WorldWideScience

Sample records for coupled orientation imaging

  1. Radiology image orientation processing for workstation display

    Science.gov (United States)

    Chang, Chung-Fu; Hu, Kermit; Wilson, Dennis L.

    1998-06-01

    Radiology images are acquired electronically using phosphor plates that are read in Computed Radiology (CR) readers. An automated radiology image orientation processor (RIOP) for determining the orientation for chest images and for abdomen images has been devised. In addition, the chest images are differentiated as front (AP or PA) or side (Lateral). Using the processing scheme outlined, hospitals will improve the efficiency of quality assurance (QA) technicians who orient images and prepare the images for presentation to the radiologists.

  2. Plenoptic background oriented schlieren imaging

    International Nuclear Information System (INIS)

    Klemkowsky, Jenna N; Fahringer, Timothy W; Clifford, Christopher J; Thurow, Brian S; Bathel, Brett F

    2017-01-01

    The combination of the background oriented schlieren (BOS) technique with the unique imaging capabilities of a plenoptic camera, termed plenoptic BOS, is introduced as a new addition to the family of schlieren techniques. Compared to conventional single camera BOS, plenoptic BOS is capable of sampling multiple lines-of-sight simultaneously. Displacements from each line-of-sight are collectively used to build a four-dimensional displacement field, which is a vector function structured similarly to the original light field captured in a raw plenoptic image. The displacement field is used to render focused BOS images, which qualitatively are narrow depth of field slices of the density gradient field. Unlike focused schlieren methods that require manually changing the focal plane during data collection, plenoptic BOS synthetically changes the focal plane position during post-processing, such that all focal planes are captured in a single snapshot. Through two different experiments, this work demonstrates that plenoptic BOS is capable of isolating narrow depth of field features, qualitatively inferring depth, and quantitatively estimating the location of disturbances in 3D space. Such results motivate future work to transition this single-camera technique towards quantitative reconstructions of 3D density fields. (paper)

  3. Enhanced prenatal HIV couple oriented counselling session and couple communication about HIV (ANRS 12127 Prenahtest Trial)

    NARCIS (Netherlands)

    Plazy, M.; Orne-Gliemann, J.; Balestre, E.; Miric, M.; Darak, S.; Butsashvili, M.; Tchendjou, P.; Dabis, F.; du Lou, A. Desgrees

    Background. - The Prenahtest study investigated the efficacy of a couple-oriented HIV counselling session (COC) in encouraging couple HIV counselling and testing, and improving intra-couple communication about sexual and reproductive health. We report here on the effect of COC on intra-couple

  4. Orientation Strategies for Aerial Oblique Images

    Science.gov (United States)

    Wiedemann, A.; Moré, J.

    2012-07-01

    Oblique aerial images become more and more distributed to fill the gap between vertical aerial images and mobile mapping systems. Different systems are on the market. For some applications, like texture mapping, precise orientation data are required. One point is the stable interior orientation, which can be achieved by stable camera systems, the other a precise exterior orientation. A sufficient exterior orientation can be achieved by a large effort in direct sensor orientation, whereas minor errors in the angles have a larger effect than in vertical imagery. The more appropriate approach is by determine the precise orientation parameters by photogrammetric methods using an adapted aerial triangulation. Due to the different points of view towards the object the traditional aerotriangulation matching tools fail, as they produce a bunch of blunders and require a lot of manual work to achieve a sufficient solution. In this paper some approaches are discussed and results are presented for the most promising approaches. We describe a single step approach with an aerotriangulation using all available images; a two step approach with an aerotriangulation only of the vertical images plus a mathematical transformation of the oblique images using the oblique cameras excentricity; and finally the extended functional model for a bundle block adjustment considering the mechanical connection between vertical and oblique images. Beside accuracy also other aspects like efficiency and required manual work have to be considered.

  5. Subspace learning from image gradient orientations

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    2012-01-01

    We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As image data is typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities fails very often to estimate reliably the

  6. Couples' Career Orientation, Gender Role Orientation, and Perceived Equity as Determinants of Marital Power.

    Science.gov (United States)

    Sexton, Christine S.; Perlman, Daniel S.

    1989-01-01

    Investigated influence of resource exchanges and gender role on marital power. Compared dual-career (N=50) and single-career (N=50) couples. Found two couple types did not differ in perceived power nor in self-reported strategies for influencing spouses. Found gender role orientation did not affect marital power. (Author/CM)

  7. Remote sensing object-oriented approaches coupled with ...

    African Journals Online (AJOL)

    Hence the combined use of new generation sensor imagery and the employment of object-oriented image classification techniques provided more accurate information on Melia invasion in the study area. This is an encouraging result given the high degree of intermingling of Melia with other plants at the study site.

  8. Attachment-oriented psychological intervention for couples facing breast cancer

    DEFF Research Database (Denmark)

    Nicolaisen, Anne; Gilså Hansen, Dorte; Hagedoorn, Mariët

    2014-01-01

    BACKGROUND: There is evidence that both breast cancer patients and their partners are affected emotionally, when facing a breast cancer diagnosis. Several couple interventions have been evaluated, but there is a need for couple intervention studies with a clear theoretical basis and a strong design...... no neo-adjuvant treatment, having no history of hospitalisation due to psychosis, and able to read and speak Danish. Partners were eligible if they could read and speak Danish and were ≥ 18 years. DISCUSSION: This study investigates the effect of an attachment-oriented psychological intervention...

  9. FOREWORD: Imaging from coupled physics Imaging from coupled physics

    Science.gov (United States)

    Arridge, S. R.; Scherzer, O.

    2012-08-01

    Due to the increased demand for tomographic imaging in applied sciences, such as medicine, biology and nondestructive testing, the field has expanded enormously in the past few decades. The common task of tomography is to image the interior of three-dimensional objects from indirect measurement data. In practical realizations, the specimen to be investigated is exposed to probing fields. A variety of these, such as acoustic, electromagnetic or thermal radiation, amongst others, have been advocated in the literature. In all cases, the field is measured after interaction with internal mechanisms of attenuation and/or scattering and images are reconstructed using inverse problems techniques, representing spatial maps of the parameters of these perturbation mechanisms. In the majority of these imaging modalities, either the useful contrast is of low resolution, or high resolution images are obtained with limited contrast or quantitative discriminatory ability. In the last decade, an alternative phenomenon has become of increasing interest, although its origins can be traced much further back; see Widlak and Scherzer [1], Kuchment and Steinhaur [2], and Seo et al [3] in this issue for references to this historical context. Rather than using the same physical field for probing and measurement, with a contrast caused by perturbation, these methods exploit the generation of a secondary physical field which can be measured in addition to, or without, the often dominating effect of the primary probe field. These techniques are variously called 'hybrid imaging' or 'multimodality imaging'. However, in this article and special section we suggest the term 'imaging from coupled physics' (ICP) to more clearly distinguish this methodology from those that simply measure several types of data simultaneously. The key idea is that contrast induced by one type of radiation is read by another kind, so that both high resolution and high contrast are obtained simultaneously. As with all

  10. [Enhanced prenatal HIV couple oriented counselling session and couple communication about HIV (ANRS 12127 Prenahtest Trial)].

    Science.gov (United States)

    Plazy, M; Orne-Gliemann, J; Balestre, E; Miric, M; Darak, S; Butsashvili, M; Tchendjou, P; Dabis, F; Desgrées du Loû, A

    2013-08-01

    The Prenahtest study investigated the efficacy of a couple-oriented HIV counselling session (COC) in encouraging couple HIV counselling and testing, and improving intra-couple communication about sexual and reproductive health. We report here on the effect of COC on intra-couple communication about HIV. Within this 4-country trial (India, Georgia, Dominican Republic and Cameroon), 484 to 491 pregnant women per site were recruited and individually randomized to receive either the COC intervention, enhanced counselling with role playing, or standard post-test HIV counselling. Women were interviewed at recruitment, before HIV testing (T0), and 2 to 8 weeks after post-test HIV counselling (T1). Four dichotomous variables documented intra-couple communication about HIV at T1: 1) discussion about HIV, 2) discussion about condom use, 3) suggesting HIV testing and 4) suggesting couple HIV counselling to the partner. An intra-couple HIV communication index was created: low degree of communication ("yes" response to zero or one of the four variables), intermediate degree of communication ("yes" to two or three variables) or high degree of communication ("yes" to the four variables). To estimate the impact of COC on the intra-couple HIV communication index, multivariable logistic regressions were conducted. One thousand six hundred and seven women were included in the analysis of whom 54 (3.4%) were HIV-infected (49 in Cameroon). In the four countries, the counselling group was associated with intra-couple HIV communication (P≤0.03): women allocated to the COC group were significantly more likely to report high or intermediate degrees of intra-couple communication about HIV (versus low degree of communication) than women allocated to standard counselling. COC improved short-term communication about HIV within couples in different sociocultural contexts, a positive finding for a couple approach to HIV prevention. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Three-dimensional image reconstruction. I. Determination of pattern orientation

    International Nuclear Information System (INIS)

    Blankenbecler, Richard

    2004-01-01

    The problem of determining the Euler angles of a randomly oriented three-dimensional (3D) object from its 2D Fraunhofer diffraction patterns is discussed. This problem arises in the reconstruction of a positive semidefinite 3D object using oversampling techniques. In such a problem, the data consist of a measured set of magnitudes from 2D tomographic images of the object at several unknown orientations. After the orientation angles are determined, the object itself can then be reconstructed by a variety of methods using oversampling, the magnitude data from the 2D images, physical constraints on the image, and then iteration to determine the phases

  12. Image classification independent of orientation and scale

    Science.gov (United States)

    Arsenault, Henri H.; Parent, Sebastien; Moisan, Sylvain

    1998-04-01

    The recognition of targets independently of orientation has become fairly well developed in recent years for in-plane rotation. The out-of-plane rotation problem is much less advanced. When both out-of-plane rotations and changes of scale are present, the problem becomes very difficult. In this paper we describe our research on the combined out-of- plane rotation problem and the scale invariance problem. The rotations were limited to rotations about an axis perpendicular to the line of sight. The objects to be classified were three kinds of military vehicles. The inputs used were infrared imagery and photographs. We used a variation of a method proposed by Neiberg and Casasent, where a neural network is trained with a subset of the database and a minimum distances from lines in feature space are used for classification instead of nearest neighbors. Each line in the feature space corresponds to one class of objects, and points on one line correspond to different orientations of the same target. We found that the training samples needed to be closer for some orientations than for others, and that the most difficult orientations are where the target is head-on to the observer. By means of some additional training of the neural network, we were able to achieve 100% correct classification for 360 degree rotation and a range of scales over a factor of five.

  13. Assigning Main Orientation to an EOH Descriptor on Multispectral Images

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-07-01

    Full Text Available This paper proposes an approach to compute an EOH (edge-oriented histogram descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor. In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment.

  14. Assigning Main Orientation to an EOH Descriptor on Multispectral Images.

    Science.gov (United States)

    Li, Yong; Shi, Xiang; Wei, Lijun; Zou, Junwei; Chen, Fang

    2015-07-01

    This paper proposes an approach to compute an EOH (edge-oriented histogram) descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform) on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor). In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment.

  15. FULLY AUTOMATED IMAGE ORIENTATION IN THE ABSENCE OF TARGETS

    Directory of Open Access Journals (Sweden)

    C. Stamatopoulos

    2012-07-01

    Full Text Available Automated close-range photogrammetric network orientation has traditionally been associated with the use of coded targets in the object space to allow for an initial relative orientation (RO and subsequent spatial resection of the images. Over the past decade, automated orientation via feature-based matching (FBM techniques has attracted renewed research attention in both the photogrammetry and computer vision (CV communities. This is largely due to advances made towards the goal of automated relative orientation of multi-image networks covering untargetted (markerless objects. There are now a number of CV-based algorithms, with accompanying open-source software, that can achieve multi-image orientation within narrow-baseline networks. From a photogrammetric standpoint, the results are typically disappointing as the metric integrity of the resulting models is generally poor, or even unknown, while the number of outliers within the image matching and triangulation is large, and generally too large to allow relative orientation (RO via the commonly used coplanarity equations. On the other hand, there are few examples within the photogrammetric research field of automated markerless camera calibration to metric tolerances, and these too are restricted to narrow-baseline, low-convergence imaging geometry. The objective addressed in this paper is markerless automatic multi-image orientation, maintaining metric integrity, within networks that incorporate wide-baseline imagery. By wide-baseline we imply convergent multi-image configurations with convergence angles of up to around 90°. An associated aim is provision of a fast, fully automated process, which can be performed without user intervention. For this purpose, various algorithms require optimisation to allow parallel processing utilising multiple PC cores and graphics processing units (GPUs.

  16. Principal component analysis of image gradient orientations for face recognition

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    We introduce the notion of Principal Component Analysis (PCA) of image gradient orientations. As image data is typically noisy, but noise is substantially different from Gaussian, traditional PCA of pixel intensities very often fails to estimate reliably the low-dimensional subspace of a given data

  17. Orientational transitions in ferromagnetic liquid crystals with bistable coupling between colloidal particles and the matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zakhlevnykh, A. N., E-mail: anz@psu.ru; Petrov, D. A. [Perm State National Research University (Russian Federation)

    2016-10-15

    We study the orientational response of a ferromagnetic liquid crystal that is induced by magnetic and electric fields. A modified form of the energy of the orientational interaction between magnetic impurity particles and the liquid crystal matrix that leads to bistable coupling is considered. It is shown that apart from magnetic impurity segregation, first-order orientational transitions can be due to the bistability of the potential of the orientational coupling between the director and the magnetization. The ranges of material parameters that lead to optical bistability are determined. The possibility of first-order orientational transitions is analyzed for the optical phase difference between the ordinary and extraordinary light rays transmitted through a ferronematic cell. It is shown that an electric field applied in the given geometry considerably enhances the magneto-orientational response of the ferronematic.

  18. Exact solutions for chemical bond orientations from residual dipolar couplings

    International Nuclear Information System (INIS)

    Wedemeyer, William J.; Rohl, Carol A.; Scheraga, Harold A.

    2002-01-01

    New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C α frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles φ and ψ that resemble those of the known native structure. Subsequent refinement of these φ-ψ angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 A C α rmsd

  19. Coupled Person Orientation Estimation and Appearance Modeling using Spherical Harmonics

    NARCIS (Netherlands)

    Liem, M.C.; Gavrila, D.M.

    2014-01-01

    We present a novel approach for the estimation of a person's overall body orientation, 3D shape and texture, from overlapping cameras. A distinguishing aspect of our approach is the use of spherical harmonics for 3D shape- and texture-representation; it offers a compact, low-dimensional

  20. Task-oriented lossy compression of magnetic resonance images

    Science.gov (United States)

    Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques

    1996-04-01

    A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.

  1. Oriented diffusion filtering for enhancing low-quality fingerprint images

    KAUST Repository

    Gottschlich, C.; Schönlieb, C.-B.

    2012-01-01

    To enhance low-quality fingerprint images, we present a novel method that first estimates the local orientation of the fingerprint ridge and valley flow and next performs oriented diffusion filtering, followed by a locally adaptive contrast enhancement step. By applying the authors' new approach to low-quality images of the FVC2004 fingerprint databases, the authors are able to show its competitiveness with other state-of-the-art enhancement methods for fingerprints like curved Gabor filtering. A major advantage of oriented diffusion filtering over those is its computational efficiency. Combining oriented diffusion filtering with curved Gabor filters led to additional improvements and, to the best of the authors' knowledge, the lowest equal error rates achieved so far using MINDTCT and BOZORTH3 on the FVC2004 databases. The recognition performance and the computational efficiency of the method suggest to include oriented diffusion filtering as a standard image enhancement add-on module for real-time fingerprint recognition systems. In order to facilitate the reproduction of these results, an implementation of the oriented diffusion filtering for Matlab and GNU Octave is made available for download. © 2012 The Institution of Engineering and Technology.

  2. Oriented diffusion filtering for enhancing low-quality fingerprint images

    KAUST Repository

    Gottschlich, C.

    2012-01-01

    To enhance low-quality fingerprint images, we present a novel method that first estimates the local orientation of the fingerprint ridge and valley flow and next performs oriented diffusion filtering, followed by a locally adaptive contrast enhancement step. By applying the authors\\' new approach to low-quality images of the FVC2004 fingerprint databases, the authors are able to show its competitiveness with other state-of-the-art enhancement methods for fingerprints like curved Gabor filtering. A major advantage of oriented diffusion filtering over those is its computational efficiency. Combining oriented diffusion filtering with curved Gabor filters led to additional improvements and, to the best of the authors\\' knowledge, the lowest equal error rates achieved so far using MINDTCT and BOZORTH3 on the FVC2004 databases. The recognition performance and the computational efficiency of the method suggest to include oriented diffusion filtering as a standard image enhancement add-on module for real-time fingerprint recognition systems. In order to facilitate the reproduction of these results, an implementation of the oriented diffusion filtering for Matlab and GNU Octave is made available for download. © 2012 The Institution of Engineering and Technology.

  3. Effects of Coping-Oriented Couples Therapy on Depression: A Randomized Clinical Trial

    Science.gov (United States)

    Bodenmann, Guy; Plancherel, Bernard; Beach, Steven R. H.; Widmer, Kathrin; Gabriel, Barbara; Meuwly, Nathalie; Charvoz, Linda; Hautzinger, Martin; Schramm, Elisabeth

    2008-01-01

    The aim of this study was to evaluate the effectiveness of treating depression with coping-oriented couples therapy (COCT) as compared with cognitive-behavioral therapy (CBT; A. T. Beck, C. Ward, & M. Mendelson, 1961) and interpersonal psychotherapy (IPT; M. M. Weissman, J. C. Markowitz, & G. L. Klerman, 2000). Sixty couples, including 1…

  4. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals

    International Nuclear Information System (INIS)

    Lynden-Bell, R.M.; Michel, K.H.

    1994-01-01

    Many of the properties of orientationally disordered crystals are profoundly affected by the coupling (known as translation-rotation coupling) between translation displacements and molecular orientation. The consequences of translation-rotation coupling depend on molecular and crystal symmetry, and vary throughout the Brillouin zone. One result is an indirect coupling between the orientations of different molecules, which plays an important role in the order/disorder phase transition, especially in ionic orientationally disordered crystals. Translation-rotation coupling also leads to softening of elastic constants and affects phonon spectra. This article describes the theory of the coupling from the point of view of the microscopic Hamiltonian and the resulting Landau free energy. Considerable emphasis is placed on the restrictions due to symmetry as these are universal and can be used to help one's qualitative understanding of experimental observations. The application of the theory to phase transitions is described. The softening of elastic constants is discussed and shown to be universal. However, anomalies associated with the order/disorder phase transition are shown to be restricted to cases in which the symmetry of the order parameter satisfies certain conditions. Dynamic effects on phonon spectra are described and finally the recently observed dielectric behavior of ammonium compounds is discussed. Throughout the article examples from published experiments are used to illustrate the application of the theory including well known examples such as the alkali metal cyanides and more recently discovered orientationally disordered crystals such as the fullerite, C 60

  5. Static and Dynamic Coupling and Cohesion Measures in Object Oriented Programming

    OpenAIRE

    Vasudha Dixit, Dr. Rajeev Vishwkarma

    2013-01-01

    A large numbers of metrics have been proposed for measuring properties of object-oriented software such as size, inheritance, cohesion and coupling. The coupling metrics presented in this paper exploring the difference between inheritance and interface programming. This paper presents a measurement to measure coupling between object (CBO), number of associations between classes (NASSocC), number of dependencies in metric (NDepIN) and number of dependenciesout m...

  6. Fast Fiber-Coupled Imaging Devices

    Energy Technology Data Exchange (ETDEWEB)

    Brockington, Samuel; Case, Andrew; Witherspoon, Franklin

    2018-04-22

    HyperV Technologies Corp. has successfully designed, built and experimentally demonstrated a full scale 1024 pixel 100 MegaFrames/s fiber coupled camera with 12 or 14 bits, and record lengths of 32K frames, exceeding our original performance objectives. This high-pixel-count, fiber optically-coupled, imaging diagnostic can be used for investigating fast, bright plasma events. In Phase 1 of this effort, a 100 pixel fiber-coupled fast streak camera for imaging plasma jet profiles was constructed and successfully demonstrated. The resulting response from outside plasma physics researchers emphasized development of increased pixel performance as a higher priority over increasing pixel count. In this Phase 2 effort, HyperV therefore focused on increasing the sample rate and bit-depth of the photodiode pixel designed in Phase 1, while still maintaining a long record length and holding the cost per channel to levels which allowed up to 1024 pixels to be constructed. Cost per channel was $53.31, very close to our original target of $50 per channel. The system consists of an imaging "camera head" coupled to a photodiode bank with an array of optical fibers. The output of these fast photodiodes is then digitized at 100 Megaframes per second and stored in record lengths of 32,768 samples with bit depths of 12 to 14 bits per pixel. Longer record lengths are possible with additional memory. A prototype imaging system with up to 1024 pixels was designed and constructed and used to successfully take movies of very fast moving plasma jets as a demonstration of the camera performance capabilities. Some faulty electrical components on the 64 circuit boards resulted in only 1008 functional channels out of 1024 on this first generation prototype system. We experimentally observed backlit high speed fan blades in initial camera testing and then followed that with full movies and streak images of free flowing high speed plasma jets (at 30-50 km/s). Jet structure and jet collisions onto

  7. Hope–Oriented Mental Rehabilitation and Enhancement of Marital Satisfaction among Couples with Addicted Husband

    Directory of Open Access Journals (Sweden)

    Hamid Darrodi

    2010-04-01

    Full Text Available Objectives: The purpose of the present study was to study the effects of hope-oriented group-couple- therapy on the increase of marital satisfaction among wives with addicted husbands. Methods: The design of study was quasi-experimental with pre-test, post-test and a control group. Population of the study included all wives with addicted husbands who volunteered to participate in the hope-oriented group couple-therapy sessions, held in 2010 at Residential and Rehabilitatory Place of Aftab Population. Sampling was achieved through random selection which assigned 6 couples in the experiment and six couples in the control groups. Enrich marital satisfaction-short form was the instrument utilized in the study consistency coefficient for the questionnaire was calculated at 0.091 by Asgari & Bahmani (2010. Hope-oriented group-couple-therapy sessions involved a pre-session and 8 main sessions which were held once a week, each 1.5 hour to hold these sessions practical instructions on hope therapy, as suggested by Snyder et al. & Verthington (cited in Bahari, 2010 were utilized. Data analysis was conducted by SPSS using descriptive statistics methods (drawing tables, depiction of diagrams and using mean and standard deviation for the study variables and inferential statistics methods (including Colmogrov-Smirnov test, t-test for independent groups, Lewin test, Q-Square test and co-variance test. Results: Results of covariance analysis revealed hope-oriented group-couple-therapy intervention could significantly increase marital satisfaction among couples of the experimental group as compared to the control group. Discussion: To summarize, this study showed the effects of using couple therapy, the advantages of group therapy, the advantages of adopting a hope-oriented approach and the benefits of making use of multiple therapeutic methods (such as cognitive-behavioral, problem-oriented, motivational and narrative therapies.

  8. A Spiral And Discipline-Oriented Curriculum In Medical Imaging

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Hanson, Lars G.; Henneberg, Kaj-Åge

    2011-01-01

    This contribution describes and evaluates an experimental combination of a spiral and discipline-oriented curriculum implemented in the bachelor’s and master’s program in Medicine and Technology. The implementation in the master’s program is in the form of a study line in Medical Imaging and Radi......This contribution describes and evaluates an experimental combination of a spiral and discipline-oriented curriculum implemented in the bachelor’s and master’s program in Medicine and Technology. The implementation in the master’s program is in the form of a study line in Medical Imaging...... and Radiation Physics containing three disciplines: Imaging modalities, Radiation therapy and Image processing. The two imaging courses in the bachelor’s program and the first imaging course in the master’s program follow a spiral curriculum in which most disciplines are encountered in all courses......, but in a gradually more advanced manner. The remaining courses in the master’s program follow a discipline-oriented curriculum. From a practical point of view, the spiral course portfolio works well in an undergraduate environment, where the courses involved are to be taken by all students and in the order planned...

  9. A note on 'Oriental magic mirrors and the Laplacian image'

    International Nuclear Information System (INIS)

    Riesz, Ferenc

    2006-01-01

    Berry has shown (2006 Eur. J. Phys. 27 109-18) that the image of an oriental magic mirror (an essentially flat mirror with small surface relief) is the Laplacian of the surface relief for low-curvature features. In this note, an alternative derivation is presented and the physical meaning of the used approximations is explained. (note)

  10. Multi-scale and multi-orientation medical image analysis

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Deserno, T.M.

    2011-01-01

    Inspired by multi-scale and multi-orientation mechanisms recognized in the first stages of our visual system, this chapter gives a tutorial overview of the basic principles. Images are discrete, measured data. The optimal aperture for an observation with as little artefacts as possible, is derived

  11. AUTOMATIC ORIENTATION OF LARGE BLOCKS OF OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2013-05-01

    Full Text Available Nowadays, multi-camera platforms combining nadir and oblique cameras are experiencing a revival. Due to their advantages such as ease of interpretation, completeness through mitigation of occluding areas, as well as system accessibility, they have found their place in numerous civil applications. However, automatic post-processing of such imagery still remains a topic of research. Configuration of cameras poses a challenge on the traditional photogrammetric pipeline used in commercial software and manual measurements are inevitable. For large image blocks it is certainly an impediment. Within theoretical part of the work we review three common least square adjustment methods and recap on possible ways for a multi-camera system orientation. In the practical part we present an approach that successfully oriented a block of 550 images acquired with an imaging system composed of 5 cameras (Canon Eos 1D Mark III with different focal lengths. Oblique cameras are rotated in the four looking directions (forward, backward, left and right by 45° with respect to the nadir camera. The workflow relies only upon open-source software: a developed tool to analyse image connectivity and Apero to orient the image block. The benefits of the connectivity tool are twofold: in terms of computational time and success of Bundle Block Adjustment. It exploits the georeferenced information provided by the Applanix system in constraining feature point extraction to relevant images only, and guides the concatenation of images during the relative orientation. Ultimately an absolute transformation is performed resulting in mean re-projection residuals equal to 0.6 pix.

  12. Object-oriented design of medical imaging software.

    Science.gov (United States)

    Ligier, Y; Ratib, O; Logean, M; Girard, C; Perrier, R; Scherrer, J R

    1994-01-01

    A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.

  13. Dynamics of Stability of Orientation Maps Recorded with Optical Imaging.

    Science.gov (United States)

    Shumikhina, S I; Bondar, I V; Svinov, M M

    2018-03-15

    Orientation selectivity is an important feature of visual cortical neurons. Optical imaging of the visual cortex allows for the generation of maps of orientation selectivity that reflect the activity of large populations of neurons. To estimate the statistical significance of effects of experimental manipulations, evaluation of the stability of cortical maps over time is required. Here, we performed optical imaging recordings of the visual cortex of anesthetized adult cats. Monocular stimulation with moving clockwise square-wave gratings that continuously changed orientation and direction was used as the mapping stimulus. Recordings were repeated at various time intervals, from 15 min to 16 h. Quantification of map stability was performed on a pixel-by-pixel basis using several techniques. Map reproducibility showed clear dynamics over time. The highest degree of stability was seen in maps recorded 15-45 min apart. Averaging across all time intervals and all stimulus orientations revealed a mean shift of 2.2 ± 0.1°. There was a significant tendency for larger shifts to occur at longer time intervals. Shifts between 2.8° (mean ± 2SD) and 5° were observed more frequently at oblique orientations, while shifts greater than 5° appeared more frequently at cardinal orientations. Shifts greater than 5° occurred rarely overall (5.4% of cases) and never exceeded 11°. Shifts of 10-10.6° (0.7%) were seen occasionally at time intervals of more than 4 h. Our findings should be considered when evaluating the potential effect of experimental manipulations on orientation selectivity mapping studies. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.

    Science.gov (United States)

    Yu, Hongling; Ho, Tak-San; Rabitz, Herschel

    2018-05-09

    Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.

  15. Mediman: Object oriented programming approach for medical image analysis

    International Nuclear Information System (INIS)

    Coppens, A.; Sibomana, M.; Bol, A.; Michel, C.

    1993-01-01

    Mediman is a new image analysis package which has been developed to analyze quantitatively Positron Emission Tomography (PET) data. It is object-oriented, written in C++ and its user interface is based on InterViews on top of which new classes have been added. Mediman accesses data using external data representation or import/export mechanism which avoids data duplication. Multimodality studies are organized in a simple database which includes images, headers, color tables, lists and objects of interest (OOI's) and history files. Stored color table parameters allow to focus directly on the interesting portion of the dynamic range. Lists allow to organize the study according to modality, acquisition protocol, time and spatial properties. OOI's (points, lines and regions) are stored in absolute 3-D coordinates allowing correlation with other co-registered imaging modalities such as MRI or SPECT. OOI's have visualization properties and are organized into groups. Quantitative ROI analysis of anatomic images consists of position, distance, volume calculation on selected OOI's. An image calculator is connected to mediman. Quantitation of metabolic images is performed via profiles, sectorization, time activity curves and kinetic modeling. Mediman is menu and mouse driven, macro-commands can be registered and replayed. Its interface is customizable through a configuration file. The benefit of the object-oriented approach are discussed from a development point of view

  16. Anchoring Distortions Coupled with Plane Couette & Poiseuille Flows of Nematic Polymers in Viscous Solvents: Morphology in Molecular Orientation, Stress & Flow

    National Research Council Canada - National Science Library

    Zhou, Hong; Forest, M. G

    2006-01-01

    .... The morphology has various physical realizations, all coupled through the model equations: the orientational distribution of the ensemble of rods, anisotropic viscoelastic stresses, and flow feedback...

  17. The relationship between religious orientation, and marital satisfaction among couples of Qom City

    Directory of Open Access Journals (Sweden)

    Akram Seddighi

    2014-09-01

    Full Text Available Introduction: Marital satisfaction is a positive relationship with spouse’s family, positive dynamism in the original family, self-esteem and religious homogeneity of couples. Religion is one of the most effective spiritual fulcrums that are able to provide the meaning of life in every moment of life. Religious beliefs and credence are important factors in marital satisfaction. The main purpose of this study was the survey of the relationship between religious orientation, and marital satisfaction among couples of Qom City. Methods: This study was performed by the descriptivecorrelation method. The study population included all the couples referred to counselling centers and psychological clinics of Qom City. Therefore, 150 couples have been selectedwho were volunteer for cooperation in this study. Required information was collected by the Azarbayejani religious orientation (2003 and Walter marital satisfaction (1992 questionnaires. The data were analyzed by SPSS Version-17 statistical software and usingPearson correlation coefficients and regression and descriptive statistics. Findings: The results showed that there was a positive significant relationship between religious orientation and marital satisfaction. (P=0/001 & r= - 0/511 The results of regression analyses indicated that religious orientation is as a predictor of sex (p=0/001, r2=15/438, educational degree (p=0/003, r2=5/409 and marital satisfaction (p=0/004, r2=0/927. Conclusion: According to the importance of religious orientation and credence of family and especially in couples that increases the commitment and marital satisfaction, it has been recommended to strengthen the couple's religious beliefs in preventive and treatment programs.

  18. Oriented coupling of major histocompatibility complex (MHC) to sensor surfaces using light assisted immobilisation technology

    DEFF Research Database (Denmark)

    Snabe, Torben; Røder, Gustav Andreas; Neves-Petersen, Maria Teresa

    2005-01-01

    Controlled and oriented immobilisation of proteins for biosensor purposes is of extreme interest since this provides more efficient sensors with a larger density of active binding sites per area compared to sensors produced by conventional immobilisation. In this paper oriented coupling of a major...... histocompatibility complex (MHC class I) to a sensor surface is presented. The coupling was performed using light assisted immobilisation--a novel immobilisation technology which allows specific opening of particular disulphide bridges in proteins which then is used for covalent bonding to thiol-derivatised surfaces...... via a new disulphide bond. Light assisted immobilisation specifically targets the disulphide bridge in the MHC-I molecule alpha(3)-domain which ensures oriented linking of the complex with the peptide binding site exposed away from the sensor surface. Structural analysis reveals that a similar...

  19. Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging

    Science.gov (United States)

    Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan

    2017-08-01

    Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.

  20. Orientation-dependent imaging of electronically excited quantum dots

    Science.gov (United States)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  1. Electron-impact ionization of oriented molecules using the time-dependent close-coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Pindzola, M S, E-mail: jcolgan@lanl.gov [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2011-04-01

    An overview is given on recent progress on computing triple differential cross sections for electron-impact ionization of the hydrogen molecule using a time-dependent close-coupling approach. Our calculations, when averaged over all molecular orientations, are generally in very good agreement with (e,2e) measurements made on H{sub 2}, where the molecular orientation is unknown, for a range of incident energies and outgoing electron angles and energies. In this paper, we present TDCS for ionization of H{sub 2} at specific molecular orientations. It is hoped that this study will help stimulate future measurements of TDCS from oriented H{sub 2} at medium impact energies.

  2. Goal-oriented rectification of camera-based document images.

    Science.gov (United States)

    Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J

    2011-04-01

    Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure.

  3. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-02-01

    Full Text Available To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

  4. Coupled dictionary learning for joint MR image restoration and segmentation

    Science.gov (United States)

    Yang, Xuesong; Fan, Yong

    2018-03-01

    To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.

  5. Western Image of the Orient and Oriental in Agatha Christie’s Death on the Nile: A Postcolonial Reading

    Directory of Open Access Journals (Sweden)

    Mevlüde ZENGİN

    2016-12-01

    Full Text Available This paper attempts to read Agatha Christie’s Death on the Nile (1937, a Hercule Poirot detective novel from a postcolonial stand in general but in particular it seeks traces of Orientalism in it. Expertly plotted and set in Egypt, an exotic background, Death on the Nile is analyzed in this study, through Edward W. Said’s critique of Orientalism, to detect the novel’s projection of the Orient and oriental. Orientalism is defined by Edward Said in his groundbreaking book Orientalism (1978 as a scholarly discipline involving the negative portrayal of the East and eastern people, values and culture by westerners and as western construction of the Orient in occidental discourse through western perspective. Composed of two sections the essay begins with a brief introduction to postcolonial criticism and the critique of Orientalism. Next Death on the Nile is analyzed in the light of the criticism of Orientalism in the second section. The projection of the Orient and oriental people, places, values, concepts and so forth detected in the novel are presented in two subsections of this part. The study concludes that Death on the Nilebeing a detective novel has an orientalist quality when it comes to the reflection of the Orient and oriental though Christie does not foreground this quality of the novel. Another conclusion reached at the end of this study is that for Christie, the Queen of detective fiction has been considered to be a best-selling novelist of all time, her novel, Death on the Nile with its orientalist attitude to the East and easterner, must have contributed to the construction of a negative and false image of the Orient in western mind and discourse

  6. Self-image and value orientations of adolescents

    Directory of Open Access Journals (Sweden)

    Joksimović Snežana

    2008-01-01

    Full Text Available Self-image or self-consciousness comprises thoughts, feelings, evaluations and predictions about oneself and one's own behavior. Subject of the research is the linkage between self-conceptualization of adolescents and their value orientations. The aim is to determine whether there exists a correlation between locus of control and general self-esteem as elements of self-conceptualisation, on the one side, and value orientations of adolescents on the other. The Rosenberg Self-Esteem Scale and the locus of control scale by Bezinović and Savčić were used for studying the components of self-conceptualisation. Values were operationalised using the desirability of certain goals in life and preference of different lifestyles. Research was conducted on the sample of 176 grammar school pupils aged 15 to 18. The findings indicate that adolescents who are characterized by the external locus of control accept hedonist, activist, social and cognitive lifestyle in a larger degree. Self-esteem is positively correlated with the aspiration towards becoming rich, and negatively with the desire for acquiring knowledge, care about others and activist way of living. The finding that the young of higher self-esteem are not oriented towards education, helping others and advocating for common good, can be ascribed to insufficient appreciation of these values in the environment they live in. The obtained findings point out to the need to reaffirm and encourage these values in youth, as well as to pay more attention to value education of pupils in school.

  7. Obtaining Approximate Values of Exterior Orientation Elements of Multi-Intersection Images Using Particle Swarm Optimization

    Science.gov (United States)

    Li, X.; Li, S. W.

    2012-07-01

    In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO), is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm, two experiments are

  8. OBTAINING APPROXIMATE VALUES OF EXTERIOR ORIENTATION ELEMENTS OF MULTI-INTERSECTION IMAGES USING PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    X. Li

    2012-07-01

    Full Text Available In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO, is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm

  9. Computer assisted determination of acetabular cup orientation using 2D-3D image registration

    International Nuclear Information System (INIS)

    Zheng, Guoyan; Zhang, Xuan

    2010-01-01

    2D-3D image-based registration methods have been developed to measure acetabular cup orientation after total hip arthroplasty (THA). These methods require registration of both the prosthesis and the CT images to 2D radiographs and compute implant position with respect to a reference. The application of these methods is limited in clinical practice due to two limitations: (1) the requirement of a computer-aided design (CAD) model of the prosthesis, which may be unavailable due to the proprietary concerns of the manufacturer, and (2) the requirement of either multiple radiographs or radiograph-specific calibration, usually unavailable for retrospective studies. In this paper, we propose a new method to address these limitations. A new formulation for determination of post-operative cup orientation, which couples a radiographic measurement with 2D-3D image matching, was developed. In our formulation, the radiographic measurement can be obtained with known methods so that the challenge lies in the 2D-3D image matching. To solve this problem, a hybrid 2D-3D registration scheme combining a landmark-to-ray 2D-3D alignment with a robust intensity-based 2D-3D registration was used. The hybrid 2D-3D registration scheme allows computing both the post-operative cup orientation with respect to an anatomical reference and the pelvic tilt and rotation with respect to the X-ray imaging table/plate. The method was validated using 2D adult cadaver hips. Using the hybrid 2D-3D registration scheme, our method showed a mean accuracy of 1.0 ± 0.7 (range from 0.1 to 2.0 ) for inclination and 1.7 ± 1.2 (range from 0.0 to 3.9 ) for anteversion, taking the measurements from post-operative CT images as ground truths. Our new solution formulation and the hybrid 2D-3D registration scheme facilitate estimation of post-operative cup orientation and measurement of pelvic tilt and rotation. (orig.)

  10. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  11. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Science.gov (United States)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  12. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    International Nuclear Information System (INIS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-01-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  13. Heuristic Scheduling Algorithm Oriented Dynamic Tasks for Imaging Satellites

    Directory of Open Access Journals (Sweden)

    Maocai Wang

    2014-01-01

    Full Text Available Imaging satellite scheduling is an NP-hard problem with many complex constraints. This paper researches the scheduling problem for dynamic tasks oriented to some emergency cases. After the dynamic properties of satellite scheduling were analyzed, the optimization model is proposed in this paper. Based on the model, two heuristic algorithms are proposed to solve the problem. The first heuristic algorithm arranges new tasks by inserting or deleting them, then inserting them repeatedly according to the priority from low to high, which is named IDI algorithm. The second one called ISDR adopts four steps: insert directly, insert by shifting, insert by deleting, and reinsert the tasks deleted. Moreover, two heuristic factors, congestion degree of a time window and the overlapping degree of a task, are employed to improve the algorithm’s performance. Finally, a case is given to test the algorithms. The results show that the IDI algorithm is better than ISDR from the running time point of view while ISDR algorithm with heuristic factors is more effective with regard to algorithm performance. Moreover, the results also show that our method has good performance for the larger size of the dynamic tasks in comparison with the other two methods.

  14. Deposition of controllable preferred orientation silicon films on glass by inductively coupled plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Junshuai; Wang Jinxiao; Yin Min; Gao Pingqi; He Deyan; Chen Qiang; Li Yali; Shirai, Hajime

    2008-01-01

    An inductively coupled plasma (ICP) system with the adjustable distance between the inductance coil and substrates was designed to effectively utilize the spatial confinement of ICP discharge, and then control the gas-phase transport process. The effects of the gas phase processes on the crystallinity and preferred orientation of silicon films deposited on glass were systematically investigated. The investigation was conducted in the ICP-chemical vapor deposition process with the precursor gas of a SiH 4 /H 2 mixture at a substrate temperature of 350 deg. Highly crystallized silicon films with different preferred orientations, (111) or (220), could be selectively deposited by adjusting the SiH 4 dilution ratio [R=[SiH 4 ]/([SiH 4 ]+[H 2 ])] or total working pressure. When the total working pressure is 20 Pa, the crystallinity of the silicon films increases with the increase of the SiH 4 dilution ratio, while the preferred orientation was changed from (111) to (220). In the case of the fixed SiH 4 dilution (10%), the silicon film with I (220) /I (111) of about 3.5 and Raman crystalline fraction of about 89.6% has been deposited at 29.7 nm/min when the total working pressure was increased to 40 Pa. At the fixed SiH 4 partial pressure of 2 Pa, the film crystallinity decreases and the preferred orientation is always (111) with increasing the H 2 partial pressure from 18 to 58 Pa. Atomic force microscope reveals that the film deposited at a relatively high H 2 partial pressure has a very rough surface caused by the devastating etching of H atoms to the silicon network

  15. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    Science.gov (United States)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  16. Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope.

    Science.gov (United States)

    Alexeev, Evgeny M; Catanzaro, Alessandro; Skrypka, Oleksandr V; Nayak, Pramoda K; Ahn, Seongjoon; Pak, Sangyeon; Lee, Juwon; Sohn, Jung Inn; Novoselov, Kostya S; Shin, Hyeon Suk; Tartakovskii, Alexander I

    2017-09-13

    Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.

  17. Structure-independent cross-validation between residual dipolar couplings originating from internal and external orienting media

    International Nuclear Information System (INIS)

    Barbieri, Renato; Bertini, Ivano; Lee, Yong-Min; Luchinat, Claudio; Velders, Aldrik H.

    2002-01-01

    Lanthanide-substituted calcium binding proteins are known to partially orient in high magnetic fields. Orientation provides residual dipolar couplings (rdc's). Two of these systems, Tm 3+ - and Dy 3+ -substituted calbindin D 9k , dissolved in an external orienting medium (nonionic liquid crystalline phase) provide rdc values which are the sum of those induced by the lanthanides and by the liquid crystalline phase on the native calcium binding protein. This structure-independent check shows the innocence of the orienting medium with respect to the structure of the protein in solution. Furthermore, the simultaneous use of lanthanide substitution and external orienting media provides a further effective tool to control and tune the orientation tensor

  18. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, J [Washington University in St Louis, Taian, Shandong (China); Yang, D [Washington University School of Medicine, St Louis, MO (United States)

    2015-06-15

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets, and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from

  19. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    International Nuclear Information System (INIS)

    Qiu, J; Yang, D

    2015-01-01

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets, and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from

  20. Imaging and tuning of coupled photonic crystal cavities (Conference Presentation)

    Science.gov (United States)

    Gurioli, Massimo

    2016-04-01

    Photonic microcavities (PMC) coupled through their evanescent field are used for a large variety of classical and quantum devices. In such systems, a molecular-like spatial delocalization of the coupled modes is achieved by an evanescent tunnelling. The tunnelling rate depends on the height and depth of the photonic barrier between two adjacent resonators and therefore it is sensitive to the fabrication-induced disorder present in the center of the molecule. In this contribution, we address the problem of developing a post fabrication control of the tunnelling rate in photonic crystal coupled PMCs. The value of the photonic coupling (proportional to the tunnelling rate) is directly measured by the molecular mode splitting at the anticrossing point. By exploiting a combination of tuning techniques such as local infiltration of water, micro-evaporation, and laser induced non thermal micro-oxidation, we are able to either increase or decrease the detuning and the photonic coupling, independently. Near field imaging is also used for mapping the modes and establish delocalization. By water micro-infiltration, we were able to increase the photon coupling by 28%. On the contrary, by laser induced non thermal oxidation, we got a reduction of g by 30%. The combination of the two methods would therefore give a complete control of g with excellent accuracy. This could make possible the realization of array of photonic cavities with on demand tunnelling rate between each pair of coupled resonators. We believe that this peculiar engineering of photonic crystal molecules would open the road to possible progress in the exploitation of coherent interference between coupled optical resonators both for quantum information processing and optical communication.

  1. Neutron Imaging with Timepix Coupled Lithium Indium Diselenide

    Directory of Open Access Journals (Sweden)

    Elan Herrera

    2017-12-01

    Full Text Available The material lithium indium diselenide, a single crystal neutron sensitive semiconductor, has demonstrated its capabilities as a high resolution imaging device. The sensor was prepared with a 55 μ m pitch array of gold contacts, designed to couple with the Timepix imaging ASIC. The resulting device was tested at the High Flux Isotope Reactor, demonstrating a response to cold neutrons when enriched in 95% 6 Li. The imaging system performed a series of experiments resulting in a <200 μ m resolution limit with the Paul Scherrer Institute (PSI Siemens star mask and a feature resolution of 34 μ m with a knife-edge test. Furthermore, the system was able to resolve the University of Tennessee logo inscribed into a 3D printed 1 cm 3 plastic block. This technology marks the application of high resolution neutron imaging using a direct readout semiconductor.

  2. Color image encryption based on Coupled Nonlinear Chaotic Map

    International Nuclear Information System (INIS)

    Mazloom, Sahar; Eftekhari-Moghadam, Amir Masud

    2009-01-01

    Image encryption is somehow different from text encryption due to some inherent features of image such as bulk data capacity and high correlation among pixels, which are generally difficult to handle by conventional methods. The desirable cryptographic properties of the chaotic maps such as sensitivity to initial conditions and random-like behavior have attracted the attention of cryptographers to develop new encryption algorithms. Therefore, recent researches of image encryption algorithms have been increasingly based on chaotic systems, though the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. This paper proposes a Coupled Nonlinear Chaotic Map, called CNCM, and a novel chaos-based image encryption algorithm to encrypt color images by using CNCM. The chaotic cryptography technique which used in this paper is a symmetric key cryptography with a stream cipher structure. In order to increase the security of the proposed algorithm, 240 bit-long secret key is used to generate the initial conditions and parameters of the chaotic map by making some algebraic transformations to the key. These transformations as well as the nonlinearity and coupling structure of the CNCM have enhanced the cryptosystem security. For getting higher security and higher complexity, the current paper employs the image size and color components to cryptosystem, thereby significantly increasing the resistance to known/chosen-plaintext attacks. The results of several experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.

  3. Mirror-Image Confusions: Implications for Representation and Processing of Object Orientation

    Science.gov (United States)

    Gregory, Emma; McCloskey, Michael

    2010-01-01

    Perceiving the orientation of objects is important for interacting with the world, yet little is known about the mental representation or processing of object orientation information. The tendency of humans and other species to confuse mirror images provides a potential clue. However, the appropriate characterization of this phenomenon is not…

  4. Analysis of the Transition in Deformation Mechanisms in Superplastic 5083 Aluminum Alloys by Orientation Imaging Microscopy

    National Research Council Canada - National Science Library

    Harrell, James

    2001-01-01

    Recently developed Orientation Imaging Microscopy (OIM) methods have been applied to the analysis of microstructure and microtexture of 5083 aluminum alloy materials that have been processed to enable superplasticity...

  5. Symmetry breaking nuclear quadrupole coupling tensor orientation for cesium-133 nuclei located in a mirror plane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Jin Eun [Dept. of Chemistry (BK21 plus) and Research Institute of Natural Science, Gyeongsang National University, Jinju (Korea, Republic of); Lee, Kang Yeol [School of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2016-11-15

    Simultaneous multiple data set fits of all transition peaks of {sup 133}Cs nuclei enabled us to obtain accurate cesium-133 nuclear magnetic resonance (NMR) parameters and Euler angles between the principal axis systems of the chemical shift (CS) and quadrupole coupling (Q) tensors of {sup 133}Cs nuclei in Cs{sub 2}CrO{sub 4} . Although in a previous study of Cs{sub 2}CrO{sub 4} by Power et al. (W. P. Power, S. Mooibroek, R. E. Wasylishen, T. S. Cameron, J. Phys. Chem. 1994, 98, 1552), one central transition was observed for cesium sites 1 and 2 in the {sup 133}Cs NMR spectra and one Euler angle between the CS tensors and Q tensors was obtained as 52° and 7° for cesium sites 1 and 2, respectively, the present single-crystal {sup 133}Cs NMR measurements found two Euler angles (10(2)°, 51.9(1)°, 0°) for site 1 and two central transition peaks for site 2. Three principal components of the CS tensor for Cs1 are oriented along the crystallographic a, b, and c axes, whereas none of the principal components of the Q tensor for Cs1 are oriented along the crystal axes. The principal component V{sub 22} of the Q tensor for Cs1 is tilted 10° from the b axis in the bc plane, and the other two components are not located in the ac plane. Therefore, we have found that the requirement that “the quadrupole coupling tensor for a nucleus located in a mirror plane has one principal axis perpendicular to the mirror plane” cannot be applied to Cs1. On the other hand, δ{sub 11} and V{sub 22} for Cs2 are aligned along the b axis, and the other components of the CS and Q tensors deviate at an angle of 1.4(1)° and 10.1(1)°, respectively, from the a and c axes in the ac plane. A distortion-free powder {sup 133}Cs NMR spectrum of Cs{sub 2}CrO{sub 4} was measured using a solid-state spin echo technique.

  6. Cardiac fiber orientation in goat measured with Diffusion Tensor Imaging

    NARCIS (Netherlands)

    Ossevoort, L.; Bovendeerd, P.H.M.; Nicolaij, K.; Arts, M.G.J.

    2000-01-01

    We therefore hypothesize that fiber reorientation could be a local adaptive mechanism by which the strain distribution across the cardiac wall is homogenized. To test this hypothesis we measured fiber orientation in normal goat hearts and in goat hearts in which the mechanical load was locally

  7. W-transform method for feature-oriented multiresolution image retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, M.K.; Lin, B. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-07-01

    Image database management is important in the development of multimedia technology. Since an enormous amount of digital images is likely to be generated within the next few decades in order to integrate computers, television, VCR, cables, telephone and various imaging devices. Effective image indexing and retrieval systems are urgently needed so that images can be easily organized, searched, transmitted, and presented. Here, the authors present a local-feature-oriented image indexing and retrieval method based on Kwong, and Tang`s W-transform. Multiresolution histogram comparison is an effective method for content-based image indexing and retrieval. However, most recent approaches perform multiresolution analysis for whole images but do not exploit the local features present in the images. Since W-transform is featured by its ability to handle images of arbitrary size, with no periodicity assumptions, it provides a natural tool for analyzing local image features and building indexing systems based on such features. In this approach, the histograms of the local features of images are used in the indexing, system. The system not only can retrieve images that are similar or identical to the query images but also can retrieve images that contain features specified in the query images, even if the retrieved images as a whole might be very different from the query images. The local-feature-oriented method also provides a speed advantage over the global multiresolution histogram comparison method. The feature-oriented approach is expected to be applicable in managing large-scale image systems such as video databases and medical image databases.

  8. Direct-coupled-ray method for design-oriented three-dimensional transport analysis

    International Nuclear Information System (INIS)

    Bucholz, J.A.; Poncelet, C.G.

    1977-01-01

    A fast three-dimensional design-oriented transport method has been developed for the solution of both neutron and gamma transport problems. It combines a nodal approach with analytic integral transport to achieve relative speed and accuracy. An analytic solution is obtained for the angular flux in each of the 14 directions defined by the six faces and eight corners of a cubic mesh block. The scheme used to accommodate high-order anisotropic scattering is based on the formulation of ray-to-ray scattering probabilities in an integral sense. A variable mesh approximation has also been introduced to provide greater flexibility. The details of a direct-coupled-ray (DCR) → P 1 conversion technique have been developed but not yet implemented. The DCR method, as implemented in the TRANS3 code, has been used in a number of liquid-metal fast breeder reactor shielding applications. These included a one-dimensional deep penetration configuration and one-, two-, and three dimensional representations of the lower axial shield of the Clinch River Breeder Reactor. Comparisons with ANISN and DOT-III solutions indicated good to excellent agreement in most situations

  9. Bis(triisopropylsilylethynyl)pentacene/Au(111) interface: Coupling, molecular orientation, and thermal stability

    KAUST Repository

    Gnoli, Andrea; Ü stü nel, Hande; Toffoli, Daniele; Yu, Liyang; Catone, D.; Turchini, Stefano; Lizzit, Silvano; Stingelin, Natalie; Larciprê te, Rosanna

    2014-01-01

    The assembly and the orientation of functionalized pentacene at the interface with inorganics strongly influence both the electric contact and the charge transport in organic electronic devices. In this study electronic spectroscopies and theoretical modeling are combined to investigate the properties of the bis(triisopropylsilylethynyl)pentacene (TIPS-Pc)/Au(111) interface as a function of the molecular coverage to compare the molecular state in the gas phase and in the adsorbed phase and to determine the thermal stability of TIPS-Pc in contact with gold. Our results show that in the free molecule only the acene atoms directly bonded to the ligands are affected by the functionalization. Adsorption on Au(111) leads to a weak coupling which causes only modest binding energy shifts in the TIPS-Pc and substrate core level spectra. In the first monolayer the acene plane form an angle of 33 ± 2° with the Au(111) surface at variance with the vertical geometry reported for thicker solution-processed or evaporated films, whereas the presence of configurational disorder was observed in the multilayer. The thermal annealing of the TIPS-Pc/Au(111) interface reveals the ligand desorption at ∼470 K, which leaves the backbone of the decomposed molecule flat-lying on the metal surface as in the case of the unmodified pentacene. The weak interaction with the metal substrate causes the molecular dissociation to occur 60 K below the thermal decomposition taking place in thick drop-cast films.

  10. Bis(triisopropylsilylethynyl)pentacene/Au(111) interface: Coupling, molecular orientation, and thermal stability

    KAUST Repository

    Gnoli, Andrea

    2014-10-02

    The assembly and the orientation of functionalized pentacene at the interface with inorganics strongly influence both the electric contact and the charge transport in organic electronic devices. In this study electronic spectroscopies and theoretical modeling are combined to investigate the properties of the bis(triisopropylsilylethynyl)pentacene (TIPS-Pc)/Au(111) interface as a function of the molecular coverage to compare the molecular state in the gas phase and in the adsorbed phase and to determine the thermal stability of TIPS-Pc in contact with gold. Our results show that in the free molecule only the acene atoms directly bonded to the ligands are affected by the functionalization. Adsorption on Au(111) leads to a weak coupling which causes only modest binding energy shifts in the TIPS-Pc and substrate core level spectra. In the first monolayer the acene plane form an angle of 33 ± 2° with the Au(111) surface at variance with the vertical geometry reported for thicker solution-processed or evaporated films, whereas the presence of configurational disorder was observed in the multilayer. The thermal annealing of the TIPS-Pc/Au(111) interface reveals the ligand desorption at ∼470 K, which leaves the backbone of the decomposed molecule flat-lying on the metal surface as in the case of the unmodified pentacene. The weak interaction with the metal substrate causes the molecular dissociation to occur 60 K below the thermal decomposition taking place in thick drop-cast films.

  11. Relations among media influence, body image, eating concerns, and sexual orientation in men: A preliminary investigation.

    Science.gov (United States)

    Carper, Teresa L Marino; Negy, Charles; Tantleff-Dunn, Stacey

    2010-09-01

    The current study explored the relation between sexual orientation, media persuasion, and eating and body image concerns among 78 college men (39 gay; 39 straight). Participants completed measures of sexual orientation, eating disorder symptoms, appearance-related anxiety, perceived importance of physical attractiveness, perceptions of media influence, and media exposure. Gay men scored significantly higher on drive for thinness, body dissatisfaction, and body image-related anxiety than their straight counterparts. Additionally, perceptions of media influence were higher for gay men, and significantly mediated the relation between sexual orientation and eating and body image concerns. Sexual orientation also moderated the relation between perceived media influence and beliefs regarding the importance of physical attractiveness, as this relation was significant for gay men, but not straight men. The current findings suggest that gay men's increased vulnerability to media influence partially accounts for the relatively high rate of eating pathology observed in this population. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. A cloud collaborative medical image platform oriented by social network

    Science.gov (United States)

    Muniz, Frederico B.; Araújo, Luciano V.; Nunes, Fátima L. S.

    2017-03-01

    Computer-aided diagnosis systems using medical images and three-dimensional models as input data have greatly expanded and developed, but in terms of building suitable image databases to assess them, the challenge remains. Although there are some image databases available for this purpose, they are generally limited to certain types of exams or contain a limited number of medical cases. The objective of this work is to present the concepts and the development of a collaborative platform for sharing medical images and three-dimensional models, providing a resource to share and increase the number of images available for researchers. The collaborative cloud platform, called CATALYZER, aims to increase the availability and sharing of graphic objects, including 3D images, and their reports that are essential for research related to medical images. A survey conducted with researchers and health professionals indicated that this could be an innovative approach in the creation of medical image databases, providing a wider variety of cases together with a considerable amount of shared information among its users.

  13. Background-oriented schlieren imaging of flow around a circular cylinder at low Mach numbers

    Science.gov (United States)

    Stadler, Hannes; Bauknecht, André; Siegrist, Silvan; Flesch, Robert; Wolf, C. Christian; van Hinsberg, Nils; Jacobs, Markus

    2017-09-01

    The background-oriented schlieren (BOS) imaging method has, for the first time, been applied in the investigation of the flow around a circular cylinder at low Mach numbers (Msuccessive imaging at incremental angular positions around the cylinder. This density distribution has been found to agree well with the pressure measurements and with potential theory where appropriate.

  14. Improved Sectional Image Analysis Technique for Evaluating Fiber Orientations in Fiber-Reinforced Cement-Based Materials.

    Science.gov (United States)

    Lee, Bang Yeon; Kang, Su-Tae; Yun, Hae-Bum; Kim, Yun Yong

    2016-01-12

    The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis.

  15. Oriented Edge-Based Feature Descriptor for Multi-Sensor Image Alignment and Enhancement

    Directory of Open Access Journals (Sweden)

    Myung-Ho Ju

    2013-10-01

    Full Text Available In this paper, we present an efficient image alignment and enhancement method for multi-sensor images. The shape of the object captured in a multi-sensor images can be determined by comparing variability of contrast using corresponding edges across multi-sensor image. Using this cue, we construct a robust feature descriptor based on the magnitudes of the oriented edges. Our proposed method enables fast image alignment by identifying matching features in multi-sensor images. We enhance the aligned multi-sensor images through the fusion of the salient regions from each image. The results of stitching the multi-sensor images and their enhancement demonstrate that our proposed method can align and enhance multi-sensor images more efficiently than previous methods.

  16. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  17. Coupled-spin filtered MR imaging in a low field

    International Nuclear Information System (INIS)

    Baudouin, C.J.; Bryant, D.J.; Coutts, G.A.; Bydder, G.M.; Young, I.R.

    1990-01-01

    This paper investigates the use of an editing method of imaging using spin-echo sequences with differing radio-frequency (RF) pulses for lipid imaging in poor fields and to compare it with solvent-suppression methods. A technique of echo difference imaging (EDI) has been described in which two data sets are acquired: a normal spin-echo sequence (90-180) and a 90-90 spin-echo sequence. The intrinsic signal of uncoupled spins in the EDI method is one-half that of the conventional sequence, so that subtracting twice the EDI signal from the conventional signal should result in signal cancellation. With coupled spins, the application of the second 90 degrees pulse results in coherence transfer, and echo magnitude will not be one-half that of the 90-180 echo. This method of lipid imaging may be less vulnerable to field inhomogeneity than are solvent-suppression methods. Phantom and in vivo studies were performed at 0.15 T (TE = 44 msec and various TRs)

  18. User Oriented Platform for Data Analytics in Medical Imaging Repositories.

    Science.gov (United States)

    Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos

    2016-01-01

    The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface.

  19. Dsm Based Orientation of Large Stereo Satellite Image Blocks

    Science.gov (United States)

    d'Angelo, P.; Reinartz, P.

    2012-07-01

    High resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on CARTOSAT-1 imagery is presented, with emphasis on fully automated georeferencing. The proposed system processes level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The RPC are derived from orbit and attitude information and have a much lower accuracy than the ground resolution of approximately 2.5 m. In order to use the images for orthorectification or DSM generation, an affine RPC correction is required. In this paper, GCP are automatically derived from lower resolution reference datasets (Landsat ETM+ Geocover and SRTM DSM). The traditional method of collecting the lateral position from a reference image and interpolating the corresponding height from the DEM ignores the higher lateral accuracy of the SRTM dataset. Our method avoids this drawback by using a RPC correction based on DSM alignment, resulting in improved geolocation of both DSM and ortho images. Scene based method and a bundle block adjustment based correction are developed and evaluated for a test site covering the nothern part of Italy, for which 405 Cartosat-1 Stereopairs are available. Both methods are tested against independent ground truth. Checks against this ground truth indicate a lateral error of 10 meters.

  20. ORIENTATION AND DENSE RECONSTRUCTION OF UNORDERED TERRESTRIAL AND AERIAL WIDE BASELINE IMAGE SETS

    Directory of Open Access Journals (Sweden)

    J. Bartelsen

    2012-07-01

    Full Text Available In this paper we present an approach for detailed and precise automatic dense 3D reconstruction using images from consumer cameras. The major difference between our approach and many others is that we focus on wide-baseline image sets. We have combined and improved several methods, particularly, least squares matching, RANSAC, scale-space maxima and bundle adjustment, for robust matching and parameter estimation. Point correspondences and the five-point algorithm lead to relative orientation. Due to our robust matching method it is possible to orient images under much more unfavorable conditions, for instance concerning illumination changes or scale differences, than for often used operators such as SIFT. For dense reconstruction, we use our orientation as input for Semiglobal Matching (SGM resulting into dense depth images. The latter can be fused into a 2.5D model for eliminating the redundancy of the highly overlapping depth images. However, some applications require full 3D models. A solution to this problem is part of our current work, for which preliminary results are presented in this paper. With very small unmanned aerial systems (Micro UAS it is possible to acquire images which have a perspective similar to terrestrial images and can thus be combined with them. Such a combination is useful for an almost complete 3D reconstruction of urban scenes. We have applied our approach to several hundred aerial and terrestrial images and have generated detailed 2.5D and 3D models of urban areas.

  1. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    Science.gov (United States)

    Gürsoy, D.; Scharfetter, H.

    2009-10-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors.

  2. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    International Nuclear Information System (INIS)

    Gürsoy, D; Scharfetter, H

    2009-01-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors

  3. Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints

    Science.gov (United States)

    Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.

    2018-05-01

    Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.

  4. ROBUST AND ACCURATE IMAGE-BASED GEOREFERENCING EXPLOITING RELATIVE ORIENTATION CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    S. Cavegn

    2018-05-01

    Full Text Available Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2–3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.

  5. An object-oriented framework for medical image registration, fusion, and visualization.

    Science.gov (United States)

    Zhu, Yang-Ming; Cochoff, Steven M

    2006-06-01

    An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.

  6. Celebrity chefs put their left cheek forward: Cover image orientation in celebrity cookbooks.

    Science.gov (United States)

    Lindell, Annukka K

    2017-09-01

    Portrait pose orientations influence perception: the left cheek is more emotionally expressive; females' right cheeks appear more attractive. Posing biases are established in paintings, photographs, and advertisements, however, book covers have not previously been examined. This paper assesses cover image orientation in a book genre that frequently features a cover portrait: the celebrity cookbook. If marketers intuitively choose to enhance chefs' emotional expressivity, left cheek poses should predominate; if attractiveness is more important, right cheek poses will be more frequent for females, with a left or no cheek bias for males. Celebrity cookbook covers (N = 493) were sourced online; identity, portrait orientation, photo type, and sex were coded. For celebrity cookbooks, left cheek covers (39.6%) were more frequent than right cheek (31.6%) or midline covers (28.8%); sex did not predict pose orientation. An interaction between photo type and sex bordered on significance: photo type did not influence females' pose orientation; for males, the left cheek bias present for head and torso images was absent for full body and head only photos. Overall, the left cheek bias for celebrity cookbook covers implies that marketers intuitively select images that make the chefs appear happier and/or more emotionally expressive, enhancing engagement with the audience.

  7. Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

    Directory of Open Access Journals (Sweden)

    Abolfazl Lakdashti

    2008-06-01

    Full Text Available Introduction: Content Based Image Retrieval (CBIR is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retrieval is increasingly  becoming a necessity.  Materials and Methods: This paper presents a new content based radiographic image retrieval approach  based on histogram of pattern orientations, namely pattern orientation histogram (POH. POH represents  the  spatial  distribution  of  five  different  pattern  orientations:  vertical,  horizontal,  diagonal  down/left,  diagonal down/right and non-orientation. In this method, a given image is first divided into image-blocks  and  the  frequency  of  each  type  of  pattern  is  determined  in  each  image-block.  Then,  local  pattern  histograms for each of these image-blocks are computed.   Results: The method was compared to two well known texture-based image retrieval methods: Tamura  and  Edge  Histogram  Descriptors  (EHD  in  MPEG-7  standard.  Experimental  results  based  on  10000  IRMA  radiography  image  dataset,  demonstrate  that  POH  provides  better  precision  and  recall  rates  compared to Tamura and EHD. For some images, the recall and precision rates obtained by POH are,  respectively, 48% and 18% better than the best of the two above mentioned methods.    Discussion and Conclusion: Since we exploit the absolute location of the pattern in the image as well as  its global composition, the proposed matching method can retrieve semantically similar medical images.

  8. Non-invasive quality evaluation of confluent cells by image-based orientation heterogeneity analysis.

    Science.gov (United States)

    Sasaki, Kei; Sasaki, Hiroto; Takahashi, Atsuki; Kang, Siu; Yuasa, Tetsuya; Kato, Ryuji

    2016-02-01

    In recent years, cell and tissue therapy in regenerative medicine have advanced rapidly towards commercialization. However, conventional invasive cell quality assessment is incompatible with direct evaluation of the cells produced for such therapies, especially in the case of regenerative medicine products. Our group has demonstrated the potential of quantitative assessment of cell quality, using information obtained from cell images, for non-invasive real-time evaluation of regenerative medicine products. However, image of cells in the confluent state are often difficult to evaluate, because accurate recognition of cells is technically difficult and the morphological features of confluent cells are non-characteristic. To overcome these challenges, we developed a new image-processing algorithm, heterogeneity of orientation (H-Orient) processing, to describe the heterogeneous density of cells in the confluent state. In this algorithm, we introduced a Hessian calculation that converts pixel intensity data to orientation data and a statistical profiling calculation that evaluates the heterogeneity of orientations within an image, generating novel parameters that yield a quantitative profile of an image. Using such parameters, we tested the algorithm's performance in discriminating different qualities of cellular images with three types of clinically important cell quality check (QC) models: remaining lifespan check (QC1), manipulation error check (QC2), and differentiation potential check (QC3). Our results show that our orientation analysis algorithm could predict with high accuracy the outcomes of all types of cellular quality checks (>84% average accuracy with cross-validation). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Changes in Reported Sexual Orientation Following US States Recognition of Same-Sex Couples

    Science.gov (United States)

    Corliss, Heather L.; Spiegelman, Donna; Williams, Kerry; Austin, S. Bryn

    2016-01-01

    Objectives. To compare changes in self-reported sexual orientation of women living in states with any recognition of same-sex relationships (e.g., hospital visitation, domestic partnerships) with those of women living in states without such recognition. Methods. We calculated the likelihood of women in the Nurses’ Health Study II (n = 69 790) changing their reported sexual orientation between 1995 and 2009. Results. We used data from the Nurses’ Health Study II and found that living in a state with same-sex relationship recognition was associated with changing one’s reported sexual orientation, particularly from heterosexual to sexual minority. Individuals who reported being heterosexual in 1995 were 30% more likely to report a minority orientation (i.e., bisexual or lesbian) in 2009 (risk ratio = 1.30; 95% confidence interval = 1.05, 1.61) if they lived in a state with any recognition of same-sex relationships compared with those who lived in a state without such recognition. Conclusions. Policies recognizing same-sex relationships may encourage women to report a sexual minority orientation. Future research is needed to clarify how other social and legal policies may affect sexual orientation self-reports. PMID:27736213

  10. Hyperspectral fluorescence imaging coupled with multivariate image analysis techniques for contaminant screening of leafy greens

    Science.gov (United States)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung

    2014-05-01

    The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.

  11. De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media

    International Nuclear Information System (INIS)

    Ruan Ke; Briggman, Kathryn B.; Tolman, Joel R.

    2008-01-01

    The straightforward interpretation of solution state residual dipolar couplings (RDCs) in terms of internuclear vector orientations generally requires prior knowledge of the alignment tensor, which in turn is normally estimated using a structural model. We have developed a protocol which allows the requirement for prior structural knowledge to be dispensed with as long as RDC measurements can be made in three independent alignment media. This approach, called Rigid Structure from Dipolar Couplings (RSDC), allows vector orientations and alignment tensors to be determined de novo from just three independent sets of RDCs. It is shown that complications arising from the existence of multiple solutions can be overcome by careful consideration of alignment tensor magnitudes in addition to the agreement between measured and calculated RDCs. Extensive simulations as well applications to the proteins ubiquitin and Staphylococcal protein GB1 demonstrate that this method can provide robust determinations of alignment tensors and amide N-H bond orientations often with better than 10 o accuracy, even in the presence of modest levels of internal dynamics

  12. Elastography as a hybrid imaging technique : coupling with photoacoustics and quantitative imaging

    International Nuclear Information System (INIS)

    Widlak, T.G.

    2015-01-01

    While classical imaging methods, such as ultrasound, computed tomography or magnetic resonance imaging, are well-known and mathematically understood, a host of physiological parameters relevant for diagnostic purposes cannot be obtained by them. This gap is recently being closed by the introduction of hybrid, or coupled-physics imaging methods. They connect more then one physical modality, and aim to provide quantitative information on optical, electrical or mechanical parameters with high resolution. Central to this thesis is the mechanical contrast of elastic tissue, especially Young’s modulus or the shear modulus. Different methods of qualitative elastography provide interior information of the mechanical displacement field. From this interior data the nonlinear inverse problem of quantitative elastography aims to reconstruct the shear modulus. In this thesis, the elastography problem is seen from a hybrid imaging perspective; methods from coupled-physics inspired literature and regularization theory have been employed to recover displacement and shear modulus information. The overdetermined systems approach by G. Bal is applied to the quantitative problem, and ellipticity criteria are deduced, for one and several measurements, as well as injectivity results. Together with the geometric theory of G. Chavent, the results are used for analyzing convergence of Tikhonov regularization. Also, a convergence analysis for the Levenberg Marquardt method is provided. As a second mainstream project in this thesis, elastography imaging is developed for extracting displacements from photoacoustic images. A novel method is provided for texturizing the images, and the optical flow problem for motion estimation is shown to be regularized with this texture generation. The results are tested in cooperation with the Medical University Vienna, and the methods for quantitative determination of the shear modulus evaluated in first experiments. In summary, the overdetermined systems

  13. Coupled binary embedding for large-scale image retrieval.

    Science.gov (United States)

    Zheng, Liang; Wang, Shengjin; Tian, Qi

    2014-08-01

    Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.

  14. Improving Dyadic Coping in Couples with a Stress-Oriented Approach: A 2-Year Longitudinal Study

    Science.gov (United States)

    Bodenmann, Guy; Pihet, Sandrine; Shantinath, Shachi D.; Cina, Annette; Widmer, Kathrin

    2006-01-01

    This study sought to assess the effectiveness of a marital distress prevention program for couples by examining how marital quality, especially marital competencies such as dyadic coping, could be improved by means of a prevention program focusing on the enhancement of coping resources (Couples Coping Enhancement Training). The study consisted of…

  15. RELATIVE ORIENTATION AND MODIFIED PIECEWISE EPIPOLAR RESAMPLING FOR HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    K. Gong

    2017-05-01

    Full Text Available High resolution, optical satellite sensors are boosted to a new era in the last few years, because satellite stereo images at half meter or even 30cm resolution are available. Nowadays, high resolution satellite image data have been commonly used for Digital Surface Model (DSM generation and 3D reconstruction. It is common that the Rational Polynomial Coefficients (RPCs provided by the vendors have rough precision and there is no ground control information available to refine the RPCs. Therefore, we present two relative orientation methods by using corresponding image points only: the first method will use quasi ground control information, which is generated from the corresponding points and rough RPCs, for the bias-compensation model; the second method will estimate the relative pointing errors on the matching image and remove this error by an affine model. Both methods do not need ground control information and are applied for the entire image. To get very dense point clouds, the Semi-Global Matching (SGM method is an efficient tool. However, before accomplishing the matching process the epipolar constraints are required. In most conditions, satellite images have very large dimensions, contrary to the epipolar geometry generation and image resampling, which is usually carried out in small tiles. This paper also presents a modified piecewise epipolar resampling method for the entire image without tiling. The quality of the proposed relative orientation and epipolar resampling method are evaluated, and finally sub-pixel accuracy has been achieved in our work.

  16. Image of Oriental Turkmen Female Travelees in the Nineteenth Century Western Travel Writing

    Directory of Open Access Journals (Sweden)

    Ahmad Gholi

    2017-03-01

    Full Text Available One of crucial issues which Western travel writers in their journeys to the Orient specifically in the height of colonialism in the nineteenth has addressed is Oriental women. Entrapped and conditioned by their cultural baggage and operating on the basis of Orientalist discourse, they have mostly presented a reductive image of their Oriental female travelees as exotic, seductive, sensual, secluded, and suppressed, in lieu of entering into a cultural dialogue and painting their picture sympathetically and respectfully. To convey their lasciviousness, they have expatiated on Oriental harems and to display their oppression foregrounded their veil and ill-treatment by their allegedly insensitive and callus menfolks. In the same period in the context of the Great Game the politically oriented Western travel writers in particular the British ones set out on a voyage to Central Asia where they encountered ethnic Turkmen. Besides gathering intelligence, the travel writers devoted considerable pages to their Turkmen female travelees as well. But their images in these travel books have not been subject to rigorous scholarly scrutiny. In this regard, the current articles in two sections seeks to redress this neglect by shedding light on how these travel writers portrayed their Turkmen female travelees in seemingly unorientalist fashion in the first part and how explicitly in Orientalist tradition in the second part.

  17. Effects of the symmetry axis orientation of a TI overburden on seismic images

    Science.gov (United States)

    Chang, Chih-Hsiung; Chang, Young-Fo; Tseng, Cheng-Wei

    2017-07-01

    In active tectonic regions, the primary formations are often tilted and subjected to the processes of folding and/or faulting. Dipping formations may be categorised as tilted transverse isotropy (TTI). While carrying out hydrocarbon exploration in areas of orogenic structures, mispositioning and defocusing effects in apparent reflections are often caused by the tilted transverse isotropy of the overburden. In this study, scaled physical modelling was carried out to demonstrate the behaviours of seismic wave propagation and imaging problems incurred by transverse isotropic (TI) overburdens that possess different orientations of the symmetry axis. To facilitate our objectives, zero-offset reflections were acquired from four stratum-fault models to image the same structures that were overlain by a TI (phenolite) slab. The symmetry axis of the TI slab was vertical, tilted or horizontal. In response to the symmetry axis orientations, spatial shifts and asymmetrical diffraction patterns in apparent reflections were observed in the acquired profiles. Given the different orientations of the symmetry axis, numerical manipulations showed that the imaged events could be well described by theoretical ray paths computed by the trial-and-error ray method and Fermat's principle (TERF) method. In addition, outputs of image restoration show that the imaging problems, i.e. spatial shift in the apparent reflections, can be properly handled by the ray-based anisotropic 2D Kirchhoff time migration (RAKTM) method.

  18. Nonlinear dynamics of a pulse-coupled neural oscillator model of orientation tuning in the visual cortex

    International Nuclear Information System (INIS)

    Bressloff, P.C.; Bressloff, N.W.

    2000-01-01

    Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neurons is analyzed in terms of spontaneous pattern formation. It is shown how the ring bifurcates from a synchronous state to a non-phase-locked state whose spike trains are characterized by quasiperiodic variations of the inter-spike intervals (ISIs) on closed invariant circles. The separation of these invariant circles in phase space results in a localized peak of activity as measured by the time-averaged firing rate of the neurons. This generates a sharp orientation tuning curve that can lock to a slowly rotating, weakly tuned external stimulus. For fast synapses, breakup of the quasiperiodic orbits occurs leading to high spike time variability suggestive of chaos

  19. Nonlinear dynamics of a pulse-coupled neural oscillator model of orientation tuning in the visual cortex

    Science.gov (United States)

    Bressloff, P. C.; Bressloff, N. W.

    2000-02-01

    Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neurons is analyzed in terms of spontaneous pattern formation. It is shown how the ring bifurcates from a synchronous state to a non-phase-locked state whose spike trains are characterized by quasiperiodic variations of the inter-spike intervals (ISIs) on closed invariant circles. The separation of these invariant circles in phase space results in a localized peak of activity as measured by the time-averaged firing rate of the neurons. This generates a sharp orientation tuning curve that can lock to a slowly rotating, weakly tuned external stimulus. For fast synapses, breakup of the quasiperiodic orbits occurs leading to high spike time variability suggestive of chaos.

  20. Orientation sensors by defocused imaging of single gold nano-bipyramids

    Science.gov (United States)

    Zhang, Fanwei; Li, Qiang; Rao, Wenye; Hu, Hongjin; Gao, Ye; Wu, Lijun

    2018-01-01

    Optical probes for nanoscale orientation sensing have attracted much attention in the field of single-molecule detections. Noble metal especially Au nanoparticles (NPs) exhibit extraordinary plasmonic properties, great photostability, excellent biocompatibility and nontoxicity, and thereby could be alternative labels to conventional applied organic dyes or quantum dots. One type of the most interesting metallic NPs is Au nanorods (AuNRs). Its anisotropic emission accompanied with anisotropic shape is potentially applicable in orientation sensing. Recently, we resolved the 3D orientation of single AuNRs within one frame by deliberately introducing an aberration (slight shift of the dipole away from the focal plane) to the imaging system1 . This defocused imaging technique is based on the electron transition dipole approximation and the fact that the dipole radiation exhibits an angular anisotropy. Since the photoluminescence quantum yield (PLQY) can be enhanced by the "lightning rod effect" (at a sharp angled surface) and localized SPR modes, that of the single Au nano-bipyramid (AuNB) with more sharp tips or edges was found to be doubled comparing to AuNRs with a same effective size2. Here, with a 532 nm excitation, we find that the PL properties of individual AuNBs can be described by three perpendicularly-arranged dipoles (with different ratios). Their PL defocused images are bright, clear and exhibit obvious anisotropy. These properties suggest that AuNBs are excellent candidates for orientation sensing labels in single molecule detections.

  1. Object-Oriented Hierarchy Radiation Consistency for Different Temporal and Different Sensor Images

    Directory of Open Access Journals (Sweden)

    Nan Su

    2018-02-01

    Full Text Available In the paper, we propose a novel object-oriented hierarchy radiation consistency method for dense matching of different temporal and different sensor data in the 3D reconstruction. For different temporal images, our illumination consistency method is proposed to solve both the illumination uniformity for a single image and the relative illumination normalization for image pairs. Especially in the relative illumination normalization step, singular value equalization and linear relationship of the invariant pixels is combined used for the initial global illumination normalization and the object-oriented refined illumination normalization in detail, respectively. For different sensor images, we propose the union group sparse method, which is based on improving the original group sparse model. The different sensor images are set to a similar smoothness level by the same threshold of singular value from the union group matrix. Our method comprehensively considered the influence factors on the dense matching of the different temporal and different sensor stereoscopic image pairs to simultaneously improve the illumination consistency and the smoothness consistency. The radiation consistency experimental results verify the effectiveness and superiority of the proposed method by comparing two other methods. Moreover, in the dense matching experiment of the mixed stereoscopic image pairs, our method has more advantages for objects in the urban area.

  2. The effect of an attachment-oriented couple intervention for breast cancer patients and partners in the early treatment phase

    DEFF Research Database (Denmark)

    Nicolaisen, Anne; Hagedoorn, Mariët; Hansen, Dorte Gilså

    2018-01-01

    OBJECTIVE: Patients and partners both cope individually and as a dyad with challenges related to a breast cancer diagnosis. The objective of this study was to evaluate the effect of a psychological attachment-oriented couple intervention for breast cancer patients and partners in the early...... treatment phase. METHODS: A randomised controlled trial including 198 recently diagnosed breast cancer patients and their partners. Couples were randomised to the Hand in Hand (HiH) intervention in addition to usual care or to usual care only. Self-report assessments were conducted for both patients...... and partners at baseline, post-intervention (5 months) and follow-up (10 months), assessing cancer-related distress, symptoms of anxiety and depression, and dyadic adjustment. Patients' cancer-related distress was the primary outcome. RESULTS: Cancer-related distress decreased over time in both patients...

  3. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease.

    Science.gov (United States)

    Kamagata, Koji; Hatano, Taku; Okuzumi, Ayami; Motoi, Yumiko; Abe, Osamu; Shimoji, Keigo; Kamiya, Kouhei; Suzuki, Michimasa; Hori, Masaaki; Kumamaru, Kanako K; Hattori, Nobutaka; Aoki, Shigeki

    2016-08-01

    We used neurite orientation dispersion and density imaging (NODDI) to quantify changes in the substantia nigra pars compacta (SNpc) and striatum in Parkinson disease (PD). Diffusion-weighted magnetic resonance images were acquired from 58 PD patients and 36 age- and sex-matched controls. The intracellular volume fraction (Vic), orientation dispersion index (OD), and isotropic volume fraction (Viso) of the basal ganglia were compared between groups. Multivariate logistic regression analysis determined which diffusion parameters were independent predictors of PD. Receiver operating characteristic (ROC) analysis compared the diagnostic accuracies of the evaluated indices. Pearson coefficient analysis correlated each diffusional parameter with disease severity. Vic in the contralateral SNpc and putamen were significantly lower in PD patients than in healthy controls (P disease severity. Multivariate logistic analysis revealed that Vic (P = 0.0000046) and mean diffusivity (P = 0.019) in the contralateral SNpc were the independent predictors of PD. In the ROC analysis, Vic in the contralateral SNpc showed the best diagnostic performance (mean cutoff, 0.62; sensitivity, 0.88; specificity, 0.83). NODDI is likely to be useful for diagnosing PD and assessing its progression. • Neurite orientation dispersion and density imaging (NODDI) is a new diffusion MRI technique • NODDI estimates neurite microstructure more specifically than diffusion tensor imaging • By using NODDI, nigrostriatal alterations in PD can be evaluated in vivo • NOODI is useful for diagnosing PD and assessing its disease progression.

  4. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    Science.gov (United States)

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  5. Target-oriented retrieval of subsurface wave fields - Pushing the resolution limits in seismic imaging

    Science.gov (United States)

    Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci

    2017-04-01

    Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications

  6. Orientational Order on Surfaces: The Coupling of Topology, Geometry, and Dynamics

    Science.gov (United States)

    Nestler, M.; Nitschke, I.; Praetorius, S.; Voigt, A.

    2018-02-01

    We consider the numerical investigation of surface bound orientational order using unit tangential vector fields by means of a gradient flow equation of a weak surface Frank-Oseen energy. The energy is composed of intrinsic and extrinsic contributions, as well as a penalization term to enforce the unity of the vector field. Four different numerical discretizations, namely a discrete exterior calculus approach, a method based on vector spherical harmonics, a surface finite element method, and an approach utilizing an implicit surface description, the diffuse interface method, are described and compared with each other for surfaces with Euler characteristic 2. We demonstrate the influence of geometric properties on realizations of the Poincaré-Hopf theorem and show examples where the energy is decreased by introducing additional orientational defects.

  7. Determining fast orientation changes of multi-spectral line cameras from the primary images

    Science.gov (United States)

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  8. A Mathematical Model for Storage and Recall of Images using Targeted Synchronization of Coupled Maps.

    Science.gov (United States)

    Palaniyandi, P; Rangarajan, Govindan

    2017-08-21

    We propose a mathematical model for storage and recall of images using coupled maps. We start by theoretically investigating targeted synchronization in coupled map systems wherein only a desired (partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling coefficients such that targeted synchronization is ensured. The principle of this method is extended to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics the process of adjusting synaptic strengths between neurons to store memories. Our method uses both synchronisation and synaptic weight modification, as the human brain is thought to do. The stored image can be recalled by providing an initial random pattern to the dynamical system. The storage and recall of the standard image of Lena is explicitly demonstrated.

  9. Multi-shelled q-ball imaging. Moment-based orientation distribution function

    International Nuclear Information System (INIS)

    Umezawa, Eizou; Yamaguchi, Kojiro; Yoshikawa, Mayo; Ohno, Kana; Yoshikawa, Emi

    2010-01-01

    q-ball imaging (QBI) reconstructs the orientation distribution function (ODF) that describes the probability for a spin to diffuse in a given direction, and it is capable of identifying intravoxel multiple fiber orientations. The local maxima of ODF are assumed to indicate fiber orientations, but there is a mismatch between the orientation of a fiber crossing and the local maxima. We propose a novel method, multi-shelled QBI (MS-QBI), that gives a new ODF based on the moment of the probability density function of diffusion displacement. We test the accuracy of the fiber orientation indicated by the new ODF and test fiber tracking using the new ODF. We performed tests using numerical simulation. To test the accuracy of fiber orientation, we assumed that 2 fibers cross and evaluated the deviation of the measured crossing angle from the actual angle. To test the fiber tracking, we used a numerical phantom of the cerebral hemisphere containing the corpus callosum, projection fibers, and superior longitudinal fasciculus. In the tests, we compared the results between MS-QBI and conventional QBI under the condition of approximately equal total numbers of diffusion signal samplings between the 2 methods and chose the interpolation parameter such that the stabilities of the results of the angular deviation for the 2 methods were the same. The absolute value of the mean angular deviation was smaller in MS-QBI than in conventional QBI. Using the moment-based ODF improved the accuracy of fiber pathways in fiber tracking but maintained the stability of the results. MS-QBI can more accurately identify intravoxel multiple fiber orientations than can QBI, without increasing sampling number. The high accuracy of MS-QBI will contribute to the improved tractography. (author)

  10. Object-Oriented Query Language For Events Detection From Images Sequences

    Science.gov (United States)

    Ganea, Ion Eugen

    2015-09-01

    In this paper is presented a method to represent the events extracted from images sequences and the query language used for events detection. Using an object oriented model the spatial and temporal relationships between salient objects and also between events are stored and queried. This works aims to unify the storing and querying phases for video events processing. The object oriented language syntax used for events processing allow the instantiation of the indexes classes in order to improve the accuracy of the query results. The experiments were performed on images sequences provided from sport domain and it shows the reliability and the robustness of the proposed language. To extend the language will be added a specific syntax for constructing the templates for abnormal events and for detection of the incidents as the final goal of the research.

  11. A strategy for the diversity-oriented synthesis of macrocyclic scaffolds using multidimensional coupling

    DEFF Research Database (Denmark)

    Beckmann, Henning S G; Nie, Feilin; Hagerman, Caroline E

    2013-01-01

    the coupling reaction. We applied this step-efficient approach in a DOS of a library that consisted of 73 macrocyclic compounds based around 59 discrete scaffolds. The macrocycles prepared cover a broad range of different molecular shapes, as illustrated by principal moment-of-inertia analysis...

  12. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  13. Fast Orientation of Video Images of Buildings Acquired from a UAV without Stabilization

    Science.gov (United States)

    Kedzierski, Michal; Delis, Paulina

    2016-01-01

    The aim of this research was to assess the possibility of conducting an absolute orientation procedure for video imagery, in which the external orientation for the first image was typical for aerial photogrammetry whereas the external orientation of the second was typical for terrestrial photogrammetry. Starting from the collinearity equations, assuming that the camera tilt angle is equal to 90°, a simplified mathematical model is proposed. The proposed method can be used to determine the X, Y, Z coordinates of points based on a set of collinearity equations of a pair of images. The use of simplified collinearity equations can considerably shorten the processing tine of image data from Unmanned Aerial Vehicles (UAVs), especially in low cost systems. The conducted experiments have shown that it is possible to carry out a complete photogrammetric project of an architectural structure using a camera tilted 85°–90° (φ or ω) and simplified collinearity equations. It is also concluded that there is a correlation between the speed of the UAV and the discrepancy between the established and actual camera tilt angles. PMID:27347954

  14. Fast Orientation of Video Images of Buildings Acquired from a UAV without Stabilization

    Directory of Open Access Journals (Sweden)

    Michal Kedzierski

    2016-06-01

    Full Text Available The aim of this research was to assess the possibility of conducting an absolute orientation procedure for video imagery, in which the external orientation for the first image was typical for aerial photogrammetry whereas the external orientation of the second was typical for terrestrial photogrammetry. Starting from the collinearity equations, assuming that the camera tilt angle is equal to 90°, a simplified mathematical model is proposed. The proposed method can be used to determine the X, Y, Z coordinates of points based on a set of collinearity equations of a pair of images. The use of simplified collinearity equations can considerably shorten the processing tine of image data from Unmanned Aerial Vehicles (UAVs, especially in low cost systems. The conducted experiments have shown that it is possible to carry out a complete photogrammetric project of an architectural structure using a camera tilted 85°–90° ( φ or ω and simplified collinearity equations. It is also concluded that there is a correlation between the speed of the UAV and the discrepancy between the established and actual camera tilt angles.

  15. PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2017-05-01

    Full Text Available The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC. The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3, WorldView-2 (WV2, Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs. The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the

  16. Problems and Limitations of Satellite Image Orientation for Determination of Height Models

    Science.gov (United States)

    Jacobsen, K.

    2017-05-01

    The usual satellite image orientation is based on bias corrected rational polynomial coefficients (RPC). The RPC are describing the direct sensor orientation of the satellite images. The locations of the projection centres today are without problems, but an accuracy limit is caused by the attitudes. Very high resolution satellites today are very agile, able to change the pointed area over 200km within 10 to 11 seconds. The corresponding fast attitude acceleration of the satellite may cause a jitter which cannot be expressed by the third order RPC, even if it is recorded by the gyros. Only a correction of the image geometry may help, but usually this will not be done. The first indication of jitter problems is shown by systematic errors of the y-parallaxes (py) for the intersection of corresponding points during the computation of ground coordinates. These y-parallaxes have a limited influence to the ground coordinates, but similar problems can be expected for the x-parallaxes, determining directly the object height. Systematic y-parallaxes are shown for Ziyuan-3 (ZY3), WorldView-2 (WV2), Pleiades, Cartosat-1, IKONOS and GeoEye. Some of them have clear jitter effects. In addition linear trends of py can be seen. Linear trends in py and tilts in of computed height models may be caused by limited accuracy of the attitude registration, but also by bias correction with affinity transformation. The bias correction is based on ground control points (GCPs). The accuracy of the GCPs usually does not cause some limitations but the identification of the GCPs in the images may be difficult. With 2-dimensional bias corrected RPC-orientation by affinity transformation tilts of the generated height models may be caused, but due to large affine image deformations some satellites, as Cartosat-1, have to be handled with bias correction by affinity transformation. Instead of a 2-dimensional RPC-orientation also a 3-dimensional orientation is possible, respecting the object height

  17. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  18. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    Science.gov (United States)

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  19. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  20. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  1. coupling the image analysis and the artificial neural networks to ...

    African Journals Online (AJOL)

    Y. Mahdi, L. Mouhi, N. Guemras and K. Daoud

    mixture, we use the method of Image processing, figure 2. Fig. 2. Schematic diagram of the image acquisition setup. The pictures taken during the processes of mixture at the wall of the blenders have been analyzed using ImageJ software and have been validated with the results obtained by the. UV-vis spectrophotometer ...

  2. Rotation-invariant features for multi-oriented text detection in natural images.

    Directory of Open Access Journals (Sweden)

    Cong Yao

    Full Text Available Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes.

  3. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  4. Algorithm for image retrieval based on edge gradient orientation statistical code.

    Science.gov (United States)

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.

  5. Multi-image screening technique applied to a general orientation training program

    International Nuclear Information System (INIS)

    Hajek, B.K.; Campbell, T.O.; Evans, A.D.; Hickey, J.M.

    1979-01-01

    A general orientation and training program is a prerequisite for personnel to have unescorted access to various site locations at a nuclear power plant. A new general orientation and training program is being developed for the Toledo Edison Company to be used at the Davis-Besse Nuclear Power Station. The program is presented in a multi-image and stereo sound format that has the unique capability to present the magnitude and scale of the plant, to arouse and maintain the interest of the viewer, and to instill in him a feeling of importance and pride about his job. Satisfactory completion of the program by individuals is assessed and certified by a machine scored test that is administered as an integral part of the presentation

  6. Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging

    Science.gov (United States)

    Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.

    2017-01-01

    Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.

  7. Polarization-dependent Imaging Contrast (PIC) mapping reveals nanocrystal orientation patterns in carbonate biominerals

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Pupa U.P.A., E-mail: pupa@physics.wisc.edu [University of Wisconsin-Madison, Departments of Physics and Chemistry, Madison, WI 53706 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Nanocrystal orientation shown by Polarization-dependent Imaging Contrast (PIC) maps. Black-Right-Pointing-Pointer PIC-mapping of carbonate biominerals reveals their ultrastructure at the nanoscale. Black-Right-Pointing-Pointer The formation mechanisms of biominerals is discovered by PIC-mapping using PEEM. -- Abstract: Carbonate biominerals are one of the most interesting systems a physicist can study. They play a major role in the CO{sub 2} cycle, they master templation, self-assembly, nanofabrication, phase transitions, space filling, crystal nucleation and growth mechanisms. A new imaging modality was introduced in the last 5 years that enables direct observation of the orientation of carbonate single crystals, at the nano- and micro-scale. This is Polarization-dependent Imaging Contrast (PIC) mapping, which is based on X-ray linear dichroism, and uses PhotoElectron Emission spectroMicroscopy (PEEM). Here we present PIC-mapping results from biominerals, including the nacre and prismatic layers of mollusk shells, and sea urchin teeth. We describe various PIC-mapping approaches, and show that these lead to fundamental discoveries on the formation mechanisms of biominerals.

  8. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell; Knutsen, Bjoern Helge; Roeislien, Jo; Olsen, Dag Rune

    2007-01-01

    The purpose of this study is to investigate whether the method of applicator reconstruction and/or the applicator orientation influence the dose calculation to points around the applicator for brachytherapy of cervical cancer with CT-based treatment planning. A phantom, containing a fixed ring applicator set and six lead pellets representing dose points, was used. The phantom was CT scanned with the ring applicator at four different angles related to the image plane. In each scan the applicator was reconstructed by three methods: (1) direct reconstruction in each image (DR) (2) reconstruction in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method was significantly lower (p < 0.05) than for the DR and MPR methods for all but two points. All applicator orientations had similar dose calculation reproducibility. Using library plans for applicator reconstruction gives the most reproducible dose calculation. However, with restrictive guidelines for applicator reconstruction the uncertainties for all methods are low compared to other factors influencing the accuracy of brachytherapy

  9. DC slice ion imaging study of atomic orbital orientation and alignment in photodissociation

    Science.gov (United States)

    Lee, Suk Kyoung

    A complete study of atomic photofragment polarization has been achieved by using DC slice imaging, a recently developed approach directly providing the central slice of the full 3D product distribution without any mathematical transformation. In this dissertation, the quantum mechanical treatment adapted for the sliced images has been derived to extract the angular momentum polarization anisotropy parameters for any recoil speeds. The important photodissociation dynamics of small polyatomic molecules has been presented based on the thorough interpretation of the observed orientation and alignment. The first demonstration of DC slice imaging of orbital polarization was a study of the 193 nm photodissociation of ethylene sulfide, followed by detailed investigation in ozone and OCS. In ozone, the speed-dependent orientation was measured for O(1D2) atom produced from photodissociation in the 248--285 nm region. The results show negligible orbital orientation following dissociation by circularly polarized light but strong recoil speed-dependent orientation following photolysis by linearly polarized light at all wavelengths studied. The origin of this polarization is ascribed to nonadiabatic transitions at avoided crossings and at long range. The atomic orbital alignment and orientation, including the higher order moments (K = 3, 4), has been carried out for the photodissociation of OCS at 193 nm. The observed speed-dependent beta and polarization parameters of S(1D2) atom support the interpretation that there are two main dissociation processes: a simultaneous two-surface excitation and the initial single-surface excitation followed by the nonadiabatic crossing to the ground state. The angle- and speed-dependent density matrix can be constructed containing the higher order contributions for circularly-polarized dissociation light. It was shown in one case that the higher order contributions should not be overlooked for an accurate picture of the dissociation dynamics in

  10. Fast Fiber-Coupled Imaging of X-rays Events, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — HyperV Technologies Corp. proposes to construct a long-record-length, fiber-coupled, fast imaging diagnostic for recording X-ray back-lit material flows and X-ray...

  11. GEOMETRIC CONTEXT AND ORIENTATION MAP COMBINATION FOR INDOOR CORRIDOR MODELING USING A SINGLE IMAGE

    Directory of Open Access Journals (Sweden)

    A. B. Jahromi

    2016-06-01

    Full Text Available Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring function will be selected

  12. The problem-oriented system, problem-knowledge coupling, and clinical decision making.

    Science.gov (United States)

    Weed, L L; Zimny, N J

    1989-07-01

    The information tool to aid us in making the clinical decisions discussed in this presentation is called the PKC. Our goal with patients should be to couple the knowledge of the unique patient to the knowledge in the literature and get the best possible match. This approach requires combinatorial versus probabilistic thinking. In the real world, ideal matches are not found. Therefore, it is critical to exhaust the patient's uniqueness first and only then use probabilities to settle further uncertainties. It is an error to teach people how to deal with uncertainty instead of teaching them to clean up a great deal of the uncertainty first. Patients must be involved in this endeavor. In essence, they have a PhD in their own uniqueness, and it is this uniqueness that is very powerful in solving complex problems. This method of patient evaluation and management cannot be used with the unaided mind. It requires new and powerful information tools like the PKC. All information that is relevant to a problem should be included in the coupler. It should encompass differing points of view, and the rationale should be made explicit to clinician and patient alike. When complete, the coupler should represent an interdisciplinary compilation of questions and tests that are expected to be collected every time in the clinic for the type of problem the coupler represents. This method will provide a basis for quality control because the contents of the coupler now have defined what we expect to occur in every patient encounter.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Sustainability, innovative orientation and export performance of manufacturing SMEs: An empirical analysis of the mediating role of corporate image

    Energy Technology Data Exchange (ETDEWEB)

    Villena-Manzanares, F.; Souto-Pérez, J.E.

    2016-07-01

    The objective of this research is to empirically analyze the role played by corporate image, sustainability, and innovative orientation on export performance. Hypothesis testing was conducted with a sample of 180 manufacturing SMEs in Seville (Spain) and a structural equation system is modeled using the technique Partial Least Squares (PLS). The research model includes the following variables: corporate image, sustainability, and innovative orientation on export performance. The results show the positive effect of sustainability and innovative orientation on export performance, as well as the mediator effect of corporate image on these relationships. The results may be more general if we had used a national sample and cross cultural. The conclusions cannot be directly extrapolated to other countries. This work propose future research doing the same study with other types companies. Corporate image requires special attention, as it acts as a filter of the impacts of sustainability and innovative orientation. The creation of corporate image not only as a result of tangible items, but as a result of the actions and behavior of the company. In this research is showed that there is a high level of complexity in the management of intangibles since the intangibles influence each other, such as the influence of sustainability and innovative orientation on corporate image. Managers should focus on proper design and management of the company image, in order to compete and grow in the international area. (Author)

  14. Fuzzy rule-based model for optimum orientation of solar panels using satellite image processing

    International Nuclear Information System (INIS)

    Zaher, A; Thiery, F; Grieu, S; Traoré, A; N’goran, Y

    2017-01-01

    In solar energy converting systems, a particular attention is paid to the orientation of solar collectors in order to optimize the overall system efficiency. In this context, the collectors can be fixed or oriented by a continuous solar tracking system. The proposed approach is based on METEOSAT images processing in order to detect the cloud coverage and its duration. These two parameters are treated by a fuzzy inference system deciding the optimal position of the solar panel. In fact, three weather cases can be considered: clear, partly covered or overcast sky. In the first case, the direct sunlight is more important than the diffuse radiation, thus the panel is always pointed towards the sun. In the overcast case, the solar beam is close to zero and the panel is placed horizontally to receive the diffuse radiation. Under partly covered conditions, the fuzzy inference system decides which of the previous positions is more efficient. The proposed approach is implemented using experimental prototype located in Perpignan (France). On a period of 17 months, the results are very satisfactory, with power gains of up to 23 % compared to the collectors oriented by a continuous solar tracking. (paper)

  15. A prototype distributed object-oriented architecture for image-based automatic laser alignment

    International Nuclear Information System (INIS)

    Stout, E.A.; Kamm, V.J.M.; Spann, J.M.; Van Arsdall, P.J.

    1996-01-01

    Designing a computer control system for the National Ignition Facility (NIF) is a complex undertaking because of the system's large size and its distributed nature. The controls team is addressing that complexity by adopting the object-oriented programming paradigm, designing reusable software frameworks, and using the Common Object Request Broker Architecture (CORBA) for distribution. A prototype system for image-based automatic laser alignment has been developed to evaluate and gain experience with CORBA and OOP in a small distributed system. The prototype is also important in evaluating alignment concepts, image processing techniques, speed and accuracy of automatic alignment objectives for the NIF, and control hardware for aligment devices. The prototype system has met its inital objectives and provides a basis for continued development

  16. Relationships between body image, sexual satisfaction, and relationship quality in romantic couples.

    Science.gov (United States)

    van den Brink, Femke; Vollmann, Manja; Smeets, Monique A M; Hessen, David J; Woertman, Liesbeth

    2018-03-08

    Previous studies found important associations between body image, sexual satisfaction, and perceived romantic relationship quality, but mainly focused on one individual's perceptions rather than both partners. To take the interdependency of romantic partners into account, the present study examined these associations in romantic couples with a dyadic approach. In a cross-sectional design, 151 Dutch heterosexual couples completed an online survey measuring body image, sexual satisfaction, and perceived relationship quality. Hypotheses were tested using the actor-partner interdependence model (APIM) and an APIM extended with a mediator (APIMeM), with couple members' body image as predictors, couple members' sexual satisfaction as mediators, and couple members' relationship quality as outcomes. Results indicated that within individuals, a more positive body image was linked to higher perceived romantic relationship quality through greater sexual satisfaction. No gender differences were found, implying that body image and sexual satisfaction are equally strongly associated with perceived relationship quality in women and men. Results revealed no associations of an individual's body image and sexual satisfaction with the partner's perceived relationship quality. These findings implicate that interventions focusing on developing and maintaining a positive body image may be helpful in building on a more satisfying sex life and higher perceived relationship quality. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. A Study of Residual Image in Charged-Coupled Device

    Directory of Open Access Journals (Sweden)

    Ho Jin

    2005-12-01

    Full Text Available For an image sensor CCD, electrons can be trapped at the front-side Si-SiO_2 surface interface in a case of exceeding the full well by bright source. Residual images can be made by the electrons remaining in the interface. These residual images are seen in the front-side-illuminated CCDs especially. It is not easy to find a quantitative analysis for this phenomenon in the domestic reports, although it is able to contaminate observation data. In this study, we find residual images in dark frames which were obtained from the front-side-illuminated CCD at Mt. Lemmon Optical Astronomy Observatory (LOAO, and analyze the effect to contaminated observation data by residual charges.

  18. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease

    International Nuclear Information System (INIS)

    Kamagata, Koji; Suzuki, Michimasa; Hori, Masaaki; Kumamaru, Kanako K.; Aoki, Shigeki; Hatano, Taku; Okuzumi, Ayami; Motoi, Yumiko; Hattori, Nobutaka; Abe, Osamu; Shimoji, Keigo; Kamiya, Kouhei

    2016-01-01

    We used neurite orientation dispersion and density imaging (NODDI) to quantify changes in the substantia nigra pars compacta (SNpc) and striatum in Parkinson disease (PD). Diffusion-weighted magnetic resonance images were acquired from 58 PD patients and 36 age- and sex-matched controls. The intracellular volume fraction (Vic), orientation dispersion index (OD), and isotropic volume fraction (Viso) of the basal ganglia were compared between groups. Multivariate logistic regression analysis determined which diffusion parameters were independent predictors of PD. Receiver operating characteristic (ROC) analysis compared the diagnostic accuracies of the evaluated indices. Pearson coefficient analysis correlated each diffusional parameter with disease severity. Vic in the contralateral SNpc and putamen were significantly lower in PD patients than in healthy controls (P < 0.00058). Vic and OD in the SNpc and putamen showed significant negative correlations (P < 0.05) with disease severity. Multivariate logistic analysis revealed that Vic (P = 0.0000046) and mean diffusivity (P = 0.019) in the contralateral SNpc were the independent predictors of PD. In the ROC analysis, Vic in the contralateral SNpc showed the best diagnostic performance (mean cutoff, 0.62; sensitivity, 0.88; specificity, 0.83). NODDI is likely to be useful for diagnosing PD and assessing its progression. (orig.)

  19. Enhancing nanoscale SEM image segmentation and reconstruction with crystallographic orientation data and machine learning

    International Nuclear Information System (INIS)

    Converse, Matthew I.; Fullwood, David T.

    2013-01-01

    Current methods of image segmentation and reconstructions from scanning electron micrographs can be inadequate for resolving nanoscale gaps in composite materials (1–20 nm). Such information is critical to both accurate material characterizations and models of piezoresistive response. The current work proposes the use of crystallographic orientation data and machine learning for enhancing this process. It is first shown how a machine learning algorithm can be used to predict the connectivity of nanoscale grains in a Nickel nanostrand/epoxy composite. This results in 71.9% accuracy for a 2D algorithm and 62.4% accuracy in 3D. Finally, it is demonstrated how these algorithms can be used to predict the location of gaps between distinct nanostrands — gaps which would otherwise not be detected with the sole use of a scanning electron microscope. - Highlights: • A method is proposed for enhancing the segmentation/reconstruction of SEM images. • 3D crystallographic orientation data from a nickel nanocomposite is collected. • A machine learning algorithm is used to detect trends in adjacent grains. • This algorithm is then applied to predict likely regions of nanoscale gaps. • These gaps would otherwise be unresolved with the sole use of an SEM

  20. Novel technique for spatially resolved imaging of molecular bond orientations using x-ray birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, John P., E-mail: john.sutter@diamond.ac.uk; Dolbnya, Igor P.; Collins, Stephen P. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Harris, Kenneth D. M., E-mail: HarrisKDM@cardiff.ac.uk; Edwards-Gau, Gregory R.; Kariuki, Benson M. [School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT (United Kingdom); Palmer, Benjamin A. [Department of Structural Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001 (Israel)

    2016-07-27

    Birefringence has been observed in anisotropic materials transmitting linearly polarized X-ray beams tuned close to an absorption edge of a specific element in the material. Synchrotron bending magnets provide X-ray beams of sufficiently high brightness and cross section for spatially resolved measurements of birefringence. The recently developed X-ray Birefringence Imaging (XBI) technique has been successfully applied for the first time using the versatile test beamline B16 at Diamond Light Source. Orientational distributions of the C–Br bonds of brominated “guest” molecules within crystalline “host” tunnel structures (in thiourea or urea inclusion compounds) have been studied using linearly polarized incident X-rays near the Br K-edge. Imaging of domain structures, changes in C–Br bond orientations associated with order-disorder phase transitions, and the effects of dynamic averaging of C–Br bond orientations have been demonstrated. The XBI setup uses a vertically deflecting high-resolution double-crystal monochromator upstream from the sample and a horizontally deflecting single-crystal polarization analyzer downstream, with a Bragg angle as close as possible to 45°. In this way, the ellipticity and rotation angle of the polarization of the beam transmitted through the sample is measured as in polarizing optical microscopy. The theoretical instrumental background calculated from the elliptical polarization of the bending-magnet X-rays, the imperfect polarization discrimination of the analyzer, and the correlation between vertical position and photon energy introduced by the monochromator agrees well with experimental observations. The background is calculated analytically because the region of X-ray phase space selected by this setup is sampled inefficiently by standard methods.

  1. Precision 3d Surface Reconstruction from Lro Nac Images Using Semi-Global Matching with Coupled Epipolar Rectification

    Science.gov (United States)

    Hu, H.; Wu, B.

    2017-07-01

    The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity

  2. PRECISION 3D SURFACE RECONSTRUCTION FROM LRO NAC IMAGES USING SEMI-GLOBAL MATCHING WITH COUPLED EPIPOLAR RECTIFICATION

    Directory of Open Access Journals (Sweden)

    H. Hu

    2017-07-01

    Full Text Available The Narrow-Angle Camera (NAC on board the Lunar Reconnaissance Orbiter (LRO comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to

  3. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri 1, I-34127 Trieste (Italy); Christiansen, Ove [Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Norman, Patrick [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H{sub 2}, H{sub 2}O, NH{sub 3}, HF, CO, and CO{sub 2}.

  4. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    Science.gov (United States)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  5. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    International Nuclear Information System (INIS)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-01-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H 2 , H 2 O, NH 3 , HF, CO, and CO 2

  6. Accelerated Air-coupled Ultrasound Imaging of Wood Using Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Yiming Fang

    2015-12-01

    Full Text Available Air-coupled ultrasound has shown excellent sensitivity and specificity for the nondestructive imaging of wood-based material. However, it is time-consuming, due to the high scanning density limited by the Nyquist law. This study investigated the feasibility of applying compressed sensing techniques to air-coupled ultrasound imaging, aiming to reduce the number of scanning lines and then accelerate the imaging. Firstly, an undersampled scanning strategy specified by a random binary matrix was proposed to address the limitation of the compressed sensing framework. The undersampled scanning can be easily implemented, while only minor modification was required for the existing imaging system. Then, discrete cosine transform was selected experimentally as the representation basis. Finally, orthogonal matching pursuit algorithm was utilized to reconstruct the wood images. Experiments on three real air-coupled ultrasound images indicated the potential of the present method to accelerate air-coupled ultrasound imaging of wood. The same quality of ACU images can be obtained with scanning time cut in half.

  7. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  8. Registration and analysis for images couple : application to mammograms

    OpenAIRE

    Boucher, Arnaud

    2014-01-01

    Advisor: Nicole Vincent. Date and location of PhD thesis defense: 10 January 2013, University of Paris Descartes In this thesis, the problem addressed is the development of a computer-aided diagnosis system (CAD) based on conjoint analysis of several images, and therefore on the comparison of these medical images. The particularity of our approach is to look for evolutions or aberrant new tissues in a given set, rather than attempting to characterize, with a strong a priori, the type of ti...

  9. The study on the perceptions of radiological technologist in medical imaging equipment used by the oriental doctor

    International Nuclear Information System (INIS)

    Choi, Jae Ho; Kang, Gi Bong; Kim, Sang Hyun

    2017-01-01

    In order to examine how Radiological Technologists perceive the oriental doctor's use of Medical Imaging Equipment, surveys were conducted for the members of the Korean Radiological Technologists Association. The total number of respondents were 515 and 481, with 34 insincere responses removed caused of nonvalidated answer. The results of the analysis are as follows. Although there were no statistical significance in the difference in perception by location of residence, work place, and educational background, respondents with higher education showed a tendency to agree on the use of comprehensive medical imaging equipment, but tended to oppose the use of special medical imaging equipment. Differences in perception by gender showed a greater negative perception toward the oriental doctor's use of medical imaging equipment by women than men. In particular, women showed more negative tendency for oriental doctor's use of special medical imaging equipment such as MRI, CT, and ultrasound equipment compared to men, and this was statistically significant. The difference in perception by age showed that the oriental doctor's use of medical imaging equipment was negative in the 20∼30s, neutral in the 40∼50s, and positive in the 60s, which were statistically significant. The difference in perception by work experience showed that the longer the work experience was, the more positive it was toward oriental doctor's use of medical imaging equipment. Specifically, the most favorable tendency was found with work experience of more than 30 years, which was statistically significant. The results of this study revealed the Radiological Technologists' perceptions on the oriental doctor's use of Medical Imaging Equipment and this can contribute to the direction of public health promotion in the future

  10. The study on the perceptions of radiological technologist in medical imaging equipment used by the oriental doctor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Ho [Dept. of Radiological Technology, Ansan University, Ansan (Korea, Republic of); Kang, Gi Bong [Dept. of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Sang Hyun [Dept. of Radiology, Shinhan University, Seongnam (Korea, Republic of); and others

    2017-03-15

    In order to examine how Radiological Technologists perceive the oriental doctor's use of Medical Imaging Equipment, surveys were conducted for the members of the Korean Radiological Technologists Association. The total number of respondents were 515 and 481, with 34 insincere responses removed caused of nonvalidated answer. The results of the analysis are as follows. Although there were no statistical significance in the difference in perception by location of residence, work place, and educational background, respondents with higher education showed a tendency to agree on the use of comprehensive medical imaging equipment, but tended to oppose the use of special medical imaging equipment. Differences in perception by gender showed a greater negative perception toward the oriental doctor's use of medical imaging equipment by women than men. In particular, women showed more negative tendency for oriental doctor's use of special medical imaging equipment such as MRI, CT, and ultrasound equipment compared to men, and this was statistically significant. The difference in perception by age showed that the oriental doctor's use of medical imaging equipment was negative in the 20∼30s, neutral in the 40∼50s, and positive in the 60s, which were statistically significant. The difference in perception by work experience showed that the longer the work experience was, the more positive it was toward oriental doctor's use of medical imaging equipment. Specifically, the most favorable tendency was found with work experience of more than 30 years, which was statistically significant. The results of this study revealed the Radiological Technologists' perceptions on the oriental doctor's use of Medical Imaging Equipment and this can contribute to the direction of public health promotion in the future.

  11. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  12. Transferability of Object-Oriented Image Analysis Methods for Slum Identification

    Directory of Open Access Journals (Sweden)

    Alfred Stein

    2013-08-01

    Full Text Available Updated spatial information on the dynamics of slums can be helpful to measure and evaluate progress of policies. Earlier studies have shown that semi-automatic detection of slums using remote sensing can be challenging considering the large variability in definition and appearance. In this study, we explored the potential of an object-oriented image analysis (OOA method to detect slums, using very high resolution (VHR imagery. This method integrated expert knowledge in the form of a local slum ontology. A set of image-based parameters was identified that was used for differentiating slums from non-slum areas in an OOA environment. The method was implemented on three subsets of the city of Ahmedabad, India. Results show that textural features such as entropy and contrast derived from a grey level co-occurrence matrix (GLCM and the size of image segments are stable parameters for classification of built-up areas and the identification of slums. Relation with classified slum objects, in terms of enclosed by slums and relative border with slums was used to refine classification. The analysis on three different subsets showed final accuracies ranging from 47% to 68%. We conclude that our method produces useful results as it allows including location specific adaptation, whereas generically applicable rulesets for slums are still to be developed.

  13. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    Science.gov (United States)

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study

  14. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation

    International Nuclear Information System (INIS)

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (∼15–20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate K i and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final K i parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion

  15. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    Science.gov (United States)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  16. Diffusion tensor imaging fiber tracking with reliable tracking orientation and flexible step size☆

    Science.gov (United States)

    Yao, Xufeng; Wang, Manning; Chen, Xinrong; Nie, Shengdong; Li, Zhexu; Xu, Xiaoping; Zhang, Xuelong; Song, Zhijian

    2013-01-01

    We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based on the single-tensor model and the two-tensor model. The directional set of planar voxels contained three tracking directions: two from the two-tensor model and one from the single-tensor model. The directional set of linear voxels contained only one principal vector. In addition, a flexible step size, rather than fixable step sizes, was implemented to improve the accuracy of fiber tracking. We used two sets of human data to assess the performance of our method; one was from a healthy volunteer and the other from a patient with low-grade glioma. Results verified that our method was superior to the single-tensor Fiber Assignment by Continuous Tracking and the two-tensor eXtended Streamline Tractography for showing detailed images of fiber bundles. PMID:25206444

  17. Microstructure and properties of laser clad coatings studied by orientation imaging microscopy

    International Nuclear Information System (INIS)

    Ocelik, V.; Furar, I.; De Hosson, J.Th.M.

    2010-01-01

    In this work orientation imaging microscopy (OIM), based on electron backscatter diffraction in scanning electron microscopy, was employed to examine in detail the relationship between laser cladding processing parameters and he properties and the microstructure of single and overlapping laser tracks. The study was performed on thick (∼1 mm) Co-based coatings prepared by 2 kW Nd:YAG laser cladding a 42CrMo4 steel substrate using different laser beam scanning speeds (1.0-15 mm s -1 ). It was found that the directional growth of individual primary grains led to the formation of a typical solidification fiber texture. The dependence of this texture on the processing speed and the shape of the solidification front were investigated in detail. Strong epitaxial growth of Co grains on austenitic steel substrate grains was found, which did not depend on the laser beam scanning velocity. During laser cladding a strong temperature gradient exists just below the coating-substrate interface that promotes the formation of a Greninger-Troiano orientation relationship between martensitic plates and the original austenitic grain inside the heat affected zone: {1 1 1} γ ∼ 1 o to {1 1 0} α and γ ∼ 2 o to α . Relatively drastic changes in grain size at the internal coating interfaces did not exhibit sharp changes in microhardness.

  18. ARCADIA: a system for the integration of angiocardiographic data and images by an object-oriented DBMS.

    Science.gov (United States)

    Pinciroli, F; Combi, C; Pozzi, G

    1995-02-01

    Use of data base techniques to store medical records has been going on for more than 40 years. Some aspects still remain unresolved, e.g., the management of textual data and image data within a single system. Object-orientation techniques applied to a database management system (DBMS) allow the definition of suitable data structures (e.g., to store digital images): some facilities allow the use of predefined structures when defining new ones. Currently available object-oriented DBMS, however, still need improvements both in the schema update and in the query facilities. This paper describes a prototype of a medical record that includes some multimedia features, managing both textual and image data. The prototype here described considers data from the medical records of patients subjected to percutaneous transluminal coronary artery angioplasty. We developed it on a Sun workstation with a Unix operating system and ONTOS as an object-oriented DBMS.

  19. Orientation guide for imaging examinations. Recommendation of the radiation protection commission. 2. rev. ed.

    International Nuclear Information System (INIS)

    2012-01-01

    Due to the wide range of medical diagnostic method that include partially high radiation exposures of the patients (for instance CT examinations) the mean radiation exposure of the public is increasing in Germany. In 2006 the German Strahlenschutzkommission (radiation protection commission) has published a catalogue for the different diagnostic questions including recommendations for the best imaging technique. This orientation guide was actualized in 2012. The catalogue is aimed to avoid unnecessary radiation exposure and to simultaneously improve the medical diagnostics. Nevertheless the applying physician has to justify and document the selected diagnostic technique for the individual case. The guide covers the following issues: head, neck, spinal cord, skeleton and muscles, cardiovascular system, thorax, digestive system, urogenital tract, gynecology, mammary glands, trauma, oncology, pediatrics, interventional radiology.

  20. APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES

    Directory of Open Access Journals (Sweden)

    M. Pierrot Deseilligny

    2012-09-01

    Full Text Available IGN has developed a set of photogrammetric tools, APERO and MICMAC, for computing 3D models from set of images. This software, developed initially for its internal needs are now delivered as open source code. This paper focuses on the presentation of APERO the orientation software. Compared to some other free software initiatives, it is probably more complex but also more complete, its targeted user is rather professionals (architects, archaeologist, geomophologist than people. APERO uses both computer vision approach for estimation of initial solution and photogrammetry for a rigorous compensation of the total error; it has a large library of parametric model of distortion allowing a precise modelization of all the kind of pinhole camera we know, including several model of fish-eye; there is also several tools for geo-referencing the result. The results are illustrated on various application, including the data-set of 3D-Arch workshop.

  1. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  2. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  3. Non-contact optoacoustic imaging with focused air-coupled transducers

    Energy Technology Data Exchange (ETDEWEB)

    Deán-Ben, X. Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Pang, Genny A.; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); School of Medicine, Technische Universität München (TUM), Munich (Germany); Montero de Espinosa, Francisco [CSIC, Institute of Physics and Communication Technologies, Madrid (Spain)

    2015-08-03

    Non-contact optoacoustic imaging employing raster-scanning of a spherically focused air-coupled ultrasound transducer is showcased herein. Optoacoustic excitation with laser fluence within the maximal permissible human exposure limits in the visible and near-infrared spectra is applied to objects with characteristic dimensions smaller than 1 mm and absorption properties representative of the whole blood at near-infrared wavelengths, and these signals are shown to be detectable without contact to the sample using an air-coupled transducer with reasonable signal averaging. Optoacoustic images of vessel-mimicking tubes embedded in an agar phantom captured with this non-contact sensing technique are also showcased. These initial results indicate that an air-coupled ultrasound detection approach can be suitable for non-contact biomedical imaging with optoacoustics.

  4. Design of a cathodoluminescence image generator using a Raspberry Pi coupled to a scanning electron microscope

    Science.gov (United States)

    Benítez, Alfredo; Santiago, Ulises; Sanchez, John E.; Ponce, Arturo

    2018-01-01

    In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.

  5. ImageGrouper: a group-oriented user interface for content-based image retrieval and digital image arrangement

    NARCIS (Netherlands)

    Nakazato, Munehiro; Manola, L.; Huang, Thomas S.

    In content-based image retrieval (CBIR), experimental (trial-and-error) query with relevance feedback is essential for successful retrieval. Unfortunately, the traditional user interfaces are not suitable for trying different combinations of query examples. This is because first, these systems

  6. System and method for three-dimensional image reconstruction using an absolute orientation sensor

    KAUST Repository

    Giancola, Silvio; Ghanem, Bernard; Schneider, Jens; Wonka, Peter

    2018-01-01

    A three-dimensional image reconstruction system includes an image capture device, an inertial measurement unit (IMU), and an image processor. The image capture device captures image data. The inertial measurement unit (IMU) is affixed to the image

  7. Oriented Markov random field based dendritic spine segmentation for fluorescence microscopy images.

    Science.gov (United States)

    Cheng, Jie; Zhou, Xiaobo; Miller, Eric L; Alvarez, Veronica A; Sabatini, Bernardo L; Wong, Stephen T C

    2010-10-01

    Dendritic spines have been shown to be closely related to various functional properties of the neuron. Usually dendritic spines are manually labeled to analyze their morphological changes, which is very time-consuming and susceptible to operator bias, even with the assistance of computers. To deal with these issues, several methods have been recently proposed to automatically detect and measure the dendritic spines with little human interaction. However, problems such as degraded detection performance for images with larger pixel size (e.g. 0.125 μm/pixel instead of 0.08 μm/pixel) still exist in these methods. Moreover, the shapes of detected spines are also distorted. For example, the "necks" of some spines are missed. Here we present an oriented Markov random field (OMRF) based algorithm which improves spine detection as well as their geometric characterization. We begin with the identification of a region of interest (ROI) containing all the dendrites and spines to be analyzed. For this purpose, we introduce an adaptive procedure for identifying the image background. Next, the OMRF model is discussed within a statistical framework and the segmentation is solved as a maximum a posteriori estimation (MAP) problem, whose optimal solution is found by a knowledge-guided iterative conditional mode (KICM) algorithm. Compared with the existing algorithms, the proposed algorithm not only provides a more accurate representation of the spine shape, but also improves the detection performance by more than 50% with regard to reducing both the misses and false detection.

  8. Mid-infrared fiber-coupled supercontinuum spectroscopic imaging using a tapered chalcogenide photonic crystal fiber

    Science.gov (United States)

    Rosenberg Petersen, Christian; Prtljaga, Nikola; Farries, Mark; Ward, Jon; Napier, Bruce; Lloyd, Gavin Rhys; Nallala, Jayakrupakar; Stone, Nick; Bang, Ole

    2018-02-01

    We present the first demonstration of mid-infrared spectroscopic imaging of human tissue using a fiber-coupled supercontinuum source spanning from 2-7.5 μm. The supercontinuum was generated in a tapered large mode area chalcogenide photonic crystal fiber in order to obtain broad bandwidth, high average power, and single-mode output for good imaging properties. Tissue imaging was demonstrated in transmission by raster scanning over a sub-mm region of paraffinized colon tissue on CaF2 substrate, and the signal was measured using a fiber-coupled grating spectrometer. This demonstration has shown that we can distinguish between epithelial and surrounding connective tissues within a paraffinized section of colon tissue by imaging at discrete wavelengths related to distinct chemical absorption features.

  9. Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging

    International Nuclear Information System (INIS)

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    The blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) modality has been numerically simulated by calculating single voxel signals. However, the observation on single voxel signals cannot provide information regarding the spatial distribution of the signals. Specifically, a single BOLD voxel signal simulation cannot answer the fundamental question: is the magnetic resonance (MR) image a replica of its underling magnetic susceptibility source? In this paper, we address this problem by proposing a multivoxel volumetric BOLD fMRI simulation model and a susceptibility expression formula for linear neurovascular coupling process, that allow us to examine the BOLD fMRI procedure from neurovascular coupling to MR image formation. Since MRI technology only senses the magnetism property, we represent a linear neurovascular-coupled BOLD state by a magnetic susceptibility expression formula, which accounts for the parameters of cortical vasculature, intravascular blood oxygenation level, and local neuroactivity. Upon the susceptibility expression of a BOLD state, we carry out volumetric BOLD fMRI simulation by calculating the fieldmap (established by susceptibility magnetization) and the complex multivoxel MR image (by intravoxel dephasing). Given the predefined susceptibility source and the calculated complex MR image, we compare the MR magnitude (phase, respectively) image with the predefined susceptibility source (the calculated fieldmap) by spatial correlation. The spatial correlation between the MR magnitude image and the magnetic susceptibility source is about 0.90 for the settings of T E = 30 ms, B 0 = 3 T, voxel size = 100 micron, vessel radius = 3 micron, and blood volume fraction = 2%. Using these parameters value, the spatial correlation between the MR phase image and the susceptibility-induced fieldmap is close to 1.00. Our simulation results show that the MR magnitude image is not an exact replica of the magnetic susceptibility

  10. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images.

    Science.gov (United States)

    Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao

    2018-03-01

    We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.

  11. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  12. Coupled solar-magnetic orientation during leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) long-distance migration

    Science.gov (United States)

    Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.

    2010-12-01

    Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional

  13. Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane.

    Science.gov (United States)

    Boughton, Andrew P; Yang, Pei; Tesmer, Valerie M; Ding, Bei; Tesmer, John J G; Chen, Zhan

    2011-09-13

    Few experimental techniques can assess the orientation of peripheral membrane proteins in their native environment. Sum Frequency Generation (SFG) vibrational spectroscopy was applied to study the formation of the complex between G protein-coupled receptor (GPCR) kinase 2 (GRK2) and heterotrimeric G protein β(1)γ(2) subunits (Gβγ) at a lipid bilayer, without any exogenous labels. The most likely membrane orientation of the GRK2-Gβγ complex differs from that predicted from the known protein crystal structure, and positions the predicted receptor docking site of GRK2 such that it would more optimally interact with GPCRs. Gβγ also appears to change its orientation after binding to GRK2. The developed methodology is widely applicable for the study of other membrane proteins in situ.

  14. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    Science.gov (United States)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  15. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex

    NARCIS (Netherlands)

    Gloerich, Martijn; Bianchini, Julie M.; Siemers, Kathleen A.; Cohen, Daniel J.; Nelson, W. James

    2017-01-01

    Both cell-cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell-cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is

  16. Noise-Coupled Image Rejection Architecture of Complex Bandpass ΔΣAD Modulator

    Science.gov (United States)

    San, Hao; Kobayashi, Haruo

    This paper proposes a new realization technique of image rejection function by noise-coupling architecture, which is used for a complex bandpass ΔΣAD modulator. The complex bandpass ΔΣAD modulator processes just input I and Q signals, not image signals, and the AD conversion can be realized with low power dissipation. It realizes an asymmetric noise-shaped spectra, which is desirable for such low-IF receiver applications. However, the performance of the complex bandpass ΔΣAD modulator suffers from the mismatch between internal analog I and Q paths. I/Q path mismatch causes an image signal, and the quantization noise of the mirror image band aliases into the desired signal band, which degrades the SQNDR (Signal to Quantization Noise and Distortion Ratio) of the modulator. In our proposed modulator architecture, an extra notch for image rejection is realized by noise-coupled topology. We just add some passive capacitors and switches to the modulator; the additional integrator circuit composed of an operational amplifier in the conventional image rejection realization is not necessary. Therefore, the performance of the complex modulator can be effectively raised without additional power dissipation. We have performed simulation with MATLAB to confirm the validity of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of image-rejection effectively, and improve the SQNDR of the complex bandpass ΔΣAD modulator.

  17. Sensory-Evoked Intrinsic Imaging Signals in the Olfactory Bulb Are Independent of Neurovascular Coupling

    Directory of Open Access Journals (Sweden)

    Roberto Vincis

    2015-07-01

    Full Text Available Functional brain-imaging techniques used in humans and animals, such as functional MRI and intrinsic optical signal (IOS imaging, are thought to largely rely on neurovascular coupling and hemodynamic responses. Here, taking advantage of the well-described micro-architecture of the mouse olfactory bulb, we dissected the nature of odor-evoked IOSs. Using in vivo pharmacology in transgenic mouse lines reporting activity in different cell types, we show that parenchymal IOSs are largely independent of neurotransmitter release and neurovascular coupling. Furthermore, our results suggest that odor-evoked parenchymal IOSs originate from changes in light scattering of olfactory sensory neuron axons, mostly due to water movement following action potential propagation. Our study sheds light on a direct correlate of neuronal activity, which may be used for large-scale functional brain imaging.

  18. Anisotropic propagation imaging of elastic waves in oriented columnar thin films

    Science.gov (United States)

    Coffy, E.; Dodane, G.; Euphrasie, S.; Mosset, A.; Vairac, P.; Martin, N.; Baida, H.; Rampnoux, J. M.; Dilhaire, S.

    2017-12-01

    We report on the observation of strongly anisotropic surface acoustic wave propagation on nanostructured thin films. Two kinds of tungsten samples were prepared by sputtering on a silicon substrate: a conventional thin film with columns normal to the substrate surface, and an oriented columnar architecture using the glancing angle deposition (GLAD) process. Pseudo-Rayleigh waves (PRWs) were imaged as a function of time in x and y directions for both films thanks to a femtosecond heterodyne pump-probe setup. A strong anisotropic propagation as well as a high velocity reduction of the PRWs were exhibited for the GLAD sample. For the wavevector k/2π  =  3  ×  105 m-1 the measured group velocities v x and v y equal 2220 m s-1 for the sample prepared with conventional sputtering, whereas a strong anisotropy appears (v x   =  1600 m s-1 and v y   =  870 m s-1) for the sample prepared with the GLAD process. Using the finite element method, the anisotropy is related to the structural anisotropy of the thin film’s architecture. The drop of PRWs group velocities is mainly assigned to the porous microstructure, especially favored by atomic shadowing effects which appear during the growth of the inclined columns. Such GLAD thin films constitute a new tool for the control of the propagation of surface elastic waves and for the design of new devices with useful properties.

  19. Side-Scan Sonar Image Mosaic Using Couple Feature Points with Constraint of Track Line Positions

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2018-06-01

    Full Text Available To obtain large-scale seabed surface image, this paper proposes a side-scan sonar (SSS image mosaic method using couple feature points (CFPs with constraint of track line positions. The SSS geocoded images are firstly used to form a coarsely mosaicked one and the overlapping areas between adjacent strip images can be determined based on geographic information. Inside the overlapping areas, the feature point (FP detection and registration operation are adopted for both strips. According to the detected CFPs and track line positions, an adjustment model is established to accommodate complex local distortions as well as ensure the global stability. This proposed method effectively solves the problem of target ghosting or dislocation and no accumulated errors arise in the mosaicking process. Experimental results show that the finally mosaicked image correctly reflects the object distribution, which is meaningful for understanding and interpreting seabed topography.

  20. Dual Channel Pulse Coupled Neural Network Algorithm for Fusion of Multimodality Brain Images with Quality Analysis

    Directory of Open Access Journals (Sweden)

    Kavitha SRINIVASAN

    2014-09-01

    Full Text Available Background: In the review of medical imaging techniques, an important fact that emerged is that radiologists and physicians still are in a need of high-resolution medical images with complementary information from different modalities to ensure efficient analysis. This requirement should have been sorted out using fusion techniques with the fused image being used in image-guided surgery, image-guided radiotherapy and non-invasive diagnosis. Aim: This paper focuses on Dual Channel Pulse Coupled Neural Network (PCNN Algorithm for fusion of multimodality brain images and the fused image is further analyzed using subjective (human perception and objective (statistical measures for the quality analysis. Material and Methods: The modalities used in fusion are CT, MRI with subtypes T1/T2/PD/GAD, PET and SPECT, since the information from each modality is complementary to one another. The objective measures selected for evaluation of fused image were: Information Entropy (IE - image quality, Mutual Information (MI – deviation in fused to the source images and Signal to Noise Ratio (SNR – noise level, for analysis. Eight sets of brain images with different modalities (T2 with T1, T2 with CT, PD with T2, PD with GAD, T2 with GAD, T2 with SPECT-Tc, T2 with SPECT-Ti, T2 with PET are chosen for experimental purpose and the proposed technique is compared with existing fusion methods such as the Average method, the Contrast pyramid, the Shift Invariant Discrete Wavelet Transform (SIDWT with Harr and the Morphological pyramid, using the selected measures to ascertain relative performance. Results: The IE value and SNR value of the fused image derived from dual channel PCNN is higher than other fusion methods, shows that the quality is better with less noise. Conclusion: The fused image resulting from the proposed method retains the contrast, shape and texture as in source images without false information or information loss.

  1. Identification of cultivated land using remote sensing images based on object-oriented artificial bee colony algorithm

    Science.gov (United States)

    Li, Nan; Zhu, Xiufang

    2017-04-01

    Cultivated land resources is the key to ensure food security. Timely and accurate access to cultivated land information is conducive to a scientific planning of food production and management policies. The GaoFen 1 (GF-1) images have high spatial resolution and abundant texture information and thus can be used to identify fragmentized cultivated land. In this paper, an object-oriented artificial bee colony algorithm was proposed for extracting cultivated land from GF-1 images. Firstly, the GF-1 image was segmented by eCognition software and some samples from the segments were manually identified into 2 types (cultivated land and non-cultivated land). Secondly, the artificial bee colony (ABC) algorithm was used to search for classification rules based on the spectral and texture information extracted from the image objects. Finally, the extracted classification rules were used to identify the cultivated land area on the image. The experiment was carried out in Hongze area, Jiangsu Province using wide field-of-view sensor on the GF-1 satellite image. The total precision of classification result was 94.95%, and the precision of cultivated land was 92.85%. The results show that the object-oriented ABC algorithm can overcome the defect of insufficient spectral information in GF-1 images and obtain high precision in cultivated identification.

  2. Object-oriented classification using quasi-synchronous multispectral images (optical and radar) over agricultural surface

    Science.gov (United States)

    Marais Sicre, Claire; Baup, Frederic; Fieuzal, Remy

    2015-04-01

    In the context of climate change (with consequences on temperature and precipitation patterns), persons involved in agricultural management have the imperative to combine: sufficient productivity (as a response of the increment of the necessary foods) and durability of the resources (in order to restrain waste of water, fertilizer or environmental damages). To this end, a detailed knowledge of land use will improve the management of food and water, while preserving the ecosystems. Among the wide range of available monitoring tools, numerous studies demonstrated the interest of satellite images for agricultural mapping. Recently, the launch of several radar and optical sensors offer new perspectives for the multi-wavelength crop monitoring (Terrasar-X, Radarsat-2, Sentinel-1, Landsat-8…) allowing surface survey whatever the cloud conditions. Previous studies have demonstrated the interest of using multi-temporal approaches for crop classification, requiring several images for suitable classification results. Unfortunately, these approaches are limited (due to the satellite orbit cycle) and require waiting several days, week or month before offering an accurate land use map. The objective of this study is to compare the accuracy of object-oriented classification (random forest algorithm combined with vector layer coming from segmentation) to map winter crop (barley, rapeseed, grasslands and wheat) and soil states (bare soils with different surface roughness) using quasi-synchronous images. Satellite data are composed of multi-frequency and multi-polarization (HH, VV, HV and VH) images acquired near the 14th of April, 2010, over a studied area (90km²) located close to Toulouse in France. This is a region of alluvial plains and hills, which are mostly mixed farming and governed by a temperate climate. Remote sensing images are provided by Formosat-2 (04/18), Radarsat-2 (C-band, 04/15), Terrasar-X (X-band, 04/14) and ALOS (L-band, 04/14). Ground data are collected

  3. Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics

    Directory of Open Access Journals (Sweden)

    María S. Aymerich

    2011-01-01

    Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.

  4. [Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.

    Science.gov (United States)

    Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu

    2018-01-01

    Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.

  5. Maxima and minima of the orientation phenomena for direct 1s→2p+-1 electron-ion collisional excitations in weakly coupled plasmas

    International Nuclear Information System (INIS)

    Yoon Jung-Sik; Jung Young-Dae

    1999-01-01

    Orientation phenomena for direct 1s→2p +-1 electron-ion collisional excitations in weakly coupled plasma are investigated using the semiclassical trajectory method including the close-encounter effects. In weakly coupled plasmas, the electron-ion interaction potential is given by the classical nonspherical Debye-Hueckel model. The semiclassical screened hyperbolic-orbit trajectory method is applied to describe the motion of the projectile electron in order to investigate the variation of the orientation parameter as a function of the impact parameter, projectile energy, and Debye length. A comparison is also given for the hyperbolic-orbit and straight-line trajectory methods. The results show that the orientation parameters obtained by the hyperbolic-orbit trajectory method have maxima and minima for small impact parameter regions. In other words, there are complete 1s→2p +1 (maxima) and complete 1s→2p -1 (minima) transitions for certain impact parameters. These maxima cannot be found using the straight-line trajectory method. The variation of the propensity of the 1s→2p -1 transitions due to the plasma screening effects on the atomic wave functions is also discussed

  6. Region-oriented CT image representation for reducing computing time of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Sarrut, David; Guigues, Laurent

    2008-01-01

    Purpose. We propose a new method for efficient particle transportation in voxelized geometry for Monte Carlo simulations. We describe its use for calculating dose distribution in CT images for radiation therapy. Material and methods. The proposed approach, based on an implicit volume representation named segmented volume, coupled with an adapted segmentation procedure and a distance map, allows us to minimize the number of boundary crossings, which slows down simulation. The method was implemented with the GEANT4 toolkit and compared to four other methods: One box per voxel, parameterized volumes, octree-based volumes, and nested parameterized volumes. For each representation, we compared dose distribution, time, and memory consumption. Results. The proposed method allows us to decrease computational time by up to a factor of 15, while keeping memory consumption low, and without any modification of the transportation engine. Speeding up is related to the geometry complexity and the number of different materials used. We obtained an optimal number of steps with removal of all unnecessary steps between adjacent voxels sharing a similar material. However, the cost of each step is increased. When the number of steps cannot be decreased enough, due for example, to the large number of material boundaries, such a method is not considered suitable. Conclusion. This feasibility study shows that optimizing the representation of an image in memory potentially increases computing efficiency. We used the GEANT4 toolkit, but we could potentially use other Monte Carlo simulation codes. The method introduces a tradeoff between speed and geometry accuracy, allowing computational time gain. However, simulations with GEANT4 remain slow and further work is needed to speed up the procedure while preserving the desired accuracy

  7. System and method for three-dimensional image reconstruction using an absolute orientation sensor

    KAUST Repository

    Giancola, Silvio

    2018-01-18

    A three-dimensional image reconstruction system includes an image capture device, an inertial measurement unit (IMU), and an image processor. The image capture device captures image data. The inertial measurement unit (IMU) is affixed to the image capture device and records IMU data associated with the image data. The image processor includes one or more processing units and memory for storing instructions that are executed by the one or more processing units, wherein the image processor receives the image data and the IMU data as inputs and utilizes the IMU data to pre-align the first image and the second image, and wherein the image processor utilizes a registration algorithm to register the pre-aligned first and second images.

  8. X-ray topography with scintillators coupled to image intensifiers or camera tubes

    International Nuclear Information System (INIS)

    Beauvais, Yves; Mathiot, Alain.

    1978-01-01

    The possibility of imaging topographic figures in real time by using a thin scintillator coupled to either a high-gain image intensifier or a camera tube is investigated. The camera tube must have a high gain because of the low photon fluxes that are encountered in practice, and because of the relatively low quantum yield of thin phosphors. With conventional X-ray generators, the resolution is photon-noise limited. With more powerful generators like synchrotrons, real-time imaging appears possible, and the resolution is limited by the modulation transfer function of the image tube. Higher resolution can be reached by increasing the magnification between the screen and the image tube. When doing so, the input field is reduced and thinner phosphor screens must be used, resulting in a lower yield. Each time the magnification is doubled, the minimum required photon flux is multiplier by about 8, so that the advantages of increasing the magnification are rapidly limited, so far as real-time imaging is concerned. Because image tube resolution is mainly limited by the modulation transfer function of the phosphor for image intensifiers, and by that of the target for camera tubes, improvement of photocathode resolution can be obtained by magnifying electron optics. A zooming electron optic would permit the field and the resolution of the tube to be adapted to the observed subject. Unfortunately such tubes do not exist at present for this type of application, and in the required size

  9. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    Science.gov (United States)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  10. Simulations of the flipping images and microparameters of molecular orientations in liquids according to the molecule string model

    International Nuclear Information System (INIS)

    Wang Li-Na; Zhao Xing-Yu; Zhang Li-Li; Huang Yi-Neng

    2012-01-01

    The relaxation dynamics of liquids is one of the fundamental problems in liquid physics, and it is also one of the key issues to understand the glass transition mechanism. It will undoubtedly provide enlightenment on understanding and calculating the relaxation dynamics if the molecular orientation flipping images and relevant microparameters of liquids are studied. In this paper, we first give five microparameters to describe the individual molecular string (MS) relaxation based on the dynamical Hamiltonian of the MS model, and then simulate the images of individual MS ensemble, and at the same time calculate the parameters of the equilibrium state. The results show that the main molecular orientation flipping image in liquids (including supercooled liquid) is similar to the random walk. In addition, two pairs of the parameters are equal, and one can be ignored compared with the other. This conclusion will effectively reduce the difficulties in calculating the individual MS relaxation based on the single-molecule orientation flipping rate of the general Glauber type, and the computer simulation time of interaction MS relaxation. Moreover, the conclusion is of reference significance for solving and simulating the multi-state MS model. (condensed matter: structural, mechanical, and thermal properties)

  11. Cross-Modality Image Synthesis via Weakly Coupled and Geometry Co-Regularized Joint Dictionary Learning.

    Science.gov (United States)

    Huang, Yawen; Shao, Ling; Frangi, Alejandro F

    2018-03-01

    Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.

  12. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    Science.gov (United States)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  13. PRESBYOPIA OPTOMETRY METHOD BASED ON DIOPTER REGULATION AND CHARGE COUPLE DEVICE IMAGING TECHNOLOGY.

    Science.gov (United States)

    Zhao, Q; Wu, X X; Zhou, J; Wang, X; Liu, R F; Gao, J

    2015-01-01

    With the development of photoelectric technology and single-chip microcomputer technology, objective optometry, also known as automatic optometry, is becoming precise. This paper proposed a presbyopia optometry method based on diopter regulation and Charge Couple Device (CCD) imaging technology and, in the meantime, designed a light path that could measure the system. This method projects a test figure to the eye ground and then the reflected image from the eye ground is detected by CCD. The image is then automatically identified by computer and the far point and near point diopters are determined to calculate lens parameter. This is a fully automatic objective optometry method which eliminates subjective factors of the tested subject. Furthermore, it can acquire the lens parameter of presbyopia accurately and quickly and can be used to measure the lens parameter of hyperopia, myopia and astigmatism.

  14. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Ellis; Derek Gaston; Benoit Forget; Kord Smith

    2011-07-01

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes. An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.

  15. An image compression method for space multispectral time delay and integration charge coupled device camera

    International Nuclear Information System (INIS)

    Li Jin; Jin Long-Xu; Zhang Ran-Feng

    2013-01-01

    Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low-complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in multispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian—Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band

  16. Discharge dynamics of self-oriented microplasma coupling between cross adjacent cavities in micro-structure device driven by a bipolar pulse waveform

    Science.gov (United States)

    Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen

    2018-04-01

    The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.

  17. Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams

    International Nuclear Information System (INIS)

    Pallone, Matthew J.; Meaney, Paul M.; Paulsen, Keith D.

    2012-01-01

    Purpose: Microwave tomographic image quality can be improved significantly with prior knowledge of the breast surface geometry. The authors have developed a novel laser scanning system capable of accurately recovering surface renderings of breast-shaped phantoms immersed within a cylindrical tank of coupling fluid which resides completely external to the tank (and the aqueous environment) and overcomes the challenges associated with the optical distortions caused by refraction from the air, tank wall, and liquid bath interfaces. Methods: The scanner utilizes two laser line generators and a small CCD camera mounted concentrically on a rotating gantry about the microwave imaging tank. Various calibration methods were considered for optimizing the accuracy of the scanner in the presence of the optical distortions including traditional ray tracing and image registration approaches. In this paper, the authors describe the construction and operation of the laser scanner, compare the efficacy of several calibration methods—including analytical ray tracing and piecewise linear, polynomial, locally weighted mean, and thin-plate-spline (TPS) image registrations—and report outcomes from preliminary phantom experiments. Results: The results show that errors in calibrating camera angles and position prevented analytical ray tracing from achieving submillimeter accuracy in the surface renderings obtained from our scanner configuration. Conversely, calibration by image registration reliably attained mean surface errors of less than 0.5 mm depending on the geometric complexity of the object scanned. While each of the image registration approaches outperformed the ray tracing strategy, the authors found global polynomial methods produced the best compromise between average surface error and scanner robustness. Conclusions: The laser scanning system provides a fast and accurate method of three dimensional surface capture in the aqueous environment commonly found in microwave

  18. Coupling image processing and stress analysis for damage identification in a human premolar tooth.

    Science.gov (United States)

    Andreaus, U; Colloca, M; Iacoviello, D

    2011-08-01

    Non-carious cervical lesions are characterized by the loss of dental hard tissue at the cement-enamel junction (CEJ). Exceeding stresses are therefore generated in the cervical region of the tooth that cause disruption of the bonds between the hydroxyapatite crystals, leading to crack formation and eventual loss of enamel and the underlying dentine. Damage identification was performed by image analysis techniques and allowed to quantitatively assess changes in teeth. A computerized two-step procedure was generated and applied to the first left maxillary human premolar. In the first step, dental images were digitally processed by a segmentation method in order to identify the damage. The considered morphological properties were the enamel thickness and total area, the number of fragments in which the enamel is chipped. The information retrieved by the data processing of the section images allowed to orient the stress investigation toward selected portions of the tooth. In the second step, a three-dimensional finite element model based on CT images of both the tooth and the periodontal ligament was employed to compare the changes occurring in the stress distributions in normal occlusion and malocclusion. The stress states were analyzed exclusively in the critical zones designated in the first step. The risk of failure at the CEJ and of crack initiation at the dentin-enamel junction through the quantification of first and third principal stresses, von Mises stress, and normal and tangential stresses, were also estimated. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. [Object-oriented remote sensing image classification in epidemiological studies of visceral leishmaniasis in urban areas].

    Science.gov (United States)

    Almeida, Andréa Sobral de; Werneck, Guilherme Loureiro; Resendes, Ana Paula da Costa

    2014-08-01

    This study explored the use of object-oriented classification of remote sensing imagery in epidemiological studies of visceral leishmaniasis (VL) in urban areas. To obtain temperature and environmental information, an object-oriented classification approach was applied to Landsat 5 TM scenes from the city of Teresina, Piauí State, Brazil. For 1993-1996, VL incidence rates correlated positively with census tracts covered by dense vegetation, grass/pasture, and bare soil and negatively with areas covered by water and densely populated areas. In 2001-2006, positive correlations were found with dense vegetation, grass/pasture, bare soil, and densely populated areas and negative correlations with occupied urban areas with some vegetation. Land surface temperature correlated negatively with VL incidence in both periods. Object-oriented classification can be useful to characterize landscape features associated with VL in urban areas and to help identify risk areas in order to prioritize interventions.

  20. Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks.

    Science.gov (United States)

    Garcia-Prats, Alberto; González-Sanchis, María; Del Campo, Antonio D; Lull, Cristina

    2018-05-23

    Hydrology-oriented forest management sets water as key factor of the forest management for adaptation due to water is the most limiting factor in the Mediterranean forest ecosystems. The aim of this study was to apply Bayesian Network modeling to assess potential indirect effects and trade-offs when hydrology-oriented forest management is applied to a real Mediterranean forest ecosystem. Water, carbon and nitrogen cycles, and forest fire risk were included in the modeling framework. Field data from experimental plots were employed to calibrate and validate the mechanistic Biome-BGCMuSo model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere. Many other 50-year long scenarios with different conditions to the ones measured in the field experiment were simulated and the outcomes employed to build the Bayesian Network in a linked chain of models. Hydrology-oriented forest management was very positive insofar as more water was made available to the stand because of an interception reduction. This resource was made available to the stand, which increased the evapotranspiration and its components, the soil water content and a slightly increase of deep percolation. Conversely, Stemflow was drastically reduced. No effect was observed on Runof due to the thinning treatment. The soil organic carbon content was also increased which in turn caused a greater respiration. The long-term effect of the thinning treatment on the LAI was very positive. This was undoubtedly due to the increased vigor generated by the greater availability of water and nutrients for the stand and the reduction of competence between trees. This greater activity resulted in an increase in GPP and vegetation carbon, and therefore, we would expect a higher carbon sequestration. It is worth emphasizing that this extra amount of water and nutrients was taken up by the stand and did not entail any loss of nutrients. Copyright © 2018 Elsevier B.V. All

  1. Spatiotemporal Fusion of Remote Sensing Images with Structural Sparsity and Semi-Coupled Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Jingbo Wei

    2016-12-01

    Full Text Available Fusion of remote sensing images with different spatial and temporal resolutions is highly needed by diverse earth observation applications. A small number of spatiotemporal fusion methods using sparse representation appear to be more promising than traditional linear mixture methods in reflecting abruptly changing terrestrial content. However, one of the main difficulties is that the results of sparse representation have reduced expressional accuracy; this is due in part to insufficient prior knowledge. For remote sensing images, the cluster and joint structural sparsity of the sparse coefficients could be employed as a priori knowledge. In this paper, a new optimization model is constructed with the semi-coupled dictionary learning and structural sparsity to predict the unknown high-resolution image from known images. Specifically, the intra-block correlation and cluster-structured sparsity are considered for single-channel reconstruction, and the inter-band similarity of joint-structured sparsity is considered for multichannel reconstruction, and both are implemented with block sparse Bayesian learning. The detailed optimization steps are given iteratively. In the experimental procedure, the red, green, and near-infrared bands of Landsat-7 and Moderate Resolution Imaging Spectrometer (MODIS satellites are put to fusion with root mean square errors to check the prediction accuracy. It can be concluded from the experiment that the proposed methods can produce higher quality than state-of-the-art methods.

  2. Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates

    International Nuclear Information System (INIS)

    Yang, Chia-Jung; Tsai, Di-You; Chan, Pei-Hsuan; Wu, Chu-Tsun; Lu, Fu-Hsing

    2013-01-01

    BaTiO 3 films were synthesized on TiN-coated Si substrate below 100 °C by a hydrothermal–galvanic couple technique in barium contained alkaline solutions. X-ray diffraction and electron backscatter diffraction results show that the BaTiO 3 thin films were directionally oriented grown on the TiN/Si substrates, i.e., (111) BaTiO 3 over (111) TiN. The surface morphologies revealed that BaTiO 3 nucleated and grew over the TiN surface with a single layer. From kinetic analyses, the growth rates of BaTiO 3 films prepared by the hydrothermal–galvanic couple technique were faster than a hydrothermal method. The galvanic effects were confirmed by investigating the induced currents and energies. The galvanic currents were generated and controlled by both the dissolution of TiN and the formation of BaTiO 3 . The output electric energies increased rapidly with the reaction time and leveled off at the full coverage of BaTiO 3 . - Highlights: • Cubic BaTiO 3 films are synthesized by a hydrothermal–galvanic couple method (HT–GC). • Growth rates of BaTiO 3 films made by HT–GC are faster than a hydrothermal method. • BaTiO 3 films are directionally oriented grown on the TiN/Si substrates. • Galvanic currents are controlled by dissolution of TiN and formation of BaTiO 3

  3. Combining Landform Thematic Layer and Object-Oriented Image Analysis to Map the Surface Features of Mountainous Flood Plain Areas

    Science.gov (United States)

    Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.

    2012-04-01

    The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster

  4. Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera.

    Science.gov (United States)

    Amini, Kasra; Boll, Rebecca; Lauer, Alexandra; Burt, Michael; Lee, Jason W L; Christensen, Lauge; Brauβe, Felix; Mullins, Terence; Savelyev, Evgeny; Ablikim, Utuq; Berrah, Nora; Bomme, Cédric; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Johnsson, Per; Kierspel, Thomas; Krecinic, Faruk; Küpper, Jochen; Müller, Maria; Müller, Erland; Redlin, Harald; Rouzée, Arnaud; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Wiese, Joss; Vallance, Claire; Rudenko, Artem; Stapelfeldt, Henrik; Brouard, Mark; Rolles, Daniel

    2017-07-07

    Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C 6 H 3 F 2 I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths.

  5. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease.

    LENUS (Irish Health Repository)

    Colgan, N

    2015-10-23

    Increased hyperphosphorylated tau and the formation of intracellular neurofibrillary tangles are associated with the loss of neurons and cognitive decline in Alzheimer\\'s disease, and related neurodegenerative conditions. We applied two diffusion models, diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to in vivo diffusion magnetic resonance images (dMRI) of a mouse model of human tauopathy (rTg4510) at 8.5months of age. In grey matter regions with the highest degree of tau burden, microstructural indices provided by both NODDI and DTI discriminated the rTg4510 (TG) animals from wild type (WT) controls; however only the neurite density index (NDI) (the volume fraction that comprises axons or dendrites) from the NODDI model correlated with the histological measurements of the levels of hyperphosphorylated tau protein. Reductions in diffusion directionality were observed when implementing both models in the white matter region of the corpus callosum, with lower fractional anisotropy (DTI) and higher orientation dispersion (NODDI) observed in the TG animals. In comparison to DTI, histological measures of tau pathology were more closely correlated with NODDI parameters in this region. This in vivo dMRI study demonstrates that NODDI identifies potential tissue sources contributing to DTI indices and NODDI may provide greater specificity to pathology in Alzheimer\\'s disease.

  6. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    David, Sabrina N.; Zhai, Yao; Zande, Arend M. van der; O'Brien, Kevin; Huang, Pinshane Y.; Chenet, Daniel A.; Hone, James C.; Zhang, Xiang; Yin, Xiaobo

    2015-01-01

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques

  7. The use of image analysis to quantify the orientation of cracks in concrete

    DEFF Research Database (Denmark)

    Andreassen, Einar N.; Elbrønd, Andreas B.; Hasholt, Marianne Tange

    2016-01-01

    Cracks formed in concrete due to frost action (or other expansive reactions) can lead to further damage e.g. because they increase moisture transport. The extent of the consequential damage in concrete is likely influenced by the orientation of the initial cracks. Traditional quantification...

  8. Woodland Mapping at Single-Tree Levels Using Object-Oriented Classification of Unmanned Aerial Vehicle (uav) Images

    Science.gov (United States)

    Chenari, A.; Erfanifard, Y.; Dehghani, M.; Pourghasemi, H. R.

    2017-09-01

    Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV) digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond) and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm) gathered by real-time kinematic (RTK) method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2) and wild almonds (3.97±1.69 m2) with no significant difference with their observed values (α=0.05). In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92) and wild almonds (accuracy of 0.90 and precision of 0.89) were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  9. WOODLAND MAPPING AT SINGLE-TREE LEVELS USING OBJECT-ORIENTED CLASSIFICATION OF UNMANNED AERIAL VEHICLE (UAV IMAGES

    Directory of Open Access Journals (Sweden)

    A. Chenari

    2017-09-01

    Full Text Available Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm gathered by real-time kinematic (RTK method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2 and wild almonds (3.97±1.69 m2 with no significant difference with their observed values (α=0.05. In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92 and wild almonds (accuracy of 0.90 and precision of 0.89 were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  10. A Backward Pyramid Oriented Optical Flow Field Computing Method for Aerial Image

    Directory of Open Access Journals (Sweden)

    LI Jiatian

    2016-09-01

    Full Text Available Aerial image optical flow field is the foundation for detecting moving objects at low altitude and obtaining change information. In general,the image pyramid structure is embedded in numerical procedure in order to enhance the convergence globally. However,more often than not,the pyramid structure is constructed using a bottom-up approach progressively,ignoring the geometry imaging process.In particular,when the ground objects moving it will lead to miss optical flow or the optical flow too small that could hardly sustain the subsequent modeling and analyzing issues. So a backward pyramid structure is proposed on the foundation of top-level standard image. Firstly,down sampled factors of top-level image are calculated quantitatively through central projection,which making the optical flow in top-level image represent the shifting threshold of the set ground target. Secondly,combining top-level image with its original,the down sampled factors in middle layer are confirmed in a constant proportion way. Finally,the image of middle layer is achieved by Gaussian smoothing and image interpolation,and meanwhile the pyramid is formed. The comparative experiments and analysis illustrate that the backward pyramid can calculate the optic flow field in aerial image accurately,and it has advantages in restraining small ground displacement.

  11. Computerized image analysis: Texture-field orientation method for pectoral muscle identification on MLO-view mammograms

    International Nuclear Information System (INIS)

    Zhou Chuan; Wei Jun; Chan, Heang-Ping; Paramagul, Chintana; Hadjiiski, Lubomir M.; Sahiner, Berkman; Douglas, Julie A.

    2010-01-01

    Purpose: To develop a new texture-field orientation (TFO) method that combines a priori knowledge, local and global information for the automated identification of pectoral muscle on mammograms. Methods: The authors designed a gradient-based directional kernel (GDK) filter to enhance the linear texture structures, and a gradient-based texture analysis to extract a texture orientation image that represented the dominant texture orientation at each pixel. The texture orientation image was enhanced by a second GDK filter for ridge point extraction. The extracted ridge points were validated and the ridges that were less likely to lie on the pectoral boundary were removed automatically. A shortest-path finding method was used to generate a probability image that represented the likelihood that each remaining ridge point lay on the true pectoral boundary. Finally, the pectoral boundary was tracked by searching for the ridge points with the highest probability lying on the pectoral boundary. A data set of 130 MLO-view digitized film mammograms (DFMs) from 65 patients was used to train the TFO algorithm. An independent data set of 637 MLO-view DFMs from 562 patients was used to evaluate its performance. Another independent data set of 92 MLO-view full field digital mammograms (FFDMs) from 92 patients was used to assess the adaptability of the TFO algorithm to FFDMs. The pectoral boundary detection accuracy of the TFO method was quantified by comparison with an experienced radiologist's manually drawn pectoral boundary using three performance metrics: The percent overlap area (POA), the Hausdorff distance (Hdist), and the average distance (AvgDist). Results: The mean and standard deviation of POA, Hdist, and AvgDist were 95.0±3.6%, 3.45±2.16 mm, and 1.12±0.82 mm, respectively. For the POA measure, 91.5%, 97.3%, and 98.9% of the computer detected pectoral muscles had POA larger than 90%, 85%, and 80%, respectively. For the distance measures, 85.4% and 98.0% of the

  12. Optimization of a hardware implementation for pulse coupled neural networks for image applications

    Science.gov (United States)

    Gimeno Sarciada, Jesús; Lamela Rivera, Horacio; Warde, Cardinal

    2010-04-01

    Pulse Coupled Neural Networks are a very useful tool for image processing and visual applications, since it has the advantages of being invariant to image changes as rotation, scale, or certain distortion. Among other characteristics, the PCNN changes a given image input into a temporal representation which can be easily later analyzed for pattern recognition. The structure of a PCNN though, makes it necessary to determine all of its parameters very carefully in order to function optimally, so that the responses to the kind of inputs it will be subjected are clearly discriminated allowing for an easy and fast post-processing yielding useful results. This tweaking of the system is a taxing process. In this paper we analyze and compare two methods for modeling PCNNs. A purely mathematical model is programmed and a similar circuital model is also designed. Both are then used to determine the optimal values of the several parameters of a PCNN: gain, threshold, time constants for feed-in and threshold and linking leading to an optimal design for image recognition. The results are compared for usefulness, accuracy and speed, as well as the performance and time requirements for fast and easy design, thus providing a tool for future ease of management of a PCNN for different tasks.

  13. Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by magnetic induction tomography

    Science.gov (United States)

    Xiao, Zhili; Tan, Chao; Dong, Feng

    2017-08-01

    Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.

  14. Fluorescence imaging of ion distributions in an inductively coupled plasma with laser ablation sample introduction

    International Nuclear Information System (INIS)

    Moses, Lance M.; Ellis, Wade C.; Jones, Derick D.; Farnsworth, Paul B.

    2015-01-01

    High-resolution images of the spatial distributions of Sc II, Ca II, and Ba II ion densities in the 10 mm upstream from the sampling cone in a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) were obtained using planar laser induced fluorescence. Images were obtained for each analyte as a function of the carrier gas flow rate with laser ablation (LA) sample introduction and compared to images with solution nebulization (SN) over the same range of flow rates. Additionally, images were obtained using LA at varying fluences and with varying amounts of helium added to a constant flow of argon gas. Ion profiles in SN images followed a pattern consistent with previous work: increasing gas flow caused a downstream shift in the ion profiles. When compared to SN, LA led to ion profiles that were much narrower radially and reached a maximum near the sampling cone at higher flow rates. Increasing the fluence led to ions formed in the ICP over greater axial and radial distances. The addition of He to the carrier gas prior to the ablation cell led to an upstream shift in the position of ionization and lower overall fluorescence intensities. - Highlights: • We map distributions of analytes in the ICP using laser ablation sample introduction. • We compare images from laser ablation with those from a pneumatic nebulizer. • We document the effects of water added to the laser ablation aerosol. • We compare distributions from a metal to those from crystalline solids. • We document the effect of laser fluence on ion distributions

  15. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.

    Science.gov (United States)

    Mehfuz, R; Chowdhury, F A; Chau, K J

    2012-05-07

    We develop a technique that now enables surface plasmon polaritons (SPPs) coupled by nano-patterned slits in a metal film to be detected using conventional optical microscopy with standard objective lenses. The crux of this method is an ultra-thin polymer layer on the metal surface, whose thickness can be varied over a nanoscale range to enable controllable tuning of the SPP momentum. At an optimal layer thickness for which the SPP momentum matches the momentum of light emerging from the slit, the SPP coupling efficiency is enhanced about six times relative to that without the layer. The enhanced efficiency results in distinctive and bright plasmonic signatures near the slit visible by naked eye under an optical microscope. We demonstrate how this capability can be used for parallel measurement through a simple experiment in which the SPP propagation distance is extracted from a single microscope image of an illuminated array of nano-patterned slits on a metal surface. We also use optical microscopy to image the focal region of a plasmonic lens and obtain results consistent with a previously-reported results using near-field optical microscopy. Measurement of SPPs near a nano-slit using conventional and widely-available optical microscopy is an important step towards making nano-plasmonic device technology highly accessible and easy-to-use.

  16. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles.

    Science.gov (United States)

    Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R

    2015-06-01

    There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P power imaging coupled with a durable microbubble contrast agent. Copyright © 2015 American Society of Echocardiography. All rights reserved.

  17. Effects of spacer orientations on the cake formation during membrane fouling: Quantitative analysis based on 3D OCT imaging.

    Science.gov (United States)

    Liu, Xin; Li, Weiyi; Chong, Tzyy Haur; Fane, Anthony G

    2017-03-01

    Spacer design plays an important role in improving the performance of membrane processes for water/wastewater treatment. This work focused on a fundamental issue of spacer design, i.e., investigating the effects of spacer orientations on the fouling behavior during a membrane process. A series of fouling experiments with different spacer orientation were carried out to in situ characterize the formation of a cake layer in a spacer unit cell via 3D optical coherence tomography (OCT) imaging. The cake layers formed at different times were digitalized for quantitatively analyzing the variation in the cake morphology as a function of time. In particular, the local deposition rates were evaluated to determine the active regions where the instantaneous changes in deposit thickness were significant. The characterization results indicate that varying the spacer orientation could substantially change the evolution of membrane fouling by particulate foulants and thereby result in a cake layer with various morphologies; the competition between growth and erosion at different locations would instantaneously respond to the micro-hydrodynamic environment that might change with time. This work confirms that the OCT-based characterization method is a powerful tool for exploring novel spacer design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Image fusion in open-architecture quality-oriented nuclear medicine and radiology departments

    Energy Technology Data Exchange (ETDEWEB)

    Pohjonen, H

    1998-12-31

    Imaging examinations of patients belong to the most widely used diagnostic procedures in hospitals. Multimodal digital imaging is becoming increasingly common in many fields of diagnosis and therapy planning. Patients are frequently examined with magnetic resonance imaging (MRI), X-ray computed tomography (CT) or ultrasound imaging (US) in addition to single photon (SPET) or positron emission tomography (PET). The aim of the study was to provide means for improving the quality of the whole imaging and viewing chain in nuclear medicine and radiology. The specific aims were: (1) to construct and test a model for a quality assurance system in radiology based on ISO standards, (2) to plan a Dicom based image network for fusion purposes using ATM and Ethernet technologies, (3) to test different segmentation methods in quantitative SPET, (4) to study and implement a registration and visualisation method for multimodal imaging, (5) to apply the developed method in selected clinical brain and abdominal images, and (6) to investigate the accuracy of the registration procedure for brain SPET and MRI 90 refs. The thesis includes also six previous publications by author

  19. Image fusion in open-architecture quality-oriented nuclear medicine and radiology departments

    International Nuclear Information System (INIS)

    Pohjonen, H.

    1997-01-01

    Imaging examinations of patients belong to the most widely used diagnostic procedures in hospitals. Multimodal digital imaging is becoming increasingly common in many fields of diagnosis and therapy planning. Patients are frequently examined with magnetic resonance imaging (MRI), X-ray computed tomography (CT) or ultrasound imaging (US) in addition to single photon (SPET) or positron emission tomography (PET). The aim of the study was to provide means for improving the quality of the whole imaging and viewing chain in nuclear medicine and radiology. The specific aims were: (1) to construct and test a model for a quality assurance system in radiology based on ISO standards, (2) to plan a Dicom based image network for fusion purposes using ATM and Ethernet technologies, (3) to test different segmentation methods in quantitative SPET, (4) to study and implement a registration and visualisation method for multimodal imaging, (5) to apply the developed method in selected clinical brain and abdominal images, and (6) to investigate the accuracy of the registration procedure for brain SPET and MRI

  20. Image fusion in open-architecture quality-oriented nuclear medicine and radiology departments

    Energy Technology Data Exchange (ETDEWEB)

    Pohjonen, H

    1997-12-31

    Imaging examinations of patients belong to the most widely used diagnostic procedures in hospitals. Multimodal digital imaging is becoming increasingly common in many fields of diagnosis and therapy planning. Patients are frequently examined with magnetic resonance imaging (MRI), X-ray computed tomography (CT) or ultrasound imaging (US) in addition to single photon (SPET) or positron emission tomography (PET). The aim of the study was to provide means for improving the quality of the whole imaging and viewing chain in nuclear medicine and radiology. The specific aims were: (1) to construct and test a model for a quality assurance system in radiology based on ISO standards, (2) to plan a Dicom based image network for fusion purposes using ATM and Ethernet technologies, (3) to test different segmentation methods in quantitative SPET, (4) to study and implement a registration and visualisation method for multimodal imaging, (5) to apply the developed method in selected clinical brain and abdominal images, and (6) to investigate the accuracy of the registration procedure for brain SPET and MRI 90 refs. The thesis includes also six previous publications by author

  1. Visualization: A Tool for Enhancing Students' Concept Images of Basic Object-Oriented Concepts

    Science.gov (United States)

    Cetin, Ibrahim

    2013-01-01

    The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey…

  2. New applications of orientation imaging microscopy (OIM) for characterizing nuclear component failure modes, reliability assessment, and fitness-for-service

    International Nuclear Information System (INIS)

    Lehockey, E.M.; Brennenstuhl, A.M.; Pagan, S.; Clark, M.A.; Perovic, V.

    2007-01-01

    Orientation Imaging Microscopy (OIM) has proved a valuable asset for evaluating material performance as far as establishing the root cause and mechanism(s) of in-service degradation, and the likelihood of the onset of future degradation. Strains from deformation/cold work are imaged based on the spatial density of sub-structure distributed globally or surrounding defects/irregularities, which concentrate stresses responsible for driving degradation. This is complimented with measurements of material properties including texture, Taylor Factor, grain boundary structure, and grain size that contribute to resisting propagation of pre-existing defects and/or nucleating future attack. From evaluating the factors driving degradation within the context of microstructure properties that govern material susceptibility come estimates for the likelihood of attack as a necessary element of establishing fitness for service. By way of numerous examples the merits and limitations of OIM are summarized and compared with other characterization techniques. (author)

  3. Mean magnetic susceptibility regularized susceptibility tensor imaging (MMSR-STI) for estimating orientations of white matter fibers in human brain.

    Science.gov (United States)

    Li, Xu; van Zijl, Peter C M

    2014-09-01

    An increasing number of studies show that magnetic susceptibility in white matter fibers is anisotropic and may be described by a tensor. However, the limited head rotation possible for in vivo human studies leads to an ill-conditioned inverse problem in susceptibility tensor imaging (STI). Here we suggest the combined use of limiting the susceptibility anisotropy to white matter and imposing morphology constraints on the mean magnetic susceptibility (MMS) for regularizing the STI inverse problem. The proposed MMS regularized STI (MMSR-STI) method was tested using computer simulations and in vivo human data collected at 3T. The fiber orientation estimated from both the STI and MMSR-STI methods was compared to that from diffusion tensor imaging (DTI). Computer simulations show that the MMSR-STI method provides a more accurate estimation of the susceptibility tensor than the conventional STI approach. Similarly, in vivo data show that use of the MMSR-STI method leads to a smaller difference between the fiber orientation estimated from STI and DTI for most selected white matter fibers. The proposed regularization strategy for STI can improve estimation of the susceptibility tensor in white matter. © 2014 Wiley Periodicals, Inc.

  4. Body image and sexual orientation: The experiences of lesbian and bisexual women.

    Science.gov (United States)

    Smith, Marie L; Telford, Elina; Tree, Jeremy J

    2017-02-01

    Western cultures promote a thin and curvaceous ideal body size that most women find difficult to achieve by healthy measures, resulting in poor body image and increased risk for eating pathology. Research focusing on body image in lesbian and bisexual women has yielded inconsistent results. In total, 11 lesbian and bisexual women were interviewed regarding their experiences with body image. Interpretative phenomenological analysis revealed that these women experienced similar mainstream pressures to conform to a thin body ideal. Furthermore, participants perceived additional pressure to conform to heteronormative standards of beauty since the normalisation of homosexuality and the increase in Lesbian, Gay, Bisexual and Transgender representation in mainstream media.

  5. IMPROVING VERTICAL AND LATERAL RESOLUTION BY STRETCH-FREE, HORIZON-ORIENTED IMAGING

    Directory of Open Access Journals (Sweden)

    Pérez Gabriel

    2006-12-01

    Full Text Available The pre-stack Kirchhoff migration is implemented for delivering wavelet stretch-free imaged data, if the migration is (ideally limited to the wavelet corresponding to a target horizon. Avoiding wavelet stretch provides long-offset imaged data, far beyond what is reached in conventional migration and results in images from the target with improved vertical and lateral resolution and angular illumination. Increasing the range of imaged offsets also increases the sensitivity to event-crossing, velocity errors and anisotropy. These issues must be addressed to fully achieve the greatest potential of this technique. These ideas are further illustrated with a land survey seismic data application in Texas, U.S.

  6. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietrich, R.C.; Matusch, A.; Pozebon, D.; Dressler, V.L.

    2008-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13 C + , 33 S + and 34 S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13 C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots

  7. Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation

    International Nuclear Information System (INIS)

    Smith, Richard J; Li, Wenqi; Coulson, Jethro; Clark, Matt; Somekh, Michael G; Sharples, Steve D

    2014-01-01

    Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data. (paper)

  8. Examination of the role of magnetic resonance imaging in multiple sclerosis: A problem-orientated approach

    Directory of Open Access Journals (Sweden)

    McFarland Henry

    2009-01-01

    Full Text Available Magnetic Resonance Imaging (MRI has brought in several benefits to the study of Multiple Sclerosis (MS. It provides accurate measurement of disease activity, facilitates precise diagnosis, and aid in the assessment of newer therapies. The imaging guidelines for MS are broadly divided in to approaches for imaging patients with suspected MS or clinically isolated syndromes (CIS or for monitoring patients with established MS. In this review, the technical aspects of MR imaging for MS are briefly discussed. The imaging process need to capture the twin aspects of acute MS viz. the autoimmune acute inflammatory process and the neurodegenerative process. Gadolinium enhanced MRI can identify acute inflammatory lesions precisely. The commonly applied MRI marker of disease progression is brain atrophy. Whole brain magnetization Transfer Ratio (MTR and Magnetic Resonance Spectroscopy (MRS are two other techniques use to monitor disease progression. A variety of imaging techniques such as Double Inversion Recovery (DIR, Spoiled Gradient Recalled (SPGR acquisition, and Fluid Attenuated Inversion Recovery (FLAIR have been utilized to study the cortical changes in MS. MRI is now extensively used in the Phase I, II and III clinical trials of new therapies. As the technical aspects of MRI advance rapidly, and higher field strengths become available, it is hoped that the impact of MRI on our understanding of MS will be even more profound in the next decade.

  9. Combination of surface and borehole seismic data for robust target-oriented imaging

    Science.gov (United States)

    Liu, Yi; van der Neut, Joost; Arntsen, Børge; Wapenaar, Kees

    2016-05-01

    A novel application of seismic interferometry (SI) and Marchenko imaging using both surface and borehole data is presented. A series of redatuming schemes is proposed to combine both data sets for robust deep local imaging in the presence of velocity uncertainties. The redatuming schemes create a virtual acquisition geometry where both sources and receivers lie at the horizontal borehole level, thus only a local velocity model near the borehole is needed for imaging, and erroneous velocities in the shallow area have no effect on imaging around the borehole level. By joining the advantages of SI and Marchenko imaging, a macrovelocity model is no longer required and the proposed schemes use only single-component data. Furthermore, the schemes result in a set of virtual data that have fewer spurious events and internal multiples than previous virtual source redatuming methods. Two numerical examples are shown to illustrate the workflow and to demonstrate the benefits of the method. One is a synthetic model and the other is a realistic model of a field in the North Sea. In both tests, improved local images near the boreholes are obtained using the redatumed data without accurate velocities, because the redatumed data are close to the target.

  10. Image as the elements of attractiveness of the destinations of the nature-oriented tourism

    Directory of Open Access Journals (Sweden)

    Josef Navrátil

    2012-01-01

    Full Text Available The aim of this paper is to assess the relations between partial components of image of various touristically attractive locations. This research is focused on specific locations in vulnerable areas since the sustainable way of the tourism development concerns them in the highest manner and the touristic pressure on these locations permanently increases. The paper makes effort to extend the usual and nearly traditional understanding of the image in the tourism, which is usually related only to the problems of brand and/or the tourist destination. This is done through a survey realized at 26 selected locations with the aim to obtain 64 completely filled-in questionnaires in each location. Particular statements of respondents concerning the image of the visited location were summarized to the 20 categories. A multidimensional analysis was used to reveal the relations in partial answers. Authors have identified an important number of elements of image of the tourist attractions. By means of the analysis authors have identified differences between historic attractions and nature attractions. However, authors have identified simultaneously both the natural type of the image of the destination and the culture-historical type of image of the destination in all studied locations.

  11. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    International Nuclear Information System (INIS)

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.

    2012-01-01

    Highlights: ► Metal nanoparticle for fluorescence cell imaging. ► Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. ► Near-field interaction of flavin adenine dinucleotide with silver substrate. ► Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.

  12. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: jian@cfs.bioment.umaryland.edu [Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201 (United States); Fu, Yi [Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201 (United States); Li, Ge [Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States); Zhao, Richard Y. [Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States); Department of Microbiology-Immunology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States); Institute of Human Virology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.

  13. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  14. A gender- and sexual orientation-dependent spatial attentional effect of invisible images.

    Science.gov (United States)

    Jiang, Yi; Costello, Patricia; Fang, Fang; Huang, Miner; He, Sheng

    2006-11-07

    Human observers are constantly bombarded with a vast amount of information. Selective attention helps us to quickly process what is important while ignoring the irrelevant. In this study, we demonstrate that information that has not entered observers' consciousness, such as interocularly suppressed (invisible) erotic pictures, can direct the distribution of spatial attention. Furthermore, invisible erotic information can either attract or repel observers' spatial attention depending on their gender and sexual orientation. While unaware of the suppressed pictures, heterosexual males' attention was attracted to invisible female nudes, heterosexual females' attention was attracted to invisible male nudes, gay males behaved similarly to heterosexual females, and gay/bisexual females performed in-between heterosexual males and females.

  15. L’image de l’Orient dans les Fleurs du Mal

    Directory of Open Access Journals (Sweden)

    AL-Nasser Nada

    2016-11-01

    Full Text Available In this research, we try to shed light on the important place that the East occupies in the literary library in the world and particularly in France. Indeed, the East attracts much attention of men of letters since the Crusades (Chateaubriands, Lamartine, Hugo, Rousseau... etc. and love for him grew with time especially in the 19th century (the era of progress and science. However, Baudelaire did not see the Orient as a geographical place but an idea and a literary aesthetic that adds beauty to his poetry. Through this research, we try to reveal the mechanism by which Baudelaire introduced the East in his Flowers speaking of his ability to link the concrete (the East to the abstract (the beauty and perfection.

  16. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    DEFF Research Database (Denmark)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell

    2007-01-01

    in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method...

  17. Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA. Part 1: Introduction

    Directory of Open Access Journals (Sweden)

    Andrea Baraldi

    2012-09-01

    Full Text Available According to existing literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA systems and three-stage iterative geographic object-oriented image analysis (GEOOIA systems, where GEOOIA/GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the degree of automation, accuracy, efficiency, robustness, scalability and timeliness of existing GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for Earth Observation (QA4EO guidelines, this methodological work is split into two parts. The present first paper provides a multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT analysis of the GEOBIA/GEOOIA approaches that augments similar analyses proposed in recent years. In line with constraints stemming from human vision, this SWOT analysis promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS image understanding system (RS-IUS, from sub-symbolic statistical model-based (inductive image segmentation to symbolic physical model-based (deductive image preliminary classification. Hence, a symbolic deductive pre-attentive vision first stage accomplishes image sub-symbolic segmentation and image symbolic pre-classification simultaneously. In the second part of this work a novel hybrid (combined deductive and inductive RS-IUS architecture featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in terms of: (a computational theory (system design; (b information/knowledge representation; (c algorithm design; and (d implementation. As proof-of-concept of symbolic physical model-based pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time Satellite Image Automatic Mapper™ (SIAM™ is selected from existing literature. To the best of these authors’ knowledge, this is the first time a

  18. Correction method and software for image distortion and nonuniform response in charge-coupled device-based x-ray detectors utilizing x-ray image intensifier

    International Nuclear Information System (INIS)

    Ito, Kazuki; Kamikubo, Hironari; Yagi, Naoto; Amemiya, Yoshiyuki

    2005-01-01

    An on-site method of correcting the image distortion and nonuniform response of a charge-coupled device (CCD)-based X-ray detector was developed using the response of the imaging plate as a reference. The CCD-based X-ray detector consists of a beryllium-windowed X-ray image intensifier (Be-XRII) and a CCD as the image sensor. An image distortion of 29% was improved to less than 1% after the correction. In the correction of nonuniform response due to image distortion, subpixel approximation was performed for the redistribution of pixel values. The optimal number of subpixels was also discussed. In an experiment with polystyrene (PS) latex, it was verified that the correction of both image distortion and nonuniform response worked properly. The correction for the 'contrast reduction' problem was also demonstrated for an isotropic X-ray scattering pattern from the PS latex. (author)

  19. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    International Nuclear Information System (INIS)

    Chwalla, M; Fitzsimons, E; Danzmann, K; Fernández Barranco, G; Gerberding, O; Heinzel, G; Lieser, M; Schuster, S; Schwarze, T S; Tröbs, M; Zwetz, M; Killow, C J; Perreur-Lloyd, M; Robertson, D I; Ward, H

    2016-01-01

    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments. (paper)

  20. Computer-Generated Abstract Paintings Oriented by the Color Composition of Images

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-06-01

    Full Text Available Designers and artists often require reference images at authoring time. The emergence of computer technology has provided new conditions and possibilities for artistic creation and research. It has also expanded the forms of artistic expression and attracted many artists, designers and computer experts to explore different artistic directions and collaborate with one another. In this paper, we present an efficient k-means-based method to segment the colors of an original picture to analyze the composition ratio of the color information and calculate individual color areas that are associated with their sizes. This information is transformed into regular geometries to reconstruct the colors of the picture to generate abstract images. Furthermore, we designed an application system using the proposed method and generated many works; some artists and designers have used it as an auxiliary tool for art and design creation. The experimental results of datasets demonstrate the effectiveness of our method and can give us inspiration for our work.

  1. Automated quantification and sizing of unbranched filamentous cyanobacteria by model based object oriented image analysis

    OpenAIRE

    Zeder, M; Van den Wyngaert, S; Köster, O; Felder, K M; Pernthaler, J

    2010-01-01

    Quantification and sizing of filamentous cyanobacteria in environmental samples or cultures are time-consuming and are often performed by using manual or semiautomated microscopic analysis. Automation of conventional image analysis is difficult because filaments may exhibit great variations in length and patchy autofluorescence. Moreover, individual filaments frequently cross each other in microscopic preparations, as deduced by modeling. This paper describes a novel approach based on object-...

  2. Sports and health : the influence of motivational orientation on body image and doping behaviors

    OpenAIRE

    Lugo, Ric

    2009-01-01

    Health is much talked about topic in today’s society, likewise with sports. Sports and exercise have been introduced has an entranceway to healthier living styles. But increasing reports about how athletes and exercisers use doping agents that are contrary to health beliefs and recommendations from the World Anti-Doping Agency are found in the media. Body Image and eating disorders has also seen a rise in media reports, especially in the sporting world. Athletes are now models and are visible...

  3. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    Science.gov (United States)

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  4. Performance of Web-based image distribution: client-oriented measurements

    International Nuclear Information System (INIS)

    Bergh, B.; Pietsch, M.; Schlaefke, A.; Vogl, T.J.

    2003-01-01

    The aim of this study was to define a clinically suitable personal computer (PC) configuration for Web-based image distribution and to assess the influence of different hard- and software configurations on the performance. Through specially developed software the time-to-display (TTD) for various PC configurations was measured. Different processor speeds, random access memory (RAM), screen resolutions, graphic adapters, network speeds, operating systems and examination types (computed radiography, CT, MRI) were evaluated, providing more than half a million measurements. Processor speed was the most relevant factor for the TTD; doubling the speed halved the TTD. Under processor speeds of 350 MHz, TTD mostly remained above 5 s for 1 CR or 16 CT images. Here Windows NT with lossy compression were superior. Processor speeds of 350 MHz and over delivered TTD <5 s. In this case Windows 2000 and lossless compression were preferable. Screen resolutions above 1280 x 1024 pixels increased the TTD mainly for CR images. The RAM amount, network speed and graphic adapter did not have a significant influence. The minimum threshold for clinical routine is any standard off-the-shelf PC better than Pentium II 350 MHz, 128 MB RAM; hence, high-end PC hardware is not required. (orig.)

  5. Fiber orientation measurements by diffusion tensor imaging improve hydrogen-1 magnetic resonance spectroscopy of intramyocellular lipids in human leg muscles.

    Science.gov (United States)

    Valaparla, Sunil K; Gao, Feng; Daniele, Giuseppe; Abdul-Ghani, Muhammad; Clarke, Geoffrey D

    2015-04-01

    Twelve healthy subjects underwent hydrogen-1 magnetic resonance spectroscopy ([Formula: see text]) acquisition ([Formula: see text]), diffusion tensor imaging (DTI) with a [Formula: see text]-value of [Formula: see text], and fat-water magnetic resonance imaging (MRI) using the Dixon method. Subject-specific muscle fiber orientation, derived from DTI, was used to estimate the lipid proton spectral chemical shift. Pennation angles were measured as 23.78 deg in vastus lateralis (VL), 17.06 deg in soleus (SO), and 8.49 deg in tibialis anterior (TA) resulting in a chemical shift between extramyocellular lipids (EMCL) and intramyocellular lipids (IMCL) of 0.15, 0.17, and 0.19 ppm, respectively. IMCL concentrations were [Formula: see text], [Formula: see text], and [Formula: see text] in SO, VL, and TA, respectively. Significant differences were observed in IMCL and EMCL pairwise comparisons in SO, VL, and TA ([Formula: see text]). Strong correlations were observed between total fat fractions from [Formula: see text] and Dixon MRI for VL ([Formula: see text]), SO ([Formula: see text]), and TA ([Formula: see text]). Bland-Altman analysis between fat fractions (FFMRS and FFMRI) showed good agreement with small limits of agreement (LoA): [Formula: see text] (LoA: [Formula: see text] to 0.69%) in VL, [Formula: see text] (LoA: [Formula: see text] to 1.33%) in SO, and [Formula: see text] (LoA: [Formula: see text] to 0.47%) in TA. The results of this study demonstrate the variation in muscle fiber orientation and lipid concentrations in these three skeletal muscle types.

  6. Orientation and direction-of-motion response in the middle temporal visual area (MT of New World owl monkeys as revealed by intrinsic-signal optical imaging

    Directory of Open Access Journals (Sweden)

    Peter M Kaskan

    2010-07-01

    Full Text Available Intrinsic-signal optical imaging was used to evaluate relationships of domains of neurons in visual area MT selective for stimulus orientation and direction of motion. Maps of activation were elicited in MT of owl monkeys by gratings drifting back-and-forth, flashed stationary gratings and unidirectionally drifting fields of random dots. Drifting gratings, typically used to reveal orientation preference domains, contain a motion component that may be represented in MT. Consequently, this stimulus could activate groups of cells responsive to the motion of the grating, its orientation or a combination of both. Domains elicited from either moving or static gratings were remarkably similar, indicating that these groups of cells are responding to orientation, although they may also encode information about motion. To assess the relationship between domains defined by drifting oriented gratings and those responsive to direction of motion, the response to drifting fields of random dots was measured within domains defined from thresholded maps of activation elicited by the drifting gratings. The optical response elicited by drifting fields of random dots was maximal in a direction orthogonal to the map of orientation preference. Thus, neurons in domains selective for stimulus orientation are also selective for motion orthogonal to the preferred stimulus orientation.

  7. A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging.

    Science.gov (United States)

    Wu, Ying; Shi, Jian; Su, Chanmin; Zou, Qingze

    2009-04-01

    In this article, an approach based on the recently developed inversion-based iterative control (IIC) to cancel the cross-axis coupling effect of piezoelectric tube scanners (piezoscanners) in tapping-mode atomic force microscope (AFM) imaging is proposed. Cross-axis coupling effect generally exists in piezoscanners used for three-dimensional (x-y-z axes) nanopositioning in applications such as AFM, where the vertical z-axis movement can be generated by the lateral x-y axes scanning. Such x/y-to-z cross-coupling becomes pronounced when the scanning is at large range and/or at high speed. In AFM applications, the coupling-caused position errors, when large, can generate various adverse effects, including large imaging and topography distortions, and damage of the cantilever probe and/or the sample. This paper utilizes the IIC technique to obtain the control input to precisely track the coupling-caused x/y-to-z displacement (with sign-flipped). Then the obtained input is augmented as a feedforward control to the existing feedback control in tapping-mode imaging, resulting in the cancellation of the coupling effect. The proposed approach is illustrated through two exemplary applications in industry, the pole-tip recession examination, and the nanoasperity measurement on hard-disk drive. Experimental results show that the x/y-to-z coupling effect in large-range (20 and 45 microm) tapping-mode imaging at both low to high scan rates (2, 12.2 to 24.4 Hz) can be effectively removed.

  8. Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua

    2017-01-01

    In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) wordpress.com/research/. PMID:22311862

  9. Medical image segmentation by combining graph cuts and oriented active appearance models.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Bagci, Ulas; Zhuge, Ying; Yao, Jianhua

    2012-04-01

    In this paper, we propose a novel method based on a strategic combination of the active appearance model (AAM), live wire (LW), and graph cuts (GCs) for abdominal 3-D organ segmentation. The proposed method consists of three main parts: model building, object recognition, and delineation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the recognition part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW methods, resulting in the oriented AAM (OAAM). A multiobject strategy is utilized to help in object initialization. We employ a pseudo-3-D initialization strategy and segment the organs slice by slice via a multiobject OAAM method. For the object delineation part, a 3-D shape-constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT data set and also on the MICCAI 2007 Grand Challenge liver data set. The results show the following: 1) The overall segmentation accuracy of true positive volume fraction TPVF > 94.3% and false positive volume fraction can be achieved; 2) the initialization performance can be improved by combining the AAM and LW; 3) the multiobject strategy greatly facilitates initialization; 4) compared with the traditional 3-D AAM method, the pseudo-3-D OAAM method achieves comparable performance while running 12 times faster; and 5) the performance of the proposed method is comparable to state-of-the-art liver segmentation algorithm. The executable version of the 3-D shape-constrained GC method with a user interface can be downloaded from http://xinjianchen.wordpress.com/research/.

  10. Managing Pan-European mammography images and data using a service oriented architecture

    CERN Document Server

    Amendolia, S R; McClatchey, R; Rogulin, D; Solomonides, T

    2004-01-01

    Medical conditions such as breast cancer, and mammograms as images, are extremely complex with many degrees of variability across the population. An effective solution for the management of disparate mammogram data sources that provides sufficient statistics for complex epidemiological study is a federation of autonomous multi- centre sites which transcends national boundaries. Grid-based technologies are emerging as open-source standards-based solutions for managing and collaborating distributed resources. In the light of these new computing solutions, the MammoGrid project, as one example of a HealthGrid, is developing a Grid-aware medical application which manages a European-wide database of mammograms. The MammoGrid solution utilizes the grid technologies in seamlessly integrating distributed data sets and is investigating the potential of the Grid to support effective co-working among mammogram analysts throughout the EU.

  11. A roughly mapped terra incognita: Image of the child in adult-oriented media contents

    Directory of Open Access Journals (Sweden)

    Korać Nada M.

    2003-01-01

    Full Text Available The study analyzes the image of the child in the media contents intended for adult audiences in Serbia, considering the importance of the role media play in shaping public opinion on children, as well as the influence of such public opinion on adults' attitudes, decisions and actions concerning children. The study focuses on visibility and portrayal of children in the media, in order to determine to what extent children are present in them, and in what way. Relevant data were collected for three media - press, radio and television - mostly covering the entire territory of Serbia, over two consecutive months (April - May 2001. Content analysis revealed that children are not only underrepresented, but also misrepresented, in Serbian media.

  12. Potential application of digital image-processing method and fitted logistic model to the control of oriental fruit moths (Grapholita molesta Busck).

    Science.gov (United States)

    Zhao, Z G; Rong, E H; Li, S C; Zhang, L J; Zhang, Z W; Guo, Y Q; Ma, R Y

    2016-08-01

    Monitoring of oriental fruit moths (Grapholita molesta Busck) is a prerequisite for its control. This study introduced a digital image-processing method and logistic model for the control of oriental fruit moths. First, five triangular sex pheromone traps were installed separately within each area of 667 m2 in a peach orchard to monitor oriental fruit moths consecutively for 3 years. Next, full view images of oriental fruit moths were collected via a digital camera and then subjected to graying, separation and morphological analysis for automatic counting using MATLAB software. Afterwards, the results of automatic counting were used for fitting a logistic model to forecast the control threshold and key control period. There was a high consistency between automatic counting and manual counting (0.99, P model, oriental fruit moths had four occurrence peaks during a year, with a time-lag of 15-18 days between adult occurrence peak and the larval damage peak. Additionally, the key control period was from 28 June to 3 July each year, when the wormy fruit rate reached up to 5% and the trapping volume was approximately 10.2 per day per trap. Additionally, the key control period for the overwintering generation was 25 April. This study provides an automatic counting method and fitted logistic model with a great potential for application to the control of oriental fruit moths.

  13. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  14. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    International Nuclear Information System (INIS)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-01-01

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery

  15. [Place of indocyanine green coupled with fluorescence imaging in research of breast cancer sentinel node].

    Science.gov (United States)

    Vermersch, Charlotte; Raia Barjat, Tiphaine; Perrot, Marianne; Lima, Suzanne; Chauleur, Céline

    2016-04-01

    The sentinel node has a fundamental role in the management of early breast cancer. Currently, the double detection of blue and radioisotope is recommended. But in common practice, many centers use a single method. However, with a single detection, the risk of false negatives and the identification failure rate increase to a significant extent and the number of sentinel lymph node detected and removed is not enough. Furthermore, the tracers used until now show inconveniences. The purpose of this work is to present a new method of detection, using the green of indocyanine coupled with fluorescence imaging, and to compare it with the already existing methods. The method combined by fluorescence and isotopic is reliable, sure, of fast learning and could constitute a good strategy of detection. The major interest is to obtain a satisfactory number of sentinel nodes. The profit could be even more important for overweight patients. The fluorescence used alone is at the moment not possible. Wide ranging studies are necessary. The FLUOTECH, randomized study of 100 patients, comparing the isotopic method of double isotope technique and fluorescence, is underway to confirm these data. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  16. Mixed selection. Effects of body images, dietary restraint, and persuasive messages on females' orientations towards chocolate.

    Science.gov (United States)

    Durkin, Kevin; Hendry, Alana; Stritzke, Werner G K

    2013-01-01

    Many women experience ambivalent reactions to chocolate: craving it but also wary of its impact on weight and health. Chocolate advertisements often use thin ideal models and previous research indicates that this exacerbates ambivalence. This experiment compared attitudes to, and consumption of, chocolate following exposure to images containing thin or overweight models together with written messages that were either positive or negative about eating chocolate. Participants (all female) were categorised as either low- or high-restraint. Approach, avoidance and guilt motives towards chocolate were measured and the participants had an opportunity to consume chocolate. Exposure to thin ideal models led to higher approach motives and this effect was most marked among the high restraint participants. Avoidance and guilt scores did not vary as a function of model size or message, but there were clear differences between the restraint groups, with the high restraint participants scoring substantially higher than low restraint participants on both of these measures. When the participants were provided with an opportunity to eat some chocolate, those with high restraint who had been exposed to the thin models consumed the most. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features

    Energy Technology Data Exchange (ETDEWEB)

    Streitparth, F.; Walter, T.; Wonneberger, U.; Wagner, M.; Hermann, K.G.; Hamm, B.; Teichgraeber, U. [Charite, Humboldt-Universitaet zu Berlin, Department of Radiology, Berlin (Germany); Chopra, S. [Charite-Universitaetsmedizin Berlin, Campus Virchow Klinikum, Department of General, Visceral, and Transplantation Surgery, Berlin (Germany); Wichlas, F. [Charite-Universitaetsmedizin Berlin, Campus Virchow Klinikum, Center for Musculoskeletal Surgery, Berlin (Germany)

    2010-02-15

    We prospectively evaluated the feasibility and technical features of MR-guided lumbosacral injection procedures in open high-field MRI at 1.0 T. In a CuSO{sub 4}.5H{sub 2}O phantom and five human cadaveric spines, fluoroscopy sequences (proton-density-weighted turbo spin-echo (PDw TSE), T1w TSE, T2w TSE; balanced steady-state free precession (bSSFP), T1w gradient echo (GE), T2w GE) were evaluated using two MRI-compatible 20-G Chiba-type needles. Artefacts were analysed by varying needle orientation to B{sub 0}, frequency-encoding direction and slice orientation. Image quality was described using the contrast-to-noise ratio (CNR). Subsequently, a total of 183 MR-guided nerve root (107), facet (53) and sacroiliac joint (23) injections were performed in 53 patients. In vitro, PDw TSE sequence yielded the best needle-tissue contrasts (CNR = 45, 18, 15, 9, and 8 for needle vs. fat, muscle, root, bone and sclerosis, respectively) and optimal artefact sizes (width and tip shift less than 5 mm). In vivo, PDw TSE sequence was sufficient in all cases. The acquisition time of 2 s facilitated near-real-time MRI guidance. Drug delivery was technically successful in 100% (107/107), 87% (46/53) and 87% (20/23) of nerve root, facet and sacroiliac joint injections, respectively. No major complications occurred. The mean procedure time was 29 min (range 19-67 min). MR-guided spinal injections in open high-field MRI are feasible and accurate using fast TSE sequence designs. (orig.)

  18. Analysis on the Effect of Sensor Views in Image Reconstruction Produced by Optical Tomography System Using Charge-Coupled Device.

    Science.gov (United States)

    Jamaludin, Juliza; Rahim, Ruzairi Abdul; Fazul Rahiman, Mohd Hafiz; Mohd Rohani, Jemmy

    2018-04-01

    Optical tomography (OPT) is a method to capture a cross-sectional image based on the data obtained by sensors, distributed around the periphery of the analyzed system. This system is based on the measurement of the final light attenuation or absorption of radiation after crossing the measured objects. The number of sensor views will affect the results of image reconstruction, where the high number of sensor views per projection will give a high image quality. This research presents an application of charge-coupled device linear sensor and laser diode in an OPT system. Experiments in detecting solid and transparent objects in crystal clear water were conducted. Two numbers of sensors views, 160 and 320 views are evaluated in this research in reconstructing the images. The image reconstruction algorithms used were filtered images of linear back projection algorithms. Analysis on comparing the simulation and experiments image results shows that, with 320 image views giving less area error than 160 views. This suggests that high image view resulted in the high resolution of image reconstruction.

  19. Intramyocellular lipid dependence on skeletal muscle fiber type and orientation characterized by diffusion tensor imaging and 1H-MRS

    Science.gov (United States)

    Valaparla, Sunil K.; Gao, Feng; Abdul-Ghani, Muhammad; Clarke, Geoffrey D.

    2014-03-01

    When muscle fibers are aligned with the B0 field, intramyocellular lipids (IMCL), important for providing energy during physical activity, can be resolved in proton magnetic resonance spectra (1H-MRS). Various muscles of the leg differ significantly in their proportion of fibers and angular distribution. This study determined the influence of muscle fiber type and orientation on IMCL using 1H-MRS and diffusion tensor imaging (DTI). Muscle fiber orientation relative to B0 was estimated by pennation angle (PA) measurements from DTI, providing orientation-specific extramyocellular lipid (EMCL) chemical shift data that were used for subject-specific IMCL quantification. Vastus lateralis (VL), tibialis anterior (TA) and soleus (SO) muscles of 6 healthy subjects (21-40 yrs) were studied on a Siemens 3T MRI system with a flex 4-channel coil. 1H-MRS were acquired using stimulated echo acquisition mode (STEAM, TR=3s, TE=270ms). DTI was performed using single shot EPI (b=600s/mm2, 30 directions, TR=4.5s, TE=82ms, and ten×5mm slices) with center slice indexed to the MRS voxel. The average PA's measured from ROI analysis of primary eigenvectors were PA=19.46+/-5.43 for unipennate VL, 15.65+/-3.73 for multipennate SO, and 7.04+/-3.34 for bipennate TA. Chemical shift (CS) was calculated using [3cos2θ-1] dependence: 0.17+/-0.02 for VL, 0.18+/-0.01 for SO and 0.19+/-0.004 ppm for TA. IMCL-CH2 concentrations from spectral analysis were 12.77+/-6.3 for VL, 3.07+/-1.63 for SO and 0.27+/-0.08 mmol/kg ww for TA. Small PA's were measured in TA and large CS with clear separation between EMCL and IMCL peaks were observed. Larger variations in PA were measured VL and SO resulting in an increased overlap of the EMCL on IMCL peaks.

  20. Estimating the position and orientation of a mobile robot with respect to a trajectory using omnidirectional imaging and global appearance.

    Directory of Open Access Journals (Sweden)

    Luis Payá

    Full Text Available Along the past years, mobile robots have proliferated both in domestic and in industrial environments to solve some tasks such as cleaning, assistance, or material transportation. One of their advantages is the ability to operate in wide areas without the necessity of introducing changes into the existing infrastructure. Thanks to the sensors they may be equipped with and their processing systems, mobile robots constitute a versatile alternative to solve a wide range of applications. When designing the control system of a mobile robot so that it carries out a task autonomously in an unknown environment, it is expected to take decisions about its localization in the environment and about the trajectory that it has to follow in order to arrive to the target points. More concisely, the robot has to find a relatively good solution to two crucial problems: building a model of the environment, and estimating the position of the robot within this model. In this work, we propose a framework to solve these problems using only visual information. The mobile robot is equipped with a catadioptric vision sensor that provides omnidirectional images from the environment. First, the robot goes along the trajectories to include in the model and uses the visual information captured to build this model. After that, the robot is able to estimate its position and orientation with respect to the trajectory. Among the possible approaches to solve these problems, global appearance techniques are used in this work. They have emerged recently as a robust and efficient alternative compared to landmark extraction techniques. A global description method based on Radon Transform is used to design mapping and localization algorithms and a set of images captured by a mobile robot in a real environment, under realistic operation conditions, is used to test the performance of these algorithms.

  1. Object-oriented image analysis and change detection of land-use on Tenerife related to socio-economic conditions

    Science.gov (United States)

    Naumann, Simone; Siegmund, Alexander

    2004-10-01

    The island Tenerife is characterized by an increasing tourism, which causes an enormous change of the socio-economic situation and a rural exodus. This development leads - beside for example sociocultural issues - to fallow land, decreasing settlements, land wasting etc., as well as to an economic and ecological problem. This causes to a growing interest in geoecological aspects and to an increasing demand for an adequate monitoring database. In order to study the change of land use and land cover, the technology of remote sensing (LANDSAT 3 MSS and 7 ETM+, orthophotos) and geographical information systems were used to analyze the spatial pattern and its spatial temporal changes of land use from end of the 70s to the present in different scales. Because of the heterogeneous landscape and the unsatisfactory experience with pixel-based classification of the same area, object-oriented image analysis techniques have been applied to classify the remote sensed data. A post-classification application was implemented to detect spatial and categorical land use and land cover changes, which have been clipped with the socio-economic data within GIS to derive the driving forces of the changes and their variability in time and space.

  2. Role of coronal high-resolution diffusion-weighted imaging in acute optic neuritis: a comparison with axial orientation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping [Zhongshan Hospital, Fudan University, Shanghai Institution of Medical Imaging, Shanghai (China); Eye and ENT Hospital of Fudan University, Department of Radiology, Shanghai (China); Sha, Yan; Wan, Hailin; Wang, Feng [Eye and ENT Hospital of Fudan University, Department of Radiology, Shanghai (China); Tian, Guohong [Eye and ENT Hospital of Fudan University, Department of Ophthalmology, Shanghai (China)

    2017-08-15

    Through a comparison with the axial orientation, we aimed to evaluate the role of coronal high-resolution diffusion-weighted imaging (DWI) in acute optic neuritis based on diagnostic accuracy and the reproducibility of apparent diffusion coefficient (ADC) measurements. Orbital DWI, using readout-segmented, parallel imaging, and 2D navigator-based reacquisition (RESOLVE-DWI), was performed on 49 patients with acute vision loss. The coronal (thickness = 3 mm) and axial (thickness = 2 mm) diffusion images were evaluated by two neuroradiologists retrospectively. The sensitivity, specificity, and accuracy were calculated through diagnostic test; the inter- and intra-observer reliabilities were assessed with a weighted Cohen's kappa test. In addition, the agreement of ADC measurement among observers was evaluated by the intra-class correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman plots. Comparison of ADC values was also performed by unpaired t test. Among the 49 patients, 47 clinically positive optic nerves and 51 clinically negative optic nerves were found. The sensitivity, specificity, and accuracy were 85.1/87.2%, 90.2/94.12%, and 87.8/90.8%, respectively, for coronal RESOLVE-DWI and 83.0/85.1%, 66.7/76.5%, and 75.5/79.6%, respectively, for axial RESOLVE-DWI. The inter-observer kappa values were 0.710 and 0.806 for axial and coronal RESOLVE-DWI, respectively, and the intra-observer kappa values were 0.822 and 0.909, respectively (each P < 0.0001). Regarding the reproducibility of ADC measurements on axial and coronal RESOLVE-DWI, the ICCs among observers were 0.846 and 0.941, respectively, and the CV values were 7.046 and 4.810%, respectively. Bland-Altman plots revealed smaller inter-observer variability on coronal RESOLVE-DWI. ADC values were significantly lower in positive group (each P < 0.0001). Higher specificity and better reproducibility of ADC measurements were found for coronal RESOLVE-DWI, which demonstrated the

  3. Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens

    Directory of Open Access Journals (Sweden)

    Chenggang Zhu

    2018-02-01

    Full Text Available Total internal reflection (TIR is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm2 with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.

  4. A numerical analysis of a semi-dry coupling configuration in photoacoustic computed tomography for infant brain imaging

    Directory of Open Access Journals (Sweden)

    Najme Meimani

    2017-09-01

    Full Text Available In the application of photoacoustic human infant brain imaging, debubbled ultrasound gel or water is commonly used as a couplant for ultrasonic transducers due to their acoustic properties. The main challenge in using such a couplant is its discomfort for the patient. In this study, we explore the feasibility of a semi-dry coupling configuration to be used in photoacoustic computed tomography (PACT systems. The coupling system includes an inflatable container consisting of a thin layer of Aqualene with ultrasound gel or water inside of it. Finite element method (FEM is used for static and dynamic structural analysis of the proposed configuration to be used in PACT for infant brain imaging. The outcome of the analysis is an optimum thickness of Aqualene in order to meet the weight tolerance requirement with the least attenuation and best impedance match to recommend for an experimental setting.

  5. Images of Couples and Families in Disney Feature-Length Animated Films.

    Science.gov (United States)

    Tanner, Litsa Renee; Haddock, Shelley A.; Zimmerman, Toni Schindler; Lund, Lori K.

    2003-01-01

    Examines themes about couples and families portrayed in 26 Disney animated classics and recent movies. Four overarching themes were identified: family relationships are a strong priority; families are diverse, but the diversity is often simplified; fathers are elevated, while mothers are marginalized; and couple relationships are created by…

  6. Characterization of plastic strains and crystallographic properties surrounding defects in steam generator tubes by orientation imaging microscopy

    International Nuclear Information System (INIS)

    Lehockey, E.M.; Brennenstuhl, A.M.

    2002-01-01

    Orientation Imaging Microscopy (OIM) has become a valuable technique for characterizing grain boundary structure, texture, and grain size distribution, which govern material susceptibility to degenerative effects (e.g. IGSCC). Methods recently developed, by Kinectrics, have extended OIM capabilities toward mapping and quantifying residual plastic strains in materials. OIM is applied in the present work to characterize the distribution of plastic strains, that accumulate in CANDU steam generator tubing during installation and service potentially undermining the performance, reliability, and fitness-for-service of these components. Plastic strain that evolves in response to roller-expansion was characterized in simulated roll joints constructed from Alloy 600 tubing. Results underscore the effect of over-rolling in generating intense gradients with broad variations in strain that extend significant distances through the wall thickness. Of greater relevance is the orientation of these gradients in the transverse direction, relative to the tube axis and potential for the development of abnormal grain growth during post-expansion heat treatments. The magnitude and distribution of strain measured by OIM are remarkably consistent with Finite Element Analysis (FEA) predictions offering compelling evidence as to the reliability of the OIM technique. OIM offers superior resolution than can be practically achieved with FEA having particular relevance in identifying highly localized concentrations of strain surrounding metallurgical defects that can serve as precursors to stress-related degenerative effects (e.g. IGSCC). The spatial distribution of residual plastic strain was also characterized within the context of localized texture, and grain size morphology surrounding (OD) 'pits' and indentations found in ex-service Monel 400 and Alloy 800 SG tubes, respectively. An absence of strain surrounding these surface defects suggests their propensity for promoting more deleterious

  7. Marital Construction of Family Power among Male-out-Migrant Couples in a Chinese Village: A Relation-Oriented Exchange Model

    Science.gov (United States)

    Zuo, Jiping

    2008-01-01

    This study examines marital construction of family power among male-out-migrant couples in a Chinese village in Guangxi Province. In-depth interviews show that male-out-migrant couples prefer joint decision making. When couples are in disputes, power tends to go to the ones who shoulder greater household-based responsibilities; in this case, they…

  8. ORIENTATION ON STAKEHOLDERS’ OBJECTIVES AS A KEY COMPETENCE OF IMAGE FORMATION OF THE EDUCATIONAL INSTITUTIONS OF HIGHER EDUCATION (GERMAN EXPERIENCE

    Directory of Open Access Journals (Sweden)

    E. N. Kovaleva

    2015-01-01

    Full Text Available Summary. Creating relevant targets activities of marketing model of image formation of the educational organization of higher education is not possible without a systematic approach to understanding the purpose of the key stakeholder organizations that are not only state controls system (one of the stakeholders, but also a number of other, no less important: applicants, students, alumni, members of the business community. In Russia, the opinion of stakeholders in the organization of the learning process is not widely used in the practice of evaluation of educational institutions of higher education, with the exception of the activities implemented in some universities of quality management systems. The article explains the need to reorient the objectives and criteria for measuring the efficiency of the educational institutions of higher education in the target key stakeholder groups. The author has made a comparative analysis of the basic regulations of Russia and Germany in the field of higher education to establish the objectives of the universities and their orientation to target stakeholders. It revealed a possible mechanism for measuring the satisfaction of the stakeholders of the educational activities of the organization on the basis of benchmarking analysis of multi-dimensional ranking higher education programs in Germany. The activities of the state and the public in Germany shows that the estimate legitimate stakeholder groups can be used to assess the activity of educational institutions, the formation of a rational demand for educational services, improve the activities of universities and the formation of objective information field of competitive relations of universities. Focusing on the needs of the stakeholders may not be manifested hypothetical task of universities and law enshrined in the form of goals and objectives of universities imperative to correlate with national interests, the interests of the professional community as

  9. Image processing using pulse-coupled neural networks applications in Python

    CERN Document Server

    Lindblad, Thomas

    2013-01-01

    Image processing algorithms based on the mammalian visual cortex are powerful tools for extraction information and manipulating images. This book reviews the neural theory and translates them into digital models. Applications are given in areas of image recognition, foveation, image fusion and information extraction. The third edition reflects renewed international interest in pulse image processing with updated sections presenting several newly developed applications. This edition also introduces a suite of Python scripts that assist readers in replicating results presented in the text and to further develop their own applications.

  10. Sensitivity and specificity of vertically oriented lateral collateral ligament as an indirect sign of anterior cruciate ligament tear on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palle, Lalitha; Reddy, Balaji; Reddy, Jagannath [Focus Diagnostics, Sai Baba Temple Lane, Dwarakapuri Colony, Hyderabad, Andhra Pradesh (India)

    2010-11-15

    To evaluate the correlation between anterior cruciate ligament (ACL) tear and straightened, vertically oriented lateral collateral ligament (LCL). This study included 556 patients who underwent MRI of the knee and were divided into three subsets based on ACL morphology. Subset 1 included patients with unequivocal normal ACL. Subset 2 included patients with unequivocal ACL tears. Subset 3 included patients with doubtful ACL who underwent arthroscopy. MR images were reviewed and sensitivity and specificity of vertically oriented LCL as an indirect sign of ACL tear were calculated. The MRI results were as follows: subset 1, out of 282 patients, 270 had oblique LCL and 12 demonstrated vertical LCL; subset 2, out of 212 patients, 189 demonstrated vertical LCL and 23 revealed oblique LCL; subset 3, out of 62 patients, 28 patients with vertical orientation of LCL had a possible ACL tear. Patients with oblique LCL orientation (34) were reported as probably having normal ACL. On comparison with arthroscopy, in 28 patients who we reported as having possible ACL tears, there were 17 patients with torn ACL. The rest of the 11 patients revealed no ACL tears. In the group of 34 patients in whom we reported possible normal, arthroscopy-confirmed tear in 5 patients. Sensitivity and specificity of vertical LCL as an indirect sign of ACL tear was found to be 88% and the specificity 92.85%. Vertically oriented LCL is a useful indirect MRI sign of ACL tear and aids in making a diagnosis, when ACL appearance is equivocal. (orig.)

  11. Sensitivity and specificity of vertically oriented lateral collateral ligament as an indirect sign of anterior cruciate ligament tear on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Palle, Lalitha; Reddy, Balaji; Reddy, Jagannath

    2010-01-01

    To evaluate the correlation between anterior cruciate ligament (ACL) tear and straightened, vertically oriented lateral collateral ligament (LCL). This study included 556 patients who underwent MRI of the knee and were divided into three subsets based on ACL morphology. Subset 1 included patients with unequivocal normal ACL. Subset 2 included patients with unequivocal ACL tears. Subset 3 included patients with doubtful ACL who underwent arthroscopy. MR images were reviewed and sensitivity and specificity of vertically oriented LCL as an indirect sign of ACL tear were calculated. The MRI results were as follows: subset 1, out of 282 patients, 270 had oblique LCL and 12 demonstrated vertical LCL; subset 2, out of 212 patients, 189 demonstrated vertical LCL and 23 revealed oblique LCL; subset 3, out of 62 patients, 28 patients with vertical orientation of LCL had a possible ACL tear. Patients with oblique LCL orientation (34) were reported as probably having normal ACL. On comparison with arthroscopy, in 28 patients who we reported as having possible ACL tears, there were 17 patients with torn ACL. The rest of the 11 patients revealed no ACL tears. In the group of 34 patients in whom we reported possible normal, arthroscopy-confirmed tear in 5 patients. Sensitivity and specificity of vertical LCL as an indirect sign of ACL tear was found to be 88% and the specificity 92.85%. Vertically oriented LCL is a useful indirect MRI sign of ACL tear and aids in making a diagnosis, when ACL appearance is equivocal. (orig.)

  12. Leaders’ Expressed Humility and Followers’ Feedback Seeking: The Mediating Effects of Perceived Image Cost and Moderating Effects of Power Distance Orientation

    Directory of Open Access Journals (Sweden)

    Jing Qian

    2018-04-01

    Full Text Available We developed and tested a model to identify the role of leaders’ expressed humility on employees’ feedback-seeking processes. The data used in our study was from a sample of 248 employees and 57 of their immediate supervisors. The results revealed that: (1 leader’s expressed humility positively related to employees’ feedback seeking mediated by employees’ perceived image cost; and (2 power distance orientation moderated the relationship between leader’s expressed humility and employees’ perceived image costs, such that the relationship was stronger when the power distance orientation was lower rather than higher. The results offer new insight into potential managerial practices that aim at stimulating feedback seeking. We conclude with a discussion for future research.

  13. Leaders’ Expressed Humility and Followers’ Feedback Seeking: The Mediating Effects of Perceived Image Cost and Moderating Effects of Power Distance Orientation

    Science.gov (United States)

    Qian, Jing; Li, Xiaoyan; Song, Baihe; Wang, Bin; Wang, Menghan; Chang, Shumeng; Xiong, Yujiao

    2018-01-01

    We developed and tested a model to identify the role of leaders’ expressed humility on employees’ feedback-seeking processes. The data used in our study was from a sample of 248 employees and 57 of their immediate supervisors. The results revealed that: (1) leader’s expressed humility positively related to employees’ feedback seeking mediated by employees’ perceived image cost; and (2) power distance orientation moderated the relationship between leader’s expressed humility and employees’ perceived image costs, such that the relationship was stronger when the power distance orientation was lower rather than higher. The results offer new insight into potential managerial practices that aim at stimulating feedback seeking. We conclude with a discussion for future research. PMID:29720956

  14. Impact of measuring electron tracks in high-resolution scientific charge-coupled devices within Compton imaging systems

    International Nuclear Information System (INIS)

    Chivers, D.H.; Coffer, A.; Plimley, B.; Vetter, K.

    2011-01-01

    We have implemented benchmarked models to determine the gain in sensitivity of electron-tracking based Compton imaging relative to conventional Compton imaging by the use of high-resolution scientific charge-coupled devices (CCD). These models are based on the recently demonstrated ability of electron-tracking based Compton imaging by using fully depleted scientific CCDs. Here we evaluate the gain in sensitivity by employing Monte Carlo simulations in combination with advanced charge transport models to calculate two-dimensional charge distributions corresponding to experimentally obtained tracks. In order to reconstruct the angle of the incident γ-ray, a trajectory determination algorithm was used on each track and integrated into a back-projection routine utilizing a geodesic-vertex ray tracing technique. Analysis was performed for incident γ-ray energies of 662 keV and results show an increase in sensitivity consistent with tracking of the Compton electron to approximately ±30 o .

  15. Single molecule fluorescence image patterns linked to dipole orientation and axial position: application to myosin cross-bridges in muscle fibers.

    Directory of Open Access Journals (Sweden)

    Thomas P Burghardt

    2011-02-01

    Full Text Available Photoactivatable fluorescent probes developed specifically for single molecule detection extend advantages of single molecule imaging to high probe density regions of cells and tissues. They perform in the native biomolecule environment and have been used to detect both probe position and orientation.Fluorescence emission from a single photoactivated probe captured in an oil immersion, high numerical aperture objective, produces a spatial pattern on the detector that is a linear combination of 6 independent and distinct spatial basis patterns with weighting coefficients specifying emission dipole orientation. Basis patterns are tabulated for single photoactivated probes labeling myosin cross-bridges in a permeabilized muscle fiber undergoing total internal reflection illumination. Emitter proximity to the glass/aqueous interface at the coverslip implies the dipole near-field and dipole power normalization are significant affecters of the basis patterns. Other characteristics of the basis patterns are contributed by field polarization rotation with transmission through the microscope optics and refraction by the filter set. Pattern recognition utilized the generalized linear model, maximum likelihood fitting, for Poisson distributed uncertainties. This fitting method is more appropriate for treating low signal level photon counting data than χ(2 minimization.Results indicate that emission dipole orientation is measurable from the intensity image except for the ambiguity under dipole inversion. The advantage over an alternative method comparing two measured polarized emission intensities using an analyzing polarizer is that information in the intensity spatial distribution provides more constraints on fitted parameters and a single image provides all the information needed. Axial distance dependence in the emission pattern is also exploited to measure relative probe position near focus. Single molecule images from axial scanning fitted

  16. The impact of sexual orientation on body image, self-esteem, urinary and sexual functions in the experience of prostate cancer.

    Science.gov (United States)

    Thomas, C; Wootten, A C; Robinson, P; Law, P C F; McKenzie, D P

    2018-03-01

    Prostate cancer (PCa) poses a large health burden globally. Research indicates that men experience a range of psychological challenges associated with PCa including changes to identity, self-esteem and body image. The ways in which sexual orientation plays a role in the experience of PCa, and the subsequent impact on quality of life (QoL), body image and self-esteem have only recently been addressed. By addressing treatment modality, where participant numbers were sufficient, we also sought to explore whether gay (homosexual) men diagnosed with PCa (PCaDx) and with a primary treatment modality of surgery would report differences in body image and self-esteem compared with straight (heterosexual) men with PCaDx with a primary treatment modality of surgery, compared with gay and straight men without PCaDx. The results of our study identified overall differences with respect to PCaDx (related to urinary function, sexual function and health evaluation), and sexual orientation (related to self-esteem), rather than interactions between sexual orientation and PCaDx. Gay men with PCaDx exhibited higher levels of urinary functioning than straight men with PCaDx, the difference being reversed for gay and straight men without PCaDx; but this result narrowly failed to achieve statistical significance, suggesting a need for further research, with larger samples. © 2018 John Wiley & Sons Ltd.

  17. Camera, handlens, and microscope optical system for imaging and coupled optical spectroscopy

    Science.gov (United States)

    Mungas, Greg S. (Inventor); Boynton, John (Inventor); Sepulveda, Cesar A. (Inventor); Nunes de Sepulveda, legal representative, Alicia (Inventor); Gursel, Yekta (Inventor)

    2012-01-01

    An optical system comprising two lens cells, each lens cell comprising multiple lens elements, to provide imaging over a very wide image distance and within a wide range of magnification by changing the distance between the two lens cells. An embodiment also provides scannable laser spectroscopic measurements within the field-of-view of the instrument.

  18. Detection and Correction of Under-/Overexposed Optical Soundtracks by Coupling Image and Audio Signal Processing

    Directory of Open Access Journals (Sweden)

    Etienne Decenciere

    2008-10-01

    Full Text Available Film restoration using image processing, has been an active research field during the last years. However, the restoration of the soundtrack has been mainly performed in the sound domain, using signal processing methods, despite the fact that it is recorded as a continuous image between the images of the film and the perforations. While the very few published approaches focus on removing dust particles or concealing larger corrupted areas, no published works are devoted to the restoration of soundtracks degraded by substantial underexposure or overexposure. Digital restoration of optical soundtracks is an unexploited application field and, besides, scientifically rich, because it allows mixing both image and signal processing approaches. After introducing the principles of optical soundtrack recording and playback, this contribution focuses on our first approaches to detect and cancel the effects of under and overexposure. We intentionally choose to get a quantification of the effect of bad exposure in the 1D audio signal domain instead of 2D image domain. Our measurement is sent as feedback value to an image processing stage where the correction takes place, building up a “digital image and audio signal” closed loop processing. The approach is validated on both simulated alterations and real data.

  19. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  20. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2016-07-01

    Full Text Available With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG, which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  1. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body.

    Science.gov (United States)

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-07-21

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  2. TU-CD-BRA-12: Coupling PET Image Restoration and Segmentation Using Variational Method with Multiple Regularizations

    Energy Technology Data Exchange (ETDEWEB)

    Li, L; Tan, S [Huazhong University of Science and Technology, Wuhan, Hubei (China); Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To propose a new variational method which couples image restoration with tumor segmentation for PET images using multiple regularizations. Methods: Partial volume effect (PVE) is a major degrading factor impacting tumor segmentation accuracy in PET imaging. The existing segmentation methods usually need to take prior calibrations to compensate PVE and they are highly system-dependent. Taking into account that image restoration and segmentation can promote each other and they are tightly coupled, we proposed a variational method to solve the two problems together. Our method integrated total variation (TV) semi-blind deconvolution and Mumford-Shah (MS) segmentation. The TV norm was used on edges to protect the edge information, and the L{sub 2} norm was used to avoid staircase effect in the no-edge area. The blur kernel was constrained to the Gaussian model parameterized by its variance and we assumed that the variances in the X-Y and Z directions are different. The energy functional was iteratively optimized by an alternate minimization algorithm. Segmentation performance was tested on eleven patients with non-Hodgkin’s lymphoma, and evaluated by Dice similarity index (DSI) and classification error (CE). For comparison, seven other widely used methods were also tested and evaluated. Results: The combination of TV and L{sub 2} regularizations effectively improved the segmentation accuracy. The average DSI increased by around 0.1 than using either the TV or the L{sub 2} norm. The proposed method was obviously superior to other tested methods. It has an average DSI and CE of 0.80 and 0.41, while the FCM method — the second best one — has only an average DSI and CE of 0.66 and 0.64. Conclusion: Coupling image restoration and segmentation can handle PVE and thus improves tumor segmentation accuracy in PET. Alternate use of TV and L2 regularizations can further improve the performance of the algorithm. This work was supported in part by National Natural

  3. Magnetic Resonance Imaging Follow-up Study on Two Cases of Lumbar intervertebral Disc Sequestration Patients Treated with Oriental Medicine Treatment

    Directory of Open Access Journals (Sweden)

    Ki-Su Lee

    2011-09-01

    Full Text Available Objectives: The purpose of this study is to report the image changes of two cases of Lumbar intervertebral Disc Sequestration after oriental medical treatment. Methods: We examined 2 patients with Lumbar intervertebral Disc Sequestration who showed changes on MRI images before/after the treatment. And we assessed clinical symptoms by using numeric rating scale(NRS and straight leg raising test(SLRT. Results & Conclusions : In this study, the first MRI examination of Lumbar intervertebral Disc Sequestration patients was performed at the first visit and re-examination of MRI was done after treatment. In each case, the size of the disc sequestration was considerably reduced in MRI image. And both patients represented effective improvment in NRS score and SLRT test angle.

  4. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Ziomkiewicz, Iwona; Schulz, Alexander

    2013-01-01

    of cellulose fibril orientation and growth. The fluorescent dye Pontamine Fast Scarlet 4BS (PFS) was shown to stain cellulose with high specificity and could be used to visualize cellulose bundles in cell walls of Arabidopsis root epidermal cells with confocal microscopy. The resolution limit of confocal...... present the first super-resolution images of cellulose bundles in the plant cell wall produced by direct stochastic optical reconstruction microscopy (dSTORM) in combination with total internal reflection fluorescence (TIRF) microscopy. Since TIRF limits observation to the cell surface, we tested...... as alternatives 3D-structured illumination microscopy (3D-SIM) and confocal microscopy, combined with image deconvolution. Both methods offer lower resolution than STORM, but enable 3D imaging. While 3D-SIM produced strong artifacts, deconvolution gave good results. The resolution was improved over conventional...

  5. Transportal femoral drilling creates more horizontal ACL graft orientation compared to transtibial drilling: A 3D CT imaging study.

    Science.gov (United States)

    Clockaerts, S; Van Haver, A; Verhaegen, J; Vuylsteke, K; Leenders, T; Lagae, K C; Verdonk, P

    2016-06-01

    The principle of anatomic anterior cruciate ligament (ACL) reconstruction is to create a femoral and tibial tunnel that resembles the insertion of the native ACL. Anatomic reconstruction leads to a more horizontal graft orientation that provides more rotational stability. The aim of this study is to investigate the best method to achieve anatomical reconstruction of femoral insertion of the ACL and thus, a more horizontal orientation of the ACL. We compared tunnel position and orientation between transportal femoral drilling technique and transtibial technique. Thirty-two patients were included. Post-operative CT scans were obtained and femur, tibia and ACL tunnels were reconstructed. The position and orientation of tibial and femoral tunnels were quantified using the quadrant method, and femoral tunnel length, ellipticity and posterior wall breakage were assessed. We also investigated clinical outcome. Analyses show that transportal drilled femoral tunnels were situated significantly lower than transtibial drilled tunnels (p<0.0001), resulting in a significantly more horizontal oriented ACL in the transportal group in coronal (p<0.0001) and sagittal plane (p=0.01). No differences were observed in depth of femoral tunnel position (p=0.44). Femoral tunnel length was shorter in the transportal group (p=0.01) with a more ellipsoidal femoral aperture (p=0.01). There were no differences between both groups in tibial position. There were no differences in clinical outcome measure between the transportal and transtibial groups. This study indicates that transportal drilling of the femoral tunnel leads to a more horizontal graft orientation of the ACL, without differences in clinical outcome. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Hyperspectral Imaging Coupled with Random Frog and Calibration Models for Assessment of Total Soluble Solids in Mulberries

    Directory of Open Access Journals (Sweden)

    Yan-Ru Zhao

    2015-01-01

    Full Text Available Chemometrics methods coupled with hyperspectral imaging technology in visible and near infrared (Vis/NIR region (380–1030 nm were introduced to assess total soluble solids (TSS in mulberries. Hyperspectral images of 310 mulberries were acquired by hyperspectral reflectance imaging system (512 bands and their corresponding TSS contents were measured by a Brix meter. Random frog (RF method was used to select important wavelengths from the full wavelengths. TSS values in mulberry fruits were predicted by partial least squares regression (PLSR and least-square support vector machine (LS-SVM models based on full wavelengths and the selected important wavelengths. The optimal PLSR model with 23 important wavelengths was employed to visualise the spatial distribution of TSS in tested samples, and TSS concentrations in mulberries were revealed through the TSS spatial distribution. The results declared that hyperspectral imaging is promising for determining the spatial distribution of TSS content in mulberry fruits, which provides a reference for detecting the internal quality of fruits.

  7. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    Science.gov (United States)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  8. Joint reconstruction via coupled Bregman iterations with applications to PET-MR imaging

    Science.gov (United States)

    Rasch, Julian; Brinkmann, Eva-Maria; Burger, Martin

    2018-01-01

    Joint reconstruction has recently attracted a lot of attention, especially in the field of medical multi-modality imaging such as PET-MRI. Most of the developed methods rely on the comparison of image gradients, or more precisely their location, direction and magnitude, to make use of structural similarities between the images. A challenge and still an open issue for most of the methods is to handle images in entirely different scales, i.e. different magnitudes of gradients that cannot be dealt with by a global scaling of the data. We propose the use of generalized Bregman distances and infimal convolutions thereof with regard to the well-known total variation functional. The use of a total variation subgradient respectively the involved vector field rather than an image gradient naturally excludes the magnitudes of gradients, which in particular solves the scaling behavior. Additionally, the presented method features a weighting that allows to control the amount of interaction between channels. We give insights into the general behavior of the method, before we further tailor it to a particular application, namely PET-MRI joint reconstruction. To do so, we compute joint reconstruction results from blurry Poisson data for PET and undersampled Fourier data from MRI and show that we can gain a mutual benefit for both modalities. In particular, the results are superior to the respective separate reconstructions and other joint reconstruction methods.

  9. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    Energy Technology Data Exchange (ETDEWEB)

    Cline, Gary W., E-mail: gary.cline@yale.edu [Yale University School of Medicine (United States); Zhao, Xiaojian [Yale University School of Medicine (United States); Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L. [Pfizer Global Research and Development, Pfizer Inc., Groton CT (United States)

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  10. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic β-cell mass

    International Nuclear Information System (INIS)

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-01-01

    Highlights: → We screened G-protein coupled receptors for imaging pancreatic. → Database mining and immunohistochemistry identified GPCRs enriched in β-cells. → In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. → GPCR candidates for imaging of β-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic β-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet β-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 ∼ GLP-1R > mGluR5. Favorable islet selectivity and biodistribution characteristics suggest several GPCRs as potential

  11. PET and MR imaging: the odd couple or a match made in heaven?

    Science.gov (United States)

    Catana, Ciprian; Guimaraes, Alexander R; Rosen, Bruce R

    2013-05-01

    PET and MR imaging are modalities routinely used for clinical and research applications. Integrated scanners capable of acquiring PET and MR imaging data in the same session, sequentially or simultaneously, have recently become available for human use. In this article, we describe some of the technical advances that allowed the development of human PET/MR scanners; briefly discuss methodologic challenges and opportunities provided by this novel technology; and present potential oncologic, cardiac, and neuropsychiatric applications. These examples range from studies that might immediately benefit from PET/MR to more advanced applications on which future development might have an even broader impact.

  12. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Science.gov (United States)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  13. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images.

    Science.gov (United States)

    Serag, Ahmed; Macnaught, Gillian; Denison, Fiona C; Reynolds, Rebecca M; Semple, Scott I; Boardman, James P

    2017-01-01

    Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  14. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Ahmed Serag

    2017-01-01

    Full Text Available Fetal brain magnetic resonance imaging (MRI is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  15. Bessel Fourier Orientation Reconstruction (BFOR): An Analytical Diffusion Propagator Reconstruction for Hybrid Diffusion Imaging and Computation of q-Space Indices

    Science.gov (United States)

    Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Alexander, Andrew L.

    2012-01-01

    The ensemble average propagator (EAP) describes the 3D average diffusion process of water molecules, capturing both its radial and angular contents. The EAP can thus provide richer information about complex tissue microstructure properties than the orientation distribution function (ODF), an angular feature of the EAP. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed, such as diffusion propagator imaging (DPI) and spherical polar Fourier imaging (SPFI). In this study, a new analytical EAP reconstruction method is proposed, called Bessel Fourier orientation reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition, and is validated on both synthetic and real datasets. A significant portion of the paper is dedicated to comparing BFOR, SPFI, and DPI using hybrid, non-Cartesian sampling for multiple b-value acquisitions. Ways to mitigate the effects of Gibbs ringing on EAP reconstruction are also explored. In addition to analytical EAP reconstruction, the aforementioned modeling bases can be used to obtain rotationally invariant q-space indices of potential clinical value, an avenue which has not yet been thoroughly explored. Three such measures are computed: zero-displacement probability (Po), mean squared displacement (MSD), and generalized fractional anisotropy (GFA). PMID:22963853

  16. Object-Oriented Analysis of Satellite Images Using Artificial Neural Networks for Post-Earthquake Buildings Change Detection

    Science.gov (United States)

    Khodaverdi zahraee, N.; Rastiveis, H.

    2017-09-01

    Earthquake is one of the most divesting natural events that threaten human life during history. After the earthquake, having information about the damaged area, the amount and type of damage can be a great help in the relief and reconstruction for disaster managers. It is very important that these measures should be taken immediately after the earthquake because any negligence could be more criminal losses. The purpose of this paper is to propose and implement an automatic approach for mapping destructed buildings after an earthquake using pre- and post-event high resolution satellite images. In the proposed method after preprocessing, segmentation of both images is performed using multi-resolution segmentation technique. Then, the segmentation results are intersected with ArcGIS to obtain equal image objects on both images. After that, appropriate textural features, which make a better difference between changed or unchanged areas, are calculated for all the image objects. Finally, subtracting the extracted textural features from pre- and post-event images, obtained values are applied as an input feature vector in an artificial neural network for classifying the area into two classes of changed and unchanged areas. The proposed method was evaluated using WorldView2 satellite images, acquired before and after the 2010 Haiti earthquake. The reported overall accuracy of 93% proved the ability of the proposed method for post-earthquake buildings change detection.

  17. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  18. Design and evaluation of a high-performance charge coupled device camera for astronomical imaging

    International Nuclear Information System (INIS)

    Shang, Yuanyuan; Guan, Yong; Zhang, Weigong; Pan, Wei; Liu, Hui; Zhang, Jie

    2009-01-01

    The Space Solar Telescope (SST) is the first Chinese space astronomy mission. This paper introduces the design of a high-performance 2K × 2K charge coupled device (CCD) camera that is an important payload in the Space Solar Telescope. The camera is composed of an analogue system and a digital embedded system. The analogue system is first discussed in detail, including the power and bias voltage supply circuit, power protection unit, CCD clock driver circuit, 16 bit A/D converter and low-noise amplifier circuit. The digital embedded system integrated with an NIOS II soft-core processor serves as the control and data acquisition system of the camera. In addition, research on evaluation methods for CCDs was carried out to evaluate the performance of the TH7899 CCD camera in relation to the requirements of the SST project. We present the evaluation results, including readout noise, linearity, quantum efficiency, dark current, full-well capacity, charge transfer efficiency and gain. The results show that this high-performance CCD camera can satisfy the specifications of the SST project

  19. Imaging of persistent cAMP signaling by internalized G protein-coupled receptors.

    Science.gov (United States)

    Calebiro, Davide; Nikolaev, Viacheslav O; Lohse, Martin J

    2010-07-01

    G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. They mediate the effects of several endogenous cues and serve as important pharmacological targets. Although many biochemical events involved in GPCR signaling have been characterized in great detail, little is known about their spatiotemporal dynamics in living cells. The recent advent of optical methods based on fluorescent resonance energy transfer allows, for the first time, to directly monitor GPCR signaling in living cells. Utilizing these methods, it has been recently possible to show that the receptors for two protein/peptide hormones, the TSH and the parathyroid hormone, continue signaling to cAMP after their internalization into endosomes. This type of intracellular signaling is persistent and apparently triggers specific cellular outcomes. Here, we review these recent data and explain the optical methods used for such studies. Based on these findings, we propose a revision of the current model of the GPCR-cAMP signaling pathway to accommodate receptor signaling at endosomes.

  20. Cancer cell-oriented migration of mesenchymal stem cells engineered with an anticancer gene (PTEN: an imaging demonstration

    Directory of Open Access Journals (Sweden)

    Yang ZS

    2014-03-01

    Full Text Available Zhuo-Shun Yang,1,* Xiang-Jun Tang,2,* Xing-Rong Guo,1 Dan-Dan Zou,1 Xu-Yong Sun,3 Jing-Bo Feng,1 Jie Luo,1 Long-Jun Dai,1,4 Garth L Warnock4 1Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China; 2Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China; 3Guangxi Key Laboratory for Transplant Medicine, 303 Hospital of PLA, Nanning, People’s Republic of China; 4Department of Surgery, University of British Columbia, Vancouver, BC, Canada *These authors contributed equally to this work Background: Mesenchymal stem cells (MSCs have been considered to hold great potential as ideal carriers for the delivery of anticancer agents since the discovery of their tumor tropism. This study was performed to demonstrate the effects of phosphatase and tensin homolog (PTEN engineering on MSCs’ capacity for cancer cell-oriented migration. Methods: MSCs were engineered with a PTEN-bearing plasmid and the expression was confirmed with Western blotting. A human glioma cell line (DBTRG was used as the target cell; DBTRG cell-oriented migration of MSCs was monitored with a micro speed photographic system. Results: The expression of transfected PTEN in MSCs was identified by immunoblotting analysis and confirmed with cell viability assessment of target cells. The DBTRG cell-oriented migration of PTEN-engineered MSCs was demonstrated by a real-time dynamic monitoring system, and a phagocytosis-like action of MSCs was also observed. Conclusion: MSCs maintained their capacity for cancer cell-directed migration after they were engineered with anticancer genes. This study provides the first direct evidence of MSCs’ tropism post-anticancer gene engineering. Keywords: gene therapy, mesenchymal stem cells, phosphatase and tensin homolog, cancer

  1. Estimation of Bridge Height over Water from Polarimetric SAR Image Data Using Mapping and Projection Algorithm and De-Orientation Theory

    Science.gov (United States)

    Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo

    An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.

  2. Effect of natural convection in a horizontally oriented cylinder on NMR imaging of the distribution of diffusivity

    Science.gov (United States)

    Mohoric; Stepisnik

    2000-11-01

    This paper describes the influence of natural convection on NMR measurement of a self-diffusion constant of fluid in the earth's magnetic field. To get an estimation of the effect, the Lorenz model of natural convection in a horizontally oriented cylinder, heated from below, is derived. Since the Lorenz model of natural convection is derived for the free boundary condition, its validity is of a limited value for the natural no-slip boundary condition. We point out that even a slight temperature gradient can cause significant misinterpretation of measurements. The chaotic nature of convection enhances the apparent self-diffusion constant of the liquid.

  3. Automatic image-based analyses using a coupled quadtree-SBFEM/SCM approach

    Science.gov (United States)

    Gravenkamp, Hauke; Duczek, Sascha

    2017-10-01

    Quadtree-based domain decomposition algorithms offer an efficient option to create meshes for automatic image-based analyses. Without introducing hanging nodes the scaled boundary finite element method (SBFEM) can directly operate on such meshes by only discretizing the edges of each subdomain. However, the convergence of a numerical method that relies on a quadtree-based geometry approximation is often suboptimal due to the inaccurate representation of the boundary. To overcome this problem a combination of the SBFEM with the spectral cell method (SCM) is proposed. The basic idea is to treat each uncut quadtree cell as an SBFEM polygon, while all cut quadtree cells are computed employing the SCM. This methodology not only reduces the required number of degrees of freedom but also avoids a two-dimensional quadrature in all uncut quadtree cells. Numerical examples including static, harmonic, modal and transient analyses of complex geometries are studied, highlighting the performance of this novel approach.

  4. Innovative mutually inductively coupled radiofrequency coils for magnetic resonance imaging and spectroscopy

    International Nuclear Information System (INIS)

    Tomanek, B.

    2006-01-01

    The paper presents the author's thesis based on the work carried out at the Institute for Bio diagnostics in Canada and published in years 2000-2006. A patented new generation of the RF coils were introduced to MRI and MRS techniques what significantly reduced SNR and improved image resolution of MR diagnostic procedure. Examples of the applications of the RF coils are presented. The intraoperative MRI system with a movable magnet used during the brain surgery included RF probe. This coil was efficiently used for breast screening and detection of submillimeter tumors. Quantification of the tissue metabolites by combining MRT with 31 P MRS can be achieved using dual - frequency RF coils. It was successfully tested on a rat liver. The innovative RF coil design was supported by the theoretical analysis and performed experiments. As an extension of the design an idea and the theory construction of multi - frequency multi - ring coil and its possible applications are also considered

  5. Two-dimensional polarimeter with a charge-coupled-device image sensor and a piezoelastic modulator.

    Science.gov (United States)

    Povel, H P; Keller, C U; Yadigaroglu, I A

    1994-07-01

    We present the first measurements and scientific observations of the solar photosphere obtained with a new two-dimensional polarimeter based on piezoelastic modulators and synchronous demodulation in a CCD imager. This instrument, which is developed for precision solar-vector polarimetry, contains a specially masked CCD that has every second row covered with an opaque mask. During exposure the charges are shifted back and forth between covered and light-sensitive rows synchronized with the modulation. In this way Stokes I and one of the other Stokes parameters can be recorded. Since the charge shifting is performed at frequencies well above the seeing frequencies and both polarization states are measured with the same pixel, highly sensitive and accurate polarimetry is achieved. We have tested the instrument in laboratory conditions as well as at three solar telescopes.

  6. Design and technical evaluation of fibre-coupled Raman probes for the image-guided discrimination of cancerous skin

    International Nuclear Information System (INIS)

    Schleusener, J; Reble, C; Helfmann, J; Gersonde, I; Cappius, H-J; Glanert, M; Fluhr, J W; Meinke, M C

    2014-01-01

    Two different designs for fibre-coupled Raman probes are presented that are optimized for discriminating cancerous and normal skin by achieving high epithelial sensitivity to detect a major component of the Raman signal from the depth range of the epithelium. This is achieved by optimizing Raman spot diameters to the range of ≈200 µm, which distinguishes this approach from the common applications of either Raman microspectroscopy (1–5 µm) or measurements on larger sampling volume using spot sizes of a few mm. Video imaging with a depicted area in the order of a few cm, to allow comparing Raman measurements to the location of the histo-pathologic findings, is integrated in both designs. This is important due to the inhomogeneity of cancerous lesions. Video image acquisition is achieved using white light LED illumination, which avoids ambient light artefacts. The design requirements focus either on a compact light-weight configuration, for pen-like handling, or on a video-visible measurement spot to enable increased positioning accuracy. Both probes are evaluated with regard to spot size, Rayleigh suppression, background fluorescence, depth sensitivity, clinical handling and ambient light suppression. Ex vivo measurements on porcine ear skin correlates well with findings of other groups. (paper)

  7. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    Science.gov (United States)

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml-1. The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic.

  8. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    International Nuclear Information System (INIS)

    Guo, Gepu; Lu, Lu; Tu, Juan; Guo, Xiasheng; Zhang, Dong; Yin, Leilei; Wu, Junru; Xu, Di

    2014-01-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml −1 . The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic. (paper)

  9. Fast-neutron and gamma-ray imaging with a capillary liquid xenon converter coupled to a gaseous photomultiplier

    Science.gov (United States)

    Israelashvili, I.; Coimbra, A. E. C.; Vartsky, D.; Arazi, L.; Shchemelinin, S.; Caspi, E. N.; Breskin, A.

    2017-09-01

    Gamma-ray and fast-neutron imaging was performed with a novel liquid xenon (LXe) scintillation detector read out by a Gaseous Photomultiplier (GPM). The 100 mm diameter detector prototype comprised a capillary-filled LXe converter/scintillator, coupled to a triple-THGEM imaging-GPM, with its first electrode coated by a CsI UV-photocathode, operated in Ne/5%CH4 at cryogenic temperatures. Radiation localization in 2D was derived from scintillation-induced photoelectron avalanches, measured on the GPM's segmented anode. The localization properties of 60Co gamma-rays and a mixed fast-neutron/gamma-ray field from an AmBe neutron source were derived from irradiation of a Pb edge absorber. Spatial resolutions of 12± 2 mm and 10± 2 mm (FWHM) were reached with 60Co and AmBe sources, respectively. The experimental results are in good agreement with GEANT4 simulations. The calculated ultimate expected resolutions for our application-relevant 4.4 and 15.1 MeV gamma-rays and 1-15 MeV neutrons are 2-4 mm and ~ 2 mm (FWHM), respectively. These results indicate the potential applicability of the new detector concept to Fast-Neutron Resonance Radiography (FNRR) and Dual-Discrete-Energy Gamma Radiography (DDEGR) of large objects.

  10. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    International Nuclear Information System (INIS)

    Katsoulakis, Evangelia; Thornton, Raymond H; Yamada, Yoshiya; Solomon, Stephen B; Maybody, Majid; Housman, Douglas; Niyazov, Greg; Riaz, Nadeem; Lovelock, Michael; Spratt, Daniel E; Erinjeri, Joseph P

    2013-01-01

    To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV D min and PTV D min pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel D max (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and D max by 25% (0.022). TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors abutting critical structures while

  11. Performance of inverted polymer solar cells with randomly oriented ZnO nanorods coupled with atomic layer deposited ZnO

    International Nuclear Information System (INIS)

    Zafar, Muhammad; Yun, Ju-Young; Kim, Do-Heyoung

    2017-01-01

    Highlights: • Hydrothermally grown, randomly oriented, and low areal density ZnO nanorods have been successfully adopted as the electron transport layer in inverted organic solar cells. • The addition of atomic layer deposited ZnO on the ZnO nanorods effectively enhance the photovoltaic performances of inverted organic solar cells. • The inverted organic solar cells with 5 nm thick-ALD ZnO showed the highest power conversion efficiency of 3.08%, which is an enhancement of approximately 80% compared to the cells without the ALD ZnO layer (PCE = 1.67%). - Abstract: Nanostructuring of the electron transport layer (ETL) in organic photovoltaic cells (OPV) is of great interest because it increases the surface area of the cell and electron transport. In this work, hydrothermally grown, randomly oriented, and low areal density ZnO nanorods (NRs) have been adopted as the ETL, and the effect of adding atomic layer deposited (ALD) ZnO on the ZnO NRs on the inverted organic solar cell performance has been investigated. The fabricated inverted organic solar cell with 5-nm-thick ALD-ZnO grown on the ZnO NRs showed the highest power conversion efficiency (PCE) of 3.08%, which is an enhancement of 85% from that of the cell without ALD-ZnO (PCE = 1.67%). The ultrathin ALD-ZnO was found to act as a curing layer of the surface defects on the hydrothermally grown ZnO NRs, resulting in an improvement in photovoltaic performance.

  12. Performance of inverted polymer solar cells with randomly oriented ZnO nanorods coupled with atomic layer deposited ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Muhammad [School of Chemical Engineering, Chonnam National University, 300 Youngbong-dong, Gwangju 500-757 (Korea, Republic of); Yun, Ju-Young [Center for Vacuum, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Daejeon 305-600 (Korea, Republic of); Kim, Do-Heyoung, E-mail: kdhh@chonnam.ac.kr [School of Chemical Engineering, Chonnam National University, 300 Youngbong-dong, Gwangju 500-757 (Korea, Republic of)

    2017-03-15

    Highlights: • Hydrothermally grown, randomly oriented, and low areal density ZnO nanorods have been successfully adopted as the electron transport layer in inverted organic solar cells. • The addition of atomic layer deposited ZnO on the ZnO nanorods effectively enhance the photovoltaic performances of inverted organic solar cells. • The inverted organic solar cells with 5 nm thick-ALD ZnO showed the highest power conversion efficiency of 3.08%, which is an enhancement of approximately 80% compared to the cells without the ALD ZnO layer (PCE = 1.67%). - Abstract: Nanostructuring of the electron transport layer (ETL) in organic photovoltaic cells (OPV) is of great interest because it increases the surface area of the cell and electron transport. In this work, hydrothermally grown, randomly oriented, and low areal density ZnO nanorods (NRs) have been adopted as the ETL, and the effect of adding atomic layer deposited (ALD) ZnO on the ZnO NRs on the inverted organic solar cell performance has been investigated. The fabricated inverted organic solar cell with 5-nm-thick ALD-ZnO grown on the ZnO NRs showed the highest power conversion efficiency (PCE) of 3.08%, which is an enhancement of 85% from that of the cell without ALD-ZnO (PCE = 1.67%). The ultrathin ALD-ZnO was found to act as a curing layer of the surface defects on the hydrothermally grown ZnO NRs, resulting in an improvement in photovoltaic performance.

  13. Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images.

    Science.gov (United States)

    Johnson, J L

    1994-09-10

    The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.

  14. A Classification-oriented Method of Feature Image Generation for Vehicle-borne Laser Scanning Point Clouds

    Directory of Open Access Journals (Sweden)

    YANG Bisheng

    2016-02-01

    Full Text Available An efficient method of feature image generation of point clouds to automatically classify dense point clouds into different categories is proposed, such as terrain points, building points. The method first uses planar projection to sort points into different grids, then calculates the weights and feature values of grids according to the distribution of laser scanning points, and finally generates the feature image of point clouds. Thus, the proposed method adopts contour extraction and tracing means to extract the boundaries and point clouds of man-made objects (e.g. buildings and trees in 3D based on the image generated. Experiments show that the proposed method provides a promising solution for classifying and extracting man-made objects from vehicle-borne laser scanning point clouds.

  15. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Science.gov (United States)

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  16. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Directory of Open Access Journals (Sweden)

    Omer Ziv

    2015-10-01

    Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  17. Low voltage operation of electro-absorption modulator promising for high-definition 3D imaging application using a three step asymmetric coupled quantum well structure

    International Nuclear Information System (INIS)

    Na, Byung Hoon; Ju, Gun Wu; Cho, Yong Chul; Lee, Yong Tak; Choi, Hee Ju; Jeon, Jin Myeong; Lee, Soo Kyung; Park, Yong Hwa; Park, Chang Young

    2015-01-01

    In this paper, we propose a transmission type electro-absorption modulator (EAM) operating at 850 nm having low operating voltage and high absorption change with low insertion loss using a novel three step asymmetric coupled quantum well (3 ACQW) structure which can be used as an optical image shutter for high-definition (HD) three dimensional (3D) imaging. Theoretical calculations show that the exciton red shift of 3 ACQW structure is more than two times larger than that of rectangular quantum well (RQW) structure while maintaining high absorption change. The EAM having coupled cavities with 3 ACQW structure shows a wide spectral bandwidth and high amplitude modulation at a bias voltage of only -8V, which is 41% lower in operating voltage than that of RQW, making the proposed EAM highly attractive as an optical image shutter for HD 3D imaging applications

  18. German Orientalism

    OpenAIRE

    Margaret Olin

    2011-01-01

    Review of: Suzanne L. Marchand, German Orientalism in the Age of Empire: Religion, Race and Scholarship, Cambridge and Washington, D.C.: Cambridge University Press, 2009. This analysis of Suzanne L. Marchand’s German Orientalism in the Age of Empire: Religion, Race and Scholarship reads her contribution in part against the background of Edward Said’s path breaking book Orientalism. Differences lie in her more expansive understanding of the term ‘Oriental’ to include the Far East and her conce...

  19. Orientation guide for imaging examinations. Recommendation of the radiation protection commission. 2. rev. ed.; Orientierungshilfe fuer bildgebende Untersuchungen. Empfehlung der Strahlenschutzkommission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Due to the wide range of medical diagnostic method that include partially high radiation exposures of the patients (for instance CT examinations) the mean radiation exposure of the public is increasing in Germany. In 2006 the German Strahlenschutzkommission (radiation protection commission) has published a catalogue for the different diagnostic questions including recommendations for the best imaging technique. This orientation guide was actualized in 2012. The catalogue is aimed to avoid unnecessary radiation exposure and to simultaneously improve the medical diagnostics. Nevertheless the applying physician has to justify and document the selected diagnostic technique for the individual case. The guide covers the following issues: head, neck, spinal cord, skeleton and muscles, cardiovascular system, thorax, digestive system, urogenital tract, gynecology, mammary glands, trauma, oncology, pediatrics, interventional radiology.

  20. Object-Oriented Semisupervised Classification of VHR Images by Combining MedLDA and a Bilateral Filter

    Directory of Open Access Journals (Sweden)

    Shi He

    2015-01-01

    Full Text Available A Bayesian hierarchical model is presented to classify very high resolution (VHR images in a semisupervised manner, in which both a maximum entropy discrimination latent Dirichlet allocation (MedLDA and a bilateral filter are combined into a novel application framework. The primary contribution of this paper is to nullify the disadvantages of traditional probabilistic topic models on pixel-level supervised information and to achieve the effective classification of VHR remote sensing images. This framework consists of the following two iterative steps. In the training stage, the model utilizes the central labeled pixel and its neighborhood, as a squared labeled image object, to train the classifiers. In the classification stage, each central unlabeled pixel with its neighborhood, as an unlabeled object, is classified as a user-provided geoobject class label with the maximum posterior probability. Gibbs sampling is adopted for model inference. The experimental results demonstrate that the proposed method outperforms two classical SVM-based supervised classification methods and probabilistic-topic-models-based classification methods.

  1. Determining mode I cohesive law of Pinus pinaster by coupling double cantilever beam test with digital image correlation

    Directory of Open Access Journals (Sweden)

    J. Xavier

    2015-01-01

    Full Text Available The direct identification of the cohesive law in pure mode I of Pinus pinaster is addressed. The approach couples the double cantilever beam (DCB test with digital image correlation (DIC. Wooden beam specimens loaded in the radial-longitudinal (RL fracture propagation system are used. The strain energy release rate in mode I ( is uniquely determined from the load-displacement ( curve by means of the compliance-based beam method (CBBM. This method relies on the concept of equivalent elastic crack length ( and therefore does not require the monitoring of crack propagation during test. The crack tip opening displacement in mode I is determined from the displacement field at the initial crack tip. The cohesive law in mode I is then identified by numerical differentiation of the relationship. Moreover, the proposed procedure is validated by finite element analyses including cohesive zone modelling. It is concluded that the proposed data reduction scheme is adequate for assessing the cohesive law in pure mode I of P. pinaster

  2. Orienteering injuries

    OpenAIRE

    Folan, Jean M.

    1982-01-01

    At the Irish National Orienteering Championships in 1981 a survey of the injuries occurring over the two days of competition was carried out. Of 285 individual competitors there was a percentage injury rate of 5.26%. The article discusses the injuries and aspects of safety in orienteering.

  3. T1 mapping cardiovascular magnetic resonance imaging to detect myocarditis—Impact of slice orientation on the diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Bohnen, Sebastian, E-mail: s.bohnen@uke.de [University Medical Center Hamburg-Eppendorf, University Heart Center, General and Interventional Cardiology, Hamburg (Germany); Radunski, Ulf K., E-mail: u.radunski@uke.de [University Medical Center Hamburg-Eppendorf, University Heart Center, General and Interventional Cardiology, Hamburg (Germany); Lund, Gunnar K., E-mail: glund@uke.de [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Tahir, Enver, E-mail: e.tahir@uke.de [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Avanesov, Maxim, E-mail: m.avanesov@uke.de [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Stehning, Christian, E-mail: christian.stehning@philips.com [Philips Research, Hamburg (Germany); Schnackenburg, Bernhard, E-mail: bernhard.schnackenburg@philips.com [Philips Healthcare Germany, Hamburg (Germany); Adam, Gerhard, E-mail: g.adam@uke.de [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Blankenberg, Stefan, E-mail: s.blankenberg@uke.de [University Medical Center Hamburg-Eppendorf, University Heart Center, General and Interventional Cardiology, Hamburg (Germany); Muellerleile, Kai, E-mail: kamuellerleile@uke.de [University Medical Center Hamburg-Eppendorf, University Heart Center, General and Interventional Cardiology, Hamburg (Germany)

    2017-01-15

    Background: T1 mapping is a promising diagnostic tool to improve the diagnostic accuracy of cardiovascular magnetic resonance (CMR) in patients with suspected myocarditis. However, there are currently no data on the potential influence of slice orientation on the diagnostic performance of CMR. Thus, we compared the diagnostic performance of global myocardial T1 and extracellular volume (ECV) values to differentiate patients with myocarditis from healthy individuals between different slice orientations. Methods: This study included 48 patients with clinically defined myocarditis and 13 healthy controls who underwent CMR at 1.5 T. A modified Look-Locker inversion-recovery (MOLLI) sequence was used for T1 mapping before and 15 min after administration of 0.075 mmol/kg Gadolinium-BOPTA. T1 mapping was performed on three short and on three long axes slices, respectively. Native T1, post-contrast T1 and extracellular volume (ECV) −BOPTA maps were calculated using a dedicated plug-in written for the OsiriX software and compared between the mean value of three short-axes slices (3SAX), the central short-axis (1SAX), the mean value of three long-axes slices (3LAX), the four-chamber view (4CH), the three-chamber view (3CH) and the two-chamber view (2CH). Results: There were significantly lower native T1 values on 3LAX (1081 ms (1037–1131 ms)) compared to 3SAX (1107 ms (1069–1143 ms), p = 0.0022) in patients with myocarditis, but not in controls (1026 ms (1009–1059 ms) vs. 1039 ms (1023–1055 ms), p = 0.2719). The areas under the curve (AUC) to discriminate between myocarditis and healthy controls by native myocardial T1 were 0.85 (p < 0.0001) on 3SAX, 0.85 (p < 0.0001) on 1SAX, 0.76 (p = 0.0002) on 3LAX, 0.70 (p = 0.0075) on 4CH, 0.72 (p = 0.0020) on 3CH and 0.75 (p = 0.0003) on 2CH. The AUCs for ECV-BOPTA were 0.83 (p < 0.0001) on 3 SAX, 0.82 (p < 0.0001) on 1SAX, 0.77 (p = 0.0005) on 3LAX, 0.71 (p = 0.0079) on 4CH, 0.69 (p = 0.0371) on 3CH and 0.75 (p = 0.0006) on

  4. T1 mapping cardiovascular magnetic resonance imaging to detect myocarditis—Impact of slice orientation on the diagnostic performance

    International Nuclear Information System (INIS)

    Bohnen, Sebastian; Radunski, Ulf K.; Lund, Gunnar K.; Tahir, Enver; Avanesov, Maxim; Stehning, Christian; Schnackenburg, Bernhard; Adam, Gerhard; Blankenberg, Stefan; Muellerleile, Kai

    2017-01-01

    Background: T1 mapping is a promising diagnostic tool to improve the diagnostic accuracy of cardiovascular magnetic resonance (CMR) in patients with suspected myocarditis. However, there are currently no data on the potential influence of slice orientation on the diagnostic performance of CMR. Thus, we compared the diagnostic performance of global myocardial T1 and extracellular volume (ECV) values to differentiate patients with myocarditis from healthy individuals between different slice orientations. Methods: This study included 48 patients with clinically defined myocarditis and 13 healthy controls who underwent CMR at 1.5 T. A modified Look-Locker inversion-recovery (MOLLI) sequence was used for T1 mapping before and 15 min after administration of 0.075 mmol/kg Gadolinium-BOPTA. T1 mapping was performed on three short and on three long axes slices, respectively. Native T1, post-contrast T1 and extracellular volume (ECV) −BOPTA maps were calculated using a dedicated plug-in written for the OsiriX software and compared between the mean value of three short-axes slices (3SAX), the central short-axis (1SAX), the mean value of three long-axes slices (3LAX), the four-chamber view (4CH), the three-chamber view (3CH) and the two-chamber view (2CH). Results: There were significantly lower native T1 values on 3LAX (1081 ms (1037–1131 ms)) compared to 3SAX (1107 ms (1069–1143 ms), p = 0.0022) in patients with myocarditis, but not in controls (1026 ms (1009–1059 ms) vs. 1039 ms (1023–1055 ms), p = 0.2719). The areas under the curve (AUC) to discriminate between myocarditis and healthy controls by native myocardial T1 were 0.85 (p < 0.0001) on 3SAX, 0.85 (p < 0.0001) on 1SAX, 0.76 (p = 0.0002) on 3LAX, 0.70 (p = 0.0075) on 4CH, 0.72 (p = 0.0020) on 3CH and 0.75 (p = 0.0003) on 2CH. The AUCs for ECV-BOPTA were 0.83 (p < 0.0001) on 3 SAX, 0.82 (p < 0.0001) on 1SAX, 0.77 (p = 0.0005) on 3LAX, 0.71 (p = 0.0079) on 4CH, 0.69 (p = 0.0371) on 3CH and 0.75 (p = 0.0006) on

  5. Operational Automatic Remote Sensing Image Understanding Systems: Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA. Part 2: Novel system Architecture, Information/Knowledge Representation, Algorithm Design and Implementation

    Directory of Open Access Journals (Sweden)

    Luigi Boschetti

    2012-09-01

    Full Text Available According to literature and despite their commercial success, state-of-the-art two-stage non-iterative geographic object-based image analysis (GEOBIA systems and three-stage iterative geographic object-oriented image analysis (GEOOIA systems, where GEOOIA/GEOBIA, remain affected by a lack of productivity, general consensus and research. To outperform the Quality Indexes of Operativeness (OQIs of existing GEOBIA/GEOOIA systems in compliance with the Quality Assurance Framework for Earth Observation (QA4EO guidelines, this methodological work is split into two parts. Based on an original multi-disciplinary Strengths, Weaknesses, Opportunities and Threats (SWOT analysis of the GEOBIA/GEOOIA approaches, the first part of this work promotes a shift of learning paradigm in the pre-attentive vision first stage of a remote sensing (RS image understanding system (RS-IUS, from sub-symbolic statistical model-based (inductive image segmentation to symbolic physical model-based (deductive image preliminary classification capable of accomplishing image sub-symbolic segmentation and image symbolic pre-classification simultaneously. In the present second part of this work, a novel hybrid (combined deductive and inductive RS-IUS architecture featuring a symbolic deductive pre-attentive vision first stage is proposed and discussed in terms of: (a computational theory (system design, (b information/knowledge representation, (c algorithm design and (d implementation. As proof-of-concept of symbolic physical model-based pre-attentive vision first stage, the spectral knowledge-based, operational, near real-time, multi-sensor, multi-resolution, application-independent Satellite Image Automatic Mapper™ (SIAM™ is selected from existing literature. To the best of these authors’ knowledge, this is the first time a symbolic syntactic inference system, like SIAM™, is made available to the RS community for operational use in a RS-IUS pre-attentive vision first stage

  6. [One decade of functional imaging in schizophrenia research. From visualisation of basic information processing steps to molecular-genetic oriented imaging].

    Science.gov (United States)

    Tost, H; Meyer-Lindenberg, A; Ruf, M; Demirakça, T; Grimm, O; Henn, F A; Ende, G

    2005-02-01

    Modern neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have contributed tremendously to our current understanding of psychiatric disorders in the context of functional, biochemical and microstructural alterations of the brain. Since the mid-nineties, functional MRI has provided major insights into the neurobiological correlates of signs and symptoms in schizophrenia. The current paper reviews important fMRI studies of the past decade in the domains of motor, visual, auditory, attentional and working memory function. Special emphasis is given to new methodological approaches, such as the visualisation of medication effects and the functional characterisation of risk genes.

  7. A new methodical approach in neuroscience: assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI hyperscanning

    Directory of Open Access Journals (Sweden)

    Felix eScholkmann

    2013-11-01

    Full Text Available Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: the assessment of the inter-brain coupling between two or more subjects, termed hyperscanning. The hyperscanning approach has the potential to enable a new view on how the brain works and will reveal as yet undiscovered brain functions based on brain-to-brain coupling, since the single-subject setting cannot capture them. In particular, functional near-infrared imaging (fNIRI hyperscanning is a promising new method, offering a cost-effective, easy to apply and reliable technology to measure inter-personal interactions in a natural context. In this short review we report on fNIRI hyperscanning studies published so far and summarize opportunities and challenges for future studies.

  8. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    Science.gov (United States)

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Patient-specific 3D models created by 3D imaging system or bi-planar imaging coupled with Moiré-Fringe projections: a comparative study of accuracy and reliability on spinal curvatures and vertebral rotation data.

    Science.gov (United States)

    Hocquelet, Arnaud; Cornelis, François; Jirot, Anna; Castaings, Laurent; de Sèze, Mathieu; Hauger, Olivier

    2016-10-01

    The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré-Fringe projections. Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland-Altman analysis, and reliability using intraclass correlation coefficient (ICC). ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was -4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001). While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré-Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.

  10. Power distribution and substrate noise coupling investigations on the behavioral level for photon counting imaging readout circuits

    International Nuclear Information System (INIS)

    Lundgren, Jan; Abdalla, Suliman; O'Nils, Mattias; Oelmann, Bengt

    2007-01-01

    In modern mixed-signal system design, there are increasing problems associated with noise coupling caused by switching digital parts to sensitive analog parts. As a consequence, there is a growing necessity to understand these problems. In order to avoid costly design iterations, noise coupling simulations should be initiated as early as possible in the design chain. The problems associated with on-chip noise coupling have been discovered in photon counting pixel detector readout systems, where the level of integration of analog and digital circuits is very high on a very small area, and it would appear that these problems will continue to increase for future system designs in this field. This paper deals with the functionality of utilizing behavioral level models for simulating noise coupling in these readout systems. The methods and models are described and simulation results are shown for a photon counting pixel detector readout system

  11. Imaging with organic indicators and high-speed charge-coupled device cameras in neurons: some applications where these classic techniques have advantages.

    Science.gov (United States)

    Ross, William N; Miyazaki, Kenichi; Popovic, Marko A; Zecevic, Dejan

    2015-04-01

    Dynamic calcium and voltage imaging is a major tool in modern cellular neuroscience. Since the beginning of their use over 40 years ago, there have been major improvements in indicators, microscopes, imaging systems, and computers. While cutting edge research has trended toward the use of genetically encoded calcium or voltage indicators, two-photon microscopes, and in vivo preparations, it is worth noting that some questions still may be best approached using more classical methodologies and preparations. In this review, we highlight a few examples in neurons where the combination of charge-coupled device (CCD) imaging and classical organic indicators has revealed information that has so far been more informative than results using the more modern systems. These experiments take advantage of the high frame rates, sensitivity, and spatial integration of the best CCD cameras. These cameras can respond to the faster kinetics of organic voltage and calcium indicators, which closely reflect the fast dynamics of the underlying cellular events.

  12. Orienteering club

    CERN Multimedia

    Club d'orientation

    2015-01-01

    Course d'orientation La reprise des courses d’orientation était attendue dans la région puisque près de 150 coureurs ont participé à la première épreuve automnale organisée par le club d’orientation du CERN sur le site de La Faucille. Les circuits ont été remportés par Yann Locatelli du club d’Orientation Coeur de Savoie avec 56 secondes d’avance sur Damien Berguerre du club SOS Sallanches pour le parcours technique long, Marie Vuitton du club CO CERN (membre également de l’Equipe de France Jeune) pour le parcours technique moyen avec presque 4 minutes d’avance sur Jeremy Wichoud du club Lausanne-Jorat, Victor Dannecker pour le circuit technique court devant Alina Niggli, Elliot Dannecker pour le facile moyen et Alice Merat sur le facile court, tous membres du club O’Jura. Les résultats comp...

  13. Oriental cholangiohepatitis

    International Nuclear Information System (INIS)

    Scheible, F.W.; Davis, G.B.; California Univ., San Diego, La Jolla

    1981-01-01

    The recent influx of immigrants from Southeast Asia into the United States has increased the likelihood of encountering unusual diseases heretofore rarely seen in this country. Among these disorders is Oriental cholangiohepatitis, a potentially life-threatening process whose early diagnosis is facilitated by roentgenographic findings. Ultrasonography can also provide useful information, although potential pitfalls in diagnosis should be recognized. (orig.)

  14. Oriental cholangiohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Scheible, F.W.; Davis, G.B.

    1981-07-15

    The recent influx of immigrants from Southeast Asia into the United States has increased the likelihood of encountering unusual diseases heretofore rarely seen in this country. Among these disorders is Oriental cholangiohepatitis, a potentially life-threatening process whose early diagnosis is facilitated by roentgenographic findings. Ultrasonography can also provide useful information, although potential pitfalls in diagnosis should be recognized.

  15. Multispectral Image Feature Points

    Directory of Open Access Journals (Sweden)

    Cristhian Aguilera

    2012-09-01

    Full Text Available This paper presents a novel feature point descriptor for the multispectral image case: Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art.

  16. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    Science.gov (United States)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  17. Analytical approaches to image orientation and stereo digitization applied in the Budnlab software. (Polish Title: Rozwiazania analityczne zwiazane z obsluga procesu orientacji zdjec oraz wykonywaniem opracowan wektorowych w programie Bundlab)

    Science.gov (United States)

    Kolecki, J.

    2015-12-01

    The Bundlab software has been developed mainly for academic and research application. This work can be treated as a kind of a report describing the current state of the development of this computer program, focusing especially on the analytical solutions. Firstly, the overall characteristics of the software are provided. Then the description of the image orientation procedure starting from the relative orientation is addressed. The applied solution is based on the coplanarity equation parametrized with the essential matrix. The problem is reformulated in order to solve it using methods of algebraic geometry. The solution is followed by the optimization involving the least square criterion. The formation of the image block from the oriented models as well as the absolute orientation procedure were implemented using the Horn approach as a base algorithm. The second part of the paper is devoted to the tools and methods applied in the stereo digitization module. The solutions that support the user and improve the accuracy are given. Within the paper a few exemplary applications and products are mentioned. The work finishes with the concepts of development and improvements of existing functions.

  18. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.

    Science.gov (United States)

    Lu, George J; Son, Woo Sung; Opella, Stanley J

    2011-04-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly ¹⁵N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly ¹⁵N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Orientation Club

    CERN Multimedia

    Club d'orientation

    2014-01-01

    COURSE ORIENTATION Résultats de samedi 10 mai    C’est sur une carte entièrement réactualisée dans les bois de Versoix, que plus de 100 coureurs sont venus participer à la course d’orientation, type longue distance, préparée par des membres du club du CERN. Le terrain plutôt plat nécessitait une orientation à grande vitesse, ce qui a donné les podiums suivants :  Technique long avec 17 postes : 1er Jurg Niggli, O’Jura en 52:48, 2e Beat Muller, COLJ Lausanne-Jorat en 58:02, 3e Christophe Vuitton, CO CERN en 58:19 Technique moyen avec 13 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:05 ; 2e Yves Rousselot, Balise 25 Besançon, en 55:11 ; 3e Laurent Merat, O'Jura, en 55:13 Technique court avec 13 postes : 1er Julien Vuitton, CO CERN en 40:59, 2e Marc Baumgartner, CO CERN en 43:18, 3e Yaelle Mathieu en 51:42 Su...

  20. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation ce printemps Le Club d’orientation du CERN vous invite à venir découvrir la course d’orientation et vous propose, en partenariat avec d’autres clubs de la région, une dizaine de courses populaires. Celles-ci ont lieu les samedis après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Si vous êtes débutant vous pouvez profiter d’une petite initiation offerte par l’organisateur avant de vous lancer sur un parcours. Divers types de parcours sont à votre choix lors de chaque épreuve : facile court (2-3 km), facile moyen (3-5 km), technique court (3-4 km), technique moyen (4-5 km) et technique long (5-7 km). Les dates à retenir sont les suivantes : Samedi 23 mars: Pully (Vd) Samedi 13 avril: Pougny...

  1. Transit oriented development in Belgrade

    Directory of Open Access Journals (Sweden)

    Sava Atanacković

    2005-01-01

    Full Text Available In Belgrade the process of transition from oriental kasaba to European city was long and thwarted by various economic political and social cultural factors. The European ideal still hasn’t been reached. Transition, as a development process in Belgrade, operates by a specific paradoxical inversion – the logic of harmonised development of urban transport, urban form and structure, which in theories of urban planning appears as a postulate, is in Belgrade influenced by incredible, ephemeral, disfigured, yet authentic transformation. However, quality solutions, conclusions and recommendations for further implementation of the idea about introducing the new public transport system, which is part of the main project for the first light metro line in Belgrade, establishment of a united group of experts, investors, negotiators, public opinion and all actors needed to make decisions, united and uncompromising idea about the future image and quality of urban life in Belgrade, have uncovered an until recently untried field of possibilities for transport management coupled with urban development as the optimal and acceptable model. City life could again become dynamic, productive and attractive.

  2. Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices

    Science.gov (United States)

    Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.

    1998-01-01

    We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.

  3. Imaging of Selenium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in 2-D Electrophoresis Gels and Biological Tissues.

    Science.gov (United States)

    Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra

    2018-01-01

    Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.

  4. Reducing tilt-to-length coupling for the LISA test mass interferometer

    Science.gov (United States)

    Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.

    2018-05-01

    Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of  ±25 μm rad‑1 for interfering beams with relative angles of up to  ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.

  5. Imaging the electron-boson coupling in superconducting FeSe films using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Li, Zhi; Wang, Lili; He, Ke; Chen, Xi; Hoffman, Jennifer E; Ma, Xu-Cun; Xue, Qi-Kun

    2014-02-07

    Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a "dip-hump" feature at energy Ω∼4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in unconventional superconductors.

  6. Subcortical orientation biases explain orientation selectivity of visual cortical cells.

    Science.gov (United States)

    Vidyasagar, Trichur R; Jayakumar, Jaikishan; Lloyd, Errol; Levichkina, Ekaterina V

    2015-04-01

    The primary visual cortex of carnivores and primates shows an orderly progression of domains of neurons that are selective to a particular orientation of visual stimuli such as bars and gratings. We recorded from single-thalamic afferent fibers that terminate in these domains to address the issue whether the orientation sensitivity of these fibers could form the basis of the remarkable orientation selectivity exhibited by most cortical cells. We first performed optical imaging of intrinsic signals to obtain a map of orientation domains on the dorsal aspect of the anaesthetized cat's area 17. After confirming using electrophysiological recordings the orientation preferences of single neurons within one or two domains in each animal, we pharmacologically silenced the cortex to leave only the afferent terminals active. The inactivation of cortical neurons was achieved by the superfusion of either kainic acid or muscimol. Responses of single geniculate afferents were then recorded by the use of high impedance electrodes. We found that the orientation preferences of the afferents matched closely with those of the cells in the orientation domains that they terminated in (Pearson's r = 0.633, n = 22, P = 0.002). This suggests a possible subcortical origin for cortical orientation selectivity. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Diversity Oriented Synthesis of Natural 2-Arylbenzofuran, Moracin F

    International Nuclear Information System (INIS)

    Yun, So-Ra; Jun, Jong-Gab

    2016-01-01

    Diversity oriented synthesis of natural 2-arylbenzofuran, moracin F (1) has been carried out from the commercially available starting materials using Sonogashira coupling, Suzuki coupling, neutral Al 2 O 3 mediated cyclization, and intramolecular Wittig reaction as key steps.

  8. Orientação sexual em uma escola: recortes de corpos e de gênero Sexual orientation at a school: images of bodies and gender

    Directory of Open Access Journals (Sweden)

    Helena Altmann

    2003-01-01

    Full Text Available Este artigo trata da orientação sexual em uma escola municipal de ensino fundamental do Rio de Janeiro. As reflexões acerca de como uma escola desenvolve esse trabalho são desencadeadas a partir da emergência de um recorte de gênero. O fato de um maior número de meninas do que de meninos ter se disponibilizado a conceder as entrevistas conduz a uma reflexão sobre quem aborda esses assuntos com os/as adolescentes e sobre como o tema da sexualidade é focado, delimitado e inserido na escola. Pode-se dizer que há dois temas centrais em torno dos quais são organizadas as aulas sobre sexualidade - gravidez e DST's/AIDS -, aos quais estão ligados suas formas de prevenção - camisinha e métodos anticoncepcionais. A seguir, são discutidas questões sobre os diferentes modos de a escola recortar e abordar pedagogicamente os corpos de mulheres e de homens, o que é relacionado ao processo histórico de medicalização do corpo da mulher. Por fim, são discutidas algumas questões sobre alguns paradoxos enfrentados por adolescentes em relação à anticoncepção.This article deals with sexual orientation in a municipal grade school (grades 5th to 8th in Rio de Janeiro, Brazil. The reflections about how a school develops this work are investigated from the perspective of the emergence of an image of gender during the making up of an ethnographic study. The fact that a larger number of girls than boys allowed themselves to be interviewed leads one to question who talks about these subjects with the adolescents and how the topic of sexuality is approached, limited and inserted into the school. It can be said that there are two central topics around which sex education classes are organized: pregnancy and STD/AIDS, to which are linked the forms of prevention - the condom and birth control methods. This is followed by a discussion of issues about how the feminine and masculine bodies are viewed, which is in turn related to the historical process

  9. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation

    Science.gov (United States)

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-01

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC  =  0.66+/- 0.04 ), Positive Predictive Value (PPV  =  0.81+/- 0.06 ) and Sensitivity (Sen.  =  0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol)  =  40+/- 30 , DSC  =  0.71+/- 0.07 and PPV  =  0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume

  10. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation Le soleil enfin de retour a incité nombre de sportifs et promeneurs à nous rejoindre dans la belle forêt de Challex /Pougny pour la deuxième étape de notre coupe de printemps 2013. Certains sont revenus crottés et fourbus alors que d’autres avaient les joues bien roses après un grand bol d’air frais. Mais tous avaient passé un agréable moment dans la nature. Nous rappelons que nos activités sont ouvertes à tous, jeunes, moins jeunes, sportifs, familles, du CERN ou d’ailleurs, et que le seul inconvénient est que si vous goûtez à la course d’orientation, il vous sera difficile de ne pas y revenir ! Samedi 20 avril 2013, nous serons sur le Mont Mourex (entre Gex et Divonne) pour notre prochaine épreuve et vous y serez les bienvenus. Les inscriptions et les départ...

  11. Orienteering club

    CERN Multimedia

    Club d’Orientation du CERN

    2015-01-01

    Courses d’orientation Nouvelle saison nouveau programme Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une dizaine de courses populaires comptant pour la coupe Genevoise de printemps: samedi 28 mars: Vernand Dessus samedi 18 avril: Pougny/Challex samedi 25 avril: Chancy/Valleiry samedi 2 mai: Mauvernay samedi 9 mai: Longchaumois samedi 16 mai: Genolier samedi 30 mai: Prevondavaux samedi 6 juin: Biere-Ballens samedi 13 juin: Haut-Jura samedi 20 juin: Bonmont - Finale Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Les inscriptions se font sur place le jour de l’épreuve. Si vous êtes débutant, vous pouvez profiter d’une initiation offerte par l’organisateur avant de vous lancer sur un parcours. Le club propose aussi...

  12. Orienteering club

    CERN Multimedia

    Orienteering Club

    2016-01-01

    Course d'orientation Calendrier des courses d’orientation Coupe genevoise d’automne 2016 Samedi 3 septembre : La Faucille (01) Samedi 10 septembre : Prémanon (39) Samedi 17 septembre : Saint-Cergue (VD) Samedi 24 septembre : Jorat / Corcelles (VD) Samedi 1 octobre: Bière - Ballens (VD) -relais Vendredi 14 octobre : Parc Mon Repos (GE) - nocturne Samedi 15 octobre : Terrasse de Genève (74) Samedi 29 octobre : Bonmont (VD) Samedi 5 novembre : Pomier (74) – one-man-relay - Finale   Courses ouvertes à toutes et à tous, sportifs, familles, débutants ou confirmés, du CERN ou d’ailleurs. Cinq circuits disponibles, ceci va du facile court (2 km) adapté aux débutants et aux enfants jusqu’au parcours technique long de 6 km pour les chevronnés en passant par les parcours facile moyen (4&am...

  13. COURSE ORIENTATION

    CERN Multimedia

    Club d'orientation du CERN

    2015-01-01

      Les coureurs d’orientation de la région se sont donné rendez-vous samedi dernier dans les bois de Pougny/Challex lors de l’épreuve organisée par le club d’orientation du CERN. La carte proposée pour les 5 circuits offrait aussi bien un coté très technique avec un relief pentu qu’un coté avec de grandes zones plates à forêt claire. Le parcours technique long comportant 20 postes a été remporté par Beat Muller du COLJ Lausanne en 56:26 devançant Denis Komarov, CO CERN en 57:30 et Yvan Balliot, ASO Annecy en 57:46. Pour les autres circuits les résultats sont les suivants: Technique moyen (13 postes): 1er Joël Mathieu en 52:32 à une seconde du 2e Vladimir Kuznetsov, COLJ Lausanne-Jorat, 3e Jean-Bernard Zosso, CO CERN, en 54:01 Technique court (12 postes): 1er Lennart Jirden, ...

  14. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2013-01-01

    Course d’orientation Face aux Championnats de France des Clubs à Poitiers, et à une météo hivernale (vent glaciale et pluie), il ne restait qu’une cinquantaine d’orienteurs pour participer à l’épreuve organisée le samedi 25 mai à Grange-Malval. Les participants ont tout de même bien apprécié les 5 circuits proposés par le Satus Genève. Les résultats sont disponibles sur notre site http://cern.ch/club-orientation. En plus des résultats, vous pourrez noter des informations sur la nouvelle école de CO encadrée par B. Barge, Prof. EPS à Ferney-Voltaire pour les jeunes à partir de 6 ans. La prochaine étape de la coupe genevoise se déroulera samedi 1er juin à Morez (39). Epreuve organisée par le club O’Jura&nb...

  15. Orienteering Club

    CERN Multimedia

    Le Club d’orientation du CERN

    2017-01-01

    COURSE ORIENTATION Finale de la coupe d’automne Le club d’orientation du CERN (COC Genève) a organisé sa dernière course populaire de la saison samedi 4 novembre au lieu-dit Les Terrasses de Genève (74). Cette 9e épreuve qui se courait sous la forme d’un One-Man-Relay, clôturait ainsi la coupe genevoise d’automne dont les lauréats sont : Circuit technique long : 1. Julien Vuitton (COC Genève), 2. Berni Wehrle (COC Genève), 3. Christophe Vuitton (COC Genève). Circuit technique moyen : 1. Vladimir Kuznetsov (Lausanne-Jorat), 2. J.-Bernard Zosso (COC Genève), 3. Laurent Merat (O’Jura). Circuit technique court : 1. Thibault Rouiller (COC Genève), 2. exæquo Lennart Jirden (COC Genève) et Katya Kuznetsova (Lausanne-Jorat). Circuit facile moyen : 1. Tituan Barge ...

  16. Orienteering Club

    CERN Multimedia

    Le Club d’orientation du CERN

    2017-01-01

    COURSE ORIENTATION Finale de la coupe d’automne Le club d’orientation du CERN (COC Genève) a organisé sa dernière course populaire de la saison samedi 4 novembre au lieu-dit Les Terrasses de Genève (74). Cette 9e épreuve qui se courait sous la forme d’un One-Man-Relay, clôturait ainsi la coupe genevoise d’automne dont les lauréats sont : Circuit technique long : 1. Julien Vuitton (COC Genève), 2. Berni Wehrle (COC Genève), 3. Christophe Vuitton (COC Genève). Circuit technique moyen : 1. Vladimir Kuznetsov (Lausanne-Jorat), 2. J.-Bernard Zosso (COC Genève), 3. Laurent Merat (O’Jura). Circuit technique court : 1. Thibault Rouiller (COC Genève), 2. exæquo Lennart Jirden (COC Genève) et Katya Kuznetsova (Lausanne-Jorat). Circuit facile moyen : 1. Tituan Barge...

  17. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2015-01-01

    Course orientation C’est au pied du Salève, proche du Golf de Bosset, que le club d’orientation du CERN (CO CERN) a organisé samedi 19 septembre une nouvelle épreuve comptant pour la Coupe Genevoise d’automne. La zone « des Terrasses de Genève » avait été cartographiée et mise en service l’année dernière. Les participants ont pu apprécier un terrain ludique avec beaucoup de microreliefs, de points d’eau et de gros rochers, le tout au milieu d’une forêt assez claire et agréable à courir. Sur le parcours technique long, le résultat a été très serré puisque Pierrick Merino du club d’Annecy a gagné avec seulement 9 secondes d’avance sur Gaëtan Vuitton (CO CERN) qui confiait avoir perdu beaucoup du te...

  18. Orienteering Club

    CERN Multimedia

    Le Club d’orientation du CERN

    2017-01-01

    Course orientation Les courses d’orientation comptant pour la coupe genevoise de printemps s’enchainent dans la région franco-suisse. Samedi dernier, une bonne centaine de coureurs se sont retrouvés au Mont Mourex où le club du CERN avait préparé la sixième épreuve. A l’issue de la course, les participants confirmaient l’exigence des circuits, à savoir la condition physique et le côté technique du traçage. Le parcours technique long comportant 20 postes a été remporté par Darrell High du Care Vevey en 1:22:38 devançant Beat Muller du COLJ Lausanne-Jorat en 1:25:25 et Alison High également du Care Vevey en 1:28:51. Le circuit technique moyen a été remporté par Christophe Vuitton du CO CERN et le circuit technique court par Claire-Lise Rouiller, CO CERN. Les trois pr...

  19. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2010-01-01

    COURSE D’ORIENTATION La finale de la coupe de printemps Après avoir remporté le challenge club, samedi 29 juin lors du relais inter-club à Lausanne, le Club d’orientation du CERN organisait la dernière étape de la coupe genevoise de printemps samedi 5 juin à Saint-Cergue dans les bois de Monteret (Canton de Vaud). Plus de 100 participants se sont déplacés pour venir participer à la finale et découvrir une toute nouvelle carte dans une forêt vallonnée. Les résultats pour chaque circuit de cette étape sont : Technique long : 1. Jurg Niggli du club O’Jura, 2. Clément Poncet, 3. Oystein Midttun. Technique moyen : 1. Zoltan Trocsanyi CO CERN, 2. Christophe Ingold, 3. Christina Falga. Technique court : 1. Pierre-Andre Baum, CARE Vevey, 2. Emese Szunyog, 3. Solène Balay. Facile moyen : 1. Elisa P...

  20. Club Orientation

    CERN Multimedia

    Club d'orientation

    2014-01-01

      COURSE ORIENTATION   Pas moins de 100 concurrents sont venus s’affronter sur les parcours proposés par le club d’orientation du CERN ce samedi 26 avril lors de la 4e étape de la coupe genevoise de printemps. Les podiums ont été attribués à :  Technique long avec 19 postes : 1er Yvan Balliot, ASO Annecy en 1:01:39 ; 2e Dominique Fleurent, ASO Annecy, en 1:05:12 ; 3e Rémi Fournier, SOS Sallanches, en 1:05:40. Technique moyen avec 14 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:42 ; 2e Céline Zosso, CO CERN, en 50:51 ; 3e Clément Poncet, O’Jura Prémanon, en 51:27. Technique court avec 13 postes : 1er Jaakko Murtomaki, YKV Seinaejoki, en 36:04 ; 2e Marc Baumgartner en 41:27 ; 3e Natalia Niggli, O’Jura Prémanon, en 52:43. Sur les parcours facile moyen et facile court, victoire respectivement de Stéphanie...

  1. Orienteering Club

    CERN Multimedia

    Le Club d’orientation du CERN

    2017-01-01

    Calendrier des courses de la Coupe Genevoise – printemps 2017 Club d'orientation - Julien,  jeune membre du club. Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une série de courses populaires, qui se dérouleront des deux côtés de la frontière franco-suisse, à savoir : Samedi 1 avril : Pougny/Challex (01) Samedi 8 avril: Ballens (VD) Samedi 22 avril: Apples (VD) Samedi 29 avril: Mont Mussy (01) Samedi 6 mai: Prémanon (39) Samedi 13 mai: Mont Mourex (01) Samedi 20 mai: Prévondavaux (VD) Samedi 10 juin: Chancy/Valleiry (74) Samedi 17 juin: Trélex - Finale (VD) Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel. Les inscriptions sur un des 5 parcours proposés se font sur place le jour de l...

  2. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    Science.gov (United States)

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Orienting hypnosis.

    Science.gov (United States)

    Hope, Anna E; Sugarman, Laurence I

    2015-01-01

    This article presents a new frame for understanding hypnosis and its clinical applications. Despite great potential to transform health and care, hypnosis research and clinical integration is impaired in part by centuries of misrepresentation and ignorance about its demonstrated efficacy. The authors contend that advances in the field are primarily encumbered by the lack of distinct boundaries and definitions. Here, hypnosis, trance, and mind are all redefined and grounded in biological, neurological, and psychological phenomena. Solutions are proposed for boundary and language problems associated with hypnosis. The biological role of novelty stimulating an orienting response that, in turn, potentiates systemic plasticity forms the basis for trance. Hypnosis is merely the skill set that perpetuates and influences trance. This formulation meshes with many aspects of Milton Erickson's legacy and Ernest Rossi's recent theory of mind and health. Implications of this hypothesis for clinical skills, professional training, and research are discussed.

  4. Oriented Approach

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Moghimi

    2013-12-01

    Full Text Available Promoting productivity is one of the goals of usinginformation technology in organizations. The purpose of this research isexamining the impact of IT on organizational productivity andrecognizing its mechanisms based on process-oriented approach. For thisend, by reviewing the literature of the subject a number of impacts of ITon organizational processes were identified. Then, through interviewswith IT experts, seven main factors were selected and presented in aconceptual model. This model was tested through a questionnaire in 148industrial companies. Data analysis shows that impact of IT onproductivity can be included in the eight major categories: Increasing ofthe Automation, Tracking, Communication, Improvement, Flexibility,Analytic, Coordination and Monitoring in organizational processes.Finally, to improve the impact of information technology onorganizational productivity, some suggestions are presented.

  5. Differential changes of metabolic brain activity and interregional functional coupling in prefronto-limbic pathways during different stress conditions: Functional imaging in freely behaving rodent pups

    Directory of Open Access Journals (Sweden)

    Joerg eBock

    2012-05-01

    Full Text Available The trumpet-tailed rat or degu (Octodon degus is an established model to investigate the consequences of early stress on the development of emotional brain circuits and behaviour. The aim of this study was to identify brain circuits, that respond to different stress conditions and to test if acute stress alters functional coupling of brain activity among prefrontal and limbic regions. Using functional imaging (2-Fluoro-deoxyglucose method in 8 day old male degu pups the following stress conditions were compared: (A pups together with parents and siblings (control, (B separation of the litter from the parents, (C individual separation from parents and siblings, (D individual separation and presentation of maternal calls. Condition (B significantly downregulated brain activity in the prefrontal cortex, hippocampus, nucleus accumbens and sensory areas compared to controls. Activity decrease was even more pronounced during condition (C, where, in contrast to all other regions, activity in the PAG was increased. Interestingly, brain activity in stress-associated brain regions such as the amygdala and habenula was not affected. In condition (D maternal vocalizations reactivated brain activity in the cingulate and precentral medial cortex, nucleus accumbens and striatum and in sensory areas. In contrast, reduced activity was measured in the prelimbic and infralimbic cortex and in the hippocampus and amygdala. Correlation analysis revealed complex, region- and situation-specific changes of interregional functional coupling among prefrontal and limbic brain regions during stress exposure. We show here for the first time that early life stress results in a widespread reduction of brain activity in the infant brain and changes interregional functional coupling. Moreover, maternal vocalizations can partly buffer stress-induced decrease in brain activity in some regions and evoked very different functional coupling patterns compared to the three other

  6. EDITORIAL: Optical orientation Optical orientation

    Science.gov (United States)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  7. Gold nanorods coupled with upconverting nanophosphors for targeted thermal ablation and imaging of bladder cancer cells (Conference Presentation)

    Science.gov (United States)

    Cho, Suehyun K.; Su, Lih-Jen; Flaig, Thomas W.; Park, Wounjhang

    2016-09-01

    NaYF4:Yb3+,Er3+ upconverting nanophosphors (UCNPs) are robust and stable nanoparticles that absorb near-infrared (NIR) photons and emit green and red visible photons through energy transfer upconversion. This mechanism provides UCNPs several advantages as a bioimaging agent over traditional fluorescence imaging agent in that NIR excitation allows high-contrast imaging without autofluorescence and that they can be used for deep-tissue imaging. However, additional surface modification of UCNPs is necessary for them to be biocompatible. We use an amphiphilic polymer (poly(maleic anhydride-alt-octadecene) (PMAO) and a hetero-functional polyethylene glycol with amine and thiol ends (NH2-PEG-SH)) to make the UCNPs water-soluble. This reaction yields a carboxylic group that allows functionalization with anti-epidermal growth factor receptor (aEGFR), which provides specific binding of UCNPs to EGFR-expressing bladder cancer cells. Additionally, the thiol ends of the PEGylated UCNPs are able to bind with gold nanorods (AuNRs) to create UCNP-AuNR complexes. The localized surface plasmon of the AuNR then allow localized heating of HTB9 bladder cancer cells, enabling in situ cell killing upon detection by UCNP fluorescence. Here, we report a successful synthesis, surface modification and conjugation of aEGFR functionalized UCNP-AuNR complexes and in vitro imaging and thermal ablation studies using them. Synthesis and surface modification of UCNP-AuNR complexes are confirmed by electron microscopy. Then, a combination of brightfield, NIR confocal fluorescence, and darkfield microscopy on the UCNP-AuNR treated bladder cancer cells revealed successful cancer targeting and imaging capabilities of the complex. Finally, cell viability assay showed that NIR irradiation of UCNP-AuNR conjugated cells resulted highly selective cell killing.

  8. Oriented Shape Index Histograms for Cell Classification

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Dahl, Anders Bjorholm; Larsen, Rasmus

    2015-01-01

    We propose a novel extension to the shape index histogram feature descriptor where the orientation of the second-order curvature is included in the histograms. The orientation of the shape index is reminiscent but not equal to gradient orientation which is widely used for feature description. We...... evaluate our new feature descriptor using a public dataset consisting of HEp-2 cell images from indirect immunoflourescence lighting. Our results show that we can improve classification performance significantly when including the shape index orientation. Notably, we show that shape index orientation...

  9. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    Science.gov (United States)

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  10. Imaging of elements in leaves of tobacco by solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Masson, Pierre, E-mail: masson@bordeaux.inra.fr

    2014-12-01

    Plants take up and store elements according to the environment in which they are growing. Because plants are at the base of the food chain, the determination of essential elements or toxic elements in plant materials is of importance. However, it is assumed that the element content determined on selected tissues may provide more specific information than that derived from the whole plant analysis. In this work, we assessed the feasibility of solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry analyses for quantitative imaging of Cd and Mg in plant leaves. Leaves of tobacco (Nicotiana tabacum) were selected to be used as samples. To produce a two dimensional image, sections cut from leaf samples were analyzed. Cellulose doped with multi-element solution standards was used as calibration samples. Two certified reference materials (NIST SRM 1547 Peach Leaves and NIST SRM 1573a Tomato leaves) were used to verify the accuracy of measurements with good agreement between the measured concentrations and the certified values. Quantitative imaging revealed the inhomogeneous distribution of the selected elements. Excess of Cd and Mg tended to be focused on peripheral regions and the tip of the leaf.

  11. A Visible and Passive Millimeter Wave Image Fusion Algorithm Based on Pulse-Coupled Neural Network in Tetrolet Domain for Early Risk Warning

    Directory of Open Access Journals (Sweden)

    Yuanjiang Li

    2018-01-01

    Full Text Available An algorithm based on pulse-coupled neural network (PCNN constructed in the Tetrolet transform domain is proposed for the fusion of the visible and passive millimeter wave images in order to effectively identify concealed targets. The Tetrolet transform is applied to build the framework of the multiscale decomposition due to its high sparse degree. Meanwhile, a Laplacian pyramid is used to decompose the low-pass band of the Tetrolet transform for improving the approximation performance. In addition, the maximum criterion based on regional average gradient is applied to fuse the top layers along with selecting the maximum absolute values of the other layers. Furthermore, an improved PCNN model is employed to enhance the contour feature of the hidden targets and obtain the fusion results of the high-pass band based on the firing time. Finally, the inverse transform of Tetrolet is exploited to obtain the fused results. Some objective evaluation indexes, such as information entropy, mutual information, and QAB/F, are adopted for evaluating the quality of the fused images. The experimental results show that the proposed algorithm is superior to other image fusion algorithms.

  12. Coupled Retrieval of Aerosol Properties and Surface Reflection Using the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI)

    Science.gov (United States)

    Xu, F.; van Harten, G.; Kalashnikova, O. V.; Diner, D. J.; Seidel, F. C.; Garay, M. J.; Dubovik, O.

    2016-12-01

    The Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 10 km and is observed from 9 view angles between ±67° off of nadir. We have developed an efficient and flexible code that uses the information content of AirMSPI data for a coupled retrieval of aerosol properties and surface reflection. The retrieval was built based on the multi-pixel optimization concept [2], with the use of a hybrid radiative transfer model [3] that combines the Markov Chain [4] and adding/doubling methods [5]. The convergence and robustness of our algorithm is ensured by applying constraints on (a) the spectral variation of the Bidirectional Polarization Distribution Function (BPDF) and angular shape of the Bidirectional Reflectance Distribution Function (BRDF); (b) the spectral variation of aerosol optical properties; and (c) the spatial variation of aerosol parameters across neighboring image pixels. Our retrieval approach has been tested using over 20 AirMSPI datasets having low to moderately high aerosol loadings ( 0.02550-nmSpace Sci. Rev. 16, 527 (1974).

  13. SU-G-IeP1-08: MR Geometric Distortion Dependency On Imaging Sequence, Acquisition Orientation and Receiver Bandwidth of a Dedicated 1.5T MR-Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Law, M; Yuan, J; Wong, O; Yu, S [Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong (Hong Kong)

    2016-06-15

    Purpose: To investigate the 3D geometric distortion of four potential MR sequences for radiotheraptic applications, and its dependency on sequence-type, acquisition-orientation and receiver-bandwidth from a dedicated 1.5T 700mm-wide bore MR-simulator (Magnetom-Aera, Sienmens Healthcare, Erlangen, Germany), using a large customized geometric accuracy phantom. Methods: This work studied 3D gradient-echo (VIBE) and spin-echo (SPACE) sequences for anatomical imaging; a specific ultra-short-TE sequence (PETRA) potentially for bone imaging and MR-based dosimetry; and a motion-insensitive sequence (BLADE) for dynamic applications like 4D-MRI. Integrated geometric-correction was employed, three orthogonal acquisition-orientations and up to three receiver-bandwidths were used, yielding 27 acquisitions for testing (Table 1a).A customized geometric accuracy phantom (polyurethane, MR/CT invisible, W×L×H:55×55×32.5cm3) was constructed and filled with 3892 spherical markers (6mm diameter, MR/CT visible) arranged on a 25mm-interval 3D isotropic-grid (Fig.1). The marker positions in MR images were quantitatively calculated and compared against those in the CT-reference using customized MatLab scripts. Results: The average distortion within various diameter-of-spherical-volumes (DSVs) and the usable DSVs under various distortion limits were measured (Tables 1b-c). It was observed that distortions fluctuated when sequence-type, acquisition-orientation or receiver-bandwidth changed (e.g. within 300mm-DSV, the lowest/highest average distortions of VIBE were 0.40mm/0.59mm, a 47.5% difference). According to AAPM-TG66 (<1mm distortion, left-most column of Table 1c), PETRA (Largest-DSV:253.9mm) has the potential on brain treatment, while BLADE (Largest-DSV:207.2mm) may need improvement for thoracic/abdominal applications. The results of VIBE (Largest-DSVs:294.3mm, the best among tested acquisitions) and SPACE (Largest-DSVs:267.7mm) suggests their potentials on head and neck

  14. SU-G-IeP1-08: MR Geometric Distortion Dependency On Imaging Sequence, Acquisition Orientation and Receiver Bandwidth of a Dedicated 1.5T MR-Simulator

    International Nuclear Information System (INIS)

    Law, M; Yuan, J; Wong, O; Yu, S

    2016-01-01

    Purpose: To investigate the 3D geometric distortion of four potential MR sequences for radiotheraptic applications, and its dependency on sequence-type, acquisition-orientation and receiver-bandwidth from a dedicated 1.5T 700mm-wide bore MR-simulator (Magnetom-Aera, Sienmens Healthcare, Erlangen, Germany), using a large customized geometric accuracy phantom. Methods: This work studied 3D gradient-echo (VIBE) and spin-echo (SPACE) sequences for anatomical imaging; a specific ultra-short-TE sequence (PETRA) potentially for bone imaging and MR-based dosimetry; and a motion-insensitive sequence (BLADE) for dynamic applications like 4D-MRI. Integrated geometric-correction was employed, three orthogonal acquisition-orientations and up to three receiver-bandwidths were used, yielding 27 acquisitions for testing (Table 1a).A customized geometric accuracy phantom (polyurethane, MR/CT invisible, W×L×H:55×55×32.5cm3) was constructed and filled with 3892 spherical markers (6mm diameter, MR/CT visible) arranged on a 25mm-interval 3D isotropic-grid (Fig.1). The marker positions in MR images were quantitatively calculated and compared against those in the CT-reference using customized MatLab scripts. Results: The average distortion within various diameter-of-spherical-volumes (DSVs) and the usable DSVs under various distortion limits were measured (Tables 1b-c). It was observed that distortions fluctuated when sequence-type, acquisition-orientation or receiver-bandwidth changed (e.g. within 300mm-DSV, the lowest/highest average distortions of VIBE were 0.40mm/0.59mm, a 47.5% difference). According to AAPM-TG66 (<1mm distortion, left-most column of Table 1c), PETRA (Largest-DSV:253.9mm) has the potential on brain treatment, while BLADE (Largest-DSV:207.2mm) may need improvement for thoracic/abdominal applications. The results of VIBE (Largest-DSVs:294.3mm, the best among tested acquisitions) and SPACE (Largest-DSVs:267.7mm) suggests their potentials on head and neck

  15. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Course d'orientation Le coup d’envoi de la coupe genevoise a été donné samedi 31 août dans les bois de Combe Froide à Prémanon. Plus de 150 coureurs avaient fait le déplacement. Les parcours facile court, facile moyen et technique court ont été remportés par des coureurs du club O’Jura - Ulysse Dannecker, Léo Lonchampt, Franck Lonchampt, le technique moyen par Pekka Marti du club Ol Biel Seeland et le technique long par Térence Risse du CA Rosé – également membre de l’équipe nationale suisse des moins de 20 ans. Pour le club du CERN, les meilleures résultats ont été obtenus pas Emese Szunyog sur technique court et Marie Vuitton sur technique moyen avec une 4e place. La prochaine course aura lieu samedi 14 septembre à La Faucille. Le club propose aussi...

  16. Orienteering club

    CERN Multimedia

    Club d'orientation

    2014-01-01

    Course d'orientation Finale de la coupe d’automne La dernière épreuve de la coupe d’automne organisée par le club s’est déroulée ce samedi 1er novembre avec une course type «one-man-relay» dans la forêt de Trelex (Vd). Les concurrents des circuits techniques devaient parcourir trois boucles et ceux des circuits «faciles» deux boucles, avec changements de carte. Le parcours technique long a été remporté par un membre du club, Berni Wehrle. A l’issue de cette course, le Président du club, L. Jirden annonçait le classement général de la coupe d’automne, basé sur les 6 meilleurs résultats de la saison : Circuit technique long : 1er Juerg Niggli (O’Jura), 2e Berni Wehrle, 3e Beat Mueller. Circuit technique moyen : 1er Laurent Merat (O&r...

  17. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Course d'orientation Finale de la coupe genevoise Rapide et méthodique, voilà les qualités dont il fallait faire preuve pour remporter la dernière étape de la coupe organisée par le club du CERN dans les bois de Monteret. Il s’agissait d’une course au score où chaque concurrent disposait d’un temps imparti pour poinçonner le maximum de balises. Le parcours technique a été remporté par Tomas Shellman et le parcours facile par Victor Dannecker. Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps. Les résultats officiels étaient donnés par le président du club, L. Jirden : Circuit Technique Long : Berni Wehrle, Bruno Barge, Edvins Reisons Circuit Technique Moyen : J.-Bernard Zosso, ...

  18. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2011-01-01

    Course d'orientation Avec la CO en nocturne organisée par le club du CERN vendredi 14 octobre au stade des Eveaux (Ge), et la CO à Savigny (Vd) proposée par le club de Lausanne-Jorat le lendemain, les étapes de la coupe genevoise d’automne s’enchainent rapidement. Il ne reste plus que 3 rendez-vous pour boucler la saison. Les premières places devraient certainement se jouer entre des membres du club du CERN, du O’Jura ou de Lausanne-Jorat. La prochaine course du club est programmée pour samedi 22 octobre à Pomier, près de Cruseilles. L’accueil se fera à partir de 12h30 et les départs s’échelonneront de 13h à 15h. * * * * * * * Nouvelle belle victoire samedi 8 octobre à Saint Cergue du jeune finlandais Ville Keskisaari (COLJ) en 50:56 devant Jürg Niggli (O’Jura) en 1:03:32, et Alexandre...

  19. Orienteering Club

    CERN Document Server

    Club d'orientation

    2013-01-01

    De jour comme de nuit Les amateurs de course d’orientation ont pu s’en donner à cœur joie ce week-end puisqu’ils avaient la possibilité de courir sur deux épreuves en moins de 24 heures. En effet, le club du CERN organisait une course de nuit aux Evaux et la 7e étape de la coupe genevoise se tenait samedi après-midi dans les bois du Grand Jorat à Savigny. Les vainqueurs pour chaque course sont : Technique long CO de nuit: Julien Charlemagne, SOS Sallanches CO samedi: Philipp Khlebnikov, ANCO   Technique moyen CO de nuit: Céline Zosso, CO CERN CO samedi: Pavel Khlebnikov, ANCO Technique court CO de nuit: Colas Ginztburger, SOS Sallanches CO samedi: Victor Kuznetsov, COLJ Lausannne Facile moyen CO de nuit: Gaëtan Rickenbacher, CO CERN CO samedi: Tamas Szoke   Facile court CO de nuit:Oriane Rickenbacher, CO CERN CO samedi: Katya Kuznetsov...

  20. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2015-01-01

    Course orientation Finale de la coupe genevoise La série des courses de printemps s’est achevée samedi dernier dans les bois de Bonmont (Vaud) avec une épreuve «one-man-relay» organisée par le club. Le vainqueur du parcours technique  long, Yann Locatelli (Club de Chambéry Savoie) a réalisé les deux boucles comportant 24 balises avec presque 6 minutes d’avance sur le second concurrent Domenico Lepori (Club CARE Vevey). Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps, en comptabilisant les 6 meilleurs résultats sur les 10 épreuves. Le podium officiel était donné par le président du club, L. Jirden, qui profitait de l’occasion pour remercier tous les participants et également tous les...

  1. Orienteering Club

    CERN Multimedia

    CLUB D'ORIENTATION

    2013-01-01

    Calendrier de la coupe d’automne Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose, pour cette nouvelle coupe d’automne genevoise, une série de 10 courses. Le club du O’Jura donnera le coup d’envoi le samedi 31 août. Les courses s’enchaîneront selon le calendrier suivant : Samedi 31 août : Prémanon (39) - longue distance Samedi 14 septembre : La Faucille (01) - longue distance Samedi 21 septembre : Saint Cergue (VD) - longue distance Samedi 28 septembre : Ballens (VD) - relais Samedi 5 octobre : La Pile (VD) - longue distance Vendredi 11 octobre : Les Evaux (GE) - nocturne Samedi 12 octobre : Grand Jorat, Savigny (VD) - longue distance Samedi 19 octobre : Terrasses de Genève (74) - longue distance Samedi 26 octobre : Prémanon (39) - longue distance Samedi 2 novembre : Bois Tollot (GE) - score - Finale Les &a...

  2. Orienteering club

    CERN Multimedia

    Club d'orientation

    2014-01-01

    Course d'orientation C’est sous un beau soleil samedi 4 octobre que s’est déroulée la 6e étape de la Coupe genevoise d’automne organisée par le club. Plus d’une centaine de concurrents provenant de 7 clubs de CO avaient fait le déplacement pour courir sur un des cinq parcours proposés dans les bois de Trélex-Génolier (VD). Le podium est le suivant : Technique long (5,9 km, 19 postes) : 1er Jurg Niggli, O’Jura (1:00:02); 2e Berni Wehrle, CO CERN (1:06:44); 3e Konrad Ehrbar, COLJ (1:07:08) Technique moyen (4,8 km, 18 postes) : 1er Christophe Vuitton, CO CERN (54:25); 2e J.B. Zosso, CO CERN (1:01:19); 3e Jeremy Wichoud, COLJ (1:06:21) Technique court (3,8 km, 14 postes) : 1er Julien Vuitton, CO CERN (36:19); 2e Vladimir Kuznetsov, COLJ (48:47); 3e Natalia Niggli, O’Jura (50:38) Facile moyen (3,2 km, 11 postes) : 1ère Alina Niggli, O&...

  3. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2012-01-01

    Relais inter-club/Challenge Carlo Milan Samedi dernier, lors de l’épreuve de course d’orientation organisée par le club du O’Jura, le moteur de la discipline était l’esprit d’équipe, puisqu’il était question d’un relais inter-club avec le Challenge Carlo Milan. Les clubs avaient aligné leurs coureurs soit sur le relais technique (trois participants) soit sur le relais facile (deux participants). Côté O’Jura, il fallait noter la participation de François Gonon, champion du monde 2011, côté club du CERN, Marie et Gaëtan Vuitton, jeunes espoirs du club, devaient préparer la piste pour lancer le dernier relayeur. Côté Lausanne-Jorat, il fallait compter sur le très jeune Viktor Kuznetsov. Les 31 équipes engagées n’ont pas m&ea...

  4. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2012-01-01

     Finale de la coupe de printemps   La dernière course d’orientation comptant pour la Coupe de printemps a eu lieu samedi dernier dans le village des Rousses et vers le Fort. Il s’agissait d’un sprint organisé par le club O’Jura. Les temps de course ont avoisiné les 20 minutes que ce soit pour le parcours technique moyen ou technique long. Tous les habitués étaient au rendez-vous pour venir consolider ou améliorer leur place au classement. A l’issue de cette course, le classement général de la Coupe de printemps prenant en compte les 6 meilleurs résultats des 9 courses était établi et les lauréats de chaque catégorie sont les suivants: Circuit technique long : 1er Berni Wehrle, 2e Bruno Barge, 3e Edvins Reisons. Circuit technique moyen : 1er Jean-Bernard Zosso, 2e Cédric Wehrl&...

  5. Orienteering club

    CERN Multimedia

    Club d'orientation

    2010-01-01

    COURSE D’ORIENTATION  De La Rippe à Sauvabellin, la coupe genevoise continue ! Le rendez-vous était donné samedi 8 mai aux amateurs de course d’orientation dans les bois de La Rippe (Canton de Vaud). Cette 6e épreuve était organisée par le Club Satus Grutli de Genève. Il est dommage que les participants n’aient pas été aussi nombreux que lors des dernières courses, les Championnats de France des clubs à Dijon ayant certainement retenus plus d’un compétiteur. La première place est revenue à : – Technique long : Berni Wehrle – Technique moyen : Jean-Bernard Zosso – Technique court : Berni Wehrle – Facile moyen : Peter Troscanyi – Facile court : Claire Droz. Il ne restera plus que deux épreuves ...

  6. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation Samedi 20 avril, les organisateurs du Club de CO du CERN ont accueilli au Mont Mourex 70 participants qui n’ont pas hésité à venir malgré la forte bise. Berni Wehrle du CO CERN s’est octroyé la première place en 1:04:49 sur le parcours technique long devant Pyry Kettunen du Saynso Juankoski en 1:06:52, la 3e place revenant à Bruno Barge, CO CERN, à 7 secondes. Les autres parcours ont été remportés par : Technique moyen : 1er Jacques Moisset, Chamonix (47:44), 2e Yves Rousselot, Balise 25 Besançon (57:16), 3e Jean-Bernard Zosso, CO CERN (59:28). Technique court : 1er Victor Kuznetsov, COLJ (51:53), 2e Pierrick Collet, CO CERN (1:12:52), 3e Dominique Balay, CO CERN (1:16:04). Pour les parcours facile moyen et facile court, Ralf Nardini et Léa Nicolas, tous deux du CO CERN, terminaient respectivement premier. Voi...

  7. Construction of imaging system for wide-field-range ESR spectra using localized microwave field and its case study of crystal orientation in suspension of copper sulfate pentahydrate (CuSO4.5H2O)

    International Nuclear Information System (INIS)

    Tani, Atsushi; Ueno, Takehiro; Yamanaka, Chihiro; Katsura, Makoto; Ikeya, Motoji

    2005-01-01

    A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400mT using electromagnets. Divalent copper ion (Cu 2+ ) in copper sulfate pentahydrate (CuSO 4 .5H 2 O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction

  8. Construction of imaging system for wide-field-range ESR spectra using localized microwave field and its case study of crystal orientation in suspension of copper sulfate pentahydrate (CuSO{sub 4}.5H{sub 2}O)

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Atsushi [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan)]. E-mail: atani@ess.sci.osaka-u.ac.jp; Ueno, Takehiro [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan); Yamanaka, Chihiro [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan); Katsura, Makoto [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan); Ikeya, Motoji [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan)

    2005-02-01

    A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400mT using electromagnets. Divalent copper ion (Cu{sup 2+}) in copper sulfate pentahydrate (CuSO{sub 4}.5H{sub 2}O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction.

  9. Construction of imaging system for wide-field-range ESR spectra using localized microwave field and its case study of crystal orientation in suspension of copper sulfate pentahydrate (CuSO4 . 5H2O).

    Science.gov (United States)

    Tani, Atsushi; Ueno, Takehiro; Yamanaka, Chihiro; Katsura, Makoto; Ikeya, Motoji

    2005-02-01

    A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400 mT using electromagnets. Divalent copper ion (Cu2+) in copper sulfate pentahydrate (CuSO4 . 5H2O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction.

  10. Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    Science.gov (United States)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens

    2018-03-01

    An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.

  11. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P. [Commissariat a l' Energie Atomique et Aux Energies Alternatives, CEA Cadarache, DEN, F-13108 Saint-Paul-Les-Durance (France)

    2012-07-01

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  13. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    International Nuclear Information System (INIS)

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P.

    2012-01-01

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  14. Modeling spatially explicit fire impact on gross primary production in interior Alaska using satellite images coupled with eddy covariance

    Science.gov (United States)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Welp, Lisa R.; Liu, Jinxun; Liu, Shuguang

    2013-01-01

    In interior Alaska, wildfires change gross primary production (GPP) after the initial disturbance. The impact of fires on GPP is spatially heterogeneous, which is difficult to evaluate by limited point-based comparisons or is insufficient to assess by satellite vegetation index. The direct prefire and postfire comparison is widely used, but the recovery identification may become biased due to interannual climate variability. The objective of this study is to propose a method to quantify the spatially explicit GPP change caused by fires and succession. We collected three Landsat images acquired on 13 July 2004, 5 August 2004, and 6 September 2004 to examine the GPP recovery of burned area from 1987 to 2004. A prefire Landsat image acquired in 1986 was used to reconstruct satellite images assuming that the fires of 1987–2004 had not occurred. We used a light-use efficiency model to estimate the GPP. This model was driven by maximum light-use efficiency (Emax) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). We applied this model to two scenarios (i.e., an actual postfire scenario and an assuming-no-fire scenario), where the changes in Emax and FPAR were taken into account. The changes in Emax were represented by the change in land cover of evergreen needleleaf forest, deciduous broadleaf forest, and shrub/grass mixed, whose Emax was determined from three fire chronosequence flux towers as 1.1556, 1.3336, and 0.5098 gC/MJ PAR. The changes in FPAR were inferred from NDVI change between the actual postfire NDVI and the reconstructed NDVI. After GPP quantification for July, August, and September 2004, we calculated the difference between the two scenarios in absolute and percent GPP changes. Our results showed rapid recovery of GPP post-fire with a 24% recovery immediately after burning and 43% one year later. For the fire scars with an age range of 2–17 years, the recovery rate ranged from 54% to 95%. In addition to the averaging

  15. Architecting Service-Oriented Systems

    Science.gov (United States)

    2011-08-01

    Abstract Service orientation is an approach to software systems development that has become a popular way to implement distributed, loosely coupled...runtime. The later you defer binding the more flexibility service providers and service consumers have to develop their software systems independently...Enterprise Service Bus An Enterprise Service Bus (ESB) is a software pattern that can be part of a SOA infrastructure and acts as an intermediary

  16. Sexual Orientation (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Sexual Orientation KidsHealth / For Parents / Sexual Orientation What's in this ... orientation is part of that process. What Is Sexual Orientation? The term sexual orientation refers to the gender ( ...

  17. Studies oriented to optimize the image quality of the small animal PET: Clear PET, modifying some of the parameters of the reconstruction algorithm IMF-OSEM 3D on the data acquisition simulated with GAMOS

    International Nuclear Information System (INIS)

    Canadas, M.; Mendoza, J.; Embid, M.

    2007-01-01

    This report presents studies oriented to optimize the image quality of the small animal PET: Clear- PET. Certain figures of merit (FOM) were used to assess a quantitative value of the contrast and delectability of lesions. The optimization was carried out modifying some of the parameters in the reconstruction software of the scanner, imaging a mini-Derenzo phantom and a cylinder phantom with background activity and two hot spheres. Specifically, it was evaluated the incidence of the inter-update Metz filter (IMF) inside the iterative reconstruction algorithm 3D OSEM. The data acquisition was simulated using the GAMOS framework (Monte Carlo simulation). Integrating GAMOS output with the reconstruction software of the scanner was an additional novelty of this work, to achieve this, data sets were written with the list-mode format (LMF) of ClearPET. In order to verify the optimum values obtained, we foresee to make real acquisitions in the ClearPET of CIEMAT. (Author) 17 refs

  18. Preferred orientation of ettringite in concrete fractures

    KAUST Repository

    Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Kunz, Martin; Chen, Kai; Tamura, Nobumichi; Lutterotti, Luca; Del Arroz, John

    2009-01-01

    distribution of ettringite crystals. Diffraction images are analyzed using the Rietveld method to obtain information on textures. The analysis reveals that the c axes of the trigonal crystallites are preferentially oriented perpendicular to the fracture

  19. On moths and butterflies, or how to orient oneself through images. Georges-Didi Huberman’s art criticism in context

    Directory of Open Access Journals (Sweden)

    Vlad Ionescu

    2017-06-01

    Full Text Available The essay discusses the motif of the butterfly and other Lepidoptera that Georges Didi-Huberman occasionally addressed in the two volumes of Essais sur l’apparition, Phasmes (1998 and Phalènes (2013. The hypothesis is that this motif can be viewed as a figural model of conceiving two essential elements of all art history, namely the nature of the image and its temporality. The fluttering butterfly becomes an occasion to explain Didi-Huberman’s art history by relating its fundamental dimensions to other key figures with which he is implicitly or explicitly in dialogue: Aloïs Riegl, Franz Wickhoff or Aby Warburg. Whereas the content of their specific art histories differs, they all resist the canonical conception of the image as an entity whose place and ‘immanent sense’ is fixed in a diachronic narrative. Alternatively, they develop an art historical prototype where the image is thought of as an essentially relational entity whose latency of sense emerges when it is dialectically superposed to other images. Art history does not function as the stable chronological juxtaposition of artefacts but as the extraction of a virtual sense through the anachronistic superposition of images kept in movement. When the diachronic arrangement of primary sources whose sense depends on the world where they emerged fails, art history interiorizes a speculative epistemology where sense is equivalent to an associative force of images. Reading Didi-Huberman nowadays confronts the art historiographer with a fundamental epistemological question: what is the structure of the interpretative process presupposed in all story of art? An earlier version of this essay has been published in the Romanian journal Images, Imagini, Images 5/2016.

  20. Sierra Madre Oriental in Coahuila, Mexico

    Science.gov (United States)

    2002-01-01

    This desolate landscape is part of the Sierra Madre Oriental mountain range, on the border between the Coahuila and Nuevo Leon provinces of Mexico. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on November 28, 1999. This is a false-color composite image made using shortwave infrared, infrared, and green wavelengths. The image has also been sharpened using the sensor's panchromatic band. Image provided by the USGS EROS Data Center Satellite Systems Branch

  1. MRI of oriental cholangiohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Wani, N.A., E-mail: ahmad77chinar@gmail.co [Department of Radiodiagnosis and Imaging, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar (India); Robbani, I.; Kosar, T. [Department of Radiodiagnosis and Imaging, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar (India)

    2011-02-15

    Oriental cholangiohepatitis (OCH) also called recurrent pyogenic cholangitis is characterized by intrahepatic duct calculi, strictures, and recurrent infections. In turn cholangitis can result in multiple hepatic abscesses, further biliary strictures, and in severe cases, progressive hepatic parenchymal destruction, cirrhosis, and portal hypertension. Magnetic resonance cholangiopancreatography (MRCP) and conventional T1-weighted (T1 W) and T2-weighted (T2 W) magnetic resonance imaging (MRI) findings have been described in patients with OCH. MRCP findings include duct dilation, strictures, and calculi. MRCP can help to localize the diseased ducts and determine the severity of involvement. T1 and T2 W sequences reveal the parenchymal changes of atrophy, abscess formation, and portal hypertension in addition to calculi. Post-treatment changes are also well depicted using MRI. Comprehensive, non-invasive assessment is achieved by using conventional MRI and MRCP in OCH providing a roadmap for endoscopic or surgical management.

  2. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system

    International Nuclear Information System (INIS)

    Seepujak, A.; Bangert, U.; Gutierrez-Sosa, A.; Harvey, A.J.; Blank, V.D.; Kulnitskiy, B.A.; Batov, D.V.

    2005-01-01

    Numerous studies have utilised electron energy-loss (EEL) spectra acquired in the plasmon (2-10 eV) regime in order to probe delocalised π-electronic states of multi-wall carbon nanotubes (MWCNTs). Interpretation of electron energy loss (EEL) spectra of MWCNTs in the 2-10 eV regime. Carbon (accepted for publication); Blank et al. J. Appl. Phys. 91 (2002) 1657). In the present contribution, EEL spectra were acquired from a 2D raster defined on a bottle-shaped MWCNT, using a Gatan UHV Enfina system attached to a dedicated scanning transmission electron microscope (STEM). The technique utilised to isolate and sequentially filter each of the volume and surface resonances is described in detail. Utilising a scale for the intensity of a filtered mode enables one to 'see' the distribution of each resonance in the raster. This enables striking 3D resonance-filtered spectrum images (SIs) of π-collective modes to be observed. Red-shift of the lower energy split π-surface resonance provides explicit evidence of π-surface mode coupling predicted for thin graphitic films (Lucas et al. Phys. Rev. B 49 (1994) 2888). Resonance-filtered SIs are also compared to non-filtered SIs with suppressed surface contributions, acquired utilising a displaced collector aperture. The present filtering technique is seen to isolate surface contributions more effectively, and without the significant loss of statistics, associated with the displaced collector aperture mode. Isolation of collective modes utilising 3D resonance-filtered spectrum imaging, demonstrates a valuable method for 'pinpointing' the location of discrete modes in irregularly shaped nanostructures

  3. A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolour fluorescence.

    Science.gov (United States)

    Spibey, C A; Jackson, P; Herick, K

    2001-03-01

    In recent years the use of fluorescent dyes in biological applications has dramatically increased. The continual improvement in the capabilities of these fluorescent dyes demands increasingly sensitive detection systems that provide accurate quantitation over a wide linear dynamic range. In the field of proteomics, the detection, quantitation and identification of very low abundance proteins are of extreme importance in understanding cellular processes. Therefore, the instrumentation used to acquire an image of such samples, for spot picking and identification by mass spectrometry, must be sensitive enough to be able, not only, to maximise the sensitivity and dynamic range of the staining dyes but, as importantly, adapt to the ever changing portfolio of fluorescent dyes as they become available. Just as the available fluorescent probes are improving and evolving so are the users application requirements. Therefore, the instrumentation chosen must be flexible to address and adapt to those changing needs. As a result, a highly competitive market for the supply and production of such dyes and the instrumentation for their detection and quantitation have emerged. The instrumentation currently available is based on either laser/photomultiplier tube (PMT) scanning or lamp/charge-coupled device (CCD) based mechanisms. This review briefly discusses the advantages and disadvantages of both System types for fluorescence imaging, gives a technical overview of CCD technology and describes in detail a unique xenon/are lamp CCD based instrument, from PerkinElmer Life Sciences. The Wallac-1442 ARTHUR is unique in its ability to scan both large areas at high resolution and give accurate selectable excitation over the whole of the UV/visible range. It operates by filtering both the excitation and emission wavelengths, providing optimal and accurate measurement and quantitation of virtually any available dye and allows excellent spectral resolution between different fluorophores

  4. Entrepreneurial orientation, market orientation, and competitive environment

    DEFF Research Database (Denmark)

    Sørensen, Hans Eibe; Cadogan, John W.

    This study sheds light on the role that the competitive environment plays in determining how elements of market orientation and elements of entrepreneurial orientation interact to influence business success. We develop a model in which we postulate that market orientation, entrepreneurial...... orientation, and competitive environment shape business performance via a three-way interaction. We test the model using primary data from the CEOs of 270 CEO of manufacturing firms, together with secondary data on these firms' profit performance. An assessment of the results indicates that customer...... orientation moderates the positive relationships between the competitiveness element of entrepreneurial orientation and market share and return on assets (ROA): the positive relationships between competitiveness and market share and competitiveness and ROA become stronger the greater the firms' customer...

  5. High-speed imaging at high x-ray energy: CdTe sensors coupled to charge-integrating pixel array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Julian; Tate, Mark W.; Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Purohit, Prafull [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Chamberlain, Darol [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm){sup 2} pixels.

  6. Dispersive liquid-liquid microextraction coupled with digital image colorimetric analysis for detection of total iron in water and food samples.

    Science.gov (United States)

    Peng, Bo; Chen, Guorong; Li, Kai; Zhou, Min; Zhang, Ji; Zhao, Shengguo

    2017-09-01

    A simple and low cost assay for total iron in various samples based on dispersive liquid-liquid microextraction (DLLME) coupled with digital scanning image analysis was proposed. Orthogonal experiment design was utilized to optimize the amount of extraction solvent and disperser solvent, O-phenanthroline concentration and buffer pH. Under the optimum conditions, the calibration curve was linear over the range of 0.047-1.0μgmL -1 (R 2 >0.99) of iron. The limit of detection (LOD) for iron was 14.1μgL -1 and limit of quantification (LOQ) was 46.5μgL -1 . The relative standard deviations for seven replicate determinations of 0.5μgmL -1 of iron was 3.75%. The method was successfully applied for analysis of total iron in water and food samples without using any spectral instrument and it could have a potential industrial impact in developing fast and portable devices to analyze the iron content in water and certain foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 3D imaging using X-Ray tomography and SEM combined FIB to study non isothermal creep damage of (111) oriented samples of γ / γ ′ nickel base single crystal superalloy MC2

    KAUST Repository

    Jouiad, Mustapha

    2012-01-01

    An unprecedented investigation consisting of the association of X-Ray tomography and Scanning Electron Microscopy combined with Focus Ion Beam (SEM-FIB) is conducted to perform a 3D reconstruction imaging. These techniques are applied to study the non-isothermal creep behavior of close (111) oriented samples of MC2 nickel base superalloys single crystal. The issue here is to develop a strategy to come out with the 3D rafting of γ\\' particles and its interaction whether with dislocation structures or/and with the preexisting voids. This characterization is uncommonly performed away from the conventional studied orientation [001] in order to feed the viscoplastic modeling leading to its improvement by taking into account the crystal anisotropy. The creep tests were performed at two different conditions: classical isothermal tests at 1050°C under 140 MPa and a non isothermal creep test consisting of one overheating at 1200°C and 30 seconds dwell time during the isothermal creep life. The X-Ray tomography shows a great deformation heterogeneity that is pronounced for the non-isothermal tested samples. This deformation localization seems to be linked to the preexisting voids. Nevertheless, for both tested samples, the voids coalescence is the precursor of the observed damage leading to failure. SEM-FIB investigation by means of slice and view technique gives 3D views of the rafted γ\\' particles and shows that γ corridors evolution seems to be the main creep rate controlling parameter. © 2012 Trans Tech Publications, Switzerland.

  8. Imaging 50,000 Oriented Ovoid Depressions Using LiDAR Elevation Data Elucidates the Enigmatic Character of The Carolina Bays: Wind & Wave, Or Cosmic Impact Detritus?

    Science.gov (United States)

    Davias, M. E.; Harris, T. H. S.

    2017-12-01

    80 years after aerial photography revealed thousands of aligned oval depressions on the USA's Atlantic Coastal Plain, the geomorphology of the "Carolina bays" remains enigmatic. Geologists and astronomers alike hold that invoking a cosmic impact for their genesis is indefensible. Rather, the bays are commonly attributed to gradualistic fluvial, marine and/or aeolian processes operating during the Pleistocene era. The major axis orientations of Carolina bays are noted for varying statistically by latitude, suggesting that, should there be any merit to a cosmic hypothesis, a highly accurate triangulation network and suborbital analysis would yield a locus and allow for identification of a putative impact site. Digital elevation maps using LiDAR technology offer the precision necessary to measure their exquisitely-carved circumferential rims and orientations reliably. To support a comprehensive geospatial survey of Carolina bay landforms (Survey) we generated about a million km2 of false-color hsv-shaded bare-earth topographic maps as KML-JPEG tile sets for visualization on virtual globes. Considering the evidence contained in the Survey, we maintain that interdisciplinary research into a possible cosmic origin should be encouraged. Consensus opinion does hold a cosmic impact accountable for an enigmatic Pleistocene event - the Australasian tektite strewn field - despite the failure of a 60-year search to locate the causal astroblem. Ironically, a cosmic link to the Carolina bays is considered soundly falsified by the identical lack of a causal impact structure. Our conjecture suggests both these events are coeval with a cosmic impact into the Great Lakes area during the Mid-Pleistocene Transition, at 786 ka ± 5 k. All Survey data and imagery produced for the Survey are available on the Internet to support independent research. A table of metrics for 50,000 bays examined for the Survey is available from an on-line Google Fusion Table: https://goo.gl/XTHKC4 . Each bay

  9. A multimodal microcharacterisation of trace-element zonation and crystallographic orientation in natural cassiterite by combining cathodoluminescence, EBSD, EPMA and contribution of confocal Raman-in-SEM imaging.

    Science.gov (United States)

    Wille, G; Lerouge, C; Schmidt, U

    2018-01-16

    In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE). The presented results show the complementarity of the used analytical techniques. SEM, CL, EBSD, EPMA provide information from the interaction of an electron beam with minerals, leading to atomistic information about their composition, whereas RISE, Raman spectroscopy and imaging completes the studies with information about molecular vibrations, which are sensitive to structural modifications of the minerals. The correlation of Raman bands with the presence/absence of Nb, Ta, Fe (heterovalent substitution) and Ti (homovalent substitution) is established at a submicrometric scale. Combination of the different techniques makes it possible to establish a direct link between chemical and crystallographic data of cassiterite. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  10. A Class Coupling Analyzer for Java Programs

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    Increasingly, object-oriented measurements are being used to evaluate and predict ... and architecture investigations on already developed systems. ... coupling during design because we know ... applications and the projects that build them.

  11. ORIENTATION FIELD RECONSTRUCTION OF ALTERED FINGERPRINT USING ORTHOGONAL WAVELETS

    Directory of Open Access Journals (Sweden)

    Mini M.G.

    2016-11-01

    Full Text Available Ridge orientation field is an important feature for fingerprint matching and fingerprint reconstruction. Matching of the altered fingerprint against its unaltered mates can be done by extracting the available features in the altered fingerprint and using it along with approximated ridge orientation. This paper presents a method for approximating ridge orientation field of altered fingerprints. In the proposed method, sine and cosine of doubled orientation of the fingerprint is decomposed using orthogonal wavelets and reconstructed back using only the approximation coefficients. No prior information about the singular points is needed for orientation approximation. The method is found suitable for orientation estimation of low quality fingerprint images also.

  12. Conception et réalisation d’ un environnement virtuel d'apprentissage collaboratif, orienté métaphore spatiale, couplé avec un système observateur d’usage

    Directory of Open Access Journals (Sweden)

    Mohammed Bousmah

    2006-04-01

    Full Text Available The objective of the research presented in this article is to describe the design of a virtual environment for collaborative learning based on a (work space metaphor coupled with a multi-agent system (MAS. This MAS monitor serves to extract the relevant data related to the interaction of the various actors with the various functionalities of the environment at different levels of abstractions. We will show that the multi-agents vision of this system allows the visualisation and the reporting for describing a collaborative distance learning sessions.

  13. Oriented active shape models.

    Science.gov (United States)

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks

  14. Theories of Sexual Orientation.

    Science.gov (United States)

    Storms, Michael D.

    1980-01-01

    Results indicated homosexuals, heterosexuals, and bisexuals did not differ within each sex on measures of masculinity and femininity. Strong support was obtained for the hypothesis that sexual orientation relates primarily to erotic fantasy orientation. (Author/DB)

  15. Mobility and orientation aid for blind persons using artificial vision

    International Nuclear Information System (INIS)

    Costa, Gustavo; Gusberti, Adrian; Graffigna, Juan Pablo; Guzzo, MartIn; Nasisi, Oscar

    2007-01-01

    Blind or vision-impaired persons are limited in their normal life activities. Mobility and orientation of blind persons is an ever-present research subject because no total solution has yet been reached for these activities that pose certain risks for the affected persons. The current work presents the design and development of a device conceived on capturing environment information through stereoscopic vision. The images captured by a couple of video cameras are transferred and processed by configurable and sequential FPGA and DSP devices that issue action signals to a tactile feedback system. Optimal processing algorithms are implemented to perform this feedback in real time. The components selected permit portability; that is, to readily get used to wearing the device

  16. Mobility and orientation aid for blind persons using artificial vision

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Gustavo; Gusberti, Adrian; Graffigna, Juan Pablo; Guzzo, MartIn; Nasisi, Oscar [Facultad de Ingenieria, Universidad Nacional de San Juan, San Juan (Argentina)

    2007-11-15

    Blind or vision-impaired persons are limited in their normal life activities. Mobility and orientation of blind persons is an ever-present research subject because no total solution has yet been reached for these activities that pose certain risks for the affected persons. The current work presents the design and development of a device conceived on capturing environment information through stereoscopic vision. The images captured by a couple of video cameras are transferred and processed by configurable and sequential FPGA and DSP devices that issue action signals to a tactile feedback system. Optimal processing algorithms are implemented to perform this feedback in real time. The components selected permit portability; that is, to readily get used to wearing the device.

  17. Mobility and orientation aid for blind persons using artificial vision

    Science.gov (United States)

    Costa, Gustavo; Gusberti, Adrián; Graffigna, Juan Pablo; Guzzo, Martín; Nasisi, Oscar

    2007-11-01

    Blind or vision-impaired persons are limited in their normal life activities. Mobility and orientation of blind persons is an ever-present research subject because no total solution has yet been reached for these activities that pose certain risks for the affected persons. The current work presents the design and development of a device conceived on capturing environment information through stereoscopic vision. The images captured by a couple of video cameras are transferred and processed by configurable and sequential FPGA and DSP devices that issue action signals to a tactile feedback system. Optimal processing algorithms are implemented to perform this feedback in real time. The components selected permit portability; that is, to readily get used to wearing the device.

  18. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    Science.gov (United States)

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  19. Sensitivity analysis for plane orientation in three-dimensional cephalometric analysis based on superimposition of serial cone beam computed tomography images

    Science.gov (United States)

    Lagravère, M O; Major, P W; Carey, J

    2010-01-01

    Objectives The purpose of this study was to evaluate the potential errors associated with superimposition of serial cone beam CT (CBCT) images utilizing reference planes based on cranial base landmarks using a sensitivity analysis. Methods CBCT images from 62 patients participating in a maxillary expansion clinical trial were analysed. The left and right auditory external meatus (AEM), dorsum foramen magnum (DFM) and the midpoint between the left and right foramen spinosum (ELSA) were used to define a three-dimensional (3D) anatomical reference co-ordinate system. Intraclass correlation coefficients for all four landmarks were obtained. Transformation of the reference system was carried out using the four landmarks and mathematical comparison of values. Results Excellent intrareliability values for each dimension were obtained for each landmark. Evaluation of the method to transform the co-ordinate system was first done by comparing interlandmark distances before and after transformations, giving errors in lengths in the order of 10–14% (software rounding error). A sensitivity evaluation was performed by adding 0.25 mm, 0.5 mm and 1 mm error in one axis of the ELSA. A positioning error of 0.25 mm in the ELSA can produce up to 1.0 mm error in other cranial base landmark co-ordinates. These errors could be magnified to distant landmarks where in some cases menton and infraorbital landmarks were displaced 4–6 mm. Conclusions Minor variations in location of the ELSA, both the AEM and the DFM landmarks produce large and potentially clinically significant uncertainty in co-ordinate system alignment. PMID:20841457

  20. Aesthetic Judgement of Orientation in Modern Art

    Directory of Open Access Journals (Sweden)

    George Mather

    2012-01-01

    Full Text Available When creating an artwork, the artist makes a decision regarding the orientation at which the work is to be hung based on their aesthetic judgement and the message conveyed by the piece. Is the impact or aesthetic appeal of a work diminished when it is hung at an incorrect orientation? To investigate this question, Experiment 1 asked whether naïve observers can appreciate the correct orientation (as defined by the artist of 40 modern artworks, some of which are entirely abstract. Eighteen participants were shown 40 paintings in a series of trials. Each trial presented all four cardinal orientations on a computer screen, and the participant was asked to select the orientation that was most attractive or meaningful. Results showed that the correct orientation was selected in 48% of trials on average, significantly above the 25% chance level, but well below perfect performance. A second experiment investigated the extent to which the 40 paintings contained recognisable content, which may have mediated orientation judgements. Recognition rates varied from 0% for seven of the paintings to 100% for five paintings. Orientation judgements in Experiment 1 correlated significantly with “meaningful” content judgements in Experiment 2: 42% of the variance in orientation judgements in Experiment 1 was shared with recognition of meaningful content in Experiment 2. For the seven paintings in which no meaningful content at all was detected, 41% of the variance in orientation judgements was shared with variance in a physical measure of image content, Fourier amplitude spectrum slope. For some paintings, orientation judgements were quite consistent, despite a lack of meaningful content. The origin of these orientation judgements remains to be identified.

  1. Imaging

    International Nuclear Information System (INIS)

    Kellum, C.D.; Fisher, L.M.; Tegtmeyer, C.J.

    1987-01-01

    This paper examines the advantages of the use of excretory urography for diagnosis. According to the authors, excretory urography remains the basic radiologic examination of the urinary tract and is the foundation for the evaluation of suspected urologic disease. Despite development of the newer diagnostic modalities such as isotope scanning, ultrasonography, CT, and magnetic resonsance imaging (MRI), excretory urography has maintained a prominent role in ruorradiology. Some indications have been altered and will continue to change with the newer imaging modalities, but the initial evaluation of suspected urinary tract structural abnormalities; hematuria, pyuria, and calculus disease is best performed with excretory urography. The examination is relatively inexpensive and simple to perform, with few contraindictions. Excretory urography, when properly performed, can provide valuable information about the renal parenchyma, pelvicalyceal system, ureters, and urinary bladder

  2. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4

    International Nuclear Information System (INIS)

    Racine, A.

    2005-09-01

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  3. Understanding political market orientation

    DEFF Research Database (Denmark)

    Ormrod, Robert P.; Henneberg, Stephan C.

    influences of such behavior. The study includes structural equation modeling to investigate several propositions. While the results show that political parties need to focus on several different aspects of market-oriented behavior, especially using an internal and external orientation as cultural antecedents......This article develops a conceptual framework and measurement model of political market orientation that consists of attitudinal and behavioural constructs. The article reports on perceived relationships among different behavioral aspects of political market orientation and the attitudinal......, a more surprising result is the inconclusive effect of a voter orientation on market-oriented behaviours. The article discusses the findings in the context of the existing literature in political marketing and commercial market orientation....

  4. Preferred orientation of ettringite in concrete fractures

    KAUST Repository

    Wenk, Hans-Rudolf

    2009-05-15

    Sulfate attack and the accompanying crystallization of fibrous ettringite [Ca6Al2(OH)12(SO4) 3·26H2O] cause cracking and loss of strength in concrete structures. Hard synchrotron X-ray microdiffraction is used to quantify the orientation distribution of ettringite crystals. Diffraction images are analyzed using the Rietveld method to obtain information on textures. The analysis reveals that the c axes of the trigonal crystallites are preferentially oriented perpendicular to the fracture surfaces. By averaging single-crystal elastic properties over the orientation distribution, it is possible to estimate the elastic anisotropy of ettringite aggregates. © 2009 International Union of Crystallography.

  5. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...

  6. Physiological and biomechanical aspects of orienteering.

    Science.gov (United States)

    Creagh, U; Reilly, T

    1997-12-01

    Orienteering is an endurance running event which differs from other running sports both in its cognitive element and in the type of terrain encountered. The demands of overcoming this terrain are not manifest in significant differences between orienteers and road runners in somatotype, though elite female orienteers have consistently been shown to have higher levels of adiposity (> 19%) than elite road runners. High aerobic power in orienteers (up to 63 and 76 ml/kg/min in women and men, respectively) is coupled with lower anaerobic performance. While leg strength is generally not high when compared with other athletic specialties, female orienteers have relatively good leg flexion strength. The energy cost of running is greatly increased in rough terrain. Oxygen cost was 26% higher while running in a forest when compared with road running. Biomechanical differences in stride pattern contribute towards this increased demand. Despite the high energy demands during competition, orienteers pace themselves such that their mean heart rate remains within the range of 167 to 172 beats/min, despite large fluctuations. The rough terrain encountered in orienteering results not only in a high energy cost but also in a higher incidence of sport-specific injuries, particularly to the ankle. Minor injuries such as cuts and bruises are common during competition.

  7. Entrepreneurial Orientation and Internationalisation

    DEFF Research Database (Denmark)

    Decker, Arnim; Rollnik-Sadowska, Ewa; Servais, Per

    Entrepreneurial orientation is a multidimensional construct that determines the strategic posture of a firm. In this study we investigate a sample of six manufacturing firms which are located both in a remote area and in a transition economy. Through interpreting the construct of entrepreneurial...... orientation as an attitude held by principals we investigate how entrepreneurial orientation affected the behaviour of these firms, specifically in terms of their internationalisation. Despite the fact that all firms have identical roots we find that entrepreneurial orientation held by their principals affect...

  8. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound investment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  9. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound in-vestment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  10. A novel method combining cellular neural networks and the coupled nonlinear oscillators' paradigm involving a related bifurcation analysis for robust image contrast enhancement in dynamically changing difficult visual environments

    International Nuclear Information System (INIS)

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

    2010-01-01

    It is well known that a machine vision-based analysis of a dynamic scene, for example in the context of advanced driver assistance systems (ADAS), does require real-time processing capabilities. Therefore, the system used must be capable of performing both robust and ultrafast analyses. Machine vision in ADAS must fulfil the above requirements when dealing with a dynamically changing visual context (i.e. driving in darkness or in a foggy environment, etc). Among the various challenges related to the analysis of a dynamic scene, this paper focuses on contrast enhancement, which is a well-known basic operation to improve the visual quality of an image (dynamic or static) suffering from poor illumination. The key objective is to develop a systematic and fundamental concept for image contrast enhancement that should be robust despite a dynamic environment and that should fulfil the real-time constraints by ensuring an ultrafast analysis. It is demonstrated that the new approach developed in this paper is capable of fulfilling the expected requirements. The proposed approach combines the good features of the 'coupled oscillators'-based signal processing paradigm with the good features of the 'cellular neural network (CNN)'-based one. The first paradigm in this combination is the 'master system' and consists of a set of coupled nonlinear ordinary differential equations (ODEs) that are (a) the so-called 'van der Pol oscillator' and (b) the so-called 'Duffing oscillator'. It is then implemented or realized on top of a 'slave system' platform consisting of a CNN-processors platform. An offline bifurcation analysis is used to find out, a priori, the windows of parameter settings in which the coupled oscillator system exhibits the best and most appropriate behaviours of interest for an optimal resulting image processing quality. In the frame of the extensive bifurcation analysis carried out, analytical formulae have been derived, which are capable of determining the various

  11. Foundations of image science

    CERN Document Server

    Barrett, Harrison H

    2013-01-01

    Winner of the 2006 Joseph W. Goodman Book Writing Award! A comprehensive treatment of the principles, mathematics, and statistics of image science In today's visually oriented society, images play an important role in conveying messages. From seismic imaging to satellite images to medical images, our modern society would be lost without images to enhance our understanding of our health, our culture, and our world. Foundations of Image Science presents a comprehensive treatment of the principles, mathematics, and st

  12. Wildlife value orientations

    DEFF Research Database (Denmark)

    Gamborg, Christian; Jensen, Frank Søndergaard

    2016-01-01

    This article examined value orientations toward wildlife among the adult general Danish public in relation to age, sex, past and present residence, education, and income, using a U.S. survey instrument on Wildlife Value Orientations (WVO). The study used an Internet-based questionnaire sent...

  13. Edward Said and "Orientalism"

    Science.gov (United States)

    Chronicle of Higher Education, 2007

    2007-01-01

    In the nearly 30 years since Edward Said published the hugely influential Orientalism, his indictment of racism and imperialism in Western scholarship on the Orient has had its share of plaudits and condemnations. Now Robert Irwin, the Middle East editor of The Times Literary Supplement, has reignited the controversy with his broadside against the…

  14. Orientalism/Occidentalism

    NARCIS (Netherlands)

    Minca, C.; Ong, C.E.

    2017-01-01

    Orientalism and Occidentalism are interrelated concepts. Orientalism is defined in three keys ways: (i) as a study of “the Orient”; (ii) as a cultural and aesthetic concern with “the Orient”; and (iii) as a critical approach to understanding the construction of “the Orient” by European and American

  15. Aspect-Oriented Programming

    NARCIS (Netherlands)

    Bergmans, Lodewijk; Videira Lopes, Cristina; Moreira, Ana; Demeyer, Serge

    1999-01-01

    Aspect-oriented programming is a promising idea that can improve the quality of software by reduce the problem of code tangling and improving the separation of concerns. At ECOOP'97, the first AOP workshop brought together a number of researchers interested in aspect-orientation. At ECOOP'98, during

  16. Object oriented programming

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1990-01-01

    This paper is an introduction to object oriented programming techniques. It tries to explain the concepts by using analogies with traditional programming. The object oriented approach not inherently difficult, but most programmers find a relatively high threshold in learning it. Thus, this paper will attempt to convey the concepts with examples rather than explain the formal theory

  17. A Tunable Reentrant Resonator with Transverse Orientation of Electric Field for in Vivo EPR Spectroscopy

    Science.gov (United States)

    Chzhan, Michael; Kuppusamy, Periannan; Samouilov, Alexandre; He, Guanglong; Zweier, Jay L.

    1999-04-01

    There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements ofin vivosystems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging ofin vivobiological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloadedQvalues of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range ±50 MHz. This orientation of the capacitive element limits the electric field based loss of resonatorQobserved with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited forin vivoapplications.

  18. Position and orientation determination system and method

    Science.gov (United States)

    Harpring, Lawrence J.; Farfan, Eduardo B.; Gordon, John R.; Jannik, Gerald T.; Foley, Trevor Q.

    2017-06-14

    A position determination system and method is provided that may be used for obtaining position and orientation information of a detector in a contaminated room. The system includes a detector, a sensor operably coupled to the detector, and a motor coupled to the sensor to move the sensor around the detector. A CPU controls the operation of the motor to move the sensor around the detector and determines distance and angle data from the sensor to an object. The method includes moving a sensor around the detector and measuring distance and angle data from the sensor to an object at incremental positions around the detector.

  19. Automatic alignment of radionuclide images

    International Nuclear Information System (INIS)

    Barber, D.C.

    1982-01-01

    The variability of the position, dimensions and orientation of a radionuclide image within the field of view of a gamma camera hampers attempts to analyse the image numerically. This paper describes a method of using a set of training images of a particular type, in this case right lateral brain images, to define the likely variations in the position, dimensions and orientation for that type of image and to provide alignment data for a program that automatically aligns new images of the specified type to a standard position, size and orientation. Examples are given of the use of this method on three types of radionuclide image. (author)

  20. Object-orientated DBMS techniques for time-oriented medical record.

    Science.gov (United States)

    Pinciroli, F; Combi, C; Pozzi, G

    1992-01-01

    In implementing time-orientated medical record (TOMR) management systems, use of a relational model played a big role. Many applications have been developed to extend query and data manipulation languages to temporal aspects of information. Our experience in developing TOMR revealed some deficiencies inside the relational model, such as: (a) abstract data type definition; (b) unified view of data, at a programming level; (c) management of temporal data; (d) management of signals and images. We identified some first topics to face by an object-orientated approach to database design. This paper describes the first steps in designing and implementing a TOMR by an object-orientated DBMS.

  1. Tribological investigation of oriented HDPE.

    Science.gov (United States)

    Hoseini, Mohammed; Lausmaa, Jukka; Boldizar, Antal

    2002-09-15

    The possibility to control the wear properties of high-density polyethylene (HDPE) material at an early processing stage is explored. Wear measurements of cold roll-drawn HDPE with two different draw ratios were carried out for three sliding planes, each in two directions. The dependence of the wear properties on the degree and direction of orientation was investigated. The experiments were performed in a pin-on-disc machine in a dry environment. The tribo-couple consisted of HDPE plates versus a standardised diamond coated steel disc. The results show that the wear resistance of cold roll-drawn HDPE differ widely, by a factor up to 6, depending on the sliding direction relative to the drawing direction. The material has a significantly better wear resistance when the sliding direction was perpendicular to the processing direction. The best wear resistance was in the end plane and it was improved by a factor up to 3.6 when the draw ratio was increased from 2 to 4. These results indicate that molecular orientation by polymer processing is a promising method to improve the wear properties and decrease the wear debris production of HDPE. Copyright 2002 Wiley Periodicals, Inc.

  2. A Synthesis of Star Calibration Techniques for Ground-Based Narrowband Electron-Multiplying Charge-Coupled Device Imagers Used in Auroral Photometry

    Science.gov (United States)

    Grubbs, Guy II; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha

    2016-01-01

    A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 A ) ground-based imager data with multiple fields of view (19, 47, and 180 deg) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.

  3. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  4. Out-of-plane spin-orientation dependent magnetotransport properties in the anisotropic helimagnet CR1/3NbS2 [Spin-Orbit Coupling Induced Anisotropy in the Magnetotransport of the Chiral Helimagnet Cr1=3NbS2

    International Nuclear Information System (INIS)

    Bornstein, Alexander C.; Chapman, Benjamin J.; Ghimire, Nirmal J.; Oak Ridge National Lab.; Technology Div.); Mandrus, David G.; Oak Ridge National Lab.; Technology Div.); Parker, David S.; Technology Div.); Lee, Minhyea

    2015-01-01

    Understanding the role of spin-orbit coupling (SOC) has been crucial for controlling magnetic anisotropy in magnetic multilayer films. It has been shown that electronic structure can be altered via interface SOC by varying the superlattice structure, resulting in spontaneous magnetization perpendicular or parallel to the plane. In lieu of magnetic thin films, we study the similarly anisotropic helimagnet Cr1/3NbS2 where the spin-polarization direction, controlled by the applied magnetic field, can modify the electronic structure. As a result, the direction of spin polarization can modulate the density of states and in turn affect the in-plane electrical conductivity. In Cr1/3NbS2, we found an enhancement of in-plane conductivity when the spin polarization is out-of-plane as compared to in-plane spin polarization. This is consistent with the increase in density of states near the Fermi energy at the same spin configuration, found from first-principles calculations. We also observe unusual field dependence of the Hall signal in the same temperature range. This is unlikely to originate from the noncollinear spin texture but rather further indicates strong dependence of electronic structure on spin orientation relative to the plane

  5. Implementing Strategic Orientation

    Science.gov (United States)

    Fischer, Arthur K.; Brownback, Sarah

    2012-01-01

    An HRM case dealing with problems and issues of setting up orientation programs which align with corporate strategy. Discussion concerns how such a case can be used to exhibit the alignment between HRM and business strategy.

  6. Orthogonal image pairs coupled with OSMS for noncoplanar beam angle, intracranial, single-isocenter, SRS treatments with multiple targets on the Varian Edge radiosurgery system

    Directory of Open Access Journals (Sweden)

    Jasmine A. Oliver, PhD

    2017-07-01

    Conclusion: Based on our study, CR-induced shifts with the Varian Edge radiosurgery system will not produce noticeable dosimetric effects for SRS treatments. Thus, replacing cone beam CT with orthogonal kV/kV pairs coupled with OSMS at the treatment couch angle could reduce the number of cone beam CT scans that are acquired during a standard SRS treatment while providing an accurate and safe treatment with negligible dosimetric effects on the treatment plan.

  7. Coupling an Intercalibration of Radiance-Calibrated Nighttime Light Images and Land Use/Cover Data for Modeling and Analyzing the Distribution of GDP in Guangdong, China

    Directory of Open Access Journals (Sweden)

    Ziyang Cao

    2016-01-01

    Full Text Available Spatialized GDP data is important for studying the relationships between human activities and environmental changes. Rapid and accurate acquisition of these datasets are therefore a significant area of study. Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS radiance-calibrated nighttime light (RC NTL images exhibit the potential for providing superior estimates for GDP spatialization, as they are not restricted by the saturated pixels which exist in nighttime stable light (NSL images. However, the drawback of light overflow is the limited accuracy of GDP estimation, and GDP data estimations based on RC NTL images cannot be directly used for temporal analysis due to a lack of on-board calibration. This study develops an intercalibration method to address the comparability problem. Additionally, NDVI images are used to reduce the light overflow effect. In this way, the secondary and tertiary industry outputs are estimated by using intercalibrated RC NTL images. Primary industry production is estimated by using land use/cover data. Ultimately, four 1 km gridded GDP maps of Guangdong for 2000, 2004, 2006 and 2010 are generated. The verification results of the proposed intercalibration method demonstrate that this method is reasonable and can be effectively implemented. These maps can be used to analyze the distribution and spatiotemporal changes of GDP density in Guangdong.

  8. Spatial coupling in heterogeneous catalysis

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.

    1995-11-01

    Spatial coupling mechanisms are studied in the heterogeneous catalytic oxidation of carbon monoxide over platinum at atmospheric pressure under oscillatory conditions. Experiments are conducted in a continuous flow reactor, and the reaction rate is monitored using both infrared imaging and thermocouples. The catalysts are in the form of platinum annular thin films on washer-shaped quartz substrates, and they provide highly repeatable oscillatory behavior. Oscillations are typically spatially synchronized with the entire catalyst ``flashing'' on and off uniformly. Spatial coupling is investigated by introducing various barriers which split the annular ring in half. Infrared images show that coupling through the gas phase dominates coupling via the diffusion of CO on the surface or heat diffusion through the substrate. The introduction of a localized heat perturbation to the catalyst surface does not induce a transition in the reaction rate. Thus, it is likely that the primary mode of communication is through the gas-phase diffusion of reactants.

  9. Selective enhancement of orientation tuning before saccades.

    Science.gov (United States)

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  10. Beyond the Black Box: Coupling x-ray tomographic imaging of multi-phase flow processes to numerical models and traditional laboratory measurements

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Porter, M.L.; Schaap, M.G.

    Quantitative non-invasive imaging has evolved rapidly in the last decade, and is now being used to assess a variety of problems in vadose zone research, including unsaturated flow and transport of water and contaminants, macropore-dominated processes, soil-water-root interactions, more recent work...... on colloidal processes, and significant work on NAPL-water interactions . We are now able to use non-invasive imaging to probe processes that could not previously be quantified because of lack of opacity, resolution, or accurate techniques for quantitative measurement. This work presents an overview of recent...... advances in x-ray microtomography techniques that can generate high-resolution image-based data for (1) validation of pore-scale multi-phase flow models such as the lattice-Boltzmann technique and pore network models (with respect to fluid saturations, fluid distribution, and relationships among capillary...

  11. Measurement of the modulation transfer function of a charge-coupled device array by the combination of the self-imaging effect and slanted edge method.

    Science.gov (United States)

    Najafi, Sedigheh; Madanipour, Khosro

    2013-07-01

    In this paper, by a combination of the self-imaging effect for Ronchi gratings and the standard slanted edge modulation transfer function (MTF) measurement method for CCD cameras, the MTF of the CCD array without optics is measured. For this purpose, a Ronchi-type grating is illuminated by an expanded He-Ne laser. A self-image of the grating appears without optics on the CCD array that is located on the Talbot distance. The lines of the self-image of the grating are used as a slanted edge array. This method has all the advantages of the slanted edge method, and also since the array of the edge is ready, the total area of the CCD can be tested. The measured MTF is related to the CCD array without optics.

  12. Image Encryption Technology Based on Fractional Two-Dimensional Triangle Function Combination Discrete Chaotic Map Coupled with Menezes-Vanstone Elliptic Curve Cryptosystem

    Directory of Open Access Journals (Sweden)

    Zeyu Liu

    2018-01-01

    Full Text Available A new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM with the discrete fractional difference is proposed. We observe the bifurcation behaviors and draw the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits of the proposed map, respectively. On the application side, we apply the proposed discrete fractional map into image encryption with the secret keys ciphered by Menezes-Vanstone Elliptic Curve Cryptosystem (MVECC. Finally, the image encryption algorithm is analysed in four main aspects that indicate the proposed algorithm is better than others.

  13. Remote sensing object-oriented approaches coupled with ...

    African Journals Online (AJOL)

    Sanjay

    aSchool of Agricultural, Earth and Environmental Sciences, University of ... impact on native ecosystems. ... Climate change is likely to enhance the capability of alien species to invade new areas, by .... mainly in the October which coincides with the cloud-free condition in the study ..... spatial modelling of invasive species.

  14. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Bryant, C.J.; Lincoln, A.D.; Tucker, P.A.; Swanton, S.W.

    1986-08-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described:- the Mark I and the Mark II. Both use a bidimensionally sensitive Multiwire proportional counter as the basic X-ray image transducer coupled to a digital microcomputer system. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multi-frame exposures. (author)

  15. Analysis of Oriented Texture - with application to the Detection of Architectural Distortion in Mammograms with Application to the Detection of Architectural Distortion in Mammograms

    CERN Document Server

    Ayres, Fabio; Desautels, JE Leo

    2011-01-01

    The presence of oriented features in images often conveys important information about the scene or the objects contained; the analysis of oriented patterns is an important task in the general framework of image understanding. As in many other applications of computer vision, the general framework for the understanding of oriented features in images can be divided into low- and high-level analysis. In the context of the study of oriented features, low-level analysis includes the detection of oriented features in images; a measure of the local magnitude and orientation of oriented features over

  16. 3D imaging using X-Ray tomography and SEM combined FIB to study non isothermal creep damage of (111) oriented samples of γ / γ ′ nickel base single crystal superalloy MC2

    KAUST Repository

    Jouiad, Mustapha; Ghighi, J.; Cormier, Jonathan; Ostoja-Kuczynski, Elisabeth; Lubineau, Gilles; Mé ndez, José

    2012-01-01

    or/and with the preexisting voids. This characterization is uncommonly performed away from the conventional studied orientation [001] in order to feed the viscoplastic modeling leading to its improvement by taking into account the crystal anisotropy

  17. Warthog: Coupling Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Shane W. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reardon, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-30

    The Warthog code was developed to couple codes that are developed in both the Multi-Physics Object-Oriented Simulation Environment (MOOSE) from Idaho National Laboratory (INL) and SHARP from Argonne National Laboratory (ANL). The initial phase of this work, focused on coupling the neutronics code PROTEUS with the fuel performance code BISON. The main technical challenge involves mapping the power density solution determined by PROTEUS to the fuel in BISON. This presents a challenge since PROTEUS uses the MOAB mesh format, but BISON, like all other MOOSE codes, uses the libMesh format. When coupling the different codes, one must consider that Warthog is a light-weight MOOSE-based program that uses the Data Transfer Kit (DTK) to transfer data between the various mesh types. Users set up inputs for the codes they want to run, and then Warthog transfers the data between them. Currently Warthog supports XSProc from SCALE or the Sub-Group Application Programming Interface (SGAPI) in PROTEUS for generating cross sections. It supports arbitrary geometries using PROTEUS and BISON. DTK will transfer power densities and temperatures between the codes where the domains overlap. In the past fiscal year (FY), much work has gone into demonstrating two-way coupling for simple pin cells of various materials. XSProc was used to calculate the cross sections, which were then passed to PROTEUS in an external file. PROTEUS calculates the fission/power density, and Warthog uses DTK to pass this information to BISON, where it is used as the heat source. BISON then calculates the temperature profile of the pin cell and sends it back to XSProc to obtain the temperature corrected cross sections. This process is repeated until the convergence criteria (tolerance on BISON solve, or number of time steps) is reached. Models have been constructed and run for both uranium oxide and uranium silicide fuels. These models demonstrate a clear difference in power shape that is not accounted for in a

  18. Rain: A New Concurrent Process-Oriented Programming Language

    OpenAIRE

    Brown, Neil C.C.

    2006-01-01

    This paper details the design of a new concurrent process-oriented programming language, Rain. The language borrows heavily from occam-p and C++ to create a new language based on process-oriented programming, marrying channel-based communication, a clear division between statement and expression, and elements of functional programming. An expressive yet simple type system, coupled with templates, underpins the language. Modern features such as Unicode support and 64-bit integers are included ...

  19. The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy.

    Science.gov (United States)

    Blackman, S M; Cobb, C E; Beth, A H; Piston, D W

    1996-01-01

    The dominant motional mode for membrane proteins is uniaxial rotational diffusion about the membrane normal axis, and investigations of their rotational dynamics can yield insight into both the oligomeric state of the protein and its interactions with other proteins such as the cytoskeleton. However, results from the spectroscopic methods used to study these dynamics are dependent on the orientation of the probe relative to the axis of motion. We have employed polarized fluorescence confocal microscopy to measure the orientation of eosin-5-maleimide covalently reacted with Lys-430 of human erythrocyte band 3. Steady-state polarized fluorescence images showed distinct intensity patterns, which were fit to an orientation distribution of the eosin absorption and emission dipoles relative to the membrane normal axis. This orientation was found to be unchanged by trypsin treatment, which cleaves band 3 between the integral membrane domain and the cytoskeleton-attached domain. this result suggests that phosphorescence anisotropy changes observed after trypsin treatment are due to a rotational constraint change rather than a reorientation of eosin. By coupling time-resolved prompt fluorescence anisotropy with confocal microscopy, we calculated the expected amplitudes of the e-Dt and e-4Dt terms from the uniaxial rotational diffusion model and found that the e-4Dt term should dominate the anisotropy decay. Delayed fluorescence and phosphorescence anisotropy decays of control and trypsin-treated band 3 in ghosts, analyzed as multiple uniaxially rotating populations using the amplitudes predicted by confocal microscopy, were consistent with three motional species with uniaxial correlation times ranging from 7 microseconds to 1.4 ms. Images FIGURE 4 FIGURE 8 FIGURE 9 PMID:8804603

  20. APPROACH FOR IMPROVING THE INTEGRATED SENSOR ORIENTATION

    Directory of Open Access Journals (Sweden)

    E. Mitishita

    2016-06-01

    Full Text Available The direct determination of exterior orientation parameters (EOP of aerial images via integration of the Inertial Measurement Unit (IMU and GPS is often used in photogrammetric mapping nowadays. The accuracies of the EOP depend on the accurate parameters related to sensors mounting when the job is performed (offsets of the IMU relative to the projection centre and the angles of boresigth misalignment between the IMU and the photogrammetric coordinate system. In principle, when the EOP values do not achieve the required accuracies for the photogrammetric application, the approach, known as Integrated Sensor Orientation (ISO, is used to refine the direct EOP. ISO approach requires accurate Interior Orientation Parameters (IOP and standard deviation of the EOP under flight condition. This paper investigates the feasibility of use the in situ camera calibration to obtain these requirements. The camera calibration uses a small sub block of images, extracted from the entire block. A digital Vexcel UltraCam XP camera connected to APPLANIX POS AVTM system was used to get two small blocks of images that were use in this study. The blocks have different flight heights and opposite flight directions. The proposed methodology improved significantly the vertical and horizontal accuracies of the 3D point intersection. Using a minimum set of control points, the horizontal and vertical accuracies achieved nearly one image pixel of resolution on the ground (GSD. The experimental results are shown and discussed.

  1. fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli.

    Science.gov (United States)

    Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus

    2013-01-01

    The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of

  2. Oriental upper blepharoplasty.

    Science.gov (United States)

    Weng, Chau-Jin

    2009-02-01

    Aesthetic surgery of the upper eyelids is a very common procedure performed in cosmetic practices around the world. The word blepharoplasty, however, has a different meaning in Asia than it does elsewhere. Orientals have different periorbital anatomic characteristics, their motivations for seeking eyelid treatment are different, and operative techniques have been adapted consequently. There are also many eyelid shapes among Orientals, mostly with regard to the presence and location of the supratarsal fold and/or presence of an epicanthal fold. The surgeon must therefore master a range of surgical procedures to treat these variations adequately. It is critical to know the indications for each blepharoplasty technique as well as their complications to select the right surgery and avoid unfavorable results. Epicanthoplasty performed on the right patient can greatly improve aesthetic results while retaining ethnic characteristics. This article will discuss Oriental eyelid characteristics, preoperative patient assessment, commonly used corrective techniques for the "double-eyelid" creation, and complications and how to avoid them.

  3. Future-Oriented LCA

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Borup, Mads; Andersen, Per Dannemand

    2018-01-01

    LCA is often applied for decision-making that concerns actions reaching near or far into the future. However, traditional life cycle assessment methodology must be adjusted for the prospective and change-oriented purposes, but no standardised way of doing this has emerged yet. In this chapter some...... challenges are described and some learnings are derived. Many of the future-oriented LCAs published so far perform relatively short-term prediction of simple comparisons. But for more long-term time horizons foresight methods can be of help. Scenarios established by qualified experts about future...... technological and economic developments are indispensable in future technology assessments. The uncertainties in future-oriented LCAs are to a large extent qualitative and it is important to emphasise that LCA of future technologies will provide a set of answers and not ‘the’ answer....

  4. Cultural Orientation and Interdisciplinarity

    DEFF Research Database (Denmark)

    Nielsen, Sofie Søndergaard

    2004-01-01

    I begin the article with an account of the background to the German debate on ‘Literaturwissenschaft als Kulturwissenschaft’, including the introduction of the concept of ’cultural orientation’ as a strategy for achieving interdisciplinarity. This is followed by a consideration of the discussion ...... of the object of literary studies as a way of defining the disciplinarity or identity of literary studies. Finally I summarize some of the characteristics of culturally orientated literary studies.......I begin the article with an account of the background to the German debate on ‘Literaturwissenschaft als Kulturwissenschaft’, including the introduction of the concept of ’cultural orientation’ as a strategy for achieving interdisciplinarity. This is followed by a consideration of the discussion...

  5. Development of annular coupled structure

    International Nuclear Information System (INIS)

    Kageyama, T.; Morozumi, Y.; Yoshino, K.; Yamazaki, Y.

    1992-01-01

    A π/2-mode standing-wave linac of an Annular Coupled Structure (ACS) has been developed for the 1-GeV proton linac of the Japanese Hadron Project (JHP). This ACS has four coupling slots between accelerating and coupling cells in order to overcome difficulties in putting the ACS to practical use. Two prototypes of a four-slot ACS (f = 1296 MHz, β = v/c = 0.8) have been constructed and tested: one with a staggered slot-orientation from cell to cell; and the other with a uniform one. The staggered configuration gives a larger coupling constant and a larger shunt impedance than the uniform one with the same size of coupling slot. Both models have been conditioned up to the design input RF power. The four-slot ACS gives a distortion-free accelerating field around the beam axis, while a Side-Coupled Structure cavity gives an accelerating field mixed with a TE111-like mode. (Author) 7 figs., 2 tabs., 9 refs

  6. Age and Value Orientations

    Directory of Open Access Journals (Sweden)

    Asya Kh. Kukubayeva

    2013-01-01

    Full Text Available The present article deals with value orientations and their role in men’s lives, particularly, in young people’s lives. This notion was introduced by the American theoretical sociologist T. Parsons, one of the creators of modern theoretical sociology. The scientist made an attempt to construct the structural and analytical theory of social action, combining personal interests (needs and aims and situation, it takes place in. The issue of value orientations remains acute for psychology. Herein we have considered several most important works, relating to the considered issue. Age aspects of young people’s value orientations are of peculiar interest to us. When analyzing this phenomenon, one should take into consideration the psychological formations, inhere for a certain age. In fact every age has its unique structure, which may change when passing from one development stage to another. Basing on this fact, we’ve considered the values, depending on the age features of the youth, relying upon the works of the scientists, working with different categories of the youth, such as: teenagers, students, children of different nationalities. It is not surprising that most scientists have come to the conclusion that the chief role in value orientation belongs to a family, originates in relations with parents and teachers. The positive reinforcement to the future develops throughout life in accordance with a lifestyle of a family, society and political situation in a state.Life orientations as a type of value orientations show different types of young people’s preferences. Value structure of its consciousness has its own specific character, depending on the age peculiarities. The dynamics of the transition from one age to another is accompanied with the reappraisal of values, eventually, influencing the life strategy of the future generation

  7. Coupling 2D/3D registration method and statistical model to perform 3D reconstruction from partial x-rays images data.

    Science.gov (United States)

    Cresson, T; Chav, R; Branchaud, D; Humbert, L; Godbout, B; Aubert, B; Skalli, W; De Guise, J A

    2009-01-01

    3D reconstructions of the spine from a frontal and sagittal radiographs is extremely challenging. The overlying features of soft tissues and air cavities interfere with image processing. It is also difficult to obtain information that is accurate enough to reconstruct complete 3D models. To overcome these problems, the proposed method efficiently combines the partial information contained in two images from a patient with a statistical 3D spine model generated from a database of scoliotic patients. The algorithm operates through two simultaneous iterating processes. The first one generates a personalized vertebra model using a 2D/3D registration process with bone boundaries extracted from radiographs, while the other one infers the position and the shape of other vertebrae from the current estimation of the registration process using a statistical 3D model. Experimental evaluations have shown good performances of the proposed approach in terms of accuracy and robustness when compared to CT-scan.

  8. Object-oriented communications

    International Nuclear Information System (INIS)

    Chapman, L.J.

    1989-01-01

    OOC is a high-level communications protocol based on the object-oriented paradigm. OOC's syntax, semantics, and pragmatics balance simplicity and expressivity for controls environments. While natural languages are too complex, computer protocols are often insufficiently expressive. An object-oriented communications philosophy provides a base for building the necessary high-level communications primitives like I don't understand and the current value of X is K. OOC is sufficiently flexible to express data acquisition, control requests, alarm messages, and error messages in a straightforward generic way. It can be used in networks, for inter-task communication, and even for intra-task communication

  9. Construction of a supercritical fluid extraction (SFE equipment: validation using annatto and fennel and extract analysis by thin layer chromatography coupled to image

    Directory of Open Access Journals (Sweden)

    Júlio Cezar Flores JOHNER

    2016-01-01

    Full Text Available Abstract The present work describes setting up a laboratory unit for supercritical fluid extraction. In addition to its construction, a survey of cost was done to compare the cost of the homemade unit with that of commercial units. The equipment was validated using an extraction of annatto seeds’ oil, and the extraction and fractionation of fennel oil were used to validate the two separators; for both systems, the solvent was carbon dioxide. The chemical profiles of annatto and fennel extracts were assessed using thin layer chromatography; the images of the chromatographic plates were processed using the free ImageJ software. The cost survey showed that the homemade equipment has a very low cost (~US$ 16,000 compared to commercial equipment. The extraction curves of annatto were similar to those obtained in the literature (yield of 3.8% oil. The separators were validated, producing both a 2.5% fraction of fennel seed extract rich in essential oils and another extract fraction composed mainly of oleoresins. The ImageJ software proved to be a low-cost tool for obtaining an initial evaluation of the chemical profile of the extracts.

  10. Image Information Obtained Using a Charge-Coupled Device (CCD) Camera During an Immersion Liquid Evaporation Process for Measuring the Refractive Index of Solid Particles.

    Science.gov (United States)

    Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka

    2018-06-01

    The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.

  11. Perceived Sexual Orientation Based on Vocal and Facial Stimuli Is Linked to Self-Rated Sexual Orientation in Czech Men

    Science.gov (United States)

    Valentova, Jaroslava Varella; Havlíček, Jan

    2013-01-01

    Previous research has shown that lay people can accurately assess male sexual orientation based on limited information, such as face, voice, or behavioral display. Gender-atypical traits are thought to serve as cues to sexual orientation. We investigated the presumed mechanisms of sexual orientation attribution using a standardized set of facial and vocal stimuli of Czech men. Both types of stimuli were rated for sexual orientation and masculinity-femininity by non-student heterosexual women and homosexual men. Our data showed that by evaluating vocal stimuli both women and homosexual men can judge sexual orientation of the target men in agreement with their self-reported sexual orientation. Nevertheless, only homosexual men accurately attributed sexual orientation of the two groups from facial images. Interestingly, facial images of homosexual targets were rated as more masculine than heterosexual targets. This indicates that attributions of sexual orientation are affected by stereotyped association between femininity and male homosexuality; however, reliance on such cues can lead to frequent misjudgments as was the case with the female raters. Although our study is based on a community sample recruited in a non-English speaking country, the results are generally consistent with the previous research and thus corroborate the validity of sexual orientation attributions. PMID:24358180

  12. Perceived sexual orientation based on vocal and facial stimuli is linked to self-rated sexual orientation in Czech men.

    Directory of Open Access Journals (Sweden)

    Jaroslava Varella Valentova

    Full Text Available Previous research has shown that lay people can accurately assess male sexual orientation based on limited information, such as face, voice, or behavioral display. Gender-atypical traits are thought to serve as cues to sexual orientation. We investigated the presumed mechanisms of sexual orientation attribution using a standardized set of facial and vocal stimuli of Czech men. Both types of stimuli were rated for sexual orientation and masculinity-femininity by non-student heterosexual women and homosexual men. Our data showed that by evaluating vocal stimuli both women and homosexual men can judge sexual orientation of the target men in agreement with their self-reported sexual orientation. Nevertheless, only homosexual men accurately attributed sexual orientation of the two groups from facial images. Interestingly, facial images of homosexual targets were rated as more masculine than heterosexual targets. This indicates that attributions of sexual orientation are affected by stereotyped association between femininity and male homosexuality; however, reliance on such cues can lead to frequent misjudgments as was the case with the female raters. Although our study is based on a community sample recruited in a non-English speaking country, the results are generally consistent with the previous research and thus corroborate the validity of sexual orientation attributions.

  13. Dynamic separation of nanomagnet sublattices by orientation of elliptical elements

    Science.gov (United States)

    Yahagi, Y.; Berk, C. R.; Harteneck, B. D.; Cabrini, S. D.; Schmidt, H.

    2014-04-01

    We report the separation of the magnetization dynamics of densely packed nanomagnets depending on their orientation. The arrays consist of interleaved sublattices of identical nickel elliptical disks. By controlling the orientation of the elliptic disks relative to the external field in each sublattice, we simultaneously analyzed the magnetization dynamics in each sublattice using a time-resolved magnetooptic Kerr effect (TR-MOKE) microscopy system. The Fourier spectra showed clearly separated precession modes for sublattices with different orientations. The spectra were shown to be robust against the error in applied field orientation. The sublattice response can be tuned to a single collective frequency by choosing a symmetric field orientation. We analyzed the effect of the interelement coupling with various spacing between nanomagnets and found a relatively weak dependence on dipolar interactions in good agreement with micromagnetic simulations.

  14. QUANTIFYING WILDLIFE ORIENTATION

    African Journals Online (AJOL)

    environment (P);. Attitudes expressed towards the natural environment (A);. Activity, or the involvement of a person in conservation actions in the broader sense {I). Different combinations of these functions give rise to four typologies of orientation. (Newgard et al., 1986) in the following way: TYPOLOGY. CHARACTERISTICS.

  15. Orientals and Orientalists

    DEFF Research Database (Denmark)

    Reade, Julian

    2004-01-01

    Reviews three books on archaeology. "Possessors and Possessed: Museums, Archaeology, and the Visualization of History in the Late Ottoman Empire," by Wendy M. K. Shaw; "Orientalism and Visual Culture: Imagining Mesapotamia in Nineteenth-Century Europe," by Frederick N. Bohrer; "Empires of the Pla......: Henry Rawlinson and the Lost Languages of Babylon," by Lesley Adkins....

  16. Management oriented process

    International Nuclear Information System (INIS)

    2004-01-01

    ANAV decided to implement process-oriented management by adopting the U. S. NEI (Nuclear Electric Industry) model. The article describes the initial phases of the project, its current status and future prospects. The project has been considered as an improvement in the areas of organization and human factors. Recently, IAEA standard drafts are including processes as an accepted management model. (Author)

  17. Aspect-Oriented Programming

    NARCIS (Netherlands)

    Lopes, C.; Bergmans, Lodewijk; Lopes, C.

    1999-01-01

    Aspect-oriented programming is a promising idea that can improve the quality of software by reduce the problem of code tangling and improving the separation of concerns. At ECOOP’97, the first AOP workshop brought together a number of researchers interested in aspectorientation. At ECOOP’98, during

  18. Managing Entrepreneurial Orientation

    NARCIS (Netherlands)

    S. van Doorn (Sebastiaan)

    2012-01-01

    textabstractIn this dissertation, we evaluate the roles senior management teams and individual middle managers play in realizing the performance benefits of entrepreneurial orientations. We investigate the role of senior management teams by focusing on a sample of 9.000 firms in the Netherlands. The

  19. Component-oriented programming

    NARCIS (Netherlands)

    Bosch, J; Szyperski, C; Weck, W; Buschmann, F; Buchmann, AP; Cilia, MA

    2003-01-01

    This report covers the eighth Workshop on Component-Oriented Programming (WCOP). WCOP has been affiliated with ECOOP since its inception in 1996. The report summarizes the contributions made by authors of accepted position papers as well as those made by all attendees of the workshop sessions.

  20. Dark coupling

    International Nuclear Information System (INIS)

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2009-01-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed

  1. Accuracy analysis of exterior orientation elements on vertical parallax in POS-supported aerial photogrammetry

    Science.gov (United States)

    Wu, Zhenli; Yuan, Xiuxiao

    2009-10-01

    This paper analyzes the effect of exterior orientation elements on vertical parallax, especially using the orientation parameters of aerial images obtained by a POS (Positioning and Orientation System) after calibration. Firstly, based on the theory of analytical relative orientation of consecutive photo connection, the exterior orientation elements can be easily translated to relative orientation elements. Then, the formula of vertical parallax can be deduced. The results of vertical parallax in left image space coordinate system are compared with the results calculated in the image coordinate system which are parallel to those of the object coordinate system. The validity and feasibility of the mathematical model are tested using two sets of actual data at different images scales. Finally, the differences between the effects of exterior orientation parameters on vertical parallax are compared using exterior orientation parameters obtained by traditional bundle block adjustment and by a POS after calibrated. And how the single element of exterior orientation effected on vertical parallax and how they worked together are analyzed. The empirical results indicate that the effects of different elements of exterior orientation on vertical parallax are different, all exterior orientation parameters can be affected by each other, so the overall effect of vertical parallax accuracy can be restricted by all exterior orientation parameters.

  2. A Reference-Free and Non-Contact Method for Detecting and Imaging Damage in Adhesive-Bonded Structures Using Air-Coupled Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Timotius Yonathan Sunarsa

    2017-12-01

    Full Text Available Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.

  3. Lower maximum standardized uptake value of fluorine-18 fluorodeoxyglucose positron emission tomography coupled with computed tomography imaging in pancreatic ductal adenocarcinoma patients with diabetes.

    Science.gov (United States)

    Chung, Kwang Hyun; Park, Joo Kyung; Lee, Sang Hyub; Hwang, Dae Wook; Cho, Jai Young; Yoon, Yoo-Seok; Han, Ho-Seong; Hwang, Jin-Hyeok

    2015-04-01

    The effects of diabetes mellitus (DM) on sensitivity of fluorine-18 fluorodeoxyglucose positron emission tomography coupled with computed tomography ((18)F-FDG PET/CT) for diagnosing pancreatic ductal adenocarcinomas (PDACs) is not well known. This study was aimed to evaluate the effects of DM on the validity of (18)F-FDG PET/CT in PDAC. A total of 173 patients with PDACs who underwent (18)F-FDG PET/CT were enrolled (75 in the DM group and 98 in the non-DM group). The maximum standardized uptake values (SUVsmax) were compared. The mean SUVmax was significantly lower in the DM group than in the non-DM group (4.403 vs 5.998, P = .001). The sensitivity of SUVmax (cut-off value 4.0) was significantly lower in the DM group than in the non-DM group (49.3% vs 75.5%, P < .001) and also lower in normoglycemic DM patients (n = 24) than in non-DM patients (54.2% vs 75.5%, P = .038). DM contributes to a lower SUVmax of (18)F-FDG PET/CT in patients with PDACs. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Prior implicit knowledge shapes human threshold for orientation noise

    DEFF Research Database (Denmark)

    Christensen, Jeppe H; Bex, Peter J; Fiser, József

    2015-01-01

    , resulting in an image-class-specific threshold that changes the shape and position of the dipper function according to image class. These findings do not fit a filter-based feed-forward view of orientation coding, but can be explained by a process that utilizes an experience-based perceptual prior...

  5. Deep Space Detection of Oriented Ice Crystals

    Science.gov (United States)

    Marshak, A.; Varnai, T.; Kostinski, A. B.

    2017-12-01

    The deep space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.

  6. Market oriented approach by public utilities

    Energy Technology Data Exchange (ETDEWEB)

    Mantel, J J; Verkuil, J M

    1989-08-01

    Public utilities, especially the larger ones, have an image of being inefficient, technocratic and bureaucratic institutions, unresponsive to modern lifestyles, growing consumerism, differentiated customer needs and changing social values. Improving this image and increasing customer satisfaction requires the adoption of a systematic market oriented approach, based on an appropriate segmentation of the client and general public. This article gives the broad outline of such an approach followed by some generally applicable practical recommendations. Finally it stresses the importance of human aspects of organizational behaviour and, consequently, the crucial part of corporate culture. 2 figs., 1 tab.

  7. Value oriented strategic marketing

    Directory of Open Access Journals (Sweden)

    Milisavljević Momčilo

    2013-01-01

    Full Text Available Changes in today's business environment require companies to orient to strategic marketing. The company accepting strategic marketing has a proactive approach and focus on continuous review and reappraisal of existing and seeking new strategic business areas. Difficulties in achieving target profit and growth require turning marketing from the dominant viewpoint of the tangible product to creating superior value and developing relationships with customers. Value orientation implies gaining competitive advantage through continuous research and understanding of what value represents to the consumers and discovering new ways to meet their required values. Strategic marketing investment requires that the investment in the creation of values should be regularly reviewed in order to ensure a focus on customers with high profit potential and environmental value. This increases customer satisfaction and retention and long-term return on investment of companies.

  8. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  9. Cerro Largo South orientation

    International Nuclear Information System (INIS)

    Pradier, B.

    1982-01-01

    This work is about Cerro Largo South orientation. The site is located in the northeast of Uruguay in the south of Melo city, Department of Cerro Largo. The study was carried out in the young edge socket in the East side of a small valley. This metamorphic socket constituted by gneisses and crystalline limestone are in contact with upper carboniferous formations and basal deposits composed by sandstones and conglomerates

  10. Editorial: International Entrepreneurial Orientation

    OpenAIRE

    Krzysztof Wach

    2015-01-01

    In recent decades, both the theory of internationalisation of the firm and/or the theory of international business have developed. Recent developments in international business studies prove that entrepreneurial orientation (EO) emerges as one of the important potential factors contributing to the intensification of the processes of internationalisation of the firm (Etemad, 2015; Gupta & Gupta, 2015). It seems that international entrepreneurship (IE) has been flourishing. The general theory o...

  11. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification.

    Science.gov (United States)

    Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes

    2018-02-01

    Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.

  12. Club d'orientation

    CERN Multimedia

    Club d'orientation

    2014-01-01

    Courses d’orientation ce printemps Le Club d’orientation du CERN vous invite à venir découvrir la course d’orientation et vous propose, en partenariat avec d’autres clubs de la région, une dizaine de courses populaires. Celles-ci ont lieu les samedis après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Si vous êtes débutant vous pouvez profiter d’une petite initiation offerte par l’organisateur avant de vous lancer sur un parcours. Divers types de parcours sont à votre choix lors de chaque épreuve: facile court (2-3 km), facile moyen (3-5 km), technique court (3-4 km), technique moyen (4-5 km) et technique long (5-7 km). Les dates à retenir sont les suivantes pour la coupe genevoise de printemps: Samedi 22 mars: Apples (...

  13. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    Science.gov (United States)

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2014-05-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA, USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells' nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore, we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may

  14. Dynamics of molecular stereochemistry via oriented molecule scattering

    International Nuclear Information System (INIS)

    Parker, D.H.; Jalink, H.; Stolte, S.

    1987-01-01

    Crossed-beam reactive scattering experiments employing electrostatic hexapole fields to control the initial collision geometry of chemical reactions are described. New results are presented on the reactions of oriented NO with ozone and oriented N 2 O with Ba. Preliminary results are also given for the oriented CH 3 F + Ca* → CaF* + CH 3 reaction. Recent technical advances in state selection and product detection are detailed. They discuss the effects of rotational coupling and nonzero impact parameters in changing the molecular precollisions orientation selected by the hexapole fields to a different in-collision orientation at the moment of impact with the reaction partner. Uncoupling of l doubling in N 2 O at strong orientation fields is demonstrated via the observed reactive anisotropy. Steric effects are found to govern many aspects of the reactions investigated thus far. Strong correlations are observed of the reactivity, product recoil, and rotational angular momentum distributions with the collisional orientation. These correlations ultimately provide information on the anisotropic part of the reaction potential energy surface. They conclude with a brief outline of possible future directions in oriented molecule scattering

  15. Evaluation of trauma service orientation.

    Science.gov (United States)

    Schott, Eric

    2010-02-01

    Orientation of residents to clinical services may be criticized as cumbersome, dull, and simplytoo much information. With the mandated resident-hour restrictions, the question arose: Do residents perceive the orientation to our trauma service as worthwhile? Residents attend a standardized orientation lecture on the first day of the rotation. Three weeks later, an eight-item, five-point Likert-scale survey is distributed to assess the residents' perceptions of the value of the orientation. Responses to each item were examined. Fifty-four (92%) of the residents completed the questionnaire between September 2005 and August 2006. Most indicated that orientation was helpful (85%), the Trauma Resuscitation DVD was informative (82%), the review of procedures was helpful (82%), and the instructor's knowledge was adequate (94%). Most (92%) disagreed with the statement that orientation should not be offered. Careful attention to orientation content and format is important to the perception that the orientation is worthwhile.

  16. ICARUS+NESSiE: A proposal for short baseline neutrino anomalies with innovative LAr imaging detectors coupled with large muon spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Gibin, D., E-mail: daniele.gibin@pd.infn.it

    2013-04-15

    The proposal for an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam is presented. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN “Far” position. An additional 1/4 of the T600 detector will be constructed and located in the “Near” position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out. Any difference of the event distributions at the locations of the two detectors might be attributed to the possible existence of ν-oscillations, presumably due to additional neutrinos with a mixing angle sin{sup 2}(2θ{sub new}) and a larger mass difference Δm{sub new}{sup 2}. The superior quality of the LAr imaging TPC, in particular its unique electron-π{sub 0} discrimination allows full rejection of backgrounds and offers a lossless ν{sub e} detection capability. The determination of the muon charge with the spectrometers allows the full separation of ν{sub μ} from anti-ν{sub μ} and therefore controlling systematics from muon mis-identification largely at high momenta.

  17. ICARUS+NESSiE: A proposal for short baseline neutrino anomalies with innovative LAr imaging detectors coupled with large muon spectrometers

    Science.gov (United States)

    Gibin, D.

    2013-04-01

    The proposal for an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam is presented. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CER