resource of nonclassical states, which can be created through a Josephson traveling-wave parametric amplifier, and travels through a transmission line. Because a single-photon subtraction from the squeezed vacuum gives an odd Schrödinger cat state with very high fidelity, we consider a specific circuit-QED setup consisting of the Josephson amplifier creating the traveling resource in a line, a beam-splitter coupling two transmission lines, and a single photon detector located at the end of the other line. When a single microwave photon is detected by measuring the excited state of a superconducting qubit in the detector, a heralded cat state is generated with high fidelity in the opposite line. For example, we show that the high fidelity of the outcome with the ideal cat state can be achieved with appropriate squeezing parameters theoretically. As its extended setup, we suggest that generalized entangled coherent states can be also built probabilistically and that they are useful for microwave quantum information processing for error-correctable qudits in circuit-QED.

  19. Lattice QED in the loop space

    International Nuclear Information System (INIS)

    Fort, H.

    1994-01-01

    We present a survey on the state of the art in the formulation of lattice compact QED in the space of loops. In a first part we review our most recent Hamiltonian results which signal a second order transition for (3+1) compact QED. We devote the second part to the Lagrangian loop formalism, showing the equivalence of the recently proposed loop action with the Villain form. (orig.)

  20. Perturbative renormalization of QED via flow equations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany)); Kopper, C. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany) Inst. fuer Theoretische Physik, Univ. Goettingen (Germany))

    1991-12-19

    We prove the perturbative renormalizability of euclidean QED{sub 4} with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.).

  1. Hammering towards QED

    Directory of Open Access Journals (Sweden)

    Jasmin C. Blanchette

    2016-01-01

    Full Text Available This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants. We call these methods hammers. They give the authors of formal proofs a strong "one-stroke" tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search.The main ingredients underlying this approach are efficient automatic theorem provers that can cope with hundreds of axioms, suitable translations of richer logics to their formalisms, heuristic and learning methods that select relevant facts from large libraries, and methods that reconstruct the automatically found proofs inside the proof assistants.We outline the history of these methods, explain the main issues and techniques, and show their strength on several large benchmarks. We also discuss the relation of this technology to the QED Manifesto and consider its implications for QED-style efforts.

  2. Architecture of a software quench management system

    International Nuclear Information System (INIS)

    Jerzy M. Nogiec et al.

    2001-01-01

    Testing superconducting accelerator magnets is inherently coupled with the proper handling of quenches; i.e., protecting the magnet and characterizing the quench process. Therefore, software implementations must include elements of both data acquisition and real-time controls. The architecture of the quench management software developed at Fermilab's Magnet Test Facility is described. This system consists of quench detection, quench protection, and quench characterization components that execute concurrently in a distributed system. Collaboration between the elements of quench detection, quench characterization and current control are discussed, together with a schema of distributed saving of various quench-related data. Solutions to synchronization and reliability in such a distributed quench system are also presented

  3. Combining NNPDF3.0 and NNPDF2.3QED through the APFEL evolution code

    CERN Document Server

    Bertone, Valerio

    2016-01-01

    We present sets of parton distribution functions (PDFs), based on the NNPDF3.0 family, which include the photon PDF from the NNPDF2.3QED sets, and leading-order QED contributions to the DGLAP evolution as implemented in the public code APFEL. The aim is to combine our state-of-the-art determination of quark and gluon PDFs with the so far only direct determination of the photon PDF from LHC data. In addition, the use of APFEL allowed us to employ a solution of the DGLAP equation that, differently from that used for the NNPDF2.3QED sets, includes QED corrections in a more accurate way. We briefly discuss how these sets are constructed and investigate the effect of the inclusion of the QED corrections on PDFs and parton luminosities. Finally, we compare the resulting sets, which we dubbed NNPDF3.0QED, to the older NNPDF2.3QED sets and to all presently available PDF sets that include QED corrections, namely CT14QED and MRST2004QED.

  4. An introduction about precise measurements of QED γ structure functions

    International Nuclear Information System (INIS)

    Courau, A.

    1989-11-01

    Pure QED processes are theoretically exactly computable. However precise measurements and theoretical expectations of QED γ structure functions within a given experimental acceptance are not so trivial. Yet such a study is quite interesting. It supplies on the one hand a good QED test and, on the other hand, a good exercise for testing the procedure used for the determination of the hadronic γ structure functions

  5. Quenches after LS1

    International Nuclear Information System (INIS)

    Verweij, A.P.

    2012-01-01

    In this paper I will give an overview of the different types of quenches that occur in the LHC, followed by an estimate of the number of quenches that we can expect after LS1. Beam-induced quenches and false triggering of the QPS will be the main cause of those quenches that cause a beam dump. Possibly in total up to 10-20 per year. After consolidation of the 13 kA joints, the approach for the BLM settings can be less conservative than in 2010-2012 in order to maximize beam time. This will cause some quenches but, anyhow, a beam.induced quench is not more risky than a quench provoked by false triggering. It is not easy to predict the number of BLM triggered beam dumps, needed to avoid magnet quenches, because it is not sure how to scale beam losses and UFO's from 3.5 TeV to 6.5 TeV, and it is not sure if the thresholds at 3.5 TeV are correct. Quench events will be much more massive (ex: RB quench at 6 kA → 2 MJ, RB quench at 11 kA → 6-20 MJ), and as a result cryo recuperation much longer. There will also be more ramp induced quenches after a FPA in other circuits due to higher ramp rates and smaller temperature margins (mutual coupling)

  6. First experience with the new coupling loss induced quench system

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Dudarev, A.V.; Kirby, G.; Sperin, K.A.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A

  7. An introduction to QED

    International Nuclear Information System (INIS)

    Martin, A.D.

    1984-01-01

    The lecture concerns quantum electrodynamics (QED), the relativistic quantum theory of electromagnetic interactions. Antiparticles, electrodynamics of spinless particles, the dirac equation and electrodynamics of spin 1/2 particles are discussed in detail. (U.K.)

  8. Leading-order hadronic contributions to aμ and αQED from Nf=2+1+1 twisted mass fermions

    International Nuclear Information System (INIS)

    Feng, Xu; Hotzel, Grit; Renner, Dru B.

    2012-11-01

    We present the first four-flavour lattice calculation of the leading-order hadronic vacuum-polarisation contribution to the anomalous magnetic moment of the muon, a hvp μ , and the hadronic running of the QED coupling constant, Δα hvp QED (Q 2 ). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.

  9. System and method for quench protection of a superconductor

    Science.gov (United States)

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  10. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  11. Protecting a full-scale Nb3Sn magnet with CLIQ, the new coupling-loss-induced quench system

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Bajas, H.; Datskov, V.I.; Desbiolles, V.; Feuvrier, J.; Kirby, G.; Maciejewski, M.; Sabbi, G.; ten Kate, Herman H.J.; Verweij, A.P.

    2015-01-01

    A new protection system for superconducting magnets called coupling-loss induced quench system (CLIQ) has been recently developed at CERN. Recent tests on Nb-Ti coils have shown that CLIQ is a valid, efficient, and promising method for the protection of high-magnetic-field superconducting magnets.

  12. Entangled-photon generation from a quantum dot in cavity QED

    International Nuclear Information System (INIS)

    Ajiki, Hiroshi; Ishihara, Hajime

    2009-01-01

    We theoretically study polarization-entangled photon generation from a single quantum dot in a microcavity. Entangled-photon pairs with singlet or triplet Bell states are generated in the resonant-hyperparametric scattering via dressed states in the cavity QED. Although co-polarized non-entangled photons are also generated, the generation is dramatically suppressed in the strong-coupling limit owing to the photon blockade effect. Finite binding energy of biexciton is also important for the generation of photon pairs with high degree of entanglement. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet

    Science.gov (United States)

    Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.

    2017-10-01

    Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

  14. Nonlinear QED effects in X-ray emission of pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri, Soroush [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Haghighat, Mansour [Department of Physics, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it [ICRANet, Piazzale della Repubblica 10, 65122, Pescara (Italy)

    2017-10-01

    In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarization characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.

  15. Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory

    Science.gov (United States)

    Zhu, Guanyu

    Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different

  16. Electron-electron attractive interaction in Maxwell-Chern-Simons QED3 at zero temperature

    International Nuclear Information System (INIS)

    Belich, H.; Ferreira Junior, M.M.; Helayel-Neto, J.A.; Ferreira Junior, M.M.

    2001-04-01

    One discusses the issue of low-energy electron-electron bound states in the Maxwell-Chern-Simons model coupled to QED 3 with spontaneous breaking of a local U(1)-symmetry. The scattering potential, in the non-relativistic limit, steaming from the electron-electron Moeller scattering, mediated by the Maxwell-Chern-Simons-Proca gauge field and the Higgs scalar, might be attractive by fine-tuning properly the physical parameters of the model. (author)

  17. The Role of Quench-back in the Passive Quench Protection of Long Solenoids with Coil Sub-division

    International Nuclear Information System (INIS)

    Green, Michael A.; Guo, XingLong; Wang, Li; Pan, Heng; Wu, Hong

    2009-01-01

    This paper describes how a passive quench protection system can be applied to long superconducting solenoid magnets. When a solenoid coil is long compared to its thickness, the magnet quench process will be dominated by the time needed for uench propagation along the magnet length. Quench-back will permit a long magnet to quench more rapidly in a passive way. Quenchback from a conductive (low resistivity) mandrel is essential for spreading the quench along the length of a magnet. The andrel must be inductively coupled to the magnet circuit that is being quenched. Current induced in the mandrel by di/dt in the magnet produces heat in the mandrel, which in turn causes the superconducting coil wound on the mandrel to quench. Sub-divisions often employed to reduce the voltages to ground within the coil. This paper explores when it is possible for quench-back to be employed for passive quench protection. The role of sub-division of the coil is discussed for long magnets.

  18. QED radiative corrections under the SANC project

    International Nuclear Information System (INIS)

    Christova, P.

    2003-01-01

    Automatic calculations of the QED radiative corrections in the framework of the SANC computer system is described. A collection of the computer programs written in FORM3 language is aimed at compiling a database of analytic results to be used to theoretically support the experiments on high-energy accelerators. Presented here is the scheme of automatic analytical calculations of the QED radiative corrections to the fermionic decays of the Z, H and W boson in the framework of the SANC system

  19. Quenching points of dimeric single-molecule magnets: Exchange interaction effects

    International Nuclear Information System (INIS)

    Florez, J.M.; Nunez, Alvaro S.; Vargas, P.

    2010-01-01

    We study the quenched energy-splitting (Δ E ) of a single-molecule magnet (SMM) conformed by two exchange coupled giant-spins. An assessment of two nontrivial characteristics of this quenching is presented: (i) The quenching-points of a strongly exchange-coupled dimer differ from the ones of their respective giant-spin modeled SMM and such a difference can be well described by using the Solari-Kochetov extra phase; (ii) the dependence on the exchange coupling of the magnetic field values at the quenching-points when Δ E passes from monomeric to dimeric behavior. The physics behind these exchange-modified points, their relation with the Δ E -oscillations experimentally obtained by the Landau-Zener method and with the diabolical-plane of a SMM, is discussed.

  20. Quenching points of dimeric single-molecule magnets: Exchange interaction effects

    Energy Technology Data Exchange (ETDEWEB)

    Florez, J.M., E-mail: juanmanuel.florez@alumnos.usm.c [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, P.O. Box 110-V, Valparaiso (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.c [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Vargas, P., E-mail: patricio.vargas@usm.c [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, P.O. Box 110-V, Valparaiso (Chile)

    2010-11-15

    We study the quenched energy-splitting ({Delta}{sub E}) of a single-molecule magnet (SMM) conformed by two exchange coupled giant-spins. An assessment of two nontrivial characteristics of this quenching is presented: (i) The quenching-points of a strongly exchange-coupled dimer differ from the ones of their respective giant-spin modeled SMM and such a difference can be well described by using the Solari-Kochetov extra phase; (ii) the dependence on the exchange coupling of the magnetic field values at the quenching-points when {Delta}{sub E} passes from monomeric to dimeric behavior. The physics behind these exchange-modified points, their relation with the {Delta}{sub E}-oscillations experimentally obtained by the Landau-Zener method and with the diabolical-plane of a SMM, is discussed.

  1. Exploring high-intensity QED at ELI

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, T. [Plymouth Univ., School of Mathematics and Statistics, Drake Circus, PL4 8AA (United Kingdom); Ilderton, A. [School of Mathematics, Hamilton Building, Trinity College, Dublin (Ireland)

    2009-11-15

    We give a non-technical overview of quantum electrodynamics (QED) effects arising in the presence of ultra-strong electromagnetic fields highlighting the new prospects provided by a realisation of the ELI laser facility. Vacuum polarization is a genuine QED process describing the probability amplitude of a propagating photon fluctuating into a virtual electron-positron pair. It has measurable effects such as the Lamb shift and charge screening at short distances. Nonlinear Compton scattering that consists of processes of the type: e + ngamma{sub L} -> e' + gamma (where n counting the number of laser photons involved) is an intensity dependent effect that is accessible to experimental observation

  2. A non-perturbative approach to the Coleman-Weinberg mechanism in massless scalar QED

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Nogueira, F.S.; Svaiter, N.F.

    1995-08-01

    We rederived non-perturbatively the Coleman-Weinberg expression for the effective potential for massless scalar QED. Our result is not restricted to small values of the coupling constants. This shows that the Coleman-Weinberg result can be established beyond the range of perturbation theory. Also, we derive it in a manifestly renormalization group invariant way. It is shown that with the derivation given no Landau ghost singularity arises. The finite temperature case is discussed. (author). 13 refs

  3. QED with minimal and nonminimal couplings: on the quantum generation of Lorentz violating terms in the pure photon sector

    Energy Technology Data Exchange (ETDEWEB)

    Gazzola, G.; Fargnoli, H.G.; Sampaio, Marcos; Nemes, M.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Scarpelli, A.P. Baeta [Departamento de Policia Federal (DPF), Sao Paulo, SP (Brazil). Setor Tecnico-Cientifico

    2011-07-01

    In this research we consider a modified version of quantum electrodynamics in four dimensions with the coupling between the photon and the fermion composed by two terms: a nonminimal and the minimal one. There are two interesting aspects in this model. First, gauge invariance is restored by the presence of the minimal coupling. Second, the quantum corrections will allow for the possibility of the generation of a Chern-Simons-like term. The fact that the model is gauge invariant allows for a more complete analysis on the value of both the coefficients of the hypothetical CPT odd and CPT even radiatively generated terms. A question that arises involves a possible violation of some Ward-Takahashi identity when radiative corrections are taken into account. In other words, is there an anomaly in the model? We show that, since conventional QED is gauge invariant, there is no room for a non transversal vacuum polarization tensor in the present model. This is study is to be presented in the following order: first we are to present the model; second we do an analysis on the generation of Lorentz violating terms in the pure gauge sector; third we carry out a calculation on gauge invariance grounds to fix the coefficients of the quantum corrections; and lastly the concluding comments. (author)

  4. QED with minimal and nonminimal couplings: on the quantum generation of Lorentz violating terms in the pure photon sector

    International Nuclear Information System (INIS)

    Gazzola, G.; Fargnoli, H.G.; Sampaio, Marcos; Nemes, M.C.; Scarpelli, A.P. Baeta

    2011-01-01

    In this research we consider a modified version of quantum electrodynamics in four dimensions with the coupling between the photon and the fermion composed by two terms: a nonminimal and the minimal one. There are two interesting aspects in this model. First, gauge invariance is restored by the presence of the minimal coupling. Second, the quantum corrections will allow for the possibility of the generation of a Chern-Simons-like term. The fact that the model is gauge invariant allows for a more complete analysis on the value of both the coefficients of the hypothetical CPT odd and CPT even radiatively generated terms. A question that arises involves a possible violation of some Ward-Takahashi identity when radiative corrections are taken into account. In other words, is there an anomaly in the model? We show that, since conventional QED is gauge invariant, there is no room for a non transversal vacuum polarization tensor in the present model. This is study is to be presented in the following order: first we are to present the model; second we do an analysis on the generation of Lorentz violating terms in the pure gauge sector; third we carry out a calculation on gauge invariance grounds to fix the coefficients of the quantum corrections; and lastly the concluding comments. (author)

  5. Electron-electron attractive interaction in Maxwell-Chern-Simons QED{sub 3} at zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Ferreira Junior, M.M.; Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: belich@cbpf.br; manojr@cbpf.br; helayel@gft.ucp.br; Ferreira Junior, M.M. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica. E-mail: delcima@gft.ucp.br

    2001-04-01

    One discusses the issue of low-energy electron-electron bound states in the Maxwell-Chern-Simons model coupled to QED{sub 3} with spontaneous breaking of a local U(1)-symmetry. The scattering potential, in the non-relativistic limit, steaming from the electron-electron Moeller scattering, mediated by the Maxwell-Chern-Simons-Proca gauge field and the Higgs scalar, might be attractive by fine-tuning properly the physical parameters of the model. (author)

  6. Quantum revolution. [Vol.] 2: QED: the jewel of physics

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1994-01-01

    Events leading to the plague or crisis of infinities in the field of quantum mechanics are surveyed in brief. How that crisis was contained by formulation of quantum electrodynamics (QED) theory is narrated in this volume. Contributions of Tomanoga, Schwinger and Feynman to the QED theory are discussed. The story of quantum mechanics is brought up to fifties. (M.G.B.)

  7. Higher Order QED Contributions to the Atomic Structure at Strong Central Fields

    International Nuclear Information System (INIS)

    Mokler, P H

    2007-01-01

    An accurate determination of the precise structure of highly charged, very heavy ions is crucial for understanding QED at strong fields. The experimental advances in the spectroscopy of very heavy, highly charged ions-in particular H-, He- and Li-like species-are reviewed: Presently the ground state Lamb shift for H-like U ions is measured on a 1% level of accuracy; the screening terms in two-electron QED have just been touched by experiments for He-like U; and two-loop QED terms have been determined with ultimate accuracy for Li-like heavy species. The different approaches on QED measurements in strong fields will be discussed and the results compared to theory

  8. QED as the tensionless limit of the spinning string with contact interaction

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, James P., E-mail: J.P.Edwards@durham.ac.uk; Mansfield, Paul, E-mail: P.R.W.Mansfield@durham.ac.uk

    2015-06-30

    QED with spinor matter is argued to correspond to the tensionless limit of spinning strings with contact interactions. The strings represent electric lines of force with charges at their ends. The interaction is constructed from a delta-function on the world-sheet which, although off-shell, decouples from the world-sheet metric. Integrating out the string degrees of freedom with fixed boundary generates the super-Wilson loop that couples spinor matter to electromagnetism in the world-line formalism. World-sheet and world-line, but not spacetime, supersymmetry underpin the model.

  9. Simplicity in the structure of QED and gravity amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bjerrum-Bohr, N.E.J. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Vanhove, Pierre [Institut des Hautes Etudes Scientifiques IHES, Bures sur Yvette (France); CEA, IPhT, CNRS, URA, Gif-sur-Yvette, (France). Inst. de Physique Theorique

    2008-11-15

    We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)

  10. Simplicity in the structure of QED and gravity amplitudes

    International Nuclear Information System (INIS)

    Badger, Simon; Bjerrum-Bohr, N.E.J.; Vanhove, Pierre; CEA, IPhT, CNRS, URA, Gif-sur-Yvette,

    2008-11-01

    We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)

  11. LHC magnet quench protection system

    Science.gov (United States)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  12. LHC magnet quench protection system

    International Nuclear Information System (INIS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-01-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called ''cold diode'' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements--so called ''cold diodes''. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a ''natural'' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages

  13. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  14. Towards an optimized coupling-loss induced quench protection system (CLIQ) for quadrupole magnets (Proc. 25th ICEC & ICMC2014 conference)

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, Vladimir I.; Desbiolles, Vincent; Feuvrier, Jerome; Kirby, Glyn; Maciejewski, Michal; Sperin, Kevin A.; ten Kate, Herman H.J.; Verweij, Arjan P.; Willering, G.

    2015-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Its simple and robust electrical design, its lower failure rate, and its more

  15. The covariant-evolution-operator method in bound-state QED

    International Nuclear Information System (INIS)

    Lindgren, Ingvar; Salomonson, Sten; Aasen, Bjoern

    2004-01-01

    The methods of quantum-electrodynamical (QED) calculations on bound atomic systems are reviewed with emphasis on the newly developed covariant-evolution-operator method. The aim is to compare that method with other available methods and also to point out possibilities to combine that with standard many-body perturbation theory (MBPT) in order to perform accurate numerical QED calculations, including quasi-degeneracy, also for light elements, where the electron correlation is relatively strong. As a background, the time-independent many-body perturbation theory (MBPT) is briefly reviewed, particularly the method with extended model space. Time-dependent perturbation theory is discussed in some detail, introducing the time-evolution operator and the Gell-Mann-Low relation, generalized to an arbitrary model space. Three methods of treating the bound-state QED problem are discussed. The standard S-matrix formulation, which is restricted to a degenerate model space, is discussed only briefly. Two methods applicable also to the quasi-degenerate problem are treated in more detail, the two-times Green's-function and the covariant-evolution-operator techniques. The treatment is concentrated on the latter technique, which has been developed more recently and which has not been discussed in more detail before. A comparison of the two-times Green's-function and the covariant-evolution-operator techniques, which have great similarities, is performed. In the appendix a simple procedure is derived for expressing the evolution-operator diagrams of arbitrary order. The possibilities of merging QED in the covariant evolution-operator formulation with MBPT in a systematic way is indicated. With such a technique it might be feasible to perform accurate QED calculations also on light elements, which is presently not possible with the techniques available

  16. Large N dynamics in QED in a magnetic field

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miransky, V.A.; Shovkovy, I.A.

    2003-01-01

    The expression for the dynamical mass of fermions in QED in a magnetic field is obtained for a large number of the fermion flavor N in the framework of 1/N expansion. The existence of a threshold value N thr , dividing the theories with essentially different dynamics, is established. For the number of flavors N thr , the dynamical mass is very sensitive to the value of the coupling constant α b , related to the magnetic scale μ=√(vertical bar eB vertical bar). For N of the order of N thr or larger, a dynamics similar to that in the Nambu-Jona-Lasinio model with a cutoff of the order of √(vertical bar eB vertical bar) and the dimensional coupling constant G∼1/(N vertical bar eB vertical bar) takes place. In this case, the value of the dynamical mass is essentially α b independent (the dynamics with an infrared stable fixed point). The value of N thr separates a weak coupling dynamics (with α-tilde b ≡Nα b b > or approx. 1) and is of the order of 1/α b

  17. N = 1 super-Chern-Simons coupled to parity-preserving matter from Atiyah-Ward space-time

    International Nuclear Information System (INIS)

    Andrade, M.A. de; Cima, O.M. Del; Colatto, L.P.

    1995-06-01

    In this letter, we present the Parkes-Siegel formulation for the massive Abelian N=1 super-QED 2+2 coupled to a self-dual supermultiplet, by introducing a chiral multiplier superfield. We show that after carrying out a suitable dimensional reduction from (2+2) to (1+2) dimensions, and performing some necessary truncations, the simple supersymmetric extension of the π3 QED 1+2 coupled to a Chern-Simons term naturally comes out. (author). 15 refs

  18. Leading-order hadronic contributions to a{sub {mu}} and {alpha}{sub QED} from N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)

    2012-11-15

    We present the first four-flavour lattice calculation of the leading-order hadronic vacuum-polarisation contribution to the anomalous magnetic moment of the muon, a{sup hvp}{sub {mu}}, and the hadronic running of the QED coupling constant, {Delta}{alpha}{sup hvp}{sub QED}(Q{sup 2}). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.

  19. Leading order hadronic contributions to a{sub {mu}} and {alpha}{sub QED} from N{sub f} = 2 + 1 + 1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng, Grit Hotzel, Karl Jansen, Marcus Petschlies, Dru B. Renner

    2012-12-01

    We present the first four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sub {mu}}{sup hvp}, and the hadronic running of the QED coupling constant, {Delta}{alpha}{sup hvp}{sub QED}(Q{sup 2}). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.

  20. Leading-order hadronic contributions to a{sub μ} and α{sub QED} from N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hotzel, Grit [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Jansen, Karl [NIC, DESY, Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru [Jefferson Lab, Newport News (United States)

    2013-07-01

    We present the first four-flavour lattice calculation of the leading-order hadronic vacuum-polarisation contribution to the anomalous magnetic moment of the muon, a{sub μ}{sup hvp}, and the hadronic running of the QED coupling constant, Δ α{sub QED}{sup hvp} (Q{sup 2}). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.

  1. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  2. The QED contribution to J/{psi} plus light hadrons production at B-factories

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhi-Guo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Wang, Jian-Xiong [Chinese Academy of Science, Beijing (China). Inst. of High Energy Physics; Chinese Academy of Science, Beijing (China). Theoretical Physics Center for Science Facilities

    2013-01-15

    To understand the direct J/{psi}+X{sub non-c} {sub anti} {sub c} production mechanism in e{sup +}e{sup -} annihilation, in this work, we propose to measure the inclusive J/{psi} plus light hadrons (LH) production at B-factories and present a detailed study on its QED production due to {psi}(2S) feed-down, where the {psi}(2S) are produced in e{sup +}e{sup -}{yields}{psi}(2S)+{gamma} and e{sup +}e{sup -}{yields}{psi}(2S) +f anti f, f = lepton, lightquark, and QED contribution to direct J/{psi}+q anti q production with q = u, d, s quark. We find that the QED contribution is huge in the whole phase space region, but can be reduced largely and is in the same order as the QCD contribution when a suitable cut on the angel {theta}{sub J/{psi}} between J/{psi} and the e{sup +}e{sup -} beam is made. In this way, the cross section of J/{psi} + LH QCD production % which was predicted theoretical at next-to-leading order QCD together with relativistic correction, can be obtained by subtracting the QED contribution from the experimental measurement on inclusive J/{psi} plus light hadrons. To help to remove the QED background, we also calculate the angular and momentum distribution of J/{psi} in the QED contribution.

  3. Electric fields and monopole currents in compact QED

    International Nuclear Information System (INIS)

    Zach, M.; Faber, M.; Kainz, W.; Skala, P.

    1995-01-01

    The confinement in compact QED is known to be related to magnetic monopoles. Magnetic currents form a solenoid around electric flux lines between a pair of electric charges. This behaviour can be described by the dual version of Maxwell-London equations including a fluctuating string. We use a definition of magnetic monopole currents adjusted to the definition of the electric field strength on a lattice and get good agreement for field and current distributions between compact QED and the predictions of dual Maxwell-London equations. Further we show that the monopole fluctuations in the vacuum are suppressed by the flux tube. ((orig.))

  4. Symplectic matrix, gauge invariance and Dirac brackets for super-QED

    Energy Technology Data Exchange (ETDEWEB)

    Alves, D.T. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Cheb-Terrab, E.S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mathematics

    1999-08-01

    The calculation of Dirac brackets (DB) using a symplectic matrix approach but in a Hamiltonian framework is discussed, and the calculation of the DB for the supersymmetric extension of QED (super-QED) is shown. The relation between the zero-mode of the pre-symplectic matrix and the gauge transformations admitted by the model is verified. A general description to construct Lagrangians linear in the velocities is also presented. (author)

  5. The Gribov problem in noncommutative QED

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio [Centro de Estudios Científicos (CECS),Casilla 1469, Valdivia (Chile); Kurkov, Maxim A. [Dipartimento di Matematica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); CMCC-Universidade Federal do ABC,Santo André, S.P. (Brazil); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Rosa, Luigi; Vitale, Patrizia [Dipartimento di Fisica, Università di Napoli Federico II,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli,Monte S. Angelo, Via Cintia, 80126 Napoli (Italy)

    2016-01-04

    It is shown that in the noncommutative version of QED (NCQED) Gribov copies induced by the noncommutativity of space-time appear in the Landau gauge. This is a genuine effect of noncommutative geometry which disappears when the noncommutative parameter vanishes.

  6. Cavity QED with single trapped Ca+-ions

    International Nuclear Information System (INIS)

    Mundt, A.B.

    2003-02-01

    This thesis reports on the design and setup of a vacuum apparatus allowing the investigation of cavity QED effects with single trapped 40 Ca + ions. The weak coupling of ion and cavity in the 'bad cavity limit' may serve to inter--convert stationary and flying qubits. The ion is confined in a miniaturized Paul trap and cooled via the Doppler effect to the Lamb--Dicke regime. The extent of the atomic wave function is less than 30 nm. The ion is enclosed by a high finesse optical cavity. The technically--involved apparatus allows movement of the trap relative to the cavity and the trapped ion can be placed at any position in the standing wave. By means of a transfer lock the cavity can be resonantly stabilized with the S 1/2 ↔ D 5/2 quadrupole transition at 729 nm (suitable as a qubit) without light at that wavelength being present in the cavity. The coupling of the cavity field to the S 1/2 ↔ D 5/2 quadrupole transition is investigated with various techniques in order to determine the spatial dependence as well as the temporal dynamics. The orthogonal coupling of carrier and first--order sideband transitions at field nodes and antinodes is explored. The coherent interaction of the ion and the cavity field is confirmed by exciting Rabi oscillations with short resonant pulses injected into the cavity. Finally, first experimental steps towards the observation of cavity enhanced spontaneous emission have been taken. (author)

  7. Hybrid Circuit QED with Electrons on Helium

    Science.gov (United States)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  8. Developing magnonic architectures in circuit QED

    Science.gov (United States)

    Karenowska, Alexy; van Loo, Arjan; Morris, Richard; Kosen, Sandoko

    The development of low-temperature experiments aimed at exploring and exploiting magnonic systems at the quantum level is rapidly becoming a highly active and innovative area of microwave magnetics research. Magnons are easily excited over the microwave frequency range typical of established solid-state quantum circuit technology, and couple readily to electromagnetic fields. These facts, in combination with the highly tunable dispersion of the excitations, make them a particularly interesting proposition in the context of quantum device design. In this talk, we survey recent progress made in our group in the area of the hybridization of planar superconducting circuit technology (circuit-QED) with magnon systems. We discuss the technical requirements of successful experiments, including the choice of suitable materials. We go on to describe the results of investigations including the study spin-wave propagation in magnetic waveguides at the single magnon level, the investigation of magnon modes in spherical magnetic resonators, and the development of systems incorporating Josephson-junction based qubits. The authors would like to acknowledge funding by the EPSRC through Grant EP/K032690/1.

  9. Bern-Kosower rule for scalar QED

    International Nuclear Information System (INIS)

    Daikouji, K.; Shino, M.; Sumino, Y.

    1996-01-01

    We derive a full Bern-Kosower-type rule for scalar QED starting from quantum field theory: we derive a set of rules for calculating S-matrix elements for any processes at any order of the coupling constant. A gauge-invariant set of diagrams in general is first written in the world line path-integral expression. Then we integrate over x(τ), and the resulting expression is given in terms of a correlation function on the world line left-angle x(τ)x(τ ' )right-angle. Simple rules to decompose the correlation function into basic elements are obtained. A gauge transformation known as the integration by parts technique can be used to reduce the number of independent terms before integration over proper-time variables. The surface terms can be omitted provided the external scalars are on shell. Also, we clarify correspondence to the conventional Feynman rule, which enabled us to avoid any ambiguity coming from the infinite dimensionality of the path-integral approach. copyright 1996 The American Physical Society

  10. A semi perturbative method for QED

    OpenAIRE

    Jora, Renata; Schechter, Joseph

    2014-01-01

    We compute the QED beta function using a new method of functional integration. It turns out that in this procedure the beta function contains only the first two orders coefficients and thus corresponds to a new renormalization scheme, long time supposed to exist.

  11. QED radiative corrections to the pionium life time

    International Nuclear Information System (INIS)

    Kuraev, Eh.A.

    1997-01-01

    The lowest order QED radiative corrections to the cross section of the recharged process of transition of two neutral ones and to the pionium lifetime are calculated in frame of scalar QED. It is argued that the ultraviolet cut-off of the loop momentum is to be chosen of order of ρ-meson mass. This fact permits to perform the calculation in frames of Effective Chiral Lagrangian theory with vector-meson dominance. The Coulomb factor corresponding to interaction in the initial state, shown, is to be removed to avoid the double counting. Resulting value of the radiative correction to the pionium lifetime is 0.25%

  12. Polarizability sum rules in QED

    International Nuclear Information System (INIS)

    Llanta, E.; Tarrach, R.

    1978-01-01

    The well founded total photoproduction and the, assumed subtraction free, longitudinal photoproduction polarizability sum rules are checked in QED at the lowest non-trivial order. The first one is shown to hold, whereas the second one turns out to need a subtraction, which makes its usefulness for determining the electromagnetic polarizabilities of the nucleons quite doubtful. (Auth.)

  13. Remnants of semiclassical bistability in the few-photon regime of cavity QED.

    Science.gov (United States)

    Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo

    2011-11-21

    Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing. © 2011 Optical Society of America

  14. Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Reitzenstein, Stephan

    2013-01-01

    The semiconductor micropillar is attractive for cavity QED experiments. For strong coupling, the figure of merit is proportional to Q/√V, and a design combining a high Q and a low mode volume V is thus desired. However, for the standard submicron diameter design, poor mode matching between the ca...... the cavity and the DBR Bloch mode limits the Q. We present a novel adiabatic design where Bloch-wave engineering is employed to improve the mode matching, allowing the demonstration of a record-high vacuum Rabi splitting of 85 μeV and a Q of 13600 for a 850 nm diameter micropillar....

  15. Recursive relations for processes with n photons of noncommutative QED

    International Nuclear Information System (INIS)

    Jafari, Abolfazl

    2007-01-01

    Recursion relations are derived in the sense of Berends-Giele for the multi-photon processes of noncommutative QED. The relations concern purely photonic processes as well as the processes with two fermions involved, both for arbitrary number of photons at tree level. It is shown that despite of the dependence of noncommutative vertices on momentum, in contrast to momentum-independent color factors of QCD, the recursion relation method can be employed for multi-photon processes of noncommutative QED

  16. QED Theory of the Nuclear Magnetic Shielding in Hydrogenlike Ions

    International Nuclear Information System (INIS)

    Yerokhin, V. A.; Pachucki, K.; Harman, Z.; Keitel, C. H.

    2011-01-01

    The shielding of the nuclear magnetic moment by the bound electron in hydrogenlike ions is calculated ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently, to the first order in the expansion in this parameter. The results obtained lay the basis for the high-precision determination of nuclear magnetic dipole moments from measurements of the g factor of hydrogenlike ions.

  17. High order QED corrections in Z physics

    International Nuclear Information System (INIS)

    Marck, S.C. van der.

    1991-01-01

    In this thesis a number of calculations of higher order QED corrections are presented, all applying to the standard LEP/SLC processes e + e - → f-bar f, where f stands for any fermion. In cases where f≠ e - , ν e , the above process is only possible via annihilation of the incoming electron positron pair. At LEP/SLC this mainly occurs via the production and the subsequent decay of a Z boson, i.e. the cross section is heavily dominated by the Z resonance. These processes and the corrections to them, treated in a semi-analytical way, are discussed (ch. 2). In the case f = e - (Bhabha scattering) the process can also occur via the exchange of a virtual photon in the t-channel. Since the latter contribution is dominant at small scattering angles one has to exclude these angles if one is interested in Z physics. Having excluded that region one has to recalculate all QED corrections (ch. 3). The techniques introduced there enables for the calculation the difference between forward and backward scattering, the forward backward symmetry, for the cases f ≠ e - , ν e (ch. 4). At small scattering angles, where Bhabha scattering is dominated by photon exchange in the t-channel, this process is used in experiments to determine the luminosity of the e + e - accelerator. hence an accurate theoretical description of this process at small angles is of vital interest to the overall normalization of all measurements at LEP/SLC. Ch. 5 gives such a description in a semi-analytical way. The last two chapters discuss Monte Carlo techniques that are used for the cases f≠ e - , ν e . Ch. 6 describes the simulation of two photon bremsstrahlung, which is a second order QED correction effect. The results are compared with results of the semi-analytical treatment in ch. 2. Finally ch. 7 reviews several techniques that have been used to simulate higher order QED corrections for the cases f≠ e - , ν e . (author). 132 refs.; 10 figs.; 16 tabs

  18. Sensor for detecting a quench in a superconductor using an optical coupling

    International Nuclear Information System (INIS)

    Mallick, G.T. Jr.; Logan, J.R.; Marschik, D.

    1991-01-01

    This patent describes a sensor for detecting a quench in a superconducting coil. It comprises a readout coil located in a magnetic field produced by the superconducting coil that will move in response to a current flow between two potential leads connected to voltage taps on the superconducting coil caused by the presence of a quench in the superconducting coil; at least one light source; at least one light sensor aligned with the light source; an optical encoder integrally attached to the readout and capable of interrupting light emitted by the light source and impinging on the light sensor; a means of biasing the readout coil to return it to an original position when a quench is not present in the superconducting coil; and a means of remotely decoding the transmitted and interrupted light received by the light sensor to indicate the presence of a quench in the superconducting coil

  19. Angular structure of jet quenching within a hybrid strong/weak coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2017-03-27

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the

  20. Relativistic and QED corrections to the g factor of Li-like ions

    International Nuclear Information System (INIS)

    Glazov, D.A.; Shabaev, V.M.; Volotka, A.V.; Tupitsyn, I.I.; Yerokhin, V.A.; Plunien, G.; Soff, G.

    2004-01-01

    Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z=6-92. The configuration-interaction Dirac-Fock method is employed for the evaluation of the interelectronic-interaction correction of order 1/Z 2 and higher. This correction is combined with the 1/Z interelectronic-interaction term derived within a rigorous QED approach. The one-electron QED correction of first order in α is obtained by employing our recent results for the self-energy term and by evaluating the vacuum-polarization contribution. The screening of QED corrections is taken into account to the leading orders in αZ and 1/Z

  1. Quantum Private Comparison via Cavity QED

    International Nuclear Information System (INIS)

    Ye Tian-Yu

    2017-01-01

    The first quantum private comparison (QPC) protocol via cavity quantum electrodynamics (QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party (TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack. Particularly, it can prevent TP from knowing two users’ secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%. (paper)

  2. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Manipulation of a photonic quantum memory

    Science.gov (United States)

    Reagor, Matthew; Pfaff, Wolfgang; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Albert, Victor V.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.

    2015-03-01

    Recent advances in circuit QED have shown great potential for using microwave resonators as quantum memories. In particular, it is possible to encode the state of a quantum bit in non-classical photonic states inside a high-Q linear resonator. An outstanding challenge is to perform controlled operations on such a photonic state. We demonstrate experimentally how a continuous drive on a transmon qubit coupled to a high-Q storage resonator can be used to induce non-linear dynamics of the resonator. Tailoring the drive properties allows us to cancel or enhance non-linearities in the system such that we can manipulate the state stored in the cavity. This approach can be used to either counteract undesirable evolution due to the bare Hamiltonian of the system or, ultimately, to perform logical operations on the state encoded in the cavity field. Our method provides a promising pathway towards performing universal control for quantum states stored in high-coherence resonators in the circuit QED platform.

  3. Mode-coupling of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter

    2016-05-01

    The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. As a first attempt a brief analysis of the dynamics caused exclusively by the periodically driven lattice is presented and the induced low-lying modes are introduced. It is shown that the periodic driving enforces the bosons in the outer wells to exhibit out-of-phase dipole-like modes, while in the central well the cloud experiences a local-breathing mode. The dynamical behavior of the system is investigated with respect to the driving frequency, revealing a resonant-like behavior of the intra-well dynamics. Subsequently, we drive the system to a highly non-equilibrium state by performing an interaction quench upon the periodically driven lattice. This protocol gives rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result (of the quench) the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Finally, our study reveals that the position of the resonances can be adjusted e.g. via the driving frequency or the atom number manifesting their many-body nature. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  4. The angular structure of jet quenching within a hybrid strong/weak coupling model

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2017-08-01

    Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.

  5. Quench simulation of SMES consisting of some superconducting coils

    International Nuclear Information System (INIS)

    Noguchi, S.; Oga, Y.; Igarashi, H.

    2011-01-01

    A chain of quenches may be caused by a quench of one element coil when SMES is consists of many element coils. To avoid the chain of quenches, the energy stored in element coil has to be quickly discharged. The cause of the chain of the quenches is the short time constant of the decreasing current of the quenched coil. In recent years, many HTS superconducting magnetic energy storage (HTS-SMES) systems are investigated and designed. They usually consist of some superconducting element coils due to storing excessively high energy. If one of them was quenched, the storage energy of the superconducting element coil quenched has to be immediately dispersed to protect the HTS-SMES system. As the result, the current of the other element coils, which do not reach to quench, increases since the magnetic coupling between the quenched element coil and the others are excessively strong. The increase of the current may cause the quench of the other element coils. If the energy dispersion of the element coil quenched was failed, the other superconducting element coil would be quenched in series. Therefore, it is necessary to investigate the behavior of the HTS-SMES after quenching one or more element coils. To protect a chain of quenches, it is also important to investigate the time constant of the coils. We have developed a simulation code to investigate the behavior of the HTS-SMES. By the quench simulation, it is indicated that a chain of quenches is caused by a quench of one element coil.

  6. Finite field-energy of a point charge in QED

    International Nuclear Information System (INIS)

    Costa, Caio V; Gitman, Dmitry M; Shabad, Anatoly E

    2015-01-01

    We consider a simple nonlinear (quartic in the fields) gauge-invariant modification of classical electrodynamics, to show that it possesses a regularizing ability sufficient to make the field energy of a point charge finite. The model is exactly solved in the class of static central-symmetric electric fields. Collation with quantum electrodynamics (QED) results in the total field energy of a point elementary charge about twice the electron mass. The proof of the finiteness of the field energy is extended to include any polynomial selfinteraction, thereby the one that stems from the truncated expansion of the Euler–Heisenberg local Lagrangian in QED in powers of the field strength. (paper)

  7. Controlled teleportation of a multipartite quantum state via driven QED cavity

    International Nuclear Information System (INIS)

    Cao Haijing; Song Heshan

    2007-01-01

    We propose a scheme for teleporting a multipartite quantum state via driven QED cavity technologies. The combined state of Bell states is employed as a quantum channel. By adopting QED cavity technologies, our scheme does not involve the Bell-state measurements and can be perfectly realized by communicators' single particle measurements, possible C-not transformation and classical communication. The probability of successful teleportation can reach 1.0. The theoretical scheme is experimentally feasible via current technologies

  8. Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

    Science.gov (United States)

    Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping

    2018-04-01

    We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

  9. Simulations of relativistic quantum plasmas using real-time lattice scalar QED

    Science.gov (United States)

    Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.

  10. The two-photon self-energy and other QED radiative corrections

    International Nuclear Information System (INIS)

    Zschocke, S.

    2001-07-01

    One of the main issues in current nuclear physics is the precise measurement of the Lamb shift of strongly bound electrons in quantum electrodynamic (QED) tests in strong fields in highly charged ions. The currently performed high-precision measurements require extreme accuracy in the theoretical calculation of Lamb shift. This requires consideration of all α and α 2 order QED corrections as well as of precisely all orders in Zα. In the past years most of these QED corrections have been calculated both in 1st order and in 2nd order interference theory. As yet however, it has not been possible to assess the contribution of the two-photon self-energy, which has therefore been the greatest uncertainty factor in predicting Lamb shift in hydrogen-like systems. This study examines the contribution of these processes to Lamb shift. It also provides the first ever derivation of renormalized terms of two-photon vacuum polarisation and self-energy vacuum polarisation. Until now it has only been possible to evaluate these contributions by way of an Uehling approximation [de

  11. A Cavity QED Implementation of Deutsch-Jozsa Algorithm

    OpenAIRE

    Guerra, E. S.

    2004-01-01

    The Deutsch-Jozsa algorithm is a generalization of the Deutsch algorithm which was the first algorithm written. We present schemes to implement the Deutsch algorithm and the Deutsch-Jozsa algorithm via cavity QED.

  12. QED corrections to the 4p-4d transition energies of copperlike heavy ions

    International Nuclear Information System (INIS)

    Chen, M. H.; Cheng, K. T.; Johnson, W. R.; Sapirstein, J.

    2006-01-01

    Quantum electrodynamic (QED) corrections to 4p-4d transition energies of several copperlike ions with Z=70-92 are calculated nonperturbatively in strong external fields to all orders in binding corrections. Dirac-Kohn-Sham potentials are used to account for screening and core-relaxation effects. For the 4p 1/2 -4d 3/2 transition in copperlike bismuth, thorium, and uranium, results are in good agreement with empirical QED corrections deduced from differences between transition energies obtained from recent high-precision electron-beam ion-trap measurements and those calculated with the relativistic many-body perturbation theory (RMBPT). These comparisons provide sensitive tests of QED corrections for high-angular-momentum states in many-electron heavy ions and illustrate the importance of core-relaxation corrections. Comparisons are also made with other theories and with experiments on the 4s-4p transition energies of high-Z Cu-like ions as accuracy checks of the present RMBPT and QED calculations

  13. The renormalization group study of the effective theory of lattice QED

    International Nuclear Information System (INIS)

    Sugiyama, Y.

    1988-01-01

    The compact U(1) lattice gauge theory with massless fermions (Lattice QED) is studied through the effective model analytically, using the renormalization group method. The obtained effective model is the local boson field system with non-local interactions. The authors study the existence of non-trivial fixed point and its scaling behavior. This fixed point seems to be tri-critical. Such fixed point is interpreted in terms of the original Lattice QED model, and the results are consistent with the Monte Calro study

  14. CLIQ. A new quench protection technology for superconducting magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele

    2015-01-01

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling

  15. Resilience of the quantum Rabi model in circuit QED

    International Nuclear Information System (INIS)

    Manucharyan, Vladimir E; Baksic, Alexandre; Ciuti, Cristiano

    2017-01-01

    In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads. (paper)

  16. Multiplicative renormalizability and self-consistent treatments of the Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Brown, N.; Dorey, N.

    1989-11-01

    Many approximations to the Schwinger-Dyson equations place constraints on the renormalization constants of a theory. The requirement that the solutions to the equations be multiplicatively renormalizable also places constraints on these constants. Demanding that these two sets of constraints be compatible is an important test of the self-consistency of the approximations made. We illustrate this idea by considering the equation for the fermion propagator in massless quenched quantum electrodynamics, (QED), checking the consistency of various approximations. In particular, we show that the much used 'ladder' approximation is self-consistent, provided that the coupling constant is renormalized in a particular way. We also propose another approximation which satisfies this self-consistency test, but requires that the coupling be unrenormalized, as should be the case in the full quenched approximation. This new approximation admits an exact solution, which also satisfies the renormalization group equation for the quenched approximation. (author)

  17. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    Energy Technology Data Exchange (ETDEWEB)

    Volotka, A.V.

    2006-07-01

    accounted for preserving gauge invariance. One-loop QED corrections to the magnetic-dipole transition amplitude between the fine-structure levels 2p{sub 3/2} and 2p{sub 1/2} are calculated to all orders in {alpha}Z. Taking into account consistently relativistic, interelectronic-interaction, and QED corrections to the magnetic-dipole transition amplitude allows for predictions of the lifetimes of the states (1s{sup 2}2s{sup 2}2p) {sup 2}P{sub 3/2} in B-like ions and (1s{sup 2}2s2p) {sup 3}P{sub 2} in Be-like ions with utmost precision. The results of corresponding calculations are compared with experimental data obtained in recent measurements at the Heidelberg EBIT. Finally, for He-like ions with nonzero-spin nuclei the effect of hyperfine quenching on the lifetimes of the 2{sup 3}P{sub 0,2} states is investigated and again compared available experimental data. (orig.)

  18. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    International Nuclear Information System (INIS)

    Volotka, A.V.

    2006-01-01

    accounted for preserving gauge invariance. One-loop QED corrections to the magnetic-dipole transition amplitude between the fine-structure levels 2p 3/2 and 2p 1/2 are calculated to all orders in αZ. Taking into account consistently relativistic, interelectronic-interaction, and QED corrections to the magnetic-dipole transition amplitude allows for predictions of the lifetimes of the states (1s 2 2s 2 2p) 2 P 3/2 in B-like ions and (1s 2 2s2p) 3 P 2 in Be-like ions with utmost precision. The results of corresponding calculations are compared with experimental data obtained in recent measurements at the Heidelberg EBIT. Finally, for He-like ions with nonzero-spin nuclei the effect of hyperfine quenching on the lifetimes of the 2 3 P 0,2 states is investigated and again compared available experimental data. (orig.)

  19. Monopoles and chiral symmetry breaking in compact and noncompact QED3

    International Nuclear Information System (INIS)

    Fiebig, H.R.

    1990-11-01

    A comparison of the compact and the noncompact lattice action for 2+1 dimensional QED is made. In particular, the chiral order parameter and the monopole density ρ m are computed as functions of β for N f = 0.2 fermion flavours. The results reveal a strong correlation between and ρ m . Moreover, this correlation is identical for the compact and noncompact theories. This is interpreted as evidence that monopole condensation drives chiral symmetry breaking in lattice QED 3 . (Author) (6 refs., 5 figs.)

  20. QED coherence in matter

    CERN Document Server

    Preparata, Giuliano

    1995-01-01

    Up until now the dominant view of condensed matter physics has been that of an "electrostatic MECCANO" (erector set, for Americans). This book is the first systematic attempt to consider the full quantum-electrodynamical interaction (QED), thus greatly enriching the possible dynamical mechanisms that operate in the construction of the wonderful variety of condensed matter systems, including life itself.A new paradigm is emerging, replacing the "electrostatic MECCANO" with an "electrodynamic NETWORK," which builds condensed matter through the long range (as opposed to the "short range" nature o

  1. QED blue-sheet effects inside black holes

    International Nuclear Information System (INIS)

    Burko, L.M.

    1997-01-01

    The interaction of the unboundedly blueshifted photons of the cosmic microwave background radiation with a physical object falling towards the inner horizon of a Reissner-Nordstroem black hole is analyzed. To evaluate this interaction we consider the QED effects up to the second order in the perturbation expansion. We then extrapolate the QED effects up to a cutoff, which we introduce at the Planckian level. (Our results are not sensitive to the cutoff energy.) We find that the energy absorbed by an infalling observer is finite, and for typical parameters would not lead to a catastrophic heating. However, this interaction would almost certainly be fatal for a human being, or other living organisms of similar size. On the other hand, we find that smaller objects may survive the interaction. Our results do not provide support for the idea that the Cauchy horizon is to be regarded as the boundary of spacetime. copyright 1997 The American Physical Society

  2. Fate of Majorana fermions and Chern numbers after a quantum quench.

    Science.gov (United States)

    Sacramento, P D

    2014-09-01

    In the sequence of quenches to either nontopological phases or other topological phases, we study the stability of Majorana fermions at the edges of a two-dimensional topological superconductor with spin-orbit coupling and in the presence of a Zeeman term. Both instantaneous and slow quenches are considered. In the case of instantaneous quenches, the Majorana modes generally decay, but for a finite system there is a revival time that scales to infinity as the system size grows. Exceptions to this decaying behavior are found in some cases due to the presence of edge states with the same momentum in the final state. Quenches to a topological Z(2) phase reveal some robustness of the Majorana fermions in the sense that even though the survival probability of the Majorana state is small, it does not vanish. If the pairing is not aligned with the spin-orbit Rashba coupling, it is found that the Majorana fermions are fairly robust with a finite survival probability. It is also shown that the Chern number remains invariant after the quench, until the propagation of the mode along the transverse direction reaches the middle point, beyond which the Chern number fluctuates between increasing values. The effect of varying the rate of change in slow quenches is also analyzed. It is found that the defect production is nonuniversal and does not follow the Kibble-Zurek scaling with the quench rate, as obtained before for other systems with topological edge states.

  3. Three-point Green's function of massless QED in position space to lowest order

    International Nuclear Information System (INIS)

    Mitra, Indrajit

    2009-01-01

    The transverse part of the three-point Green's function of massless QED is determined to the lowest order in position space. Taken together with the evaluation of the longitudinal part in Mitra (2008) (J. Phys. A: Math. Theor. 41 315401), this gives a relation for QED which is analogous to the star-triangle relation. We relate our result to conformal-invariant three-point functions

  4. Chiral symmetry breaking is permitted in supersymmetric QED

    International Nuclear Information System (INIS)

    Walker, M.

    2000-01-01

    Full text: A chirally symmetric theory will generally have a chirally symmetric and a chirally asymmetric solution for the dressed fermionic propagator. It has been claimed that no chirally asymmetric solution for the fermionic propagator exists in supersymmetric QED. This result in the superfield formalism uses a gauge dependent argument whose validity has since been questioned. We present an analogous analysis using the component formalism which demonstrates that chiral symmetry breaking is permitted in this theory. We open the presentation with a brief introduction to supersymmetry, supersymmetric QED, and the superfield formalism. We describe chiral symmetry breaking and the Dyson-Schwinger equation used to analyse it. The derivation of the erroneous theorem claiming the lack of an a chiral propagator is outlined and its flaws discussed. We finish with the equivalent derivation in component fields and our contradictory result

  5. QED fermi fields as operator-valued distributions and anomalies

    International Nuclear Information System (INIS)

    Grange, P.; Werner, E.

    2005-01-01

    The treatment of fields as operator-valued distributions (OPVD) is recalled with the emphasis on the importance of causality following the work of Epstein and Glaser. Gauge-invariant theories demand the extension of the usual translation operation on OPVD, thereby leading to a generalized QED formulation. At D = 2 the solvability of the Schwinger model is totally preserved. At D = 4 the paracompactness property of the Euclidean manifold permits the use of test functions which are a decomposition of unity and thereby provides a natural justification and extension of the non-perturbative heat kernel method (Fujikawa) for Abelian anomalies. On the Minkowski manifold the specific role of causality in the restauration of gauge invariance (and mass generation for QED 2 is exemplified in a simple way. (author)

  6. Modelling of pressure tube Quench using PDETWO

    International Nuclear Information System (INIS)

    Parlatan, Y.; Lei, Q.M.; Kwee, M.

    2004-01-01

    Transient two-dimensional heat conduction calculations have been carried out to determine the time-dependent temperature distribution in an overheated pressure tube during quenching with water. The purpose of the calculations is to provide input for evaluation of thermal (secondary) stresses in the pressure tube due to quench. The quench phenomenon in pressure tubes could occur in several hypothetical accident scenarios, including incidents involving intermittent buoyancy-induced flow during outages. In these scenarios, there will be two (radial and axial) or three dimensional temperature gradients, resulting in thermal stresses in the pressure tube, as the water front reaches and starts to cool down the hot pressure tube. The transient, two-dimensional heat conduction equation in the pressure tube during quench is solved using a FORTRAN package called PDETWO, available in the open literature for solving time-dependent coupled systems of non-linear partial differential equations over a two-dimensional rectangular region. This routine is based on finite difference solution of coupled, non-linear partial differential equations. Temperature gradient in the circumferential gradient is neglected for conservatism and convenience. The advancing water front is not modelled explicitly, and assumed to be at a uniform temperature and moving at a constant velocity inferred from experimental data. For outer surface and both ends of the pressure tube in the axial direction, a zero-heat flux boundary condition is assumed, while for the inner surface a moving water-quench front is assumed by appropriately varying the fluid temperature and the heat transfer coefficient. The pressure tube is assumed to be at a uniform temperature of 400 o C initially, to represent conditions expected during an intermittent buoyancy-influenced flow scenario. The results confirm the expectations that axial temperature gradients and associated heat fluxes are small in comparison with those in the

  7. High sensitive quench detection method using an integrated test wire

    International Nuclear Information System (INIS)

    Fevrier, A.; Tavergnier, J.P.; Nithart, H.; Kiblaire, M.; Duchateau, J.L.

    1981-01-01

    A high sensitive quench detection method which works even in the presence of an external perturbing magnetic field is reported. The quench signal is obtained from the difference in voltages at the superconducting winding terminals and at the terminals at a secondary winding strongly coupled to the primary. The secondary winding could consist of a ''zero-current strand'' of the superconducting cable not connected to one of the winding terminals or an integrated normal test wire inside the superconducting cable. Experimental results on quench detection obtained by this method are described. It is shown that the integrated test wire method leads to efficient and sensitive quench detection, especially in the presence of an external perturbing magnetic field

  8. Predictions for Boson-Jet Observables and Fragmentation Function Ratios from a Hybrid Strong/Weak Coupling Model for Jet Quenching

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2016-01-01

    We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...

  9. Asymmetries in the spectral density of an interaction-quenched Luttinger liquid

    Science.gov (United States)

    Calzona, A.; Gambetta, F. M.; Carrega, M.; Cavaliere, F.; Sassetti, M.

    2018-03-01

    The spectral density of an interaction-quenched one-dimensional system is investigated. Both direct and inverse quench protocols are considered and it is found that the former leads to stronger effects on the spectral density with respect to the latter. Such asymmetry is directly reflected on transport properties of the system, namely the charge and energy current flowing to the system from a tunnel coupled biased probe. In particular, the injection of particles from the probe to the right-moving channel of the system is considered. The resulting fractionalization phenomena are strongly affected by the quench protocol and display asymmetries in the case of direct and inverse quench. Transport properties therefore emerge as natural probes for the observation of this quench-induced behavior.

  10. Exploring photonic topological insulator states in a circuit-QED lattice

    Science.gov (United States)

    Li, Jing-Ling; Shan, Chuan-Jia; Zhao, Feng

    2018-04-01

    We propose a simple protocol to explore the topological properties of photonic integer quantum Hall states in a one-dimensional circiut-QED lattice. By periodically modulating the on-site photonic energies in such a lattice, we demonstrate that this one-dimensional lattice model can be mapped into a two-dimensional integer quantum Hall insulator model. Based on the lattice-based cavity input-output theory, we show that both the photonic topological protected edge states and topological invariants can be clearly measured from the final steady state of the resonator lattice after taking into account cavity dissipation. Interestingly, we also find that the measurement signals associated with the above topological features are quite unambitious even in five coupled dissipative resonators. Our work opens up a new prospect of exploring topological states with a small-size dissipative quantum artificial lattice, which is quite attractive to the current quantum optics community.

  11. Two-channel interaction models in cavity QED

    International Nuclear Information System (INIS)

    Wang, L.

    1993-01-01

    The authors introduce four fully quantized models of light-matter interactions in optical or microwave cavities. These are the first exactly soluble models in cavity quantum electrodynamics (cavity QED) that provide two transition channels for the flipping of atomic states. In these models a loss-free cavity is assumed to support three or four quantized field modes, which are coupled to a single atom. The atom exchanges photons with the cavity, in either the Raman configuration including both Stokes and anti-Stokes modes, or through two-photon cascade processes. The authors obtain the effective Hamiltonians for these models by adiabatically eliminating an off-resonant intermediate atomic level, and discuss their novel properties in comparison to the existing one-channel Jaynes-Cummings models. They give a detailed description of a method to find exact analytic solutions for the eigenfunctions and eigenvalues for the Hamiltonians of four models. These are also valid when the AC Stark shifts are included. It is shown that the eigenvalues can be expressed in very simple terms, and formulas for normalized eigenvectors are also given, as well as discussions of some of their simple properties. Heisenberg picture equations of motions are derived for several operators with solutions provided in a couple of cases. The dynamics of the systems with both Fock state and coherent state fields are demonstrated and discussed using the model's two key variables, the atomic inversion and the expectation value of photon number. Clear evidences of high efficiency mode-mixing are seen in both the Raman and cascade configurations, and different kinds of collapses and revivals are encountered in the atomic inversions. Effects of several factors like the AC Stark shift and variations in the complex coupling constants are also illustrated

  12. QED, QCD en pratique

    OpenAIRE

    Aurenche , P; Guillet , J.-Ph; Pilon , E

    2016-01-01

    3rd cycle; Ces notes sont une introduction à l'application de l'électrodynamique quantique (QED) et de la chromodynamiques quantique (QCD) aux réactions de diffusion à hautes énergies. Le premier thème abordé est celui des divergences ultraviolettes et de la renormalisation à une boucle, avec comme conséquence pour QCD la liberté asymptotique. Le deuxième thème est celui des divergences infrarouges et colinéaires qui dans QCD sont traitées dans le cadre du modèle des partons avec l'introducti...

  13. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  14. QED effects in the pseudoscalar meson sector

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD (United Kingdom); Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, 650-0047 (Japan); Perlt, H. [Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, Leipzig, 04109 (Germany); Pleiter, D. [Jülich Supercomputer Centre, Forschungszentrum Jülich, Jülich, 52425 (Germany); Institut für Theoretische Physik, Universität Regensburg, Regensburg, 93040 (Germany); Rakow, P.E.L. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Peach Street , Liverpool, L69 3BX (United Kingdom); Schierholz, G. [Deutsches Elektronen-Synchrotron DESY, Hamburg, 22603 (Germany); Schiller, A. [Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, Leipzig, 04109 (Germany); Stokes, R. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA, 5005 (Australia); Stüben, H. [Regionales Rechenzentrum, Universität Hamburg, Hamburg, 20146 (Germany); Young, R.D.; Zanotti, J.M. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA, 5005 (Australia); Collaboration: the QCDSF and UKQCD collaboration

    2016-04-15

    In this paper we present results on the pseudoscalar meson masses from a fully dynamical simulation of QCD+QED, concentrating particularly on violations of isospin symmetry. We calculate the π{sup +}–π{sup 0} splitting and also look at other isospin violating mass differences. We have presented results for these isospin splittings in http://arxiv.org/abs/1508.06401. In this paper we give more details of the techniques employed, discussing in particular the question of how much of the symmetry violation is due to QCD, arising from the different masses of the u and d quarks, and how much is due to QED, arising from the different charges of the quarks. This decomposition is not unique, it depends on the renormalisation scheme and scale. We suggest a renormalisation scheme in which Dashen’s theorem for neutral mesons holds, so that the electromagnetic self-energies of the neutral mesons are zero, and discuss how the self-energies change when we transform to a scheme such as (MS)-bar , in which Dashen’s theorem for neutral mesons is violated.

  15. Endemic infrared divergences in QED3 at finite temperature

    International Nuclear Information System (INIS)

    Lo, Pok Man; Swanson, Eric S.

    2011-01-01

    We demonstrate that massless QED in three dimensions contains endemic infrared divergences. It is argued that these divergences do not affect observables; furthermore, it is possible to choose a gauge that renders the theory finite.

  16. Loop expansion in massless three-dimensional QED

    International Nuclear Information System (INIS)

    Guendelman, E.I.; Radulovic, Z.M.

    1983-01-01

    It is shown how the loop expansion in massless three-dimensional QED can be made finite, up to three loops, by absorbing the infrared divergences in a gauge-fixing term. The same method removes leading and first subleading singularities to all orders of perturbation theory, and all singularities of the fermion self-energy to four loops

  17. Quenched random-bond ising ferromagnet

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Honmura, R.; Tsallis, C.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro)

    1984-01-01

    A effective-field framework which, without mathematical complexities, enables the calculation of the phase diagram (and magnetization) associated with a quenched bond-mixed spin - 1/2 Ising model in an anisotropic simple cubic lattice have been recently introduced. The case corresponding to anisotropic coupling constants but isotropic concentrations was discussed in detail. Herein the case corresponding to isotropic coupling constants but anisotropic concentrations is discussed. A certain amount of interesting phase diagrams are exhibited; whenever comparison with available data is possible, the present results provide a satisfactory qualitative (and to a certain extent quantitative) agreement. (Author) [pt

  18. QED vacuum loops and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Fried, H.M. [Brown University, Department of Physics, Providence, RI (United States); Gabellini, Y. [UMR 6618 CNRS, Institut Non Lineaire de Nice, Valbonne (France)

    2015-03-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  19. QED vacuum loops and inflation

    International Nuclear Information System (INIS)

    Fried, H.M.; Gabellini, Y.

    2015-01-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  20. Hamiltonian formulation of QED in the superaxial gauge

    International Nuclear Information System (INIS)

    Girotti, H.O.; Rothe, H.J.

    A Hamiltonian formulation of QED in a fully fixed axial gauge is presented. The equal-time commutators for all field variables are computed and are shown to lead to the correct equations of motion. The constraints and gauge conditions hold as strong operator relations. (Author) [pt

  1. APFEL : A PDF Evolution Library with QED corrections

    NARCIS (Netherlands)

    Bertone, Valerio; Carrazza, Stefano; Rojo, Juan

    Quantum electrodynamics and electroweak corrections are important ingredients for many theoretical predictions at the LHC. This paper documents APFEL, a new PDF evolution package that allows for the first time to perform DGLAP evolution up to NNLO in QCD and to LO in QED, in the

  2. Quantum Logic Network for Cloning a State Near a Given One Based on Cavity QED

    International Nuclear Information System (INIS)

    Da-Wei, Zhang; Xiao-Qiang, Shao; Ai-Dong, Zhu

    2008-01-01

    A quantum logic network is constructed to simulate a cloning machine which copies states near a given one. Meanwhile, a scheme for implementing this cloning network based on the technique of cavity quantum electrodynamics (QED) is presented. It is easy to implement this network of cloning machine in the framework of cavity QED and feasible in the experiment. (general)

  3. Large gauge symmetries and asymptotic states in QED

    Energy Technology Data Exchange (ETDEWEB)

    Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2016-12-19

    Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.

  4. Measurements of the QED Structure of the Photon

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Blobel, V.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hoch, M.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1999-01-01

    The structure of both quasi-real and highly virtual photons is investigated using the reaction e+e- -> e+e-mu+mu-, proceeding via the exchange of two photons. The results are based on the complete OPAL dataset taken at e+e- centre-of-mass energies close to the mass of the Z boson. The QED structure function F_2^gamma and the differential cross-section dsigdx for quasi-real photons are obtained as functions of the fractional momentum x from the muon momentum which is carried by the struck muon in the quasi-real photon for values of Q**2 ranging from 1.5 to 400 GeV**2. The differential cross-section dsigdx for highly virtual photons is measured for 1.5 P**2. Based on azimuthal correlations the QED structure functions F_A^gamma and F_B^gamma for quasi-real photons are determined for an average Q**2 of 5.4 GeV**2.

  5. Phase diagram and quench dynamics of the cluster-XY spin chain.

    Science.gov (United States)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  6. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  7. On C{sub J} and C{sub T} in conformal QED

    Energy Technology Data Exchange (ETDEWEB)

    Giombi, Simone; Tarnopolsky, Grigory [Princeton University, Department of Physics,Jadwin Hall, Washington Road, Princeton NJ 08544 (United States); Klebanov, Igor R. [Princeton University, Department of Physics,Jadwin Hall, Washington Road, Princeton NJ 08544 (United States); Princeton Center for Theoretical Science, Princeton University,Jadwin Hall, Washington Road, Princeton NJ 08544 (United States)

    2016-08-26

    QED with a large number N of massless fermionic degrees of freedom has a conformal phase in a range of space-time dimensions. We use a large N diagrammatic approach to calculate the leading corrections to C{sub T}, the coefficient of the two-point function of the stress-energy tensor, and C{sub J}, the coefficient of the two-point function of the global symmetry current. We present explicit formulae as a function of d and check them versus the expectations in 2 and 4−ϵ dimensions. Using our results in higher even dimensions we find a concise formula for C{sub T} of the conformal Maxwell theory with higher derivative action F{sub μν}(−∇{sup 2}){sup (d/2)−2}F{sup μν}. In d=3, QED has a topological symmetry current, and we calculate the correction to its two-point function coefficient, C{sub J}{sup top}. We also show that some RG flows involving QED in d=3 obey C{sub T}{sup UV}>C{sub T}{sup IR} and discuss possible implications of this inequality for the symmetry breaking at small values of N.

  8. High-Field Quench Behavior and Protection of $Bi_2 Sr_2 Ca Cu_2 O_x$ Coils: Minimum and Maximum Quench Detection Voltages

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming [Fermilab; Ye, Liyang [NCSU, Raleigh; Turrioni, Daniele [Fermilab; Li, Pei [Fermilab

    2015-01-01

    Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.

  9. Noncommutative QED and anomalous dipole moments

    International Nuclear Information System (INIS)

    Riad, I.F.; Sheikh-Jabbari, M.M.

    2000-09-01

    We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)

  10. Quantum Bayesian rule for weak measurements of qubits in superconducting circuit QED

    International Nuclear Information System (INIS)

    Wang, Peiyue; Qin, Lupei; Li, Xin-Qi

    2014-01-01

    Compared with the quantum trajectory equation (QTE), the quantum Bayesian approach has the advantage of being more efficient to infer a quantum state under monitoring, based on the integrated output of measurements. For weak measurement of qubits in circuit quantum electrodynamics (cQED), properly accounting for the measurement backaction effects within the Bayesian framework is an important problem of current interest. Elegant work towards this task was carried out by Korotkov in ‘bad-cavity’ and weak-response limits (Korotkov 2011 Quantum Bayesian approach to circuit QED measurement (arXiv:1111.4016)). In the present work, based on insights from the cavity-field states (dynamics) and the help of an effective QTE, we generalize the results of Korotkov to more general system parameters. The obtained Bayesian rule is in full agreement with Korotkov's result in limiting cases and as well holds satisfactory accuracy in non-limiting cases in comparison with the QTE simulations. We expect the proposed Bayesian rule to be useful for future cQED measurement and control experiments. (paper)

  11. Nonperturbative infrared dynamics in three dimensional QED

    International Nuclear Information System (INIS)

    Gusynin, V.P.

    2000-01-01

    A non-linear Schwinger-Dyson (SD) equation for the gauge boson propagator of massless QED in 2 + 1 dimensions is studied. It is shown that the nonperturbative solution leads to a non-trivial renormalization-group infrared fixed point quantitatively close to the one found in the leading order of the 1/N expansion, with N the number of fermion flavors

  12. Gauge fixing problem in the conformal QED

    International Nuclear Information System (INIS)

    Ichinose, Shoichi

    1986-01-01

    The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)

  13. Thermal-hydraulic behaviour of the ITER TF system during a quench development

    International Nuclear Information System (INIS)

    Nicollet, S.; Lacroix, B.; Bessette, D.; Copetti, R.; Duchateau, J.L.; Coatanea-Gouachet, M.; Rodriguez-Mateos, F.

    2011-01-01

    In order to ensure the safety of the ITER TF magnets, a primary quench detection system has been foreseen, based on voltage detection. In addition, a secondary quench detection could rely on signals of thermo-hydraulic nature. As a matter of fact, the development of a quench in a CICC leads to significant variations of pressure and mass flow at the quenched pancake extremities. Analyses of the quench development have thus been performed using the coupled GANDALF and FLOWER codes. This tool allows to simulate the thermo-hydraulic behaviour of one CICC with a model of the external cryogenic circuit. The study has focused on the first seconds of the quench development, supposing that the quench has not been detected earlier by the primary detector. It is shown that signals regarding pressure, mass flow and temperature reach significant high values especially in the connecting feeder associated with the helium inlet. More detailed studies will be needed to select a secondary detector in this region.

  14. QED contribution to the color-singlet J/ψ production in Υ decay near the endpoint

    International Nuclear Information System (INIS)

    Liu Xiaohui

    2010-01-01

    A recent study indicates that the α 2 α s 2 order QED processes of Υ→J/ψ+X decay are compatible with those of QCD processes. However, in the endpoint region, the nonrelativistic QED calculation breaks down since the collinear degrees of freedom are missing under the framework of this effective theory. In this paper we apply the soft-collinear effective theory (SCET) to study the color-singlet QED process at the kinematic limit. Within this approach we are able to sum the kinematic logarithms by running operators using the renormalization group equations of soft-collinear effective theory, which will lead to a dramatic change in the momentum distribution near the endpoint and the spectrum shape consistent with the experimental results.

  15. Quantum quenches in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.

    2017-04-01

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.

  16. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    Quenches can be divided into two categories; conductor-limited and energy-deposited quenches. A conductor-limited quench occurs when the current in the magnet exceeds the capacity of the superconductor; it is characterized by a strong correlation with temperature. An energy-deposited quench occurs when a disturbance releases enough energy to trigger a quench; the main disturbances during magnet energization are frictional movements of the conductor due to increasing Lorentz forces. The current level of the conductor-limited quenches defines the limit of the magnet performance, and can only be surpassed by lowering the operating temperature; the occurrence of a constant current at quench during the magnetic testing is called a plateau. Usually it takes a few energy-deposited quenches of increasing currents to reach the plateau; these first few steps are called the magnet's training. The goal in designing a magnet is to be able to energize it and to reliably operate it at the design current without training. This can be achieved by optimizing the magnet's operating margin, that is, by designing and building the magnet in such a way that the sizes of the mechanical disturbances needed to trigger a quench are much larger than the achievable mechanical tolerances. (N.K.) 112 refs

  17. Hardware-efficient fermionic simulation with a cavity-QED system

    Science.gov (United States)

    Zhu, Guanyu; Subaşı, Yiǧit; Whitfield, James D.; Hafezi, Mohammad

    2018-03-01

    In digital quantum simulation of fermionic models with qubits, non-local maps for encoding are often encountered. Such maps require linear or logarithmic overhead in circuit depth which could render the simulation useless, for a given decoherence time. Here we show how one can use a cavity-QED system to perform digital quantum simulation of fermionic models. In particular, we show that highly nonlocal Jordan-Wigner or Bravyi-Kitaev transformations can be efficiently implemented through a hardware approach. The key idea is using ancilla cavity modes, which are dispersively coupled to a qubit string, to collectively manipulate and measure qubit states. Our scheme reduces the circuit depth in each Trotter step of the Jordan-Wigner encoding by a factor of N2, comparing to the scheme for a device with only local connectivity, where N is the number of orbitals for a generic two-body Hamiltonian. Additional analysis for the Fermi-Hubbard model on an N × N square lattice results in a similar reduction. We also discuss a detailed implementation of our scheme with superconducting qubits and cavities.

  18. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas

    OpenAIRE

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2014-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...

  19. Non-markovian effects in semiconductor cavity QED: Role of phonon-mediated processes

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter

    We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from the pola......We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from...... the polaritonic quasi-particle nature of the carrier-photon system interacting with the phonon reservoir....

  20. QED Effects in Molecules: Test on Rotational Quantum States of H2

    Science.gov (United States)

    Salumbides, E. J.; Dickenson, G. D.; Ivanov, T. I.; Ubachs, W.

    2011-07-01

    Quantum electrodynamic effects have been systematically tested in the progression of rotational quantum states in the XΣg+1, v=0 vibronic ground state of molecular hydrogen. High-precision Doppler-free spectroscopy of the EFΣg+1-XΣg+1 (0,0) band was performed with 0.005cm-1 accuracy on rotationally hot H2 (with rotational quantum states J up to 16). QED and relativistic contributions to rotational level energies as high as 0.13cm-1 are extracted, and are in perfect agreement with recent calculations of QED and high-order relativistic effects for the H2 ground state.

  1. Classical Electron Model with QED Corrections

    OpenAIRE

    Lenk, Ron

    2010-01-01

    In this article we build a metric for a classical general relativistic electron model with QED corrections. We calculate the stress-energy tensor for the radiative corrections to the Coulomb potential in both the near-field and far-field approximations. We solve the three field equations in both cases by using a perturbative expansion to first order in alpha (the fine-structure constant) while insisting that the usual (+, +, -, -) structure of the stress-energy tensor is maintained. The resul...

  2. Phase transition of light in cavity QED lattices.

    Science.gov (United States)

    Schiró, M; Bordyuh, M; Oztop, B; Türeci, H E

    2012-08-03

    Systems of strongly interacting atoms and photons, which can be realized wiring up individual cavity QED systems into lattices, are perceived as a new platform for quantum simulation. While sharing important properties with other systems of interacting quantum particles, here we argue that the nature of light-matter interaction gives rise to unique features with no analogs in condensed matter or atomic physics setups. By discussing the physics of a lattice model of delocalized photons coupled locally with two-level systems through the elementary light-matter interaction described by the Rabi model, we argue that the inclusion of counterrotating terms, so far neglected, is crucial to stabilize finite-density quantum phases of correlated photons out of the vacuum, with no need for an artificially engineered chemical potential. We show that the competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z(2) parity symmetry-breaking quantum criticality between two gapped phases that share similarities with the Dicke transition of quantum optics and the Ising critical point of quantum magnetism. We discuss the phase diagram as well as the low-energy excitation spectrum and present analytic estimates for critical quantities.

  3. Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench

    OpenAIRE

    Sarkar, Sujit

    2013-01-01

    The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...

  4. Test of QED in e+e- → γγ at LEP

    International Nuclear Information System (INIS)

    Adeva, B.; Adriani, O.; Aguilar-Benitez, M.; Akbari, H.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M.G.; An, Q.; Anderhub, H.; Anderson, A.L.; Andreev, V.P.; Angelov, T.; Antonov, L.; Antreasyan, D.; Arce, P.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baba, P.V.K.S.; Bagnaia, P.; Bakken, J.A.; Baksay, L.; Ball, R.C.; Banerjee, S.; Bao, J.; Barone, L.; Bay, A.; Becker, U.; Behrens, J.; Beingessner, S.; Bencze, G.L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biland, A.; Bizzarri, R.; Blaising, J.J.; Bloemeke, P.; Blumenfeld, B.; Bobbink, G.J.; Bocciolini, M.; Boehlen, W.; Boehm, A.; Boehringer, T.; Borgia, B.; Borilkov, D.; Bourquin, M.; Boutigny, D.; Branson, J.G.; Brock, I.C.; Bryant, F.; Buisson, C.; Bujak, A.; Burger, J.D.; Burq, J.P.; Busenitz, J.; Cai, X.D.; Camps, C.; Capell, M.; Carbonara, F.; Carmianti, F.; Cartacci, A.M.; Cerrada, M.; Cesaroni, F.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chen, M.; Chen, M.L.; Chiefari, G.; Chien, C.Y.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Commichau, V.; Conforto, G.; Contin, A.; Crijns, F.; Cui, X.Y.; Dai, T.S.; D'Alessandro, R.; De Asmudis, R.; Degre, A.; Deiters, K.; Denes, E.; Denes, P.; De Notaristefani, F.; Dhina, M.; DiBitonto, D.; Diemoz, M.; Diez-Hedo, F.; Dimitrov, H.R.; Dionisi, C.; Dittus, F.; Dolin, R.; Drago, E.; Driever, T.; Duchesneau, D.; Duinker, P.; Duran, I.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Extermann, P.; Fabretti, R.; Faber, G.; Falciano, S.; Fan, Q.; Fan, S.J.; Fabre, M.; Fay, J.; Fehlmann, J.; Fenker, H.; Ferguson, T.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Field, J.; Finocchiaro, G.; Fisher, P.H.; Forconi, G.; Foreman, T.; Freudenreich, K.; Friebel, W.; Fukushima, M.; Gailloud, M.; Galaktionov, Yu.; Gallo, E.; Ganguli, S.N.; Garcia-Abia, P.; Gau, S.S.; Gentile, S.; Glaubman, M.; Goldfarb, S.; Gong, Z.F.; Gonzalez, E.; Gordeev, A.; Goettlicher, P.; Goujon, D.; Gratta, G.; Grinnell, C.; Gruenewald, M.; Guanziroli, M.; Gurtu, A.; Gustafson, H.R.; Gutay, L.J.; Haan, H.; Hancke, S.; Hangarter, K.; Harris, M.; Hasan, A.; He, C.F.; Hebbeker, T.; Herbert, M.; Herten, G.; Herten, U.; Herve, A.; Hilgers, K.; Hofer, H.; Hoorani, H.; Hsu, L.S.; Hu, G.; Hu, G.Q.; Ille, B.; Ilyas, M.M.; Innocente, V.; Isiksal, E.; Jagel, E.; Jin, B.N.; Jones, L.W.; Khan, R.A.; Kamyshkov, Yu.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Khoze, V.; Kirkby, D.; Kittel, W.; Klimentov, A.; Koenig, A.C.; Kornadt, O.; Koutsenko, V.; Kraemer, R.W.; Kramer, T.; Kratsev, V.R.; Krenz, W.; Krizmanic, J.; Kuhn, A.; Kumar, K.S.; Kumar, V.; Kunin, A.; Laak, A. van; Lalieu, V.; Landi, G.; Lanius, K.; Lange, W.; Lanske, D.; Lanzano, S.; Lebrun, P.

    1990-01-01

    We have measured the cross-section of the reaction e + e - →γγ at center of mass energies around the Z 0 mass. The results are in good agreement with QED predictions. For the QED cutoff parameters the limit of Λ + >103 GeV and Λ - >118 GeV are found. For the decays Z 0 →γγ, Z 0 →π 0 γ, Z 0 →ηγ and Z 0 →γγγ we find upper limits of 2.9x10 -4 , 2.9x10 -4 , 4.1x10 -4 and 1.2x10 -4 , respectively. All limits are at 95% CL. (orig.)

  5. Implementing quantum information splitting using a five-partite cluster state in cavity QED

    International Nuclear Information System (INIS)

    Ye Liu; Song Qingmin; Li Aixia

    2010-01-01

    We propose an explicit scheme for splitting up quantum information into parts using five-atom cluster states in cavity quantum electrodynamics (QED). It is found that the quantum information splitting of an arbitrary two-atomic state can be realized by using the five-atom cluster state. During the process, the cavity fields are excited only virtually. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized using a range of current cavity QED techniques. The schemes considered here are also secure against certain eavesdropping attacks.

  6. New uncertainties in QCD–QED rescaling factors using quadrature ...

    Indian Academy of Sciences (India)

    mf ). This is true for heavier quarks ... mass scale down to the physical quark mass scale is parametrised by the QCD–. QED rescaling factors ηf ... It will be an important numerical exercise to estimate the uncertainties in ηf using the quadrature ...

  7. (g-2){sub μ} at four loops in QED

    Energy Technology Data Exchange (ETDEWEB)

    Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Steinhauser, Matthias; Wellmann, David [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik

    2017-08-15

    We review the four-loop QED corrections to the anomalous magnetic moment of the muon. The fermionic contributions with closed electron and tau contributions are discussed. Furthermore, we report on a new independent calculation of the universal four-loop contribution and compare with existing results.

  8. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  9. Quantum quenches with integrable pre-quench dynamics

    OpenAIRE

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t=0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench.

  10. Quantum quenches with integrable pre-quench dynamics

    International Nuclear Information System (INIS)

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t = 0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench. (fast track communication)

  11. Multipartite quantum correlations among atoms in QED cavities

    Science.gov (United States)

    Batle, J.; Farouk, A.; Tarawneh, O.; Abdalla, S.

    2018-02-01

    We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

  12. Fluorescence quenching and the "ring-mode" to "red-mode" transition in alkali inductively coupled plasmas

    Science.gov (United States)

    Huang, M.; Bazurto, R.; Camparo, J.

    2018-01-01

    The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.

  13. Quench limits

    International Nuclear Information System (INIS)

    Sapinski, M.

    2012-01-01

    With thirteen beam induced quenches and numerous Machine Development tests, the current knowledge of LHC magnets quench limits still contains a lot of unknowns. Various approaches to determine the quench limits are reviewed and results of the tests are presented. Attempt to reconstruct a coherent picture emerging from these results is taken. The available methods of computation of the quench levels are presented together with dedicated particle shower simulations which are necessary to understand the tests. The future experiments, needed to reach better understanding of quench limits as well as limits for the machine operation are investigated. The possible strategies to set BLM (Beam Loss Monitor) thresholds are discussed. (author)

  14. Quantum quenches in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, 97074 Würzburg (Germany); Flory, Mario [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Newrzella, Max-Niklas; Strydom, Migael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Wu, Jackson M. S. [Department of Physics and Astronomy, University of Alabama,Tuscaloosa, AL 35487 (United States)

    2017-04-10

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/ gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS{sub 2} and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν=1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ∼t{sup −a}sin (blog t). This indicates the emergence of a discrete scale invariance.

  15. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2011-01-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s)and the SU(2) L coupling α 2 (s). I will report on my recent package alphaQED, which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the R had package by Harlander and Steinhauser, the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy.

  16. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Humboldt-Universitaet, Berlin

    2011-07-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s) and the SU(2) L coupling α 2 (s). I report on my recent package alphaQED [1], which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the Rhad package by Harlander and Steinhauser [2], the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy. (orig.)

  17. Causal theory in (2+1)-dimensional Qed

    International Nuclear Information System (INIS)

    Scharf, G.; Wreszinski, W.F.

    1994-01-01

    The program of constructing the S-matrix by means of causality in quantum field theory goes back to Stueckelberg and Bogoliubov. Epstein and Glaser proposed an axiomatic construct where ultraviolet divergences do not appear, leading directly to the renormalized perturbation series. They have shown that in the causal theory the UV problem is a consequence of incorrect distribution splitting. This paper studies the causal theory in (2+1)D Qed

  18. Experimentation at LEP: weak-electromagnetic interference, QED and two-photon physics

    International Nuclear Information System (INIS)

    Davier, M.

    1979-01-01

    The energy range opened by LEP will permit a clean and direct study of the weak interaction. Of particular importance are those effects resulting from the interference between the weak and the electromagnetic (EM) currents: it is shown that they give access to the basic couplings which can be measured unambiguously. The paper is in three parts. The first and major section deals with the weak interaction experiments. Most of the calculations and estimates rely on the Weinberg-Salam model as a realistic guide of what might happen. The second section is devoted to 2γ processes. On one hand they constitute an interesting physics study which has been assessed both from theory and experiment and appears promising. On the other hand, they can generate background to many annihilation channels and this aspect has been studied in detail. The last section presents a brief look at short distance tests of Quantum Electrodynamics (QED) - a restricted, but important area of research at LEP. (Auth.)

  19. Dynamical mass generation in QED with weak magnetic fields

    International Nuclear Information System (INIS)

    Ayala, A.; Rojas, E.; Bashir, A.; Raya, A.

    2006-01-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2

  20. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    In this paper, I shall discuss the quench origins. I shall first establish a method of classification and introduce the notions of conductor-limited and energy-deposited quenches. Next the paper will be devoted to the study of conductor-limited quenches, and I shall introduce the notions of plateau and of fraction of short sample. Also the paper will be devoted to the study of energy-deposited quenches, and I shall introduce the notions of training and of minimum energy deposit; I shall then review the possible causes of energy release. Lastly, I shall introduce the notion of operating margin, and I shall indicate how to optimize the operating margin in order to limit the risk of premature quenching. 112 refs., 14 figs

  1. A simple holographic scenario for gapped quenches

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Esperanza; Bosch, Guillermo Milans del [Instituto de Física Teórica IFT UAM/CSIC, Universidad Autónoma de Madrid,28049 Cantoblanco, Madrid (Spain)

    2017-02-24

    We construct gravitational backgrounds dual to a family of field theories parameterized by a relevant coupling. They combine a non-trivial scalar field profile with a naked singularity. The naked singularity is necessary to preserve Lorentz invariance along the boundary directions. The singularity is however excised by introducing an infrared cutoff in the geometry. The holographic dictionary associated to the infrared boundary is developed. We implement quenches between two different values of the coupling. This requires considering time dependent boundary conditions for the scalar field both at the AdS boundary and the infrared wall.

  2. Porous debris behavior modeling of QUENCH-02, QUENCH-03 and QUENCH-09 experiments

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Kobelev, G.V.; Strizhov, V.F.; Vasiliev, A.D.

    2006-01-01

    The heat-up, melting, relocation, hydrogen generation phenomena, relevant for high-temperature stages both in a reactor case and small-scale integral tests like QUENCH, are governed in particular by heat and mass transfer in porous debris and molten pools which are formed in the core region. Porous debris formation and behavior in QUENCH experiments (QUENCH-02, QUENCH-03, QUENCH-09) plays a considerable role and its adequate modeling is important for thermal analysis. In particular, the analysis of QUENCH experiments shows that the major hydrogen release takes place in debris and melt regions formed in the upper part of the fuel assembly. The porous debris model was implemented in the Russian best estimate numerical code RATEG/SVECHA/HEFEST developed for modelling thermal hydraulics and severe accident phenomena in a reactor. The original approach for debris evolution is developed in the model from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The debris model is based on the system of continuity, momentum and energy conservation equations, which consider the dynamics of volume-averaged velocities and temperatures of fluid, solid and gaseous phases of porous debris. The model is used for calculation of QUENCH experiments. The results obtained by the model are compared to experimental data concerning different aspects of thermal behavior: thermal hydraulics of porous debris, radiative heat transfer in a porous medium, the generalized melting and refreezing behavior of materials, hydrogen production. (author)

  3. Strategies for real-time position control of a single atom in cavity QED

    International Nuclear Information System (INIS)

    Lynn, T W; Birnbaum, K; Kimble, H J

    2005-01-01

    Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favourably to open loop 'switching' analogues, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics

  4. Passive quench arrest by a chimney induced deluge at every quench front

    International Nuclear Information System (INIS)

    Sydoriak, S.G.

    1984-01-01

    This chapter describes a magnet in which a growing quench stops itself spontaneously within a fraction of one winding turn because vapor in quench-heated channels generates a progressively increasing downflow of liquid in advance of each of the quench fronts. The downflow eventually becomes a deluge as the quench grows. The design of the multiple arrested quench magnet is discussed. It is shown how to construct a magnet so that if an arrested quench arises when it is at its highest operating current, peak nucleate boiling will exist in all quenching channels

  5. Numerical Analysis of Heat Transfer During Quenching Process

    Science.gov (United States)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  6. Towards bootstrapping QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Shai M.; Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2016-08-02

    We initiate the conformal bootstrap study of Quantum Electrodynamics in 2+1 space-time dimensions (QED{sub 3}) with N flavors of charged fermions by focusing on the 4-point function of four monopole operators with the lowest unit of topological charge. We obtain upper bounds on the scaling dimension of the doubly-charged monopole operator, with and without assuming other gaps in the operator spectrum. Intriguingly, we find a (gap-dependent) kink in these bounds that comes reasonably close to the large N extrapolation of the scaling dimensions of the singly-charged and doubly-charged monopole operators down to N=4 and N=6.

  7. QED contributions to electron g-2

    Science.gov (United States)

    Laporta, Stefano

    2018-05-01

    In this paper I briefly describe the results of the numerical evaluation of the mass-independent 4-loop contribution to the electron g-2 in QED with 1100 digits of precision. In particular I also show the semi-analytical fit to the numerical value, which contains harmonic polylogarithms of eiπ/3, e2iπ/3 and eiπ/2 one-dimensional integrals of products of complete elliptic integrals and six finite parts of master integrals, evaluated up to 4800 digits. I give also some information about the methods and the program used.

  8. On the equivalence of massive qed with renormalizable and in unitary gauge

    International Nuclear Information System (INIS)

    Abdalla, E.

    1978-03-01

    In the framework of BPHZ renormalization procedure, we discuss the equivalence between 4-dimensional renormalizable massive quantum electrodynamics (Stueckelberg lagrangian), and massive QED in the unitary gauge

  9. Quenching vibrations by collisions in cold traps: A quantum study for ...

    Indian Academy of Sciences (India)

    Scattering theory; ion-molecule collisions vibrational quenching. 1. ... Hence, considerable attention has now turned to .... computed spatial features of the interaction potential for .... radial integration of the coupled equation was extended.

  10. Chiral current generation in QED by longitudinal photons

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Avalo, J.L., E-mail: jlacosta@instec.cu [Instituto Superior de Tecnologías y Ciencias Aplicadas (INSTEC), Ave Salvador Allende, No. 1110, Vedado, La Habana 10400 (Cuba); Pérez Rojas, H., E-mail: hugo@icimaf.cu [Instituto de Cibernética, Matemática y Física (ICIMAF), Calle E esq 15, No. 309, Vedado, La Habana 10400 (Cuba)

    2016-08-15

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  11. Chiral current generation in QED by longitudinal photons

    Directory of Open Access Journals (Sweden)

    J.L. Acosta Avalo

    2016-08-01

    Full Text Available We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone. In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  12. Continuum limit of QED2 on a lattice

    International Nuclear Information System (INIS)

    Weingarten, D.H.; Challifour, J.L.

    1979-01-01

    A path integral is defined for the vacuum expectation values of Euclidean QED 2 on a periodic lattice. Wilson's expression is used for the coupling between fermion and gauge fields. The action for the gauge field by itself is assumed to be a quadratic in place of Wilson's periodic action. The integral over the fermion field is carried out explicitly to obtain a Matthews--Salam formula for vacuum expectation values. For a combination of gauge and fermion fields G on a lattice with spacing proportional to N -+ , Nelement ofZ + , the Matthews--Salam formula for the vacuum expectation /sub N/ has the form /sub n/=∫ dμW/sub N/(G, f), where dμ is an N-independent measure on a random electromagnetic field f and W/sub N/(G,f) is an N-dependent function of f determined by G. For a class of G we prove that as N→infinity, W/sub N/(G,f) has a limit W (G,f) except possibly for a set of f of measure zero. In subsequent articles it will be shown that ∫ dμW (G,f) exists and lim/sub N/→infinity /sub N/ =∫ dμW

  13. Leading quantum gravitational corrections to scalar QED

    OpenAIRE

    Bjerrum-Bohr, N. E. J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The n...

  14. Azimuthal asymmetry in processes of nonlinear QED for linearly polarized photon

    International Nuclear Information System (INIS)

    Bajer, V.N.; Mil'shtejn, A.I.

    1994-01-01

    Cross sections of nonlinear QED processes (photon-photon scattering, photon splitting in a Coulomb field, and Delbrueck scattering) are considered for linearly polarized initial photon. The cross sections have sizeable azimuthal asymmetry. 15 refs.; 3 figs

  15. High-field quench behavior and dependence of hot spot temperature on quench detection voltage threshold in a Bi2Sr2CaCu2Ox coil

    International Nuclear Information System (INIS)

    Shen, Tengming; Ye, Liyang; Turrioni, Daniele; Li, Pei

    2015-01-01

    Small insert solenoids have been built using a multifilamentary Ag/Bi 2 Sr 2 CaCu 2 O x round wire insulated with a mullite sleeve (∼100 μm in thickness) and characterized in background fields to explore the quench behaviors and limits of Bi 2 Sr 2 CaCu 2 O x superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage should be greater than 50 mV in order not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increased from ∼40–∼80 K while increasing the operating wire current density J o from 89 A mm −2 to 354 A mm −2 , whereas for the voltage to reach 1 V, it increased from ∼60–∼140 K. This shows the increasing negative impact of slow normal zone propagation on quench detection with increasing J o and the need to limit the quench detection voltage to <1 V. These measurements, coupled with an analytical quench model, were used to assess the impact of the maximum allowable detection voltage and temperature upon quench detection on the quench protection, assuming a limit of the hot spot temperature to <300 K. (paper)

  16. Quality factor of a transmission line coupled coplanar waveguide resonator

    Energy Technology Data Exchange (ETDEWEB)

    Besedin, Ilya [National University for Science and Technology (MISiS), Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Menushenkov, Alexey P. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2018-12-15

    We investigate analytically the coupling of a coplanar waveguide resonator to a coplanar waveguide feedline. Using a conformal mapping technique we obtain an expression for the characteristic mode impedances and coupling coefficients of an asymmetric multi-conductor transmission line. Leading order terms for the external quality factor and frequency shift are calculated. The obtained analytical results are relevant for designing circuit-QED quantum systems and frequency division multiplexing of superconducting bolometers, detectors and similar microwave-range multi-pixel devices. (orig.)

  17. The Nielsen identities for the two-point functions of QED and QCD

    International Nuclear Information System (INIS)

    Breckenridge, J.C.; Sasketchewan Univ., Saskatoon, SK; Lavelle, M.J.; Steele, T.G.; Sasketchewan Univ., Saskatoon, SK

    1995-01-01

    We consider the Nielsen identities for the two-point functions of full QCD and QED in the class of Lorentz gauges. For pedagogical reasons the identities are first derived in QED to demonstrate the gauge independence of the photon self-energy, and of the electron mass shell. In QCD we derive the general identity and hence the identities for the quark, gluon and ghost propagators. The explicit contributions to the gluon and ghost identities are calculated to one-loop order, and then we show that the quark identity requires that in on-shell schemes the quark mass renormalisation must be gauge independent. Furthermore, we obtain formal solutions for the gluon self-energy and ghost propagator in terms of the gauge dependence of other, independent Green functions. (orig.)

  18. Existence of Green's functions in perturbative Q.E.D

    International Nuclear Information System (INIS)

    Seneor, R.

    1976-01-01

    A report is made on some work done in collaboration with P. Blanchard which shows how, in the framework developped by H.Epstein and V.Glaser, one can prove the existence of Green's functions in quantum electrodynamics (Q.E.D.). The proof can be extended, in principle, to any theory involving massive and non massive particles. (Auth.)

  19. Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Baeta Scarpelli, A.P. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Rua Hugo D' Antola, 95, Lapa, Sao Paulo (Brazil); Mariz, T. [Universidade Federal de Alagoas, Instituto de Fisica, Maceio, Alagoas (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, Paraiba (Brazil)

    2013-08-15

    In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)

  20. Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

    International Nuclear Information System (INIS)

    Baeta Scarpelli, A.P.; Mariz, T.; Nascimento, J.R.; Petrov, A.Yu.

    2013-01-01

    In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)

  1. General QED/QCD aspects of simple systems

    International Nuclear Information System (INIS)

    Telegdi, V.L.; Brodsky, S.J.

    1989-09-01

    This paper discusses the following topics: renormalization theory; the Kinoshita-Lee-Nauenberg theorem; the Yennie-Frautschi-Suura relation; scale invariance at large momentum transfer; scaling and scaling violation at large momentum transfers; low-energy theorem in Compton scattering; does the perturbation series in QED converge; renormalization of the weak angle Θ w ; the Nambu-Bethe-Salpeter (NBS) equation; the decay rate of 3 S, positronium; radiative corrections to QCD Born cross section; and progress on the relativistic 2-body equation

  2. OpenQ∗D simulation code for QCD+QED

    DEFF Research Database (Denmark)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin

    2018-01-01

    The openQ∗D code for the simulation of QCD+QED with C∗ boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion....... An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/....

  3. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  4. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  5. The electronic quenching rates of NO(A2Σ+, v'=0-2)

    International Nuclear Information System (INIS)

    Nee, J.B.; Juan, C.Y.; Hsu, J.Y.; Yang, J.C.; Chen, W.J.

    2004-01-01

    The electronic quenching rates of NO(A 2 Σ + , v ' =0-2) are measured for the gases He, Ar, Xe, N 2 , O 2 , CO 2 , N 2 O, and SF 6 . The variations of the fluorescence intensity were measured for the (0,0), (1,0), and (2,0) bands of the γ band system when the quencher gases were added. The quenching rates were determined by using the Stern-Volmer plots with the known radiative lifetimes of the excited states. The electronic quenching rate constants are fast for the group of gases of O 2 , CO 2 , N 2 O, and SF 6 , whose quenching rate constants are in the order of 10 -10 cm 3 /s. The quenching rate constants are slow for the group of gases including He, Ar, Xe, and N 2 whose rate constants are in the order of 10 -14 cm 3 /s. For the slow group, the quenching rate constants increase rapidly for v ' =2 compared with those of v ' =0 and 1. The charge transfer model and collision complex model are used to understand the quenching mechanism. For the fast group which mainly consists of gases with positive electron affinities, the charge transfer model adequately describes the mechanism. For the slow quenching group, a theoretical background is provided by consider the coupling of initial and final states in the complex potential surfaces

  6. One-Step Generation of Multiqubit Greenberger-Horne-Zeilinger States in a Driven Circuit QED System

    International Nuclear Information System (INIS)

    Huang Jinsong; Nie Wei; Wei Lianfu

    2011-01-01

    We propose an efficient scheme to generate multiqubit Greenberger-Horne-Zeilinger (GHZ) states by one-step quantum operation in a driven circuit quantum electrodynamics (QED) system. Our proposal is based on a unitary evolution exp[-iλS 2 x ], with S x being the collective spin operator in x direction and λ a controllable parameter, induced by driving the resonator. The quantum operation avoids resonator-field decay and may achieve the GHZ states with ideal success probability. The feasibility with the experimentally-demonstrated circuit QED system is also discussed. (general)

  7. A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED, the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.

  8. Quenched lattice QCD with domain wall fermions and the chiral limit

    International Nuclear Information System (INIS)

    Blum, T.; Wingate, M.; Chen, P.; Christ, N.; Cristian, C.; Fleming, G.; Kaehler, A.; Liao, X.; Liu, G.; Malureanu, C.; Mawhinney, R.; Siegert, G.; Sui, C.; Wu, L.; Zhestkov, Y.; Dawson, C.; Soni, A.; Ohta, S.; Vranas, P.

    2004-01-01

    Quenched QCD simulations on three volumes 8 3 x, 12 3 x and 16 3 x32 and three couplings β=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (m res ) whose size decreases as the separation between the domain walls (L s ) is increased. However, at stronger couplings much larger values of L s are required to achieve a given physical value of m res . For β=6.0 and L s =16, we find m res /m s =0.033(3), while for β=5.7, and L s =48, m res /m s =0.074(5), where m s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of m π 2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in f π over our entire range, with inverse lattice spacing varying between 1 and 2 GeV

  9. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    International Nuclear Information System (INIS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    Highlight: ► Comparison of quench and fault-current-limiting behavior of SFCLs by Tr type. -- Abstract: The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1–5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle

  10. Isospin Breaking Corrections to the HVP with Domain Wall Fermions

    Science.gov (United States)

    Boyle, Peter; Guelpers, Vera; Harrison, James; Juettner, Andreas; Lehner, Christoph; Portelli, Antonin; Sachrajda, Christopher

    2018-03-01

    We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.

  11. Oblique photon expansion of QED structure functions

    International Nuclear Information System (INIS)

    Chahine, C.

    1986-01-01

    In the oblique photon expansion, the collinear part of photon emission is summed up to all orders in perturbation theory. The number of oblique or non-collinear photons is the expansion order. Unlike in perturbation theory, every term of the expansion is both infrared finite and gauge invariant. The zero oblique photon contribution to the electromagnetic structure tensor in QED is computed in detail. The behaviors of the structure functions F1 and F2 are discussed in the soft and ultra-soft limits

  12. Quenching of the Gamow-Teller matrix element in closed LS-shell-plus-one nuclei

    International Nuclear Information System (INIS)

    Towner, I.S.

    1989-06-01

    It is evident that nuclear Gamow-Teller matrix elements determined from β-decay and charge-exchange reactions are significantly quenched compared to simple shell-model estimates based on one-body operators and free-nucleon coupling constants. Here we discuss the theoretical origins of this quenching giving examples from light nuclei near LS-closed shells, such as 16 0 and 40 Ca. (Author) 12 refs., 2 tabs

  13. Testing of QED-Theory and Precise Measurements of the Rydberg Series for the He-Like Multicharged Ions

    Energy Technology Data Exchange (ETDEWEB)

    Pal' chikov, V. G. [VNIIFTRI, Mendeleevo, National Research Institute for Physical-Technical and Radiotechnical Measurements - (Russian Federation)], E-mail: vitpal@mail.ru

    2001-01-15

    The wavelengths of the 1snp{sup 1}P{sub 1}-1s{sup 21}S{sub 0} transitions in He-like Mg XI, F VIII (n= 4-8) and Al XII (n=6,9) have been calculated in the framework of the 1/Z expansion method including relativistic effects and QED contributions. It is found that QED corrections to the ground-state ionization energy are significant at the present level of experimental accuracy.

  14. Quench Protection System Optimization for the High Luminosity LHC Nb $_3$Sn Quadrupoles

    CERN Document Server

    Ravaioli, E; Auchmann, B; Ferracin, P; Maciejewski, M; Rodriguez-Mateos, F; Sabbi, GL; Todesco, E; Verweij, A P

    2017-01-01

    The upgrade of the large hadron collider to achieve higher luminosity requires the installation of twenty-four 150 mm aperture, 12 T, $Nb_3Sn$ quadrupole magnets close to the two interaction regions at ATLAS and CMS. The protection of these high-field magnets after a quench is particularly challenging due to the high stored energy density, which calls for a fast, effective, and reliable protection system. Three design options for the quench protection system of the inner triplet circuit are analyzed, including quench heaters attached to the coil's outer and inner layer, Coupling-Loss Induced Quench (CLIQ), and combinations of those. The discharge of the magnet circuit and the electromagnetic and thermal transients occurring in the coils are simulated by means of the TALES and LEDET programs. The sensitivity to strand parameters and the effects of several failure cases on the coil's hot-spot temperature and peak voltages to ground are assessed. A protection system based only on quench heaters attached to the o...

  15. Zero field Quantum Hall Effect in QED3

    International Nuclear Information System (INIS)

    Raya, K; Sánchez-Madrigal, S; Raya, A

    2013-01-01

    We study analytic structure of the fermion propagator in the Quantum Electrodynamics in 2+1 dimensions (QED3) in the Landau gauge, both in perturbation theory and nonperturbatively, by solving the corresponding Schwinger-Dyson equation in rainbow approximation. In the chiral limit, we found many nodal solutions, which could be interpreted as vacuum excitations. Armed with these solutions, we use the Kubo formula and calculate the filling factor for the zero field Quantum Hall Effect

  16. Multi-flavor massless QED{sub 2} at finite densities via Lefschetz thimbles

    Energy Technology Data Exchange (ETDEWEB)

    Tanizaki, Yuya [RIKEN BNL Research Center, Brookhaven National Laboratory,Upton, NY 11973-5000 (United States); Tachibana, Motoi [Department of Physics, Saga University,Saga 840-8502 (Japan)

    2017-02-15

    We consider multi-flavor massless (1+1)-dimensional QED with chemical potentials at finite spatial length and the zero-temperature limit. Its sign problem is solved using the mean-field calculation with complex saddle points.

  17. Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD

    International Nuclear Information System (INIS)

    Leinweber, Derek B.

    2004-01-01

    The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation

  18. CERN LEP2 constraint on 4D QED having a dynamically generated spatial dimension

    International Nuclear Information System (INIS)

    Cho, G.-C.; Izumi, Etsuko; Sugamoto, Akio

    2002-01-01

    We study 4D QED in which one spatial dimension is dynamically generated from the 3D action, following the mechanism proposed by Arkani-Hamed, Cohen, and Georgi. In this model, the generated fourth dimension is discretized by an interval parameter a. We examine the phenomenological constraint on the parameter a coming from collider experiments on the QED process e + e - →γγ. It is found that the CERN e + e - collider LEP2 experiments give the constraint of 1/a > or approx. 461 GeV. The expected bound on the same parameter a at a future e + e - linear collider is briefly discussed

  19. Hydrogen atom spectrum and the Lamb shift in noncommutative QED

    International Nuclear Information System (INIS)

    Chaichian, M. . Helsinki Institute of Physics, Helsinki; Tureanu, A. . Helsinki Institute of Physics, Helsinki; FI)

    2000-10-01

    We have calculated the energy levels of the hydrogen atom and as well the Lamb shift within the noncommutative quantum electrodynamics theory. The results show deviations from the usual QED both on the classical and on the quantum levels. On both levels, the deviations depend on the parameter of space/space noncommutativity. (author)

  20. Spectral analysis of colour-quenched and chemically quenched C 14 samples

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Scott Guillearrd, P.E.

    1987-01-01

    Pairs of pulse height distribution curves, of C-14 samples, colour quenched and chemically quenched were obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (author). 7 figs., 7 refs

  1. Spectral analysis of colour-quenched and chemically quenched C-14 samples

    International Nuclear Information System (INIS)

    Scott, P. E.; Grau, A.

    1987-01-01

    In this paper pairs of pulse height distribution curves, of C-14 samples, colour-quenched and chemically quenched was obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (Author) 7 refs

  2. Fermions

    Directory of Open Access Journals (Sweden)

    Boyle Peter

    2018-01-01

    Full Text Available We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.

  3. Thermalization after an interaction quench in the Hubbard model.

    Science.gov (United States)

    Eckstein, Martin; Kollar, Marcus; Werner, Philipp

    2009-07-31

    We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization occurs. Our results indicate a dynamical phase transition which should be observable in experiments on trapped fermionic atoms.

  4. On the construction of QED using ERG

    International Nuclear Information System (INIS)

    Sonoda, H

    2007-01-01

    It has been known for some time that a smooth momentum cutoff is compatible with local gauge symmetries. In this paper, we show concretely how to construct QED using the exact renormalization group (ERG). First, we give a new derivation of the Ward identity for the Wilson action using the technique of composite operators. Second, parametrizing the theory by its asymptotic behaviour for a large cutoff, we show how to fine tune the parameters to satisfy the identity. Third, we recast the identity as an invariance of the Wilson action under a nonlinear BRST transformation

  5. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  6. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED

    Science.gov (United States)

    Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2018-04-01

    We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.

  7. Implementation of quantum partial search with superconducting quantum interference device qudits in cavity QED

    International Nuclear Information System (INIS)

    Li Hong-Yi; Wu Chun-Wang; Chen Yu-Bo; Lin Yuan-Gen; Chen Ping-Xing; Li Cheng-Zu

    2013-01-01

    We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity—SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology

  8. Gauge-invariant dressed fermion propagator in massless QED3

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2006-01-01

    The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED 3 is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement

  9. Running coupling constant of a gauge theory in the framework of the Schwinger-Dyson equation: Infrared behavior of three-dimensional quantum electrodynamics

    International Nuclear Information System (INIS)

    Kondo, K.

    1997-01-01

    We discuss how to define and obtain the running coupling of a gauge theory in the approach of the Schwinger-Dyson (SD) equation, in order to perform a nonperturbative study of the theory. For this purpose, we introduce the nonlocally generalized gauge fixing into the SD equation, which is used to define the running coupling constant (this method is applicable only to a gauge theory). Some advantages and the validity of this approach are exemplified in QED 3 . This confirms the slowing down of the rate of decrease of the running coupling and the existence of the nontrivial infrared fixed point (in the normal phase) of QED 3 , claimed recently by Aitchison and Mavromatos, without so many of their approximations. We also argue that the conventional approach is recovered by applying the (inverse) Landau-Khalatnikov transformation to the nonlocal gauge result. copyright 1997 The American Physical Society

  10. QED the strange theory of light and matter

    CERN Document Server

    Feynman, Richard Phillips

    2006-01-01

    Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the general public. Here Feynman provides a classic and definitive introduction to QED (namely quantum electrodynamics), that part of quantum field theory describing the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned ""Feynman diagrams"" instead of advanced mathematics, Feynman clearly and humorously communicates both the substance and spiri

  11. Meson-meson scattering in lattice QED2+1

    International Nuclear Information System (INIS)

    Fiebig, H.R.; Woloshyn, R.M.

    1993-01-01

    Scattering phase shifts of a meson-meson system in staggered 3-dimensional lattice QED are computed. The main task of the simulation is to obtain a discrete set of two-body energy levels. These are extracted from a 4-point time correlation matrix and then used to obtain scattering phase shifts. The results for the l = 0 and l = 2 partial waves are consistent with short-range repulsion and intermediate-range attraction of the residual meson-meson interaction. (orig.)

  12. Application of a Light-Front Coupled Cluster Method

    International Nuclear Information System (INIS)

    Chabysheva, S.S.; Hiller, J.R.

    2012-01-01

    As a test of the new light-front coupled-cluster method in a gauge theory, we apply it to the nonperturbative construction of the dressed-electron state in QED, for an arbitrary covariant gauge, and compute the electron's anomalous magnetic moment. The construction illustrates the spectator and Fock-sector independence of vertex and self-energy contributions and indicates resolution of the difficulties with uncanceled divergences that plague methods based on Fock-space truncation. (author)

  13. Local and non-local Schroedinger cat states in cavity QED

    International Nuclear Information System (INIS)

    Haroche, S.

    2005-01-01

    Full text: I will review recent experiments performed on mesoscopic state superpositions of field states in cavity QED. Proposals to extend these studies to Schroedinger cat states delocalized in two cavities will be discussed. New versions of Bell's inequality tests will probe the non-local behavior of these cats and study their sensitivity to decoherence. (author)

  14. Study of electromagnetic interference on quench detecting system of HTS current leads for EAST

    International Nuclear Information System (INIS)

    Hu, Yanlan; Li, Jiangang; Ji, Zhenshan; Zhu, C.M.; Zhen, L.G.; Xiao, Y.Z.

    2013-01-01

    Highlights: • EAST HTS superconducting magnet system shall be operating in a very noisy environment. • Voltage taps will have a lot of inductive voltage induced on them which makes quench detection very difficult. • The noise comes from the coupling between rapid pulsed poloidal coils, and radiation coupling interference associated with EAST heating systems;. • A series of related electromagnetic compatibility simulation tests have been carried out. • Electromagnetic noises are well restrained by choosing proper anti-interference means. -- Abstract: High temperature superconducting (HTS) material B-2223/Ag-Au has been used for EAST poloidal field (PF) coil current leads for reducing construction and operation cost of cryogenic system. The quench propagation velocity of HTS superconducting material is several orders of magnitude lower than that of normal low temperature current leads. It is difficult to detect weak signal of quench which is easily influenced by strong electromagnetic interference (EMI). In this paper, the sources of EMI from quench detecting system of high temperature current leads have been introduced. And we have chosen reasonable methods for good transformation and protection on the basis of electromagnetic compatibility simulation diagnosis experiments. Recent experimental results showed that the restraint of EMI has been achieved and has met the requirements of experiment

  15. QED corrections in deep-inelastic scattering from tensor polarized deuteron target

    CERN Document Server

    Gakh, G I

    2001-01-01

    The QED correction in the deep inelastic scattering from the polarized tensor of the deuteron target is considered. The calculations are based on the covariant parametrization of the deuteron quadrupole polarization tensor. The Drell-Yan representations in the electrodynamics are used for describing the radiation real and virtual particles

  16. Fixed point structure of quenched, planar quantum electrodynamics

    International Nuclear Information System (INIS)

    Love, S.T.

    1986-07-01

    Gauge theories exhibiting a hierarchy of fermion mass scales may contain a pseudo-Nambu-Boldstone boson of spontaneously broken scale invariance. The relation between scale and chiral symmetry breaking is studied analytically in quenched, planar quantum electrodynamics in four dimensions. The model possesses a novel nonperturbative ultraviolet fixed point governing its strong coupling phase which requires the mixing of four fermion operators. 12 refs

  17. Transition behaviours in two coupled Josephson junction equations

    International Nuclear Information System (INIS)

    Wang Jiazeng; Zhang Xuejuan; You Gongqiang; Zhou Fengyan

    2007-01-01

    The dynamics of two coupled Josephson junction equations are investigated via mathematical reasoning and numerical simulations. We show that for a fixed coupling K, the whole parameter space can be comparted into three regions: a quenching region, a synchronized running periodic region and a region where these two states coexist. It is further shown that with the increase of the coupling K, the system may transit from a synchronizing state to a quenching state. The characteristic of the critical line K*(b) which separates these two states is mathematically analysed

  18. Chiral anomalies in QED and QCD at finite temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1991-01-01

    Chiral anomalies (a) for QED and QCD at finite temperature are analyzed in imaginary- and real-time formalisms. Both triangle diagrams and functional methods are used. It is found that the expressions for a in terms of finite-temperature fields are formally similar to that for the zero-temperature anomaly as a function of zero-temperature fields, thereby generalizing previous work by other authors. (author). 20 refs.; 1 fig

  19. Transverse Momentum Distributions of Electron in Simulated QED Model

    Science.gov (United States)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  20. The refractive index of curved spacetime II: QED, Penrose limits and black holes

    International Nuclear Information System (INIS)

    Hollowood, Timothy J.; Shore, Graham M.; Stanley, Ross J.

    2009-01-01

    This work considers the way that quantum loop effects modify the propagation of light in curved space. The calculation of the refractive index for scalar QED is reviewed and then extended for the first time to QED with spinor particles in the loop. It is shown how, in both cases, the low frequency phase velocity can be greater than c, as found originally by Drummond and Hathrell, but causality is respected in the sense that retarded Green functions vanish outside the lightcone. A 'phenomenology' of the refractive index is then presented for black holes, FRW universes and gravitational waves. In some cases, some of the polarization states propagate with a refractive index having a negative imaginary part indicating a potential breakdown of the optical theorem in curved space and possible instabilities.

  1. Thermalization in 2D critical quench and UV/IR mixing

    Science.gov (United States)

    Mandal, Gautam; Paranjape, Shruti; Sorokhaibam, Nilakash

    2018-01-01

    We consider quantum quenches in models of free scalars and fermions with a generic time-dependent mass m( t) that goes from m 0 to zero. We prove that, as anticipated in MSS [1], the post-quench dynamics can be described in terms of a state of the generalized Calabrese-Cardy form | ψ〉 = exp[- κ 2 H - ∑ n >2 ∞ κ n W n ]|Bd〉. The W n ( n = 2, 3, . . ., W 2 = H) here represent the conserved W ∞ charges and |Bd〉 represents a conformal boundary state. Our result holds irrespective of whether the pre-quench state is a ground state or a squeezed state, and is proved without recourse to perturbation expansion in the κ n 's as in MSS. We compute exact time-dependent correlators for some specific quench protocols m( t). The correlators explicitly show thermalization to a generalized Gibbs ensemble (GGE), with inverse temperature β = 4 κ 2, and chemical potentials μ n = 4 κ n . In case the pre-quench state is a ground state, it is possible to retrieve the exact quench protocol m( t) from the final GGE, by an application of inverse scattering techniques. Another notable result, which we interpret as a UV/IR mixing, is that the long distance and long time (IR) behaviour of some correlators depends crucially on all κ n 's, although they are highly irrelevant couplings in the usual RG parlance. This indicates subtleties in RG arguments when applied to non-equilibrium dynamics.

  2. Gauge dependence of the infrared behaviour of massless QED3

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2006-01-01

    Using the Zumino identities it is shown that in a class of non-local gauges, massless QED 3 has an infrared behaviour of a conformal field theory with a continuously varying anomalous dimension of the fermion. In the usual Lorentz gauge, the fermion propagator falls off exponentially for a large separation, but this apparent fermion mass is a gauge artifact

  3. First-order signals in compact QED with monopole suppressed boundaries

    International Nuclear Information System (INIS)

    Lippert, T.; Schilling, K.; Forschungszentrum Juelich GmbH

    1995-01-01

    Pure gauge compact QED on hypercubic lattices is considered with periodically closed monopole currents suppressed. We compute observables on sublattices which are nested around the centre of the lattice in order to locate regions where translation symmetry is approximately recovered. Our Monte Carlo simulations on 24 4 -lattices give indications for a first-order nature of the U(1) phase transition. ((orig.))

  4. Suppressing supersymmetric flavor violations through quenched gaugino-flavor interactions

    Science.gov (United States)

    Wells, James D.; Zhao, Yue

    2017-06-01

    Realizing that couplings related by supersymmetry (SUSY) can be disentangled when SUSY is broken, it is suggested that unwanted flavor and C P -violating SUSY couplings may be suppressed via quenched gaugino-flavor interactions, which may be accomplished by power-law running of sfermion anomalous dimensions. A simple theoretical framework to accomplish this is exemplified, where a strongly coupled conformal field theory is achieved after SUSY is softly broken. The defeated constraints are tallied. One key implication of the scenario is the expectation of enhanced top, bottom and tau production at the LHC, accompanied by large missing energy. Also, direct detection signals of dark matter may be more challenging to find than in conventional SUSY scenarios.

  5. QED radiative corrections to impact factors

    International Nuclear Information System (INIS)

    Kuraev, E.A.; Lipatov, L.N.; Shishkina, T.V.

    2001-01-01

    We consider radiative corrections to the electron and photon impact factors. The generalized eikonal representation for the e + e - scattering amplitude at high energies and fixed momentum transfers is violated by nonplanar diagrams. An additional contribution to the two-loop approximation appears from the Bethe-Heitler mechanism of fermion pair production with the identity of the fermions in the final state taken into account. The violation of the generalized eikonal representation is also related to the charge parity conservation in QED. A one-loop correction to the photon impact factor for small virtualities of the exchanged photon is obtained using the known results for the cross section of the e + e - production during photon-nuclei interactions

  6. Perturbative Critical Behavior from Spacetime Dependent Couplings

    International Nuclear Information System (INIS)

    Torroba, Gonzalo

    2012-01-01

    We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-ε Wilson-Fisher fixed point. Rather than considering 4-ε dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form λx κ μ κ , with a small parameter κ playing a role analogous to ε. We show, in φ 4 theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling λ * (x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional φ 6 theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.

  7. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    Science.gov (United States)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  8. One-step generation of continuous-variable quadripartite cluster states in a circuit QED system

    Science.gov (United States)

    Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li

    2017-07-01

    We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.

  9. Diagrammatic cancellations and the gauge dependence of QED

    Energy Technology Data Exchange (ETDEWEB)

    Kißler, Henry, E-mail: kissler@physik.hu-berlin.de [Department of Mathematical Sciences, University of Liverpool, L69 7ZL, Liverpool (United Kingdom); Department of Mathematics, Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-12489 Berlin (Germany); Kreimer, Dirk, E-mail: kreimer@math.hu-berlin.de [Department of Mathematics, Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-12489 Berlin (Germany)

    2017-01-10

    This letter examines diagrammatic cancellations for Quantum Electrodynamics (QED) in the general linear gauge. These cancellations combine Feynman graphs of various topologies and provide a method to reconstruct the gauge dependence of the electron propagator from the result of a particular gauge by means of a linear Dyson–Schwinger equation. We use this method in combination with dimensional regularization to demonstrate how the 3-loop ε-expansion in the Feynman gauge determines the ε-expansions for all gauge parameter dependent terms to 4 loops.

  10. Doubler system quench detection threshold

    International Nuclear Information System (INIS)

    Kuepke, K.; Kuchnir, M.; Martin, P.

    1983-01-01

    The experimental study leading to the determination of the sensitivity needed for protecting the Fermilab Doubler from damage during quenches is presented. The quench voltage thresholds involved were obtained from measurements made on Doubler cable of resistance x temperature and voltage x time during quenches under several currents and from data collected during operation of the Doubler Quench Protection System as implemented in the B-12 string of 20 magnets. At 4kA, a quench voltage threshold in excess of 5.OV will limit the peak Doubler cable temperature to 452K for quenches originating in the magnet coils whereas a threshold of 0.5V is required for quenches originating outside of coils

  11. Analysis of quench in the NHMFL REBCO prototype coils for the 32 T Magnet Project

    International Nuclear Information System (INIS)

    Breschi, M; Cavallucci, L; Ribani, P L; Gavrilin, A V; Weijers, H W

    2016-01-01

    A 32 T all-superconductive magnet with high field REBCO inner coils is under development at the National High Magnetic Field Laboratory, Tallahassee, Florida, USA. As part of the development activity, two prototype coils with full scale radial dimensions and final design features, but with reduced axial length were constructed. The prototype coils consist of six dry-wound double pancakes modules with uninsulated conductor and insulated stainless steel cowind. Quench studies on one of the prototype coils at 4.2 K in self-field and in a background magnetic field of 15 T were performed by activating a set of quench protection heaters. In this paper, we present a numerical analysis of the experimental results of the quench tests of one of the prototype coils. The numerical analysis was carried out through a coupled electro-thermal FEM model developed at the University of Bologna. The model is based on the coupling with distributed contact resistances of the coil pancakes described as 2D elements. A homogenization procedure of the REBCO tape and other coil materials is presented, which allows reducing the number of degrees of freedom and the computational effort. The model is applied to the analysis of the current and voltage evolutions during the experimental quench tests on the prototype coil. (paper)

  12. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting

    International Nuclear Information System (INIS)

    Cassette, Philippe

    2016-01-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ"2 minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. - Highlights: • The program “QUENCH” is devoted to the interpolation of quenching curves in LSC. • Functions are fitted to experimental data with uncertainties in both quenching and efficiency. • The parameters of the fitting function and the associated covariance matrix are evaluated. • The detection efficiency and uncertainty corresponding to a given quenching index is calculated.

  13. effects of various effects of various quenching media on quenching

    African Journals Online (AJOL)

    eobe

    ABSTRACT. Evaluation of palm kernel oil, cotton seed oil and olive oil as quenching media of 0.509Wt%C medium carbon steel ... Quenching is an essential element in developing the .... machine, heat treatment furnace, Avery Denison Izod.

  14. Holographic quenches towards a Lifshitz point

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Giancarlo [Instituto de Física, Universidade de São Paulo,C.P. 66318, CEP: 05315-970, São Paulo (Brazil); Cuadros-Melgar, Bertha [Escola de Engenharia de Lorena, Universidade de São Paulo,Estrada Municipal do Campinho S/N, CEP: 12602-810, Lorena (Brazil); Abdalla, Elcio [Instituto de Física, Universidade de São Paulo,C.P. 66318, CEP: 05315-970, São Paulo (Brazil)

    2016-02-01

    We use the holographic duality to study quantum quenches of a strongly coupled CFT that drive the theory towards a non-relativistic fixed point with Lifshitz scaling. We consider the case of a Lifshitz dynamical exponent z close to unity, where the non-relativistic field theory can be understood as a specific deformation of the corresponding CFT and, hence, the standard holographic dictionary can be applied. On the gravity side this amounts to finding a dynamical bulk solution which interpolates between AdS and Lishitz spacetimes as time evolves. We show that an asymptotically Lifshitz black hole is always formed in the final state. This indicates that it is impossible to reach the vacuum state of the Lifshitz theory from the CFT vacuum as a result of the proposed quenching mechanism. The nonequilibrium dynamics following the breaking of the relativistic scaling symmetry is also probed using both local and non-local observables. In particular, we conclude that the equilibration process happens in a top-down manner, i.e., the symmetry is broken faster for UV modes.

  15. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luis, MA

    2002-10-01

    We start from a parity-breaking MCS QED 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e - e - - bound state. Three expressions V eff↓↓ , V eff↓↑ , V eff↓↓ ) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED 3 model adopted may be suitable to address an eventual case of e - e - pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  16. Does the Higgs mechanism favour electron-electron bound states in Maxwell-Chern-Simons QED3?

    International Nuclear Information System (INIS)

    Belich, Humberto; Helayeel-Neto, Jose Abdalla; Ferreira Junior, Manoel Messias

    2000-01-01

    Full text follows: We show that low-energy electron-electron bound states appear in the Maxwell-Chern-Simons (MCS) planar QED. In spite of the repulsive interaction mediated by the MCS gauge field, a net attractive interaction stems due to the Higgs mechanism through an Yukawa-type interaction. The spontaneous breaking of a local U(1)-symmetry is realized by a γ 6 -type potential. We conclude, by using the Schroedinger equation associated to the net attractive scattering potential, that electron-electron bound states arise in the model. Therefore, the Higgs mechanism overcomes the difficulties found out by Girotti et al. (Phys. Rev. Lett. 69 (1992) 2623) in searching for bound states in the MCS planar QED. (author)

  17. Nonsequential multiphoton double ionization of He in intense laser - a QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Mazumder, Mina; Chakrabarti, J.; Faisal, F.H.M.

    2010-01-01

    The non-sequential muItiphoton double ionization (NSDI) of He in intense laser field is not yet completely understood, more so for spin resolved currents. We are tempted to use QED and Feynman diagram to obtain spin polarized currents. Hartree-Fock (HF) ground-state correlated wave function of He atom is considered in circularly polarized laser. In QED approach one of the electrons is directly ionized by photon absorption while the second electron is shaken off due to the change in the internal potential of the atom. In He-atom the two ionized electrons can only be in the singlet spin state. Spin-symmetric and spin-flip transitions are eventually possible for the direct and the shake-off electrons. In an ensemble of (HF type) He-atoms the ionized Volkov electrons may acquire 4 pairs of momenta indicating e-e correlation in the final state. Coulomb correction is taken care off through the Sommerfeld factor

  18. Gauge-invariant dressed fermion propagator in massless QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Indrajit [Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indrajit.mitra@saha.ac.in; Ratabole, Raghunath [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in

    2006-04-27

    The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED{sub 3} is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement.

  19. Effects of the fermionic vacuum polarization in QED

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, M.F.X.P.; Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil); Barone, F.E.

    2018-01-15

    Some effects of vacuum polarization in QED due to the presence of field sources are investigated. We focus on effects with no counter-part in Maxwell electrodynamics. The Uehling interaction energy between two stationary point-like charges is calculated exactly in terms of Meijer-G functions. Effects induced on a hydrogen atom by the vacuum polarization in the vicinity of a Dirac string are considered. We also calculate the interaction between two parallel Dirac strings and corrections to the energy levels of a quantum particle constrained to move on a ring circumventing a solenoid. (orig.)

  20. Dynamical breakdown of chiral symmetry in vectorial theories: QED and QCD

    International Nuclear Information System (INIS)

    Garcia, J.C.M.

    1987-01-01

    Using a variational approach for the Effective Potential for composite operators we dicuss the dynamical breakdown of chiral symmetry in two vectorial theories: Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). We study the energetic aspects of the problem calculating the Effective Potential with the asymptotic nonperturbative solutions of the Schwinger-Dyson equation for the fermion selfenergy. (author) [pt

  1. QED polarization asymmetries for e+e- scattering due to helicity flips

    International Nuclear Information System (INIS)

    Anders, T.B.; Sell, E.W.

    1992-01-01

    The polarization asymmetries for the e + e - scattering with polarized incoming of outgoing beams, which are proportional to the amplitudes φ 5 describing one helicity flip and φ 2 describing two helicity flips, have been calculated including their pure QED radiative corrections. These asymmetries are partly large and can be observed well at low energies. (orig.)

  2. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  3. QED's School Market Trends: Teacher Buying Behavior & Attitudes, 2001-2002. Research Report.

    Science.gov (United States)

    Quality Education Data, Inc., Denver, CO.

    This study examined teachers' classroom material buying behaviors and trends. Data came from Quality Education Data's National Education Database, which includes U.S. K-12 public, private, and Catholic schools and districts. Researchers surveyed K-8 teachers randomly selected from QED's National Education Database. Results show that teachers spend…

  4. Preparation of genuine Yeo-Chua entangled state and teleportation of two-atom state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We first propose a scheme for preparing the genuine Yeo-Chua 4-qubit entangled state via cavity QED. Using the genuine Yeo-Chua atomic state, we further propose a cavity QED scheme for teleporting an arbitrary two-atom state. In two schemes the large-detuning is chosen and the necessary time is designed to be much shorter than Rydberg-atom’s lifespan. Both schemes share the distinct advantage that cavity decay and atom decay can be neglected. As for the interaction manipulation, our preparation scheme is more feasible than a recent similar one. Compared with the Yeo and Chua’s scheme, our teleportation scheme has significantly reduced the measuring difficulty.

  5. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  6. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  7. Renormalization in theories with strong vector forces

    International Nuclear Information System (INIS)

    Kocic, A.

    1991-01-01

    There are not many field theories in four dimensions that have sensible ultraviolet and interesting (non-trivial) infrared behavior. At present, asymptotically free theories seem to have deserved their legitimacy and there is a strong prejudice that they might be the only ones to have such a distinction. This belief stems mostly from the fact that most of the knowledge of field theory in four dimensions comes from perturbation theory. However, nonperturbative studies of the lower dimensional theories reveal a host of interesting phenomena that are perturbative studies of the lower dimensional theories reveal a host of interesting phenomena that perturbatively inaccessible. The lack of asymptotic freedom implies that the coupling constant grows at short distances and perturbation theory breaks down. Thus, in such theories, ultraviolet behavior requires nonperturbative treatment. Recently, the interest in strongly coupled gauge theories has been revived. In particularly, four dimensional quantum electrodynamics has received considerable attention. This was motivated by the discovery of an ultraviolet stable fixed point at strong couplings. If this fixed point would turn out to be non-gaussian, then QED would be the first nontrivial nonasymptotically free theory in four dimensions. The importance of such a result would be twofold. First, the old question of the existence of QED could be settled. Of course, this would be the case provided that the low energy limit of the theory actually describes photons and electrons; apriori, there is no reason to assume this. Second, the discovery of a nontrivial nonasymptotically free theory would be of great paradigmatic value. The theories which quenched QED resembles the most are nonabelian gauge theories with many flavors with beta-function positive or vanishing at weak couplings. These theories are at present considered as viable candidates for technicolor unification schemes

  8. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  9. Two-loop operator matrix elements for massive fermionic local twist-2 operators in QED

    International Nuclear Information System (INIS)

    Bluemlein, J.; Freitas, A. de; Universidad Simon Bolivar, Caracas; Neerven, W.L. van

    2011-11-01

    We describe the calculation of the two--loop massive operator matrix elements with massive external fermions in QED. We investigate the factorization of the O(α 2 ) initial state corrections to e + e - annihilation into a virtual boson for large cms energies s >>m 2 e into massive operator matrix elements and the massless Wilson coefficients of the Drell-Yan process adapting the color coefficients to the case of QED, as proposed by F. A. Berends et. al. (Nucl. Phys. B 297 (1988)429). Our calculations show explicitly that the representation proposed there works at one-loop order and up to terms linear in ln (s/m 2 e ) at two-loop order. However, the two-loop constant part contains a few structural terms, which have not been obtained in previous direct calculations. (orig.)

  10. Magnet Quench 101

    OpenAIRE

    Bottura, L.

    2014-01-01

    This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet. This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet.

  11. Quenching experiments on niobium

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    High-purity niobium wire specimens have been quenched in superfluid helium from near the melting point in order to obtain information on vacancies in this material. The quenched-in resistivity Δsub(pQ) for a quench from 2600 K was very small (approximately 0.3 x 10 -12 Ω m) and near the limit of detection. It is assumed that large quenching losses are responsible for the small quenched-in resistance. From the experimental cooling curve estimates have been made for the formation and migration enthalpies (Hsub(1V)sup(F), Hsub(1V)sup(M)), where Hsub(1V)sup(M)+Hsub(1V)sup(F)=Qsub(1V)sup(SD)=3.62 ev. For Ssub(1V)sup(F), the formation entropy, two different values were assumed. (author)

  12. Measurement of the Proton Structure Function $F_{2}$ at low $Q^{2}$ in QED Compton Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Broker, H.-B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K.H.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2004-01-01

    The proton structure function F_2(x,Q^2) is measured in inelastic QED Compton scattering using data collected with the H1 detector at HERA. QED Compton events are used to access the kinematic range of very low virtualities of the exchanged photon, Q^2, down to 0.5 GeV^2, and Bjorken x up to \\sim 0.06, a region which has not been covered previously by inclusive measurements at HERA. The results are in agreement with the measurements from fixed target lepton-nucleon scattering experiments.

  13. Simulation of quenches in SSC magnets with passive quench protection

    International Nuclear Information System (INIS)

    Koepke, K.

    1985-06-01

    The relative ease of protecting an SSC magnet following a quench and the implications of quench protection on magnet reliability and operation are necessary inputs in a rational magnet selection process. As it appears likely that the magnet selection will be made prior to full scale prototype testing, an alternative means is required to ascertain the surviveability of contending magnet types. This paper attempts to provide a basis for magnet selection by calculating the peak expected quench temperatures in the 3 T Design C magnet and the 6 T Design D magnet as a function of magnet length. A passive, ''cold diode'' protection system has been assumed. The relative merits of passive versus active protection systems have been discussed in a previous report. It is therefore assumed that - given the experience gained from the Tevatron system - that an active quench protection system can be employed to protect the magnets in the eventuality of unreliable cold diode function

  14. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    Science.gov (United States)

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Calculating the jet quenching parameter in the plasma of noncommutative Yang-Mills theory from gauge/gravity duality

    Science.gov (United States)

    Chakraborty, Somdeb; Roy, Shibaji

    2012-02-01

    A particular decoupling limit of the nonextremal (D1, D3) brane bound state system of type IIB string theory is known to give the gravity dual of space-space noncommutative Yang-Mills theory at finite temperature. We use a string probe in this background to compute the jet quenching parameter in a strongly coupled plasma of hot noncommutative Yang-Mills theory in (3+1) dimensions from gauge/gravity duality. We give expressions for the jet quenching parameter for both small and large noncommutativity. For small noncommutativity, we find that the value of the jet quenching parameter gets reduced from its commutative value. The reduction is enhanced with temperature as T7 for fixed noncommutativity and fixed ’t Hooft coupling. We also give an estimate of the correction due to noncommutativity at the present collider energies like in RHIC or in LHC and find it too small to be detected. We further generalize the results for noncommutative Yang-Mills theories in diverse dimensions.

  16. Overview on the anomaly and Schwinger term in two dimensional QED

    International Nuclear Information System (INIS)

    Adam, C.; Bertlmann, R.A.; Hofer, P.

    1993-01-01

    The axial anomaly of two-dimensional QED is computed in different ways (perturbative, via dispersion integrals, path integral and index theorem) and their relation is discussed as well as the relation between anomaly, Schwinger term and the Dirac vacuum. Some features of the special case of massless fermions (Schwinger model) and some methods of exactly solving it are demonstrated. (authors)

  17. Gauge dependence of the infrared behaviour of massless QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Indrajit [Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indrajit.mitra@saha.ac.in; Ratabole, Raghunath [The Institute of Mathematical Sciences, CIT Campus, Taramani PO, Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [The Institute of Mathematical Sciences, CIT Campus, Taramani PO, Chennai 600113 (India)]. E-mail: sharat@imsc.res.in

    2006-03-23

    Using the Zumino identities it is shown that in a class of non-local gauges, massless QED{sub 3} has an infrared behaviour of a conformal field theory with a continuously varying anomalous dimension of the fermion. In the usual Lorentz gauge, the fermion propagator falls off exponentially for a large separation, but this apparent fermion mass is a gauge artifact.

  18. QED3 formulation of vortices in boson condensates and metafluid

    International Nuclear Information System (INIS)

    Soares, Thales Costa; Spalenza, Wesley; Helayel Neto, Jose Abdalla

    2002-01-01

    Full text: One consider a system of many non-relativistic particles as a fluid, going from the discrete set of space-time coordinates of each particle to a continuous field. With an interparticle potential that satisfies a number of physically reasonable assumptions, one shows how the Lagrangian describing the motion of the fluid displays an exact local gauge invariance governed by a scalar parameter. The conserved quantity associated to this local symmetry is derived and discussed in the light of planar Electrodynamics, with photons identified as sound waves in the fluid and point-like charges corresponding to vortices with azimuthal circulation. On the other hand, exploiting further the field configurations of planar Electrodynamics, one finds a peculiar source for the electrostatic sector with azimuthal electric field and a string-like scalar potential. This work sets out to attempt at establishing a parallel between this vortex-like electric field configurations in fluid dynamics. Vortices in boson condensates and the fluid dynamics of the condensates are reassessed and translated into electromagnetic fields of planar (Chern-Simons massive) QED. On The other hand, the metafluid equations, once suitable reduced from 3 to 2 space dimensions, are also seen to match field configurations of Maxwell (massless photons) planar QED. (author)

  19. Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: Application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aizhuo; Hu Weidong; Qamar, Seema; Majumdar, Ananya [Memorial Sloan-Kettering Cancer Center, Cellular Biochemistry and Biophysics Program (United States)

    2000-05-15

    In this paper, we demonstrate that the sensitivity of triple-resonance NMR experiments can be enhanced significantly through quenching scalar coupling mediated relaxation by using composite-pulse decoupling (CPD) or an adiabatic decoupling sequence on aliphatic, in particular alpha-carbons in {sup 13}C/{sup 15}N-labeled proteins. The CPD-HNCO experiment renders 50% sensitivity enhancement over the conventional CT-HNCO experiment performed on a 12 kDa FK506 binding protein, when a total of 266 ms of amide nitrogen-carbonyl carbon defocusing and refocusing periods is employed. This is a typical time period for the direct detection of hydrogen bonds in proteins via trans-hydrogen bond {sup 3h}J{sub NC'} couplings. The experimental data fit theoretical analysis well. The significant enhancement in sensitivity makes the experiment more applicable to larger-sized proteins without resorting to perdeuteration.

  20. Whole cell quenched flow analysis.

    Science.gov (United States)

    Chiang, Ya-Yu; Haeri, Sina; Gizewski, Carsten; Stewart, Joanna D; Ehrhard, Peter; Shrimpton, John; Janasek, Dirk; West, Jonathan

    2013-12-03

    This paper describes a microfluidic quenched flow platform for the investigation of ligand-mediated cell surface processes with unprecedented temporal resolution. A roll-slip behavior caused by cell-wall-fluid coupling was documented and acts to minimize the compression and shear stresses experienced by the cell. This feature enables high-velocity (100-400 mm/s) operation without impacting the integrity of the cell membrane. In addition, rotation generates localized convection paths. This cell-driven micromixing effect causes the cell to become rapidly enveloped with ligands to saturate the surface receptors. High-speed imaging of the transport of a Janus particle and fictitious domain numerical simulations were used to predict millisecond-scale biochemical switching times. Dispersion in the incubation channel was characterized by microparticle image velocimetry and minimized by using a horizontal Hele-Shaw velocity profile in combination with vertical hydrodynamic focusing to achieve highly reproducible incubation times (CV = 3.6%). Microfluidic quenched flow was used to investigate the pY1131 autophosphorylation transition in the type I insulin-like growth factor receptor (IGF-1R). This predimerized receptor undergoes autophosphorylation within 100 ms of stimulation. Beyond this demonstration, the extreme temporal resolution can be used to gain new insights into the mechanisms underpinning a tremendous variety of important cell surface events.

  1. On a manifestation of the anomalies in the massless QED

    International Nuclear Information System (INIS)

    Gorskij, A.S.

    1989-01-01

    The questions concerned with the axial and conformal anomalies in the massless QED are discussed. It is shown that the interaction of the longitudinal real photons is proportional to the β function of the theory and the corresponding matrix element L |Θ αβ |γ L > where Θ αβ is energy-momentum tensor has a common features with the nonvanishing matrix element α |γ> in the massless limit. 7 refs.; 2 figs

  2. Fried-Yennie gauge in dimensionally regularized QED

    International Nuclear Information System (INIS)

    Adkins, G.S.

    1993-01-01

    The Fried-Yennie gauge in QED is a covariant gauge with agreeable infrared properties. That is, the mass-shell renormalization scheme can be implemented without introducing artificial infrared divergences, and terms having spuriously low orders in α disappear in certain bound-state calculations. The photon propagator in the Fried-Yennie gauge has the form D β μν (k)=(-1/k 2 )[g μν +βk μ kν/k 2 ], where β is the gauge parameter. In this work, I show that the Fried-Yennie gauge parameter is β=2/(1-2ε) when dimensional regularization (with n=4-2ε dimensions of spacetime) is used to regulate the theory

  3. Metastability versus collapse following a quench in attractive Bose-Einstein condensates

    Science.gov (United States)

    Golde, Jake; Ruhl, Joanna; Olshanii, Maxim; Dunjko, Vanja; Datta, Sumita; Malomed, Boris A.

    2018-05-01

    We consider a Bose-Einstein condensate (BEC) with attractive two-body interactions in a cigar-shaped trap, initially prepared in its ground state for a given negative scattering length, which is quenched to a larger absolute value of the scattering length. Using the mean-field approximation, we compute numerically, for an experimentally relevant range of aspect ratios and initial strengths of the coupling, two critical values of quench. One corresponds to the weakest attraction strength, the quench to which causes the system to collapse before completing even a single return from the narrow configuration (pericenter) in its breathing cycle. The other is a similar critical point for the occurrence of collapse before completing two returns. In the latter case, we also compute the limiting value, as we keep increasing the strength of the postquench attraction towards its critical value, of the time interval between the first two pericenters. We also use a Gaussian variational model to estimate the critical quenched attraction strength below which the system is stable against the collapse for long times. These time intervals and critical attraction strengths, apart from being fundamental properties of nonlinear dynamics of self-attractive BECs, may provide clues to the design of upcoming experiments that are trying to create robust BEC breathers.

  4. Effects of quenching and partial quenching on QCD penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2002-01-01

    We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation

  5. Proof of the relativistic covariance of the fermion Green function in QED

    International Nuclear Information System (INIS)

    Nguyen Suan Han.

    1995-02-01

    This paper is devoted to the calculation of the fermion Green function in QED in the framework of the Minimal Quantization Method, based on an explicit solution of the constraint equations and the gauge-invariance principle. The relativistic invariant expression for the fermion Green function which has the right analytical properties is obtained. (author). 24 refs

  6. Avoidance of a Landau pole by flat contributions in QED

    Energy Technology Data Exchange (ETDEWEB)

    Klaczynski, Lutz, E-mail: lutz.klaczynski@gmx.de [Department of Physics, Humboldt University Berlin, 12489 Berlin (Germany); Kreimer, Dirk, E-mail: kreimer@mathematik.hu-berlin.de [Alexander von Humboldt Chair in Mathematical Physics, Humboldt University, Berlin 12489 (Germany)

    2014-05-15

    We consider massless Quantum Electrodynamics in the momentum scheme and carry forward an approach based on Dyson–Schwinger equations to approximate both the β-function and the renormalized photon self-energy (Yeats, 2011). Starting from the Callan–Symanzik equation, we derive a renormalization group (RG) recursion identity which implies a non-linear ODE for the anomalous dimension and extract a sufficient but not necessary criterion for the existence of a Landau pole. This criterion implies a necessary condition for QED to have no such pole. Solving the differential equation exactly for a toy model case, we integrate the corresponding RG equation for the running coupling and find that even though the β-function entails a Landau pole it exhibits a flat contribution capable of decreasing its growth, in other cases possibly to the extent that such a pole is avoided altogether. Finally, by applying the recursion identity, we compute the photon propagator and investigate the effect of flat contributions on both spacelike and timelike photons. -- Highlights: •We present an approach to approximate both the β-function and the photon self-energy. •We find a sufficient criterion for the self-energy to entail the existence of a Landau pole. •We study non-perturbative ‘flat’ contributions that emerge within the context of our approach. •We discuss a toy model and how it is affected by flat contributions.

  7. Quench propagation and quench detection in the TF system of JT-60SA

    International Nuclear Information System (INIS)

    Lacroix, Benoit; Duchateau, Jean-Luc; Meuris, Chantal; Ciazynski, Daniel; Nicollet, Sylvie; Zani, Louis; Polli, Gian-Mario

    2013-01-01

    Highlights: • The JT-60SA primary quench detection system will be based on voltage measurements. • The early quench propagation was studied in the JT-60SA TF conductor. • The impact of the conductor jacket on the hot spot criterion was quantified. • The detection parameters were investigated for different quench initiations. -- Abstract: In the framework of the JT-60SA project, France and Italy will provide to JAEA 18 Toroidal Field (TF) coils including NbTi cable-in-conduit conductors. During the tokamak operation, these coils could experience a quench, an incidental event corresponding to the irreversible transition from superconducting state to normal resistive state. Starting from a localized disturbance, the normal zone propagates along the conductor and dissipates a large energy due to Joule heating, which can cause irreversible damages. The detection has to be fast enough (a few seconds) to trigger the current discharge, so as to dump the stored magnetic energy into an external resistor. The JT-60SA primary quench detection system will be based on voltage measurements, which are the most rapid technology. The features of the detection system must be adjusted so as to detect the most probable quenches, while avoiding inopportune fast safety discharges. This requires a reliable simulation of the early quench propagation, performed in this study with the Gandalf code. The conductor temperature reached during the current discharge must be kept under a maximal value, according to the hot spot criterion. In the present study, a hot spot criterion temperature of 150 K was taken into account and the role of each conductor component (strands, helium and conduit) was analyzed. The detection parameters were then investigated for different hypotheses regarding the quench initiation

  8. A Test of QED in Electron-Positron Annihilation at Energies around the Z Mass

    CERN Document Server

    Spartiotis, C

    1992-01-01

    A study of the reaction e+ e- -t 11( /) at center-of-mass energies around the mass of the z 0 boson(91.2Ge V) has been performed. The total and differential cross sections have been measured cor- responding to an integrated luminosity of 14.42pb- 1 . The results are in good agreement with QED predictions. Lower limits were set , at 95% confidence level, on the QED cutoff parameters of A+ >130 GeV, A_ >112 GeV and on the mass of an excited elec- tron of me* > 120 Ge V. z 0 rare decays with photonic signatures in the final state were also searched for. Upper limits, at 953 confi- dence level, for the branching ratio of z 0 decaying into 7ro/ /11, TJI and /// are 1.2 x 10-4, 1.7 x 10-4, 3.3 x 10- 5 respectively.

  9. Cancellation of soft and collinear divergences in noncommutative QED

    International Nuclear Information System (INIS)

    Mirza, B.; Zarei, M.

    2006-01-01

    In this paper, we investigate the behavior of noncommutative IR divergences and will also discuss their cancellation in the physical cross sections. The commutative IR (soft) divergences existing in the nonplanar diagrams will be examined in order to prove an all-order cancellation of these divergences using the Weinberg's method. In noncommutative QED, collinear divergences due to triple photon splitting vertex, were encountered, which are shown to be canceled out by the noncommutative version of KLN theorem. This guarantees that there is no mixing between the Collinear, soft divergences and noncommutative IR divergences

  10. submitter Quench Protection of Very Large, 50-GJ-Class, and High-Temperature-Superconductor-Based Detector Magnets

    CERN Document Server

    Mentink, Matthias; Mulder, Tim; Van Nugteren, Jeroen; ten Kate, Herman

    2016-01-01

    An investigation is performed on the quench behavior of a conceptual 50-GJ 8-T high-temperature-superconductor-based solenoid. In this design, a 50-kA conductor-on-round-core cable-in-conduit conductor utilizing ReBCO technology is envisioned, operating at 40 K. Various properties such as resistivity, thermal conductivity, and heat capacity are very different at this temperature, which affects the quench behavior. It is found that the envisioned conductor is very stable with a minimum quench energy of about 2 kJ. However, the quench propagation velocity is typically about 20 mm/s, so that creating a wide-spread normal zone throughout the coil is very challenging. Moreover, an extraction voltage exceeding 20 kV would be required to ensure a hot-spot temperature below 100 K once a thermal runaway occurs. A novel concept dubbed “rapid quench transformation” is proposed whereby the superconducting conductor is co-wound with a normal conductor to achieve a high degree of inductive coupling. This geometry allow...

  11. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  12. Quench detection and behaviour in case of quench in the ITER magnet systems

    International Nuclear Information System (INIS)

    Coatanea-Gouachet, M.

    2012-02-01

    The quench of one of the ITER magnet system is an irreversible transition from superconducting to normal resistive state, of a conductor. This normal zone propagates along the cable in conduit conductor dissipating a large power. The detection has to be fast enough to dump out the magnetic energy and avoid irreversible damage of the systems. The primary quench detection in ITER is based on voltage detection, which is the most rapid detection. The very magnetically disturbed environment during the plasma scenario makes the voltage detection particularly difficult, inducing large inductive components in the coils and voltage compensations have to be designed to discriminate the resistive voltage associated with the quench. A conceptual design of the quench detection based on voltage measurements is proposed for the three majors magnet systems of ITER. For this, a clear methodology was developed. It includes the classical hot spot criterion, the quench propagation study using the commercial code Gandalf and the careful estimation of the inductive disturbances by developing the TrapsAV code. Specific solutions have been proposed for the compensation in the three ITER magnet systems and for the quench detection parameters, which are the voltage threshold (in the range of 0.1 V - 0.55 V) and the holding time (in the range of 1-1.4 s). The selected values, in particular the holding time, are sufficiently high to ensure the reliability of the system and avoid fast safety discharges not induced by a quench, which is a classical problem. (author)

  13. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  14. Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields

    International Nuclear Information System (INIS)

    Sadooghi, N.; Anaraki, K. Sohrabi

    2008-01-01

    Using the general structure of the vacuum polarization tensor Π μν (k 0 ,k) in the infrared (IR) limit, k 0 →0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k 0 →0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T 4 α 5/2 , in addition to the expected T 4 α 3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li 2 (-(2α/π)(eB/m 2 )). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.

  15. Renormalization of QED with planar binary trees

    International Nuclear Information System (INIS)

    Brouder, C.

    2001-01-01

    The Dyson relations between renormalized and bare photon and electron propagators Z 3 anti D(q)=D(q) and Z 2 anti S(q)=S(q) are expanded over planar binary trees. This yields explicit recursive relations for the terms of the expansions. When all the trees corresponding to a given power of the electron charge are summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron propagators. These relations significantly decrease the number of integrals to carry out, as compared to the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a Hopf algebra structure. (orig.)

  16. Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry.

    Science.gov (United States)

    Cai, Yi; Li, Shao-Hua; Dou, Shuai; Yu, Yong-Liang; Wang, Jian-Hua

    2015-01-20

    The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5-100 μg L(-1) along with a detection limit of 1.3 μg L(-1) and a precision of 2.4% RSD at 50 μg L(-1). The present DBD-OES system is validated by nickel in certified reference materials.

  17. On the classical dynamics of charges in non-commutative QED

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Mohammadzadeh, H.

    2004-01-01

    Following Wong's approach to formulating the classical dynamics of charged particles in non-Abelian gauge theories, we derive the classical equations of motion of a charged particle in U(1) gauge theory on non-commutative space, the so-called non-commutative QED. In the present use of the procedure, it is observed that the definition of the mechanical momenta should be modified. The derived equations of motion manifest the previous statement about the dipole behavior of the charges in non-commutative space. (orig.)

  18. Quench dynamics of the interacting Bose gas in one dimension.

    Science.gov (United States)

    Iyer, Deepak; Andrei, Natan

    2012-09-14

    We obtain an exact expression for the time evolution of the interacting Bose gas following a quench from a generic initial state using the Yudson representation for integrable systems. We study the time evolution of the density and noise correlation for a small number of bosons and their asymptotic behavior for any number. We show that for any value of the coupling, as long as it is repulsive, the system asymptotes towards a strongly repulsive gas, while for any value of an attractive coupling the long time behavior is dominated by the maximal bound state. This occurs independently of the initial state and can be viewed as an emerging "dynamic universality."

  19. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: belich@cbpf.br; helayel@gft.ucp.br; Del Cima, O.M. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: delcima@gft.ucp.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br

    2002-10-01

    We start from a parity-breaking MCS QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e{sup -}e{sup -} - bound state. Three expressions (V{sub eff{down_arrow}}{sub {down_arrow}}, V{sub eff{down_arrow}}{sub {up_arrow}}, V{sub eff{down_arrow}}{sub {down_arrow}}) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED{sub 3} model adopted may be suitable to address an eventual case of e{sup -}e{sup -} pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  20. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  1. Numerical calculation of transient field effects in quenching superconducting magnets

    International Nuclear Information System (INIS)

    Schwerg, Juljan Nikolai

    2010-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  2. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  3. Discharge quenching circuit for counters

    International Nuclear Information System (INIS)

    Karasik, A.S.

    1982-01-01

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V [ru

  4. Present status and prospect of the experimental study of QED in high Z ions

    International Nuclear Information System (INIS)

    Briand, J.P.

    1993-01-01

    I summarize in this paper the present status of our experimental knowledge on the Lamb shift of high Z hydrogenlike ions. Some tentative prospect on the future improvements with the new large accelerators and ion sources are discussed and compared with the present accuracy of QED corrections. (orig.)

  5. Quenching and hardening in the transverse quasi-elastic peak

    International Nuclear Information System (INIS)

    Alberico, W.M.; Molinari, A.; Ericson, M.

    1981-09-01

    We study in the RPA framework the response of symmetric, infinite nuclear matter to a spin-isospin sensitive probe with both σ.q and σ.xq couplings. The two responses, similar in the low-q region, differ markedly for moderate momenta (>=1fm -1 ). Indeed, whereas the longitudinal one displays a softening and an enhancement (due to the attractive character of the associated particle-hole force), the transverse response is quenched and hardened with respect to the free Fermi gas. The existing experimental data, which we analyze, are compatible with our results. We also explore the total strengths and find that for repulsive forces they are appreciably reduced by the RPA correlations. Large part of this quenching comes from the Δ excitation (LLEE effect), but some reduction is still present even when the nucleonic degrees of freedom are neglected. This illustrates a violation of strength conservation brougth about by the RPA correlations in the spin-isospin channel

  6. Rapid and accurate determination of Stern-Volmer quenching constants

    International Nuclear Information System (INIS)

    Goodpaster, John V.; McGuffin, Victoria L.

    1999-01-01

    In this work, a novel system has been designed, characterized, and validated for the determination of fluorescence quenching constants. Capillary flow injection methods are used to automate the preparation and mixing of the fluorophore and quencher solutions. Because of the small diameter of the capillary (75-200 μm), fluorescence measurements can be made without corrections for primary and secondary absorbance effects. The fluorescence spectrometer is equipped with a charge-coupled device (CCD) that has a detection limit of 3.0x10 -9 M (2.3 ppb) and a linear dynamic range of 10 5 for integration times of 0.01-10 s. This spectrometer has a 300 nm spectral range with 1 nm resolution, allowing the fluorescence quenching constants to be calculated at single wavelengths or over integrated wavelength ranges. This system was validated by comparison to traditional methods for the determination of Stern-Volmer constants for alternant and nonalternant polycyclic aromatic hydrocarbons with nitromethane and triethylamine. (c) 2000 Society for Applied Spectroscopy

  7. On the disordered fermion couplings

    International Nuclear Information System (INIS)

    Bernaschi, M.; Cabasino, S.; Marinari, E.; Rome-2 Univ.; Sarno, R.; Rome-1 Univ.

    1989-01-01

    We study the possibility of avoiding the fermion doubling problem by using a random coupling. We use numerical simulations in order to study the theory in the strong disorder region. We find a sharp crossover as a function of the strength of the disorder. For weak quenched disorder we find that the species doubling survives, while for strong quenched disorder only with a particular choice of the random term (antihermitian) it is possible to get a theory that seems to avoid fermion doubling. (orig.)

  8. Multiphoton production and tests of QED at LEP-II

    International Nuclear Information System (INIS)

    Winter, M.

    2001-01-01

    Data collected by the 4 LEP collaboration from 1995 to 2000 at collision energies ranging from 130 to 208 GeV were used to measure the cross-section of the process e + e - →γγ(γ). QED predictions for this reaction were tested with a few per-cent accuracy and manifestations of physics beyond the Standard Model (SM) were investigated. Preliminary lower bounds on the cut-off parameter Λ ± , the mass of an excited electron, the string mass scale underlying low-scale Quantum Gravity and on energy scales expression various contact interactions were derived. (author)

  9. Multiloop stringlike formulas for QED

    International Nuclear Information System (INIS)

    Lam, C.S.

    1993-01-01

    Multiloop gauge-theory amplitudes written in the Feynman-parameter representation are poised to take advantage of two important developments of the past decade: the spinor-helicity technique and the superstring reorganization. The former has been considered in a previous paper; the latter will be elaborated in this paper. We show here how to write multiloop stringlike formulas in the Feynman-parameter representation for any diagram in QED, including those involving other nonelectromagnetic interactions, provided the internal photon lines are not adjacent to any external photon line. The general connection between the Feynman-parameter approach and the superstring and/or first-quantized approach is discussed. In the special case of a one-loop multiphoton amplitude, these formulas reduce to the ones obtained by the superstring and the first-quantized methods. The stringlike formulas exhibit a simple gauge structure which makes the Ward-Takahashi identity apparent, and enables the integration-by-parts technique of Bern and Kosower to be applied, so that gauge-invariant parts can be extracted diagram by diagram with the seagull vertex neglected

  10. Correlation of electronic carotenoid-chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants

    International Nuclear Information System (INIS)

    Liao, Pen-Nan; Bode, Stefan; Wilk, Laura; Hafi, Nour; Walla, Peter J.

    2010-01-01

    The aggregation dependent correlation between fluorescence quenching and the electronic carotenoid-chlorophyll interactions, φ Coupling Car S 1 -Chl , as measured by comparing chlorophyll fluorescence observed after two- and one-photon excitation, has been investigated using native LHC II samples as well as mutants lacking Chl 2 and Chl 13. For native LHC II the same linear correlation between φ Coupling Car S 1 -Chl and the fluorescence quenching was observed as previously reported for the pH and Zea-dependent quenching of LHC II . In order to elucidate which carotenoid-chlorophyll pair might dominate this correlation we also investigated the mutants lacking Chl 2 and Chl 13. However, also with these mutants the same linear correlation as for native LHC II was observed. This provides indication that these two chlorophylls play only a minor role for the observed effects. Nevertheless, we also conclude that this does not exclude that their neighboured carotenoids, lutein 1 and neoxanthin, might interact electronically with other chlorophylls close by.

  11. The Quench Action

    Science.gov (United States)

    Caux, Jean-Sébastien

    2016-06-01

    We give a pedagogical introduction to the methodology of the Quench Action, which is an effective representation for the calculation of time-dependent expectation values of physical operators following a generic out-of-equilibrium state preparation protocol (for example a quantum quench). The representation, originally introduced in Caux and Essler (2013 Phys. Rev. Lett. 110 257203), is founded on a mixture of exact data for overlaps together with variational reasonings. It is argued to be quite generally valid and thermodynamically exact for arbitrary times after the quench (from short times all the way up to the steady state), and applicable to a wide class of physically relevant observables. Here, we introduce the method and its language, give an overview of some recent results, suggest a roadmap and offer some perspectives on possible future research directions.

  12. Leading quantum gravitational corrections to scalar QED

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude, which are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two charged scalars. The result is discussed in relation to experimental verifications

  13. Quenching behaviour of hot zircaloy tube

    International Nuclear Information System (INIS)

    Chinchole, A.S.; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    The quenching process plays a very important role in case of safety of nuclear reactors. During large break Loss of Coolant Accident in a nuclear reactor, the cooling water from the system is lost. Under this condition, cold water is injected from emergency core cooling system. Quenching behaviour of such heated rod bundle is really complex. It is well known that nanofluids have better heat removal capability and high heat transfer coefficient owing to enhanced thermal properties. Alumina nano-particles result in better cooling abilities compared with the traditionally used quenching media. In this paper, the authors have carried out experiments on quenching behaviour of hot zircaloy tube with demineralized water and nanofluids. It was observed that, the tube got quenched within few seconds even with the presence of decay heat and shows slightly reduced quenching time compared with DM water. (author)

  14. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  15. Spectroscopy of collective excitations in interacting low-dimensional many-body systems using quench dynamics.

    Science.gov (United States)

    Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail; Polkovnikov, Anatoli

    2007-11-16

    We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.

  16. Probabilistic Teleportation of an Arbitrary Two-Atom State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-Ming

    2007-01-01

    We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED.It is shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not,our teleportation scheme can always be probabilistically realized.The success probability of teleportation is determined by the smaller coefficients of the two initially entangled atom pairs.

  17. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  18. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    International Nuclear Information System (INIS)

    Bagan, H.; Tarancon, A.; Rauret, G.; Garcia, J.F.

    2008-01-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14 C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach

  19. Study of Multiphoton Final States and Tests of QED in $e^+ e^-$ collisions at $\\sqrt{s}$ up to 209 GeV

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2002-01-01

    The process e+ e- -> n gamma with n>=2 is studied at centre-of-mass energies ranging from \\root(s)=192 to 208 GeV. The data sample corresponds to a total integrated luminosity of 427 1/pb. The total and differential cross sections are found to be in agreement with the QED expectations. Using all the data collected with the L3 detector above the Z pole, limits on deviations from QED, excited electrons, contact interactions, extra space dimensions and excited spin-3/2 leptons are set.

  20. Supersymmetric QED at finite temperature and the principle of equivalence

    International Nuclear Information System (INIS)

    Robinett, R.W.

    1985-01-01

    Unbroken supersymmetric QED is examined at finite temperature and it is shown that the scalar and spinor members of a chiral superfield acquire different temperature-dependent inertial masses. By considering the renormalization of the energy-momentum tensor it is also shown that the T-dependent scalar-spinor gravitational masses are also no longer degenerate and, moreover, are different from their T-dependent inertial mass shifts implying a violation of the equivalence principle. The temperature-dependent corrections to the spinor (g-2) are also calculated and found not to vanish

  1. Rapid Quench in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  2. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  3. Concentration quenching in Nd-doped glasses

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Cook, L.; Mueller, H.; Weber, M.J.

    1984-01-01

    Fluorescence from trivalent Nd in solids is unfortunately quenched by interactions between Nd ions. Thus, laser materials with high Nd concentrations have reduced efficiencies because of this self-quenching, also known as concentration quenching. Nd self-quenching in different crystals and glasses varies considerably. We are therefore investigating this effect in a large number of materials in an effort to: (1) find those materials with long Nd fluorescent lifetimes at high Nd concentrations; and (2) elucidate the basic mechanisms of quenching and how the material structure controls its magnitude. We have concentrated on Nd-doped glasses because they provide a rich variety of structures, albeit complicated by Nd site inhomogeneities, and are easily and quickly made

  4. High-Q AlAs/GaAs adiabatic micropillar cavities with submicron diameters for cQED experiments

    DEFF Research Database (Denmark)

    Lermer, M.; Gregersen, Niels; Dunzer, F.

    Quantum dot (QD) micropillar cavities represent an interesting class of microresonator systems aiming at the observation and application of cavity quantum electrodynamics (cQED) on a semiconductor platform. They combine valuable properties i.e. a highly directional and approximately Gaussian shaped...

  5. Thermalization of a quenched Bose-Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Posazhennikova, Anna [Royal Holloway, University of London (United Kingdom); Trujillo-Martinez, Mauricio; Kroha, Johann [Universitaet Bonn (Germany)

    2015-07-01

    The experimental realization and control of quantum systems isolated from the environment, in ultracold atomic gases relaunched the interest in the fundamental non-equilibrium problem of how a finite system approaches thermal equilibrium. Despite intensive research there is still no conclusive answer to this question. We investigate theoretically how a quenched Bose-Josephson junction, where the Josephson coupling is switched on instantaneously, approaches its stationary state. We use the field theoretical approach for bosons out of equilibrium in a trap with discrete levels, developed by us previously. In this approach the operators for Bose-Einstein condensate (BEC) particles are treated on mean-field level, while excitations of the Bose gas in higher trap levels are treated fully quantum-mechanically. This leads to coupled equations of motion for the BEC amplitudes (Gross-Pitaevskii equation) and the quasiparticle propagators. The inelastic quasiparticle collisions responsible for the system relaxation during the time-dependent evolution are described within self-consistent second-order approximation.

  6. Cluster-Glass Phase in Pyrochlore X Y Antiferromagnets with Quenched Disorder

    Science.gov (United States)

    Andrade, Eric C.; Hoyos, José A.; Rachel, Stephan; Vojta, Matthias

    2018-03-01

    We study the impact of quenched disorder (random exchange couplings or site dilution) on easy-plane pyrochlore antiferromagnets. In the clean system, order by disorder selects a magnetically ordered state from a classically degenerate manifold. In the presence of randomness, however, different orders can be chosen locally depending on details of the disorder configuration. Using a combination of analytical considerations and classical Monte Carlo simulations, we argue that any long-range-ordered magnetic state is destroyed beyond a critical level of randomness where the system breaks into magnetic domains due to random exchange anisotropies, becoming, therefore, a glass of spin clusters, in accordance with the available experimental data. These random anisotropies originate from off-diagonal exchange couplings in the microscopic Hamiltonian, establishing their relevance to other magnets with strong spin-orbit coupling.

  7. Quantum chaos and chiral symmetry at the QCD and QED phase transition

    International Nuclear Information System (INIS)

    Bittner, Elmar; Markum, Harald; Pullirsch, Rainer

    2001-01-01

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in SU(3) gauge theory and in full QCD as well as in quenched U(1) theory. As a measure of the fluctuation properties of the eigenvalues, we consider the nearest-neighbor spacing distribution. We find that in all regions of their phase diagrams, compact lattice gauge theories have bulk spectral correlations given by random matrix theory, which is an indication for quantum chaos. In the confinement phase, the low-lying Dirac spectrum of these quantum field theories is well described by random matrix theory, exhibiting universal behavior. Related results for gauge theories with minimal coupling are now discussed also in the chirally symmetric phase

  8. Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2016-04-01

    In this article, the QUENCH-03 and QUENCH-06 experiments are modelled using ASTEC and RELAP/SCDAPSIM codes. For the uncertainty and sensitivity analysis, SUSA3.5 and SUNSET tools were used. The article demonstrates that applying the best estimate approach, it is possible to develop basic QUENCH input deck and to develop the two sets of input parameters, covering maximal and minimal ranges of uncertainties. These allow simulating different (but with the same nature tests, receiving calculation results with the evaluated range of uncertainties.

  9. Quenching and recovery experiments on molybdenum

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    Quenching experiments in superfluid helium have been performed on high-purity wire specimens obtained from a Mo single crystal with a residual resistance ratio of 40 000. Quenching from various temperatures near the melting point to 1.5 K resulted in quenched-in resistivities which are interpreted in terms of quenched-in vacancies. The following parameters were derived: Hsub(1V)sup(F) = 3.2 eV (formation enthalpy of monovacancies) and Ssub(1V)sup(F) = 1.5 k (formation entropy). The recovery of the quenched-in resistivity showed a recovery stage at 520 K, which is compatible with a migration enthalpy of Hsub(1V)sup(M) = 1.35 eV. The results are compared with recently published positron annihilation data. (author)

  10. Quantum master equation for QED in exact renormalization group

    International Nuclear Information System (INIS)

    Igarashi, Yuji; Itoh, Katsumi; Sonoda, Hidenori

    2007-01-01

    Recently, one of us (H. S.) gave an explicit form of the Ward-Takahashi identity for the Wilson action of QED. We first rederive the identity using a functional method. The identity makes it possible to realize the gauge symmetry even in the presence of a momentum cutoff. In the cutoff dependent realization, the nilpotency of the BRS transformation is lost. Using the Batalin-Vilkovisky formalism, we extend the Wilson action by including the antifield contributions. Then, the Ward-Takahashi identity for the Wilson action is lifted to a quantum master equation, and the modified BRS transformation regains nilpotency. We also obtain a flow equation for the extended Wilson action. (author)

  11. Power corrections to the HTL effective Lagrangian of QED

    Science.gov (United States)

    Carignano, Stefano; Manuel, Cristina; Soto, Joan

    2018-05-01

    We present compact expressions for the power corrections to the hard thermal loop (HTL) Lagrangian of QED in d space dimensions. These are corrections of order (L / T) 2, valid for momenta L ≪ T, where T is the temperature. In the limit d → 3 we achieve a consistent regularization of both infrared and ultraviolet divergences, which respects the gauge symmetry of the theory. Dimensional regularization also allows us to witness subtle cancellations of infrared divergences. We also discuss how to generalize our results in the presence of a chemical potential, so as to obtain the power corrections to the hard dense loop (HDL) Lagrangian.

  12. Mechanical stress analysis during a quench in CLIQ protected 16 T dipole magnets designed for the future circular collider

    Science.gov (United States)

    Zhao, Junjie; Prioli, Marco; Stenvall, Antti; Salmi, Tiina; Gao, Yuanwen; Caiffi, Barbara; Lorin, Clement; Marinozzi, Vittorio; Farinon, Stefania; Sorbi, Massimo

    2018-07-01

    Protecting the magnets in case of a quench is a challenge for the 16 T superconducting dipole magnets presently designed for the 100 TeV: Future Circular Collider (FCC). These magnets are driven to the foreseen technological limits in terms of critical current, mechanical strength and quench protection. The magnets are protected with CLIQ (Coupling-Loss Induced Quench) system, which is a recently developed quench protection method based on discharging a capacitor bank across part of the winding. The oscillation of the magnet currents and the dissipation of the high stored energy into the windings cause electrodynamic forces and thermal stresses, which may need to be considered in the magnet mechanical design. This paper focuses on mechanical stress analysis during a quench of the 16 T cos-θ and block type dipole magnets. A finite element model allowed studying the stress due to the non-uniform temperature and current distribution in the superconducting coils. Two different CLIQ configurations were considered for the cos-θ design and one for the block type magnet. The analyses of the mechanical behavior of two magnets during a quench without or with hot spot turn were separately carried out. The simulation results show that the stress related to a quench should be considered when designing a high field magnet.

  13. Environmental Quenching of Low-Mass Field Galaxies

    Science.gov (United States)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-04-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  14. Determination of the integrated luminosity at HERA using elastic QED Compton events

    International Nuclear Information System (INIS)

    Aaron, F.D.; Andreev, V.

    2012-04-01

    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep→eγp. The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3%. The measurement is found to be compatible with the corresponding result obtained using the Bethe-Heitler process.

  15. Determination of the Integrated Luminosity at HERA using Elastic QED Compton Events

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Kogler, R.; Kostka, P.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lopez-Fernandez, R.; Lubimov, V.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2012-10-10

    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep \\rightarrow ep. The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3%. The measurement is found to be compatible with the corresponding result obtained using the Bethe-Heitler process.

  16. openQ*D simulation code for QCD+QED

    Science.gov (United States)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario

    2018-03-01

    The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.

  17. Jet quenching parameter in an expanding QCD plasma arXiv

    CERN Document Server

    Iancu, Edmond; Wu, Bin

    We study the phenomenon of transverse momentum broadening for a high-$p_T$ parton propagating through a weakly-coupled quark-gluon plasma undergoing boost-invariant longitudinal expansion. We propose a boost-invariant description for this phenomenon, in which the broadening refers to the angular variables $\\eta$ (the pseudo-rapidity) and $\\phi$ (the azimuthal angle). The jet quenching parameter $\\hat{q}$ which enters this description depends upon the proper time alone. We furthermore consider radiative corrections to $\\hat q$. As in the case of a static medium, we find potentially large corrections enhanced by a double logarithm. But unlike for the static medium, these corrections are now local in time: they depend upon the local (proper) time characterizing the expansion, and not upon the overall path length. We resum such corrections to all orders into a renormalized jet quenching parameter. The main effect of this resummation is to slow down the decrease of $\\hat q$ with increasing proper time.

  18. The perturbative construction of Symanzik's improved action for Φ44 and QED4

    International Nuclear Information System (INIS)

    Keller, G.

    1993-01-01

    For the perturbative Euclidean massive Φ 4 4 and QED 4 (with a small photon mass) an explicit construction of Symanzik's improved action is presented. It is established rigorously that all the Green functions exhibit improved convergence as the momentum space UV cutoff is sent to infinity. These results are obtained by an application of the powerful yet technically simple flow equation method. (orig.)

  19. Role of charge transfer and spin-orbit coupling in fluorescence quenching : a case study with oxonine and substituted benzenes

    OpenAIRE

    Föll, Rudolf E.; Kramer, Horst E. A.; Steiner, Ulrich

    1990-01-01

    Fluorescence quenching of oxonine in methanol was investigated by means of a computerized dye laser flash spectrometer for the ∆G°et, dependence of the quenching rate constant (kq) and the efficiencies of induced dye triplet formation (ηT), reduced dye radical formation (ηR), and induced internal conversion. A total of 34 substituted benzenes including 20 monohalogenated benzenes, toluenes, and anisoles were used as quenchers spanning a range of -0.85 ≤ ∆G°et ≤ 1.4 eV for a possible photoelec...

  20. Alternative power supply and dump resistor connections for similar, mutually coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains ''coupling'' resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  1. Alternative power supply and dump resistor connections for similar, mutally coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  2. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    Slater, Colin T.; Bell, Eric F.

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 10 7 M ☉ ) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  3. Quenching reactions of electronically excited atoms

    International Nuclear Information System (INIS)

    Setser, D.W.

    2001-01-01

    The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix

  4. Quantum quench of Kondo correlations in optical absorption.

    Science.gov (United States)

    Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A

    2011-06-29

    The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.

  5. Quench/reflood modeling in MELCOR

    International Nuclear Information System (INIS)

    Gauntt, R.O.

    2001-01-01

    The authors describe the reactor accident simulation model MELCOR. It comprises hydrodynamic investigations on reactor core quenching, hydrogen generation in the reactor core vessel, quench front advances. Preliminary comparisons to data are reasonable but need further validation. (uke)

  6. Witnessing The Onset Of Environmental Quenching At Z 1-2

    Science.gov (United States)

    Fossati, Matteo

    2017-06-01

    During the last decade observations of galaxies across cosmic times coupled with cosmological simulations have provided an increasingly clear description of galaxy evolution. In particular we have a fairly detailed phenomenological picture of how galaxies transition from star forming to passive (or quenched) as a function of their internal properties (e.g. stellar mass) and the external environment (e.g. local density). By exploiting the highly complete coverage of grism and spectroscopic redshifts from the 3D-HST survey, we derive the local environment for a deep and complete sample of galaxies in the five 3D-HST deep fields at 0.5 definition of environment also requires accurate calibrations obtained using the most up to date semi-analytic model derived from the Millennium simulation. By combining observational data and models we have devised a robust statistical framework within which we link observables to physical quantities (e.g. halo mass and central/satellite status). In this talk I will present our latest results on the environmental quenching of satellites up to z 2.5 in the range of haloes commonly included in our sample Mhalo 1 this timescale approaches the Hubble time. I will discuss the physical motivation of these results in terms of quenching mechanisms and gas content of the satellites at the epoch of infall.

  7. Determination of the integrated luminosity at HERA using elastic QED Compton events

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Pandurovic, M.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Grindhammer, G.; Kiesling, C.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Kogler, R.; Nowak, K.; Dodonov, V.; Povh, B.; Dossanov, A.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Soloviev, Y.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.

    2012-01-01

    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep→eγp. The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3 %. The measurement is found to be compatible with the corresponding result obtained using the Bethe-Heitler process. (orig.)

  8. Determination of the integrated luminosity at HERA using elastic QED Compton events

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2012-04-15

    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep{yields}e{gamma}p. The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3%. The measurement is found to be compatible with the corresponding result obtained using the Bethe-Heitler process.

  9. Shear Viscosity of Hot QED at Finite Chemical Potential from Kubo Formula

    International Nuclear Information System (INIS)

    Liu Hui; Hou Defu; Li Jiarong

    2008-01-01

    Within the framework of finite temperature feld theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential. The effective widths (damping rates) are introduced to regulate the pinch singularities and then gives a reliable estimation of the shear viscous coefficient. The finite chemical potential contributes positively compared to the pure temperature case. The result agrees with that from the kinetics theory qualitatively

  10. Renormalization-scheme-invariant QCD and QED: The method of effective charges

    International Nuclear Information System (INIS)

    Grunberg, G.

    1984-01-01

    We review, extend, and give some further applications of a method recently suggested to solve the renormalization-scheme-dependence problem in perturbative field theories. The use of a coupling constant as a universal expansion parameter is abandoned. Instead, to each physical quantity depending on a single scale variable is associated an effective charge, whose corresponding Stueckelberg--Peterman--Gell-Mann--Low function is identified as the proper object on which perturbation theory applies. Integration of the corresponding renormalization-group equations yields renormalization-scheme-invariant results free of any ambiguity related to the definition of the kinematical variable, or that of the scale parameter Λ, even though the theory is not solved to all orders. As a by-product, a renormalization-group improvement of the usual series is achieved. Extension of these methods to operators leads to the introduction of renormalization-group-invariant Green's function and Wilson coefficients, directly related to effective charges. The case of nonzero fermion masses is discussed, both for fixed masses and running masses in mass-independent renormalization schemes. The importance of the scale-invariant mass m is emphasized. Applications are given to deep-inelastic phenomena, where the use of renormalization-group-invariant coefficient functions allows to perform the factorization without having to introduce a factorization scale. The Sudakov form factor of the electron in QED is discussed as an example of an extension of the method to problems involving several momentum scales

  11. Electrogenerated chemiluminescence quenching of Ru(bpy){sub 3} {sup 2+} (bpy=2,2 Prime -bipyridine) in the presence of acetaminophen, salicylic acid and their metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Haslag, Catherine S. [Department of Chemistry, Missouri State University, Springfield, Missouri 65897 (United States); Richter, Mark M., E-mail: MarkRichter@missouristate.edu [Department of Chemistry, Missouri State University, Springfield, Missouri 65897 (United States)

    2012-03-15

    Quenching of Ru(bpy) {sub 3}{sup 2+} (bpy=2,2 Prime -bipyridine) coreactant electrogenerated chemiluminescence (ECL) has been observed in the presence of acetaminophen, salicylic acid and related complexes. However, no quenching is observed with the acetylsalicylic acid. In most instances, quenching is observed with 100-fold excess of quencher (compared to ECL luminophore) with complete quenching observed between 10,000 and 100,000 fold excess. Fluorescence and UV-vis experiments coupled with bulk electrolysis support the formation of benzoquinone products upon electrochemical oxidation. The mechanism of quenching may involve the interaction of the electrochemically generated benzoquinone species with (i) the {sup Low-Asterisk }Ru(bpy){sub 3}{sup 2+} excited state or (ii) highly energetic coreactant radicals. - Highlights: Black-Right-Pointing-Triangle Efficient quenching of the electrogenerated chemiluminescence is observed. Black-Right-Pointing-Triangle Acetaminophen, salicylic acid and related compounds can be detected. Black-Right-Pointing-Triangle The mechanism of quenching involves benzoquinones formed upon electrolysis.

  12. 40 CFR 1065.675 - CLD quench verification calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD quench verification calculations... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.675 CLD quench verification calculations. Perform CLD quench-check calculations as follows: (a) Perform a CLD analyzer quench...

  13. Towards a hybrid strong/weak coupling approach to jet quenching

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2014-01-01

    We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.

  14. Magnetization in quenched bond-mixed Ising ferromagnetic with anisotropic coupling constants

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Tsallis, C.

    1982-01-01

    Within the framework of an effective field theory the phase diagram (ferromagnetic phase stability limit) and magnetization of a quenched bond-mixed spin 1 / 2 Ising model in anisotropic simple cubic lattice for both competing and non competing interactions is dicussed. Although analytically simple, the present formalism is superior to the standard Mean Field Approximation regarding at least two important features, namely it is capable of providing: (i) vanishing critical temperatures for one-dimensional systems; (ii) expected non uniform convergences in the highly diluted and highly anisotropic limits. The largeness of the model under consideration enables the exhibition of a certain amount of physically interesting crossovers (dimensionality changements, (dilute) - (non dilute) behavior, or even mixed situations) at both the phase diagram and magnetization levels. Whenever comparison is possible a satisfactory qualitative (and to a certain extent quantitative) agreement is observed with results available in the literature. (Author) [pt

  15. Test of non-commutative QED in the process $e^{+}e^{-} \\to \\gamma \\gamma$ at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    Non-communicative QED would lead to deviations from the Standard Model depending on a new energy scale $\\Delta_{NC}$ and a unique direction in space defined by two angles $\\eta$ and $\\xi$. Here in this analysis $\\eta$ is defined as the angle between the unique direction and the rotation axis of the earth. The predictions of such a theory for the process $e^{+} e^{-} \\to \\gamma \\gamma$ are evalued for the specific orientation of the OPAL detector and compared to the measurements. Distributions of the polar and azimuthal scattering angles are used to extract limits on the energy scale $\\Delta_{NC}$ depending on the model parameter $\\eta$. At the 95% confidence level $\\Delta_{NC}$ is found to be larger than 141 GeV for all $\\eta$ and $\\xi$. It is shown that the time dependence of the total cross-section could be used to determine the model parameter $\\xi$ if there were a detectable signal. These are the first limits obtained on non-commutative QED from an $e^{+} e^{-}$ collider experiment.

  16. Single photon detection with self-quenching multiplication

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  17. Large orders in strong-field QED

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Schroeder, Oliver [Science-Computing ag, Hagellocher Weg 73, D-72070 Tuebingen (Germany)

    2006-09-15

    We address the issue of large-order expansions in strong-field QED. Our approach is based on the one-loop effective action encoded in the associated photon polarization tensor. We concentrate on the simple case of crossed fields aiming at possible applications of high-power lasers to measure vacuum birefringence. A simple next-to-leading order derivative expansion reveals that the indices of refraction increase with frequency. This signals normal dispersion in the small-frequency regime where the derivative expansion makes sense. To gain information beyond that regime we determine the factorial growth of the derivative expansion coefficients evaluating the first 82 orders by means of computer algebra. From this we can infer a nonperturbative imaginary part for the indices of refraction indicating absorption (pair production) as soon as energy and intensity become (super)critical. These results compare favourably with an analytic evaluation of the polarization tensor asymptotics. Kramers-Kronig relations finally allow for a nonperturbative definition of the real parts as well and show that absorption goes hand in hand with anomalous dispersion for sufficiently large frequencies and fields.

  18. Holography of radiation and jet quenching

    International Nuclear Information System (INIS)

    Sin, S.-J.; Zahed, I.

    2004-07-01

    We study the on-linear propagation of radiation in N=4 SYM at zero and finite temperature using the refined radius/scale duality in AdS/CFT. We find that at finite temperature, the radiation stalls at a distance of 1/πT with a natural geometric and holographic interpretation. Indeed, the stalling is the holographic analogue of the gravitational in-fall of light towards the black hole in the bulk. We show that in the strongly interacting finite temperature medium, radiation can reach much farther than the static force. We suggest that these results are relevant for jet quenching by a strongly coupled quark-gluon liquid as currently probed in heavy ion colliders at RHIC. In particular, colored jets cannot make it beyond 1/3 fin at RHIC whatever their energy. (author)

  19. Study of Dimuon Production in Photon-Photon Collisions and Measurement of QED Photon Structure Functions at LEP

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Azhinenko, I.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Bigi, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borgland, A.W.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Crawley, H.B.; Crennell, D.; Crepe-Renaudin, Sabine; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J.D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Fenyuk, A.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Fichet, S.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Huet, K.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khomenko, B.A.; Khovansky, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Klein, Hansjorg; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Lorstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Meroni, C.; Meyer, W.T.; Myagkov, A.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Moreau, X.; Morettini, P.; Morton, G.; Muller, U.; Munich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Navas, Sergio; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.; Olshevsky, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Papageorgiou, K.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Royon, C.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Segar, A.M.; Seibert, N.; Sekulin, R.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G.R.; Sopczak, A.; Sosnowski, R.; Spassoff, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanic, S.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Chikilev, O.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, Jan; Tinti, N.; Tkachev, L.G.; Tobin, M.; Todorova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Vander Velde, C.; Van Dam, Piet; Van Den Boeck, W.; Van Doninck, Walter; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zinchenko, A.; Zoller, P.; Zucchelli, G.C.; Zumerle, G.

    2001-01-01

    Muon pair production in the process $e^+e^-\\to e^+e^-\\mu^+\\mu^-$ is studied using the data taken at LEP1 ($\\sqrt{s}\\simeq m_Z$) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5~pb$^{-1}$. The QED predictions have been tested over the whole $Q^2$ range accessible at LEP1 (from several GeV$^2/c^4$ to several hundred GeV$^2/c^4$) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function F 2 . Azimuthal correlations are used to obtain information on additional structure functions, FA and FB , which originate from interference terms of the scattering amplitudes. The measured ratios FA =F 2 and FB =F 2 are significantly different from zero and consistent with QED predictions.

  20. Quench propagation in the SSC dipole magnets

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-09-01

    The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab

  1. Modeling and Analysis of Deformation for Spiral Bevel Gear in Die Quenching Based on the Hardenability Variation

    Science.gov (United States)

    Zhang, Yingtao; Wang, Gang; Shi, Wankai; Yang, Lin; Li, Zhichao

    2017-07-01

    Spiral bevel gears are widely used to transmit energy between intersecting axes. The strength and fatigue life of the gears are improved by carburizing and quenching. A die quenching process is used to control the deformation of the gear. The deformation is determined by the variations in the hardenability for a certain die quenching process. The relationship between hardenability, phase transformation and deformation needs to be studied to minimize deformation during the adjustment of the die quenching process parameters. In this paper, material properties for 22CrMoH steel are determined by the results of Jominy tests, dilatometry experiments and static mechanical property tests. The material models were built based on testing results under the consideration of hardenability variation. An finite element analysis model was developed to couple the phase transformation and deformation history of the complete carburizing and die quenching process for the spiral bevel gears. The final microstructures in the gear were bainite for low hardenability steel and a mixture of bainite and ferrite for high hardenability steel. The largest buckling deformation at the gear bottom surface is 0.375 mm at the outer circle for the low hardenability gear and 0.091 mm at the inner circle for the high hardenability gear.

  2. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  3. Simulation of the Quench-06 experiment with Scdapsim; Simulacion del experimento Quench-06 con Scdapsim

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, E. del; Nunez C, A.; Amador G, R. [CNSNS, Dr. Barragan No. 779, 03020 Mexico D.F. (Mexico)]. e-mail: edangelm@cnsns.gob.mx

    2003-07-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  4. Experimental methods for quenching structures in lunar-analog silicate melts - Variations as a function of quench media and composition

    International Nuclear Information System (INIS)

    Dyar, M.D.

    1984-01-01

    Compositions analogous to lunar green, orange, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses

  5. Computational quench model applicable to the SMES/CICC

    Science.gov (United States)

    Luongo, Cesar A.; Chang, Chih-Lien; Partain, Kenneth D.

    1994-07-01

    A computational quench model accounting for the hydraulic peculiarities of the 200 kA SMES cable-in-conduit conductor has been developed. The model is presented and used to simulate the quench on the SMES-ETM. Conclusions are drawn concerning quench detection and protection. A plan for quench model validation is presented.

  6. The quench detector on magnetic modulator for the UNK quench protection system

    International Nuclear Information System (INIS)

    Bolotin, I.M.; Enbaev, A.V.; Erokhin, A.N.; Gridasov, V.I.; Priyma, M.V.; Sychev, V.A.; Vasiliev, L.M.

    1992-01-01

    When designing and constructing superconducting high energy accelerators, the development of the Quench Detection System (QDS) for superconducting (SC) magnets becomes an important and critical problem. At present there is experience in developing such systems for the Tevatron (FNAL, USA) and HERA (Hamburg, Germany). The machines for more than 3 TeV-the UNK (Russia) and SSC (USA), which are presently under construction, have very large circumferences, 21 and 87 km, respectively. The QDS's, similar to those of the Tevatron, require a larger part of the active components of the electronic equipment be placed in the machine tunnel close to the magnets, and protected from irradiation or additional surface buildings will have to be constructed. In either case the cost of such a QDS increases. In addition the former ones reliability decreases and maintenance becomes more difficult. For such machines, a QDS in which the quench signal, in each superconducting magnet (SCM) or groups of SCM'S, is extracted with the help of a bridge circuit (BC) appears to be more suitable. The half coils of SCM's are connected as two arms of the bridge and the resistors placed in the vacuum vessels of the magnet cryostats are connected to the other two. The off-balance signal of each BC is enhanced with the help of magnetic amplifiers. This note describes the experimental prototype of a bridge-type Quench Detector (QD) based on a magnetic amplifier Magnetic Modulator (MM) type, allowing one not only to detect a quench in a SCM, but also making feasible a wider system capability, namely: to record the signals from all SC elements during a quench for further analysis of its causes; to check the presence of short circuits of the ring electromagnet bus relative to the cryostats and to localize their position

  7. Collisional quenching at ultralow energies: controlling efficiency with internal state selection.

    Science.gov (United States)

    Bovino, S; Bodo, E; Gianturco, F A

    2007-12-14

    Calculations have been carried out for the vibrational quenching of excited H(2) molecules which collide with Li(+) ions at ultralow energies. The dynamics has been treated exactly using the well-known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier by our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g., the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made such that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies.

  8. Radiative generation of the CPT-even gauge term of the SME from a dimension-five nonminimal coupling term

    Energy Technology Data Exchange (ETDEWEB)

    Casana, R., E-mail: rodolfo.casana@gmail.com [Universidade Federal do Maranhão (UFMA), Departamento de Física, Campus Universitário do Bacanga, São Luís, MA, 65085-580 (Brazil); Ferreira, M.M., E-mail: manojr07@ibest.com.br [Universidade Federal do Maranhão (UFMA), Departamento de Física, Campus Universitário do Bacanga, São Luís, MA, 65085-580 (Brazil); Maluf, R.V., E-mail: robertovinhaes@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil); Santos, F.E.P. dos, E-mail: fredegol@ibest.com.br [Universidade Federal do Maranhão (UFMA), Departamento de Física, Campus Universitário do Bacanga, São Luís, MA, 65085-580 (Brazil)

    2013-11-04

    In this Letter we show for the first time that the usual CPT-even gauge term of the Standard Model Extension (SME), in its full structure, can be radiatively generated, in a gauge invariant level, in the context of a modified QED endowed with a dimension-five nonminimal coupling term recently proposed in the literature. As a consequence, the existing upper bounds on the coefficients of the tensor (K{sub F}) can be used to improve the bounds on the magnitude of the nonminimal coupling, λ(K{sub σF}), by the factors 10{sup 5} or 10{sup 25}. The nonminimal coupling also generates higher-order derivative contributions to the gauge field effective action quadratic terms.

  9. Dissipation and entanglement dynamics for two interacting qubits coupled to independent reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Scala, M [Departamento de Optica, Facultad de Fisica, Universidad Complutense de Madrid, 28040 (Spain); Migliore, R [CNR-INFM, CNISM and Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, via Archirafi 36, I-90123 Palermo (Italy); Messina, A [MIUR and Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, via Archirafi 36, I-90123 Palermo (Italy)], E-mail: matteo.scala@fisica.unipa.it, E-mail: rosanna@fisica.unipa.it, E-mail: messina@fisica.unipa.it

    2008-10-31

    We derive the master equation of a system of two coupled qubits by taking into account their interaction with two independent bosonic baths. Important features of the dynamics are brought to light, such as the structure of the stationary state at general temperatures and the behaviour of the entanglement at zero temperature, showing the phenomena of sudden death and sudden birth as well as the presence of stationary entanglement for long times. The model presented here is quite versatile and can be of interest in the study of both Josephson junction architectures and cavity-QED.

  10. Pair production by a constant external field in noncommutative QED

    International Nuclear Information System (INIS)

    Chair, N.; Sheikh-Jabbari, M.M.

    2000-09-01

    In this paper we study QED on the noncommutative space in the constant electro-magnetic field background. Using the explicit solutions of the noncommutative version of Dirac equation in such background, we show that there are well-defined in and out-going asymptotic states and also there is a causal Green's function. We calculate the pair production rate in this case. We show that at tree level noncommutativity will not change the pair production and the threshold electric field. We also calculate the pair production rate considering the first loop corrections. In this case we show that the threshold electric field is decreased by the noncommutativity effects. (author)

  11. QED Tests and Search for New Physics in Molecular Hydrogen

    Science.gov (United States)

    Salumbides, E. J.; Niu, M. L.; Dickenson, G. D.; Eikema, K. S. E.; Komasa, J.; Pachucki, K.; Ubachs, W.

    2013-06-01

    The hydrogen molecule has been the benchmark system for quantum chemistry, and may provide a test ground for new physics. We present our high-resolution spectroscopic studies on the X ^1Σ^+_g electronic ground state rotational series and fundamenal vibrational tones in molecular hydrogen. In combination with recent accurate ab initio calculations, we demonstrate systematic tests of quantum electrodynamical (QED) effects in molecules. Moreover, the precise comparison between theory and experiment can provide stringent constraints on possible new interactions that extend beyond the Standard Model. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov and W. Ubachs, Phys. Rev. Lett. 107, 043005 (2011).

  12. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  13. Charge asymmetry of the purple membrane measured by uranyl quenching of dansyl fluorescence. [Halobacterium halobium

    Energy Technology Data Exchange (ETDEWEB)

    Renthal, R.; Cha, C.H.

    1984-05-01

    Purple membrane was covalently labeled with 5-(dimethylamino) naphthalene-1-sulfonyl hydrazine (dansyl hydrazine) by carbodiimide coupling to the cytoplasmic surface (carboxyl-terminal tail: 0.7 mol/mol bacteriorhodopsin) or by periodate oxidation and dimethylaminoborane reduction at the extracellular surface (glycolipids: 1 mol/mol). In 2 mM acetate buffer, pH 5.6, micromolar concentrations of UO/sub 2//sup 2 +/ were found to quench the dansyl groups on the cytoplasmic surface (maximum = 26%), while little quenching was observed at the extracellular surface (maximum = 4%). Uranyl ion quenched dansyl hydrazine in free solution at much higher concentrations. Uranyl also bound tightly to unmodified purple membrane, (apparent dissociation constant = 0.8 ..mu..M) as measured by a centrifugation assay. The maximum stoichiometry was 10 mol/mol of bacteriorhodopsin, which is close to the amount of phospholipid phosphorus in purple membrane. The results were analyzed on the assumptions that UO/sub 2//sup 2 +/ binds in a 1:1 complex with phospholipid phosphate and that the dansyl distributon and quenching mechanisms are the same at both surfaces. This indicates a 9:1 ratio of phosphate between the cytoplasmic and extracellular surfaces. Thus, the surface change density of the cytoplasmic side of the membrane is more negative than - 0.010 charges/A/sup 2/.

  14. Quenches in the superconducting magnet CELLO

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1979-01-01

    The superconducting magnet CELLO was tested with currents up to 3200 A at Saclay and has been installed at DESY in Hamburg where it will be used for particle physics experiments requiring colliding beams of electrons and positrons. The testing of this unique, large, one-layer solenoid provides an excellent opportunity to evaluate the theory of quench propagation under adiabatic conditions, that is, in a coil in which the conductors are not in direct contact with helium. In an early test of this coil, quenches that occurred, gives the details of the damaged conductor, and includes an analysis of the quenches. Observed axial quench velocities are compared to the calculated values based on both measurements and calculations of the thermal conductivity of the fabricated coil

  15. Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

    Energy Technology Data Exchange (ETDEWEB)

    An, Seok Chan; Kim, Jin Sub [Yonsei University, Seoul (Korea, Republic of); Chu, Yong [National Fusion Research Institute(NFRI), Daejeon (Korea, Republic of)

    2016-03-15

    Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.

  16. Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages

    International Nuclear Information System (INIS)

    An, Seok Chan; Kim, Jin Sub; Chu, Yong

    2016-01-01

    Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals

  17. Wave form of current quench during disruptions in tokamaks

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Gribov, Yuri; Shimada, Michiya; Lukash, Victor; Kawano, Yasunori; Yoshino, Ryuji; Miki, Nobuharu; Ohmori, Junji; Khayrutdinov, Rustam

    2003-01-01

    The time dependence of the current decay during the current quench phase of disruptions, which can significantly influence the electro-magnetic force on the in-vessel components due to the induced eddy currents, is investigated using data obtained in JT-60U experiments in order to derive a relevant physics guideline for the predictive simulations of disruptions in ITER. It is shown that an exponential decay can fit the time dependence of current quench for discharges with large quench rate (fast current quench). On the other hand, for discharges with smaller quench rate (slow current quench), a linear decay can fit the time dependence of current quench better than exponential. (author)

  18. Magnetic properties of Fe–Al for quenched diluted spin-1 Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, A.S. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil); Coordenadoria de Física, Instituto Federal de Sergipe, 49400-000 Lagarto, SE (Brazil); Albuquerque, Douglas F. de, E-mail: douglas@ufs.br [Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil); Departamento de Matemática, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil); Fittipaldi, I.P. [Representação Regional do Ministério da Ciência, Tecnologia e Inovação no Nordeste - ReNE, 50740-540 Recife, PE (Brazil); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil)

    2014-08-01

    We study the phase diagram of Fe{sub 1−q}Al{sub q} alloys via the quenched site diluted spin-1 ferromagnetic Ising model by employing effective field theory. One suggests a new approach to exchange interaction between nearest neighbors of Fe that depends on the powers of the Al (q) instead of the linear dependence proposed in other papers. In such model we propose the same kind of the exchange interaction in which the iron–nickel alloys obtain an excellent theoretical description of the experimental data of the T–q phase diagram for all Al concentration q. - Highlights: • We apply the quenched Ising model spin-1 to study the properties of Fe–Al. • We employ the EFT and suggest a new approach to ferromagnetic coupling. • The new probability distribution is considered. • The phase diagram is obtained for all values of q in T–q plane.

  19. Magnetic properties of Fe–Al for quenched diluted spin-1 Ising model

    International Nuclear Information System (INIS)

    Freitas, A.S.; Albuquerque, Douglas F. de; Fittipaldi, I.P.; Moreno, N.O.

    2014-01-01

    We study the phase diagram of Fe 1−q Al q alloys via the quenched site diluted spin-1 ferromagnetic Ising model by employing effective field theory. One suggests a new approach to exchange interaction between nearest neighbors of Fe that depends on the powers of the Al (q) instead of the linear dependence proposed in other papers. In such model we propose the same kind of the exchange interaction in which the iron–nickel alloys obtain an excellent theoretical description of the experimental data of the T–q phase diagram for all Al concentration q. - Highlights: • We apply the quenched Ising model spin-1 to study the properties of Fe–Al. • We employ the EFT and suggest a new approach to ferromagnetic coupling. • The new probability distribution is considered. • The phase diagram is obtained for all values of q in T–q plane

  20. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  1. Infrared behaviour of massless QED in space-time dimensions 2

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2005-01-01

    We show that the logarithmic infrared divergences in electron self-energy and vertex function of massless QED in 2+1 dimensions can be removed at all orders of 1/N by an appropriate choice of a non-local gauge. Thus the infrared behaviour given by the leading order in 1/N is not modified by higher order corrections. Our analysis gives a computational scheme for the Amati-Testa model, resulting in a non-trivial conformal invariant field theory for all space-time dimensions 2< d<4

  2. Infrared behaviour of massless QED in space-time dimensions 2

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Indrajit [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India) and Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indra@theory.saha.ernet.in; Ratabole, Raghunath [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in

    2005-04-07

    We show that the logarithmic infrared divergences in electron self-energy and vertex function of massless QED in 2+1 dimensions can be removed at all orders of 1/N by an appropriate choice of a non-local gauge. Thus the infrared behaviour given by the leading order in 1/N is not modified by higher order corrections. Our analysis gives a computational scheme for the Amati-Testa model, resulting in a non-trivial conformal invariant field theory for all space-time dimensions 2

  3. Studies on halogen quenching through the Stern-Volmer plot

    International Nuclear Information System (INIS)

    Takiue, Makoto; Ishikawa, Hiroaki.

    1978-01-01

    The quenching effect for halogenated benzenes, methanes and ethanes have been investigated. The halogen quenching was accurately measured using the internal conversion electrons emitted from 113 Sn-sup(113m)In. From the quenching constants determined by the Stern-Volmer plots with respect to various halogen quenchers, the following results have been obtained. (1) The quenching constants increase with the number of halogen substituents, so as linearly in halogenated benzenes and exponentially in halogenated methanes and ethanes. Even the isomers of halogenides have different quenching constants. (2) There is a linearity between logarithm of the quenching constant and a polarographic half-wave reduction potential. (3) Electron excitation provides larger quenching constants than UV excitation for halogenated methanes. Based on these results, the mechanism of halogen quenching have been discussed in connection with the exciplex formation. (auth.)

  4. Energy-momentum tensor in thermal strong-field QED with unstable vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S P [Department of General and Experimental Physics, Herzen State Pedagogical University of Russia, Moyka emb. 48, 191186 St Petersburg (Russian Federation); Gitman, D M [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo, SP (Brazil)], E-mail: gavrilovsergeyp@yahoo.com, E-mail: gitman@dfn.if.usp.br

    2008-04-25

    The mean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions (similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established.

  5. Energy-momentum tensor in thermal strong-field QED with unstable vacuum

    International Nuclear Information System (INIS)

    Gavrilov, S P; Gitman, D M

    2008-01-01

    The mean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions (similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established

  6. Quenching behaviour for a singular predator–prey model

    International Nuclear Information System (INIS)

    Ducrot, Arnaud; Guo, Jong-Shenq

    2012-01-01

    In this paper, we study the quenching behaviour for a system of two reaction–diffusion equations arising in the modelling of the spatio-temporal interaction of prey and predator populations in fragile environment. We first provide some sufficient conditions on the initial data to have finite time quenching. Then we classify the initial data to distinguish type I quenching and type II quenching, by introducing a delicate energy functional along with the help of some a priori estimates. Finally, we present some results on the quenching set. It can be a singleton, the whole domain, or a compact subset of the domain

  7. Deterministic creation and stabilization of entanglement in circuit QED by homodyne-mediated feedback control

    International Nuclear Information System (INIS)

    Liu Zhuo; Kuang Luelin; Hu Kai; Xu Luting; Wei Suhua; Guo Lingzhen; Li Xinqi

    2010-01-01

    In a solid-state circuit QED system, we demonstrate that a homodyne-current-based feedback can create and stabilize highly entangled two-qubit states in the presence of a moderate noisy environment. Particularly, we present an extended analysis for the current-based Markovian feedback, which leads to an improved feedback scheme. We show that this is essential to achieve a desirable control effect by the use of dispersive measurement.

  8. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  9. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  10. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    Science.gov (United States)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  11. Quenching of p-Cyanophenylalanine Fluorescence by Various Anions.

    Science.gov (United States)

    Pazos, Ileana M; Roesch, Rachel M; Gai, Feng

    2013-03-20

    To expand the spectroscopic utility of the non-natural amino acid p -cyanophenylalanine (Phe CN ), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in Phe CN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of Phe CN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of Phe CN strongly quenches its fluorescence, suggesting that Phe CN could be used as a local pH sensor.

  12. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Yuchi; Li Gang; Du Jinjin; Zhang Yanfeng; Guo Yanqiang; Wang Junmin; Zhang Tiancai; Li Weidong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (authors)

  13. Holographic Jet Quenching

    Science.gov (United States)

    Ficnar, Andrej

    In this dissertation we study the phenomenon of jet quenching in quark-gluon plasma using the AdS/CFT correspondence. We start with a weakly coupled, perturbative QCD approach to energy loss, and present a Monte Carlo code for computation of the DGLV radiative energy loss of quarks and gluons at an arbitrary order in opacity. We use the code to compute the radiated gluon distribution up to n=9 order in opacity, and compare it to the thin plasma (n=1) and the multiple soft scattering (n=infinity) approximations. We furthermore show that the gluon distribution at finite opacity depends in detail on the screening mass mu and the mean free path lambda. In the next part, we turn to the studies of how heavy quarks, represented as "trailing strings" in AdS/CFT, lose energy in a strongly coupled plasma. We study how the heavy quark energy loss gets modified in a "bottom-up" non-conformal holographic model, constructed to reproduce some properties of QCD at finite temperature and constrained by fitting the lattice gauge theory results. The energy loss of heavy quarks is found to be strongly sensitive to the medium properties. We use this model to compute the nuclear modification factor RAA of charm and bottom quarks in an expanding plasma with Glauber initial conditions, and comment on the range of validity of the model. The central part of this thesis is the energy loss of light quarks in a strongly coupled plasma. Using the standard model of "falling strings", we present an analytic derivation of the stopping distance of light quarks, previously available only through numerical simulations, and also apply it to the case of Gauss-Bonnet higher derivative gravity. We then present a general formula for computing the instantaneous energy loss in non-stationary string configurations. Application of this formula to the case of falling strings reveals interesting phenomenology, including a modified Bragg-like peak at late times and an approximately linear path dependence. Based

  14. 2D massless QED Hall half-integer conductivity and graphene

    International Nuclear Information System (INIS)

    Martínez, A Pérez; Querts, E Rodriguez; Rojas, H Pérez; Gaitan, R; Rodriguez-Romo, S

    2011-01-01

    Starting from the photon self-energy tensor in a magnetized medium, the 3D complete antisymmetric form of the conductivity tensor is found in the static limit of a fermion system C-non-invariant under fermion–antifermion exchange. The massless relativistic 2D fermion limit in QED is derived by using the compactification along the dimension parallel to the magnetic field. In the static limit and at zero temperature, the main features of the quantum Hall effect (QHE) are obtained: the half-integer QHE and the minimum value proportional to e 2 /h for the Hall conductivity. For typical values of graphene the plateaus of the Hall conductivity are also reproduced. (paper)

  15. Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order αs4 in a General Gauge Theory

    International Nuclear Information System (INIS)

    Baikov, P. A.; Chetyrkin, K. G.; Kuehn, J. H.

    2010-01-01

    We compute, for the first time, the order α s 4 contributions to the Bjorken sum rule for polarized electron-nucleon scattering and to the (nonsinglet) Adler function for the case of a generic color gauge group. We confirm at the same order a (generalized) Crewther relation which provides a strong test of the correctness of our previously obtained results: the QCD Adler function and the five-loop β function in quenched QED. In particular, the appearance of an irrational contribution proportional to ζ 3 in the latter quantity is confirmed. We obtain the commensurate scale equation relating the effective strong coupling constants as inferred from the Bjorken sum rule and from the Adler function at order α s 4 .

  16. Quench simulation in the thin superconducting solenoid

    International Nuclear Information System (INIS)

    Tominaka, T.; Takasaki, M.; Wake, M.; Yamada, R.

    1983-07-01

    The propagation velocities of a normal zone were calculated for a 1 mdiameter x 1 m superconducting solenoid and for a 3 mdiameter x 5 m thin solenoid based on a simple model using the one-dimensional thermal equation. The quench back effect can be observed in certain conditions. The quench of the large thin solenoid was also simulated by using the computer program 'QUENCH'. (author)

  17. Numerical simulation of the plasma current quench following a disruptive energy loss

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Holmes, J.A.; Miller, J.B.; Rothe, K.E.

    1983-11-01

    The plasma electromagnetic interaction with poloidal field coils and nearby passive conductor loops during the current quench following a disruptive loss of plasma energy is simulated. By solving a differential/algebraic system consisting of a set of circuit equations (including the plasma circuit) coupled to a plasma energy balance equation and an equilibrium condition, the electromagnetic consequences of an abrupt thermal quench are observed. Limiters on the small and large major radium sides of the plasma are assumed to define the plasma cross section. The presence of good conductors near the plasma and a small initial distance (i.e., 5 to 10% of the plasma minor radius) between the plasma edge and an inboard limiter are shown to lead to long current decay times. For a plasma with an initial major radius R/sub o/ = 4.3 m, aspect ratio A = 3.6, and current I/sub P/ = 4.0 MA, introducing nearby passive conductors lengthens the current decay from milliseconds to hundreds of milliseconds

  18. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  19. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  20. QED representation for the net of causal loops

    Science.gov (United States)

    Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2015-06-01

    The present work tackles the existence of local gauge symmetries in the setting of Algebraic Quantum Field Theory (AQFT). The net of causal loops, previously introduced by the authors, is a model independent construction of a covariant net of local C*-algebras on any 4-dimensional globally hyperbolic space-time, aimed to capture structural properties of any reasonable quantum gauge theory. Representations of this net can be described by causal and covariant connection systems, and local gauge transformations arise as maps between equivalent connection systems. The present paper completes these abstract results, realizing QED as a representation of the net of causal loops in Minkowski space-time. More precisely, we map the quantum electromagnetic field Fμν, not free in general, into a representation of the net of causal loops and show that the corresponding connection system and the local gauge transformations find a counterpart in terms of Fμν.

  1. QED effects in high-Z atoms; three-body potentials

    International Nuclear Information System (INIS)

    Zygelman, B.

    1983-01-01

    Electromagnetic three-body potentials were first studied by Primakoff and Holstein. Later, Chamugan and Schweber rederived these potentials and pointed out that they might be important in highly relativistic systems, however, their formulation was basically nonrelativistic. Mittleman, in a series of papers, constructed configuration space equations that included three-body potentials. His derivation started from first principles i.e. QED, and the resulting three-body potentials are more general than the Primakoff-Holstein potentials. In this thesis the contribution to the binding energy of a simple high-Z ion from the three-body potentials is calculated. In addition, the nature and structure of these potentials in greater detail are studied. Some ambiguities that arise when the transition from Fock to configuration space is made are studied in detail

  2. Quantum Quenches in a Spinor Condensate

    International Nuclear Information System (INIS)

    Lamacraft, Austen

    2007-01-01

    We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing the magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wave vector, or the ''light-cone'' correlations familiar from relativistic theories, depending on the end point of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long-time dynamics again depends on the end point, conserving the order parameter in a zero field, but not at a finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al

  3. Superconducting synchrotron power supply and quench protection scheme

    International Nuclear Information System (INIS)

    Stiening, R.; Flora, R.; Lauckner, R.; Tool, G.

    1978-01-01

    The power supply and quench protection scheme for the proposed Fermilab 6 km circumference superconducting synchrotron is described. Specifically, the following points are discussed: (1) the 46 MW thyristor power supply; (2) the 3 x 10 8 J emergency energy dump; (3) the distributed microprocessing system for the detection of quenches; (4) the thyristor network for shunting current around quenched magnets; and (5) the heaters internal to the magnets which cause rapid propagation of quenches. Test results on prototype systems are given

  4. Influence of temperature to quenching on liquid scintillation measurement

    CERN Document Server

    Kato, T

    2003-01-01

    The amount of quench is measured with liquid scintillation spectrometer changing the temperature of the sample. The range of the changed temperature is between 0 deg C and 35 deg C. The measurement is carried out for three kinds of unquenched standard, two quenched standards and fifteen kinds of scintillation cocktail and the mixed sample. It is confirmed that the amount of quench increases for all samples as the temperature rises. The influence of the changed amount of quench to the quench correction is examined. (author)

  5. Quench simulations for superconducting elements in the LHC accelerator

    Science.gov (United States)

    Sonnemann, F.; Schmidt, R.

    2000-08-01

    The design of the protection system for the superconducting elements in an accelerator such as the large Hadron collider (LHC), now under construction at CERN, requires a detailed understanding of the thermo-hydraulic and electrodynamic processes during a quench. A numerical program (SPQR - simulation program for quench research) has been developed to evaluate temperature and voltage distributions during a quench as a function of space and time. The quench process is simulated by approximating the heat balance equation with the finite difference method in presence of variable cooling and powering conditions. The simulation predicts quench propagation along a superconducting cable, forced quenching with heaters, impact of eddy currents induced by a magnetic field change, and heat transfer through an insulation layer into helium, an adjacent conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequate dimensioning and protection of the highly stabilised superconducting cables for connecting magnets (busbars), optimising the quench heater strip layout for the main magnets, and studying quench back by induced eddy currents in the superconductor. After the introduction of the theoretical approach, some applications of the simulation model for the LHC dipole and corrector magnets are presented and the outcome of the studies is compared with experimental data.

  6. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, A.M.; Hazlett, T.L.; Govindjee [Univ. of Illinois, Urbana, IL (United States)

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  7. Quenching of the He/sub μ/ +(2s) atom

    International Nuclear Information System (INIS)

    Russell, J.E.

    1986-01-01

    Quenching of the metastable 2s state of the He/sub μ/ + atom in helium gas is discussed. The first part of the discussion, which is devoted entirely to processes occurring after the He/sub μ/ + has become bound to one or more ordinary helium atoms, is based partly on Cohen's calculations of rates of vibrational quenching and partly on estimates obtained in the present paper of rates of Burbidge--de Borde quenching and Ruderman quenching. It is concluded that Burbidge--de Borde quenching or Ruderman quenching, or both, are likely to be more effective than Cohen quenching if the vibrational level of the bound system is low. A recent experiment by von Arb et al. is then analyzed in the light of this conclusion. The analysis is based on the reported absence, or near absence, of Auger electrons accompanying 2s quenching. While it is agreed that the Cohen mechanism occurring in the molecular ion HeHe/sub μ/ + remains the most likely explanation of the experiment, it is concluded that the quenching occurs in comparatively high levels. It is then argued that this conclusion is in accord with some theoretical investigations of three-body association reactions and also with some elementary considerations regarding the relaxation of highly excited diatomic molecules, and it is further concluded that the quenching is most likely to occur in states with very low rotational quantum number and vibrational quantum number 8≤v≤14

  8. Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?

    International Nuclear Information System (INIS)

    Maximenko, Yulia; Segatskov, Dmitri A.

    2011-01-01

    A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problem to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.

  9. Lattice gauge fixing as quenching and the violation of spectral positivity

    International Nuclear Information System (INIS)

    Aubin, C.; Ogilvie, Michael C.

    2004-01-01

    Lattice Landau gauge and other related lattice gauge-fixing schemes are known to violate spectral positivity. The most direct sign of the violation is the rise of the effective mass as a function of distance. The origin of this phenomenon lies in the quenched character of the auxiliary field g used to implement lattice gauge-fixing, and is similar to quenched QCD in this respect. This is best studied using the Parrinello Jona-Lasinio Zwanziger formalism, leading to a class of covariant gauges similar to the one-parameter class of covariant gauges commonly used in continuum gauge theories. Soluble models are used to illustrate the origin of the violation of spectral positivity. The phase diagram of the lattice theory, as a function of the gauge coupling β and the gauge-fixing parameter α, is similar to that of the unquenched theory, a Higgs model of a type first studied by Fradkin and Shenker. The gluon propagator is interpreted as yielding bound states in the confined phase, and a mixture of fundamental particles in the Higgs phase, but lattice simulation shows the two phases are connected. Gauge-field propagators from the simulation of an SU(2) lattice gauge theory on a 20 4 lattice are well described by a quenched mass-mixing model. The mass of the lightest state, which we interpret as the gluon mass, appears to be independent of α for sufficiently large α

  10. Quantum measurements of atoms using cavity QED

    International Nuclear Information System (INIS)

    Dada, Adetunmise C.; Andersson, Erika; Jones, Martin L.; Kendon, Vivien M.; Everitt, Mark S.

    2011-01-01

    Generalized quantum measurements are an important extension of projective or von Neumann measurements in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two nonstandard quantum measurements using cavity QED. The first measurement optimally and unambiguously distinguishes between two nonorthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionization detection of atoms and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurements have been realized only on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.

  11. Bloch-Nordsieck estimates of high-temperature QED

    International Nuclear Information System (INIS)

    Fried, H. M.; Sheu, Y.-M.; Grandou, T.

    2008-01-01

    In anticipation of a subsequent application to QCD, we consider the case of QED at high temperature. We introduce a Fradkin representation into the exact, Schwingerian, functional expression of a fermion propagator, as well as a new and relevant version of the Bloch-Nordsieck model, which extracts the soft contributions of every perturbative graph, in contradistinction to the assumed separation of energy scales of previous semiperturbative treatments. Our results are applicable to the absorption of a fast particle which enters a heat bath, as well as to the propagation of a symmetric pulse within the thermal medium due to the appearance of an instantaneous, shockwave-like source acting in the medium. An exponentially decreasing time dependence of the incident particle's initial momentum combines with a stronger decrease in the particle's energy, estimated by a sum over all Matsubara frequencies, to model an initial 'fireball', which subsequently decays in a Gaussian fashion. When extended to QCD, qualitative applications could be made to RHIC scattering, in which a fireball appears, expands, and is damped away

  12. Superadiabatic holonomic quantum computation in cavity QED

    Science.gov (United States)

    Liu, Bao-Jie; Huang, Zhen-Hua; Xue, Zheng-Yuan; Zhang, Xin-Ding

    2017-06-01

    Adiabatic quantum control is a powerful tool for quantum engineering and a key component in some quantum computation models, where accurate control over the timing of the involved pulses is not needed. However, the adiabatic condition requires that the process be very slow and thus limits its application in quantum computation, where quantum gates are preferred to be fast due to the limited coherent times of the quantum systems. Here, we propose a feasible scheme to implement universal holonomic quantum computation based on non-Abelian geometric phases with superadiabatic quantum control, where the adiabatic manipulation is sped up while retaining its robustness against errors in the timing control. Consolidating the advantages of both strategies, our proposal is thus both robust and fast. The cavity QED system is adopted as a typical example to illustrate the merits where the proposed scheme can be realized in a tripod configuration by appropriately controlling the pulse shapes and their relative strength. To demonstrate the distinct performance of our proposal, we also compare our scheme with the conventional adiabatic strategy.

  13. Calculating Quench Propagation with ANSYS(regsign)

    International Nuclear Information System (INIS)

    Caspi, S.; Chiesa, L.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.; Hinkins, R.; Lietzke, A.F.; Prestemon, S.

    2002-01-01

    A commercial Finite-Element-Analysis program, ANSYS(reg s ign), is widely used in structural and thermal analysis. With the program's ability to include non-linear material properties and import complex CAD files, one can generate coil geometries and simulate quench propagation in superconducting magnets. A 'proof-of-principle' finite element model was developed assuming a resistivity that increases linearly from zero to its normal value at a temperature consistent with the assumed B magnetic field. More sophisticated models could easily include finer-grained coil, cable, structural, and circuit details. A quench is provoked by raising the temperature of an arbitrary superconducting element above its T c . The time response to this perturbation is calculated using small time-steps to allow convergence between steps. Snapshots of the temperature and voltage distributions allow examination of longitudinal and turn-to-turn quench propagation, quench-front annihilation, and cryo-stability. Modeling details are discussed, and a computed voltage history was compared with measurements from a recent magnet test.

  14. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  15. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

    Science.gov (United States)

    Park, DaeKil

    2018-06-01

    The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

  16. QED radiative corrections and their impact on H → ττ searches at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Krasny, Mieczyslaw Witold [Universite Pierre et Marie Curie-Paris 6, Universite Paris Diderot-Paris 7, CNRS-IN2P3, Laboratoire de Physique Nucleaire et des Hautes Energies, Paris (France); Jadach, Stanislaw [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Placzek, Wieslaw [Jagiellonian University, Marian Smoluchowski Institute of Physics, Krakow (Poland)

    2016-04-15

    In this paper we show that the excess of the ττ events with respect to the Standard Model background predictions, observed by the ATLAS and CMS collaborations and interpreted as the evidence of the Higgs-boson decay into a pair of τ-leptons, may be accounted for by properly taking into account QED radiative corrections in the modelling of the Z/γ* → ττ background. (orig.)

  17. Fast quantum search algorithm for databases of arbitrary size and its implementation in a cavity QED system

    International Nuclear Information System (INIS)

    Li, H.Y.; Wu, C.W.; Liu, W.T.; Chen, P.X.; Li, C.Z.

    2011-01-01

    We propose a method for implementing the Grover search algorithm directly in a database containing any number of items based on multi-level systems. Compared with the searching procedure in the database with qubits encoding, our modified algorithm needs fewer iteration steps to find the marked item and uses the carriers of the information more economically. Furthermore, we illustrate how to realize our idea in cavity QED using Zeeman's level structure of atoms. And the numerical simulation under the influence of the cavity and atom decays shows that the scheme could be achieved efficiently within current state-of-the-art technology. -- Highlights: ► A modified Grover algorithm is proposed for searching in an arbitrary dimensional Hilbert space. ► Our modified algorithm requires fewer iteration steps to find the marked item. ► The proposed method uses the carriers of the information more economically. ► A scheme for a six-item Grover search in cavity QED is proposed. ► Numerical simulation under decays shows that the scheme can be achieved with enough fidelity.

  18. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  19. Optimization of a quench detection system for superconducting magnets

    International Nuclear Information System (INIS)

    Borlein, M.

    2004-12-01

    Subject of this report is the detection of a quench in a superconducting magnet. For the safe operation of superconducting magnets one of the most important issues is the quench detection system which controls the superconducting state of the magnet and triggers a safety discharge if necessary. If it comes to a breakdown of the superconductivity (quench), the magnet has to be discharged very quickly to avoid any damage or danger for the magnet or its environment. First an introducing overview is given. Next different methods of quench detection will be presented, partially on the basis of existing quench detection systems and the applicability of these methods in different states of the magnet operation will be shown. The different quench detection methods are compared and evaluated partially by using test experiments described in the appendix. As an application example this report contains a proposal for the quench detection system for the Wendelstein 7-X facility, actually built by the Institute for Plasma Physics, Garching [de

  20. Quench simulations for superconducting elements in the LHC accelerator

    CERN Document Server

    Sonnemann, F

    2000-01-01

    The design of he protection system for he superconducting elements in an accel- erator such as the Large Hadron Collider (LHC),now under construction at CERN, requires a detailed understanding of the hermo-hydraulic and electrodynamic pro- cesses during a quench.A numerical program (SPQR -Simulation Program for Quench Research)has been developed o evaluate temperature and voltage dis ri- butions during a quench as a func ion of space and ime.The quench process is simulated by approximating the heat balance equation with the finite di fference method in presence of variable cooling and powering conditions.The simulation predicts quench propagation along a superconducting cable,forced quenching with heaters,impact of eddy curren s induced by a magnetic field change,and heat trans- fer hrough an insulation layer in o helium,an adjacen conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequ...

  1. Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields

    OpenAIRE

    Lee, Jaehak; Park, Jiyong; Lee, Sang Min; Lee, Hai-Woong; Khosa, Ashfaq H.

    2008-01-01

    We propose a cavity-QED-based scheme of generating entanglement between atoms. The scheme is scalable to an arbitrary number of atoms, and can be used to generate a variety of multipartite entangled states such as the Greenberger-Horne-Zeilinger, W, and cluster states. Furthermore, with a role switching of atoms with photons, the scheme can be used to generate entanglement between cavity fields. We also introduce a scheme that can generate an arbitrary multipartite field graph state.

  2. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    International Nuclear Information System (INIS)

    Yang, Han; Wei, Wu; Chun-Wang, Wu; Hong-Yi, Dai; Cheng-Zu, Li

    2008-01-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given

  3. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    Science.gov (United States)

    Han, Yang; Wu, Wei; Wu, Chun-Wang; Dai, Hong-Yi; Li, Cheng-Zu

    2008-12-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given.

  4. ITER Side Correction Coil Quench model and analysis

    Science.gov (United States)

    Nicollet, S.; Bessette, D.; Ciazynski, D.; Duchateau, J. L.; Gauthier, F.; Lacroix, B.

    2016-12-01

    Previous thermohydraulic studies performed for the ITER TF, CS and PF magnet systems have brought some important information on the detection and consequences of a quench as a function of the initial conditions (deposited energy, heated length). Even if the temperature margin of the Correction Coils is high, their behavior during a quench should also be studied since a quench is likely to be triggered by potential anomalies in joints, ground fault on the instrumentation wires, etc. A model has been developed with the SuperMagnet Code (Bagnasco et al., 2010) for a Side Correction Coil (SCC2) with four pancakes cooled in parallel, each of them represented by a Thea module (with the proper Cable In Conduit Conductor characteristics). All the other coils of the PF cooling loop are hydraulically connected in parallel (top/bottom correction coils and six Poloidal Field Coils) are modeled by Flower modules with equivalent hydraulics properties. The model and the analysis results are presented for five quench initiation cases with/without fast discharge: two quenches initiated by a heat input to the innermost turn of one pancake (case 1 and case 2) and two other quenches initiated at the innermost turns of four pancakes (case 3 and case 4). In the 5th case, the quench is initiated at the middle turn of one pancake. The impact on the cooling circuit, e.g. the exceedance of the opening pressure of the quench relief valves, is detailed in case of an undetected quench (i.e. no discharge of the magnet). Particular attention is also paid to a possible secondary quench detection system based on measured thermohydraulic signals (pressure, temperature and/or helium mass flow rate). The maximum cable temperature achieved in case of a fast current discharge (primary detection by voltage) is compared to the design hot spot criterion of 150 K, which includes the contribution of helium and jacket.

  5. Fuel rod quenching with oxidation and precursory cooling

    International Nuclear Information System (INIS)

    Davidi, A.; Elias, E.; Olek, S.

    1999-01-01

    During a loss-of-coolant-accident in LWR fuel rods may be temporarily exposed thus reaching high temperature levels. The injection of cold water into the core, while providing the necessary cooling to prevent melting may also generate steam inducing exothermal oxidation of the cladding. A number of high temperature quenching experiments [I] have demonstrated that during the early phase of the quenching process, the rate of hydrogen generation increased markedly and the surface temperatures rose rapidly. These effects are believed to result from thermal stresses breaking up the oxide layer on the zircalloy cladding, thus exposing the inner surface to oxidizing atmosphere. Steam reacts exothermally with the metallic components of the newly formed surface causing temporarily local temperature escalation. The main objective of this study is to develop and assess a one-dimensional time-dependent rewetting model to address the problem of quenching of hot surfaces undergoing exothermic oxidation reactions. Addressing a time-dependent problem is an important aspect of the work since it is believed that the progression of a quench-front along a hot oxidizing surface is an unsteady process. Several studies dealing with time-dependent rewetting problems have been published, e.g. [2]-[5], but none considers oxidation reactions downstream of the quench-front. The main difficulty in solving time-dependent rewetting problems stems from the fact that either the quench-front velocity or the quench-front positions constitute a time-dependent eigenvalue of the problem. The model is applied to describe the interrelated processes of cooling and exothermic steam-metal reactions at the vapor zirconium-cladding interface during quenching of degraded fuel rods. A constant heat transfer coefficient is assumed upstream of the quenching front whereas the combined effect of oxidation and post dry-out cooling is described by prescribing a heat flux distribution of general form downstream. The

  6. Characterization of plasma current quench at JET

    International Nuclear Information System (INIS)

    Riccardo, V; Barabaschi, P; Sugihara, M

    2005-01-01

    Eddy currents generated during the fastest disruption current decays represent the most severe design condition for medium and small size in-vessel components of most tokamaks. Best-fit linear and instantaneous plasma current quench rates have been extracted for a set of recent JET disruptions. Contrary to expectations, the current quench rate spectrum of high and low thermal energy disruptions is not substantially different. For most of the disruptions with the highest instantaneous current quench rate an exponential fit of the early phase of the current decay provides a more accurate estimate of the maximum current decay velocity. However, this fit is only suitable to model the fastest events, for which the current quench is dominated by radiation losses rather than the plasma motion

  7. Propagation and quenching in a reactive Burgers–Boussinesq system

    International Nuclear Information System (INIS)

    Constantin, Peter; Ryzhik, Lenya; Roquejoffre, Jean-Michel; Vladimirova, Natalia

    2008-01-01

    We investigate the qualitative behaviour of solutions of a Burgers–Boussinesq system—a reaction–diffusion equation coupled via gravity to a Burgers equation—by a combination of numerical, asymptotic and mathematical techniques. Numerical simulations suggest that when the gravity ρ is small the solutions decompose into a travelling wave and an accelerated shock wave moving in opposite directions. There exists ρ cr1 so that, when ρ > ρ cr1 , this structure changes drastically, and the solutions become more complicated. The solutions are composed of three elementary pieces: a wave fan, a combustion travelling wave and an accelerating shock, the whole structure travelling in the same direction. There exists ρ cr2 so that when ρ > ρ cr2 , the wave fan catches up with the accelerating shock wave and the solution is quenched, no matter how large the support of the initial temperature. We prove that the three building blocks (wave fans, combustion travelling waves and shocks) exist and we construct asymptotic solutions made up of these three elementary pieces. We finally prove, in a mathematically rigorous way, a quenching result irrespective of the size of the region where the temperature was above ignition—a major difference from what happens in advection–reaction–diffusion equations where an incompressible flow is imposed

  8. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  9. QED loop effects in the spacetime background of a Schwarzschild black hole

    Science.gov (United States)

    Emelyanov, Viacheslav A.

    2017-12-01

    The black-hole evaporation implies that the quantum-field propagators in a local Minkowski frame acquire a correction, which gives rise to this process. The modification of the propagators causes, in turn, non-trivial local effects due to the radiative/loop diagrams in non-linear QFTs. In particular, there should be imprints of the evaporation in QED, if one goes beyond the tree-level approximation. Of special interest in this respect is the region near the black-hole horizon, which, already at tree level, appears to show highly non-classical features, e.g., negative energy density and energy flux into the black hole.

  10. Quench behavior of a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Garber, M.; Dahl, P.F.

    1980-01-01

    Data are presented on the minimum energy required to cause quenches to propagate in an accelerator dipole magnet. The amount of stored energy dissipated into the magnet was measured as a function of dipole excitation current. This in turn determines the maximum coil temperature reached in a given magnet. Quench velocities in the longitudinal direction of the conductor were as high as 11m/sec. The azimuthal velocities or turn to turn velocities were found to be a function of the number of fiberglass layers of insulation that the quench had to cross and were on the order of a few tens of centimeters/sec. The field shape of a given magnet was found to be unchanged for more than 100 quenches. The coil to coil connection and inter-coil splice resistances were found to be less than a namo-ohm and therefore of litle consequence in the cryogenic load considerations. No definitive answers were found on how to decrease the rate of training (130 Gauss/Quench average) required from 4.OT to 5.1T

  11. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  12. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  13. The quench detection system of Wendelstein 7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko

    2011-01-01

    The Quench Detection System of Wendelstein W7-X has been developed, pretested and manufactured during the last four years. This safety subsystem of the superconducting magnet power supply will guarantee the safe operating of the whole magnet system. The main targets of the Quench Detection System are the complete data acquisition of all the voltages along the superconducting components, i.e. non planar and planar coils, and bus bars, the evaluation of this data and the control of the magnet system safety discharges. The Quench Detection System is generating control commands for the magnet power supply control system and the electrical status of the superconducting components of W7-X. The Quench Detection System consists of nearly 580 Quench Detection Units (QDU) located in 10 QD-subsystems, 8 racks in each, one host system and two special interfaces for evaluation of the quench control commands and the failure signals. The operating software suite of the QD System allows the configuration, the operation and the maintenance of the whole system.

  14. (Talk) Investigating The Star Formation Quenching Across Cosmic Time - A Methodology To Select Galaxies Just After The Quenching Of Star Formation

    Science.gov (United States)

    Citro, Annalisa; Pozzetti, Lucia; Quai, Salvatore; Moresco, Michele; Vallini, Livia; Cimatti, Andrea

    2017-06-01

    We propose a method aimed at identifing galaxies in the short evolutionary phase in which they quench their star-formation (SF). We rely on high- to low-ionization emission line ratios, which rapidly disappear after the SF halt due to the softening of the UV ionizing radiation. In particular, we focus on [O III] 5007/Halpha and [Ne III] 3869/[O II] 3727, simulating their time evolution by means of the CLOUDY photoionization code. We find that these two emission line ratios are able to trace the quenching on very short time-scales (i.e. 10-80 Myr), depending on if a sharp or a smoother SF quenching is assumed. We adopt the [N II] 6584/[O II] 3727 ratio as metallicity diagnostic to mitigate the metallicity degeneracy which affects our method. Using a Sloan Digital Sky Survey galaxy sample, we identify 11 examples of extreme quenching candidates within the [O III] 5007/Halpha vs. [N II] 6584/[O II] 3727 plane, characterized by faint [Ne III] 3869, blue dust-corrected spectra and blue (u-r) colours, as expected if the quenching occurred in the recent past. Our results also suggest that the observed fractions of quenching candidates can be used to constrain the quenching mechanism at work and its time-scales.

  15. Novel water-air circulation quenching process for AISI 4140 steel

    Science.gov (United States)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  16. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  17. Infrared divergence enforces a rearranged perturbation expansion II QED

    CERN Document Server

    Matsson, L

    1977-01-01

    For pt.I see ibid., vol.39A, p.604 (1977). Part I showed, for the case of scalar electrodynamics, that the ordinary perturbation expansion (OPE) must, except in certain cases, be rearranged in order to carry out uniquely the infrared (IR) exponentiation in a translation- and gauge-invariant way. The uniqueness of the exponent of order alpha follows from requiring exact order-by-order agreement with the OPE before summation and also from requiring that exponentiation of all factorizable parts must be done before integration. This technique is applied to ordinary spinor QED and a similar result is obtained without making the gamma -matrix algebra more complicated than in the OPE. This technique explicitly exhibits the structure of the remaining IR-regular part, which appears in terms of a correlation expansion with respect to photon momenta. (9 refs).

  18. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  19. Numerical Study of Quench Protection for Fast-Ramping Accelerator Magnets

    CERN Document Server

    Schwerg, N; Mess, K-N; Russenschuck, S

    2009-01-01

    The quench module of the ROXIE field computation program has been presented at previous conferences. In this paper we discuss recently implemented features that allow quench simulation of fast-ramping superconducting magnets. As the reliability of quench detection during the ramps depends on the signal to noise ratio, we simulate the influence of detection thresholds and the propagation of undetected quenches during the ramps. We also study the effect of an increased copper content and the feasibility of a self-protected magnet surviving a powering cycle with an undetected quench and without quench heater firing or energy-extraction system.

  20. Quench antenna for superconducting particle accelerator magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Devred, A.; Kim, K.

    1993-10-01

    We report on the design, fabrication, and test of an assembly of stationary pickup coils which can be used to localize quench origins. After describing the pickup coils configuration, we develop a simple model of current redistribution which allows interpretation of the measured voltages and determination of the turn of the magnet coil in which the quench started. The technique is illustrated by analyzing the data from a quench of a 5-cm-aperture, 15-m-long SSC dipole magnet prototype