WorldWideScience

Sample records for coupled plasma enhanced

  1. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas

    International Nuclear Information System (INIS)

    Chen Zhipeng; Li Hong; Liu Qiuyan; Luo Chen; Xie Jinlin; Liu Wandong

    2011-01-01

    A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications. (low temperature plasma)

  2. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  3. Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges

    International Nuclear Information System (INIS)

    Kushner, Mark J.

    2003-01-01

    Magnetically enhanced capacitively coupled plasma sources use transverse static magnetic fields to modify the performance of low pressure radio frequency discharges. Magnetically enhanced reactive ion etching (MERIE) sources typically use magnetic fields of tens to hundreds of Gauss parallel to the substrate to increase the plasma density at a given pressure or to lower the operating pressure. In this article results from a two-dimensional hybrid-fluid computational investigation of MERIE reactors with plasmas sustained in argon are discussed for an industrially relevant geometry. The reduction in electron cross field mobility as the magnetic field increases produces a systematic decrease in the dc bias (becoming more positive). This decrease is accompanied by a decrease in the energy and increase in angular spread of the ion flux to the substrate. Similar trends are observed when decreasing pressure for a constant magnetic field. Although for constant power the magnitudes of ion fluxes to the substrate increase with moderate magnetic fields, the fluxes decreased at larger magnetic fields. These trends are due, in part, to a reduction in the contributions of more efficient multistep ionization

  4. Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients

    International Nuclear Information System (INIS)

    Gray, R J; Carroll, D C; Yuan, X H; Brenner, C M; Coury, M; Quinn, M N; Tresca, O; McKenna, P; Burza, M; Wahlström, C-G; Lancaster, K L; Neely, D; Lin, X X; Li, Y T

    2014-01-01

    Laser energy absorption to fast electrons during the interaction of an ultra-intense (10 20 W cm −2 ), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient. (paper)

  5. Enhanced laser beam coupling to a plasma

    International Nuclear Information System (INIS)

    Steiger, A.D.; Woods, C.H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma. 10 claims, 2 figures

  6. Effects of assistant anode on planar inductively coupled magnetized argon plasma in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, Deli; Chu, Paul K.

    2003-01-01

    The enhancement of planar radio frequency (RF) inductively coupled argon plasma is studied in the presence of an assistant anode and an external magnetic field at low pressure. The influence of the assistant anode and magnetic field on the efficiency of RF power absorption and plasma parameters is investigated. An external axial magnetic field is coupled into the plasma discharge region by an external electromagnetic coil outside the discharge chamber and an assistant cylindrical anode is inserted into the discharge chamber to enhance the plasma discharge. The plasma parameters and density profile are measured by an electrostatic Langmuir probe at different magnetic fields and anode voltages. The RF power absorption by the plasma can be effectively enhanced by the external magnetic field compared with the nonmagnetized discharge. The plasma density can be further increased by the application of a voltage to the assistant anode. Owing to the effective power absorption and enhanced plasma discharge by the assistant anode in a longitudinal magnetic field, the plasma density can be enhanced by more than a factor of two. Meanwhile, the nonuniformity of the plasma density is less than 10% and it can be achieved in a process chamber with a diameter of 600 mm

  7. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Sturup, Stefan

    1994-01-01

    Addition of carbon as methanol or ammonium carbonate to the aqueous analyte solutions in combination with increased plasma power input enhanced the inductively coupled plasma mass spectrometry (ICP-MS) signal intensities of arsenic and selenium. In the presence of the optimum 3% v/v methanol...... (noise) was not increased. Therefore, the observed increase in analyte sensitivity led to a similar increase in signal-to-noise ratio. The addition of carbon as ammonium carbonate enhanced the arsenic signal by a similar factor but caused severe contamination of the ICP-MS instrument by carbon. In the 3....../nebulization efficiency. It is proposed that an increased population of carbon ions or carbon-containing ions in the plasma facilitates a more complete ionization of analytes lower in ionization energy than carbon itself. The enhanced detection power for arsenic was applied to arsenic speciation by high...

  8. Wavelength scaling of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1983-01-01

    The use of shorter wavelength laser light both enhances collisional absorption and reduces deleterious collective plasma effects. Coupling processes which can be important in reactor-size targets are briefly reviewed. Simple estimates are presented for the intensity-wavelength regime in which collisional absorption is high and collective effects are minimized

  9. Interaction of heavy ion beams with a hydrogen plasma: plasma lens effect and stopping power enhancement

    International Nuclear Information System (INIS)

    Gardes, D.; Bimbot, R.; Della-Negra, S.; Dumail, M.; Kubica, B.; Richard, A.; Rivet, M.F.; Servajean, A.; Deutsch, C.; Maynard, G.

    1988-01-01

    By coupling a hydrogen plasma to a Tandem accelerator, transmission and energy losses of 2 MeV/u carbon and sulfur beams passing through a plasma target have been investigated. Fluctuations in beam transmission have been observed and attributed to a plasma lens effect. Moreover, energy loss measurements indicate an enhanced stopping power of the plasma relative to its cold matter equivalent

  10. Electrical description of a magnetic pole enhanced inductively coupled plasma source: Refinement of the transformer model by reverse electromagnetic modeling

    International Nuclear Information System (INIS)

    Meziani, T.; Colpo, P.; Rossi, F.

    2006-01-01

    The magnetic pole enhanced inductively coupled source (MaPE-ICP) is an innovative low-pressure plasma source that allows for high plasma density and high plasma uniformity, as well as large-area plasma generation. This article presents an electrical characterization of this source, and the experimental measurements are compared to the results obtained after modeling the source by the equivalent circuit of the transformer. In particular, the method applied consists in performing a reverse electromagnetic modeling of the source by providing the measured plasma parameters such as plasma density and electron temperature as an input, and computing the total impedance seen at the primary of the transformer. The impedance results given by the model are compared to the experimental results. This approach allows for a more comprehensive refinement of the electrical model in order to obtain a better fitting of the results. The electrical characteristics of the system, and in particular the total impedance, were measured at the inductive coil antenna (primary of the transformer). The source was modeled electrically by a finite element method, treating the plasma as a conductive load and taking into account the complex plasma conductivity, the value of which was calculated from the electron density and electron temperature measurements carried out previously. The electrical characterization of the inductive excitation source itself versus frequency showed that the source cannot be treated as purely inductive and that the effect of parasitic capacitances must be taken into account in the model. Finally, considerations on the effect of the magnetic core addition on the capacitive component of the coupling are made

  11. Coupled Langmuir oscillations in 2-dimensional quantum plasmas

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.

    2014-01-01

    In this work, we present a hydrodynamic model to study the coupled quantum electron plasma oscillations (QEPO) for two dimensional (2D) degenerate plasmas, which incorporates all the essential quantum ingredients such as the statistical degeneracy pressure, electron-exchange, and electron quantum diffraction effect. Effects of diverse physical aspects like the electronic band-dispersion effect, the electron exchange-correlations and the quantum Bohm-potential as well as other important plasma parameters such as the coupling parameter (plasma separation) and the plasma electron number-densities on the linear response of the coupled system are investigated. By studying three different 2D plasma coupling types, namely, graphene-graphene, graphene-metalfilm, and metalfilm-metalfilm coupling configurations, it is remarked that the collective quantum effects can influence the coupled modes quite differently, depending on the type of the plasma configuration. It is also found that the slow and fast QEPO frequency modes respond very differently to the change in plasma parameters. Current findings can help in understanding of the coupled density oscillations in multilayer graphene, graphene-based heterojunctions, or nanofabricated integrated circuits

  12. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders

  13. Jets in a strongly coupled anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)

    2018-01-15

    In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)

  14. Chemical modeling of a high-density inductively-coupled plasma reactor containing silane

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Boogaard, A.; Brunets, I.; Holleman, J.; Schmitz, Jurriaan

    We carried out the modeling of chemical reactions in a silane-containing remote Inductively Coupled Plasma Enhanced Chemical Vapor Deposition (ICPECVD) system, intended for deposition of silicon, silicon oxide, and silicon nitride layers. The required electron densities and Electron Energy

  15. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  16. Dry etching of ITO by magnetic pole enhanced inductively coupled plasma for display and biosensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, T. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: tarik.meziani@jrc.it; Colpo, P. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Va) (Italy)]. E-mail: pascal.colpo@jrc.it; Lambertini, V. [Centro Ricerche Fiat, Strada Torino 50, 10043 Orbassano (TO) (Italy); Ceccone, G. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Va) (Italy); Rossi, F. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Va) (Italy)

    2006-03-15

    The dry etching of indium tin oxide (ITO) layers deposited on glass substrates was investigated in a high density inductively coupled plasma (ICP) source. This innovative low pressure plasma source uses a magnetic core in order to concentrate the electromagnetic energy on the plasma and thus provides for higher plasma density and better uniformity. Different gas mixtures were tested containing mainly hydrogen, argon and methane. In Ar/H{sub 2} mixtures and at constant bias voltage (-100 V), the etch rate shows a linear dependence with input power varying the same way as the ion density, which confirms the hypothesis that the etching process is mainly physical. In CH{sub 4}/H{sub 2} mixtures, the etch rate goes through a maximum for 10% CH{sub 4} indicating a participation of the radicals to the etching process. However, the etch rate remains quite low with this type of gas mixture (around 10 nm/min) because the etching mechanism appears to be competing with a deposition process. With CH{sub 4}/Ar mixtures, a similar feature appeared but the etch rate was much higher, reaching 130 nm/min at 10% of CH{sub 4} in Ar. The increase in etch rate with the addition of a small quantity of methane indicates that the physical etching process is enhanced by a chemical mechanism. The etching process was monitored by optical emission spectroscopy that appeared to be a valuable tool for endpoint detection.

  17. Improved planar radio frequency inductively coupled plasma configuration in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, D.L.; Fu, R.K.Y.; Tian, X.B.; Chu, P.K.

    2003-01-01

    Plasmas with higher density and better uniformity are produced using an improved planar radio frequency (rf) inductively coupled plasma configuration in plasma immersion ion implantation (PIII). An axial magnetic field is produced by external electromagnetic coils outside the discharge chamber. The rf power can be effectively absorbed by the plasma in the vicinity of the electron gyrofrequency due to the enhanced resonant absorption of electromagnetic waves in the whistler wave range, which can propagate nearly along the magnetic field lines thus greatly increases the plasma density. The plasma is confined by a longitudinal multipolar cusp magnetic field made of permanent magnets outside the process chamber. It can improve the plasma uniformity without significantly affecting the ion density. The plasma density can be increased from 3x10 9 to 1x10 10 cm -3 employing an axial magnetic field of several Gauss at 1000 W rf power and 5x10 -4 Torr gas pressure. The nonuniformity of the plasma density is less than 10% and can be achieved in a process chamber with a diameter of 600 mm. Since the plasma generation and process chambers are separate, plasma extinction due to the plasma sheath touching the chamber wall in high-energy PIII can be avoided. Hence, low-pressure, high-energy, and high-uniformity ion implantation can be accomplished using this setup

  18. Statics and thermodynamics of strongly coupled multicomponent plasmas

    International Nuclear Information System (INIS)

    Rosenfeld, Y.

    1980-01-01

    A description of strongly coupled plasmas, in which the direct correlation functions, c/sub i/j(r), are obtained by simple scaling from a universal function, is derived and found to be in full agreement with available computer simulation data, which it thus extends for arbitrary mixtures. It is thermodynamically consistent with the ''ion-sphere'' charge-averaging prediction for the enhancement factors for nuclear reaction rates, the results for which confirm the universality of the bridge functions for mixtures

  19. Matrix effects in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Chen, Xiaoshan.

    1995-01-01

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the open-quotes Fasselclose quotes TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids

  20. Double plasma system with inductively coupled source plasma and quasi-quiescent target plasma

    International Nuclear Information System (INIS)

    Massi, M.; Maciel, H.S.

    1995-01-01

    Cold plasmas have successfully been used in the plasma-assisted material processing industry. An understanding of the physicochemical mechanisms involved in the plasma-surface interaction is needed for a proper description of deposition and etching processes at material surfaces. Since these mechanisms are dependent on the plasma properties, the development of diagnostic techniques is strongly desirable for determination of the plasma parameters as well as the characterization of the electromagnetic behaviour of the discharge. In this work a dual discharge chamber, was specially designed to study the deposition of thin films via plasma polymerization process. In the Pyrex chamber an inductively coupled plasma can be excited either in the diffuse low density E-mode or in the high density H-mode. This plasma diffuses into the cylindrical stainless steel chamber which is covered with permanent magnets to produce a multidipole magnetic field configuration at the surface. By that means a double plasma is established consisting of a RF source plasma coupled to a quasi-quiescent target plasma. The preliminary results presented here refer to measurements of the profiles of plasma parameters along the central axis of the double plasma apparatus. Additionally a spectrum analysis performed by means of a Rogowski coil probe immersed into the source plasma is also presented. The discharge is made in argon with pressure varying from 10 -2 to 1 torr, and the rf from 10 to 150 W

  1. Shear viscosities of photons in strongly coupled plasmas

    Directory of Open Access Journals (Sweden)

    Di-Lun Yang

    2016-09-01

    Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  2. Energy coupling in the plasma focus

    International Nuclear Information System (INIS)

    Wainwright, T.E.; Pickles, W.L.; Sahlin, H.L.; Price, D.F.

    1979-01-01

    Experiments have been performed with a 125-kJ plasma focus to investigate mechanisms for rapid coupling of inductively-stored energy into plasmas. The coupling can take place through the formation of an electron or ion beam that deposits its energy in a target or directly by the penetration of the magnetic field into a resistive plasma. Some preliminary results from experiments of both types are described. The experiments use a replaceable conical anode tip that is intended to guide the focus to within a few millimeters of the axis, where it can suddenly deliver energy either to a small target or to particles that are accelerated. X-ray and fast-ion diagnostics have been used to study the effects

  3. Improvement of NiMoNb to polyimide adhesion by inductively coupled nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bang, S.-H., E-mail: zxclucy@snu.ac.kr

    2016-01-01

    Graphical abstract: - Highlights: • NiMoNb was introduced as the adhesion layer for flexible Cu-clad laminate structure. • The effect of sputtering and plasma power on the peel strength was studied. • Plasma pretreatment in inductively coupled plasma greatly affects the peel strength. • FCCL with NiMoNb adhesion layer show outstanding peel strength. - Abstract: In this study, the effect of sputtering power on the peel strength of the flexible copper clad laminate (FCCL) was evaluated before and after heat treatment using 180° peel test. An increase in the sputtering powers from 200 W to 600 W increased film density and improved peel strength. To enhance peel strength much more, an inductively coupled plasma (ICP) was treated on the PI surface using N{sub 2} gas with Ar as a function of RF power. A dramatic enhancement of the peel strength, 923 N/m was achieved, especially after heat treatment by changing ICP power from 200 W to 900 W. The reduction ratio of the peel strength for the 900 W plasma-treated FCCL was only 12%, whereas that for the 200 W plasma-treated FCCL was 43%. The root mean square (RMS) surface roughness with PIs exposed to both 200 W and 900 W plasma treatments was rarely changed, while X-ray photoelectron spectroscopy (XPS) showed the substantial increase of C–N functional groups. To obtain insight the film characteristics, the NiMoNb/PI interfaces were investigated by a high resolution transmission electron microscopy (HR-TEM).

  4. Coupling of RF antennas to large volume helicon plasma

    Directory of Open Access Journals (Sweden)

    Lei Chang

    2018-04-01

    Full Text Available Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.

  5. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  6. Coupling of laser energy into plasma channels

    International Nuclear Information System (INIS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-01-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length

  7. Mode coupling of electron plasma waves

    International Nuclear Information System (INIS)

    Harte, J.A.

    1975-01-01

    The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta 2 /sub ko/k lambda/sub De/ less than 1 where eta 2 /sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at ω/sub ek/, the Bohn Gross frequency, and at Ω/sub k/, the ion acoustic frequency, subject to the damping rates ν/sub ek/ and ν/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, ω/sub pe/ the plasma frequency

  8. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  9. Nonlinear charge reduction effect in strongly coupled plasmas

    International Nuclear Information System (INIS)

    Sarmah, D; Tessarotto, M; Salimullah, M

    2006-01-01

    The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas

  10. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    Science.gov (United States)

    2017-01-25

    calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012

  11. Training course on inductively coupled plasma spectrometry - Note

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    TRAINING COURSE ON INDUCTIVELY COUPLED PLASMA SPECTROMETRY In the present day geological, chemical, environmental and archaeological research activities, the Inductively Coupled Plasma (ICP) Spectrometry is established as a cost-effective multi... the knowledge and advances in the analytical tools and methodologies for the benefit of the research scholars as well as professionals. National Institute of Oceanography, A.B. VALSANGKAR Dona Paula - 403 004 slip tectonics playing a major role...

  12. Experimental measurements of Helicon wave coupling in KSTAR plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Wi, H. H.; Wang, S. J.; Park, S. Y.; Jeong, J. H.; Han, J. W.; Kwak, J. G.; Oh, Y. K. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chun, M. H.; Yu, I. H. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2016-05-15

    KSTAR tokamak can be a good platform to test this current drive concept because it has adequate machine parameters. Furthermore, KSTAR will have high electron beta plasmas in near future with additional ECH power. In 2015 KSTAR experiments, low-power traveling wave antenna has been designed, fabricated and installed for helicon wave coupling tests in KSTAT plasmas. In 2016 KSTAR campaign, 200 kW klystron power will be combined using three coaxial hybrid couplers and three dummy loads. High power RF will be fed into the traveling wave antenna with two coaxial feeders through two dual disk windows and 6 inch coaxial transmission line system. Current status and plan for high power helicon wave current drive system in KSTAR will be presented. Mock-up TWA antenna installed at the KSTAR reveals high couplings in both L- and H-mode plasmas. The coupling can be easily controlled by radial outer gap without degradation of plasma confinement or local gas puffing with slight decrease of plasma confinement.

  13. Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: Sensitivity enhancement for selenium

    International Nuclear Information System (INIS)

    Kovacevic, Miroslav; Goessler, Walter

    2005-01-01

    The effect of signal enhancement of elements with ionization potentials in the range from 9 to 11 eV by carbon-containing compounds is a well-known phenomenon in inductively coupled plasma mass spectrometry (ICPMS). It has traditionally been exploited through the addition of organic solvents to the sample matrix or to the mobile phase to improve sensitivity. In the present work, aqueous solutions of volatile carbon compounds (acetone, methanol and acetic acid) were directly introduced into the thermostatted spray chamber rather than being added to the sample matrix. It is presumed that no aerosol is produced from these solutions and only vapors of organic compounds are swept into the plasma together with the sample aerosol. When a 0.40 mol l -1 aqueous solution of acetone was introduced directly into the spray chamber, the signals for arsenic and selenium were enhanced by a factor of 4.2. The usefulness of this approach was demonstrated through the achievement of lower instrumental detection limits for selenium at m/z 82 (0.1 ng ml -1 ) compared to the system without direct introduction of volatile carbon compounds (0.5 ng ml -1 ). The method was successfully applied in the determination of traces of selenium in natural water, urine and bovine liver reference material

  14. Substrate Effect on Plasma Clean Efficiency in Plasma Enhanced Chemical Vapor Deposition System

    Directory of Open Access Journals (Sweden)

    Shiu-Ko JangJian

    2007-01-01

    Full Text Available The plasma clean in a plasma-enhanced chemical vapor deposition (PECVD system plays an important role to ensure the same chamber condition after numerous film depositions. The periodic and applicable plasma clean in deposition chamber also increases wafer yield due to less defect produced during the deposition process. In this study, the plasma clean rate (PCR of silicon oxide is investigated after the silicon nitride deposited on Cu and silicon oxide substrates by remote plasma system (RPS, respectively. The experimental results show that the PCR drastically decreases with Cu substrate compared to that with silicon oxide substrate after numerous silicon nitride depositions. To understand the substrate effect on PCR, the surface element analysis and bonding configuration are executed by X-ray photoelectron spectroscopy (XPS. The high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS is used to analyze microelement of metal ions on the surface of shower head in the PECVD chamber. According to Cu substrate, the results show that micro Cu ion and the CuOx bonding can be detected on the surface of shower head. The Cu ion contamination might grab the fluorine radicals produced by NF3 ddissociation in the RPS and that induces the drastic decrease on PCR.

  15. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  16. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  17. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  18. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    Science.gov (United States)

    Tawidian, H.; Mikikian, M.; Couëdel, L.; Lecas, T.

    2011-11-01

    Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids.

  19. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    International Nuclear Information System (INIS)

    Zhou, H.P.; Xu, S.; Zhao, Z.; Xiang, Y.

    2014-01-01

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H 2 , aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  20. Helicon wave coupling to a chiral-plasma column

    International Nuclear Information System (INIS)

    Torres-Silva, H.; Reggiani, N.; Sakanaka, P.H.

    1995-01-01

    Inductive helicon wave coupling to a chiro-plasma column is studied numerically. In our theoretical model, the RF current distribution of the chiro-plasma is taken into account using the constitutive relations of a chiral-plasma. Computational results based on the data of present-day helicon devices are show. In particular, we discuss the role of magnetic-field-aligned electron landau damping for the helicon wave absorption. In many a see, the numerical findings can be understood reasonably in terms of the wavenumber spectra of the helicon wave dispersion relation for slow and fast wave of a chiral-plasma. In general however, the full electromagnetic treatment is necessary in order to describe and to understand the inductive coupling in the helicon wave regime. (author). 9 refs., 1 fig

  1. Effect of single aerosol droplets on plasma impedance in the inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chan, George C.-Y., E-mail: gcchan@indiana.edu; Zhu, Zhenli; Hieftje, Gary M.

    2012-10-15

    The impedance of an inductively coupled plasma was indirectly monitored by two different means-through a RF-probe coil placed inside the torch housing and from tapping the phase-detector signal of the impedance-matching network. During single-droplet introduction, temporal spikes in both the RF-probe coil and the phase-detector signals were readily observed, indicating a momentary change in plasma impedance. The changes in plasma impedance were found to be due solely to plasma perturbation by droplet introduction, and not to an artifact caused by imperfect automatic impedance matching. The temporal changes in plasma impedance were found to be directly proportional to the temporally integrated atomic emission of hydrogen, which is assumed in turn to be directly proportional to the volume of the introduced droplet. A small satellite droplet, with an estimated diameter of 27 {mu}m (i.e., {approx} 10 pL in volume), caused a readily measurable change in plasma impedance. By assuming that the change in RF-probe voltage is directly proportional to the variation in RF power delivered by the load coil, the instantaneous power change coupled to the plasma during single-droplet introduction was estimated. Typical increases in peak RF power and total energy coupled to the plasma, for a single 50-{mu}m droplet introduction, were thereby estimated to be around 8 to 11 W and 0.03 to 0.04 J, respectively. This impedance change was also exploited as a trigger to signal the droplet-introduction event into the plasma. This trigger signal was obtained through a combination of the RF-probe and the phase-detector signals and offered typical jitter from 1 to 2 ms. With the proper choice of a trigger threshold, no trigger misfire resulted and the achievable efficiencies of the trigger signal were 99.95, 97.18 and 74.33% for plasma forward power levels of 900, 1200, and 1500 W, respectively. The baseline noise on the RF-probe coil and the phase-detector signals, which increase with plasma

  2. Hyperpolarizabilities of one and two electron ions under strongly coupled plasma

    International Nuclear Information System (INIS)

    Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard

    2013-01-01

    Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.

  3. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    International Nuclear Information System (INIS)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs

  4. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs.

  5. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  6. ICRH antenna S-matrix measurements and plasma coupling characterisation at JET

    Science.gov (United States)

    Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET

    2018-04-01

    The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at  >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.

  7. Study on characteristics of coupled cavity chain filled with plasma

    International Nuclear Information System (INIS)

    Li Jianqing; Xiao Shu; Mo Yuanlong

    2003-01-01

    In this paper, by using rigorous field analysis, a coupled-cavity (CC) chain filled with plasma has been analyzed. How the hybrid wave between the cavity mode and plasma mode is formed has been studied. The periodical CC chain filled with plasma demonstrates periodical TG modes with a cutoff frequency of zero. When the plasma density increase to a large scale, the cavity mode of the CC chain overlaps the TG mode, these two modes couple with each other and form the hybrid modes. In the case of hybrid modes, the 'cold' bandwidth and the 'warm' bandwidth expand, and the coupled impedance increases about 5 times larger than that of the vacuum. As a whole, the slow wave characteristics are improved substantially due to the formation of the hybrid mode

  8. Jeans instability of self-gravitating magnetized strongly coupled plasma

    International Nuclear Information System (INIS)

    Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K

    2012-01-01

    We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.

  9. Coupling of Plasmas and Liquids

    Science.gov (United States)

    Lindsay, Alexander David

    Plasma-liquids have exciting applications to several important socioeconomic areas, including agriculture, water treatment, and medicine. To realize their application potential, the basic physical and chemical phenomena of plasma-liquid systems must be better understood. Additionally, system designs must be optimized in order to maximize fluxes of critical plasma species to the liquid phase. With objectives to increase understanding of these systems and optimize their applications, we have performed both comprehensive modeling and experimental work. To date, models of plasma-liquids have focused on configurations where diffusion is the dominant transport process in both gas and liquid phases. However, convection plays a key role in many popular plasma source designs, including jets, corona discharges, and torches. In this dissertation, we model momentum, heat, and neutral species mass transfer in a convection-dominated system based on a corona discharge. We show that evaporative cooling produced by gas-phase convection can lead to a significant difference between gas and liquid phase bulk temperatures. Additionally, convection induced in the liquid phase by the gas phase flow substantially increases interfacial mass transfer of hydrophobic species like NO and NO2. Finally, liquid kinetic modeling suggests that concentrations of highly reactive species like OH and ONOOH are several orders of magnitude higher at the interface than in the solution bulk. Subsequent modeling has focused on coupling discharge physics with species transport at and through the interface. An assumption commonly seen in the literature is that interfacial loss coefficients of charged species like electrons are equal to unity. However, there is no experimental evidence to either deny or support this assumption. Without knowing the true interfacial behavior of electrons, we have explored the effects on key plasma-liquid variables of varying interfacial parameters like the electron and energy

  10. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  11. Theory and simulation of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1979-01-01

    The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results

  12. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    International Nuclear Information System (INIS)

    Tawidian, H; Mikikian, M.; Couedel, L.; Lecas, T.

    2011-01-01

    Dusty plasmas can be found in fusion devices. In this paper we analyse a new phenomenon occurring during dust particle growth instabilities and consisting of the appearance of small plasma spheroids in the vicinity of discharge electrodes. Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids

  13. Effect of antenna capacitance on the plasma characteristics of an internal linear inductively coupled plasma system

    International Nuclear Information System (INIS)

    Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young

    2008-01-01

    This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power

  14. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling

    Science.gov (United States)

    Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter

    2018-04-01

    The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.

  15. Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Tinck, S; Bogaerts, A

    2011-01-01

    In this paper, an O 2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al 2 O 3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O 2 , while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.

  16. Bright branes for strongly coupled plasmas

    International Nuclear Information System (INIS)

    Mateos, David; Patino, Leonardo

    2007-01-01

    We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments

  17. The strongly coupled quark-gluon plasma created at RHIC

    International Nuclear Information System (INIS)

    Heinz, Ulrich

    2009-01-01

    The relativistic heavy-ion collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities-a 'quark-gluon plasma (QGP)'. A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called 'elliptic flow' in off-central collisions, with additional support from other observations. This paper explains how we probe the strongly coupled QGP, describes the ideas and measurements which led to the conclusion that the QGP is an almost perfect liquid, and shows how they tie relativistic heavy-ion physics into other burgeoning fields of modern physics, such as strongly coupled Coulomb plasmas, ultracold systems of trapped atoms and superstring theory

  18. Momentum Broadening in Weakly Coupled Quark-Gluon Plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma)

    CERN Document Server

    D'Eramo, Francesco; Liu, Hong; Rajagopal, Krishna

    2013-01-01

    We calculate P(k_\\perp), the probability distribution for an energetic parton that propagates for a distance L through a medium without radiating to pick up transverse momentum k_\\perp, for a medium consisting of weakly coupled quark-gluon plasma. We use full or HTL self-energies in appropriate regimes, resumming each in order to find the leading large-L behavior. The jet quenching parameter \\hat q is the second moment of P(k_\\perp), and we compare our results to other determinations of this quantity in the literature, although we emphasize the importance of looking at P(k_\\perp) in its entirety. We compare our results for P(k_\\perp) in weakly coupled quark-gluon plasma to expectations from holographic calculations that assume a plasma that is strongly coupled at all length scales. We find that the shape of P(k_\\perp) at modest k_\\perp may not be very different in weakly coupled and strongly coupled plasmas, but we find that P(k_\\perp) must be parametrically larger in a weakly coupled plasma than in a strongl...

  19. DC plasma ion implantation in an inductively coupled RF plasma

    International Nuclear Information System (INIS)

    Silawatshananai, C.; Matan, N.; Pakpum, C.; Pussadee, N.; Srisantitam, P.; Davynov, S.; Vilaithong, T.

    2004-01-01

    Various modes of plasma ion implantation have been investigated in a small inductively coupled 13.6 MHz RF plasma source. Plasma ion implantation with HVDC(up to -10 kV bias) has been investigated in order to incorporate with the conventional implantation of diamond like carbon. In this preliminary work, nitrogen ions are implanted into the stainless steel sample with a dose of 5.5 x 10 -2 cm for a short implanting time of 7 minutes without target cooling. Surface properties such as microhardness, wear rate and the friction coefficient have been improved. X-ray and SEM analyses show distinct structural changes on the surface. A combination of sheath assisted implantation and thermal diffusion may be responsible for improvement in surface properties. (orig.)

  20. The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch

    Directory of Open Access Journals (Sweden)

    Q. J. Guo

    2018-02-01

    Full Text Available Boron carbide (B4C coatings are prepared by an RF inductively coupled plasma (ICP torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM. The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.

  1. The effect of SF6 addition in a Cl2/Ar inductively coupled plasma for deep titanium etching

    Science.gov (United States)

    Laudrel, E.; Tillocher, T.; Meric, Y.; Lefaucheux, P.; Boutaud, B.; Dussart, R.

    2018-05-01

    Titanium is a material of interest for the biomedical field and more particularly for body implantable devices. Titanium deep etching by plasma was carried out in an inductively coupled plasma with a chlorine-based chemistry for the fabrication of titanium-based microdevices. Bulk titanium etch rate was first studied in Cl2/Ar plasma mixture versus the source power and the self-bias voltage. The plasma was characterized by Langmuir probe and by optical emission spectroscopy. The addition of SF6 in the plasma mixture was investigated. Titanium etch rate was optimized and reached a value of 2.4 µm · min-1. The nickel hard mask selectivity was also enhanced. The etched titanium surface roughness was reduced significantly.

  2. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  3. Ideal gas behavior of a strongly-coupled complex (dusty) plasma

    OpenAIRE

    Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry

    2012-01-01

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  4. Model of enhanced energy deposition in a Z-pinch plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Davis, J.; Thornhill, J. W.; Giuliani, J. L. Jr.; Rudakov, L. I.; Deeney, C.

    2000-01-01

    In numerous experiments, magnetic energy coupled to strongly radiating Z-pinch plasmas exceeds the thermalized kinetic energy, sometimes by a factor of 2-3. An analytical model describing this additional energy deposition based on the concept of macroscopic magnetohydrodynamic (MHD) turbulent pinch heating proposed by Rudakov and Sudan [Phys. Reports 283, 253 (1997)] is presented. The pinch plasma is modeled as a foam-like medium saturated with toroidal ''magnetic bubbles'' produced by the development of surface m=0 Rayleigh-Taylor and MHD instabilities. As the bubbles converge to the pinch axis, their magnetic energy is converted to thermal energy of the plasma through pdV work. Explicit formulas for the average dissipation rate of this process and the corresponding contribution to the resistance of the load, which compare favorably to the experimental data and simulation results, are presented. The possibility of using this enhanced (relative to Ohmic heating) dissipation mechanism to power novel plasma radiation sources and produce high K-shell yields using long current rise time machines is discussed. (c) 2000 American Institute of Physics

  5. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    Science.gov (United States)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  6. Development of a low-cost inductively coupled argon plasma

    International Nuclear Information System (INIS)

    Ripson, P.A.M.

    1983-01-01

    The aim of this investigation is to drastically reduce running costs of an inductively coupled plasma. This is done by reducing the argon consumption from 20 l/min to about 1 l/min. First, a sample introduction system operating on 0.1 l/min of carrier argon is described. This system ensures a high ratio of plasma argon and carrier argon even at the low total argon consumptions intended. Next, the developed low consumption plasma is presented. In the proposed design, air is blown perpendicularly against the outside of the torch. A different coil has been developed to make air-cooling efficient. Preliminary data on coupling efficiency for the air-cooled plasma are presented. A similarly low argon consumption has been achieved with water as an external coolant medium. It is concluded that a cheaper alternative to the current ICP has become available. (Auth.)

  7. SU-8 etching in inductively coupled oxygen plasma

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted; Keller, Stephan Sylvest; Jensen, Flemming

    2013-01-01

    Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, temperature, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo......-initiator introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome. Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to 800 nm...

  8. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    Directory of Open Access Journals (Sweden)

    B. W. Bai

    2015-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  9. Nonlinear wave coupling in a warm plasma in the fluid

    International Nuclear Information System (INIS)

    Malara, F.; Veltri, P.

    1984-01-01

    The general expression for nonlinear coupling between plasma modes is obtained. The nonlinear conductivity tensor is then calculated by means of the two-fluid plasma description taking into account the thermal pressure effects

  10. Plasma characterization using terahertz-wave-enhanced fluorescence

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2010-01-01

    We demonstrate that the terahertz-wave-enhanced fluorescence emission from excited atoms or molecules can be employed in the characterization of laser-induced gas plasmas. The electron relaxation time and plasma density were deduced through applying the electron impact excitation/ionization and electron-ion recombination processes to the measured time-dependent enhanced fluorescence. The electron collision dynamics of nitrogen plasma excited at different gas pressures and laser pulse energies have been systematically investigated. This plasma characterization method provides picosecond temporal resolution and enables omnidirectional optical signal collection.

  11. Computational Fluid Dynamics Analysis of Cold Plasma Plume Mixing with Blood Using Level Set Method Coupled with Heat Transfer

    Directory of Open Access Journals (Sweden)

    Mehrdad Shahmohammadi Beni

    2017-06-01

    Full Text Available Cold plasmas were proposed for treatment of leukemia. In the present work, conceptual designs of mixing chambers that increased the contact between the two fluids (plasma and blood through addition of obstacles within rectangular-block-shaped chambers were proposed and the dynamic mixing between the plasma and blood were studied using the level set method coupled with heat transfer. Enhancement of mixing between blood and plasma in the presence of obstacles was demonstrated. Continuous tracking of fluid mixing with determination of temperature distributions was enabled by the present model, which would be a useful tool for future development of cold plasma devices for treatment of blood-related diseases such as leukemia.

  12. A new class of strongly coupled plasmas inspired by sonoluminescence

    Science.gov (United States)

    Bataller, Alexander; Plateau, Guillaume; Kappus, Brian; Putterman, Seth

    2014-10-01

    Sonoluminescence originates in a strongly coupled plasma with a near liquid density and a temperature of ~10,000 K. This plasma is in LTE and therefore, it should be a general thermodynamic state. To test the universality of sonoluminescence, similar plasma conditions were generated using femtosecond laser breakdown in high pressure gases. Calibrated streak spectroscopy reveals both transport and thermodynamic properties of a strongly coupled plasma. A blackbody spectrum, which persists long after the exciting laser has turned off, indicates the presence of a highly ionized LTE microplasma. In parallel with sonoluminescence, this thermodynamic state is achieved via a considerable reduction in the ionization potential. We gratefully acknowledge support from DARPA MTO for research on microplasmas. We thank Brian Naranjo, Keith Weninger, Carlos Camara, Gary Williams, and John Koulakis for valuable discussions.

  13. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  14. Impact of plasma tube wall thickness on power coupling in ICP sources

    International Nuclear Information System (INIS)

    Nawaz, Anuscheh; Herdrich, Georg

    2009-01-01

    The inductively heated plasma source at the Institute of Space Systems was investigated with respect to the wall thickness of the plasma tube using an air plasma. For this, the wall thickness of the quartz tube was reduced in steps from 2.5 to 1.25 mm. The significance of reducing the wall thickness was analyzed with respect to both the maximum allowable tube cooling power and the coupling efficiency. While the former results from thermal stresses in the tube's wall, the latter results from a minimization of magnetic field losses near the coil turns of the inductively coupled plasma (ICP) source. Analysis of the thermal stress could be validated by experimental data, i.e. the measurement of the tube cooling power when the respective tube structure failed. The coupling efficiency could be assessed qualitatively by simplified models, and the experimental data recorded show that coupling was improved far more than predicted.

  15. Design Considerations in Capacitively Coupled Plasmas

    Science.gov (United States)

    Song, Sang-Heon; Ventzek, Peter; Ranjan, Alok

    2015-11-01

    Microelectronics industry has driven transistor feature size scaling from 10-6 m to 10-9 m during the past 50 years, which is often referred to as Moore's law. It cannot be overstated that today's information technology would not have been so successful without plasma material processing. One of the major plasma sources for the microelectronics fabrication is capacitively coupled plasmas (CCPs). The CCP reactor has been intensively studied and developed for the deposition and etching of different films on the silicon wafer. As the feature size gets to around 10 nm, the requirement for the process uniformity is less than 1-2 nm across the wafer (300 mm). In order to achieve the desired uniformity, the hardware design should be as precise as possible before the fine tuning of process condition is applied to make it even better. In doing this procedure, the computer simulation can save a significant amount of resources such as time and money which are critical in the semiconductor business. In this presentation, we compare plasma properties using a 2-dimensional plasma hydrodynamics model for different kinds of design factors that can affect the plasma uniformity. The parameters studied in this presentation include chamber accessing port, pumping port, focus ring around wafer substrate, and the geometry of electrodes of CCP.

  16. Comparison of gate dielectric plasma damage from plasma-enhanced atomic layer deposited and magnetron sputtered TiN metal gates

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Christopher J.; Neumann, Christopher M.; Vitale, Steven A., E-mail: steven.vitale@ll.mit.edu [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2015-07-28

    Fully depleted silicon-on-insulator transistors were fabricated using two different metal gate deposition mechanisms to compare plasma damage effects on gate oxide quality. Devices fabricated with both plasma-enhanced atomic-layer-deposited (PE-ALD) TiN gates and magnetron plasma sputtered TiN gates showed very good electrostatics and short-channel characteristics. However, the gate oxide quality was markedly better for PE-ALD TiN. A significant reduction in interface state density was inferred from capacitance-voltage measurements as well as a 1200× reduction in gate leakage current. A high-power magnetron plasma source produces a much higher energetic ion and vacuum ultra-violet (VUV) photon flux to the wafer compared to a low-power inductively coupled PE-ALD source. The ion and VUV photons produce defect states in the bulk of the gate oxide as well as at the oxide-silicon interface, causing higher leakage and potential reliability degradation.

  17. Self-organization observed in either fusion or strongly coupled plasmas

    International Nuclear Information System (INIS)

    Himura, Haruhiko; Sanpei, Akio

    2011-01-01

    If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)

  18. Capacity-coupled multidischarge for atmospheric plasma production

    International Nuclear Information System (INIS)

    Mase, Hiroshi; Fujiwara, Tamiya; Sato, Noriyoshi

    2003-01-01

    We propose a method of plasma production by capacity-coupled multidischarge (CCMD) at atmospheric pressure. The discharge gaps in the CCMD consist of a common electrode and a number of compact electrodes (CCE) which are directly coupled with small capacitors for quenching the discharge. A simple CCE structure is provided by a cylindrical capacitor, the inner conductor of which is used as a gap electrode. A short pulse discharge is observed to appear homogeneously at each CCE. A charge transfer for the single-pulsed discharge is 10-100 times as large as that of the conventional dielectric barrier discharge. A high efficiency of ozone production has been confirmed in the CCMD using O 2 gas. A device configuration of the CCMD is quite flexible with respect to its geometrical shape and size. The CCMD could be used to produce plasmas for various kinds of industrial applications at atmospheric pressure

  19. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    Science.gov (United States)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  20. Inductively coupled plasma- mass spectrometry. Chapter 13

    International Nuclear Information System (INIS)

    Mahalingam, T.R.

    1997-01-01

    Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences

  1. Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents

    Science.gov (United States)

    Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.

    2018-03-01

    The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.

  2. LH-power coupling in advanced tokamak plasmas in JET

    International Nuclear Information System (INIS)

    Joffrin, E.; Erents, K.; Gormezano, C.

    2000-02-01

    Lower Hybrid Current Drive (LHCD) is the most efficient tool to generate non-inductive current in tokamak plasmas. In JET, significant modifications of the current profile have been recently achieved in coupling up to 3MW of LH power in optimised shear discharges. However, the improved particle confinement during optimised shear plasmas results in a sharp decrease of the electron density in front the launcher close or below the cut-off density (ne=1.7.10 17 m -3 for f LH =37GHz) and makes difficult the coupling of the LH power. Deuterium gas near the launcher can help to improve the coupling, but has also the effect of increasing the ELM activity leading to the erosion of the internal transport barrier (ITB). Future development of lower hybrid launcher should include the constraints imposed by scenario such as the optimised shear. (author)

  3. Diamond deposition using a planar radio frequency inductively coupled plasma

    Science.gov (United States)

    Bozeman, S. P.; Tucker, D. A.; Stoner, B. R.; Glass, J. T.; Hooke, W. M.

    1995-06-01

    A planar radio frequency inductively coupled plasma has been used to deposit diamond onto scratched silicon. This plasma source has been developed recently for use in large area semiconductor processing and holds promise as a method for scale up of diamond growth reactors. Deposition occurs in an annulus which coincides with the area of most intense optical emission from the plasma. Well-faceted diamond particles are produced when the substrate is immersed in the plasma.

  4. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  5. Plasma diagnostics using laser-excited coupled and transmission ring resonators

    International Nuclear Information System (INIS)

    Haas, R.A.

    1976-01-01

    In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser

  6. A microwave-augmented plasma torch module

    International Nuclear Information System (INIS)

    Kuo, S P; Bivolaru, Daniel; Williams, Skip; Carter, Campbell D

    2006-01-01

    A new plasma torch device which combines arc and microwave discharges to enhance the size and enthalpy of the plasma torch is described. A cylindrical-shaped plasma torch module is integrated into a tapered rectangular cavity to form a microwave adaptor at one end, which couples the microwave power injected into the cavity from the other end to the arc plasma generated by the torch module. A theoretical study of the microwave coupling from the cavity to the plasma torch, as the load, is presented. The numerical results indicate that the microwave power coupling efficiency exceeds 80%. Operational tests of the device indicate that the microwave power is coupled to the plasma torch and that the arc discharge power is increased. The addition of microwave energy enhances the height, volume and enthalpy of the plasma torch when the torch operates at a low airflow rate, and even when the flow speed is supersonic, a noticeable microwave effect on the plasma torch is observed. In addition, the present design allows the torch to be operated as both a fuel injector and igniter. Ignition of ethylene fuel injected through the centre of a tungsten carbide tube acting as the central electrode is demonstrated

  7. Equation of state of strongly coupled plasma mixtures

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1984-01-01

    Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution

  8. Non-Equilibrium Modeling of Inductively Coupled RF Plasmas

    Science.gov (United States)

    2015-01-01

    wall can be approximated with the expression for an infinite solenoid , B(r = R) = µ0NIc, where quan- tities N and Ic are the number of turns per unit...Modeling of non-equilibrium plasmas in an induc- tively coupled plasma facility. AIAA Paper 2014– 2235, 2014. 45th AIAA Plasmadynamics and Lasers ...1993. 24th Plas- madynamics and Laser Conference, Orlando, FL. [22] M. Capitelli, I. Armenise, D. Bruno, M. Caccia- tore, R. Celiberto, G. Colonna, O

  9. Electron screening and kinetic-energy oscillations in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.

    2004-01-01

    We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma

  10. The strongly coupled quark-gluon plasma created at RHIC

    CERN Document Server

    Heinz, Ulrich W

    2009-01-01

    The Relativistic Heavy Ion Collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities -- a "quark-gluon plasma (QGP)". A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called "elliptic flow" in off-central collisions, with additional support from other observations. This article explains how we probe the strongly coupled QGP, describes the ideas and measurements whi...

  11. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  12. Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation

    Science.gov (United States)

    Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.

    2017-12-01

    We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.

  13. Langmuir probe study of a magnetically enhanced RF plasma source at pressures below 0.1 Pa

    Science.gov (United States)

    Kousal, Jaroslav; Tichý, Milan; Šebek, Ondřej; Čechvala, Juraj; Biederman, Hynek

    2011-08-01

    The majority of plasma polymerization sources operate at pressures higher than 1 Pa. At these pressures most common deposition methods do not show significant directionality. One way of enhancing the directional effects is to decrease the working pressure to increase the mean free path of the reactive molecules. The plasma source used in this work was designed to study the plasma polymerization process at pressures below 0.1 Pa. The source consists of the classical radio frequency (RF) (13.56 MHz, capacitive coupled) tubular reactor enhanced by an external magnetic circuit. The working gas is introduced into the discharge by a capillary. This forms a relatively localized zone of higher pressure where the monomer is activated. Due to the magnetic field, the plasma is constricted near the axis of the reactor with nearly collisionless gas flow. The plasma parameters were obtained using a double Langmuir probe. Plasma density in the range ni = 1013-1016 m-3 was obtained in various parts of the discharge under typical conditions. The presence of the magnetic field led to the presence of relatively strong electric fields (103 V m-1) and relatively high electron energies up to several tens of eV in the plasma.

  14. Langmuir probe study of a magnetically enhanced RF plasma source at pressures below 0.1 Pa

    Energy Technology Data Exchange (ETDEWEB)

    Kousal, Jaroslav; Tichy, Milan; Sebek, Ondrej; Cechvala, Juraj; Biederman, Hynek, E-mail: jaroslav.kousal@mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 180 00, Prague 8 (Czech Republic)

    2011-08-15

    The majority of plasma polymerization sources operate at pressures higher than 1 Pa. At these pressures most common deposition methods do not show significant directionality. One way of enhancing the directional effects is to decrease the working pressure to increase the mean free path of the reactive molecules. The plasma source used in this work was designed to study the plasma polymerization process at pressures below 0.1 Pa. The source consists of the classical radio frequency (RF) (13.56 MHz, capacitive coupled) tubular reactor enhanced by an external magnetic circuit. The working gas is introduced into the discharge by a capillary. This forms a relatively localized zone of higher pressure where the monomer is activated. Due to the magnetic field, the plasma is constricted near the axis of the reactor with nearly collisionless gas flow. The plasma parameters were obtained using a double Langmuir probe. Plasma density in the range n{sub i} = 10{sup 13}-10{sup 16} m{sup -3} was obtained in various parts of the discharge under typical conditions. The presence of the magnetic field led to the presence of relatively strong electric fields (10{sup 3} V m{sup -1}) and relatively high electron energies up to several tens of eV in the plasma.

  15. Some remarks on coherent nonlinear coupling of waves in plasmas

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1976-01-01

    The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)

  16. Approximation scheme for strongly coupled plasmas: Dynamical theory

    International Nuclear Information System (INIS)

    Golden, K.I.; Kalman, G.

    1979-01-01

    The authors present a self-consistent approximation scheme for the calculation of the dynamical polarizability α (k, ω) at long wavelengths in strongly coupled one-component plasmas. Development of the scheme is carried out in two stages. The first stage follows the earlier Golden-Kalman-Silevitch (GKS) velocity-average approximation approach, but goes much further in its application of the nonlinear fluctuation-dissipation theorem to dynamical calculations. The result is the simple expression for α (k, ω), αatsub GKSat(k, ω) 4 moment sum rule. In the second stage, the above dynamical expression is made self-consistent at long wavelengths by postulating that a decomposition of the quadratic polarizabilities in terms of linear ones, which prevails in the k → 0 limit for weak coupling, can be relied upon as a paradigm for arbitrary coupling. The result is a relatively simple quadratic integral equation for α. Its evaluation in the weak-coupling limit and its comparison with known exact results in that limit reveal that almost all important correlational and long-time effects are reproduced by our theory with very good numerical accuracy over the entire frequency range; the only significant defect of the approximation seems to be the absence of the ''dominant'' γ ln γ -1 (γ is the plasma parameter) contribution to Im α

  17. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Mark J., E-mail: msowa@ultratech.com [Ultratech/Cambridge NanoTech, 130 Turner Street, Building 2, Waltham, Massachusetts 02453 (United States)

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  18. Atomic fluorescence spectrometry with the inductively coupled plasma

    International Nuclear Information System (INIS)

    Omenetto, N.; Winefordner, J.D.

    1987-01-01

    Atomic fluorescence spectrometry (AFS) is based on the radiational activation of atoms and ions produced in a suitable atomizer (ionizer) and the subsequent measurement of the resulting radiational deactivation, called fluorescence. Atomic fluorescence spectrometry has been of considerable interest to researchers in atomic spectrometry because of its use for both analytical and diagnostic purposes. Unfortunately, the analytical applications of AFS have suffered from the lack of commercial instrumentation until the recent marketing of the Baird multiple-element, hollow cathode lamp-excited inductively coupled plasma system. This chapter is concerned strictly with the use of the inductively coupled plasma (ICP) as a cell and as a source for AFS. Many of the major references concerning the ICP in analytical AFS are categorized in Table 9.1, along with several reviews and diagnostical studies. For more detailed discussions of the fundamental aspects of AFS, the reader is referred to previous reviews

  19. Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1977-01-01

    Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions

  20. Study of optical emission spectroscopy with inductively coupled plasma torch

    International Nuclear Information System (INIS)

    Bauer, M.

    1982-01-01

    Inductively coupled plasma optical emission spectroscopy is an excellent tool for quantitative multielement trace analysis. This paper describes the performance of a computer-controlled sequential measurement system. Chemical and ionization interferences are shown to be negligible due to the characteristics of the inductively coupled plasma, spectral interferences are eliminated by using a high-resolution monochromator and computer data handling. Good accuracy is achieved for most of the interesting elements, as is shown from both an interlaboratory test and from comparison of the results of water samples from the rivers Elbe and Weser with those achieved with neutron activation and X-ray fluorescence analysis. (orig.) [de

  1. Enhanced axion-photon coupling in GUT with hidden photon

    Science.gov (United States)

    Daido, Ryuji; Takahashi, Fuminobu; Yokozaki, Norimi

    2018-05-01

    We show that the axion coupling to photons can be enhanced in simple models with a single Peccei-Quinn field, if the gauge coupling unification is realized by a large kinetic mixing χ = O (0.1) between hypercharge and unbroken hidden U(1)H. The key observation is that the U(1)H gauge coupling should be rather strong to induce such large kinetic mixing, leading to enhanced contributions of hidden matter fields to the electromagnetic anomaly. We find that the axion-photon coupling is enhanced by about a factor of 10-100 with respect to the GUT-axion models with E / N = 8 / 3.

  2. Linear coupling of electromagnetic and Jeans modes in self-gravitating plasma streams

    International Nuclear Information System (INIS)

    Yaroshenko, Victoria V.; Voitenko, Yuriy; Goossens, Marcel

    2002-01-01

    A new mechanism of linear coupling between electromagnetic (nonpotential) and gravitational disturbances is found for oblique propagation relatively to particle streams. The general dispersion law is derived and applied to the case of two countersteaming dust beams of equal strength and quiasiperpendicular propagation. It reveals a strong linear coupling between the low-frequency aperiodically unstable electromagnetic (AEM) and the Jeans (JM) modes. The coupling is of a mode conversion type, resulting in a frequency gap in the dispersion, and thus significantly modifies the instability criteria. It is shown that, in contrast to the electrostatic case, AEM and JM coupling in streaming self-gravitating plasmas can actually appear even if the plasma frequencies of the dust species greatly exceed the corresponding Jeans frequencies

  3. Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma

    International Nuclear Information System (INIS)

    Wang Hongyu; Sun Peng; Zhao Shuangyun; Li Yang; Jiang Wei

    2016-01-01

    We analyzed perpendicularly configured dual-frequency (DF) capacitively coupled plasmas (CCP). In this configuration, two pairs of electrodes are arranged oppositely, and the discharging is perpendicularly driven by two radio frequency (RF) sources. Particle-in-cell/Monte Carlo (PIC/MC) simulation showed that the configuration had some advantages as this configuration eliminated some dual frequency coupling effects. Some variation and potential application of the discharging configuration is discussed briefly. (paper)

  4. Plutonium bioassay by inductively coupled plasma mass spectrometry ICP/MS

    International Nuclear Information System (INIS)

    Wyse, E.J.; Fisher, D.R.

    1993-04-01

    The determination of plutonium in urine poses several analytical challenges, e.g., detectability, matrix, etc. We have investigated the feasibility of analyzing plutonium in processed urine by inductively coupled plasma mass spectrometry (ICP/MS). The urine samples are first spiked with 244 Pu as a tracer and internal standard, then processed by co-precipitation and column chromatography using TRU-Spec trademark, an extraction resin. By enhancing ICP/MS detection capabilities via improved sample introduction and data acquisition efficiencies, an instrumental detection limit of 5 to 50 fg (0.3 to 3 fCi for 239 pu) is typically obtained, depending on the desired degree of quantitation. A brief summary of the analytical method as well as the basis for measuring radionuclides by ICP/MS are submitted; the separation procedure, methods of sample introduction, and data acquisition techniques are then highlighted

  5. Control of plasma density distribution via wireless power transfer in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Lee, Hee-Jin; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2013-01-01

    With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ω r of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ω r of the outer resonant coil changes from the non-resonant condition (where ω r is not the driving angular frequency ω rf ) to the resonant condition (where ω r = ω rf ), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer. (fast track communication)

  6. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  7. Jet quenching in a strongly coupled anisotropic plasma

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2012-08-01

    The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.

  8. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Svec, H.J.; Fassel, V.A.

    1981-01-01

    Mass spectra have been obtained of species in the axial channel of an inductively coupled argon plasma by extracting ions from the inductively coupled plasma into a vacuum system housing a quadrupole mass spectrometer. Ionization temperatures (T/sub ion/) are obtained from relative count rates of m/z-resolved ions according to two general types of ionization equilibrium considerations: (a) the radio of doubly/singly charged ions of the same element, and (b) the ratio of singly charged ions from two elements of different ionization energy. The T/sub ion/ values derived from measurement of Ar +2 /Ar + , Ba +2 /Ba + , Sr +2 /Sr + , and Cd + /I + are all greater than those expected from excitation temperatures measured by other workers. The latter three values for T/sub ion/ are in reasonable agreement with values obtained by optical spectrometry for a variety of argon inductively coupled plasmas

  9. Capillary electrophoresis - inductively coupled plasma mass spectrometry (CE-ICPMS) coupling to assess pentavalent actinides thermodynamic constants

    International Nuclear Information System (INIS)

    Topin, S.; Baglan, N.; Aupiais, J.

    2009-01-01

    Full text: Aiming to investigate plutonium speciation at trace levels, we coupled capillary electrophoresis, a high resolution separation technique with inductively coupled plasma mass spectrometry, a detector with high sensitivity for plutonium. The research work performed to optimize the coupling is discussed based on the following criteria: the migration time, the resolution and the detection limit. The capabilities of the analytical tool are demonstrated by determining thermodynamic constants for pentavalent plutonium, and neptunium as a reference, in the presence of inorganic ligands. (author)

  10. Purification of the gas after pyrolysis in coupled plasma-catalytic system

    Directory of Open Access Journals (Sweden)

    Młotek Michał

    2017-12-01

    Full Text Available Gliding discharge and coupled plasma-catalytic system were used for toluene conversion in a gas composition such as the one obtained during pyrolysis of biomass. The chosen catalyst was G-0117, which is an industrial catalyst for methane conversion manufactured by INS Pulawy (Poland. The effects of discharge power, initial concentration of toluene, gas flow rate and the presence of the bed of the G-0117 catalyst on the conversion of C7H8, a model tars compounds were investigated. Conversion of coluene increases with discharge power and the highest one was noted in the coupled plasma-catalytic system. It was higher than that in the homogeneous system of gliding discharge. When applying a reactor with reduced G-0117 and CO (0.15 mol%, CO2 (0.15 mol%, H2 (0.30 mol%, N2 (0.40 mol%, 4000 ppm of toluene and gas flow rate of 1.5 Nm3/h, the conversion of toluene was higher than 99%. In the coupled plasma-catalytic system with G-0117 methanation of carbon oxides was observed.

  11. LLNL large-area inductively coupled plasma (ICP) source: Experiments

    International Nuclear Information System (INIS)

    Richardson, R.A.; Egan, P.O.; Benjamin, R.D.

    1995-05-01

    We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N 2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable

  12. An argon–nitrogen–hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Makonnen, Yoseif; Beauchemin, Diane, E-mail: diane.beauchemin@chem.queensu.ca

    2014-09-01

    Multivariate optimization of an argon–nitrogen–hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being − 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N{sub 2} in the outer plasma gas, and 0.50% v/v H{sub 2} to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO{sup +} and Ar{sub 2}{sup +} as well as oxide levels by over an order of magnitude. On the other hand, the background from NO{sup +} and ArN{sup +} increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization. - Highlights: • Addition of N{sub 2} to the plasma gas and H{sub 2} as a sheath gas results in a very robust ICP. • ArO{sup +} and Ar{sub 2}{sup +} background and oxide levels are reduced by over an order of magnitude. • Multielement analysis of rock digests is possible with a simple external calibration. • No internal standardization or matrix-matching is required for accurate analysis. • Cd and Mo were accurately determined in undiluted seawater.

  13. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    International Nuclear Information System (INIS)

    Hu, S. X.

    2017-01-01

    Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations based on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.

  14. Study of the linear and non-linear coupling of the LH wave to the tokamak plasmas

    International Nuclear Information System (INIS)

    Preynas, M.

    2012-10-01

    In order to achieve long pulse operation with a tokamak, additional heating and current drive systems are necessary. High frequency antennas, which deliver several megawatts of power to the plasma, are currently used in several tokamaks. Moreover, a good control of the coupling of the wave launched by the antenna to the edge plasma is required to optimize the efficiency of heating and current drive LH systems. However, non-linear effects which depend on the level of injected power in the plasma strongly damage the coupling of the LH wave at particular edge parameters (density and temperature profiles). Results presented in the manuscript deal with the study of the linear and non-linear coupling of the LH wave to the plasma. In the framework of the commissioning of the Passive Active Multijunction antenna in 2009 on the Tore Supra tokamak aiming at validating the LH system suggested for ITER, the characterisation of its coupling properties was realized from low power experiments. The experimental results, which are compared with the linear coupling code ALOHA, have validated the theoretical predictions of good coupling at edge plasma density around the cut-off density. Besides, the ponderomotive effect is clearly identified as responsible for the deterioration in the coupling of the wave, which is measured under particular edge plasma conditions. A theoretical model combining the coupling of the LH wave with the ponderomotive force is suggested to explain the experimental observations. Thus, a new full wave code (named PICCOLO-2D) was developed and results from simulations validate the working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling on Tore Supra. (author)

  15. On coupling fluid plasma and kinetic neutral physics models

    Directory of Open Access Journals (Sweden)

    I. Joseph

    2017-08-01

    Full Text Available The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.

  16. Higgs Pair Production as a Signal of Enhanced Yukawa Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin [Heidelberg U.; Carena, Marcela [Chicago U., KICP; Carmona, Adrián [U. Mainz, PRISMA

    2017-12-31

    We present a non-trivial correlation between the enhancement of the Higgs-fermion couplings and the Higgs pair production cross section in two Higgs doublet models with a flavour symmetry. This symmetry suppresses flavour-changing neutral couplings of the Higgs boson and allows for a partial explanation of the hierarchy in the Yukawa sector. After taking into account the constraints from electroweak precision measurements, Higgs coupling strength measurements, and unitarity and perturbativity bounds, we identify an interesting region of parameter space leading to enhanced Yukawa couplings as well as enhanced di-Higgs gluon fusion production at the LHC reach. This effect is visible in both the resonant and non-resonant contributions to the Higgs pair production cross section. We encourage dedicated searches based on differential distributions as a novel way to indirectly probe enhanced Higgs couplings to light fermions.

  17. Enhancement of plasma generation in catalyst pores with different shapes

    Science.gov (United States)

    Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie

    2018-05-01

    Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.

  18. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  19. Powder processing and spheroidizing with thermal inductively coupled plasma

    International Nuclear Information System (INIS)

    Nutsch, G.; Linke, P.; Zakharian, S.; Dzur, B.; Weiss, K.-H.

    2001-01-01

    Processing of advanced powder materials for the spraying industry is one of the most promising applications of the thermal RF inductively coupled plasma. By selecting the feedstock carefully and adjusting the RF plasma parameters, unique materials with high quality can be achieved. Powders injected in the hot plasma core emerge with modified shapes, morphology, crystal structure and chemical composition. Ceramic oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 are spheroidized with a high spheroidization rate. By using the RF induction plasma spheroidizing process tungsten melt carbide powders are obtained with a high spheroidization rate at high feeding rates by densification of agglomerated powders consisting of di-tungsten carbide and monocarbide with a definite composition. This kind of ball-like powders is particularly suited for wear resistant applications. (author)

  20. Simulation of cold plasma in a chamber under high- and low-frequency voltage conditions for a capacitively coupled plasma

    Institute of Scientific and Technical Information of China (English)

    Hao Daoxin; Cheng Jia; Ji Linhong; Sun Yuchun

    2012-01-01

    The characteristics of cold plasma,especially for a dual-frequency capacitively coupled plasma (CCP),play an important role for plasma enhanced chemical vapor deposition,which stimulates further studies using different methods.In this paper,a 2D fluid model was constructed for N2 gas plasma simulations with CFD-ACE+,a commercial multi-physical software package.First,the distributions of electric potential (Epot),electron number density (Ne),N number density (N) and electron temperature (Te) are described under the condition of high frequency (HF),13.56 MHz,HF voltage,300 V,and low-frequency (LF) voltage,0 V,particularly in the sheath.Based on this,the influence of HF on Ne is further discussed under different HF voltages of 200 V,300 V,400 V,separately,along with the influence of LF,0.3 MHz,and various LF voltages of 500 V,600 V,700 V.The results show that sheaths of about 3 mm are formed near the two electrodes,in which Epot and Te vary extensively with time and space,while in the plasma bulk Epot changes synchronously with an electric potential of about 70 V and Te varies only in a small range.N is also modulated by the radio frequency,but the relative change in N is small.Ne varies only in the sheath,while in the bulk it is steady at different time steps.So,by comparing Ne in the plasma bulk at the steady state,we can see that Ne will increase when HF voltage increases.Yet,Ne will slightly decrease with the increase of LF voltage.At the same time,the homogeneity will change in both x and y directions.So both HF and LF voltages should be carefully considered in order to obtain a high-density,homogeneous plasma.

  1. Modelling of plasma-antenna coupling and non-linear radio frequency wave-plasma-wall interactions in the magnetized plasma device under ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lu, LingFeng

    2016-01-01

    Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr

  2. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  3. Physical Modeling of the Processes Responsible for the Mid-Latitude Storm Enhanced Plasma Density

    Science.gov (United States)

    Fuller-Rowell, T. J.; Maruyama, N.; Fedrizzi, M.; Codrescu, M.; Heelis, R. A.

    2016-12-01

    Certain magnetic local time sectors at mid latitudes see substantial increases in plasma density in the early phases of a geomagnetic storm. The St. Patrick's Day storms of 2013 and 2015 were no exception, both producing large increases of total electron content at mid latitudes. There are theories for the build up of the storm enhanced density (SED), but can current theoretical ionosphere-thermosphere coupled models actually reproduce the response for an actual event? Not only is it necessary for the physical model to contain the appropriate physics, they also have to be forced by the correct drivers. The SED requires mid-latitude zonal transport to provide plasma stagnation in sunlight to provide the production. The theory also requires a poleward drift perpendicular to the magnetic field to elevate the plasma out of the body of the thermosphere to regions of substantially less loss rate. It is also suggested that equatorward winds are necessary to further elevate the plasma to regions of reduced loss. However, those same winds are also likely to transport molecular nitrogen rich neutral gas equatorward, potentially canceling out the benefits of the neutral circulation. Observations of mid-latitude zonal plasma flow are first analyzed to see if this first necessary ingredient is substantiated. The drift observations are then used to tune the driver to determine if, with the appropriate electric field driver, the latest physical models can reproduce the substantial plasma build up. If it can, the simulation can also be used to assess the contribution of the equatorward meridional wind; are they an asset to the plasma build up, or does the enhanced molecular species they carry counteract their benefit.

  4. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Douglas C., E-mail: douglas.baxter@alsglobal.com [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Faarinen, Mikko [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Osterlund, Helene; Rodushkin, Ilia [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Division of Geosciences, Lulea University of Technology, 977 87 Lulea (Sweden); Christensen, Morten [ALS Scandinavia AB, Maskinvaegen 2, 183 53 Taeby (Sweden)

    2011-09-09

    Highlights: {center_dot} We determine methylmercury in serum and plasma using isotope dilution calibration. {center_dot} Separation by gas chromatography and detection by inductively coupled plasma mass spectrometry. {center_dot} Data for 50 specimens provides first reference range for methylmercury in serum. {center_dot} Serum samples shown to be stable for 11 months in refrigerator. - Abstract: A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with {sup 198}Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) {mu}g L{sup -1} could be performed with uncertainty amplification factors <2. A limit of quantification of 0.03 {mu}g L{sup -1} was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were <10% at added concentration levels of 0.14 {mu}g L{sup -1}, 0.35 {mu}g L{sup -1} and 2.8 {mu}g L{sup -1}, with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; <0.03-0.19) {mu}g L{sup -1}. This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  5. Antenna coupling study for ICWC plasma characterization in TEXTOR

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 1. Antenna coupling study for ICWC plasma characterization in ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  6. Numerical experiments on 2D strongly coupled complex plasmas

    International Nuclear Information System (INIS)

    Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E

    2010-01-01

    The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.

  7. Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF

    International Nuclear Information System (INIS)

    Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.

    1984-10-01

    The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)

  8. Radiation from nonlinear coupling of plasma waves

    International Nuclear Information System (INIS)

    Fung, S.F.

    1986-01-01

    The author examines the generation of electromagnetic radiation by nonlinear resonant interactions of plasma waves in a cold, uniformly magnetized plasma. In particular, he considers the up-conversion of two electrostatic wave packets colliding to produce high frequency electromagnetic radiation. Efficient conversion of electrostatic to electromagnetic wave energy occurs when the pump amplitudes approach and exceed the pump depletion threshold. Results from the inverse scattering transform analysis of the three-wave interaction equations are applied. When the wave packets are initially separated, the fully nonlinear set of coupling equations, which describe the evolution of the wave packets, can be reduced to three separate eigenvalue problems; each can be considered as a scattering problem, analogous to eh Schroedinger equation. In the scattering space, the wave packet profiles act as the scattering potentials. When the wavepacket areas approach (or exceed) π/2, the wave functions are localized (bound states) and the scattering potentials are said to contain solitons. Exchange of solitons occurs during the interaction. The transfer of solitons from the pump waves to the electromagnetic wave leads to pump depletion and the production of strong radiation. The emission of radio waves is considered by the coupling of two upper-hybrid branch wave packets, and an upper-hybrid and a lower hybrid branch wave packet

  9. AETHER: A simulation platform for inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Turkoz, Emre, E-mail: emre.turkoz@boun.edu.tr; Celik, Murat

    2015-04-01

    An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.

  10. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  11. Plasma surface interactions in Q-enhanced mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    Two approaches to enhancement of the Q (energy gain) factor of mirror systems are under study at Livermore. These include the Tandem Mirror and the Field Reversed Mirror. Both of these new ideas preserve features of conventional mirror systems as far as plasma-wall interactions are concerned. Specifically in both approaches field lines exit from the ends of the system and impinge on walls located at a distance from the confinement chamber. It is possible to predict some aspects of the plasma/surface interactions of TM and FRM systems from experience obtained in the Livermore 2XIIB experiment. In particular, as observed in 2XIIB, effective isolation of the plasma from thermal contact with the ends owing to the development of sheath-like regions is to be expected. Studies presently underway directed toward still further enhancing the decoupling of the plasma from the effects of plasma surface interactions at the walls will be discussed, with particular reference to the problem of minimizing the effects of refluxing secondary electrons produced by plasma impact on the end walls

  12. The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL

    2011-11-01

    High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.

  13. Inductively and capacitively coupled plasmas at interface: A comparative study towards highly efficient amorphous-crystalline Si solar cells

    Science.gov (United States)

    Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan

    2018-01-01

    A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.

  14. Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis

    International Nuclear Information System (INIS)

    Laborda, Francisco; Ruiz-Begueria, Sergio; Bolea, Eduardo; Castillo, Juan R.

    2009-01-01

    High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (HP-SEC-ICP-MS), in combination with deconvolution analysis, has been used to obtain multielemental qualitative and quantitative information about the distributions of metal complexes with different forms of natural dissolved organic matter (DOM). High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms only provide continuous distributions of metals with respect to molecular masses, due to the high heterogeneity of dissolved organic matter, which consists of humic substances as well as biomolecules and other organic compounds. A functional speciation approach, based on the determination of the metals associated to different groups of homologous compounds, has been followed. Dissolved organic matter groups of homologous compounds are isolated from the aqueous samples under study and their high performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry elution profiles fitted to model Gaussian peaks, characterized by their respective retention times and peak widths. High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms of the samples are deconvoluted with respect to these model Gaussian peaks. This methodology has been applied to the characterization of metal-dissolved organic matter complexes in compost leachates. The most significant groups of homologous compounds involved in the complexation of metals in the compost leachates studied have been hydrophobic acids (humic and fulvic acids) and low molecular mass hydrophilic compounds. The environmental significance of these compounds is related to the higher biodegradability of the low molecular mass hydrophilic compounds and the lower mobility of humic acids. In general, the hydrophilic compounds accounted for the complexation of around 50% of the leached

  15. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.

    Science.gov (United States)

    Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong

    2012-05-22

    We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  16. Coupling between chip based isotachophoresis and multi-collector inductively coupled plasma mass spectrometry for separation and measurement of lanthanides

    International Nuclear Information System (INIS)

    Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene; Morin, Pierre

    2012-01-01

    This paper presents the conception and fabrication of a micro-system for lanthanides separation and its coupling with a multi-collector inductively coupled plasma mass spectrometer for isotope ratio measurements. The lanthanides separation is based on the isotachophoresis technique and the micro-system conception has been adapted in order to fit with glove box limitations in view of future spent nuclear fuels analysis. The micro-device was tested by using a mixture of standard solutions of natural elements and the separation of 13 lanthanides was successfully performed. The micro-device was then coupled to a multi-collector inductively coupled plasma mass spectrometer for the on-line measurements of Nd and Sm isotope ratios. The isotopes of Nd and Sm were acquired online in multi-collection mode after separation of the two elements with an injection amount of 5 ng. Results obtained on the Nd and Sm isotope ratio measurements on transient signals are presented and discussed. (authors)

  17. Styrene and methyl methacrylate copolymer synthesized by RF inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Gillon, X; Diallo, M; Houssiau, L; Pireaux, J-J, E-mail: zhiling.li@fundp.ac.be [University of Namur (FUNDP) Research Centre in Physics of Matter and Radiation (PMR), 61, Rue de Bruxelles, 5000 Namur (Belgium)

    2011-01-01

    A series of random copolymers of styrene and methyl methacrylate was prepared on a silicon substrate by RF pulsed inductively coupled plasma. The plasma gas phase was investigated by optical emission spectroscopy (OES). The physico-chemical characteristics of the deposited copolymer films were analyzed by several surface techniques: X-ray photoelectron spectroscopy (XPS), Fourier-Transform infrared absorption (FT-IR), Time-of-flight secondary ion mass spectrometry (ToF-SIMS), etc. OES of the plasma and FT-IR spectra of the films are predictive: plasma emitting a higher relative benzyl radical signal results in the deposition of a more aromatic plasma polymer. The functional thin films can be deposited by selection of the co-monomers.

  18. Inductively coupled plasma--atomic emission spectroscopy: an evaluation of the use of nitrogen--argon admixtures as plasma discharge atmospheres

    International Nuclear Information System (INIS)

    Zalewski, J.C.

    1979-01-01

    The effects of the use of nitrogen in either the plasma coolant or aerosol carrier gas flows on the physical and spectrochemical properties of the inductively coupled plasma (ICP) were examined. While the plasma operated with nitrogen in the coolant flow exhibited a stability comparable to that of the argon plasma, the use of nitrogen in the aerosol carrier gas flow resulted in a plasma that was less stable. The detection limits obtained for the three plasmas exhibited a similar trend. In addition, the use of nitrogen--argon admixtures in the plasma coolant gas flow yielded an increase in both the net analyte and the background emission intensities when the corresponding argon and nitrogen--argon plasmas were operated under various conditions. Furthermore, the effect of aluminum on the Ca II (393.4 nm) spectral line was reported for the 1000/1 Al/Ca molar ratio. At an observation height of 15 mm, the signal depressions were 4 and 14% for the nitrogen--argon and the argon plasmas, respectively. The above experimental evidence suggested that the operation of the ICP with an Ar--N 2 coolant gas might be hotter than the argon plasma currently in use in this laboratory. The demountable plasma torch designed in collaboration with K. Olson yielded detection limits for 15 elements and 19 spectral lines that were approximately within a factor of two of those obtained with the torch of fused quartz design. The design also appeared to offer a more readily initiated plasma discharge. The experimental evidence presented supports the utilization of nitrogen--argon admixtures in the plasma coolant gas flow as alternate discharge atmospheres for inductively coupled plasma--atomic emission spectroscopy. In contrast, the experimental evidence shows that there is a deterioration in both physical and spectrochemical properties of plasmas operated with a nitrogen aerosol carrier gas

  19. Toroidal plasma enhanced CVD of diamond films

    International Nuclear Information System (INIS)

    Zvanya, John; Cullen, Christopher; Morris, Thomas; Krchnavek, Robert R.; Holber, William; Basnett, Andrew; Basnett, Robert; Hettinger, Jeffrey

    2014-01-01

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp 3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm −1 ) and that negligible amounts of the sp 2 band are present, indicating good-quality diamond films

  20. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    Science.gov (United States)

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  1. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    International Nuclear Information System (INIS)

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-01-01

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes

  2. On plasma coupling and turbulence effects in low velocity stopping

    Energy Technology Data Exchange (ETDEWEB)

    Kurilenkov, Yu K [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation); Maynard, G [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Barriga-Carrasco, M D [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Valuev, A A [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation)

    2006-04-28

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly.

  3. On plasma coupling and turbulence effects in low velocity stopping

    International Nuclear Information System (INIS)

    Kurilenkov, Yu K; Maynard, G; Barriga-Carrasco, M D; Valuev, A A

    2006-01-01

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly

  4. HAIFA: A modular, fiber-optic coupled, spectroscopic diagnostic for plasmas

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Turner, S.L.

    1987-01-01

    HAIFA is a modular, multichannel, fiber optically coupled spectroscopy diagnostic for tokamak plasmas. It operates in the visible, measuring H/sub α/ radiation, the visible continuum from thermal bremsstrahlung, and selected impurity lines. HAIFA is characterized by high modularity and flexibility, good radiation resistance, high noise immunity, and low cost. Details of design, construction, and calibration are given. The analysis of visible bremsstrahlung radiation measurements to deduce the effective ionic charge in a plasma is discussed

  5. Enhanced nuclear level decay in hot dense plasmas

    International Nuclear Information System (INIS)

    Gosselin, G.; Morel, P.

    2004-01-01

    A model of nuclear level decay in a plasma environment is described. Nuclear excitation and decay by photon processes, nuclear excitation by electron capture, and decay by internal conversion are taken into account. The electrons in the plasma are described by a relativistic average atom model for the bound electrons and by a relativistic Thomas-Fermi-Dirac model for the free electrons. Nuclear decay of isomeric level may be enhanced through an intermediate level lying above the isomer. An enhanced nuclear decay rate may occur for temperatures far below the excitation energy of the transition to the intermediate level. In most cases, the enhancement factor may reach several decades

  6. In-situ determination of cross-over point for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2008-01-01

    A novel method is described for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry (ICP-AES). The method is based on measurement of the vertically resolved atomic emission of analyte within the plasma and therefore requires the addition of no reagents to the sample solution or to the plasma. Plasma-related matrix effects enhance analyte emission intensity low in the plasma but depress the same emission signal at higher positions. Such bipolar behavior is true for all emission lines and matrices that induce plasma-related interferences. The transition where the enhancement is balanced by the depression (the so-called cross-over point) results in a spatial region with no apparent matrix effects. Although it would be desirable always to perform determinations at this cross-over point, its location varies between analytes and from matrix to matrix, so it would have to be found separately for every analyte and for every sample. Here, a novel approach is developed for the in-situ determination of the location of this cross-over point. It was found that the location of the cross-over point is practically invariant for a particular analyte emission line when the concentration of the matrix was varied. As a result, it is possible to determine in-situ the location of the cross-over point for all analyte emission lines in a sample by means of a simple one-step sample dilution. When the original sample is diluted by a factor of 2 and the diluted sample is analyzed again, the extent of the matrix effect is identical (zero) between the original sample and the diluted sample at one and only one location - the cross-over point. This novel method was verified with several single-element matrices (0.05 M Na, Ca, Ba and La) and some mixed-element matrices (mixtures of Na-Ca, Ca-Ba, and a plant-sample digest). The inaccuracy in emission intensity due to the matrix effect could be as large as - 30% for conventional measurements in the

  7. Inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Shimamura, Tadashi

    1997-01-01

    The period of investigation for the previous general remarks on the progress of ICP-MS was from January, 1991 to September, 1993. In the investigation of this time, for the object of the Chemical Abstracts from January, 1994 to September, 1996, retrieval was carried out by using the STN International. As the key words, ICP-MS, Inductively Coupled Plasma Mass Spectrometry or Inductively Coupled Plasma Mass Spectrometer was used. The number of hit was 373 in 1994, 462 in 1995, and 356 as of September, 1996, 1191 in total. The cumulative number of the papers from 1980 to 1996 is shown. It is known how rapidly the ICP-MS has pervaded as the means of analysis. In order to cope with the enormous number of papers, this time, it was decided to do the review by limiting to the papers which were published in the main journals deeply related to analytical chemistry. As to the tendency in the last three years, it is summarized as how to overcome the spectrum interference and matrix effect in the ICP-MS and the trend of using the ICP-MS as the high sensitivity detector for separation techniques. The technical basic research of the ICP-MS on spectrum interference, sample introduction method and others and the analysis of living body samples are reported. (K.I.)

  8. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-01-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  9. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  10. Low-pressure water-cooled inductively coupled plasma torch

    Science.gov (United States)

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  11. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-01-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  12. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  13. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  14. Coupled two-dimensional edge-plasma and neutral gas modelling of the DIII-D scrape-off-layer

    International Nuclear Information System (INIS)

    Maingi, R.; Gilligan, J.; Hankins, O.; Rensink, M.; Owen, L.; Klepper, C.; Mioduszewski, P.

    1992-01-01

    This paper reports that in order to do consistent scrape-off-layer plasma and neutral transport calculations, the 2-D fluid code, B2 has been externally coupled to the neutral transport code, DEGAS, for Dlll-D. The coupling procedure is similar to recent simulations done for TFTR, Tore Supra, and ClT. An averaged source approach is utilized to allow convergence between the two codes. Initial comparison of plasma quantities between the coupled code set and the B2 code alone shows that a colder, denser plasma may exist at the divertor targets than predicted by the B2 code with its internal recycling model

  15. Titanium oxidation by rf inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2014-01-01

    The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy

  16. Ratio of bulk to shear viscosity in a quasigluon plasma: from weak to strong coupling

    CERN Document Server

    Bluhm, M; Redlich, K

    2012-01-01

    The ratio of bulk to shear viscosity is expected to exhibit a different behaviour in weakly and in strongly coupled systems. This can be expressed by the dependence of the ratio on the squared sound velocity. In the high temperature QCD plasma at small running coupling, the viscosity ratio is uniquely determined by a quadratic dependence on the conformality measure, whereas in certain strongly coupled and nearly conformal theories this dependence is linear. Employing an effective kinetic theory of quasiparticle excitations with medium-modified dispersion relation, we analyze the ratio of bulk to shear viscosity of the gluon plasma. We show that in this approach the viscosity ratio comprises both dependencies found by means of weak coupling perturbative and strong coupling holographic techniques.

  17. Study of plasma parameters influencing fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Gäckle, M.; Merten, D.

    2010-12-01

    Methods permitting to test the influence of the matrix as well as of its local and temporal distribution on the plasma conditions in laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) are developed. For this purpose, the MS interface is used as plasma probe allowing to investigate the average plasma condition within the ICP zone observed in terms of temporal and spatial distribution of the matrix. Inserted matrix particles, particularly when being atomized and ionized, can cause considerable changes in both electron density and plasma temperature thus influencing the ionization equilibrium of the individual analytes. In this context, the plasma probe covers a region of the plasma for which no local thermodynamic equilibrium can be assumed. The differences in temperature, identified within the region of the plasma observed, amounted up to 3000 K. While in the central region conditions were detected that would not allow efficient atomization and ionization of the matrix, these conditions improve considerably towards the margin of the area observed. Depending on the nature as well as on the temporally and locally variable density of the matrix, this can lead to varying intensity ratios of the analytes and explain fractionation effects. By means of a derived equation it is shown that the deviation of the intensity ratio from the concentration ratio turns out to be more serious the higher the difference of the ionization potential of the analytes observed, the lower the plasma temperature and the higher the matrix concentration within the area observed.

  18. Effect of low-frequency power on dual-frequency capacitively coupled plasmas

    International Nuclear Information System (INIS)

    Yuan, Q H; Xin, Y; Huang, X J; Sun, K; Ning, Z Y; Yin, G Q

    2008-01-01

    In low-pressure dual-frequency capacitively coupled plasmas driven with 60/13.56 MHz, the effect of low-frequency power on the plasma characteristics was investigated using a compensated Langmuir electrostatic probe. At lower pressures (about 10 mTorr), it was possible to control the plasma density and the ion bombardment energy independently. As the pressure increased, this independent control could not be achieved. As the low-frequency power increased for the fixed high-frequency power, the electron energy probability function (EEPF) changed from Druyvesteyn-like to Maxwellian-like at pressures of 50 mTorr and higher, along with a drop in electron temperature. The plasma parameters were calculated and compared with simulation results.

  19. ''SensArray'' voltage sensor analysis in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Titus, M. J.; Hsu, C. C.; Graves, D. B.

    2010-01-01

    A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.

  20. Investigation of RF-enhanced plasma potentials on Alcator C-Mod

    International Nuclear Information System (INIS)

    Ochoukov, R.; Whyte, D.G.; Brunner, D.; Cziegler, I.; LaBombard, B.; Lipschultz, B.; Myra, J.; Terry, J.; Wukitch, S.

    2013-01-01

    Radio frequency (RF) sheath rectification is a leading mechanism suspected of causing anomalously high erosion of plasma facing materials in RF-heated plasmas on Alcator C-Mod. An extensive experimental survey of the plasma potential (Φ P ) in RF-heated discharges on C-Mod reveals that significant Φ P enhancement (>100 V) is found on outboard limiter surfaces, both mapped and not mapped to active RF antennas. Surfaces that magnetically map to active RF antennas show Φ P enhancement that is, in part, consistent with the recently proposed slow wave rectification mechanism. Surfaces that do not map to active RF antennas also experience significant Φ P enhancement, which strongly correlates with the local fast wave intensity. In this case, fast wave rectification is a leading candidate mechanism responsible for the observed enhancement

  1. Collaborative project: research on strongly coupled plasmas. Final technical report for period July 15, 1998--July 14, 2002

    International Nuclear Information System (INIS)

    Golden, Kenneth I.

    2002-01-01

    The main research accomplishments/findings of the project were the following: (1) Publication of an in-depth review article in Physics of Plasmas on the quasilocalized charge approximation (QLCA) in strongly coupled plasma physics and its application to a variety of Coulomb systems: the model one-component plasma in three and two dimensions, binary ionic mixtures, charged particle bilayers, and laboratory dusty plasmas. (2) In the strongly coupled Coulomb liquid phase, the physical basis of the QLCA, namely, the caging of particles trapped in slowly fluctuating local potential minima, is supported by molecular dynamics simulation of the classical three-dimensional one-component plasma. (3) The QLCA theory, when applied to the analysis of the collective modes in strongly coupled charged particle bilayers, predicts the existence of a remarkable long-wavelength energy gap in the out-of-phase excitation spectrum. More recent theoretical calculations based on the three principal frequency-moment sum rules reveal that the gap persists for arbitrary coupling strengths and over the entire classical to quantum domain all the way down to zero temperature. The existence of the energy gap has now been confirmed in a molecular dynamics simulation of the charged particle bilayer. (4) New compressibility and third-frequency-moment sum rules for multilayer plasmas were formulated and applied to the analysis of the dynamical structure function of charged particle bilayers and superlattices. (5) An equivalent of the Debye-Huckel weak coupling equilibrium theory for classical charged particle bilayer and superlattice plasmas was formulated. (6) The quadratic fluctuation-dissipation theorem (QFDT) for layered classical plasmas was formulated. (7) The QFDT was applied to a powerful kinetic theory-based description of the density-density response function and long-wavelength plasma mode behavior in strongly coupled two-dimensional Coulomb fluids in the weakly degenerate quantum domain

  2. Vertically aligned Si nanocrystals embedded in amorphous Si matrix prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Nogay, G. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Saleh, Z.M., E-mail: zaki.saleh@aauj.edu [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Physics, Arab American University–Jenin (AAUJ), Jenin, Palestine (Country Unknown); Özkol, E. [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Chemical Engineering, Middle East Technical University (METU), Ankara 06800 (Turkey); Turan, R. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey)

    2015-06-15

    Highlights: • Inductively-coupled plasma is used for nanostructured silicon at room temperature. • Low temperature deposition allows device processing on various substrates. • Deposition pressure is the most effective parameter in controlling nanostructure. • Films consist of quantum dots in a-Si matrix and exhibit columnar vertical growth. • Films are porous to oxygen infusion along columnar grain boundaries. - Abstract: Vertically-aligned nanostructured silicon films are deposited at room temperature on p-type silicon wafers and glass substrates by inductively-coupled, plasma-enhanced chemical vapor deposition (ICPCVD). The nanocrystalline phase is achieved by reducing pressure and increasing RF power. The crystalline volume fraction (X{sub c}) and the size of the nanocrystals increase with decreasing pressure at constant power. Columnar growth of nc-Si:H films is observed by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The films exhibit cauliflower-like structures with high porosity that leads to slow but uniform oxidation after exposure to air at room temperature. Films deposited at low pressures exhibit photoluminescence (PL) signals that may be deconvoluted into three distinct Gaussian components: 760–810, 920–935, and 990–1000 nm attributable to the quantum confinement and interface defect states. Hydrogen dilution is manifested in significant enhancement of the PL, but it has little effect on the nanocrystal size and X{sub c}.

  3. Gluon Bremsstrahlung in Weakly-Coupled Plasmas

    International Nuclear Information System (INIS)

    Arnold, Peter

    2009-01-01

    I report on some theoretical progress concerning the calculation of gluon bremsstrahlung for very high energy particles crossing a weakly-coupled quark-gluon plasma. (i) I advertise that two of the several formalisms used to study this problem, the BDMPS-Zakharov formalism and the AMY formalism (the latter used only for infinite, uniform media), can be made equivalent when appropriately formulated. (ii) A standard technique to simplify calculations is to expand in inverse powers of logarithms ln(E/T). I give an example where such expansions are found to work well for ω/T≥10 where ω is the bremsstrahlung gluon energy. (iii) Finally, I report on perturbative calculations of q.

  4. Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lariviere, Dominic; Taylor, Vivien F.; Evans, R. Douglas; Cornett, R. Jack

    2006-01-01

    The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity). The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance

  5. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  6. Harmonic emission due to the nonlinear coupling of a Gaussian laser and a plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, R; Jain, R K [Department of Mathematics, SSL Jain College, Vidisha, MP, 464001 (India); Parashar, J [Department of Physics, Samrat Ashok Technological Institute, Vidisha, MP, 464001 (India)

    2010-04-15

    A high-power Gaussian laser propagating through a plasma couples with a large-amplitude plasma wave and undergoes scattering to produce harmonics. The process is sensitive to the phase matching angle between the laser and plasma wave numbers and the plasma wave frequency. For larger harmonics, the phase matching angle is high. The efficiency of the process is comparatively high at higher plasma wave frequencies.

  7. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    International Nuclear Information System (INIS)

    SHUL, RANDY J.; ZHANG, LEI; BACA, ALBERT G.; WILLISON, CHRISTI LEE; HAN, JUNG; PEARTON, S.J.; REN, F.

    1999-01-01

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl 2 /BCl 3 /Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions (≤ 500 W), pressures ≥2 mTorr, and at ion energies below approximately -275 V

  8. Enhanced resonant second harmonic generation in plasma based on density transition

    Directory of Open Access Journals (Sweden)

    Kant Niti

    2015-06-01

    Full Text Available Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.

  9. Investigation of RF-enhanced plasma potentials on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Ochoukov, R., E-mail: ochoukov@psfc.mit.edu [PSFC MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); Whyte, D.G.; Brunner, D. [PSFC MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); Cziegler, I. [Center for Energy Research, UCSD, 9500 Gilman Drive, La Jolla, CA 92093 (United States); LaBombard, B.; Lipschultz, B. [PSFC MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); Myra, J. [Lodestar Research Corporation, 2400 Central Avenue P-5, Boulder, CO 80301 (United States); Terry, J.; Wukitch, S. [PSFC MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States)

    2013-07-15

    Radio frequency (RF) sheath rectification is a leading mechanism suspected of causing anomalously high erosion of plasma facing materials in RF-heated plasmas on Alcator C-Mod. An extensive experimental survey of the plasma potential (Φ{sub P}) in RF-heated discharges on C-Mod reveals that significant Φ{sub P} enhancement (>100 V) is found on outboard limiter surfaces, both mapped and not mapped to active RF antennas. Surfaces that magnetically map to active RF antennas show Φ{sub P} enhancement that is, in part, consistent with the recently proposed slow wave rectification mechanism. Surfaces that do not map to active RF antennas also experience significant Φ{sub P} enhancement, which strongly correlates with the local fast wave intensity. In this case, fast wave rectification is a leading candidate mechanism responsible for the observed enhancement.

  10. Transfer coefficients in ultracold strongly coupled plasma

    Science.gov (United States)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  11. High-current electron beam coupling to hybrid waveguide and plasma modes in a dielectric Cherenkov maser with a plasma layer

    International Nuclear Information System (INIS)

    Shlapakovski, Anatoli S.

    2002-01-01

    The linear theory of a dielectric Cherenkov maser with a plasma layer has been developed. The dispersion relation has been derived for the model of infinitely thin, fully magnetized, monoenergetic hollow electron beam, in the axisymmetric case. The results of the numerical solution of the dispersion relation and the analysis of the beam coupling to hybrid waves, both hybrid waveguide and hybrid plasma modes, are presented. For the hybrid waveguide mode, spatial growth rate dependences on frequency at different plasma densities demonstrate improvement in gain for moderate densities, but strong shifting the amplification band and narrowing the bandwidth. For the hybrid plasma mode, the case of mildly relativistic, 200-250 keV beams is of interest, so that the wave phase velocity is just slightly greater than the speed of light in a dielectric medium. It has been shown that depending on beam and plasma parameters, the hybrid plasma mode can be separated from the hybrid waveguide mode, or be coupled to it through the beam resulting in strong gain increase, or exhibit a flat gain vs frequency dependence over a very broad band. The parameters, at which the -3 dB bandwidth calculated for 30 dB peak gain exceeds an octave, have been found

  12. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Jens, E-mail: J.Hirsch@emw.hs-anhalt.de [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany); Gaudig, Maria; Bernhard, Norbert [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Lausch, Dominik [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany)

    2016-06-30

    Highlights: • Fabrication of black silicon through inductively coupled plasma (ICP) processing. • Suppressed formation a self-bias and therefore a reduced ion bombardment of the silicon sample. • Reduction of the average hemispherical reflection between 300 and 1120 nm up to 8% within 5 min ICP process time. • Reflection is almost independent of the angle of incidence up to 60°. • 2.5 ms effective lifetime at 10{sup 15} cm{sup −3} MCD after ALD Al{sub 2}O{sub 3} surface passivation. - Abstract: The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF{sub 6} and O{sub 2} are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 10{sup 15} cm{sup −3} minority carrier density (MCD) after an atomic layer deposition (ALD) with Al{sub 2}O{sub 3}. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique

  13. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    International Nuclear Information System (INIS)

    Xu Hui-Jing; Shu-Xia Zhao; Gao Fei; Zhang Yu-Ru; Li Xue-Chun; Wang You-Nian

    2015-01-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. (paper)

  14. -3000 V dc bias Ti oxidation by inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; Lopez-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Pena-Eguiluz, R; Munoz-Castro, A E; De la Piedad-Beneitez, A; De la Rosa-Vazquez, J

    2008-01-01

    Broadening the outer oxidized layer of titanium by means of plasmas commands considerable interest in the biomedical research area due to its potential in human biocompatibility enhancement. Some early results of titanium substrate superficial oxidation experiments which have been conducted in a cylindrical vessel inductively coupled to a 13.56 MHz RF generator with a 500 W output are presented. The oxidation process was carried out in a 20 % oxygen and 80 % argon mixture at work pressures in the 5x10 -3 -1 mbar range, while the samples were dc biased down to -3000 V. The substrate temperature appears to be directly dependent on this voltage, reaching 685 deg. C at the maximum bias when a diffusive oxidation process gives rise to the TiO 2 and α-TiO rutile phases. These were characterized by means of x-ray diffraction and scanning electron microscopy revealing atomic percentage concentrations of oxygen, with respect to those of titanium, between 68 and 13 at.%. The optimum modified layer depth reached 5 μm at a 5x10 -2 mbar work pressure.

  15. Inductively coupled plasma and ion sources: History and state-of-the-art

    International Nuclear Information System (INIS)

    Hopwood, J.

    1994-01-01

    Over 100 years ago Hittorf first generated an electrodeless ''ring'' discharge by electromagnetic induction and began a 40 year controversy as to the true physical origin of such a discharge. Even Tesla advocated that these plasmas were merely the result of large electrostatic potential differences rather than electric fields induced by high frequency currents. Through clever experiments using crude spark gaps and leyden jars, the inductive nature of the discharge was confirmed in the late 1920's by MacKinnon, thus supporting the theories and experiments of Sir J.J. Thomson, perhaps the most staunch advocate of the induction mechanism. Today the authors routinely exploit the intense plasmas which are generated by induction. In this talk, the characteristics of inductively coupled plasma (ICP) and ion sources will be reviewed and future applications of intense plasma sources will be discussed. The inductively coupled plasma is Joule heated at moderate gas pressures, but the electromagnetic field penetration of these dense plasmas is limited by the plasma skin depth, typically a few millimeters to a few centimeters. The induction plasma is thus edge heated, a fact that constrains uniformity over large areas if helical induction coils are used. Flat, spiral coils may be used to improve uniformity by driving the plasma using a planar geometry. Issues of dimensional and frequency scaling will be discussed as they apply to large diameter sources. Ion beams extracted from ICPs are used for many applications including space propulsion, high power neutral beams, and materials processing. Broad ion beam (∼10 cm) current densities in excess of 100 mA-cm 2 at 100 keV are obtained in pulsed mode operation. Recently, however, more consumer-oriented applications of less intense ICPs are emerging

  16. Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma

    Science.gov (United States)

    Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha

    2016-09-01

    We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  17. Plasma atomic layer etching using conventional plasma equipment

    International Nuclear Information System (INIS)

    Agarwal, Ankur; Kushner, Mark J.

    2009-01-01

    The decrease in feature sizes in microelectronics fabrication will soon require plasma etching processes having atomic layer resolution. The basis of plasma atomic layer etching (PALE) is forming a layer of passivation that allows the underlying substrate material to be etched with lower activation energy than in the absence of the passivation. The subsequent removal of the passivation with carefully tailored activation energy then removes a single layer of the underlying material. If these goals are met, the process is self-limiting. A challenge of PALE is the high cost of specialized equipment and slow processing speed. In this work, results from a computational investigation of PALE will be discussed with the goal of demonstrating the potential of using conventional plasma etching equipment having acceptable processing speeds. Results will be discussed using inductively coupled and magnetically enhanced capacitively coupled plasmas in which nonsinusoidal waveforms are used to regulate ion energies to optimize the passivation and etch steps. This strategy may also enable the use of a single gas mixture, as opposed to changing gas mixtures between steps

  18. Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation

    Science.gov (United States)

    Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG

    2018-01-01

    The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.

  19. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    Science.gov (United States)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  20. Electrical method for the measurements of volume averaged electron density and effective coupled power to the plasma bulk

    Science.gov (United States)

    Henault, M.; Wattieaux, G.; Lecas, T.; Renouard, J. P.; Boufendi, L.

    2016-02-01

    Nanoparticles growing or injected in a low pressure cold plasma generated by a radiofrequency capacitively coupled capacitive discharge induce strong modifications in the electrical parameters of both plasma and discharge. In this paper, a non-intrusive method, based on the measurement of the plasma impedance, is used to determine the volume averaged electron density and effective coupled power to the plasma bulk. Good agreements are found when the results are compared to those given by other well-known and established methods.

  1. Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Science.gov (United States)

    Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.

    2018-01-01

    We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.

  2. InAs0.45P0.55/InP strained multiple quantum wells intermixed by inductively coupled plasma etching

    International Nuclear Information System (INIS)

    Cao, Meng; Wu, Hui-Zhen; Lao, Yan-Feng; Cao, Chun-Fang; Liu, Cheng

    2009-01-01

    The intermixing effect on InAs 0.45 P 0.55 /InP strained multiple quantum wells (SMQWs) by inductively coupled plasma (ICP) etching and rapid thermal annealing (RTA) is investigated. Experiments show that the process of ICP etching followed RTA induces the blue shift of low temperature photoluminescence (PL) peaks of QWs. With increasing etching depth, the PL intensities are firstly enhanced and then diminished. This phenomenon is attributed to the variation of surface roughness and microstructure transformation inside the QW structure during ICP processing.

  3. Coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry for arsenic speciation.

    Science.gov (United States)

    Cheng, Heyong; Shen, Lihuan; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao

    2018-04-01

    Nanoliter high-performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high-pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high-performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high-performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C 18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9-1.8 μg/L were obtained with precisions variable in the range of 1.6-4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87-102%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ICRF plasma production in Tore Supra: analysis of antenna coupling and plasma properties

    International Nuclear Information System (INIS)

    Beaumont, B.; Becoulet, A.; Lyssoivan, A.

    1999-01-01

    A study of RF plasma production frequency range ω. 2ω ci has been undertaken on Tore Supra taking into account antenna coupling predictions of theory and the TEXTOR-94 database. Two scenarios for RF discharges have been tested (fixed frequency of the RF generator): operation with pure toroidal magnetic field, at standard and lower B T and operation in the magnetic configuration with a small vertical (B V ) field superimposed on B T (B V T ). (authors)

  5. Waveguide and loop coupling to fast MHD toroidal eigenmodes

    International Nuclear Information System (INIS)

    Paoloni, F.J.

    1975-12-01

    Heating of plasmas by wave techniques requires an effective method of coupling rf energy to the plasma. In cavities the presence of weakly damped eigenmodes will enhance the loading of antennas when the wave frequency equals an eigenmode frequency. This report considers two methods of coupling to fast MHD eigenmodes in a toroidal cavity: one is by a waveguide mounted perpendicular to the vacuum vessel wall; and the other by a loop placed within the cavity

  6. ICRF-enhanced plasma potentials in the SOL of Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Ochoukov, R.; Whyte, D. G.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Terry, J. L.; Wukitch, S. J. [PSFC MIT, NW17, 175 Albany Street, Cambridge, MA 02139 (United States); D' Ippolito, D. A.; Myra, J. R. [Lodestar Research Corporation, 2400 Central Avenue, Boulder, Colorado 80301 (United States)

    2014-02-12

    We performed an extensive survey of the plasma potential in the scrape-off layer (SOL) of Ion Cyclotron Range-of Frequencies (ICRF)-heated discharges on Alcator C-Mod. Our results show that plasma potentials are enhanced in the presence of ICRF power and plasma potential values of >100 V are often observed. Such potentials are high enough to induce sputtering of high-Z molybdenum (Mo) plasma facing components by deuterium ions on C-Mod. For comparison, the plasma potential in Ohmic discharges is typically less than 10 V, well below the threshold needed to induce Mo sputtering by deuterium ions. ICRF-enhanced plasma potentials are observed in the SOL regions that both magnetically map and do not map to active ICRF antennas. Regions that magnetically map to active ICRF antennas are accessible to slow waves directly launched by the antennas and these regions experience plasma potential enhancement that is partially consistent with the slow wave rectification mechanism. One of the most defining features of the slow wave rectification is a threshold appearance of significant plasma potentials (>100 V) when the dimensionless rectification parameter Λ{sub −o} is above unity and this trend is observed experimentally. We also observe ICRF-enhanced plasma potentials >100 V in regions that do not magnetically map to the active antennas and, hence, are not accessible for slow waves launched directly by the active antennas. However, unabsorbed fast waves can reach these regions. The general trend that we observe in these 'un-mapped' regions is that the plasma potential scales with the strength of the local RF wave fields with the fast wave polarization and the highest plasma potentials are observed in discharges with the highest levels of unabsorbed ICRF power. Similarly, we find that core Mo levels scale with the level of unabsorbed ICRF power suggesting a link between plasma potentials in the SOL and the strength of the impurity source.

  7. Diagnostic studies of ion beam formation in inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jenee L. [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 1015 cm-3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO+) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.

  8. Plasma effects in aligned carbon nanoflake growth by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Cheng, Q.J., E-mail: qijin.cheng@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen 361005 (China); Ostrikov, K. [Plasma Nanoscience Center Australia (PNCA), Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization, PO Box 218, Lindfield 2070, NSW (Australia); Institute for Future Environments and School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Plasma Nanoscience, School of Physics, The University of Sydney, Sydney 2006, NSW (Australia)

    2015-01-15

    Highlights: • Plasma-specific effects in the growth of carbon nanoflakes (CNFs) are studied. • Electic field in the plasma sheath promotes separation of CNFs from the substrate. • The orentention of GNFs is related to the combined electic force and growth effects. • The high growth grates of aligned GNFs are plasma-related. - Abstract: Carbon nanofilms are directly grown on silicon substrates by plasma-enhanced hot filament chemical vapor deposition in methane environment. It is shown that the nanofilms are composed of aligned carbon nanoflakes by extensive investigation of experimental results of field emission scanning electron microscopy, micro-Raman spectroscopy and transmission electron microscopy. In comparison with the graphene-like films grown without plasmas, the carbon nanoflakes grow in an alignment mode and the growth rate of the films is increased. The effects of the plasma on the growth of the carbon nanofilms are studied. The plasma plays three main effects of (1) promoting the separation of the carbon nanoflakes from the silicon substrate, (2) accelerating the motion of hydrocarbon radicals, and (3) enhancing the deposition of hydrocarbon ions onto the substrate surface. Due to these plasma-specific effects, the carbon nanofilms can be formed from the aligned carbon nanoflakes with a high rate. These results advance our knowledge on the synthesis, properties and applications of graphene-based materials.

  9. Investigation of plasma potential and pulsed discharge characteristics in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Lu Qiuyuan; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PII and D) does not require external plasma sources. In this technique, the plasma is produced by self-glow discharge when a high negative voltage is applied to the sample. The small-area, pointed-shape hollow anode and large area tabular cathode form an electron-focused electric field. Using a special electric field design, the electrons from either the plasma or target (secondary electrons) are focused to a special hollow anode. As a result of the special electron-focusing field, the self-glow discharge process can be enhanced to achieve effective ion implantation into the substrate. In this work, the plasma potential distribution is investigated in details and the possible pulse discharge mechanism is discussed. The unique characteristics of the pulsed plasma and plasma extinction are studied.

  10. Optimization of time on CF_4/O_2 etchant for inductive couple plasma reactive ion etching of TiO_2 thin film

    International Nuclear Information System (INIS)

    Adzhri, R.; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M.; Arshad, M. K. Md.; Hashim, U.; Ayub, R. M.

    2016-01-01

    In this work, we investigate the optimum etching of titanium dioxide (TiO_2) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF_4/O_2 gases as plasma etchant with ratio of 3:1, three samples of TiO_2 thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF_4 gases with plasma enhancement by O_2 gas able to break the oxide bond of TiO_2 and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  11. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Won; Lee, Yun-Seong, E-mail: leeeeys@kaist.ac.kr; Chang, Hong-Young [Low-temperature Plasma Laboratory, Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); An, Sang-Hyuk [Agency of Defense Development, Yuseong-gu, Daejeon 305-151 (Korea, Republic of)

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.

  12. Effect of sample matrix on the fundamental properties of the inductively coupled plasma

    International Nuclear Information System (INIS)

    Lehn, Scott A.; Warner, Kelly A.; Huang Mao; Hieftje, Gary M.

    2003-01-01

    In the inductively coupled plasma (ICP), the emission intensities of atomic and ionic spectral lines are controlled by fundamental parameters such as electron temperature, electron number density, gas-kinetic temperature, analyte atom and ion number densities, and others. Accordingly, the effect of a sample matrix on the analyte emission intensity in an ICP might be attributable to changes in these fundamental parameters caused by the matrix elements. In the present study, a plasma imaging instrument that combines Thomson scattering, Rayleigh scattering, laser-induced fluorescence and computed tomography has been employed to measure the above-mentioned parameters in the presence and absence of matrix elements. The data thus obtained were all collected on a spatially resolved basis and without the need for Abel inversion. Calcium, strontium and barium served as analytes, while lithium, copper and zinc were introduced as matrix elements. Comparing the data with and without the matrix elements allows us to determine the extent to which each fundamental parameter changes in the presence of a matrix element, and to better understand the nature of the matrix effects that occur in the ICP. As has been seen in previous studies with different matrix elements, ion emission and ion number densities follow opposite trends when matrix interferents are introduced into the plasma: ion emission is enhanced by the presence of matrix interferents while ion concentrations are lowered. These changes are consistent with a shift from collisional deactivation to radiative decay of excited-state analyte species

  13. Effect of antenna size on electron kinetics in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  14. Analytical solution for a coaxial plasma gun: Weak coupling limit

    International Nuclear Information System (INIS)

    Dietz, D.

    1987-01-01

    The analytical solution of the system of coupled ODE's which describes the time evolution of an ideal (i.e., zero resistance) coaxial plasma gun operating in the snowplow mode is obtained in the weak coupling limit, i.e, when the gun is fully influenced by the driving (RLC) circuit in which it resides but the circuit is negligibly influenced by the gun. Criteria for the validity of this limit are derived and numerical examples are presented. Although others have obtained approximate, asymptotic and numerical solutions of the equations, the present analytical results seem not to have appeared previously in the literature

  15. The determination of transition probabilities with an inductively-coupled plasma discharge

    International Nuclear Information System (INIS)

    Nieuwoudt, G.

    1984-03-01

    The 27 MHz inductively-coupled plasma discharge (ICP) is used for the determination of relative transition probabilities of the 451, 459 and 470 nm argon spectral lines. The temperature of the argon plasma is determined with hydrogen as thermometric specie, because of the accurate transition probabilities ( approximately 1% uncertainty) there of. The relative transition probabilities of the specific argon spectral lines were determined by substitution of the measured spectral radiances thereof, together with the hydrogen temperature, in the two-line equation of temperature measurement

  16. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    International Nuclear Information System (INIS)

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-01-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N 2 -Ar and O 2 -Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N 2 -Ar and O 2 -Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N 2 -Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O 2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O 2 -Ar discharges, the dissociation fraction of O 2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  17. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    International Nuclear Information System (INIS)

    Kwon, Deuk-Chul; Yoon, Jung-Sik

    2011-01-01

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.

  18. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  19. State-space modeling of the radio frequency inductively-coupled plasma generator

    International Nuclear Information System (INIS)

    Dewangan, Rakesh Kumar; Punjabi, Sangeeta B; Mangalvedekar, H A; Lande, B K; Joshi, N K; Barve, D N

    2010-01-01

    Computational fluid dynamics models of RF-ICP are useful in understanding the basic transport phenomenon in an ICP torch under a wide variety of operating conditions. However, these models lack the ability to evaluate the effects of the plasma condition on the RF generator. In this paper, simulation of an induction plasma generator has been done using state space modelling by considering inductively coupled plasma as a part of RF network .The time dependent response of the RF-ICP generator circuit to given input excitation has been computed by extracting the circuit's state-space variables and their constraint matrices. MATLAB 7.1 software has been used to solve the state equations. The values of RF coil current, frequency and plasma power has been measured experimentally also at different plate bias voltage. The simulated model is able to predict RF coil current, frequency, plasma power, overall efficiency of the generator. The simulated and measured values are in agreement with each other. This model can prove useful as a design tool for the Induction plasma generator.

  20. Enhancement of EAST plasma control capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bingjia, E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Yuan, Qiping; Luo, Zhengping; Huang, Yao; Liu, Lei; Guo, Yong; Pei, Xiaofang; Chen, Shuliang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Humphreys, D.A.; Hyatt, A.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Mueller, Dennis [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Calabró, G.; Crisanti, F. [ENEA UnitàTecnicaFusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Albanese, R.; Ambrosino, R. [CREATE, Università di Napoli Federicao II, Università di Cassino and Università di Napoli Parthenope, Via Claudio 19, 80125 Napoli (Italy)

    2016-11-15

    Highlights: • Parallel plasma equilibrium reconstruction using GPU for real-time control on EAST. • Vertical control using Bang-bang + PID method to improve the response and minimize the oscillation caused by the latency. • Quasi-snow flake divertor plasma configuration has been demonstrated on EAST. - Abstract: In order to improve the plasma control performance and enhance the capability for advanced plasma control, new algorithms such as PEFIT/ISOFLUX plasma shape feedback control, quasi-snowflake plasma shape development and vertical control under new vertical control power supply, have been implemented and experimentally tested and verified in EAST 2014 campaign. P-EFIT is a rewritten version of EFIT aiming at fast real-time equilibrium reconstruction by using GPU for parallelized computation. Successful control using PEFIT/ISOFLUX was established in dedicated experiment. Snowfldivertor plasma shape has the advantage of spreading heat over the divertor target and a quasi-snowflake (QSF) configuration was achieved in discharges with I{sub p} = 0.25 MA and B{sub t} = 1.8T, κ∼1.9, by plasma position feedback control. The shape feedback control to achieve QSF shape has been preliminary implemented by using PEFIT and the initial experimental test has been done. For more robust vertical instability control, the inner coil (IC) and its power supply have been upgraded. A new control algorithm with the combination of Bang-bang and PID controllers has been developed. It is shown that new vertical control power supply together with the new control algorithms results in higher vertical controllability.

  1. HEMOFILTRATION AND COUPLED PLASMA FILTRATION ADSORPTION IMPACT ON TACROLIMUS BLOOD CONCENTRATION IN RENAL TRANSPLANT RECIPIENTS

    Directory of Open Access Journals (Sweden)

    A.V. Vatazin

    2014-01-01

    Full Text Available Aim. To study the effect of hemofi ltration and coupled plasma fi ltration adsorption on tacrolimus blood concentration in renal transplant recipients.Methods and results. The study included 8 renal transplant recipients. In these patients immediately after the operation was performed the coupled plasma fi ltration adsorption with hemofiltration using a cartridge Mediasorb to reduce the severity of reperfusion injury. We have found that during this extracorporeal blood correction procedure there was statistically not signifi cant decrease of tacrolimus blood concentration. However, concentration of tacrolimus remained in the therapeutic range even after the procedure and it was not signifi cantly different from the control point С0.Conclusion. Coupled plasma fi ltration adsorption is safe in renal transplant recipients and has no signifi cant impact on tacrolimus blood concentration. However, the downward trend in the concentration of tacrolimus in the course of these procedures, especially in continuous or semicontinuous mode, as well as in patients with low hematocrit and hypoalbuminemia, requires individual monitoring.

  2. [Study of enhancement effect of laser-induced crater on plasma radiation].

    Science.gov (United States)

    Chen, Jin-Zhong; Zhang, Xiao-Ping; Guo, Qing-Lin; Su, Hong-Xin; Li, Guang

    2009-02-01

    Single pulses exported from high-energy neodymium glass laser were used to act on the same position of soil sample surface repeatedly, and the plasma emission spectra generated from sequential laser pulse action were collected by spectral recording system. The experimental results show that the laser-induced soil plasma radiation was enhanced continuously under the confinement effect of the crater walls, and the line intensities and signal-to-background ratios both had different improvements along with increasing the number of acting pulses. The photographs of the plasma image and crater appearance were taken to study the plasma shape, laser-induced crater appearance, and the mass of the ablated sample. The internal mechanism behind that laser-induced crater enhanced plasma radiation was researched. Under the sequential laser pulse action, the forming plasma as a result enlarges gradually first, leading to distortion at the trail of plasma plume, and then, its volume diminishes slowly. And also, the color of the plasma changes from buff to white gradually, which implies that the temperature increases constantly. The laser-induced crater had a regular shape, that is, the diameter increased from its bottom to top gradually, thus forming a taper. The mass of the laser-ablated substance descends along with increasing the amount of action pulse. Atomization degree of vaporized substance was improved in virtue of the crater confinement effect, Fresnel absorption produced from the crater walls reflection, and the inverse bremsstrahlung, and the plasma radiation intensity was enhanced as a result.

  3. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  4. Application of a particle separation device to reduce inductively coupled plasma-enhanced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Guillong, Marcel; Kuhn, Hans-Rudolf; Guenther, Detlef

    2003-01-01

    The particle size distribution of laser ablation aerosols are a function of the wavelength, the energy density and the pulse duration of the laser, as well as the sample matrix and the gas environment. Further the size of the particles affects the vaporization and ionization efficiency in the inductively coupled plasma (ICP). Some matrices produce large particles, which are not completely vaporized and ionized in the ICP. The previous work has shown that analytical results such as matrix-independent calibration, accuracy and precision can be significantly influenced by the particle sizes of the particles. To minimize the particle size related incomplete conversion of the sample to ions in the ICP a particle separation device was developed, which allows effective particle separation using centrifugal forces in a thin coiled tube. In this device, the particle cut-off size is varied by changing the number of turns in the coil, as well as by changing the gas flow and the tube diameter. The interaction of the laser with the different samples leads to varying particle size distributions. When carrying out quantitative analysis with non-matrix matched calibration reference materials, it was shown that different particle cut-off sizes were required depending on the ICP conditions and the instrument used for analysis. Various sample materials were investigated in this study to demonstrate the applicability of the device. For silicate matrices, the capability of the ICP to produce ions was significantly reduced for particles larger than 0.5 μm, and was dependent on the element monitored. To reduce memory effects caused by the separated particles, a washout procedure was developed, which additionally allowed the analysis of the trapped particles. These results clearly demonstrate the very important particle size dependent ICP-MS signal response and the potential of the described particle size based separator for the reduction of ICP induced elemental fractionation

  5. Enhanced stimulated Raman scattering by femtosecond ultraviolet plasma grating in water

    Science.gov (United States)

    Liu, Fengjiang; Yuan, Shuai; He, Boqu; Nan, Junyi; Khan, Abdul Qayyum; Ding, Liang'en; Zeng, Heping

    2018-02-01

    Efficient forward stimulated Raman scattering (SRS) was observed along 400-nm femtosecond (fs) laser filaments in water. SRS conversion dominated over self-phase modulation induced continuum generation as the input pulse energy was above 4 μJ (˜30 Pcr), implying that plasma in the aqueous filamentation channel played an important role in compensating for the group velocity walk-off between the pump and Stokes pulses. By overlapping two synchronous fs 400-nm filaments to form plasma grating in water, significant enhancement of SRS conversion was observed. Such a SRS enhancement originated from the ultrahigh plasma density in the intersection region of the preformed plasma grating.

  6. Multi-chord fiber-coupled interferometry of supersonic plasma jets (invited)

    International Nuclear Information System (INIS)

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Thoma, Carsten; Loverich, John; Hsu, Scott C.

    2012-01-01

    A multi-chord fiber-coupled interferometer is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which both positive and negative phase shift values are observed depending on the ionization fraction. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity (∼15–50 km/s), jet length (∼20–100 cm), and 3D expansion.

  7. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  8. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  9. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  10. Electromagneto-mechanical coupling analysis of a test module in J-TEXT Tokamak during plasma disruption

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Haijie; Yuan, Zhensheng; Yuan, Hongwei; Pei, Cuixiang [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shanxi Engineering Research Center for NDT and Structural Integrity Evaluation Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Zhenmao, E-mail: chenzm@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shanxi Engineering Research Center for NDT and Structural Integrity Evaluation Xi’an Jiaotong University, Xi’an 710049 (China); Yang, Jinhong; Wang, Weihua [Institute of Applied Physics of AOA, Hefei 230031 (China)

    2016-11-01

    In this paper, the dynamic response during plasma disruption of a test blanket module in vacuum vessel (VV) of the Joint TEXT (J-TEXT), which is an experimental Tokamak device with iron core, was simulated by applying a program developed by authors on the ANSYS platform using its parametric design language (APDL). The moving coordinate method as well as the load transfer and sequential coupling strategy were adopted to cope with the electromagneto-mechanical coupling effect. To establish the numerical model, the influence of the iron core on the eddy current and electromagnetic (EM) force during disruption was numerically investigated at first and the influence was found not significant. Together with the geometrical features of the J-TEXT Tokamak structure, 180° sector models without magnetic core were finally established for the EM field and the structural response simulations. To obtain the source plasma current, the plasma current evolution during disruption was simulated by using the Tokamak Simulation Code (TSC). With the numerical models and the source plasma current, the dynamic response of both the VV structure and the test module were calculated. The numerical results show that the maximum stress of the test module is in safe range, and the magnetic damping effect can weaken vibration of the test module. In addition, simulation without considering the coupling effect was carried out, which shows that the influence of coupling effect is not significant for the peak stress of the J-TEXT disruption problem.

  11. Trace determination of Pu by LIF in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Mauchien, P.; Briand, A.; Moulin, C.

    1989-01-01

    Inductively Coupled Plasma/Emission Spectrometry (ICP/ES) technique is largely used in the nuclear industry as an elementary analytical technique. Nevertheless, when the sample to analyse presents elements with a lot of emission spectral lines, spectral interferences lead to limited sensitivity. This is the case for Pu determination in presence of large U concentration. In pure aqueous solution, the limit of detection (LOD) for Pu is 10 μg/1. In presence of U, the LOD is determined by a ratio U/Pu = 1000. Pulsed Laser Induced Fluorescence (LIF) spectrometry is known to be a very selective technique when associated with an Inductively Coupled Plasma source. The absolute sensitivity is better by 2 or 3 orders of magnitude; its principle is based on selective excitation of the ionic species in the plasma followed by fluorescence radiation detection of these species; this radiation being practically free from spectral interferences, it is possible to improve the relative LOD. In this presentation, experimental results performed at Cogema/Marcoule laboratory are presented. After the experimental set-up description, first results of LIF are shown: - very good selectivity is effectively obtained, - a series of analytical results obtained with excitation scanning from the visible to the U.V. show that sensitivity of LIF technique is strictly related to the spectroscopic scheme

  12. Fluid model of inductively coupled plasma etcher based on COMSOL

    International Nuclear Information System (INIS)

    Cheng Jia; Ji Linhong; Zhu Yu; Shi Yixiang

    2010-01-01

    Fluid dynamic models are generally appropriate for the investigation of inductively coupled plasmas. A commercial ICP etcher filled with argon plasma is simulated in this study. The simulation is based on a multiphysical software, COMSOL(TM), which is a partial differential equation solver. Just as with other plasma fluid models, there are drift-diffusion approximations for ions, the quasi-neutrality assumption for electrons movements, reduced Maxwell equations for electromagnetic fields, electron energy equations for electron temperatures and the Navier-Stokes equation for neutral background gas. The two-dimensional distribution of plasma parameters are shown at 200 W of power and 1.33 Pa (10 mTorr) of pressure. Then the profile comparison of the electron number density and temperature with respect to power is illustrated. Finally we believe that there might be some disagreement between the predicted values and the real ones, and the reasons for this difference would be the Maxwellian eedf assumption and the lack of the cross sections of collisions and the reaction rates. (semiconductor physics)

  13. Similarity analysis for the high-pressure inductively coupled plasma source

    International Nuclear Information System (INIS)

    Vanden-Abeele, D; Degrez, G

    2004-01-01

    It is well known that the optimal operating parameters of an inductively coupled plasma (ICP) torch strongly depend upon its dimensions. To understand this relationship better, we derive a dimensionless form of the equations governing the behaviour of high-pressure ICPs. The requirement of similarity then naturally leads to expressions for the operating parameters as a function of the plasma radius. In addition to the well-known scaling law for frequency, surprising results appear for the dependence of the mass flow rate, dissipated power and operating pressure upon the plasma radius. While the obtained laws do not appear to be in good agreement with empirical results in the literature, their correctness is supported by detailed numerical calculations of ICP sources of varying diameters. The approximations of local thermodynamic equilibrium and negligible radiative losses restrict the validity of our results and can be responsible for the disagreement with empirical data. The derived scaling laws are useful for the design of new plasma torches and may provide explanations for the unsteadiness observed in certain existing ICP sources

  14. Hydrogen plasma enhanced alignment on CNT-STM tips grown by liquid catalyst-assisted microwave plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Tung, Fa-Kuei; Yoshimura, Masamichi; Ueda, Kazuyuki; Ohira, Yutaka; Tanji, Takayoshi

    2008-01-01

    Carbon nanotubes are grown directly on a scanning tunneling microscopy tip by liquid catalyst-assisted microwave-enhanced chemical vapor deposition, and effects of hydrogen plasma treatment on the tip have been investigated in detail by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Raman spectroscopy. The unaligned CNTs on the as-grown tip apex have been realigned and reshaped by subsequent hydrogen plasma treatment. The diameter of CNTs is enlarged mainly due to amorphous layers being re-sputtered over their outer shells

  15. Ion deposition by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Hu, K.; Houk, R.S.

    1996-01-01

    An atmospheric pressure inductively coupled plasma (ICP) is used with a quadrupole mass spectrometer (MS) for ion deposition. The deposited element is introduced as a nebulized aqueous solution. Modifications to the ICP-MS device allow generation and deposition of a mass-resolved beam of 165 Ho + at 5x10 12 ions s -1 . The ICP is a universal, multielement ion source that can potentially be used for applications such as deposition of mixtures of widely varying stoichiometry or of alternating layers of different elements. copyright 1996 American Vacuum Society

  16. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    International Nuclear Information System (INIS)

    Totsuji, Hiroo

    2008-01-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  17. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    Science.gov (United States)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  18. Basic Properties of Plasma-Neutral Coupling in the Solar Atmosphere

    Science.gov (United States)

    Goodman, Michael

    2015-04-01

    Plasma-neutral coupling (PNC) in the solar atmosphere concerns the effects of collisions between charged and neutral species’. It is most important in the chromosphere, which is the weakly ionized, strongly magnetized region between the weakly ionized, weakly magnetized photosphere and the strongly ionized, strongly magnetized corona. The charged species’ are mainly electrons, protons, and singly charged heavy ions. The neutral species’ are mainly hydrogen and helium. The resistivity due to PNC can be several orders of magnitude larger than the Spitzer resistivity. This enhanced resistivity is confined to the chromosphere, and provides a highly efficient dissipation mechanism unique to the chromosphere. PNC may play an important role in many processes such as heating and acceleration of plasma; wave generation, propagation, and dissipation; magnetic reconnection; maintaining the near force-free state of the corona; and limiting mass flux into the corona. It might play a major role in chromospheric heating, and be responsible for the existence of the chromosphere as a relatively thin layer of plasma that emits a net radiative flux 10-100 times greater than that of the overlying corona. The required heating rate might be generated by Pedersen current dissipation triggered by the rapid increase of magnetization with height in the lower chromosphere, where most of the net radiative flux is emitted. Relatively cool regions of the chromosphere might be regions of minimal Pedersen current dissipation due to smaller magnetic field strength or perpendicular current density. This talk will discuss PNC from an MHD point of view, and focus on the basic parameters that determine its effectiveness. These parameters are ionization fraction, magnetization, and the electric field that drives current perpendicular to the magnetic field. By influencing this current and the electric field that drives it, PNC directly influences the rate at which energy is exchanged between the

  19. Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas

    DEFF Research Database (Denmark)

    Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.

    2003-01-01

    Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear......, with the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid model...... explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental frequency radial...

  20. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH{sub 3} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak, E-mail: zam89blue@gmail.com [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-09-14

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH{sub 3} plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (R{sub bulk}) and the sheath region (R{sub sheath}). Reduction and nitridation of the GO films began as soon as the NH{sub 3} plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the R{sub bulk}, NH{sub 3} plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the R{sub sheath}, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the R{sub bulk} using capacitively coupled NH{sub 3} plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  1. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Cheol [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hyun-Jun; Lee, Hyo-Chang; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2015-12-15

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10% by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.

  2. Enhancement of thermoelectric figure-of-merit in laterally-coupled nanowire arrays

    International Nuclear Information System (INIS)

    Zhang, Yiqun; Shi, Yi; Pu, Lin; Wang, Junzhuan; Pan, Lijia; Zheng, Youdou

    2011-01-01

    A high ZT value is predicted in laterally-coupled nanowire arrays. The quantum confinement and coupling of electrons are considered in the framework of effective-mass envelope-function theory. The boundary scattering on phonons is also taken into account. The thermoelectric properties benefit from the large Seebeck coefficient and dramatically reduced lattice thermal conductivity, as well as the preserved electronic conductivity in the minibands of the coupling nanowires. The enhancement of ZT to more than 10-fold is achieved in the n-type Si nanowires/Ge host material. Results suggest that the laterally-coupled nanowire arrays can be designed for high-performance thermoelectric devices. -- Highlights: → A high ZT value is predicted in the lateral-coupling nanowire arrays. → The lattice thermal conductivity is dramatically reduced in the lateral direction of nanowire arrays. → The electron transport is preserved in the lateral direction due to the coupling effect. → The ZT value is largely enhanced as the nanowire volume fraction exceeds some critical point.

  3. Global (volume-averaged) model of inductively coupled chlorine plasma : influence of Cl wall recombination and external heating on continuous and pulse-modulated plasmas

    NARCIS (Netherlands)

    Kemaneci, E.H.; Carbone, E.A.D.; Booth, J.P.; Graef, W.A.A.D.; Dijk, van J.; Kroesen, G.M.W.

    An inductively coupled radio-frequency plasma in chlorine is investigated via a global (volume-averaged) model, both in continuous and square wave modulated power input modes. After the power is switched off (in a pulsed mode) an ion–ion plasma appears. In order to model this phenomenon, a novel

  4. New approach to the determination phosphorothioate oligonucleotides by ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Studzińska, Sylwia; Mounicou, Sandra; Szpunar, Joanna; Łobiński, Ryszard; Buszewski, Bogusław

    2015-01-15

    This text presents a novel method for the separation and detection of phosphorothioate oligonucleotides with the use of ion pair ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry The research showed that hexafluoroisopropanol/triethylamine based mobile phases may be successfully used when liquid chromatography is coupled with such elemental detection. However, the concentration of both HFIP and TEA influences the final result. The lower concentration of HFIP, the lower the background in ICP-MS and the greater the sensitivity. The method applied for the analysis of serum samples was based on high resolution inductively coupled plasma mass spectrometry. Utilization of this method allows determination of fifty times lower quantity of phosphorothioate oligonucleotides than in the case of quadrupole mass analyzer. Monitoring of (31)P may be used to quantify these compounds at the level of 80 μg L(-1), while simultaneous determination of sulfur is very useful for qualitative analysis. Moreover, the results presented in this paper demonstrate the practical applicability of coupling LC with ICP-MS in determining phosphorothioate oligonucleotides and their metabolites in serum within 7 min with a very good sensitivity. The method was linear in the concentration range between 0.2 and 3 mg L(-1). The limit of detection was in the range of 0.07 and 0.13 mg L(-1). Accuracy varied with concentration, but was in the range of 3%. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of electromagnetic waves and higher harmonics in capacitively coupled plasma phenomena

    International Nuclear Information System (INIS)

    Upadhyay, R R; Sawada, I; Ventzek, P L G; Raja, L L

    2013-01-01

    High-resolution self-consistent numerical simulation of electromagnetic wave phenomena in an axisymmetric capacitively coupled plasma reactor is reported. A prominent centre-peaked plasma density profile is observed for driving frequencies of 60 MHz and is consistent with observations in the literature and accompanying experimental studies. A power spectrum of the simulated wave electric field reveals the presence of well-resolved high frequency harmonic content up to the 20th harmonic of the excitation frequency; an observation that has also been reported in experiments. Importantly, the simulation results reveal that the occurrence of higher harmonics is strongly correlated with the occurrence of a centre-peaked plasma density profile. (fast track communication)

  6. Patterned deposition by atmospheric pressure plasma-enhanced spatial atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Kniknie, B.J.; Branca, A.; Winands, G.J.J.; Roozeboom, F.

    2011-01-01

    An atmospheric pressure plasma enhanced atomic layer deposition reactor has been developed, to deposit Al2O3 films from trimethyl aluminum and an He/O2 plasma. This technique can be used for 2D patterned deposition in a single in-line process by making use of switched localized plasma sources. It

  7. Inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Price Russ, G. III

    1993-01-01

    Inductively coupled plasma source mass spectrometry (ICP-MS) is a relatively new (5 y commercial availability) technique for simultaneously determining the concentration and isotopic composition of a large number of elements at trace levels. The principle advantages of ICP-MS are the ability to measure essentially all the metallic elements at concentrations as low as 1 part in 10 12 by weight, to analyse aqueous samples directly, to determine the isotopic composition of essentially all the metallic elements, and to analyse samples rapidly (minutes). The history of the development of ICP-MS and discussions of a variety of applications have been discussed in detail in Date and Gray (1988). Koppenaal (1988, 1990) has reviewed the ICP-MS literature. In that ICP-MS is a relatively new and still evolving technique, this chapter will discuss potential capability more than proven performance. (author). 24 refs

  8. Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry by direct injection nebulization for selenium speciation

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente; Jons, O.

    2001-01-01

    A demountable direct injection high efficiency nebulizer operating at low sample uptake rates was developed and used for coupling of capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS). When the nebulizer was used for continuous sample introduction, detection...

  9. Stable explicit coupling of the Yee scheme with a linear current model in fluctuating magnetized plasmas

    International Nuclear Information System (INIS)

    Silva, Filipe da; Pinto, Martin Campos; Després, Bruno; Heuraux, Stéphane

    2015-01-01

    This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence

  10. Line photon transport in a non-homogeneous plasma using radiative coupling coefficients

    International Nuclear Information System (INIS)

    Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Minguez, E.

    2006-01-01

    We present a steady-state collisional-radiative model for the calculation of level populations in non-homogeneous plasmas with planar geometry. The line photon transport is taken into account following an angle- and frequency-averaged escape probability model. Several models where the same approach has been used can be found in the literature, but the main difference between our model and those ones is that the details of geometry are exactly treated in the definition of coupling coefficients and a local profile is taken into account in each plasma cell. (authors)

  11. The nonlinear coupling between gyroradius scale turbulence and mesoscale magnetic islands in fusion plasmas

    International Nuclear Information System (INIS)

    Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.

    2010-01-01

    The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.

  12. Sterilization of beehive material with a double inductively coupled low pressure plasma

    International Nuclear Information System (INIS)

    Priehn, M; Leichert, L I; Denis, B; Awakowicz, P; Aumeier, P; Kirchner, W H

    2016-01-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae . Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs. (paper)

  13. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  14. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  15. Initial design for an experimental investigation of strongly coupled plasma behavior in the ATLAS facility

    CERN Document Server

    Munson, C P; Taylor, A J; Trainor, R J; Wood, B P; Wysocki, F J

    1999-01-01

    Summary form only given. Atlas is a high current (~30 MA peak, with a current risetime ~4.5 mu sec), high energy (E/sub stored/=24 MJ, E /sub load/=3-6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (>20 Mbar), adiabatic compression ( rho / rho /sub 0/>5, P>10 Mbar), high magnetic fields (~2000 T), high strain and strain rates ( epsilon >200, d epsilon /dt~10/sup 4/ to 10/sup 6/ s/sup -1/), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (<0.1 solid), relatively cold (~1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This target plasma will be compressed against a central column conta...

  16. Atlas of atomic spectral lines of plutonium emitted by an inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Edelson, M.C.; DeKalb, E.L.; Winge, R.K.; Fassel, V.A.

    1986-09-01

    Optical emission spectra from high-purity Pu-242 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 2280 to 7008 Angstrom wavelength range are presented along with general commentary on ICP-Pu spectroscopy.

  17. Separation and analysis of lanthanides by isotachophoresis coupled with inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene

    2012-01-01

    This study is a large project initiated by the French Nuclear Agency, and concerns the development of a new electrolyte system for the separation of lanthanides by isotachophoresis. This new system is based on a leading electrolyte that incorporates 2-hydroxy-2-methylbutyric acid as complexing agent. The optimization of separation conditions (complexing agent concentration, pH, capillary dimensions, injection conditions, and current intensity) performed by experiments on a commercial capillary instrument with contactless conductivity detection, which allows to improve the separation of 13 lanthanides (La to Lu, except Pm and Ho). We have also directly coupled the isotachophoresis to an inductively coupled plasma mass spectrometer to visualize the mono-elementary elution bands and demonstrate the potentiality of the method for isotope ratio measurements. The application to a simulated solution representative of a fraction of fission products present in a MOX spent fuel is presented in this paper to demonstrate the possible application in future on nuclear fuel samples. (authors)

  18. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  19. Enhancing the Robustness of the Microcavity Coupling System

    International Nuclear Information System (INIS)

    Yan Ying-Zhan; Zhang Wen-Dong; Xiong Ji-Jun; Ji Zhe; Yan Shu-Bin; Liu Jun; Xue Chen-Yang

    2011-01-01

    A novel method to enhance the robustness of the microcavity coupling system (MCS) is presented by encapsulating and solidifying the MCS with a low refractive index (RI) curable UV polymer. The encapsulating process is illustrated in detail for a typical microsphere with a radius of R about 240μm. Three differences of the resonant characteristics before and after the package are observed and analyzed. The first two differences refer to the enhancement of the coupling strength and the shift of the resonant spectrum to the longer wavelength, which are both mainly because of the microsphere surrounding RI variation. Another difference is the quality factor (Q-factor) which decreases from 7.8×10 7 to 8.7×10 6 after the package due to the polymer absorption. Moreover, rotation testing experiments have been carried out to verify the robustness of the package MCS. Experimental results demonstrate that the packaged MCR has much better robust performance than the un-package sample. The enhancement of the robustness greatly promotes the microcavity research from fundamental investigations to application fields. (fundamental areas of phenomenology(including applications))

  20. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  1. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  2. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.

    Science.gov (United States)

    Dechana, A; Thamboon, P; Boonyawan, D

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.

  3. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dechana, A. [Program of Physics and General Science, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000 (Thailand); Thamboon, P. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  4. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Science.gov (United States)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  5. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    International Nuclear Information System (INIS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-01-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al 2 O 3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al 2 O 3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed

  6. Infinitely high etch selectivity during CH4/H2/Ar inductively coupled plasma (ICP) etching of indium tin oxide (ITO) with photoresist mask

    International Nuclear Information System (INIS)

    Kim, D.Y.; Ko, J.H.; Park, M.S.; Lee, N.-E.

    2008-01-01

    Under certain conditions during ITO etching using CH 4 /H 2 /Ar inductively coupled plasmas, the etch rate selectivity of ITO to photoresist (PR) was infinitely high because the ITO films continued to be etched, but a net deposition of the α-C:H layer occurred on the top of the PR. Analyses of plasmas and etched ITO surfaces suggested that the continued consumption of the carbon and hydrogen in the deposited α-C:H layer by their chemical reaction with In and Sn atoms in the ITO resulting in the generation of volatile metal-organic etch products and by the ion-enhanced removal of the α-C:H layer presumably play important roles in determining the ITO etch rate and selectivity

  7. Inductively coupled plasma emission spectroscopy. Part II: applications and fundamentals. Volume 2

    International Nuclear Information System (INIS)

    Boumans, P.W.J.M.

    1987-01-01

    This is the second part of the two-volume treatise by this well-known and respected author. This volume reviews applications of inductively coupled plasma atomic emission spectroscopy (ICP-AES), summarizes fundamental studies, and compares ICP-AES methods with other methods of analysis. The first six chapters are devoted to specific fields of application, including the following: metals and other industrial materials, geology, the environment, agriculture and food, biology and clinical analysis, and organic materials. The chapter on the analysis of organic materials also covers the special instrumental considerations required when organic solvents are introduced into an inductively coupled plasma. A chapter on the direct analysis of solids completes the first part of this volume. Each of the applications chapters begins with a summary of the types of samples that are encountered in that field, and the kinds of problems that an elemental analysis can help to solve. This is followed by a tutorial approach covering applicability, advantages, and limitations of the methods. The coverage is thorough, including sample handling, storage, and preparation, acid, and fusion dissolution, avoiding contamination, methods of preconcentration, the types of interferences that can be expected and ways to reduce them, and the types of ICP plasmas that are used. The second half of the volume covers fundamental studies of ICP-AES: basic processes of aerosol generation, plasma modeling and computer simulation, spectroscopic diagnostics, excitation mechanisms, and discharge characteristics. This section introduces the experimental and modeling methods that have been used to obtain fundamental information about ICPs

  8. Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review

    International Nuclear Information System (INIS)

    Sánchez, Raquel; Todolí, José Luis; Lienemann, Charles-Philippe; Mermet, Jean-Michel

    2013-01-01

    The fundamentals, applications and latter developments of petroleum products analysis through inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are revisited in the present bibliographic survey. Sample preparation procedures for the direct analysis of fuels by using liquid sample introduction systems are critically reviewed and compared. The most employed methods are sample dilution, emulsion or micro-emulsion preparation and sample decomposition. The first one is the most widely employed due to its simplicity. Once the sample has been prepared, an organic matrix is usually present. The performance of the sample introduction system (i.e., nebulizer and spray chamber) depends strongly upon the nature and properties of the solution finally obtained. Many different devices have been assayed and the obtained results are shown. Additionally, samples can be introduced into the plasma by using an electrothermal vaporization (ETV) device or a laser ablation system (LA). The recent results published in the literature showing the feasibility, advantages and drawbacks of latter alternatives are also described. Therefore, the main goal of the review is the discussion of the different approaches developed for the analysis of crude oil and its derivates by inductively coupled plasma (ICP) techniques. - Highlights: • Analysis of petroleum products by inductively coupled plasma techniques is revisited. • Fundamental studies are included together with reports dealing with applications. • Conventional and non-conventional sample introduction methods are considered. • Sample preparation methods are critically compared and described

  9. Room temperature inductively coupled plasma etching of InAs/InSb in BCl 3/Cl 2/Ar

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen

    2012-01-01

    Inductively coupled plasma (ICP) etching of InAs and InSb at room temperature has been investigated using BCl 3/Cl 2/Ar plasma. Specifically, the etch rate and post-etching surface morphology were investigated as functions of the gas composition

  10. Flow injection analysis in inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Rosias, Maria F.G.G.

    1995-10-01

    The main features of flow injection analysis (FIA) as contribution to the inductively coupled plasma (Icp) spectrometry are described. A systematic review of researches using the combined FIA-Icp and the benefits of this association are presented. Flow systems were proposed to perform on-line Icp solution management for multielemental determination by atomic emission spectrometry (Icp-AES) or mass spectrometry. The inclusion of on-line ion exchangers in flow systems for matrix separation and/or analyte preconcentration are presented. Together with those applications the new advent of instruments with facilities for multielement detection on flow injection signals are described. (author). 75 refs., 19 figs

  11. Drag force in a strongly coupled anisotropic plasma

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2012-08-01

    We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient μ can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically μ ∝ p. We discuss the conditions under which this behaviour may extend to more general situations.

  12. Capacitively coupled radio-frequency plasmas excited by tailored voltage waveforms

    International Nuclear Information System (INIS)

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V

    2013-01-01

    By applying certain types of ‘tailored’ voltage waveforms (TVWs) to capacitively coupled plasmas, a dc self-bias and an asymmetric plasma response can be produced, even in geometrically symmetric reactors. Furthermore, these arbitrary applied waveforms can produce a number of interesting phenomena that are not present in typical single-frequency sinusoidal discharges. This electrical asymmetry effect presents emerging possibilities for the improved control of the ion energy and ion flux in these systems; parameters of vital importance to both etching and deposition applications for materials processing. With a combined research approach utilizing both experimental measurements, and particle-in-cell simulations, we review and extend recent investigations that study a particular class of TVW. The waveforms used have a pulse-type shape and are composed of a varying number of harmonic frequencies. This allows a strong self-bias to be produced, and causes most of the applied voltage to be dropped across a single sheath. Additionally, decreasing the pulse width (by increasing the number of harmonics), allows the plasma density and ion flux to be increased. Simulation and experimental results both demonstrate that this type of waveform can be used to separately control the ion flux and ion energy, while still producing a uniform plasma over large area (50 cm diameter) rf electrodes. (paper)

  13. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection

    DEFF Research Database (Denmark)

    Nguyen, Tam T T N; Østergaard, Jesper; Gammelgaard, Bente

    2015-01-01

    An analytical method based on capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICP-MS) detection was developed for studies on the interaction of gold-containing drugs and plasma proteins using auranofin as example. A detection limit of 18 ng/mL of auranofin corresp...

  14. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    International Nuclear Information System (INIS)

    Feng Yan; Goree, J.; Liu Bin

    2011-01-01

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.

  15. Characterization of a rotating nanoparticle cloud in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Schulze, M; Keudell, A von; Awakowicz, P

    2006-01-01

    Carbon clusters with diameters in the range of 10 to 50 nm are produced by injecting pulses of acetylene into an inductively coupled plasma in argon and helium. The injection causes plasma instability, which becomes visible as an oscillation of the emission intensity. The frequency of this oscillation can be uniquely correlated to the particle diameter. Consequently, the measurement of the oscillation frequency represents a method to determine particle diameters in situ. The oscillation corresponds to the rotation of a localized plasmoid and a particle cloud around the symmetry axis of the reactor. It is assumed that this rotation is driven by the ion wind crossing the interface between the plasmoid and the particle cloud

  16. Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Blair, Sandra L.; Ng, Nga L.; Zambrzycki, Stephen C.; Li, Anyin; Fernández, Facundo M.

    2018-02-01

    In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. [Figure not available: see fulltext.

  17. Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Schäfer, J.; Fricke, K.; Mika, Filip; Pokorná, Zuzana; Zajíčková, L.; Foest, R.

    2017-01-01

    Roč. 630, MAY 30 (2017), s. 71-78 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : plasma jet * liquid assisted plasma enhanced chemical * vapour deposition * silicon oxide Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Coating and films Impact factor: 1.879, year: 2016

  18. The concept of coupling impedance in the self-consistent plasma wake field excitation

    International Nuclear Information System (INIS)

    Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.

    2016-01-01

    Within the framework of the Vlasov–Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.

  19. Measurement of nonlinear mode coupling of tearing fluctuations

    International Nuclear Information System (INIS)

    Assadi, S.; Prager, S.C.; Sidikman, K.L.

    1992-03-01

    Three-wave nonlinear coupling of spatial Fourier modes is measured in the MST reversed field pinch by applying bi-spectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 polodial modes and 32 toroidal modes. Comparison to bi-spectra predicted by MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomittant with a broadened (presumably nonlinearly generated) k-spectrum

  20. Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor: Two dimensional simulations

    Institute of Scientific and Technical Information of China (English)

    Xiang Xu; Hao Ge; Shuai Wang; Zhongling Dai; Younian Wang; Aimin Zhu

    2009-01-01

    A two-dimensional (2D) fluid model is presented to study the discharge of argon in a dual frequency capacitively coupled plasma (CCP) reactor. We are interested in the influence of low-frequency (LF) source parameters such as applied voltage amplitudes and low frequencies on the plasma characteristics. In this paper, the high frequency is set to 60 MHz with voltage 50 V. The simulations were carried out for low frequencies of 1, 2 and 6 MHz with LF voltage 100 V, and for LF voltages of 60, 90 and 120 V with low frequency 2 MHz. The results of 2D distributions of electric field and ion density, the ion flux impinging on the substrate and the ion energy on the powered electrode are shown. As the low frequency increases, two sources become from uncoupling to coupling, When two sources are uncoupling, the increase in LF has little impact on the plasma characteristics, but when two sources are coupling, the increase in LF decreases the uniformities of ion density and ion flux noticeably. It is also found that with the increase in LF voltage, the uniformities in the radial direction of ion density distribution and ion flux at the powered electrode decreases significantly, and the energy of ions bombarding on the powered electrode increases significantly.

  1. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Ana Luz Muñoz-Rosas

    2018-03-01

    Full Text Available Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC-sputtering technique, and an aluminum doped zinc oxide thin film (AZO which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.

  2. Determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Björn, Erik; Nygren, Yvonne; Nguyen, Tam T. T. N.

    2007-01-01

    A fast and robust method for the determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry was developed, characterized, and validated. Samples of isolated DNA and exosome fractions from human ovarian (2008) and melanoma (T289) cancer cell lines w...

  3. Optimization of time on CF{sub 4}/O{sub 2} etchant for inductive couple plasma reactive ion etching of TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); Arshad, M. K. Md., E-mail: mohd.khairuddin@unimap.edu.my; Hashim, U.; Ayub, R. M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia)

    2016-07-06

    In this work, we investigate the optimum etching of titanium dioxide (TiO{sub 2}) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF{sub 4}/O{sub 2} gases as plasma etchant with ratio of 3:1, three samples of TiO{sub 2} thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF{sub 4} gases with plasma enhancement by O{sub 2} gas able to break the oxide bond of TiO{sub 2} and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  4. Strongly coupled Coulomb systems with positive dust grains: thermal and UV-induced plasmas

    International Nuclear Information System (INIS)

    Samarian, A.A.

    2000-01-01

    Full text: A plasma containing macroscopic dust particles or grains (often referred to as a dusty or colloidal or complex plasma) has the feature that grains may be charged by electron or ion flux or by photo- or thermoelectron emission. Electron emission from a grain surface produces a positive charge; capture of electrons produces the reverse effect making the dust grains negatively charged. Most dusty plasma research is concerned with the ordered dust structures (so-called 'plasma crystal') in glow discharges. The dust grains in these experiments were found to carry a negative charge due to the higher mobility of electrons as compared to ions in the discharge plasma. In recent years, in parallel with the study of the properties of plasma crystals under discharge conditions, attempts to obtain a structure from positively charged dust grains have been made, and structure formation processes for various charging mechanisms, particularly thermoelectron emission and photoemission, have been investigated. In this paper we review the essential features of strongly coupled plasmas with positive dust grains. An ordered structure of CeO 2 grains has been experimentally observed in a combustion products jet. The grains were charged positively and suspended in the plasma flow. Their charge is about 10 3 a and the calculated value of a Coulomb coupling parameter Γ is >10, corresponding to a plasma liquid. The ordered structures of Al 2 O 3 dust grains in propellant combustion products plasma have been observed for the first time. These structures were found in the sheath boundary of condensation region. The obtained data let us estimate the value of parameter Γ =3-40, corresponding to the plasma liquid state. The possibility is studied of the formation of ordered dust grain structures in thermal plasma. The range of the required values of the coupling parameter Γ is calculated using the results of diagnostic measurements carried out in thermal plasma with grains of

  5. Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling

    Science.gov (United States)

    Urbano, Francisco J.; Leznik, Elena; Llinás, Rodolfo R.

    2007-01-01

    Modafinil (Provigil, Modiodal), an antinarcoleptic and mood-enhancing drug, is shown here to sharpen thalamocortical activity and to increase electrical coupling between cortical interneurons and between nerve cells in the inferior olivary nucleus. After irreversible pharmacological block of connexin permeability (i.e., by using either 18β-glycyrrhetinic derivatives or mefloquine), modafinil restored electrotonic coupling within 30 min. It was further established that this restoration is implemented through a Ca2+/calmodulin protein kinase II-dependent step. PMID:17640897

  6. Trace metal analysis of road dust by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Powell, M.J.; Liu, L.; Gnanalingham, N.; Peters, L.

    2000-01-01

    Dust from roads in an air impingement zone close to anthropogenic sources of air pollutants can be a concern for people living in the immediate vicinity. The Ministry of the Environment (MOE) has conducted a case study to monitor the concentration of uranium, strontium, thorium and arsenic in road dust from one such area. A method for the analysis of road dust by inductively coupled plasma mass spectrometry (ICP-MS) has been developed with detection limits in the ng/1 range. A digestion technique has been developed by conducting experiments using single and combinations of acids in open-vessel wet digestions. Accuracy has been determined by the use of matrix representative certified reference materials (CRMs). Digestion precision was determined by elemental concentration measurements of the most representative CRM through replicates. Spike recovery data were from 95% to 110% for all elements, and inter-method comparison studies between hydride generation atomic absorption spectrometry (AAS) inductively coupled plasma atomic emission spectrometry (ICP-AES) and ICP-MS for arsenic and strontium show good agreement. (author)

  7. A Comparison of Gestalt and Relationship Enhancement Treatments with Married Couples.

    Science.gov (United States)

    Jessee, Randall E.; Guerney, Bernard G., Jr.

    1981-01-01

    Compared the effectiveness of Relationship Enhancement and Gestalt Relationship Facilitation. Results indicated couples (N=36) in both groups made significant gains, but Relationship Enhancement participants achieved greater gains in communication, relationship satisfaction, and ability to handle problems. (Author/JAC)

  8. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, N A D [Department of Physics, Gomal Unversity, D I Khan (Pakistan); Ahmad, Zahoor; Murtaza, G [National Tokamak Fusion Program, PAEC, Islamabad (Pakistan); Zakaullah, M [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: ktk_nad@yahoo.com

    2008-04-15

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B{sub z} (in magnitudes), if the switching time for the additional current is properly synchronized.

  9. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    International Nuclear Information System (INIS)

    Khattak, N A D; Ahmad, Zahoor; Murtaza, G; Zakaullah, M

    2008-01-01

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B z (in magnitudes), if the switching time for the additional current is properly synchronized

  10. Feedback control of chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Lin Chaung; Leou, K.-C.; Shiao, K.-M.

    2005-01-01

    Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2 2 factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained

  11. Parallel path nebulizer: Critical parameters for use with microseparation techniques combined with inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2005-01-01

    Four different, low flow parallel path Mira Mist CE nebulizers were evaluated and compared in support of an ongoing project related to the use of microseparation techniques interfaced to inductively coupled plasma mass spectrometry for the quantification of cobalamin species (Vitamin B12). For the characterization of the different Mira Mist CE nebulizers, the nebulizer orientation as well as the effect of methanol on analytical response was the focus of the study. The position of the gas outlet on the nebulizer which consistently provided the maximum signal was when it was rotated to the 11 o'clock position when the nebulizer is viewed end-on. With this orientation the increased signal may be explained by the fact that the cone angle of the aerosol is such that the largest percentage of the aerosol is directed to the center of the spray chamber and consequently into the plasma. To characterize the nebulizer's performance, the signal response of a multielement solution containing elements with a variety of ionization potentials was used. The selection of elements with varying ionization energies and degrees of ionization was essential for a better understanding of observed increases in signal enhancement when methanol was used. Two different phenomena contribute to signal enhancement when using methanol: the first is improved transport efficiency and the second is the 'carbon enhancement effect'. The net result was that as much as a 30-fold increase in signal was observed for As and Mg when using a make-up solution of 20% methanol at a 15 μL/min flow rate which is equivalent to a net volume of 3 μL/min of pure methanol

  12. Initial design for an experimental investigation of strongly coupled plasma behavior in the Atlas facility

    Energy Technology Data Exchange (ETDEWEB)

    Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.; Trainor, R.J. Jr.; Wood, B.P.; Wysocki, F.J.

    1999-07-01

    Atlas is a high current ({approximately} 30 MA peak, with a current risetime {approximately} 4.5 {micro}sec), high energy (E{sub stored} = 24 MJ, E{sub load} = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression ({rho}/{rho}{sub 0} > 5, P > 10 Mbar), high magnetic fields ({approximately} 2,000 T), high strain and strain rates ({var_epsilon} > 200%, d{var_epsilon}/dt {approximately} 10{sup 4} to 10{sup 6} s{sup {minus}1}), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold ({approximately} 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of {approximately} 1.1 times solid, achieve ion and electron temperatures of {approximately} 10 eV, and pressures of {approximately} 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are

  13. Initial design for an experimental investigation of strongly coupled plasma behavior in the Atlas facility

    International Nuclear Information System (INIS)

    Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.; Trainor, R.J. Jr.; Wood, B.P.; Wysocki, F.J.

    1999-01-01

    Atlas is a high current (approximately 30 MA peak, with a current risetime approximately 4.5 microsec), high energy (E stored = 24 MJ, E load = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression (ρ/ρ 0 > 5, P > 10 Mbar), high magnetic fields (approximately 2,000 T), high strain and strain rates (var e psilon > 200%, dvar e psilon/dt approximately 10 4 to 10 6 s -1 ), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold (approximately 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of approximately 1.1 times solid, achieve ion and electron temperatures of approximately 10 eV, and pressures of approximately 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are being planned on an existing pulsed power facility at LANL and

  14. Multiplex bio-assay with inductively coupled plasma mass spectrometry: Towards a massively multivariate single-cell technology

    International Nuclear Information System (INIS)

    Tanner, Scott D.; Ornatsky, Olga; Bandura, Dmitry R.; Baranov, Vladimir I.

    2007-01-01

    Recent progress in the development of massively multiplexed bioanalytical assays using element tags with inductively coupled plasma mass spectrometry detection is reviewed. Feasibility results using commercially available secondary immunolabeling reagents for leukemic cell lines are presented. Multiplex analysis of higher order is shown with first generation tag reagents based on functionalized carriers that bind lanthanide ions. DNA quantification using metallointercalation allows for cell enumeration or mitotic state differentiation. In situ hybridization permits the determination of cellular RNA. The results provide a feasibility basis for the development of a multivariate assay tool for individual cell analysis based on inductively coupled plasma mass spectrometry in a cytometer configuration

  15. Multiplex bio-assay with inductively coupled plasma mass spectrometry: Towards a massively multivariate single-cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Scott D. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)], E-mail: sd.tanner@utoronto.ca; Ornatsky, Olga; Bandura, Dmitry R.; Baranov, Vladimir I. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)

    2007-03-15

    Recent progress in the development of massively multiplexed bioanalytical assays using element tags with inductively coupled plasma mass spectrometry detection is reviewed. Feasibility results using commercially available secondary immunolabeling reagents for leukemic cell lines are presented. Multiplex analysis of higher order is shown with first generation tag reagents based on functionalized carriers that bind lanthanide ions. DNA quantification using metallointercalation allows for cell enumeration or mitotic state differentiation. In situ hybridization permits the determination of cellular RNA. The results provide a feasibility basis for the development of a multivariate assay tool for individual cell analysis based on inductively coupled plasma mass spectrometry in a cytometer configuration.

  16. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  17. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.

    2007-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  18. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Science.gov (United States)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2007-09-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  19. Enhancement of the incoherent scattering plasma lines due to precipitating protons and secondary electrons

    International Nuclear Information System (INIS)

    Bjoernaa, N.; Havnes, O.; Jensen, J.O.; Trulsen, J.

    1982-01-01

    Precipitating protons in the energy range 1-100 keV are regularly present in the auroral ionosphere. These protons will produce enhancements in the intensity of the upshifted plasma line of the incoherently scattered spectrum. Similarly, secondary electrons produced by the precipitating protons give rise to enhanced plasma line intensities. For a quantitative discussion of these effects an experimentally measured proton flux is adapted and the corresponding secondary electron flux calculated. These particle fluxes are then applied in connection with the EISCAT radar facility. Both fluxes give rise to enhancements of the order of 20. It is possible to separate between proton and electron contributions to the enhanced plasma lines for scattering heights above the source region of secondary electrons. (Auth.)

  20. Comparison of inductively coupled plasma mass spectrometry with inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis for the determination of rare earth elements in Greek bauxites

    International Nuclear Information System (INIS)

    Ochsenkuehn-Petropoulou, Maria; Luck, Joachim

    1991-01-01

    Fore the determination of rare earth elements (REE) in bauxitic materials the techniques of inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and instrumental neutron activation analysis (INAA) were compared. In the NIST (National Institute of Standards and Technology) bauxites SRM 697 Dominican, and SRM 69 b Arkansas, the concentration of some REEs were determined. With the reference bauxite BX-N of the ARNT (Association Nationale de la Recherche Technique) the precision and accuracy of ICP-AES for the determination of REEs in bauxites was tested. Furthermore, Greek bauxites of the Parnassos-Giona area were investigated. In a comparison of the three methods it was possible to calculate from the data series the precision of each method, which showed that the tendency found in the deviations for the different REEs is in accordance with published values. Also the limits of detection for REEs in bauxites were calculated and found to be in the same range as those in the literature. (author)

  1. Beam-plasma coupling physics in support of active experiments

    Science.gov (United States)

    Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.

    2017-12-01

    The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.

  2. Polymerization by plasma of trichloroethylene by means of resistive and inductive coupling

    International Nuclear Information System (INIS)

    Vasquez, M.; Cruz, G.; Olayo, M.G.; Timoshina, T.; Morales, J.; Olayo, R.

    2004-01-01

    It was carried out the polymerization for plasma of the trichloroethylene by means of two types of coupling, resistive and inductive with the objective of studying the structure, morphology and the electric properties of the polymers obtained under these conditions. The structure and morphology of the polymers were studied by means of EDS and FT-IR spectroscopies. (Author)

  3. Plasma enhanced atomic layer batch processing of aluminum doped titanium dioxide

    International Nuclear Information System (INIS)

    Lehnert, Wolfgang; Ruhl, Guenther; Gschwandtner, Alexander

    2012-01-01

    Among many promising high-k dielectrics, TiO 2 is an interesting candidate because of its relatively high k value of over 40 and its easy integration into existing semiconductor manufacturing schemes. The most critical issues of TiO 2 are its low electrical stability and its high leakage current density. However, doping TiO 2 with Al has shown to yield significant improvement of layer quality on Ru electrodes [S. K. Kim et al., Adv. Mater. 20, 1429 (2008)]. In this work we investigated if atomic layer deposition (ALD) of Al doped TiO 2 is feasible in a batch system. Electrical characterizations were done using common electrode materials like TiN, TaN, or W. Additionally, the effect of plasma enhanced processing in this reactor was studied. For this investigation a production batch ALD furnace has been retrofitted with a plasma source which can be used for post deposition anneals with oxygen radicals as well as for directly plasma enhanced ALD. After evaluation of several Ti precursors a deposition process for AlTiO x with excellent film thickness and composition uniformity was developed. The effects of post deposition anneals, Al 2 O 3 interlayers between electrode and TiO 2 , Al doping concentration, plasma enhanced deposition and electrode material type on leakage current density are shown. An optimized AlTiO x deposition process on TaN electrodes yields to leakage current density of 5 x 10 -7 A/cm 2 at 2 V and k values of about 35. Thus, it could be demonstrated that a plasma enhanced batch ALD process for Al doped TiO 2 is feasible with acceptable leakage current density on a standard electrode material.

  4. Plasma turbulence calculations on supercomputers

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.

    1991-01-01

    Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem

  5. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  6. Real-time control of electron density in a capacitively coupled plasma

    International Nuclear Information System (INIS)

    Keville, Bernard; Gaman, Cezar; Turner, Miles M.; Zhang Yang; Daniels, Stephen; Holohan, Anthony M.

    2013-01-01

    Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.

  7. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation

    Science.gov (United States)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-02-01

    A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected

  8. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  9. Coupled plasma-neutral transport model for the scrape-off region

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.; Heifetz, D.

    1985-03-01

    Analysis of the scrape-off region requires treatment of the plasma transport along and across the field lines and inclusion of the neutral transport effects. A method for modeling the scrape-off region that is presented here uses separate models for each of these aspects that are coupled together through an iteration procedure that requires only minimal numerical effort. The method is applied here to estimate the neutral pumping rates in the pump-limiter and divertor options for a proposed deuterium-tritium (D-T) ignition experiment. High neutral recycling in the vicinity of the neutralizer plate dramatically affects pumping rates for both the pump-limiter and divertor. In both cases, the plasma flow into the channel surrounding the neutralizer plate is greatly reduced by the neutral recycling. The fraction of this flow that is pumped can be large (> 50%), but in general it is dependent on the particular geometry and plasma conditions. It is estimated that pumping speeds approximately greater than 10 5 L/s are adequate for the exhaust requirements in the pump-limiter and the divertor cases. Also, high neutral recycling on the front surface of the limiter tends to increase the neutral pumping rate

  10. Etching of Niobium in an Argon-Chlorine Capacitively Coupled Plasma

    Science.gov (United States)

    Radovanov, Svetlana; Samolov, Ana; Upadhyay, Janardan; Peshl, Jeremy; Popovic, Svetozar; Vuskovic, Leposava; Applied Materials, Varian Semiconductor Team; Old Dominion University Team

    2016-09-01

    Ion assisted etching of the inner surfaces of Nb superconducting radio frequency (SRF) cavities requires control of incident ion energies and fluxes to achieve the desired etch rate and smooth surfaces. In this paper, we combine numerical simulation and experiment to investigate Ar /Cl2 capacitively coupled plasma (CCP) in cylindrical reactor geometry. Plasma simulations were done in the CRTRS 2D/3D code that self-consistently solves for CCP power deposition and electrostatic potential. The experimental results are used in combination with simulation predictions to understand the dependence of plasma parameters on the operating conditions. Using the model we were able to determine the ion current and flux at the Nb substrate. Our simulations indicate the relative importance of the current voltage phase shift and displacement current at different pressures and powers. For simulation and the experiment we have used a test structure with a pillbox cavity filled with niobium ring-type samples. The etch rate of these samples was measured. The probe measurements were combined with optical emission spectroscopy in pure Ar for validation of the model. The authors acknowledge Dr Shahid Rauf for developing the CRTRS code. Support DE-SC0014397.

  11. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...

  12. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics

    Science.gov (United States)

    Lee, Hyo-Chang

    2018-03-01

    Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied

  13. Fast quantification of endogenous carbohydrates in plasma using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao

    2015-01-01

    Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.

    2016-09-15

    In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.

  15. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    International Nuclear Information System (INIS)

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-01

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent (c) . The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  16. Control of ordered mesoporous titanium dioxide nanostructures formed using plasma enhanced glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Child, David, E-mail: david.child@uws.ac.uk [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Song, Shigeng; Zhao, Chao [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Alajiani, Yahya [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Department of Physics, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Waddell, Ewan [Thin Film Solutions Ltd, West of Scotland Science Park, Glasgow, G20 0TH (United Kingdom)

    2015-10-01

    Three dimensional nanostructures of mesoporous (pore diameter between 2-50 nm) nanocrystalline titania (TiO{sub 2}) were produced using glancing angle deposition combined with plasma ion assisted deposition, providing plasma enhanced glancing angle deposition eliminating the need for post-annealing to achieve film crystallinity. Electron beam evaporation was chosen to deposit nanostructures at various azimuthal angles, achieving designed variation in three dimensional nanostructure. A thermionic broad beam hollow cathode plasma source was used to enhance electron beam deposition, with ability to vary in real time ion fluxes and energies providing a means to modify and control TiO{sub 2} nanostructure real time with controlled density and porosity along and lateral to film growth direction. Plasma ion assisted deposition was carried out at room temperature using a hollow cathode plasma source, ensuring low heat loading to the substrate during deposition. Plasma enhanced glancing angle TiO{sub 2} structures were deposited onto borosilicate microscope slides and used to characterise the effects of glancing angle and plasma ion energy distribution function on the optical and nanostructural properties. Variation in TiO{sub 2} refractive index from 1.40 to 2.45 (@ 550 nm) using PEGLAD is demonstrated. Results and analysis of the influence of plasma enhanced glancing angle deposition on evaporant path and resultant glancing angle deviation from standard GLAD are described. Control of mesoporous morphology is described, providing a means of optimising light trapping features and film porosity, relevant to applications such as fabrication of dye sensitised solar cells. - Highlights: • Plasma assistance during glancing angle deposition enables control of morphology. • Ion energy variation during glancing angle deposition varies columnar angle • Column thickness of glancing angle deposition dependant on ion current density • Ion current density variation during

  17. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  18. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    Science.gov (United States)

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment.

    Science.gov (United States)

    Meng, Jie; Nie, Wenqi; Zhang, Kun; Xu, Fujun; Ding, Xin; Wang, Shiren; Qiu, Yiping

    2018-04-25

    Graphene fiber-based supercapacitors (GFSCs) hold high power density, fast charge-discharge rate, ultralong cycling life, exceptional mechanical/electrical properties, and safe operation conditions, making them very promising to power small wearable electronics. However, the electrochemical performance is still limited by the severe stacking of graphene sheets, hydrophobicity of graphene fibers, and complex preparation process. In this work, we develop a facile but robust strategy to easily enhance electrochemical properties of all-solid-state GFSCs by simple plasma treatment. We find that 1 min plasma treatment under an ambient condition results in 33.1% enhancement of areal specific capacitance (36.25 mF/cm 2 ) in comparison to the as-prepared GFSC. The energy density reaches 0.80 μW h/cm 2 in polyvinyl alcohol/H 2 SO 4 gel electrolyte and 18.12 μW h/cm 2 in poly(vinylidene difluoride)/ethyl-3-methylimidazolium tetrafluoroborate electrolyte, which are 22 times of that of as-prepared ones. The plasma-treated GFSCs also exhibit ultrahigh rate capability (69.13% for 40 s plasma-treated ones) and superior cycle stability (96.14% capacitance retention after 20 000 cycles for 1 min plasma-treated ones). This plasma strategy can be extended to mass-manufacture high-performance carbonaceous fiber-based supercapacitors, such as graphene and carbon nanotube-based ones.

  20. Inductively coupled plasma as atomization, excitation and ionization sources in analytical atomic spectrometry

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi

    1996-01-01

    Studies on inductively coupled plasma (ICP) for atomic emission and mass spectrometry accomplished in our laboratory since 1978 are reviewed. In emission spectrometry, the characteristics of the plasma are studied concerning the spatial profiles of spectral line intensity, axial profiles of gas and excitation temperatures, spectral line widths and matrix effect. The studies are particularly emphasized on the instrumentation such as developments of plasma generator, emission spectrometers, water-cooled torches and sample introduction methods. A slew-scan type spectrometer developed in these works represents a predecessor of the current commercial spectrometers. An ICP mass spectrometer was first developed in Japan in this laboratory in 1984. Non-spectroscopic interference of this method was found to have the correlation with the atomic weight of the matrix element. Plasma gases other than argon such as nitrogen and oxygen were used for the ICP to evaluate their performance in mass spectrometry as for the sensitivity and interferences. (author). 63 refs

  1. Spectroanalytical investigations on inductively coupled N2/Ar and Ar/Ar high frequency plasmas

    International Nuclear Information System (INIS)

    Malinowski, P.; Mazurkiewicz, M.; Nickel, H.

    1981-03-01

    In order to improve the detection limits of trace elements in corrosion products of metallic materials, the inductively coupled plasma excitation source (ICP) was applied for spectroscopic analysis. Besides optimizing the working conditions for the mentioned materials, the fundamental research clearing the excitation processes in ICP was carried out. Basicly, two plasma systems were investigated: the nitrogen cooled N 2 /Ar- and pure Ar/Ar-plasma. The computed detection limits for 8 chosen elements are between 0.1 and 50 μg ml -1 in both plasmas. The advantage of ion lines was clearly present; in N 2 /Ar-plasma it was larger than in Ar/Ar-plasma. The excitation temperatures measured with help of ArI, FeI and ZnI lines rise with increasing power and decreasing distance from the induction coil. The distribution of Zn excitation temperature in N 2 /Ar-plasma as well as the measured N + 2 rotational and CN vibrational temperatures indicate, that the toroidal structure of Ar/Ar-plasma is not analogue to the N 2 /Ar-plasma. The values of the various excitation temperatures (Ar, Fe, Zn) and the differences between the excitation, vibration, rotation and ionization temperatures (Tsub(i) > Tsub(n) = Tsub(vib) > Tsub(rot)) indicate an absence of thermal equilibrium in the concerned system. (orig.)

  2. The inductively coupled plasma as a source for the measurement of fundamental spectroscopic constants

    International Nuclear Information System (INIS)

    Farnsworth, P.B.

    1993-01-01

    Inductively coupled plasmas (ICPs) are stable, robust sources for the generation of spectra from neutral and singly ionized atoms. They are used extensively for analytical spectrometry, but have seen limited use for the measurement of fundamental spectroscopic constants. Several properties of the ICP affect its suitability for such fundamental measurements. They include: spatial structure, spectral background, noise characteristics, electron densities and temperatures, and the state of equilibrium in the plasma. These properties are particularly sensitive to the means by which foreign atoms are introduced into the plasma. With some departures from the operating procedures normally used in analytical measurements, the ICP promise to be a useful source for the measurement of fundamental atomic constants. (orig.)

  3. Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes

    Directory of Open Access Journals (Sweden)

    Zhang JX

    2009-01-01

    Full Text Available Abstract Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma treatment effectively removes amorphous coating and creates plenty of sub-tips at the surface of the nanoflakes, which are believed to contribute the enhancement of emission. This work suggests that plasma treatment technique could be a direct means to improve field-emission properties of nanostructures.

  4. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C. Y. [Bloomington, IN; Hieftje, Gary M [Bloomington, IN

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  5. Energization of the Ring Current through Convection of Substorm Enhancements of the Plasma Sheet Source.

    Science.gov (United States)

    Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.

    2017-12-01

    It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.

  6. Determination of trimethyllead reference material using high performance liquid chromatography-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lu Hai; Wei Chao; Wang Jun; Chao Jingbo; Zhou Tao; Chen Dazhou

    2005-01-01

    A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) was combined, and the chromatography conditions were optimized. The stability and homogeneity of a trimethyllead reference material were determined using this method. (authors)

  7. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  8. Analysis of zirconium alloys using inductively-coupled plasma emission spectrometry

    International Nuclear Information System (INIS)

    White, G.F.; Pickford, C.J.

    1982-06-01

    As part of an interlaboratory collaborative exercise, certain trace and minor elements have been determined in a proposed zircaloy reference material using inductively-coupled plasma emission spectrometry. A dissolution procedure involving hydrochloric and hydrofluoric acids was used for determination of Hf, Cr, Fe and Sn. Data have also been obtained for Ni, Cu and Mn. Use of a high resolution monochromator in a scanning mode was found necessary for measurement of the emission intensities in order to resolve the spectral lines of interest from the intense and complex emission from the zirconium matrix. (author)

  9. Magnetohydrodynamic stability of tokamak plasmas with poloidal mode coupling

    International Nuclear Information System (INIS)

    Shigueoka, H.; Sakanaka, P.H.

    1987-01-01

    The stability behavior with respect to internal modes is examined for a class of tokamak equilibria with non-circular cross sections. The surfaces of the constant poloidal magnetic flux ψ (R,Z) are obtained numerically by solving the Grad-Shafranov's equation with a specified shape for the outmost plasma surface. The equation of motion for ideal MHD stability is written in a ortogonal coordinate system (ψ, χ, φ). Th e stability analysis is performance numerically in a truncated set of coupled m (poloidal wave number) equations. The calculations involve no approximations, and so all parameters of the equilibrium solution can be arbitrarily varied. (author) [pt

  10. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2009-01-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  11. Inductively coupled plasma-mass spectrometry: an initial assessment of the VG isotopes Plasmaquad

    International Nuclear Information System (INIS)

    Brown, R.M.; Pickford, C.J.

    1985-04-01

    The Chemical Analysis Group has been approached by a British Scientific instrument maker regarding the possibility of the group participating in a Department of Trade and Industry sponsored scheme whereby we would have a 12 month period to assess the advantages and disadvantages of a new analytical technique, Inductively Coupled Plasma-Mass Spectrometry. This report details our initial assessment of the instrument, carried out in order to decide whether to participate in the scheme. We have attempted to discover whether the instrument meets the claims made of it in advertising literature, and have attempted to compare the technique with another, proven technique, Inductively Coupled Plasma - Optical Emission Spectroscopy. The Plasmaquad offers excellent sensitivity for almost all of the elements of the periodic table, giving a distinct improvement over the Chemical Analysis Group's present capabilities for many elements. The isotope ratio measuring ability is important, as the Group has no such capability at the moment and a demand for this type of measurement is foreseen. Our conclusions, while inevitably somewhat subjective, form the basis for recommending Harwell to participate in the scheme. (author)

  12. Microwave plasma-assisted photoluminescence enhancement in nitrogen-doped ultrananocrystalline diamond film

    Directory of Open Access Journals (Sweden)

    Yu Lin Liu

    2012-06-01

    Full Text Available Optical properties and conductivity of nitrogen-doped ultrananocrystal diamond (UNCD films were investigated following treatment with low energy microwave plasma at room temperature. The plasma also generated vacancies in UNCD films and provided heat for mobilizing the vacancies to combine with the impurities, which formed the nitrogen-vacancy defect centers. The generated color centers were distributed uniformly in the samples. The conductivity of nitrogen-doped UNCD films treated by microwave plasma was found to decrease slightly due to the reduced grain boundaries. The photoluminescence emitted by the plasma treated nitrogen-doped UNCD films was enhanced significantly compared to the untreated films.

  13. Plasma enhanced RF power deposition on ICRF antennas in Tore Supra

    International Nuclear Information System (INIS)

    Goulding, R.H.; Harris, J.H.; Carter, M.D.; Hoffman, D.J.; Hogan, J.T.; Ryan, P.M.; Beaumont, B.; Bremond, S.; Hutter, T.

    1997-01-01

    The dual-strap Tore Supra ICRF antennas have been very successful in coupling high power fluxes > 16 MW/m2 to the plasma. In many cases it has been found that the power is limited not by the voltages and currents that can be sustained on antenna components, but rather by localized increases in antenna surface temperatures which are correlated with increased impurity levels. Hot spots have been observed using an IR imaging system with peak temperatures as high as 1,100 C after 2 s, and as little as 1.5 MW power coupled from a single launcher. The maximum temperature observed is highly dependent on antenna phasing, and is lowest with dipole (π) phasing of the relative antenna currents. Both toroidal and poloidal asymmetries in hot spot distribution have been observed, and interestingly, the toroidal asymmetry has been found to vary when the phase is changed from +π/2 to -π/2. Significant differences in the temperature profiles have been seen on the two types of Faraday shield in use, which appears to be related to the fact that one type has a recessed center septum between straps while the other does not. In some cases, the peak temperature has been observed to increase as the antenna/plasma gap is increased, while the peak remains in the same location. This behavior suggests that voltages generated by currents flowing in the Faraday shield structure itself may play a role in generating potentials responsible for the hot spots, in addition to rf fields in the plasma. In this paper data on antenna surface heating and loading data as a function of plasma density, antenna/plasma gap, and phasing will be presented. Calculations from the RANT3D electromagnetic code together with bench measurements of electric fields near the antenna surface will also be shown

  14. About the EDF formation in a capacitively coupled argon plasma

    International Nuclear Information System (INIS)

    Tatanova, M; Thieme, G; Basner, R; Hannemann, M; Golubovskii, Yu B; Kersten, H

    2006-01-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions

  15. About the EDF formation in a capacitively coupled argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tatanova, M [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Thieme, G [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Basner, R [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Hannemann, M [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Golubovskii, Yu B [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Kersten, H [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany)

    2006-08-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions.

  16. Surface characterization of hydrophobic thin films deposited by inductively coupled and pulsed plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Lee, Ji-Hye; Kim, Kang-Jin; Lee, Yeonhee

    2009-01-01

    Different fluorocarbon thin films were deposited on Si substrates using a plasma-polymerization method. Fluorine-containing hydrophobic thin films were obtained by inductively coupled plasma (ICP) and pulsed plasma (PP) with a mixture of fluorocarbon precursors C 2 F 6 , C 3 F 8 , and c-C 4 F 8 and the unsaturated hydrocarbons of C 2 H 2 . The influence on the fluorocarbon surfaces of the process parameters for plasma polymerization, including the gas ratio and the plasma power, were investigated under two plasma-polymerized techniques with different fluorocarbon gas precursors. The hydrophobic properties, surface morphologies, and chemical compositions were elucidated using water contact angle measurements, field emission-scanning electron microscope, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this study, the ICP technique provides coarser grained films and more hydrophobic surfaces as well as a higher deposition rate compared to the PP technique. XPS, FT-IR, and TOF-SIMS analyses indicated that the ICP technique produced more fluorine-related functional groups, including CF 2 and CF 3 , on the surface. From the curve-fitted XPS results, fluorocarbon films grown under ICP technique exhibited less degree of cross-linking and higher CF 2 concentrations than those grown under PP technique.

  17. Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.

    2018-02-01

    The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.

  18. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Zhi, C.Y.; Bai, X.D.; Wang, E.G.

    2002-01-01

    The field emission capability of the carbon nanotubes (CNTs) has been improved by hydrogen plasma treatment, and the enhanced emission mechanism has been studied systematically using Fourier-transform infrared spectroscopy, Raman, and transmission electron microscopy. The hydrogen concentration in the samples increases with increasing plasma treatment duration. A C δ- -H δ+ dipole layer may form on CNTs' surface and a high density of defects results from the plasma treatment, which is likely to make the external surface of CNTs more active to emit electrons after treatment. In addition, the sharp edge of CNTs' top, after removal of the catalyst particles, may increase the local electronic field more effectively. The present study suggests that hydrogen plasma treatment is a useful method for improving the field electron emission property of CNTs

  19. An evaluation of inductively coupled plasma optical emission spectrometry using electrothermal atomisation sample introduction and photographic plate detection

    International Nuclear Information System (INIS)

    Khathing, D.T.; Pickford, C.J.

    1984-05-01

    A photographic radiation measurement approach has been used with an inductively coupled plasma source to evaluate and tabulate the more prominent optical emission lines of 66 elements. Compared with the more common sample introduction technique using nebulisation, increased sensitivity for multielement analysis of small samples was achieved by using a simple graphite electrothermal atomisation system. This was constructed to serve as a dual purpose atomiser ie both for Atomic Absorption and for Inductively Coupled Plasma Emission spectroscopy. The system offers the advantage of a wide multi-elemental coverage, but sensitivities achieved with photographic detection are poorer than those obtained photoelectrically. (author)

  20. Enhancing Cold Atmospheric Plasma Treatment Efficiency for Cancer Therapy

    Science.gov (United States)

    Cheng, Xiaoqian

    To improve efficiency and safety of anti-cancer therapies the researchers and clinicians alike are prompted to develop targeted combined therapies that especially minimize damage to healthy tissues while eradicating the body of cancerous tissues. Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that cold plasma induced cell death. In this study, we seek to integrate the medical application of CAP. We proposed and implemented 3 novel ideas to enhance efficacy and selectivity of cancer therapy. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. We determined a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of CAP, including output voltage, treatment time, and gas flow-rate. We varied the characteristics of the cold plasma in order to obtain different major species (such as O, OH, N2+, and N2 lines). "plasma dosage" D ~ Q * V * t. is defined, where D is the entire "plasma dosage"; Q is the flow rate of feeding gas; V is output voltage; t is treatment time. The proper CAP dosage caused 3-fold cell death in the U87 cells compared to the normal human astrocytes E6/E7 cells. We demonstrated there is a synergy between AuNPS and CAP in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce U87 cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The ROS intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the

  1. Inductively coupled plasma induced deep levels in epitaxial n-GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Auret, F.D.; Janse van Rensburg, P.J.; Meyer, W.E.; Coelho, S.M.M. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa); Kolkovsky, Vl. [Technische Universitaet, Dresden, 01062 Dresden (Germany); Botha, J.R.; Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Venter, A., E-mail: andre.venter@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The electronic properties of defects introduced by low energy inductively coupled Ar plasma etching of n-type (Si doped) GaAs were investigated by deep level transient spectroscopy (DLTS) and Laplace DLTS. Several prominent electron traps (E{sub c}-0.046 eV, E{sub c}-0.186 eV, E{sub c}-0.314 eV. E{sub c}-0.528 eV and E{sub c}-0.605 eV) were detected. The metastable defect E{sub c}-0.046 eV having a trap signature similar to E1 is observed for the first time. E{sub c}-0.314 eV and E{sub c}-0.605 eV are metastable and appear to be similar to the M3 and M4 defects present in dc H-plasma exposed GaAs.

  2. Inductively coupled plasma induced deep levels in epitaxial n-GaAs

    International Nuclear Information System (INIS)

    Auret, F.D.; Janse van Rensburg, P.J.; Meyer, W.E.; Coelho, S.M.M.; Kolkovsky, Vl.; Botha, J.R.; Nyamhere, C.; Venter, A.

    2012-01-01

    The electronic properties of defects introduced by low energy inductively coupled Ar plasma etching of n-type (Si doped) GaAs were investigated by deep level transient spectroscopy (DLTS) and Laplace DLTS. Several prominent electron traps (E c —0.046 eV, E c —0.186 eV, E c —0.314 eV. E c —0.528 eV and E c —0.605 eV) were detected. The metastable defect E c —0.046 eV having a trap signature similar to E1 is observed for the first time. E c —0.314 eV and E c —0.605 eV are metastable and appear to be similar to the M3 and M4 defects present in dc H-plasma exposed GaAs.

  3. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    Science.gov (United States)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  4. Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Coffer, J.; Encalada, N.; Huang, M.; Camparo, J. [Physical Sciences Laboratories, The Aerospace Corporation 2310, E. El Segundo Blvd., El Segundo, California 90245 (United States)

    2014-10-28

    We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

  5. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  6. Sum rule and hydrodynamic analyses of the velocity autocorrelation function in strongly coupled plasmas

    International Nuclear Information System (INIS)

    Nagano, Seido; Ichimaru, Setsuo

    1980-01-01

    The memory function for the velocity autocorrelation function in a strongly coupled, one-component plasma is analyzed in the short time and long time domains, respectively, with the aid of the frequency-moment sum rules and the hydrodynamic consideration evoking the idea of the generalized Stokes friction. A series of interpolation schemes with successively improved accuracies are then introduced. Numerical investigations of those interpolation schemes clarify the physical origin of the three different types of the velocity autocorrelation function observed in the molecular dynamics simulation at different regimes of the coupling constant. (author)

  7. Inductively coupled plasma for atomic emission spectroscopy at the Savannah River Plant

    International Nuclear Information System (INIS)

    Coleman, J.T.

    1986-01-01

    The Savannah River Plant atomic emission spectroscopy laboratory has been in operation for over 30 years. Routine analytical methods and instrumentation are being replaced with current technology. Laboratory renovation will include the installation of contained dual excitation sources (inductively coupled plasma and d-c arc) with a direct reading spectrometer. The instrument will be used to provide impurity analyses of plutonium, uranium, and other nuclear fuel cycle materials

  8. The matrix effect of biological concomitant element on the signal intensity of Ge, As, and Se in inductively coupled plasma/mass spectrometry

    International Nuclear Information System (INIS)

    Park, Kyung Su; Kim, Sun Tae; Kim, Young Man; Kim, Yun Je; Lee, Won

    2002-01-01

    The non-spectroscopic interference effects that occurred in inductively coupled plasma/mass spectrometry were studied for Ge, As and Se in human urine and serum. Many biological samples contain Na, K, Cl and organic compounds, which may cause the enhancement and depression on the analyte signal. The effect of 1% concomitant elements such as N, Cl, S, P, C, Na, and K on a 100 μg/L germanium, arsenic and selenium signal has been investigated by ICP/MS. The interference effects were not in the same direction. It appeared that concomitant elements such as Cl, S and C induce an enhancement effect, whereas N and P did not show any significant effect. And, Na and K caused a depression . We have found a link between the abundance of analytes and the ionization potential of concomitant elements (eV), except carbon and nitrogen

  9. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Wook, E-mail: shindong37@skku.edu; Kim, Tae Sung; Yoo, Ji-Beom, E-mail: jbyoo@skku.edu

    2016-10-15

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is very stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.

  10. Experimental and numerical study of electromagnetically induced transparency in magnetized plasmas

    International Nuclear Information System (INIS)

    Kawamori, Eiichirou; Hsieh, Tung-Yuan; Nishida, Yasushi; Cheng, C-Z

    2012-01-01

    We present a demonstration of electromagnetically induced transparency (EIT) in magnetized plasmas by means of experiment and numerical simulation. EIT in magnetized plasmas is a phenomenon by which a plasma-absorbing electron cyclotron wave is rendered transparent by a pump wave, which is a classical analog to conventional quantum EIT although the plasma EIT is not a quantum-mechanics-based phenomenon. This paper describes an attempt to identify plasma oscillations excited by the mode coupling of a pump wave and a probe wave, which is a key mechanism for achieving magnetized plasma EIT, by an experiment and a particle-in-cell (PIC) simulation. A preliminary result of the longitudinal electric field measurement indicates an enhancement of the plasma oscillation in the vicinity of the beat frequency between the probe and pump waves. Also the PIC calculation, which simulated the real experiment, shows a plasma oscillation excited by the mode coupling between the probe and pump waves in the magnetized plasma EIT, showing agreement with theory and experiment. (paper)

  11. Electron temperatures of inductively coupled Cl2-Ar plasmas

    International Nuclear Information System (INIS)

    Fuller, N.C.M.; Donnelly, Vincent M.; Herman, Irving P.

    2002-01-01

    Trace rare gases optical emission spectroscopy has been used to measure the electron temperature, T e , in a high-density inductively coupled Cl 2 -Ar plasma at 18 mTorr as function of the 13.56 MHz radio frequency power and Ar fraction. Only the Kr and Xe emission lines were used to determine T e , because of evidence of radiation trapping when the Ar emission lines were also used for larger Ar fractions. At 600 W (10.6 W cm-2), T e increases from ∼4.0±0.5 eV to ∼6.0±2.0 eV as the Ar fraction increases from 1% to 96%. In the H (inductive, bright) mode, T e , for a 'neat' chlorine plasma (including 1% of each He/Ne/Ar/Kr/Xe) increases only slightly from ∼3.8 to 4.0 eV as power increases from 450 to 750 W. This increase is much larger for larger Ar fractions, such as from ∼4.0 to 7.3 eV for 78% Ar. Most of these effects can be understood using the fundamental particle balance equation

  12. Quantum Simulations of Strongly Coupled Quark-Gluon Plasma

    International Nuclear Information System (INIS)

    Filinov, V.S.; Bonitz, M.; Ivanov, Yu.B.

    2013-01-01

    particles. This method has been successfully applied to strongly coupled electrodynamic plasmas (EMP). A strongly correlated behavior of the QGP is expected to show up in long-ranged spatial correlations of quarks and gluons which, in fact, may give rise to liquid-like and, possibly, solid-like structures. This expectation is based on a very similar behavior observed in electrodynamic plasmas. We have done already the first calculation of the QGP equation of state, spatial and color pair distribution functions, diffusion coefficients and shear viscosity. The preliminary results has already been reported and discussed at the international conferences and meetings and are accepted for publications. (author)

  13. Plasma-enhanced chemical vapor deposition of aluminum oxide using ultrashort precursor injection pulses

    NARCIS (Netherlands)

    Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the

  14. Convergent-close-coupling calculations for excitation and ionization processes of electron-hydrogen collisions in Debye plasmas

    International Nuclear Information System (INIS)

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor

    2010-01-01

    Electron-hydrogen scattering in weakly coupled hot-dense plasmas has been investigated using the convergent-close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe the plasma screening effects. The target structure, excitation dynamics, and ionization process change dramatically as the screening is increased. Excitation cross sections for the 1s→2s,2p,3s,3p,3d and 2s→2p,3s,3p,3d transitions and total and total ionization cross sections for the scattering from the 1s and 2s states are presented. Calculations cover the energy range from thresholds to high energies (250 eV) for various Debye lengths. We find that as the screening increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  15. Matrix digestion of soil and sediment samples for extraction of lead, cadmium and antimony and their direct determination by inductively coupled plasma-mass spectrometry and atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chattopadhyay, P.; Fisher, A.S.; Henon, D.N.; Hill, S.J.

    2004-01-01

    An environmentally friendly and simple method has been developed for complete digestion of lead, cadmium and antimony from soil samples using a magnesium nitrate assisted dry ashing procedure. Statistical data for a series of experiments with standard reference materials are presented, and precision values are found to be comparable for inductively coupled plasma-mass spectrometry and for inductively coupled plasma-atomic emission spectrometry. From a single digest solution all analytes are quantified without involving any preconcentration routes. Inter-method comparison of inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) shows that the probability of the results being different is less than 99 %. (author)

  16. Concentration of vanadium in crude oil and water using inductively-coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Amin, Y.M.; Hassan, M.A.; Junkin, K.; Mahat, R.H.; Raphie, B.

    1991-01-01

    Vanadium is a trace element that is usually associated to crude oil and its products. In this study the concentration of vanadium in a few samples of local crude oil, sea and river water were determined using inductively-coupled plasma spectrometry (ICP). It is hoped that the concentration of vanadium in water can be used to indicate the possible extent of oil contamination

  17. MHD simulation of a beat frequency heated plasma

    International Nuclear Information System (INIS)

    Milroy, R.D.; Capjack, C.E.; James, C.R.; McMullin, J.N.

    1976-01-01

    The heating of a plasma in a solenoid, with a beat frequency harmonic which is excited at a frequency near to that of a Langmuir mode in a plasma, is examined. It is shown that at high temperatures the heating rate is very insensitive to changes in plasma density. The amount of energy that can be coupled to a plasma in a solenoid with this heating scheme is investigated by using a one-dimensional computer code which incorporates an exact solution of the relevant MHD equations. The absorption of energy from a high powered laser is shown to be significantly enhanced with this process. (author)

  18. Inductively coupled plasma etching of III-V antimonides in BCl3/SiCl4 etch chemistry

    International Nuclear Information System (INIS)

    Swaminathan, K.; Janardhanan, P.E.; Sulima, O.V.

    2008-01-01

    Inductively coupled plasma etching of GaSb using BCl 3 /SiCl 4 etch chemistry has been investigated. The etch rates were studied as a function of bias power, inductively coupled plasma source power, plasma chemistry and chamber pressure. The etched surfaces remain smooth and stoichiometric over the entire range of plasma conditions investigated. The knowledge gained in etching GaSb was applied to etching AlGaAsSb and InGaAsSb in order to fabricate heterojunction phototransistors. As expected, InGaAsSb etch rate was much lower compared to the corresponding value for GaSb, mainly due to the relatively low volatility of indium chlorides. For a wide range of plasma conditions, the selectivity between GaSb and AlGaAsSb was close to unity, which is desirable for fabricating etched mirrors and gratings for Sb-based mid-infrared laser diodes. The surface roughness and the etch profile were examined for the etched GaSb, AlGaAsSb and InGaAsSb samples using scanning electron microscope. The high etch rates achieved (∼ 4 μm/min) facilitated deep etching of GaSb. A single layer, soft mask (AZ-4903 photoresist) was used to etch GaSb, with etch depth ∼ 90 μm. The deep dry etching of GaSb has many important applications including etching substrate windows for backside-illuminated photodetectors for the mid-infrared wavelength range

  19. Drag force in strongly coupled, anisotropic plasma at finite chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Somdeb; Haque, Najmul [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700 064 (India)

    2014-12-30

    We employ methods of gauge/string duality to analyze the drag force on a heavy quark moving through a strongly coupled, anisotropic N=4,SU(N) super Yang-Mills plasma in the presence of a finite U(1) chemical potential. We present numerical results valid for any value of the anisotropy parameter and the U(1) charge density and arbitrary direction of the quark velocity with respect to the direction of anisotropy. In the small anisotropy limit we are also able to furnish analytical results.

  20. Determination of hafnium at the 10−4% level (relative to zirconium content) using neutron activation analysis, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Smolik, Marek; Polkowska-Motrenko, Halina; Hubicki, Zbigniew; Jakóbik-Kolon, Agata; Danko, Bożena

    2014-01-01

    Graphical abstract: -- Highlights: •We worked out ICP-MS method of Hf determination in Zr and Zr compounds. •We used NAA method as reference one. •We obtained pure zirconium matrix by ion exchange (Diphonix ® resin). •These permit to determine ≥1 × 10 −4 % Hf in Zr sample by ICP MS with good precision and accuracy. -- Abstract: Hafnium at the very low level of 1–8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29–253%). The ion exchange method exploiting Diphonix ® resin proved sufficient efficiency in Zr–Hf separation when the initial concentration ratio of the elements ([Zr] 0 /[Hf] 0 ) ranged from 1200 to ca. 143,000

  1. Numerical analysis of the effect of plasma flow control on enhancing the aerodynamic characteristics of stratospheric screw propeller

    International Nuclear Information System (INIS)

    Cheng Yufeng; Nie Wansheng

    2012-01-01

    Based on the body force aerodynamic actuation mechanism of dielectric barrier discharge (DBD) plasma, the effect of plasma flow control on enhancing the aerodynamic characteristics of ten blade elements equably along the stratospheric screw propeller blade was numerical studied. Then the effect of plasma flow control enhancing the aerodynamic characteristics of stratospheric screw propeller was compared that by the blade element theory method. The results show that the flow separate phenomena will easily happen in the root region and top end region of screw propeller, and the blade elements in the root region of screw propeller may work on the negative attack angle condition. DBD plasma flow control can entirely restrain the faintish flow separate phenomena in middle region of screw propeller. Although DBD plasma flow control can not entirely restrain the badly flow separate phenomena in top end region of screw propeller, it also can enhance the aerodynamic characteristics of blade elements in these regions in same degree. But effect of DBD plasma flow control on enhancing the aerodynamic characteristics of the blade elements working on the negative attack angle condition is ineffectively. It can be concluded that DBD plasma flow control can enhance the aerodynamic characteristics of stratospheric screw propeller, the thrust of the whole propeller and the propeller efficiency in the case of plasma on will increases by a factor of 28.27% and 12.3% respectively compared with that in the case of plasma off studied. (authors)

  2. Enhanced electromagnetic emission from plasmas containing positive dust grains and electrons

    International Nuclear Information System (INIS)

    Shukla, P.K.; Shukla, Nitin; Stenflo, L.

    2007-01-01

    Large amplitude high-frequency (HF) electromagnetic (EM) waves can scatter off dust-acoustic waves in plasmas containing positive dust grains and electrons, and can thus be responsible for HF enhanced electromagnetic emissions (EEE). An expression for the ensemble average of the squared HF-EEE vector potential is therefore derived, following the standard parametric interaction formalism and adopting the Rostoker superposition principle. The results should be useful for deducing the dust plasma parameters (e.g. the dust number density and dust charge) in situ, and HF intense EM beams can thus be used for diagnosis of positive dust-electron plasmas in space and laboratories

  3. Strongly coupled semiclassical plasma: interaction model and some properties

    International Nuclear Information System (INIS)

    Baimbetov, N.F.; Bekenov, N.A.

    1999-01-01

    In the report a fully ionized strongly coupled hydrogen plasma is considered. The density number is considered within range n=n e =n i ≅(10 21 -2·10 25 )sm -3 , and the temperature domian is T≅(5·10 4 -10 6 ) K. The coupling parameter Γ is defined by Γ=e 2 /αk B T, where k B is the Boltzmann constant and e is electrical charge, α=(3/4πn) 1/3 is the average distance between the particles (Wigner-Seitz radius). The dimensionless density parameter r s =α/α B is given in terms of the Bohr radius α B =ℎ 2 /me 2 ∼0.529·10 - 8 sm. The degeneracy parameter for the electron was defined by the ratio between the thermal energy k B T and the Fermi energy E F :Θ=k B T/E F ∼0.54·r s /Γ. The intermediate temperature-density region, where Γ≥1; Θ≅1; T>13.6 eV is examined. A semiclassical effective potential which account for the short-range, quantum diffraction and symmetry effects of charge carriers screening

  4. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    Science.gov (United States)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  5. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-12-01

    Full Text Available Due to their large compatibility difference, polyethylene (PE and polyoxymethylene (POM cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM, optical microscopy, and X-ray photoelectron spectroscopy (XPS. Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.

  6. Degradation of sulfur dioxide using plasma technology; Degradacion de dioxido de azufre empleando tecnologia de plasma

    Energy Technology Data Exchange (ETDEWEB)

    Estrada M, N.; Garcia E, R. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Pacheco P, M.; Valdivia B, R.; Pacheco S, J., E-mail: nadiaemz@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-07-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO{sub 2}) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  7. Determination of selenoprotein P in human plasma by solid phase extraction and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L.; Sidenius, U.; Gammelgaard, Bente

    2000-01-01

    measured by inductively coupled plasma mass spectrometry (ICP-MS) monitoring the Se-82 isotope. Linear response was observed in the concentration range 0.3-70.8 mu g/l selenium as selenoprotein P with a correlation coefficient of 0.9994. The precision expressed as relative standard deviation was better...... than 2% in this range. The estimated limit of detection was 2 mu g/l and the experimentally verified quantification limit was 5 mu g/l, giving a relative standard deviation less than 2%. (C) 2000 Elsevier Science B.V. All rights reserved...

  8. Experimental characterization of a strongly coupled solid density plasma generated in a short-pulse laser target interaction

    International Nuclear Information System (INIS)

    Gregori, G.; Hansen, S.B.; Key, M.H.; King, J.; Mackinnon, A.J.; Park, H.; Patel, P.K.; Shepard, R.; Snavely, R.A.; Wilks, S.C.; Glenzer, S.H.

    2005-01-01

    We have measured high resolution copper Kα spectra from a picosecond high intensity laser produced plasma. By fitting the shape of the experimental spectra with a self-consistent-field model which includes all the relevant line shifts from multiply ionized atoms, we are able to infer time and spatially averaged electron temperatures (T e ) and ionization state (Z) in the foil. Our results show increasing values for T e and Z when the overall mass of the target is reduced. In particular, we measure temperatures in excess of 200 eV with Z ∼ 13-14. For these conditions the ion-ion coupling constant is Λ ii ∼ 8-9, thus suggesting the achievement of a strongly coupled plasma regime

  9. Experimental characterization of a strongly coupled solid density plasma generated in a short-pulse laser target interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Hansen, S B; Key, M H; King, J; Mackinnon, A J; Park, H; Patel, P K; Shepard, R; Snavely, R A; Wilks, S C; Glenzer, S H

    2005-03-17

    We have measured high resolution copper K{alpha} spectra from a picosecond high intensity laser produced plasma. By fitting the shape of the experimental spectra with a self-consistent-field model which includes all the relevant line shifts from multiply ionized atoms, we are able to infer time and spatially averaged electron temperatures (T{sub e}) and ionization state (Z) in the foil. Our results show increasing values for T{sub e} and Z when the overall mass of the target is reduced. In particular, we measure temperatures in excess of 200 eV with Z {approx} 13-14. For these conditions the ion-ion coupling constant is {Lambda}{sub ii} {approx} 8-9, thus suggesting the achievement of a strongly coupled plasma regime.

  10. Development of inductively coupled plasma atomic emission spectrometry for palladium and Rhodium determination in platinum-based alloy

    International Nuclear Information System (INIS)

    Kovacevic, R.; Todorovic, M.; Manojlovic, D.; Mutic, J.

    2008-01-01

    Inductively coupled plasma atomic emission spectroscopy with internal standardization was applied for the analysis of an in-house reference platinum alloy containing palladium and rhodium (approximately 5% by weight). In order to compensate for variations in signal recovery due to matrix interferences, and therefore to improve the precision, platinum. the major component, was chosen as an internal standard. Quantitative analysis was based on calibration using a set of matrix-matched calibration standards with and without employing the internal standard. These results were compared with those obtained by X-ray fluorescence spectroscopy. The results for both techniques were in a good agreement, although the precision was slightly better in the inductively coupled plasma atomic emission spectroscopy technique, with or without the internal standard

  11. Efficient coupling of 527 nm laser beam power to a long scale-length plasma

    International Nuclear Information System (INIS)

    Moody, J.D.; Divol, L.; Glenzer, S.H.; MacKinnon, A.J.; Froula, D.H.; Gregori, G.; Kruer, W.L.; Meezan, N.B.; Suter, L.J.; Williams, E.A.; Bahr, R.; Seka, W.

    2006-01-01

    We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scale-length plasma with n e /n cr equals 0.14 and T e equals 2 keV. (authors)

  12. Combustion Enhancement Via Stabilized Piecewise Nonequilibrium Gliding Arc Plasma Discharge (Postprint)

    National Research Council Canada - National Science Library

    Ombrello, Timothy; Qin, Xiao; Ju, Yiguang; Gutsol, Alexander; Fridman, Alexander; Carter, Campbell

    2006-01-01

    ... enhancement of methane-air diffusion flames. The results showed that the new system provided a well-defined flame geometry for the understanding of the basic mechanism of the plasma-flame interaction...

  13. Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Woo Seok, E-mail: kang@kimm.re.kr [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of); Hur, Min; Lee, Jin Young [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Song, Young-Hoon [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-12-31

    This work investigates the use of plasma-enhanced chemical vapor deposition under atmospheric pressure for achieving uniform layer formation. Electrical and optical measurements demonstrated that the counterbalance between oxygen and precursors maintained the homogeneous discharge mode, while creating intermediate species for layer deposition. Several steps of the deposition process of the layers, which were processed on a stationary stage, were affected by flow stream and precursor depletion. This study showed that by changing the flow streamlines using substrate stage motion uniform layer deposition under atmospheric pressure can be achieved. - Highlights: • Zirconium oxide was deposited by atmospheric-pressure plasma-enhanced chemical vapor deposition. • Homogeneous plasma was maintained by counterbalancing between discharge gas and precursors. • Several deposition steps were observed affected by the gas flow stream and precursor depletion. • Thin film layer was uniformly grown when the substrate underwent a sweeping motion.

  14. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition

    NARCIS (Netherlands)

    O'Donoghue, R.; Rechmann, J.; Aghaee, M.; Rogalla, D.; Becker, H.-W.; Creatore, M.; Wieck, A.D.; Devi, A.P.K.

    2017-01-01

    Herein we describe an efficient low temperature (60–160 °C) plasma enhanced atomic layer deposition (PEALD) process for gallium oxide (Ga2O3) thin films using hexakis(dimethylamido)digallium [Ga(NMe2)3]2 with oxygen (O2) plasma on Si(100). The use of O2 plasma was found to have a significant

  15. On the coupling of fields and particles in accelerator and plasma physics

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2016-10-01

    In accelerator and plasma physics it is generally accepted that there is no need to solve the dynamical equations for particles motion in manifestly covariant form, that is by using the coordinate-independent proper time to parameterize particle world-lines in space-time. In other words, in order to describe the dynamical processes in the laboratory frame there is no need to use the laws of relativistic kinematics. It is sufficient to take into account the relativistic dependence of the particles momentum on the velocity in the second Newton's law. Therefore, the coupling of fields and particles is based, on the one hand, on the use of result from particle dynamics treated according to Newton's laws in terms of the relativistic three-momentum and, on the other hand, on the use of Maxwell's equations in standard form. In previous papers we argued that this is a misconception. The purpose of this paper is to describe in detail how to calculate the coupling between fields and particles in a correct way and how to develop a new algorithm for a particle tracking code in agreement with the use of Maxwell's equations in their standard form. Advanced textbooks on classical electrodynamics correctly tell us that Maxwell's equations in standard form in the laboratory frame and charged particles are coupled by introducing particles trajectories as projections of particles world-lines onto coordinates of the laboratory frame and by subsequently using the laboratory time to parameterize the trajectory curves. For the first time we showed a difference between conventional and covariant particle tracking results in the laboratory frame. This essential point has never received attention in the physical community. Only the solution of the dynamical equations in covariant form gives the correct coupling between field equations in standard form and particles trajectories in the laboratory frame. We conclude that previous theoretical and simulation results in accelerator and plasma

  16. On the coupling of fields and particles in accelerator and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-10-15

    In accelerator and plasma physics it is generally accepted that there is no need to solve the dynamical equations for particles motion in manifestly covariant form, that is by using the coordinate-independent proper time to parameterize particle world-lines in space-time. In other words, in order to describe the dynamical processes in the laboratory frame there is no need to use the laws of relativistic kinematics. It is sufficient to take into account the relativistic dependence of the particles momentum on the velocity in the second Newton's law. Therefore, the coupling of fields and particles is based, on the one hand, on the use of result from particle dynamics treated according to Newton's laws in terms of the relativistic three-momentum and, on the other hand, on the use of Maxwell's equations in standard form. In previous papers we argued that this is a misconception. The purpose of this paper is to describe in detail how to calculate the coupling between fields and particles in a correct way and how to develop a new algorithm for a particle tracking code in agreement with the use of Maxwell's equations in their standard form. Advanced textbooks on classical electrodynamics correctly tell us that Maxwell's equations in standard form in the laboratory frame and charged particles are coupled by introducing particles trajectories as projections of particles world-lines onto coordinates of the laboratory frame and by subsequently using the laboratory time to parameterize the trajectory curves. For the first time we showed a difference between conventional and covariant particle tracking results in the laboratory frame. This essential point has never received attention in the physical community. Only the solution of the dynamical equations in covariant form gives the correct coupling between field equations in standard form and particles trajectories in the laboratory frame. We conclude that previous theoretical and simulation results in

  17. [Enhanced prenatal HIV couple oriented counselling session and couple communication about HIV (ANRS 12127 Prenahtest Trial)].

    Science.gov (United States)

    Plazy, M; Orne-Gliemann, J; Balestre, E; Miric, M; Darak, S; Butsashvili, M; Tchendjou, P; Dabis, F; Desgrées du Loû, A

    2013-08-01

    The Prenahtest study investigated the efficacy of a couple-oriented HIV counselling session (COC) in encouraging couple HIV counselling and testing, and improving intra-couple communication about sexual and reproductive health. We report here on the effect of COC on intra-couple communication about HIV. Within this 4-country trial (India, Georgia, Dominican Republic and Cameroon), 484 to 491 pregnant women per site were recruited and individually randomized to receive either the COC intervention, enhanced counselling with role playing, or standard post-test HIV counselling. Women were interviewed at recruitment, before HIV testing (T0), and 2 to 8 weeks after post-test HIV counselling (T1). Four dichotomous variables documented intra-couple communication about HIV at T1: 1) discussion about HIV, 2) discussion about condom use, 3) suggesting HIV testing and 4) suggesting couple HIV counselling to the partner. An intra-couple HIV communication index was created: low degree of communication ("yes" response to zero or one of the four variables), intermediate degree of communication ("yes" to two or three variables) or high degree of communication ("yes" to the four variables). To estimate the impact of COC on the intra-couple HIV communication index, multivariable logistic regressions were conducted. One thousand six hundred and seven women were included in the analysis of whom 54 (3.4%) were HIV-infected (49 in Cameroon). In the four countries, the counselling group was associated with intra-couple HIV communication (P≤0.03): women allocated to the COC group were significantly more likely to report high or intermediate degrees of intra-couple communication about HIV (versus low degree of communication) than women allocated to standard counselling. COC improved short-term communication about HIV within couples in different sociocultural contexts, a positive finding for a couple approach to HIV prevention. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Relationship between the induction frequency and LTE in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Mostaghimi, J.; Boulos, M.I.

    1990-01-01

    In this paper, the effect of the induction frequency on the local thermodynamic equilibrium (LTE) conditions in an inductively coupled plasma is investigated. Using generators with frequencies ranging from 5 to 56 MHz, a previous study investigated demonstrated the importance of this effect. Their measurements of the excitation temperatures of the iron atomic lines showed a sharp decrease in this temperature as a result of the increase in frequency. Another conclusion was that, all other parameters constant, increase in frequency will help the promotion of non-LTE effects

  19. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Adnan, Muhammad; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [National Center for Physics, Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); Physics Institute, Federal University of Rio Grande do Sul (UFRGS), 915051-970, Porto Alegre, RS (Brazil)

    2014-09-15

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  20. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    Science.gov (United States)

    Adnan, Muhammad; Mahmood, S.; Qamar, Anisa

    2014-09-01

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg-de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  1. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders

    Science.gov (United States)

    Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU

    2018-01-01

    Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.

  2. Instability and dynamics of two nonlinearly coupled intense laser beams in a quantum plasma

    International Nuclear Information System (INIS)

    Wang Yunliang; Shukla, P. K.; Eliasson, B.

    2013-01-01

    We consider nonlinear interactions between two relativistically strong laser beams and a quantum plasma composed of degenerate electron fluids and immobile ions. The collective behavior of degenerate electrons is modeled by quantum hydrodynamic equations composed of the electron continuity, quantum electron momentum (QEM) equation, as well as the Poisson and Maxwell equations. The QEM equation accounts the quantum statistical electron pressure, the quantum electron recoil due to electron tunneling through the quantum Bohm potential, electron-exchange, and electron-correlation effects caused by electron spin, and relativistic ponderomotive forces (RPFs) of two circularly polarized electromagnetic (CPEM) beams. The dynamics of the latter are governed by nonlinear wave equations that include nonlinear currents arising from the relativistic electron mass increase in the CPEM wave fields, as well as from the beating of the electron quiver velocity and electron density variations reinforced by the RPFs of the two CPEM waves. Furthermore, nonlinear electron density variations associated with the driven (by the RPFs) quantum electron plasma oscillations obey a coupled nonlinear Schrödinger and Poisson equations. The nonlinearly coupled equations for our purposes are then used to obtain a general dispersion relation (GDR) for studying the parametric instabilities and the localization of CPEM wave packets in a quantum plasma. Numerical analyses of the GDR reveal that the growth rate of a fastest growing parametrically unstable mode is in agreement with the result that has been deduced from numerical simulations of the governing nonlinear equations. Explicit numerical results for two-dimensional (2D) localized CPEM wave packets at nanoscales are also presented. Possible applications of our investigation to intense laser-solid density compressed plasma experiments are highlighted.

  3. Thiazolidinediones enhance sodium-coupled bicarbonate absorption from renal proximal tubules via PPARγ-dependent nongenomic signaling.

    Science.gov (United States)

    Endo, Yoko; Suzuki, Masashi; Yamada, Hideomi; Horita, Shoko; Kunimi, Motoei; Yamazaki, Osamu; Shirai, Ayumi; Nakamura, Motonobu; Iso-O, Naoyuki; Li, Yuehong; Hara, Masumi; Tsukamoto, Kazuhisa; Moriyama, Nobuo; Kudo, Akihiko; Kawakami, Hayato; Yamauchi, Toshimasa; Kubota, Naoto; Kadowaki, Takashi; Kume, Haruki; Enomoto, Yutaka; Homma, Yukio; Seki, George; Fujita, Toshiro

    2011-05-04

    Thiazolidinediones (TZDs) improve insulin resistance by activating a nuclear hormone receptor, peroxisome proliferator-activated receptor γ (PPARγ). However, the use of TZDs is associated with plasma volume expansion through a mechanism that remains to be clarified. Here we showed that TZDs rapidly stimulate sodium-coupled bicarbonate absorption from the renal proximal tubule in vitro and in vivo. TZD-induced transport stimulation is dependent on PPARγ-Src-EGFR-ERK and observed in rat, rabbit and human, but not in mouse proximal tubules where Src-EGFR is constitutively activated. The existence of PPARγ-Src-dependent nongenomic signaling, which requires the ligand-binding ability, but not the transcriptional activity of PPARγ, is confirmed in mouse embryonic fibroblast cells. The enhancement of the association between PPARγ and Src by TZDs supports an indispensable role of Src in this signaling. These results suggest that the PPARγ-dependent nongenomic stimulation of renal proximal transport is also involved in TZD-induced volume expansion. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Analysis of bauxite by inductively coupled plasma-atomic emission spectroscopy

    Science.gov (United States)

    Barnes, Ramon M.; Mahanti, Himansu S.

    Methods are described for the analysis of bauxite by inductively coupled plasma (ICP) emission spectroscopy. Bauxite samples were dissolved either in HCl, HNO 3, and HF at 160°C in all-PTFE bomb or fused with NaOH. Spectral lines were selected after examination of experimental wavelength scans at each potential analyte wavelength. Limits of detection, background equivalent concentration, and analytical figures of merit were established. The accuracy of the method was confirmed by determining 17 elements in NBS-SRM bauxite samples. Silicon in HF solutions was analyzed using a modified ICP torch with a graphite injector tube, an inert nebulizer using PTFE capillary tubes, and a PTFE spray chamber.

  5. Determination of rare earth elements in aluminum by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Mahanti, H.S.; Barnes, R.M.

    1983-01-01

    Inductively coupled plasma-atomic emission spectroscopy is evaluated for the determination of 14 rare earth elements in aluminum. Spectral line interference, limit of detection, and background equivalent concentration values are evaluated, and quantitative recovery is obtained from aluminum samples spiked with rare earth elements. The procedure is simple and suitable for routine process control analysis. 20 references, 5 tables

  6. Experimental investigation of the Boltzmann relation for a bi-Maxwellian distribution in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Bang, Jin Young; Chung, Chin Wook

    2009-01-01

    In plasma, the Boltzmann relation is often used to connect the electron density to the plasma potential because it is not easy to calculate electric potentials on the basis of the Poisson equation due to the quasineutrality. From the Boltzmann relation, the electric potential can be simply obtained from the electron density or vice versa. However, the Boltzmann relation assumes that electrons are in thermal equilibrium and have a Maxwellian distribution, so it cannot be applied to non-Maxwellian distributions. In this paper, the Boltzmann relation for bi-Maxwellian distributions was newly derived from fluid equations and the comparison with the experimental results was given by measuring electron energy probability functions in an inductively coupled plasma. It was found that the spatial distribution of the electron density in bulk plasma is governed by the effective electron temperature, while that of the cold and hot electrons are governed by each electron temperature.

  7. Interleaflet Coupling, Pinning, and Leaflet Asymmetry—Major Players in Plasma Membrane Nanodomain Formation

    Science.gov (United States)

    Fujimoto, Toyoshi; Parmryd, Ingela

    2017-01-01

    The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence. PMID:28119914

  8. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun

    2018-04-01

    A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.

  9. Investigations on the pyrolysis of hydrocarbons in the inductive coupled RF-plasma and the deposited pyrocarbon

    International Nuclear Information System (INIS)

    Eisgruber, H.; Mazurkiewicz, M.; Nickel, H.

    1979-08-01

    The pyrocarbon coatings of the nuclear fuel particles for the High-Temperature Reactor (HTR) are produced by pyrolysis of hydrocarbons under high temperatures. The investigations of the inductive coupled argon or argon/hydrocarbon-plasma performed in the frame of this work deliver a contribution for the clarification of pyrolysis processes and the production of pyrolytic carbons in the plasma of an electric discharge. The argon-plasma, as high-temperature source, is diagnosed theoretically and emission-spectroscopically. To the pure argon-plasma the various hydrocarbons are added. Due to the thermal decomposition the carbon is separated in solid form. The structure of the deposited pyrocarbon is composed of different components. The depositions are characterised with the principles in use at the IRW and are assigned to the fluidized bed pyrocarbons as fas as possible. (orig.) [de

  10. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J.M.; García Alonso, J.I., E-mail: jiga@uniovi.es

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC–ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review. - Highlights: • Emphasis placed on the sulfur-specific detection by chromatographic techniques coupled on-line to ICP-MS. • Different instrumental approaches available for sulfur measurements by ICP-MS. • Quantification of proteins and the analysis of metalloproteins via sulfur by LC-ICP-MS. • Labelling procedures for metabolic applications are also included. • The measurement of natural variations in S isotope composition with multicollector ICP-MS.

  11. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    OpenAIRE

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of du...

  12. Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities

    Science.gov (United States)

    Song, L. N.; Wang, Z. H.; Li, Yong

    2018-05-01

    We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.

  13. Resonant mode for a dc plasma spray torch by means of pressure–voltage coupling: application to synchronized liquid injection

    International Nuclear Information System (INIS)

    Krowka, J; Rat, V; Coudert, J F

    2013-01-01

    Electric arc instabilities in dc plasma torches result in non-homogeneous treatment of nanosized solid particles injected into the plasma jets. In the particular case of suspension plasma spraying, large discrepancies in the particles trajectories and thermal histories make the control of coating properties more difficult to achieve. In this paper, a new approach of arc dynamics highlights the existence of different resonant modes and the possibility of their coupling. This study leads us to design a special plasma torch working in a very regular pulsed regime. Then, an innovative injection system based on the drop-on-demand method synchronized with the plasma oscillations is presented as an efficient method to control the dynamics of plasma/particles interactions. (paper)

  14. Measurement of the surface charge accumulation using anodic aluminum oxide(AAO) structure in an inductively coupled plasma

    Science.gov (United States)

    Park, Ji-Hwan; Oh, Seung-Ju; Lee, Hyo-Chang; Kim, Yu-Sin; Kim, Young-Cheol; Kim, June Young; Ha, Chang-Seoung; Kwon, Soon-Ho; Lee, Jung-Joong; Chung, Chin-Wook

    2014-10-01

    As the critical dimension of the nano-device shrinks, an undesired etch profile occurs during plasma etch process. One of the reasons is the local electric field due to the surface charge accumulation. To demonstrate the surface charge accumulation, an anodic aluminum oxide (AAO) membrane which has high aspect ratio is used. The potential difference between top electrode and bottom electrode in an anodic aluminum oxide contact structure is measured during inductively coupled plasma exposure. The voltage difference is changed with external discharge conditions, such as gas pressure, input power, and gas species and the result is analyzed with the measured plasma parameters.

  15. Generation of runaway electrons during deterioration of lower hybrid power coupling in lower hybrid current drive plasmas in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Chen, Z Y; Ju, H J; Zhu, J X; Li, M; Cai, W D; Liang, H F; Wan, B N; Shi, Y J; Xu, H D

    2009-01-01

    Efficient coupling of lower hybrid (LH) power from the wave launcher to the plasma is a very important issue in lower hybrid current drive (LHCD) experiments. The large unbalanced reflections in the grill trigger the LH protection system, which will trip the power, resulting in the reduction of the coupled LH power. The generation of runaway electrons has been investigated in LHCD plasmas with deterioration of LH coupling in the HT-7 tokamak. The deterioration of LH coupling results in an increase of the loop voltage and a more energetic fast electron population. These two effects favor the generation of a runaway population. It is found that most of the fast electrons generated by LH waves through parallel electron Landau damping were converted into a runaway population through the acceleration from the toroidal electric field when significant deterioration of LH coupling occurs.

  16. Plasma-enhanced atomic layer deposition of silicon dioxide films using plasma-activated triisopropylsilane as a precursor

    International Nuclear Information System (INIS)

    Jeon, Ki-Moon; Shin, Jae-Su; Yun, Ju-Young; Jun Lee, Sang; Kang, Sang-Woo

    2014-01-01

    The plasma-enhanced atomic layer deposition (PEALD) process was developed as a growth technique of SiO 2 thin films using a plasma-activated triisopropylsilane [TIPS, ((iPr) 3 SiH)] precursor. TIPS was activated by an argon plasma at the precursor injection stage of the process. Using the activated TIPS, it was possible to control the growth rate per cycle of the deposited films by adjusting the plasma ignition time. The PEALD technique allowed deposition of SiO 2 films at temperatures as low as 50 °C without carbon impurities. In addition, films obtained with plasma ignition times of 3 s and 10 s had similar values of root-mean-square surface roughness. In order to evaluate the suitability of TIPS as a precursor for low-temperature deposition of SiO 2 films, the vapor pressure of TIPS was measured. The thermal stability and the reactivity of the gas-phase TIPS with respect to water vapor were also investigated by analyzing the intensity changes of the C–H and Si–H peaks in the Fourier-transform infrared spectrum of TIPS

  17. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    International Nuclear Information System (INIS)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, Yoon-Jae; Park, Man-Jin; Moon, Dae Won

    2012-01-01

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m 2 SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  18. Numerical study of laser-induced blast wave coupled with unsteady ionization processes

    International Nuclear Information System (INIS)

    Ogino, Y; Ohnishi, N; Sawada, K

    2008-01-01

    We present the results of the numerical simulation of laser-induced blast wave coupled with rate equations to clarify the unsteady property of ionization processes during pulse heating. From comparison with quasi-steady computations, the plasma region expands more widely, which is sustained by the inverse-bremsstrahlung since an ionization equilibrium does not establish at the front of the plasma region. The delayed relaxation leads to the rapid expansion of the driving plasma and enhances the energy conversion efficiency from a pulse heating laser to the blast wave

  19. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Niu, Hongsen.

    1995-01-01

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T e ) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n e ) is in the range 10 8 --10 10 -cm at the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 near the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10 4 --10 5 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z 2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z 2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument

  20. Gas chromatography--inductively coupled plasma--time-of-flight mass spectrometry for the speciation analysis of organolead compounds in environmental water samples.

    Science.gov (United States)

    Heisterkamp, M; Adams, F C

    2001-07-01

    The application of inductively coupled plasma--time-of-flight mass spectrometry for the speciation analysis of organolead compounds in environmental waters is described. Construction of the transfer line was achieved by means of a relatively simple and rapid coupling procedure. Derivatization of the ionic lead species was achieved by in-situ propylation with sodium tetrapropylborate; simultaneous extraction of the derivatized compounds in hexane was followed by separation and detection by capillary gas chromatography hyphenated to inductively coupled plasma-time-of-flight mass spectrometry. Detection limits for the different organolead species ranged from 10 to 15 fg (as Pb), corresponding to procedural detection limits between 50 and 75 ng L(-1), on the basis of a 50 mL snow sample, extraction with 200 microL hexane, and subsequent injection of 1 microL of the organic extract on to the column. The accuracy of the system was confirmed by additional analysis of the water samples by capillary gas chromatography coupled with microwave-induced plasma-atomic-emission spectrometry and the analysis of a standard reference material CRM 605 (road dust) with a certified content of trimethyllead.

  1. Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators

    Science.gov (United States)

    Yao, Junkai; Zhou, Danjie; He, Haibo; He, Chengjun; Shi, Zhiwei; Du, Hai

    2017-04-01

    The effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s-1. The aerodynamic forces and moments were obtained by a six-component balance at angles of attack ranging from -4° to 28°. The lift, drag and pitching moment coefficients were compared for the cases with and without plasma control. The results revealed that the maximum control effect was achieved by placing the actuator at the leading edge of the inner and middle wing, for which the maximum lift coefficient increased by 37.8% and the stall angle of attack was postponed by 8° compared with the plasma-off case. The effects of modulation frequency and discharge voltage were also investigated. The results revealed that the lift enhancement effect of the NS-DBD plasma actuators was strongly influenced by the modulation frequency. Significant control effects were obtained at f = 70 Hz, corresponding to F + ≈ 1. The result for the pitching moment coefficient demonstrated that the plasma actuator can induce the reattachment of the separation flows when it is actuated. However, the results indicated that the discharge voltage had a negligible influence on the lift enhancement effect.

  2. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    International Nuclear Information System (INIS)

    Chin, O.H.; Jayapalan, K.K.; Wong, C.S.

    2014-01-01

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile. (author)

  3. ULTRASONIC NEBULIZATION AND ARSENIC VALENCE STATE CONSIDERATIONS PRIOR TO DETERMINATION VIA INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    Science.gov (United States)

    An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...

  4. Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device

    International Nuclear Information System (INIS)

    Peng, S.Y.

    1991-07-01

    Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of the thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system (ρ,ξ) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number α as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions

  5. Multielement determination of rare earth elements in rock sample by liquid chromatography / inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Hamanaka, Tadashi; Itoh, Akihide; Itoh, Shinya; Sawatari, Hideyuki; Haraguchi, Hiroki.

    1995-01-01

    Rare earth elements in geological standard rock sample JG-1 (granodiolite)issued from the Geological Survey of Japan have been determined by a combined system of liquid chromatography and inductively coupled plasma mass spectrometry. (author)

  6. Enhanced coupling and decoupling of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-09-04

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/.

  7. Enhanced coupling and decoupling of underground nuclear explosions

    International Nuclear Information System (INIS)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-01-01

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/

  8. On the evolution of jet energy and opening angle in strongly coupled plasma

    International Nuclear Information System (INIS)

    Chesler, Paul M.; Rajagopal, Krishna

    2016-01-01

    We calculate how the energy and the opening angle of jets in N=4 SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE_j_e_t/dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE_j_e_t/dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that N=4 SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the N=4 SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. We close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.

  9. Structure of the strongly coupled classical plasma in the self-consistent mean spherical approximation

    International Nuclear Information System (INIS)

    Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.

    1980-10-01

    An analytic theory is presented for the static structure factor of the one-component classical plasma at strong couplings. The theory combines the hard-core model of Gillan for short-range correlations in the Coulomb fluid with a semiempirical representation of intermediate-range correlations, through which the requirement of thermodynamic consistency on the ''compressibility'' and the known equation of state of the system are satisfied. Excellent agreement is found with the available computer simulation data on the structure of the fluid. The approach becomes inapplicable at intermediate and weak couplings where effects of penetration in the Coulomb hole of each particle become important. (author)

  10. Recent trends in atomic spectrometry with microwave-induced plasmas

    International Nuclear Information System (INIS)

    Broekaert, Jose A.C.; Siemens, Volker

    2004-01-01

    The state-of-the-art and trends of development in atomic spectrometry with microwave-induced plasmas (MIPs) since the 1998s are presented and discussed. This includes developments in devices for producing microwave plasma discharges, with reference also to miniaturized systems as well as to progress in sample introduction for microwave-induced plasmas, such as pneumatic and ultrasonic nebulization using membrane desolvation, to the further development of gaseous analyte species generation systems and to both spark and laser ablation (LA). The features of microwave-induced plasma mass spectrometry (MIP-MS) as an alternative to inductively coupled plasma (ICP)-MS are discussed. Recent work on the use of microwave-induced plasma atomic spectrometry for trace element determinations and monitoring, their use as tandem sources and for particle sizing are discussed. Recent applications of the coupling of gas chromatography and MIP atomic spectrometry for the determination of organometallic compounds of heavy metals such as Pb, Hg, Se and Sn are reviewed and the possibilities of trapping for sensitivity enhancement, as required for many applications especially in environmental work, are showed at the hand of citations from the recent literature

  11. Plasma analysis of inductively coupled impulse sputtering of Cu, Ti and Ni

    Science.gov (United States)

    Loch, D. A. L.; Aranda Gonzalvo, Y.; Ehiasarian, A. P.

    2017-06-01

    Inductively coupled impulse sputtering (ICIS) is a new development in the field of highly ionised pulsed PVD processes. For ICIS the plasma is generated by an internal inductive coil, replacing the need for a magnetron. To understand the plasma properties, measurements of the current and voltage waveforms at the cathode were conducted. The ion energy distribution functions (IEDFs) were measured by energy resolved MS and plasma chemistry was analysed by OES and then compared to a model. The target was operated in pulsed DC mode and the coil was energised by pulsed RF power, with a duty cycle of 7.5%. At a constant pressure (14 Pa) the set peak RF power was varied from 1000-4000 W. The DC voltage to the target was kept constant at 1900 V. OES measurements have shown a monotonic increase in intensity with increasing power. Excitation and ionisation processes were single step for ICIS of Ti and Ni and multi-step for Cu. The latter exhibited an unexpectedly steep rise in ionisation efficiency with power. The IEDFs measured by MS show the material- and time-dependant plasma potential in the range of 10-30 eV, ideal for increased surface mobility without inducing lattice defects. A lower intensity peak, of high energetic ions, is visible at 170 eV during the pulse.

  12. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  13. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.

    Science.gov (United States)

    McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C

    2016-09-07

    We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

  14. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    Science.gov (United States)

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  15. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  16. Polyatomic ions in inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ferguson, Jill Wisnewski; Dudley, Timothy J.; Sears, Kyle C.; McIntyre, Sally M.; Gordon, Mark S.; Houk, R.S.

    2009-01-01

    Several polyatomic ions in inductively coupled plasma-mass spectrometry are studied experimentally and by computational methods. Novel calculations based on spin-restricted open shell second order perturbation theory (ZAPT2) and coupled cluster (CCSD(T)) theory are performed to determine the energies, structures and partition functions of the ions. These values are combined with experimental data to evaluate a dissociation constant and gas kinetic temperature (T gas ) value. In our opinion, the resulting T gas value can sometimes be interpreted to deduce the location where the polyatomic ion of interest is generated. The dissociation of N 2 H + to N 2 + leads to a calculated T gas of 4550 to 4900 K, depending on the computational data used. The COH + to CO + system yields a similar temperature, which is not surprising considering the similar energies and structures of COH + and N 2 H + . The dissociation of H 2 CO + to HCO + leads to a much lower T gas ( 2 COH + to HCOH + generates a T gas value between those from the other H x CO + ions studied here. All of these measured T gas values correspond to formation of extra polyatomic ion in the interface or extraction region. The computations reveal the existence of isomers such as HCO + and COH + , and H 2 CO + and HCOH + , which have virtually the same m/z values and need to be considered in the interpretation of results.

  17. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A. [Center for Turbulence Research, Stanford University, Stanford, California 94305-3024 (United States)

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  18. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  19. Common cause failure: enhancing defenses against root cause and coupling factor

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Poorva; Kim, Sok Chul [KINS, Daejeon (Korea, Republic of)

    2016-10-15

    A Common Cause Failure(CCF) event refers to a specific class of dependent events that result from co-existence of two main factors: Susceptibility of components to fail or become unavailable due to particular root cause of failure, and coupling factor coupling mechanism) that creates the condition for multiple components getting affected. PSA (Probabilistic Safety Assessment) operating experience of Nuclear Power Plants have demonstrated that dependent events such as CCF events are major contributor to risk during operation. From cost-benefit consideration, putting significant design modifications in place to prevent CCF would not be desirable in terms of risk management regulatory effectiveness and efficiency. The aim of this study was to propose feasible defenses against CCF from cost benefit consideration to enhance the safety. This study provides the CDM and CFDM of EDG. Defenses employed against cause and coupling factor can be easily employed in operation and maintenance programme of NPP and are not an additional cost burden. Such enhancement of defense against the CCF can give a modest improvement in CDF. This approach is specifically helpful in plants that are already under operation and significant modifications are not economically feasible.

  20. Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES)

    Energy Technology Data Exchange (ETDEWEB)

    Chew, L.T.; Bradley, D.A. E-mail: D.A.Bradley@exeter.ac.uk; Mohd, Y.; Jamil, M

    2000-11-15

    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 {mu}g (g tooth mass){sup -1} to 40.5 {mu}g (g tooth mass){sup -1}, with a median of 9.8 {mu}g (g tooth mass){sup -1}. A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 {mu}g (g tooth mass){sup -1} respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.

  1. The PERC trademark process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment

    International Nuclear Information System (INIS)

    Blutke, A.S.; Vavruska, J.S.; Serino, J.F.

    1996-01-01

    Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC)trademark treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC trademark treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream's form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment

  2. Diurnal and Seasonal Statistical Characteristics of Well-formed Plasma Depletion and Enhancement Plumes under Quiet Solar Conditions

    Science.gov (United States)

    Haaser, R. A.

    2011-12-01

    The Ion Velocity Meter (IVM), a part of the Coupled Ion Neutral Dynamics Investigation (CINDI) aboard the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite, is used to measure in situ ion densities and drifts at altitudes between 400 and 550 km during the nighttime hours from 2100 to 300 local time. A new approach to detecting and classifying well-formed ionospheric plasma depletion and enhancement plumes (bubbles and blobs) of scale sizes between 50 and 500 km is used to develop geophysical statistics for the summer, winter and equinox seasons of the quiet solar conditions during 2009 and 2010. Some diurnal and seasonal geomagnetic distribution characteristics confirm previous work on irregularities and scintillations, while others reveal new behaviors that require additional observations and modeling to promote full understanding.

  3. ''Top-down'' versus ''side-on'' viewing of the inductively coupled plasma

    International Nuclear Information System (INIS)

    Faires, L.M.; Bieniewski, T.M.; Apel, C.T.; Niemczyk, T.M.

    1985-01-01

    The inductively coupled plasma is viewed by a ''top-down'' optical configuration, and the analytical performance is compared to conventional ''side-on'' viewing in terms of sensitivity, detection limits, linear dynamical range, self-reversal effects, and multielement performance. This comparison is made for a selection of eleven atom and ion lines of eight elements. The results of this study indicate distinct advantages in ''top-down'' viewing including improved sensitivity, lower detection limits, better signal-to-background ratios, and better compromise viewing position for multielement analysis. An exception to these advantages is increased self-absorption effects observed for the alkali elements

  4. Matrix separation by chelation to prepare biological materials for isotopic zinc analysis by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Durrant, S.F.; Krushevska, A.; Amarasiriwardena, D.; Argentine, M.D.; Romon-Guesnier, S.; Barnes, R.M.

    1994-01-01

    Following an evaluation of three chelating resins [Chelex-100, poly(dithiocarbamate) (PDTC) and carboxymethylated poly(ethyleneimine)-poly(methylenepolyphenylene) isocyanate (CPPI)], a procedure was established with the last of these for the separation of Zn from biological matrix elements prior to 70 Zn: 68 Zn isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). The method was verified by establishing Zn recoveries and by determining its effectiveness in removing Cl and Na from buffered test solutions. Calcium, Na, and Zn concentration data were determined by inductively coupled plasma atomic emission spectrometry. Chlorine was measured by electrothermal vaporization ICP-MS. The efficacy of the technique was demonstrated by the determination of zinc isotope ratios in bovine milk and human urine. (Author)

  5. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    International Nuclear Information System (INIS)

    Francioso, L; De Pascali, C; Siciliano, P; Pescini, E; De Giorgi, M G

    2016-01-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0–100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa −1 for the best devices. (paper)

  6. Large plasma density enhancements occurring in the northern polar region during the 6 April 2000 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2014-06-01

    We focus on the ionospheric response of northern high-latitude region to the 6 April 2000 superstorm and aim to investigate how the storm-enhanced density (SED) plume plasma became distributed in the regions of auroral zone and polar cap plus to study the resultant ionospheric features and their development. Multi-instrument observational results combined with model-generated, two-cell convection maps permitted identifying the high-density plasma's origin and the underlying plasma transportation processes. Results show the plasma density feature of polar cap enhancement (PCE; 600 × 103 i+/cm3) appearing for 7 h during the main phase and characterized by increases reaching up to 6 times of the quiet time values. Meanwhile, strong westward convections ( 17,500 m/s) created low plasma densities in a wider region of the dusk cell. Oppositely, small ( 750 m/s) but rigorous westward drifts drove the SED plume plasma through the auroral zone, wherein plasma densities doubled. As the SED plume plasma traveled along the convection streamlines and entered the polar cap, a continuous enhancement of the tongue of ionization (TOI) developed under steady convection conditions. However, convection changes caused slow convections and flow stagnations and thus segmented the TOI feature by locally depleting the plasma in the affected regions of the auroral zone and polar cap. From the strong correspondence of polar cap potential drop and subauroral polarization stream (SAPS), we conclude that the SAPS E-field strength remained strong, and under its prolonged influence, the SED plume provided a continuous supply of downward flowing high-density plasma for the development and maintenance of PCEs.

  7. Enhanced photoluminescence from porous silicon by hydrogen-plasma etching

    International Nuclear Information System (INIS)

    Wang, Q.; Gu, C.Z.; Li, J.J.; Wang, Z.L.; Shi, C.Y.; Xu, P.; Zhu, K.; Liu, Y.L.

    2005-01-01

    Porous silicon (PS) was etched by hydrogen plasma. On the surface a large number of silicon nanocone arrays and nanocrystallites were formed. It is found that the photoluminescence of the H-etched porous silicon is highly enhanced. Correspondingly, three emission centers including red, green, and blue emissions are shown to contribute to the enhanced photoluminescence of the H-etched PS, which originate from the recombination of trapped electrons with free holes due to Si=O bonding at the surface of the silicon nanocrystallites, the quantum size confinement effect, and oxygen vacancy in the surface SiO 2 layer, respectively. In particular, the increase of SiO x (x<2) formed on the surface of the H-etched porous silicon plays a very important role in enhancing the photoluminescence properties

  8. Applications of inductively coupled plasma spectroscopy to geochemical reconnaissance for uranium exploration

    International Nuclear Information System (INIS)

    Cagle, G.W.; Butz, T.R.

    1980-01-01

    The analysis of large numbers of natural groundwater and stream sediment samples by Inductively Coupled Plasma (ICP) Spectroscopy has been applied to a geochemical reconnaissance program as part of the National Uranium Resource Evaluation Program. Approximately 25 elements have been determined in over 60,000 samples by ICP analysis. These data are combined with additional measurements obtained by atomic absorption, colorimetry, neutron activation, and fluorescence spectroscopy. Results are presented and interpreted in terms of the uranium favorability of areas in Texas where this survey has been completed

  9. Non-spectral interferences due to the presence of sulfuric acid in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    García-Poyo, M. Carmen; Grindlay, Guillermo; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain); Loos-Vollebregt, Margaretha T.C. de, E-mail: margaretha.deloos@ugent.be [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 67, 2628 BC Delft (Netherlands); Ghent University, Department of Analytical Chemistry, Krijgslaan 281 - S12, 9000 Ghent (Belgium); Mora, Juan, E-mail: juan.mora@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain)

    2015-03-01

    Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma–mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w{sup −1}) have been compared with the corresponding signals for a 1% w w{sup −1−} nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for {sup 128}Te{sup +}, {sup 78}Se{sup +} and {sup 75}As{sup +} were significantly higher when using sulfuric acid matrices (up to 2.2-fold for {sup 128}Te{sup +} and {sup 78}Se{sup +} and 1.8-fold for {sup 75}As{sup +} in the presence of 5 w w{sup -1} sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for {sup 31}P{sup +} is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for {sup 128}Te{sup +}, {sup 78}Se{sup +}, {sup 75}As{sup +} and {sup 31}P{sup +} are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S{sup +} species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10–20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These

  10. Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Gupta, M.R.

    2005-01-01

    Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly

  11. Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F.; Luais, E. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Thobie-Gautier, C. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Tessier, P.-Y. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France)], E-mail: mohammed.boujtita@univ-nantes.fr

    2009-04-15

    Radiofrequency argon plasma was used for screen-printed carbon electrodes (SPCE) surface treatment. The cyclic voltammetry of ferri/ferrocyanide as redox couple showed a remarkable improvement of the electrochemical reactivity of the SPCE after the plasma treatment. The effect of the plasma growth conditions on the efficiency of the treatment procedure was evaluated in term of electrochemical reactivity of the SPCE surface. The electrochemical study showed that the electrochemical reactivity of the treated electrodes was strongly dependant on radiofrequency power, treatment time and argon gas pressure. X-ray photoelectron spectroscopy (XPS) analysis showed a considerable evolution on the surface chemistry of the treated electrodes. Our results clearly showed that the argon plasma treatment induces a significant increase in the C{sub sp2}/C{sub sp3} ratio. The scanning electron micrograph (SEM) also showed a drastic change on the surface morphology of the treated SPCEs.

  12. Coupled tearing modes in plasmas with differential rotation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Persson, M.

    1993-08-01

    The global asymptotic matching equations for multiple coupled resistive modes of arbitrary parity in a cylindrical plasma are derived. Three different variational principles are given for the outer region matching data, while the inner-region analysis features a careful treatment of the symmetry-breaking effect of a gradient in the equilibrium current for a zero-β slab model. It is concluded that the usual constant-ψ result remains valid and constrains the matrix matching formalism. The dispersion relation is compared with initial value calculations of a double tearing mode when there are small relative rotation velocities between the rational surfaces. In treating differential rotation within the asymptotic matching formalism, flow is ignored in the outer region and is assumed to affect the inner response solely through a Doppler shift. It is shown that the relative rotation can have a strong stabilizing effect by making all but one rational surface effectively ideal. 40 refs., 6 figs

  13. Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

    Science.gov (United States)

    Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG

    2018-02-01

    The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50-300 W and pressure is 25-250 Pa, the average electron temperature is about 1.7-2.1 eV and the average electron density is about 0.5 × 1017-3.6 × 1017 m-3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.

  14. Magnetic fields and uniformity of radio frequency power deposition in low-frequency inductively coupled plasmas with crossed internal oscillating currents

    International Nuclear Information System (INIS)

    Tsakadze, E.L.; Ostrikov, K.; Tsakadze, Z.L.; Vladimirov, S.V.; Xu, S.

    2004-01-01

    Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz) inductively coupled plasma source with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z , H r , and H φ ) and two electric (E φ and E r ) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic (E) and electromagnetic (H) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ('pancake') antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data

  15. Pyrolysis treatment of waste tire powder in a capacitively coupled RF plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Department of Environmental Engineering, Guangdong University of Technology, Waihuanxi Road, Guangzhou 510006 (China); Tang, L. [Department of Civil Engineering, Guangzhou University, Waihuanxi Road, Guangzhou 510006 (China)

    2009-03-15

    A capacitively coupled radio-frequency (RF) plasma reactor was tested mainly for the purpose of solid waste treatment. It was found that using a RF input power between 1600 and 2000 W and a reactor pressure between 3000 and 8000 Pa (absolute pressure), a reactive plasma environment with a gas temperature between 1200 and 1800 K can be reached in this lab scale reactor. Under these conditions, pyrolysis of tire powder gave two product streams: a combustible gas and a pyrolytic char. The major components of the gas product are H{sub 2}, CO, CH{sub 4}, and CO{sub 2} The physical properties (surface area, porosity, and particle morphology) as well as chemical properties (elemental composition, heating value, and surface functional groups) of the pyrolytic char has also been examined. (author)

  16. Degradation of sulfur dioxide using plasma technology

    International Nuclear Information System (INIS)

    Estrada M, N.; Garcia E, R.; Pacheco P, M.; Valdivia B, R.; Pacheco S, J.

    2013-01-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO 2 ) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  17. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    Science.gov (United States)

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  18. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nad, Shreya [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Gu, Yajun; Asmussen, Jes [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  19. Core-edge coupling and the effect of the edge on overall plasma performance

    International Nuclear Information System (INIS)

    Fichtmueller, M.; Corrigan, G.; Lauro-Taroni, L.

    1999-01-01

    Several attempts to model the entire plasma cross section have been reported in the last few years. Two possibilities are to either couple a core code to a scrape-off layer (SOL) code at a specified interface or to extend the computational region of an SOL-code all the way to the plasma centre. The most advanced global code is the code COCONUT which is based on the former principle and comprises the Monte-Carlo code NIMBUS, the 2D scrape-off layer code EDGE2D, the core transport code JETTO and the core impurity transport code SANCO. A main feature of COCONUT is its modular structure which ensures a high degree of flexibility and the capability to cover a large range of time-scales. The influence of the SOL on the core is illustrated with a range of global simulations carried out with COCONUT. The simulations show that the primary effect of the SOL is the control of the particle sources and sinks with a secondary effect on plasma dilution, radiation and perhaps pedestal temperatures. (author)

  20. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    International Nuclear Information System (INIS)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.

    2016-01-01

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO_2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

  1. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    International Nuclear Information System (INIS)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard

  2. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Yoon-Jae [Samsung Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Park, Man-Jin [Research Institute of Nano Manufacturing System, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Moon, Dae Won [Nanobio Fusion Research Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2012-02-15

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m{sup 2} SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  3. Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures

    Directory of Open Access Journals (Sweden)

    Qingyang Yue

    2012-01-01

    Full Text Available The out-coupling efficiency of planar organic light emitting diodes (OLEDs is only about 20% due to factors, such as, the total internal reflection, surface plasmon coupling, and metal absorption. Two-dimensional periodic nanostructures, such as, photonic crystals (PhCs and microlenses arrays offer a potential method to improve the out-coupling efficiency of OLEDs. In this work, we employed the finite-difference time-domain (FDTD method to explore different mechanisms that embedded PhCs and surface PhCs to improve the out-coupling efficiency. The effects of several parameters, including the filling factor, the depth, and the lattice constant were investigated. The result showed that embedded PhCs play a key role in improving the out-coupling efficiency, and an enhancement factor of 240% was obtained in OLEDs with embedded PhCs, while the enhancement factor of OLEDs with surface PhCs was only 120%. Furthermore, the phenomena was analyzed using the mode theory and it demonstrated that the overlap between the mode and PhCs was related to the distribution of vertical mode profiles. The enhancement of the extraction efficiency in excess of 290% was observed for the optimized OLEDs structure with double PhCs. This proposed structure could be a very promising candidate for high extraction efficiency OLEDs.

  4. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weimin [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Zhou, Xiaoyan, E-mail: zhouxiaoyan@njfu.edu.cn [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Zhang, Xiaotao [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Bian, Jie [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Wan, Jinglin [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China)

    2017-06-15

    Highlights: • Plasma working under low pressure is easy to realize industrialization. • Enhancing process finished within 75 s. • Plasma treatment leads to the increase in equilibrium contact angle by 330%. • Tinfoil film with simple chemical structure was used to reveal the mechanism. - Abstract: The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Si−O−C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  5. Sheet Fluorescence and Annular Analysis of Ultracold Neutral Plasmas

    International Nuclear Information System (INIS)

    Castro, J.; Gao, H.; Killian, T. C.

    2009-01-01

    Annular analysis of fluorescence imaging measurements on Ultracold Neutral Plasmas (UNPs) is demonstrated. Spatially-resolved fluorescence imaging of the strontium ions produces a spectrum that is Doppler-broadened due to the thermal ion velocity and shifted due to the ion expansion velocity. The fluorescence excitation beam is spatially narrowed into a sheet, allowing for localized analysis of ion temperatures within a volume of the plasma with small density variation. Annular analysis of fluorescence images permits an enhanced signal-to-noise ratio compared to previous fluorescence measurements done in strontium UNPs. Using this technique and analysis, plasma ion temperatures are measured and shown to display characteristics of plasmas with strong coupling such as disorder induced heating and kinetic energy oscillations.

  6. Antifouling enhancement of polysulfone/TiO2 nanocomposite separation membrane by plasma etching

    Science.gov (United States)

    Chen, Z.; Yin, C.; Wang, S.; Ito, K.; Fu, Q. M.; Deng, Q. R.; Fu, P.; Lin, Z. D.; Zhang, Y.

    2017-01-01

    A polysulfone/TiO2 nanocomposite membrane was prepared via casting method, followed by the plasma etching of the membrane surface. Doppler broadened energy spectra vs. positron incident energy were employed to elucidate depth profiles of the nanostructure for the as-prepared and treated membranes. The results confirmed that the near-surface of the membrane was modified by the plasma treatment. The antifouling characteristics for the membranes, evaluated using the degradation of Rhodamin B, indicated that the plasma treatment enhances the photo catalytic ability of the membrane, suggesting that more TiO2 nanoparticles are exposed at the membrane surface after the plasma treatment as supported by the positron result.

  7. Antifouling enhancement of polysulfone/TiO2 nanocomposite separation membrane by plasma etching

    International Nuclear Information System (INIS)

    Chen, Z; Yin, C; Wang, S; Fu, Q M; Deng, Q R; Fu, P; Lin, Z D; Zhang, Y; Ito, K

    2017-01-01

    A polysulfone/TiO 2 nanocomposite membrane was prepared via casting method, followed by the plasma etching of the membrane surface. Doppler broadened energy spectra vs. positron incident energy were employed to elucidate depth profiles of the nanostructure for the as-prepared and treated membranes. The results confirmed that the near-surface of the membrane was modified by the plasma treatment. The antifouling characteristics for the membranes, evaluated using the degradation of Rhodamin B, indicated that the plasma treatment enhances the photo catalytic ability of the membrane, suggesting that more TiO 2 nanoparticles are exposed at the membrane surface after the plasma treatment as supported by the positron result. (paper)

  8. Grain dynamics and inter-grain coupling in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Rahman, H.U.; Mohideen, U.; Smith, M.A.; Rosenberg, M.; Mendis, D.A.

    2001-01-01

    We review our results on the lattice structure and the lattice dynamics of dusty plasma Coulomb crystals formed in rectangular conductive grooves. The basic structure appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. Inter-grain coupling as a function of plasma temperature and density were investigated by measurement of these parameters. A simple phenomenological model wherein the inter-grain spacing along the column results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. In addition, here we present some preliminary measurements of the vibration and rotation dynamics of the individual grains in the Coulomb crystal. The thermal energy of the dust grain thus calculated is much less than the inter-grain Coulomb potential energy as required for the formation of stable structures. Also the observed rotational frequency is consistent with the assumption of thermal equilibrium between the dust grains and the neutral gas. (orig.)

  9. Plasma enhanced atomic layer deposited MoOx emitters for silicon heterojunction solar cells

    OpenAIRE

    Ziegler, J.; Mews, M.; Kaufmann, K.; Schneider, T.; Sprafke, A.N.; Korte, L.; Wehrsporn, R.B

    2015-01-01

    A method for the deposition of molybdenum oxide MoOx with high growth rates at temperatures below 200 C based on plasma enhanced atomic layer deposition is presented. The stoichiometry of the overstoichiometric MoOx films can be adjusted by the plasma parameters. First results of these layers acting as hole selective contacts in silicon heterojunction solar cells are presented and discussed

  10. New system for vacuum deposition of refractory materials using an atmospheric-pressure inductively coupled plasma

    International Nuclear Information System (INIS)

    Merkle, B.D.; Kniseley, R.N.; Schmidt, F.A.

    1987-01-01

    We have successfully developed a technique utilizing an atmospheric-pressure inductively coupled plasma combined with a low-pressure deposition chamber for deposition of thin films. The equipment and method of operation are discussed. Refractory powders (Nb and Y 2 O 3 ) were injected into the plasma and deposited as Nb and substoichiometric yttrium oxide, YO/sub 1.49/, onto Fe and Cu substrates. The substoichiometric yttrium oxide deposit adhered well to the Fe and Cu substrates, while the Nb deposit adhered well to the Fe only. The Nb deposit on the Cu substrate flaked and peeled probably because of stresses induced from the thermal expansion mismatch between the Nb and Cu. Further studies will be undertaken to better understand the processes occurring in this type of plasma-coating system in order to optimize the instrumental parameters for particular coating applications

  11. Enhancement of the neutral-beam stopping cross section in fusion plasmas due to multistep collision processes

    International Nuclear Information System (INIS)

    Boley, C.D.; Janev, R.K.; Post, D.E.

    1983-10-01

    Multistep processes involving excited atomic states are found to produce a substantial increase in the stopping cross section for a neutral hydrogen beam injected into a plasma, and thus to reduce the beam penetration. For typical plasma and beam parameters of current large tokamak experiments, the stopping cross-sectional enhancement is found to vary from 25% to 50% depending on the beam energy, plasma density, and impurity level. For neutral hydrogen beams with energies greater than or equal to 500 keV, envisioned in tokamak amd mirror reactor designs, the enhancement can be as large as 80 to 90%

  12. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

    Science.gov (United States)

    Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.

    1990-03-01

    This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.

  13. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    International Nuclear Information System (INIS)

    Coulon, J.F.; Tournerie, N.; Maillard, H.

    2013-01-01

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m 2 to 70 mJ/m 2 because the plasma pretreatment led to the formation of hydrophilic C-O and C=O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  14. Enhanced coagulation activation in preeclampsia: the role of APC resistance, microparticles and other plasma constituents

    NARCIS (Netherlands)

    VanWijk, Marja J.; Boer, Kees; Berckmans, René J.; Meijers, Joost C. M.; van der Post, Joris A. M.; Sturk, Augueste; VanBavel, Ed; Nieuwland, Rienk

    2002-01-01

    Coagulation activation in pregnancy is further enhanced in preeclampsia. We investigated whether this results from increased thrombin generation by the plasma itself or its cell-derived microparticles. Plasma samples were obtained from preeclamptic, normal pregnant and nonpregnant women (each n =

  15. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    International Nuclear Information System (INIS)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-01-01

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP

  16. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo, E-mail: bradywang@hit.edu.cn; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-30

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  17. Application of capacitively coupled rf discharge plasma for sterilization of polymer materials used in ophthalmology

    International Nuclear Information System (INIS)

    Abdullin, I.Sh.; Avetisov, S.E.; Lipatov, D.V.; Rybakova, E.G.; Bragin, V.E.; Bykanov, A.N.; Kamarentsev, E.N.

    1996-01-01

    The sterilization effect of capacitively coupled rf discharge plasma treatment of contact lenses was investigated. There were used two types of polymer: highly hydrophilic polymer with water content 76% (Navelen-76) and poly-methylmethacrylate (PMMA). There was demonstrated the possibility of effective sterilization by RF discharge plasma of a set of polymer materials used in ophthalmology. The best results were obtained for hard contact lenses. There was perfect sterilization in this case. There were not perfect sterilization in some cases of soft contact lenses treatment. It may be caused by porous structure of the external layers of this material and limited thickness of the sterilization layer. (author)

  18. Inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A.

    1985-01-01

    This atlas of inductively coupled plasma-atomic emission spectroscopy records the spectra of the elements in a way that would reveal the general nature of the spectra, in all their simplicity or complexity; and offers a definitive summary of the most prominent spectral lines of the elements, i.e., those most likely to be useful for the determination of trace and ultratrace concentrations; it provides reliable estimates, based on the recorded experimental spectra, of the powers of detection of the listed prominent lines; and assesses the very important problem of spectral interferences. The atlas is composed of three main sections. Part I is concerned with the historical aspects of compilations of spectral information. Part II is based on 232 wavelength scans of 70 elements. Each of the wavelength scans covers an 80 nm spectral region. These scans allow a rapid comparison of the background and spectral line intensities emitted in the ICP and provide a ready means for identification of the most prominent lines of each element and for estimation of the trace element analytical capabilities of these lines. A listing of 973 prominent lines with associated detection limits is also presented. Part III addresses the problem of spectral interferences. On this topic a detailed collection of coincidence profiles is presented for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitants superimposed. (Auth.)

  19. Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Javid, Amjed [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Textile Processing, National Textile University, Faisalabad 37610 (Pakistan); Kumar, Manish, E-mail: manishk@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Jeon Geon, E-mail: hanjg@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-01-15

    Highlights: • Pure and N-doped nanocrystallie carbon films are synthesized by ICP assisted pulsed DC plasma process. • ICP power induces the increase in average graphitic crystallite size from 4.86 nm to 6.42 nm. • Beneficial role of ICP source assistance to achieve high sputtering throughput (deposition rate ∼55 nm/min). • Post-sterilization electron-transport study shows N-doped carbon films having promising stability. - Abstract: Electrically-conductive nanocrystalline carbon films, having non-toxic and non-immunogenic characteristics, are promising candidates for reusable medical devices. Here, the pure and N- doped nanocrystalline carbon films are deposited by the assistance of inductively coupled plasma (ICP) in an unbalanced facing target pulsed-DC magnetron sputtering process. Through the optical emission spectroscopy study, the role of ICP assistance and N-doping on the reactive components/radicals during the synthesis is presented. The N-doping enhances the three fold bonding configurations by increasing the ionization and energies of the plasma species. Whereas, the ICP addition increases the plasma density to control the deposition rate and film structure. As a result, sputtering-throughput (deposition rate: 31–55 nm/min), electrical resistivity (4–72 Ωcm) and water contact angle (45.12°–54°) are significantly tailored. Electric transport study across the surface microchannel confirms the superiority of N-doped carbon films for sterilization stability over the undoped carbon films.

  20. Development of Tokamak experiment technology - Study of ICRF coupling in the KAIST tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Duk In; Chang, Hang Young; Lee, Soon Chil; Kwon, Gi Chung; Seo, Sung Hun; Jeon, Sang Jin; Heo, Sung Hee; Heo, Eun Gi; Lee, Dae Hang; Lee, Chan Hee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    Research objectives are to design and fabricate antenna, measure the property of absorption transmitted to the plasma, and research the physical phenomena about the ICRF coupling. Main heating method is ohmic heating at the KAIST tokamak. So, the plasma current produced is more than 30 kA and, the loop voltage of the plasma is 2 {approx} 3V. The power of the plasma by ohmic heating is about 100 kW. Because the toroidal field is 5 {approx} 8 kG, it is needed RF system with more than 100 kW in 7 {approx} 15 MHz. In the first year a RF amplifier with 1 kW in 300 khz {approx} 35 MHz was bought. The manufacture of ICRF system will start from next years. In the research on antenna, we study the method how to measure electric field emitted from antenna using piezo elements. Experimentally, we obtain the results that the signal of piezo element is proportional to the square of electric field. In the next year, we will research the type of antenna subsequently. 28 refs., 3 tabs., 18 figs. (author)

  1. Remote plasma-enhanced metalorganic chemical vapor deposition of aluminum oxide thin films

    NARCIS (Netherlands)

    Volintiru, I.; Creatore, M.; Hemmen, van J.L.; Sanden, van de M.C.M.

    2008-01-01

    Aluminum oxide films were deposited using remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/trimethylaluminum mixtures. Initial studies by in situ spectroscopic ellipsometry demonstrated that the aluminum oxide films deposited at temperatures

  2. Study of density jump in helicon-wave induced H2 plasma

    International Nuclear Information System (INIS)

    Jiang Fan; Cheng Xinlu; Xiong Zhenwei; Wu Weidong; Wang Yuying; Gao Yingxue; Dai Yang

    2012-01-01

    Hydrogen plasmas electron density and electron energy distribution function EEDF were studied with Langmuir probe. Two jumps were observed in the variation of the electron density with the radio frequency power. The relative intensity ratio of hydrogen plasmas spectrum line H α , H β and H γ validated this phenomenon. Two density jumps illuminated the transition of discharge mode,which labeled as capacitive, inductive and helicon-wave mode. In this work, the density jumps are explained from two sides, one is the interaction between electrons and hydrogen molecules, the other is Nagoya type III (N-type) antenna-plasma coupling. With the increase of radiofrequency power, the interaction between electron and hydrogen molecule has been enhanced which causes the electron density jumps. The antenna couples well to plasmas when transverse field E y is maximum, and the wave vector of k z locates at π/l a or 3π/l a , corresponding to the first and second density jump. (authors)

  3. Inductively coupled plasma etching of III-V antimonides in BCl{sub 3}/SiCl{sub 4} etch chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, K. [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States)], E-mail: swaminak@ece.osu.edu; Janardhanan, P.E.; Sulima, O.V. [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2008-10-01

    Inductively coupled plasma etching of GaSb using BCl{sub 3}/SiCl{sub 4} etch chemistry has been investigated. The etch rates were studied as a function of bias power, inductively coupled plasma source power, plasma chemistry and chamber pressure. The etched surfaces remain smooth and stoichiometric over the entire range of plasma conditions investigated. The knowledge gained in etching GaSb was applied to etching AlGaAsSb and InGaAsSb in order to fabricate heterojunction phototransistors. As expected, InGaAsSb etch rate was much lower compared to the corresponding value for GaSb, mainly due to the relatively low volatility of indium chlorides. For a wide range of plasma conditions, the selectivity between GaSb and AlGaAsSb was close to unity, which is desirable for fabricating etched mirrors and gratings for Sb-based mid-infrared laser diodes. The surface roughness and the etch profile were examined for the etched GaSb, AlGaAsSb and InGaAsSb samples using scanning electron microscope. The high etch rates achieved ({approx} 4 {mu}m/min) facilitated deep etching of GaSb. A single layer, soft mask (AZ-4903 photoresist) was used to etch GaSb, with etch depth {approx} 90 {mu}m. The deep dry etching of GaSb has many important applications including etching substrate windows for backside-illuminated photodetectors for the mid-infrared wavelength range.

  4. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  5. Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasma characteristics

    International Nuclear Information System (INIS)

    Zhang Yuru; Xu Xiang; Wang Younian; Bogaerts, Annemie

    2012-01-01

    A two-dimensional fluid model, including the full set of Maxwell equations, has been developed and applied to investigate the effect of a phase shift between two power sources on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma. This study was carried out at various frequencies in the range 13.56-200 MHz. When the frequency is low, at 13.56 MHz, the plasma density is characterized by an off-axis peak when both power sources are in-phase (φ = 0), and the best radial uniformity is obtained at φ = π. This trend can be explained because the radial nonuniformity caused by the electrostatic edge effect can be effectively suppressed by the phase-shift effect at a phase difference equal to π. When the frequency rises to 60 MHz, the plasma density profiles shift smoothly from edge-peaked over uniform to centre-peaked as the phase difference increases, due to the pronounced standing-wave effect, and the best radial uniformity is reached at φ = 0.3π. At a frequency of 100 MHz, a similar behaviour is observed, except that the maximum of the plasma density moves again towards the radial edge at the reverse-phase case (φ = π), because of the dominant skin effect. When the frequency is 200 MHz, the bulk plasma density increases significantly with increasing phase-shift values, and a better uniformity is obtained at φ = 0.4π. This is because the density in the centre increases faster than at the radial edge as the phase difference rises, due to the increasing power deposition P z in the centre and the decreasing power density P r at the radial edge. As the phase difference increases to π, the maximum near the radial edge becomes obvious again. This is because the skin effect has a predominant influence on the plasma density under this condition, resulting in a high density at the radial edge. Moreover, the axial ion flux increases monotonically with phase difference, and exhibits similar profiles to the plasma density

  6. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency

  7. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    Science.gov (United States)

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  8. Reduction of plyatomic ion interferences in indictively coupled plasma mass spectrometry with cryogenic desolvation

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Luis C. [Iowa State Univ., Ames, IA (United States)

    1993-09-01

    A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled (-80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.

  9. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling

    Science.gov (United States)

    Bonde, Jeffrey

    2018-04-01

    The dynamics of a magnetized, expanding plasma with a high ratio of kinetic energy density to ambient magnetic field energy density, or β, are examined by adapting a model of gaseous bubbles expanding in liquids as developed by Lord Rayleigh. New features include scale magnitudes and evolution of the electric fields in the system. The collisionless coupling between the expanding and ambient plasma due to these fields is described as well as the relevant scaling relations. Several different responses of the ambient plasma to the expansion are identified in this model, and for most laboratory experiments, ambient ions should be pulled inward, against the expansion due to the dominance of the electrostatic field.

  10. Determination of Ar metastable atom densities in Ar and Ar/H2 inductively coupled low-temperature plasmas

    International Nuclear Information System (INIS)

    Fox-Lyon, N; Knoll, A J; Oehrlein, G S; Franek, J; Demidov, V; Koepke, M; Godyak, V

    2013-01-01

    Ar metastable atoms are important energy carriers and surface interacting species in low-temperature plasmas that are difficult to quantify. Ar metastable atom densities (N Ar,m ) in inductively coupled Ar and Ar/H 2 plasmas were obtained using a model combining electrical probe measurements of electron density (N e ) and temperature (T e ), with analysis of spectrally resolved Ar plasma optical emission based on 3p → 1s optical emission ratios of the 419.8 nm line to the 420.1 nm line. We present the variation of N Ar,m as the Ar pressure and the addition of H 2 to Ar are changed comparatively to recent adsorption spectroscopy measurements. (paper)

  11. A fully-implicit Particle-In-Cell Monte Carlo Collision code for the simulation of inductively coupled plasmas

    Science.gov (United States)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-12-01

    We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the interaction between the electromagnetic field generated by the radio-frequency coil and the plasma response. The simulated plasma includes a kinetic description of charged and neutral species as well as the collision processes between them. The algorithm allows simulations with cell sizes much larger than the Debye length and time steps in excess of the Courant-Friedrichs-Lewy condition whilst preserving the conservation of the total energy. The code is applied to the simulation of the plasma discharge of the Linac4 H- ion source at CERN. Simulation results of plasma density, temperature and EEDF are discussed and compared with optical emission spectroscopy measurements. A systematic study of the energy conservation as a function of the numerical parameters is presented.

  12. A numerical model for diffusion of helium in a hydrogen plasma

    International Nuclear Information System (INIS)

    Potters, J.H.H.M.

    1983-07-01

    A quasi-cylindrical steady-state numerical model for the diffusion of helium in a hydrogen plasma is presented, adopting collisional plus either ALCATOR-INTOR- or ASDEX-like anomalous transport for the charged species. The coupled momentum and conservation equations for H + , He + and He ++ are solved to obtain radial profiles of their densities, consistent with those of the neutral species. For the neutrals, a diffusion equation is used for the transport of H, whereas He is assumed to enter the plasma with an energy equal to the temperature of the plasma immediately in front of the wall. A stable numerical scheme for the solution of the coupled ion and electron energy balances is discussed. Results are presented for the JET-tokamak, using prescribed temperature profiles. Collisional effects are shown to produce an enhancement of the alpha particle density about 10 centimetres in front of the wall, especially in combination with ALCATOR-INTOR-like scaling. The neutral helium density that accumulates in the outer plasma is too low to allow for pumping helium from a cool plasma/gas blanket

  13. Aluminium doping induced enhancement of p-d coupling in ZnO

    International Nuclear Information System (INIS)

    Cong, G W; Peng, W Q; Wei, H Y; Liu, X L; Wu, J J; Han, X X; Zhu, Q S; Wang, Z G; Ye, Z Z; Lu, J G; Zhu, L P; Qian, H J; Su, R; Hong, C H; Zhong, J; Ibrahim, K; Hu, T D

    2006-01-01

    Valence-band type Auger lines in Al doped and undoped ZnO were comparatively studied with the corresponding core level x-ray photoelectron spectrography (XPS) spectra as references. Then the shift trend of energy levels in the valence band was that p and p-s-d states move upwards but e and p-d states downwards with increasing Al concentration. The decreased energy of the Zn 3d state is larger than the increased energy of the O 2p state, indicating the lowering of total energy. This may indicate that Al doping could induce the enhancement of p-d coupling in ZnO, which originates from stronger Al-O hybridization. The shifts of these states and the mechanism were confirmed by valence band XPS spectra and O K-edge x-ray absorption spectrography (XAS) spectra. Finally, some previously reported phenomena are explained based on the Al doping induced enhancement of p-d coupling

  14. Enhanced Detection of Human Plasma Proteins on Nanostructured Silver Surfaces

    Directory of Open Access Journals (Sweden)

    Zuzana Orságová Králová

    2013-08-01

    enhancement factor of 3.6×102 was achieved for a band with a Raman shift of 2104cm‐1 for globulin deposited onto silver nanostructured film on unpolished stainless steel substrate. The detection limit was 400g/mL. Plasma or serum could present a preferable material for non‐ invasive cancer disease diagnosis using the SERS method.

  15. Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell.

    Science.gov (United States)

    Sadi, Baki B M; Vonderheide, Anne P; Caruso, Joseph A

    2004-09-24

    A reversed phase ion-pairing high performance liquid chromatographic (RPIP-HPLC) method is developed for the separation of two phosphorus herbicides, Glufosinate and Glyphosate as well as Aminomethylphosphonic acid (AMPA), the major metabolite of Glyphosate. Tetrabutylammonium hydroxide is used as the ion-pairing reagent in conjunction with an ammonium acetate/acetic acid buffering system at pH 4.7. An inductively coupled plasma mass spectrometer (ICP-MS) is coupled to the chromatographic system to detect the herbicides at m/z = 31P. Historically, phosphorus has been recognized as one of the elements difficult to analyze in argon plasma. This is due to its relatively high ionization potential (10.5 eV) as well as the inherent presence of the polyatomic interferences 14N16O1H+ and 15N16O+ overlapping its only isotope at m/z = 31. An octapole reaction cell is utilized to minimize the isobaric polyatomic interferences and to obtain the highest signal-to-background ratio. Detection limits were found to be in the low ppt range (25-32 ng/l). The developed method is successfully applied to the analysis of water samples collected from the Ohio River and spiked with a standard compounds at a level of 20 microg/l.

  16. Sheath and bulk expansion induced by RF bias in atmospheric pressure microwave plasma

    Science.gov (United States)

    Lee, Jimo; Nam, Woojin; Lee, Jae Koo; Yun, Gunsu

    2017-10-01

    A large axial volume expansion of microwave-driven plasma at atmospheric pressure is achieved by applying a low power radio frequency (RF) bias at an axial location well isolated from the original plasma bulk. The evolution of the plasma plume visualized by high speed ICCD imaging suggest that the free electrons drifting toward the bias electrode cause the prodigious expansion of the sheath, creating a stable plasma stream channel between the microwave and the RF electrodes. For argon plasma in ambient air, enhanced emissions of OH and N2 spectral lines are measured in the extended plume region, supporting the acceleration of electrons and subsequent generation of radical species. The coupling of RF bias with microwave provides an efficient way of enlarging the plasma volume and enhancing the production of radicals. Work supported by the National Research Foundation of Korea under BK21+ program and Grant No. 2015R1D1A1A01061556 (Ministry of Education).

  17. One-step microwave plasma enhanced chemical vapor deposition (MW-PECVD) for transparent superhydrophobic surface

    Science.gov (United States)

    Thongrom, Sukrit; Tirawanichakul, Yutthana; Munsit, Nantakan; Deangngam, Chalongrat

    2018-02-01

    We demonstrate a rapid and environmental friendly fabrication technique to produce optically clear superhydrophobic surfaces using poly (dimethylsiloxane) (PDMS) as a sole coating material. The inert PDMS chain is transformed into a 3-D irregular solid network through microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. Thanks to high electron density in the microwave-activated plasma, coating can be done in just a single step with rapid deposition rate, typically much shorter than 10 s. Deposited layers show excellent superhydrophobic properties with water contact angles of ∼170° and roll-off angles as small as ∼3°. The plasma-deposited films can be ultrathin with thicknesses under 400 nm, greatly diminishing the optical loss. Moreover, with appropriate coating conditions, the coating layer can even enhance the transmission over the entire visible spectrum due to a partial anti-reflection effect.

  18. A validated inductively coupled plasma mass spectrometry (ICP-MS) method for the quantification of total platinum content in plasma, plasma ultrafiltrate, urine and peritoneal fluid.

    Science.gov (United States)

    Lemoine, Lieselotte; Thijssen, Elsy; Noben, Jean-Paul; Adriaensens, Peter; Carleer, Robert; Speeten, Kurt Van der

    2018-04-15

    Oxaliplatin is a platinum (Pt) 1 containing antineoplastic agent that is applied in current clinical practice for the treatment of colon and appendiceal neoplasms. A fully validated, highly sensitive, high throughput inductively coupled plasma mass spectrometry (ICP-MS) method is provided to quantify the total Pt content in plasma, plasma ultrafiltrate, urine and peritoneal fluid. In this ICP-MS approach, the only step of sample preparation is a 1000-fold dilution in 0.5% nitric acid, allowing the analysis of 17 samples per hour. Detection of Pt was achieved over a linear range of 0.01-100 ng/mL. The limit of quantification was 18.0 ng/mL Pt in plasma, 8.0 ng/mL in ultrafiltrate and 6.1 ng/mL in urine and peritoneal fluid. The ICP-MS method was further validated for inter-and intraday precision and accuracy (≤15%), recovery, robustness and stability. Short-term storage of the biofluids, for 14 days, can be performed at -4 °C, -24 °C and -80 °C. As to long-term stability, up to 5 months, storage at -80 °C is encouraged. Furthermore, a timeline assessing the total and unbound Pt fraction in plasma and ultrafiltrate over a period of 45 h is provided. Following an incubation period of 5 h at 37 °C, 19-21% of Pt was recovered in the ultrafiltrate, emphasizing the extensive and rapid binding of oxaliplatin-derived Pt to plasma proteins. The described method can easily be implemented in a routine setting for pharmacokinetic studies in patients treated with oxaliplatin-based hyperthermic intraperitoneal perioperative chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Plasma position and current control system enhancements for the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, G. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Via Claudio 21, 80125 Napoli (Italy); Neto, A.C. [Ass. EURATOM-IST, Instituto de Plasmas e Fusão Nuclear, IST, 1049-001 Lisboa (Portugal); Lomas, P.J.; McCullen, P.; Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2014-03-15

    Highlights: • JET plasma position and current control system enhanced for the JET ITER like wall. • Vertical stabilization system enhanced to speed up its response and to withstand larger perturbations. • Improved termination management system. • Implementation of the current limit avoidance system. • Implementation of PFX-on-early-task. - Abstract: The upgrade of Joint European Torus (JET) to a new all-metal wall, the so-called ITER-like wall (ILW), has posed a set of new challenges regarding both machine operation and protection. The plasma position and current control (PPCC) system plays a crucial role in minimizing the possibility that the plasma could permanently damage the ILW. The installation of the ILW has driven a number of upgrades of the two PPCC components, namely the Vertical Stabilization (VS) system and the Shape Controller (SC). The VS system has been enhanced in order to speed up its response and to withstand larger perturbations. The SC upgrade includes three new features: an improved termination management system, the current limit avoidance system, and the PFX-on-early-task. This paper describes the PPCC upgrades listed above, focusing on the implementation issues and on the experimental results achieved during the 2011–12 JET experimental campaigns.

  20. Radio frequency energy coupling to high-pressure optically pumped nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Plonjes, Elke; Palm, Peter; Lee, Wonchul; Lempert, Walter R.; Adamovich, Igor V.

    2001-01-01

    This article presents an experimental demonstration of a high-pressure unconditionally stable nonequilibrium molecular plasma sustained by a combination of a continuous wave CO laser and a sub-breakdown radio frequency (rf) electric field. The plasma is sustained in a CO/N 2 mixture containing trace amounts of NO or O 2 at pressures of P=0.4 - 1.2atm. The initial ionization of the gases is produced by an associative ionization mechanism in collisions of two CO molecules excited to high vibrational levels by resonance absorption of the CO laser radiation with subsequent vibration-vibration (V-V) pumping. Further vibrational excitation of both CO and N 2 is produced by free electrons heated by the applied rf field, which in turn produces additional ionization of these species by the associative ionization mechanism. In the present experiments, the reduced electric field, E/N, is sufficiently low to preclude field-induced electron impact ionization. Unconditional stability of the resultant cold molecular plasma is enabled by the negative feedback between gas heating and the associative ionization rate. Trace amounts of nitric oxide or oxygen added to the baseline CO/N 2 gas mixture considerably reduce the electron - ion dissociative recombination rate and thereby significantly increase the initial electron density. This allows triggering of the rf power coupling to the vibrational energy modes of the gas mixture. Vibrational level populations of CO and N 2 are monitored by infrared emission spectroscopy and spontaneous Raman spectroscopy. The experiments demonstrate that the use of a sub-breakdown rf field in addition to the CO laser allows an increase of the plasma volume by about an order of magnitude. Also, CO infrared emission spectra show that with the rf voltage turned on the number of vibrationally excited CO molecules along the line of sight increase by a factor of 3 - 7. Finally, spontaneous Raman spectra of N 2 show that with the rf voltage the vibrational

  1. On the enhancement of pervaporation properties of plasma-deposited hybrid silica membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ngamou, P.H.T.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Overbeek, J.P.; Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN, Energy research Centre of the Netherlands, Petten (Netherlands); Cuperus, P.F. [SolSep BV, Apeldoorn (Netherlands)

    2013-06-24

    The separation performance of a polymeric-supported hybrid silica membrane in the dehydration process of a butanol-water mixture at 95C has been enhanced by applying a bias to the substrate during the plasma deposition.

  2. Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate

    International Nuclear Information System (INIS)

    Chang, Jui-Yung; Yang, Yue; Wang, Liping

    2016-01-01

    Coupled surface plasmon/phonon polaritons and hyperbolic modes are known to enhance radiative transfer across nanometer vacuum gaps but usually require identical materials. It becomes crucial to achieve strong near-field energy transfer between dissimilar materials for applications like near-field thermophotovoltaic and thermal rectification. In this work, we theoretically demonstrate enhanced near-field radiative transfer between a nanostructured metamaterial emitter and a graphene-covered planar receiver. Strong near-field coupling with two orders of magnitude enhancement in the spectral heat flux is achieved at the gap distance of 20 nm. By carefully selecting the graphene chemical potential and doping levels of silicon nanohole emitter and silicon plate receiver, the total near-field radiative heat flux can reach about 500 times higher than the far-field blackbody limit between 400 K and 300 K. The physical mechanism is elucidated by the near-field surface plasmon coupling with fluctuational electrodynamics and dispersion relations. The effects of graphene chemical potential, emitter and receiver doping levels, and vacuum gap distance on the near-field coupling and radiative energy transfer are analyzed in detail. - Highlights: • Near-field radiative transfer between a metamaterial and a graphene-covered plate is studied. • Effective medium theory with uniaxial optics is employed to model nanohole metamaterials. • Enhancement by 2 orders is found between dissimilar materials with graphene coating. • Extraordinary coupling of the nanostructured emitter with graphene is elucidated. • Effects of doping level of silicon and graphene chemical potential are investigated.

  3. Coupling of an ICRF compact loop antenna to H-mode plasmas in DIII-D

    International Nuclear Information System (INIS)

    Mayberry, M.J.; Baity, F.W.; Hoffman, D.J.; Luxon, J.L.; Owens, T.L.; Prater, R.

    1987-01-01

    Low power coupling tests have been carried out with a prototype ICRF compact loop antenna on the DIII-D tokamak. During neutral-beam-heated L-mode discharges the antenna loading is typically R≅1-2Ω for an rf frequency of 32 MHz (B/sub T/ = 21 kG, ω = 2Ω/sub D/(0)). When a transition into the H-mode regime of improved confinement occurs, the loading drops to R≅0.5-1.0Ω. During ELMs, transient increases in loading up to several Ohms are observed. The apparent sensitivity of ICRF antenna coupling to changes in the edge plasma profiles associated with the H-mode regime could have important implications for the design of future high power systems

  4. Development of near-field laser ablation inductively coupled plasma mass spectrometry for sub-micrometric analysis of solid samples

    International Nuclear Information System (INIS)

    Jabbour, Chirelle

    2016-01-01

    A near field laser ablation method was developed for chemical analysis of solid samples at sub-micrometric scale. This analytical technique combines a nanosecond laser Nd:YAG, an atomic Force Microscope (AFM), and an inductively coupled plasma mass spectrometer (ICPMS). In order to improve the spatial resolution of the laser ablation process, the near-field enhancement effect was applied by illuminating, by the laser beam, the apex of the AFM conductive sharp tip maintained at a few nanometers (5 to 30 nm) above the sample surface. The interaction between the illuminated tip and the sample surface enhances locally the incident laser energy and leads to the ablation process. By applying this technique to conducting gold and tantalum samples, and semiconducting silicon sample, a lateral resolution of 100 nm and depths of a few nanometers were demonstrated. Two home-made numerical codes have enabled the study of two phenomena occurring around the tip: the enhancement of the laser electrical field by tip effect, and the induced laser heating at the sample surface. The influence of the main operating parameters on these two phenomena, amplification and heating, was studied. an experimental multi-parametric study was carried out in order to understand the effect of different experimental parameters (laser fluence, laser wavelength, number of laser pulses, tip-to-sample distance, sample and tip nature) on the near-field laser ablation efficiency, crater dimensions and amount of ablated material. (author) [fr

  5. Analysis of cobalt, tantalum, titanium, vanadium and chromium in tungsten carbide by inductively coupled plasma-optical emission spectrometry

    CSIR Research Space (South Africa)

    Archer, M

    2003-12-01

    Full Text Available Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the concentrations of cobalt, tantalum, titanium, vanadium and chromium in solutions of tungsten carbide. The main advantage of the method described here lies...

  6. Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator.

    Science.gov (United States)

    He, Yong

    2017-06-23

    We utilize the surface plasmon field of a metal nanoparticle (MNP) to show strain-mediated coupling in a quantum dot-mechanical resonator hybrid system including a quantum dot (QD) embedded within a conical nanowire (NW) and a MNP in the presence of an external field. Based on the numerical solutions of the master equation, we find that a slow oscillation, originating from the strain-mediated coupling between the QD and the NW, appears in the time evolution of the plasmon field enhancement. The results show that the period (about [Formula: see text]) of the slow oscillation is equal to that of the mechanical resonator of NW, which suggests that the time-resolved measurement of the plasmon field enhancement can be easily achieved based on the current experimental conditions. Its amplitude increases with the increasing strain-mediated coupling strength, and under certain conditions there is a linear relationship between them. The slow oscillation of the plasmon field enhancement provides valuable tools for measurements of the mechanical frequency and the strain-mediated coupling strength.

  7. Inductively coupled plasma--atomic emission spectrometry: trace elements in oil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Charlie Albert [Iowa State Univ., Ames, IA (United States)

    1977-12-01

    The simultaneous determination of up to 20 trace elements in various oil matrices by inductively coupled plasma-atomic emission spectrometry is reported. The oil matrices investigated were lubricating oils (for wear metals), fuel oil, centrifuged coal liquefaction product, crude soybean oil, and commercial edible oils. The samples were diluted with appropriate organic solvents and injected into the plasma as an aerosol generated by a pneumatic nebulization technique. Detection limits of the 28 elements studied ranged from 0.0006 to 9 μg/g with the majority falling in the 0.01 to 0.1 μg/g range. Analytical calibration curves were linear over at least two orders of magnitude and for some elements this linearity extended over 4.5 orders of magnitude. Relevant data on precision and accuracy are included. Because metals often occur as particles in lubricating oil and coal liquefaction products, the effect of particles on the analytical results was examined. Wear metal particles in used oil did not appear to affect the analytical results. However, incomplete recovery relative to organometallic reference solutions was obtained for iron particles with a nominal mean diameter of 3.0 μm suspended in oil. It was shown that the following factors contributed to incomplete recovery for the particles: settling of the suspended particles in the flask, a difference in nebulization efficiency between particle suspensions and organometallic solutions, and indications of incomplete vaporization of the larger particles in the plasma.

  8. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    Directory of Open Access Journals (Sweden)

    Nicolas Woehrl

    2014-04-01

    Full Text Available A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO2 substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm2. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  9. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    Science.gov (United States)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  10. Fundamental Processes in Plasmas. Final report

    International Nuclear Information System (INIS)

    O'Neil, Thomas M.; Driscoll, C. Fred

    2009-01-01

    This research focuses on fundamental processes in plasmas, and emphasizes problems for which precise experimental tests of theory can be obtained. Experiments are performed on non-neutral plasmas, utilizing three electron traps and one ion trap with a broad range of operating regimes and diagnostics. Theory is focused on fundamental plasma and fluid processes underlying collisional transport and fluid turbulence, using both analytic techniques and medium-scale numerical simulations. The simplicity of these systems allows a depth of understanding and a precision of comparison between theory and experiment which is rarely possible for neutral plasmas in complex geometry. The recent work has focused on three areas in basic plasma physics. First, experiments and theory have probed fundamental characteristics of plasma waves: from the low-amplitude thermal regime, to inviscid damping and fluid echoes, to cold fluid waves in cryogenic ion plasmas. Second, the wide-ranging effects of dissipative separatrices have been studied experimentally and theoretically, finding novel wave damping and coupling effects and important plasma transport effects. Finally, correlated systems have been investigated experimentally and theoretically: UCSD experients have now measured the Salpeter correlation enhancement, and theory work has characterized the 'guiding center atoms of antihydrogen created at CERN

  11. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  12. Polymerization by plasma of trichloroethylene by means of resistive and inductive coupling; Polimerizacion por plasmas de tricloroetileno por medio de acoplamiento resistivo e inductivo

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.; Cruz, G.; Olayo, M.G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Timoshina, T. [IPN, ESIQIE, 07738 Mexico D.F. (Mexico); Morales, J.; Olayo, R. [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    It was carried out the polymerization for plasma of the trichloroethylene by means of two types of coupling, resistive and inductive with the objective of studying the structure, morphology and the electric properties of the polymers obtained under these conditions. The structure and morphology of the polymers were studied by means of EDS and FT-IR spectroscopies. (Author)

  13. Formation Of Carbon Oxides In CH4/O2 Plasmas Produced By Inductively Coupled RF Discharges At Low Pressure

    International Nuclear Information System (INIS)

    Moeller, Ivonne; Soltwisch, Henning

    2003-01-01

    The formation of CO and CO2 has been studied in inductively coupled rf (13.56 MHz) discharges with varied mixtures of CH4 and O2 as feed gases at a total pressure of 10 Pa, flow rates of <10 sccm, and input powers of <500 W. The primary diagnostic tool has been TDLAS (tunable diode laser absorption spectroscopy) to measure absolute concentrations of molecular species as well as their kinetic and rovibrational temperatures. Of particular interest is the sudden transition between different modes of power coupling (capacitive and inductive mode, resp.) and the related changes of the plasma composition. We have found that the power threshold for this transition exhibits a clear hysteresis and depends on the oxygen content. Comparing the ratio of the CO- and CO2-concentrations in capacitive mode with corresponding data from a parallel-plate discharge, clear differences have been observed. The findings can partly be explained on the basis of plasma-chemical reaction chains using tabulated cross-sections in combination with estimations of the electron energy distribution function. Some observations (as, e.g. the presence of CO in inductively coupled plasmas that are fed by pure oxygen) cannot be understood from volume reactions only but point to an important role of surface processes, which depend on the materials of the discharge chamber and on its history and cleaning method

  14. Study of hard diamond-like carbon films deposited in an inductively coupled plasma source

    International Nuclear Information System (INIS)

    Yu Shiji; Ma Tengcai

    2003-01-01

    Chemical vapor deposition of the hard diamond-like carbon (DLC) films was achieved using an inductively coupled plasma source (ICPS). The microscopy, microhardness, deposition rate and structure characteristic of the DLC films were analyzed. It is shown that the ICPS is suitable for the hard DLC film deposition at relatively low substrate negative bias voltage, and the substrate negative bias voltage greatly affects chemical vapor deposition of the DLC film and its quality

  15. Integrated CFD Model for Nanoparticle Production in Inductively Coupled Plasma Reactor: Implementation and Application

    OpenAIRE

    Benros Santos Lopes, Silvania

    2016-01-01

    Nanoparticles represent a very exciting new area of research. Their small size, ranging from several nanometers to tens of nanometers, is responsible for many changes in the structural, thermal, electromagnetic, optical and mechanical properties in comparison with the bulk solid of the same materials. However, promoting the use of such material requires well-controlled synthesis techniques to be developed. Inductively coupled thermal plasma (ICTP) reactors have been shown to offer unique adva...

  16. Determination of Dibutyltin in Sediments Using Isotope Dilution Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Yim, Yong Hyeon; Park, Ji Youn; Han, Myung Sub; Park, Mi Kyung; Kim, Byung Joo; Lim, Young Ran; Hwang, Eui Jin; So, Hun Young

    2005-01-01

    A method is described for the determination of dibutyltin (DBT) in sediment by isotope dilution using liquid chromatography inductively-coupled plasma/mass spectrometry (LC-ICP/MS). To achieve the highest accuracy and precision, special attentions are paid in optimization and evaluation of overall processes of the analysis including extraction of analytes, characterization of the standards used for calibration and LC-ICP/MS conditions. An approach for characterization of natural abundance DBT standard has been developed by combining inductively-coupled plasma/optical emission spectrometry (ICP/OES) and LC-ICP/MS for the total Sn assay and the analysis of Sn species present as impurities, respectively. An excellent LC condition for separation of organotin species was found, which is suitable for simultaneous DBT and tributyltin (TBT) analysis as well as impurity analysis of DBT standards. Microwave extraction condition was also optimized for high efficiency while preventing species transformation. The present method determines the amount contents of DBT in sediments with expanded uncertainty of less than 5% and its result shows high degree of equivalence with reference values of an international inter-comparison and a certified reference material (CRM) within stated uncertainties

  17. Determination of Dibutyltin in Sediments Using Isotope Dilution Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Yong Hyeon; Park, Ji Youn; Han, Myung Sub; Park, Mi Kyung; Kim, Byung Joo; Lim, Young Ran; Hwang, Eui Jin; So, Hun Young [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2005-03-15

    A method is described for the determination of dibutyltin (DBT) in sediment by isotope dilution using liquid chromatography inductively-coupled plasma/mass spectrometry (LC-ICP/MS). To achieve the highest accuracy and precision, special attentions are paid in optimization and evaluation of overall processes of the analysis including extraction of analytes, characterization of the standards used for calibration and LC-ICP/MS conditions. An approach for characterization of natural abundance DBT standard has been developed by combining inductively-coupled plasma/optical emission spectrometry (ICP/OES) and LC-ICP/MS for the total Sn assay and the analysis of Sn species present as impurities, respectively. An excellent LC condition for separation of organotin species was found, which is suitable for simultaneous DBT and tributyltin (TBT) analysis as well as impurity analysis of DBT standards. Microwave extraction condition was also optimized for high efficiency while preventing species transformation. The present method determines the amount contents of DBT in sediments with expanded uncertainty of less than 5% and its result shows high degree of equivalence with reference values of an international inter-comparison and a certified reference material (CRM) within stated uncertainties.

  18. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  19. Experimental study of high beta toroidal plasmas

    International Nuclear Information System (INIS)

    Kellman, A.G.

    1983-09-01

    Experiments on the Wisconsin Levitated Toroidal Octupole have produced a wide range of stable high β plasmas with β significantly above single fluid MHD theory predictions. A stable β approx. 8% plasma, twice the fluid limit, is obtained with 5 rho/sub i/ approx. L/sub n/ and tau/sub β/ approx. = 6000 tau/sub Alfven/ = 600 μsec. The enhanced stability is explained with a kinetic treatment that includes the effect of finite ion gyroradius which couples the ballooning mode to an ion drift wave. In a more collisional, large gyroradius (2 rho/sub i/ approx. L/sub n/) regime, a stable β approx. 35% plasma is obtained with a decay time of 1000 Alfven times. Measurement of the equilibrium magnetic field in this regime indicates that the diamagnetic current density is five times smaller than predicted by ideal MHD, probably due to ion gyroviscosity. Particle transport is anomalous and ranges from agreement with the classical diffusion rate at the highest beta, lowest field plasma (B/sub P/ = 200 G), to thirteen times the classical rate in a β=11%, high field plasma (B/sub P/ = 860 G) where the level of enhancement increase with magnetic field. Fluctuations in density, electrostatic potential, and magnetic field have been studied in plasmas with β from 0.1% to 40%

  20. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions.

    Science.gov (United States)

    Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E

    2016-08-24

    Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.

  1. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  2. Simultaneous electrothermal vaporization and nebulizer sample introduction system for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Arnquist, Isaac J.; Kreschollek, Thomas E.; Holcombe, James A.

    2011-01-01

    The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO 3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51 V and 53 Cr suffering from Cl interferences ( 51 ClO + and 53 ClO + respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51 V and 53 Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar.

  3. Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.; Pellat, R.

    1990-01-01

    By means of wave-coupling simulations, the typical nonlinear evolution of stimulated Raman scattering (SRS) is investigated in a homogeneous sub-quarter-critical plasma for present-day low laser irradiances and kilo-electron-volt electron temperatures. The decrease of the Langmuir energy observed after the SRS growth is found to be basically the result of the electrostatic decay instability (EDI) onset, which generates a high-amplitude ion-acoustic wave. The resulting strong modulation of the plasma density causes a conversion process that transforms the initial one-wave-vector Langmuir wave driven by SRS into a Bloch wave and induces SRS detuning and larger damping. The conditions involved herein have allowed isolation of these processes from the modulational instability; in addition, the Langmuir collapse is found not to occur owing to the high electron temperature

  4. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    Science.gov (United States)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  5. Enhanced magnetoelectric coupling in a composite multiferroic system via interposing a thin film polymer

    Science.gov (United States)

    Xiao, Zhuyun; Mohanchandra, Kotekar P.; Lo Conte, Roberto; Ty Karaba, C.; Schneider, J. D.; Chavez, Andres; Tiwari, Sidhant; Sohn, Hyunmin; Nowakowski, Mark E.; Scholl, Andreas; Tolbert, Sarah H.; Bokor, Jeffrey; Carman, Gregory P.; Candler, Rob N.

    2018-05-01

    Enhancing the magnetoelectric coupling in a strain-mediated multiferroic composite structure plays a vital role in controlling magnetism by electric fields. An enhancement of magnetoelastic coupling between ferroelectric single crystal (011)-cut [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈ 0.30) and ferromagnetic polycrystalline Ni thin film through an interposed benzocyclobutene polymer thin film is reported. A nearly twofold increase in sensitivity of remanent magnetization in the Ni thin film to an applied electric field is observed. This observation suggests a viable method of improving the magnetoelectric response in these composite multiferroic systems.

  6. Development and Validation of an Enhanced Coupled-Field Model for PZT Cantilever Bimorph Energy Harvester

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2013-01-01

    Full Text Available The power source with the limited life span has motivated the development of the energy harvesters that can scavenge the ambient environment energy and convert it into the electrical energy. With the coupled field characteristics of structure to electricity, piezoelectric energy harvesters are under consideration as a means of converting the mechanical energy to the electrical energy, with the goal of realizing completely self-powered sensor systems. In this paper, two previous models in the literatures for predicting the open-circuit and close-circuit voltages of a piezoelectric cantilever bimorph (PCB energy harvester are first described, that is, the mechanical equivalent spring mass-damper model and the electrical equivalent circuit model. Then, the development of an enhanced coupled field model for the PCB energy harvester based on another previous model in the literature using a conservation of energy method is presented. Further, the laboratory experiments are carried out to evaluate the enhanced coupled field model and the other two previous models in the literatures. The comparison results show that the enhanced coupled field model can better predict the open-circuit and close-circuit voltages of the PCB energy harvester with a proof mass bonded at the free end of the structure in order to increase the energy-harvesting level of the system.

  7. Plasma-related matrix effects in inductively coupled plasma--atomic emission spectrometry by group I and group II matrix-elements

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Chan, W.-T.

    2003-01-01

    The effects of Na, K, Ca and Ba matrices on the plasma excitation conditions in inductively coupled plasma-atomic emission spectrometry (ICP-AES) were studied. Normalized relative intensity was used to indicate the extent of the plasma-related matrix effects. The group I matrices have no effects on the plasma excitation conditions. In contrast, the group II matrices depress the normalized relative intensities of some spectral lines. Specifically, the Group II matrices have no effects on the normalized relative intensity of atomic lines of low upper energy level (soft lines), but reduce the normalized relative intensity of some ionic lines and atomic lines of high energy level (hard lines). The Group II matrices seem to shift the Saha balance of the analytes only; no shift in the Boltzmann balance was observed experimentally. Moreover, for some ionic lines with sum of ionization and excitation potentials close to the ionization potential of argon (15.75 eV), the matrix effect is smaller than other ionic lines of the same element. The reduced matrix effects may be attributed qualitatively to charge transfer excitation mechanism of these ionic lines. Charge transfer reaction renders ionic emission lines from the quasi-resonant levels similar in characteristics of atomic lines. The contribution of charge transfer relative to excitation by other non-specific excitation mechanisms (via Saha balance and Boltzmann balance) determines the degree of atomic behavior of a quasi-resonant level. A significant conclusion of this study is that plasma-related matrix effect depends strongly on the excitation mechanism of a spectral line. Since, in general, more than one excitation mechanism may contribute to the overall excitation of an emission line, the observed matrix effects reflect the sum of the effects due to individual excitation mechanisms. Excitation mechanisms, in addition to the often-used total excitation energy, should be considered in matrix effect studies

  8. Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings.

    Science.gov (United States)

    Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin

    2017-10-30

    The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.

  9. Improvement of a microwave ECR plasma source for the plasma immersion ion implantation and deposition process

    International Nuclear Information System (INIS)

    Wu Hongchen; Zhang Huafang; Peng Liping; Jiang Yanli; Ma Guojia

    2004-01-01

    The Plasma Immersion Ion Implantation and Deposition (PIII and D) process has many advantages over the pure plasma immersion ion implantation or deposition. It can compensate for or eliminate the disadvantages of the shallow modification layer (for PIII) and increase the bond strength of the coating (of deposition). For this purpose, a new type of microwave plasma source used in the PIII and D process was developed, composed of a vacuum bend wave guide and a special magnetic circuit, so that the coupling window was protected from being deposited with a coating and bombarded by high-energy particles. So the life of the window is increased. To enhance the bonding between the coating and substrate a new biasing voltage is applied to the work piece so that the implantation and deposition (or hybrid process) can be completed in one vacuum cycle

  10. Multielemental analyses of tree rings by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Hall, G.S.

    1990-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) was evaluated for major, minor, trace, and ultra-trace elemental analyses of individual tree rings. The samples were obtained from an old-growth Douglas fir growing near Mount St. Helens volcano, and from trees at various other North American sites. Eightly percent of elements from Li to U had detection limits in the solid (wood) below 8.0 ng g -1 . Two anomalous peaks occur in Mount St. Helens samples at A.D. 1478 and 1490 that closely correlate with past eruptions of the volcano. These results show that ICP-MS is a rapid and sensitive analytical method for multielemental analyses of individual tree rings. (author) 16 refs.; 2 figs.; 2 tabs

  11. Hyphenation of ultra performance liquid chromatography (UPLC) with inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of bromine containing preservatives

    DEFF Research Database (Denmark)

    Bendahl, Lars; Hansen, Steen Honoré; Gammelgaard, Bente

    2006-01-01

    Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material, t...... analysis of bromine-containing preservatives in commercially available cosmetic products.......Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material...... at an intermediate and at a high linear velocity. The precision was better than 2.2% R.S.D. and regression analysis showed that a linear response was achieved at both flow rates (R2 > 0.9993, n = 36). The analysis time was less than 4.5 min at a flow rate of 50 microL min(-1) and limits of detection...

  12. Determination of rare earth elements in tomato plants by inductively coupled plasma mass spectrometry techniques.

    Science.gov (United States)

    Spalla, S; Baffi, C; Barbante, C; Turetta, C; Turretta, C; Cozzi, G; Beone, G M; Bettinelli, M

    2009-10-30

    In recent years identification of the geographical origin of food has grown more important as consumers have become interested in knowing the provenance of the food that they purchase and eat. Certification schemes and labels have thus been developed to protect consumers and genuine producers from the improper use of popular brand names or renowned geographical origins. As the tomato is one of the major components of what is considered to be the healthy Mediterranean diet, it is important to be able to determine the geographical origin of tomatoes and tomato-based products such as tomato sauce. The aim of this work is to develop an analytical method to determine rare earth elements (RRE) for the control of the geographic origin of tomatoes. The content of REE in tomato plant samples collected from an agricultural area in Piacenza, Italy, was determined, using four different digestion procedures with and without HF. Microwave dissolution with HNO3 + H2O2 proved to be the most suitable digestion procedure. Inductively coupled plasma quadrupole mass spectrometry (ICPQMS) and inductively coupled plasma sector field plasma mass spectrometry (ICPSFMS) instruments, both coupled with a desolvation system, were used to determine the REE in tomato plants in two different laboratories. A matched calibration curve method was used for the quantification of the analytes. The detection limits (MDLs) of the method ranged from 0.03 ng g(-1) for Ho, Tm, and Lu to 2 ng g(-1) for La and Ce. The precision, in terms of relative standard deviation on six replicates, was good, with values ranging, on average, from 6.0% for LREE (light rare earth elements) to 16.5% for HREE (heavy rare earth elements). These detection limits allowed the determination of the very low concentrations of REE present in tomato berries. For the concentrations of REE in tomato plants, the following trend was observed: roots > leaves > stems > berries. Copyright 2009 John Wiley & Sons, Ltd.

  13. Growth and characterization of titanium oxide by plasma enhanced atomic layer deposition

    KAUST Repository

    Zhao, Chao; Hedhili, Mohamed N.; Li, Jingqi; Wang, Qingxiao; Yang, Yang; Chen, Long; LI, LIANG

    2013-01-01

    The growth of TiO2 films by plasma enhanced atomic layer deposition using Star-Ti as a precursor has been systematically studied. The conversion from amorphous to crystalline TiO2 was observed either during high temperature growth or annealing

  14. Freeze-dried plasma enhances clot formation and inhibits fibrinolysis in the presence of tissue plasminogen activator similar to pooled liquid plasma.

    Science.gov (United States)

    Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B; Sauaia, Angela; Stettler, Gregory; Dzieciatkowska, Monika; Hansen, Kirk; Banerjee, Anirban; Silliman, Christopher C

    2017-08-01

    Systemic hyperfibrinolysis is an integral part of trauma-induced coagulopathy associated with uncontrolled bleeding. Recent data suggest that plasma-first resuscitation attenuates hyperfibrinolysis; however, the availability, transport, storage, and administration of plasma in austere environments remain challenging and have limited its use. Freeze-dried plasma (FDP) is a potential alternative due to ease of storage, longer shelf life, and efficient reconstitution. FDP potentially enhances clot formation and resists breakdown better than normal saline (NS) and albumin and similar to liquid plasma. Healthy volunteers underwent citrated blood draw followed by 50% dilution with NS, albumin, pooled plasma (PP), or pooled freeze-dried plasma (pFDP). Citrated native and tissue plasminogen activator (t-PA)-challenge (75 ng/mL) thrombelastography were done. Proteins in PP, pFDP, and albumin were analyzed by mass spectroscopy. pFDP and PP had superior clot-formation rates (angle) and clot strength (maximum amplitude) compared with NS and albumin in t-PA-challenge thrombelastographies (angle: pFDP, 67.9 degrees; PP, 67.8 degrees; NS, 40.6 degrees; albumin, 35.8 degrees; maximum amplitude: pFDP, 62.4 mm; PP, 63.5 mm; NS, 44.8 mm; albumin, 41.1 mm). NS and albumin dilution increased susceptibility to t-PA-induced hyperfibrinolysis compared with pFDP and PP (NS, 62.4%; albumin, 62.6%; PP, 8.5%; pFDP, 6.7%). pFDP was similar to PP in the attenuation of t-PA-induced fibrinolysis. Most proteins (97%) were conserved during the freeze-dry process, with higher levels in 12% of pFDP proteins compared with PP. pFDP enhances clot formation and attenuates hyperfibrinolysis better than NS and albumin and is a potential alternative to plasma resuscitation in the treatment of hemorrhagic shock. © 2017 AABB.

  15. Magnetic fields and uniformity of radio frequency power deposition in low-frequency inductively coupled plasmas with crossed internal oscillating currents

    DEFF Research Database (Denmark)

    Tsakadze, Erekle; Ostrikov, K.N.; Tsakadze, Z.L.

    2004-01-01

    ) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ("pancake") antennas. Relatively deeper rf power deposition...... in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental...

  16. Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment.

    Science.gov (United States)

    Xie, Yuan; Wu, Enxiu; Hu, Ruixue; Qian, Shuangbei; Feng, Zhihong; Chen, Xuejiao; Zhang, Hao; Xu, Linyan; Hu, Xiaodong; Liu, Jing; Zhang, Daihua

    2018-06-21

    Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.2 × 1012 cm-2, respectively, after the treatment. At the same time, the contact resistance (Rc) between WSe2 and its metal electrode drop by 5 orders of magnitude from 1.0 GΩ μm to 28.4 kΩ μm. The WSe2 photoconductor exhibits superior performance with high responsivity (1.5 × 105 A W-1), short response time (106). We have also built a lateral p-n junction on a single piece of WSe2 flake by selective plasma exposure. The junction reaches an exceedingly high rectifying ratio of 106, an excellent photoresponsivity of 2.49 A W-1 and a fast response of 8 ms. The enhanced optoelectronic performance is attributed to band-engineering through the N2O plasma treatment, which can potentially serve as an effective and versatile approach for device engineering and optimization in a wide range of electronic and optoelectronic devices based on 2D materials.

  17. Self-consistent non-linear description of radio-frequency wave propagation and of the edge of a magnetized plasma

    International Nuclear Information System (INIS)

    Jacquot, Jonathan

    2013-01-01

    A correct understanding of the interactions between the edge plasma and the ion cyclotron (IC) waves (40-80 MHz) is needed to inject reliably large amount of power required for self-sustainable fusion plasmas. These thesis objectives were to model separately, with Comsol Multiphysics, but in compatible approaches the wave coupling and the radio-frequency (RF) sheath formation to anticipate development of a single code combining both. Modelling of fast wave coupling requires a detailed description of the antenna (2D or 3D) and of the plasma environment by a full wave approach for a cold plasma. Absorption of outgoing waves is emulated by perfectly matched layers, rendered compatible with a plasma dielectric tensor. Experimental trends for the coupling resistance of the antennas of Tore Supra are qualitatively reproduced but the coupling efficiency is overestimated. In parallel a novel self-consistent description, including RF sheaths, of the interplay between the cold wave propagation and DC biasing of the magnetized edge plasma of a tokamak was developed with the minimum set of physics ingredients. For Tore Supra antenna cases, the code coupled with TOPICA allowed to unveil qualitatively some unexpected observations on the latest design of Tore Supra Faraday screens whose electrical design was supposed to minimize RF sheaths. From simulations, a DC (Direct Current) current transport appears necessary to explain the radial structures of measurements. Cantilevered bars have been identified as the design element in the antenna structure enhancing the plasma potential. (author) [fr

  18. Cesium-plasma-conductivity enhancement in the advanced thermionic energy converter. Final report

    International Nuclear Information System (INIS)

    Manikopoulos, C.N.

    Two methods of plasma conductivity enhancement in a cesium vapor thermionic energy converter have been studied. The first involved resonance photoabsorption of several cesium lines and the second utilized cesium plasma sustenance by application of microwave power. An extensive study of ionization processes in a cesium discharge in the presence of resonance ionization was made. Calculations were made of expected percentage excitation levels for several cesium resonance transitions for different values of neutral density and temperature as well as incident radiation power levels. The results of some of these computations were tabulated. Several ionization schemes were considered. A number of cesium transitions were investigated in the range of 799 to 870 nanometers for four different cesium reservoir temperatures, 467, 511, 550 and 591 K. The related absorption coefficients of the radiation lines in the plasma were deduced and tabulated. The resulting plasma conductivity increase was recorded and the associated ionization enhancement was deduced. A microwave cavity was built where the emitter and collector of a simple thermionic converter made up two of the cavity walls and resonant microwave power was externally applied. The I-V characteristics of the thermionic converter were studied under several microwave power levels in the range of 0 to 2 watts. Significant shifts to higher currents were observed as the microwave power levels were raised. In conclusion, both methods show promise as auxiliary ionization mechanisms for the thermionic energy converter, especially at low emitter temperatures

  19. Experimental studies on the plasma bullet propagation and its inhibition

    International Nuclear Information System (INIS)

    Karakas, Erdinc; Laroussi, Mounir

    2010-01-01

    Plasma bullets generated by atmospheric pressure low temperature plasma jets have recently been an active research topic due to their unique properties and their enhanced plasma chemistry. In this paper, experimental insights into the plasma bullet lifetime and its velocity are reported. Data obtained from intensified charge-coupled device camera and time-resolved optical emission spectroscopy (OES) elucidated the existence of a weakly ionized channel between the plasma bullet and its source (such as the plasma pencil). Factors responsible for the inhibition of the propagation of the bullet, such as low helium mole fraction, the magnitude of the applied voltage, and the secondary discharge ignition time, are also revealed. A new technique is discussed to accurately measure the plasma bullet velocity, using time-resolved OES. This new technique shows that during its lifetime the plasma bullet goes through launching, propagation, and ending phases. In addition, it is noted that the plasma bullet exhibits an unstable behavior at the early beginning and late ending of the propagation.

  20. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    International Nuclear Information System (INIS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; Ostrikov, Kostya; Vasilev, Krasimir

    2016-01-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces. (paper)