WorldWideScience

Sample records for coupled hydrological-ecological approach

  1. Exchange processes at geosphere-biosphere interface. Current SKB approach and example of coupled hydrological-ecological approach

    Energy Technology Data Exchange (ETDEWEB)

    Woerman, Anders [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Biometry and Technology

    2003-09-01

    The design of the repository for final disposal of spent nuclear fuel proposed by SKB is based on a multi-barrier system, in which the geosphere and biosphere are the utmost barrier surrounding the engineer barriers. This report briefly reviews the current approach taken by SKB to account for hydrological and ecological processes at the geosphere-biosphere interface (GBI) and their future plans in this area. A simple analysis was performed to shift the focus of performance assessment involving geosphere-biosphere interface modelling from the very simplistic assumption that the quaternary sediments are bypassed to one in which a more detailed model for sub-surface flows is included. This study indicated that, for many assumed ecosystem descriptions, the presence of the GBI leads to lower maximum doses to individual humans compared to a case when the GBI is neglected. This effect is due to the additional 'barrier' offered by the GBI. The main exposure pathways were assumed to occur through the food web. However, particularly the leakage on land through the stream-network and lakes can lead to higher doses due to ecosystem interaction with arable land. A scenario that gives particularly long duration of doses occurs due to land rise and with the transformation of the former bay and lake bed sediments into agricultural land. This effect is due to the significant retention or accumulation in aquatic sediment, which causes high activities to build up with time. Particularly, in combination with changing conditions in climate, humans life-style or geographic conditions (land rise, deforestation,etc.) doses to individual humans can be large.

  2. Exchange processes at geosphere-biosphere interface. Current SKB approach and example of coupled hydrological-ecological approach

    International Nuclear Information System (INIS)

    Woerman, Anders

    2003-09-01

    The design of the repository for final disposal of spent nuclear fuel proposed by SKB is based on a multi-barrier system, in which the geosphere and biosphere are the utmost barrier surrounding the engineer barriers. This report briefly reviews the current approach taken by SKB to account for hydrological and ecological processes at the geosphere-biosphere interface (GBI) and their future plans in this area. A simple analysis was performed to shift the focus of performance assessment involving geosphere-biosphere interface modelling from the very simplistic assumption that the quaternary sediments are bypassed to one in which a more detailed model for sub-surface flows is included. This study indicated that, for many assumed ecosystem descriptions, the presence of the GBI leads to lower maximum doses to individual humans compared to a case when the GBI is neglected. This effect is due to the additional 'barrier' offered by the GBI. The main exposure pathways were assumed to occur through the food web. However, particularly the leakage on land through the stream-network and lakes can lead to higher doses due to ecosystem interaction with arable land. A scenario that gives particularly long duration of doses occurs due to land rise and with the transformation of the former bay and lake bed sediments into agricultural land. This effect is due to the significant retention or accumulation in aquatic sediment, which causes high activities to build up with time. Particularly, in combination with changing conditions in climate, humans life-style or geographic conditions (land rise, deforestation,etc.) doses to individual humans can be large

  3. Coupled hydrological, ecological, decision and economic models for monetary valuation of riparian ecosystem services

    Science.gov (United States)

    Goodrich, D. C.; Brookshire, D.; Broadbent, C.; Dixon, M. D.; Brand, L. A.; Thacher, J.; Benedict, K. K.; Lansey, K. E.; Stromberg, J. C.; Stewart, S.; McIntosh, M.

    2011-12-01

    Water is a critical component for sustaining both natural and human systems. Yet the value of water for sustaining ecosystem services is not well quantified in monetary terms. Ideally decisions involving water resource management would include an apples-to-apples comparison of the costs and benefits in dollars of both market and non-market goods and services - human and ecosystem. To quantify the value of non-market ecosystem services, scientifically defensible relationships must be developed that link the effect of a decision (e.g. human growth) to the change in ecosystem attributes from current conditions. It is this linkage that requires the "poly-disciplinary" coupling of knowledge and models from the behavioral, physical, and ecological sciences. In our experience another key component of making this successful linkage is development of a strong poly-disciplinary scientific team that can readily communicate complex disciplinary knowledge to non-specialists outside their own discipline. The time to build such a team that communicates well and has a strong sense of trust should not be underestimated. The research described in the presentation incorporated hydrologic, vegetation, avian, economic, and decision models into an integrated framework to determine the value of changes in ecological systems that result from changes in human water use. We developed a hydro-bio-economic framework for the San Pedro River Region in Arizona that considers groundwater, stream flow, and riparian vegetation, as well as abundance, diversity, and distribution of birds. In addition, we developed a similar framework for the Middle Rio Grande of New Mexico. There are six research components for this project: (1) decision support and scenario specification, (2) regional groundwater model, (3) the riparian vegetation model, (4) the avian model, (5) methods for displaying the information gradients in the valuation survey instruments (Choice Modeling and Contingent Valuation), and (6

  4. Betatron coupling: Merging Hamiltonian and matrix approaches

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2005-03-01

    Full Text Available Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider.

  5. Hydrologic, ecologic, and geomorphic responses of Brewery Creek to construction of a residential subdivision, Dane County, Wisconsin, 1999-2002

    Science.gov (United States)

    Selbig, William R.; Jopke, Peter L.; Marhshall, David W.; Sorge, Michael J.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Dane County Land Conservation Department (LCD) and the Wisconsin Department of Natural Resources (DNR), investigated the instream effects from construction of a residential subdivision on Brewery Creek in Dane County, Wisconsin. The purpose of the investigation was to determine whether a variety of storm-runoff and erosion-control best-management practices (BMPs) would effectively control the overall sediment load, as well as minimize any hydrologic, ecologic, and geomorphic stresses to Brewery Creek.

  6. Integrating Hydrology, Ecology, and Biogeochemistry in Stormwater Management: the Vermont Experience

    Science.gov (United States)

    Bowden, W. B.

    2005-12-01

    achieve these targets. This approach is firmly grounded in first principles of stormwater hydrology and recognition of the impacts of altered hydrology on stream ecology and biogeochemistry. Stakeholders have accepted the approach because it is objective, defensible, and subject to future, quantitative analysis and adjustment (adaptive management). This approach is not specific to Vermont and could be employed in any region.

  7. Hydrological, ecological, land use, economic, and sociocultural evidence for resilience of traditional irrigation communities in New Mexico, USA

    Science.gov (United States)

    Fernald, A.; Guldan, S.; Boykin, K.; Cibils, A.; Gonzales, M.; Hurd, B. H.; Lopez, S.; Ochoa, C. G.; Ortiz, M.; Rivera, J.; Rodriguez, S.; Steele, C. M.

    2014-02-01

    Southwestern US irrigated landscapes are facing upheaval due to climate change-induced water scarcity and economic change-induced land use conversion. Clues to community longevity are found in the traditionally irrigated valleys of northern New Mexico. Human systems have interacted with hydrologic processes over the last 400 yr in river fed irrigated valleys to create linked systems. In this study, we asked if concurrent data from multiple disciplines show that human adapted hydrologic and socioeconomic systems have created conditions for resilience. We identify and describe several areas of resilience: hydrological, ecological, land use, economic, and sociocultural. We found that there are multiple hydrologic benefits of the water seepage from the traditional irrigation systems; it recharges groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. In terms of land use and economics, place-based adaptability manifests itself in transformations of irrigation infrastructure and specific animal and crop systems; as grazing has diminished over time on public land watersheds, it has increased on irrigated valley pastures while outside income allows irrigators to retain their land. Sociocultural evidence shows that traditional local knowledge about the hydrosocial cycle of acequia operations is a key factor in acequia resilience. When irrigators are confronted with unexpected disturbances or changing climate that affect water supply, they adapt specific practices while maintaining community cohesion. Our ongoing work will quantify the multiple disciplinary components of these systems, translate them into a common language of causal loop diagrams, and model future scenarios to identify thresholds and tipping points of sustainability. Early indications are that these systems are not immune to upheaval, but have astonishing resilience.

  8. Development of the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW): an application to the Heihe River Basin

    Science.gov (United States)

    Tian, Y.; Zheng, Y.; Zheng, C.; Han, F., Sr.

    2017-12-01

    Physically based and fully-distributed integrated hydrological models (IHMs) can quantitatively depict hydrological processes, both surface and subsurface, with sufficient spatial and temporal details. However, the complexity involved in pre-processing data and setting up models seriously hindered the wider application of IHMs in scientific research and management practice. This study introduces our design and development of Visual HEIFLOW, hereafter referred to as VHF, a comprehensive graphical data processing and modeling system for integrated hydrological simulation. The current version of VHF has been structured to accommodate an IHM named HEIFLOW (Hydrological-Ecological Integrated watershed-scale FLOW model). HEIFLOW is a model being developed by the authors, which has all typical elements of physically based and fully-distributed IHMs. It is based on GSFLOW, a representative integrated surface water-groundwater model developed by USGS. HEIFLOW provides several ecological modules that enable to simulate growth cycle of general vegetation and special plants (maize and populus euphratica). VHF incorporates and streamlines all key steps of the integrated modeling, and accommodates all types of GIS data necessary to hydrological simulation. It provides a GIS-based data processing framework to prepare an IHM for simulations, and has functionalities to flexibly display and modify model features (e.g., model grids, streams, boundary conditions, observational sites, etc.) and their associated data. It enables visualization and various spatio-temporal analyses of all model inputs and outputs at different scales (i.e., computing unit, sub-basin, basin, or user-defined spatial extent). The above system features, as well as many others, can significantly reduce the difficulty and time cost of building and using a complex IHM. The case study in the Heihe River Basin demonstrated the applicability of VHF for large scale integrated SW-GW modeling. Visualization and spatial

  9. Marriage Counseling: A Christian Approach to Counseling Couples.

    Science.gov (United States)

    Worthington, Everett L., Jr.

    1990-01-01

    Describes approach to marriage counseling based on cognitive behavioral therapy and structural and strategic marital therapies aimed at Christian couples. Uses shared Christian values between counselor and clients to promote increased marital commitment, marital satisfaction, and personal spiritual growth. Maintains marital satisfaction might be…

  10. Phi Photoproduction in a Coupled-Channel Approach

    NARCIS (Netherlands)

    Ozaki, S.; Nagahiro, H.; Hosaka, A.; Scholten, O.

    2010-01-01

    We investigate photoproduction of phi-mesons off protons within a coupled-channel effective-Lagrangian method which is based on the K-matrix approach. We take into account pi N, rho N, eta N, K Lambda, K Sigma, K Lambda (1520) and phi N channels. Especially we focus on K Lambda(1520) channel. We

  11. Effective field theory: A modern approach to anomalous couplings

    International Nuclear Information System (INIS)

    Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen

    2013-01-01

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics

  12. QED approach to the nuclear spin-spin coupling tensor

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Aucar, Gustavo A.

    2002-01-01

    A quantum electrodynamical approach for the calculation of the nuclear spin-spin coupling tensor of nuclear-magnetic-resonance spectroscopy is given. Quantization of radiation fields within the molecule is considered and expressions for the magnetic field in the neighborhood of a nucleus are calculated. Using a generalization of time-dependent response theory, an effective spin-spin interaction is obtained from the coupling of nuclear magnetic moments to a virtual quantized magnetic field. The energy-dependent operators obtained reduce to usual classical-field expressions at suitable limits

  13. Approaches for on-line coupling of extraction and chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Hyoetylaeinen, Tuulia; Riekkola, Marja-Liisa [Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki (Finland)

    2004-04-01

    This review provides an overview of the approaches available in order to perform on-line coupling of various extraction techniques with liquid and gas chromatography, for the analysis of semivolatile and nonvolatile analytes in liquid and solid samples. The main focus is on the instrumental set-up of these techniques. Selected real applications are described by way of illustration. The extraction methods suitable for on-line coupling covered in this review are: liquid-liquid extraction, solid-phase extraction, membrane-based techniques, pressurised liquid extraction, supercritical fluid extraction, and microwave- and sonication-assisted extractions. The following systems are not covered in this review: on-line coupled solid-phase extraction-liquid chromatography, purge-and-trap-GC, and membrane extraction with a sorbent interface-GC. (orig.)

  14. Dynamical coupled channel approach to omega meson production

    Energy Technology Data Exchange (ETDEWEB)

    Mark Paris

    2007-09-10

    The dynamical coupled channel approach of Matsuyama, Sato, and Lee is used to study the $\\omega$--meson production induced by pions and photons scattering from the proton. The parameters of the model are fixed in a two-channel (\\omega N,\\pi N) calculation for the non-resonant and resonant contributions to the $T$ matrix by fitting the available unpolarized differential cross section data. The polarized photon beam asymmetry is predicted and compared to existing data.

  15. A simplified approach for the coupling of excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Shi Bo [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Gao Fang, E-mail: gaofang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Liang Wanzhen [Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China)

    2012-02-06

    Highlights: Black-Right-Pointing-Pointer We propose a simple method to calculate the coupling of singlet-to-singlet and triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer. Black-Right-Pointing-Pointer Effect from the intermolecular charge-transfer states dorminates in triplet-to-triplet energy transfer. Black-Right-Pointing-Pointer This method can be expanded by including correlated wavefunctions. - Abstract: A simplified approach for computing the electronic coupling of nonradiative excitation-energy transfer is proposed by following Scholes et al.'s construction on the initial and final states [G.D. Scholes, R.D. Harcourt, K.P. Ghiggino, J. Chem. Phys. 102 (1995) 9574]. The simplification is realized through defining a set of orthogonalized localized MOs, which include the polarization effect of the charge densities. The method allows calculating the coupling of both the singlet-to-singlet and triplet-to-triplet energy transfer. Numerical tests are performed for a few of dimers with different intermolecular orientations, and the results demonstrate that Coulomb term are the major contribution to the coupling of singlet-to-singlet energy transfer whereas in the case of triplet-to-triplet energy transfer, the dominant effect is arisen from the intermolecular charge-transfer states. The present application is on the Hartree-Fock level. However, the correlated wavefunctions which are normally expanded in terms of the determinant wavefunctions can be employed in the similar way.

  16. Disarming jealousy in couples relationships: a multidimensional approach.

    Science.gov (United States)

    Scheinkman, Michele; Werneck, Denise

    2010-12-01

    Jealousy is a powerful emotional force in couples' relationships. In just seconds it can turn love into rage and tenderness into acts of control, intimidation, and even suicide or murder. Yet it has been surprisingly neglected in the couples therapy field. In this paper we define jealousy broadly as a hub of contradictory feelings, thoughts, beliefs, actions, and reactions, and consider how it can range from a normative predicament to extreme obsessive manifestations. We ground jealousy in couples' basic relational tasks and utilize the construct of the vulnerability cycle to describe processes of derailment. We offer guidelines on how to contain the couple's escalation, disarm their ineffective strategies and power struggles, identify underlying vulnerabilities and yearnings, and distinguish meanings that belong to the present from those that belong to the past, or to other contexts. The goal is to facilitate relational and personal changes that can yield a better fit between the partners' expectations. 2010 © FPI, Inc.

  17. Integrated approach for fusion multi-physics coupled analyses based on hybrid CAD and mesh geometries

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yuefeng, E-mail: yuefeng.qiu@kit.edu; Lu, Lei; Fischer, Ulrich

    2015-10-15

    Highlights: • Integrated approach for neutronics, thermal and structural analyses was developed. • MCNP5/6, TRIPOLI-4 were coupled with CFX, Fluent and ANSYS Workbench. • A novel meshing approach has been proposed for describing MC geometry. - Abstract: Coupled multi-physics analyses on fusion reactor devices require high-fidelity neutronic models, and flexible, accurate data exchanging between various calculation codes. An integrated coupling approach has been developed to enable the conversion of CAD, mesh, or hybrid geometries for Monte Carlo (MC) codes MCNP5/6, TRIPOLI-4, and translation of nuclear heating data for CFD codes Fluent, CFX and structural mechanical software ANSYS Workbench. The coupling approach has been implemented based on SALOME platform with CAD modeling, mesh generation and data visualization capabilities. A novel meshing approach has been developed for generating suitable meshes for MC geometry descriptions. The coupling approach has been concluded to be reliable and efficient after verification calculations of several application cases.

  18. Treating couples recovering from infidelity: an integrative approach.

    Science.gov (United States)

    Gordon, Kristina Coop; Baucom, Donald H; Snyder, Douglas K

    2005-11-01

    Infidelity is one of the most difficult problems to address in couple therapy, most likely because it involves a traumatic relationship event that alters the ways in which couples process information about each other and established behavioral patterns. We present a three-stage treatment designed to address the cognitive, behavioral, and emotional sequelae of affairs that integrates cognitive-behavioral and insight-oriented strategies with the literatures on traumatic response and forgiveness. A case study with pretreatment, posttreatment, and 6-month follow-up data is presented to illustrate the treatment methods.

  19. Dynamics of coupled field solitons: A collective coordinate approach

    Indian Academy of Sciences (India)

    of the coupled fields with local inhomogeneity like a delta function potential .... The derivation of the collective action for the motion of the vortex centres .... We can define collective forces on solitons if we look at the above equations as F1 =.

  20. MULTISPECTRAL PANSHARPENING APPROACH USING PULSE-COUPLED NEURAL NETWORK SEGMENTATION

    Directory of Open Access Journals (Sweden)

    X. J. Li

    2018-04-01

    Full Text Available The paper proposes a novel pansharpening method based on the pulse-coupled neural network segmentation. In the new method, uniform injection gains of each region are estimated through PCNN segmentation rather than through a simple square window. Since PCNN segmentation agrees with the human visual system, the proposed method shows better spectral consistency. Our experiments, which have been carried out for both suburban and urban datasets, demonstrate that the proposed method outperforms other methods in multispectral pansharpening.

  1. Dirac potentials in a coupled channel approach to inelastic scattering

    International Nuclear Information System (INIS)

    Mishra, V.K.; Clark, B.C.; Cooper, E.D.; Mercer, R.L.

    1990-01-01

    It has been shown that there exist transformations that can be used to change the Lorentz transformation character of potentials, which appear in the Dirac equation for elastic scattering. We consider the situation for inelastic scattering described by coupled channel Dirac equations. We examine a two-level problem where both the ground and excited states are assumed to have zero spin. Even in this simple case we have not found an appropriate transformation. However, if the excited state has zero excitation energy it is possible to find a transformation

  2. Strong-coupling approach to nematicity in the cuprates

    Science.gov (United States)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  3. Coupling surface and mantle dynamics: A novel experimental approach

    Science.gov (United States)

    Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea

    2015-05-01

    Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.

  4. Constraining Unsaturated Hydraulic Parameters Using the Latin Hypercube Sampling Method and Coupled Hydrogeophysical Approach

    Science.gov (United States)

    Farzamian, Mohammad; Monteiro Santos, Fernando A.; Khalil, Mohamed A.

    2017-12-01

    The coupled hydrogeophysical approach has proved to be a valuable tool for improving the use of geoelectrical data for hydrological model parameterization. In the coupled approach, hydrological parameters are directly inferred from geoelectrical measurements in a forward manner to eliminate the uncertainty connected to the independent inversion of electrical resistivity data. Several numerical studies have been conducted to demonstrate the advantages of a coupled approach; however, only a few attempts have been made to apply the coupled approach to actual field data. In this study, we developed a 1D coupled hydrogeophysical code to estimate the van Genuchten-Mualem model parameters, K s, n, θ r and α, from time-lapse vertical electrical sounding data collected during a constant inflow infiltration experiment. van Genuchten-Mualem parameters were sampled using the Latin hypercube sampling method to provide a full coverage of the range of each parameter from their distributions. By applying the coupled approach, vertical electrical sounding data were coupled to hydrological models inferred from van Genuchten-Mualem parameter samples to investigate the feasibility of constraining the hydrological model. The key approaches taken in the study are to (1) integrate electrical resistivity and hydrological data and avoiding data inversion, (2) estimate the total water mass recovery of electrical resistivity data and consider it in van Genuchten-Mualem parameters evaluation and (3) correct the influence of subsurface temperature fluctuations during the infiltration experiment on electrical resistivity data. The results of the study revealed that the coupled hydrogeophysical approach can improve the value of geophysical measurements in hydrological model parameterization. However, the approach cannot overcome the technical limitations of the geoelectrical method associated with resolution and of water mass recovery.

  5. A fully-coupled approach combining plastic deformation and liquid lubrication

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin

    This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and theplastic deformation of the metallic material are solved simultaneously. The approach is applied to strip reduction of asheet with surface pockets in order to investigate the escape of the lubr......This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and theplastic deformation of the metallic material are solved simultaneously. The approach is applied to strip reduction of asheet with surface pockets in order to investigate the escape...

  6. Numerical Approach of Coupling Vibration Magneto-convection In Nanofluid

    Directory of Open Access Journals (Sweden)

    K Syham

    2016-06-01

    Full Text Available The objective of our work is to visualize numerically the effect of coupling vibratory excitation and magnetic field on cooling an electronic component or a solar cell (originality of our study in arid and semi-arid area. A square cavity of side H filled with Al2O3-water nanofluid where an electronic component is placed on the bottom horizontal wall is maintained at isothermal hot temperature Th. The top horizontal wall is maintained at a cold temperature Tc. The vertical walls are adiabatic. The equations describing the natural convection flow in the square cavity consist of mass conservation, momentum and energy. For the physical parameters of Al2O3-water nanofluid, we use the Brinkman and Wasp model. Transport equations are solved numerically by finite element method. The results are obtained for Rayleigh number Ra= 105, Hartmann numbers between 0 and 100 and vibratory excitation inclination angle between 0° and 90°. The external magnetic field inclination angle varies between 0° and 90° and the Rayleigh number ratio between 0 and 50.  Results are presented in the form of heat transfer flux ratio and maximum absolute value of stream function.

  7. All-possible-couplings approach to measuring probabilistic context.

    Directory of Open Access Journals (Sweden)

    Ehtibar N Dzhafarov

    Full Text Available From behavioral sciences to biology to quantum mechanics, one encounters situations where (i a system outputs several random variables in response to several inputs, (ii for each of these responses only some of the inputs may "directly" influence them, but (iii other inputs provide a "context" for this response by influencing its probabilistic relations to other responses. These contextual influences are very different, say, in classical kinetic theory and in the entanglement paradigm of quantum mechanics, which are traditionally interpreted as representing different forms of physical determinism. One can mathematically construct systems with other types of contextuality, whether or not empirically realizable: those that form special cases of the classical type, those that fall between the classical and quantum ones, and those that violate the quantum type. We show how one can quantify and classify all logically possible contextual influences by studying various sets of probabilistic couplings, i.e., sets of joint distributions imposed on random outputs recorded at different (mutually incompatible values of inputs.

  8. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  9. Magnetic coupling between liquid 3He and a solid state substrate: a new approach

    Science.gov (United States)

    Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko

    2000-07-01

    We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.

  10. Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls

    Science.gov (United States)

    Guha Ray, A.; Baidya, D. K.

    2012-09-01

    Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.

  11. Systemic-constructivist couple therapy (SCCT): Description of approach, theoretical advances, and published longitudinal evidence.

    Science.gov (United States)

    Reid, David W; Doell, Faye K; Dalton, E Jane; Ahmad, Saunia

    2008-12-01

    The systemic-constructivist approach to studying and benefiting couples was derived from qualitative and quantitative research on distressed couples over the past 10 years. Systemic-constructivist couple therapy (SCCT) is the clinical intervention that accompanies the approach. SCCT guides the therapist to work with both the intrapersonal and the interpersonal aspects of marriage while also integrating the social-environmental context of the couple. The theory that underlies SCCT is explained, including concepts such as we-ness and interpersonal processing. The primary components of the therapy are described. Findings described previously in an inaugural monograph containing extensive research demonstrating the long-term utility of SCCT are reviewed. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  12. An approach for coupled-code multiphysics core simulations from a common input

    International Nuclear Information System (INIS)

    Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; Pawlowski, Roger; Clarno, Kevin; Simunovic, Srdjan; Slattery, Stuart; Turner, John; Palmtag, Scott

    2015-01-01

    Highlights: • We describe an approach for coupled-code multiphysics reactor core simulations. • The approach can enable tight coupling of distinct physics codes with a common input. • Multi-code multiphysics coupling and parallel data transfer issues are explained. • The common input approach and how the information is processed is described. • Capabilities are demonstrated on an eigenvalue and power distribution calculation. - Abstract: This paper describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which is built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak

  13. A Comparison of Approach and Avoidance Sexual Goals in Couples With Vulvodynia and Community Controls.

    Science.gov (United States)

    Dubé, Justin P; Bergeron, Sophie; Muise, Amy; Impett, Emily A; Rosen, Natalie O

    2017-11-01

    Provoked vestibulodynia (PVD) is a prevalent form of vulvodynia that interferes with the sexual and relational functioning of affected couples. Approach and avoidance sexual goals are associated with the sexual and relationship well-being of women with PVD and their partners. However, whether sexual goals differ in couples coping with PVD compared with community couples is unknown. To compare the approach and avoidance sexual goals of women with PVD and their partners with a control sample of community women and their partners to build on an established motivational model and to compare the sexual goals of women with PVD with those of their partners. Women diagnosed with PVD and their partners (n = 161) and control couples (n = 172) completed measures of approach and avoidance sexual goals. Approach and Avoidance Sexual Goals Questionnaire. Women with PVD reported lower approach and higher avoidance sexual goals than control women, whereas partners of women with PVD did not differ from control partners in their sexual goals. Women with PVD also reported lower approach and higher avoidance sexual goals compared with their partners, whereas there were no differences between partners in the control sample. Given that avoidance sexual goals have been linked to negative sexual and relational outcomes, clinicians could strive to help couples with PVD become aware of their sexual motives, with the aim of weakening avoidance sexual goals and bolstering approach sexual goals. This is the first study to empirically document differences in sexual goals between couples affected by PVD and community couples. Limitations include the study's correlational design, differences in demographic characteristics between samples, and the homogeneity of participants' sexual orientation. Findings suggest that the sexual goals of women affected by PVD differ from those of community women and from their partners and support sexual goals as targets for psychological interventions to help

  14. A tightly-coupled domain-decomposition approach for highly nonlinear stochastic multiphysics systems

    Energy Technology Data Exchange (ETDEWEB)

    Taverniers, Søren; Tartakovsky, Daniel M., E-mail: dmt@ucsd.edu

    2017-02-01

    Multiphysics simulations often involve nonlinear components that are driven by internally generated or externally imposed random fluctuations. When used with a domain-decomposition (DD) algorithm, such components have to be coupled in a way that both accurately propagates the noise between the subdomains and lends itself to a stable and cost-effective temporal integration. We develop a conservative DD approach in which tight coupling is obtained by using a Jacobian-free Newton–Krylov (JfNK) method with a generalized minimum residual iterative linear solver. This strategy is tested on a coupled nonlinear diffusion system forced by a truncated Gaussian noise at the boundary. Enforcement of path-wise continuity of the state variable and its flux, as opposed to continuity in the mean, at interfaces between subdomains enables the DD algorithm to correctly propagate boundary fluctuations throughout the computational domain. Reliance on a single Newton iteration (explicit coupling), rather than on the fully converged JfNK (implicit) coupling, may increase the solution error by an order of magnitude. Increase in communication frequency between the DD components reduces the explicit coupling's error, but makes it less efficient than the implicit coupling at comparable error levels for all noise strengths considered. Finally, the DD algorithm with the implicit JfNK coupling resolves temporally-correlated fluctuations of the boundary noise when the correlation time of the latter exceeds some multiple of an appropriately defined characteristic diffusion time.

  15. The feminist/emotionally focused therapy practice model: an integrated approach for couple therapy.

    Science.gov (United States)

    Vatcher, C A; Bogo, M

    2001-01-01

    Emotionally focused therapy (EFT) is a well-developed, empirically tested practice model for couple therapy that integrates systems, experiential, and attachment theories. Feminist family therapy theory has provided a critique of biased assumptions about gender at play in traditional family therapy practice and the historical absence of discussions of power in family therapy theory. This article presents an integrated feminist/EFT practice model for use in couple therapy, using a case from practice to illustrate key concepts. Broadly, the integrated model addresses gender roles and individual emotional experience using a systemic framework for understanding couple interaction. The model provides practitioners with a sophisticated, comprehensive, and relevant practice approach for working with the issues and challenges emerging for contemporary heterosexual couples.

  16. Typology of Couples Entering Alcohol Behavioral Couple Therapy: An Empirical Approach and Test of Predictive Validity on Treatment Response.

    Science.gov (United States)

    Ladd, Benjamin O; McCrady, Barbara S

    2016-01-01

    This study aimed to examine whether classification of couples in which one partner has an alcohol problem is similar to that reported in the general couples literature. Typologies of couples seeking alcohol behavioral couple therapy (ABCT) were developed via hierarchical cluster analysis using behavioral codes of couple interactions during their first ABCT session. Four couples types based on in-session behavior were established reliably, labeled avoider, validator, hostile, and ambivalent-detached. These couple types resembled couples types found in previous research. Couple type was associated with baseline relationship satisfaction, but not alcohol use. Results suggest heterogeneity in couples with alcohol problems presenting to treatment; further study is needed to investigate the function of alcohol within these different types. © 2015 American Association for Marriage and Family Therapy.

  17. Sexual challenges with aging: integrating the GES approach in an elderly couple.

    Science.gov (United States)

    McCarthy, Barry; Pierpaoli, Christina

    2015-01-01

    An advantage of sexuality after 60 years of age is the increased need for couple involvement to promote desire, pleasure, eroticism, and satisfaction inherent to the healthy aging process. This case study clinically explores the complex psychobiosocial interactions for understanding, assessing, and treating sexual problems for couples age 60 years and older, emphasizing the Good Enough Sex approach of variable, flexible, and shared sexual pleasure. Aging couples are discouraged from appraising their sexual experiences within the parameters of the pass/fail binary of the traditional individual performance model and are instead encouraged to embrace the evolving elasticity of their sexual experiences. The Good Enough Sex model espouses an approachable and satisfying alternative for the promotion of sexual function and satisfaction throughout the life span, with particular interest in late adulthood sexual health.

  18. An agent-based negotiation approach for balancing multiple coupled control domains

    DEFF Research Database (Denmark)

    Umair, Aisha; Clausen, Anders; Jørgensen, Bo Nørregaard

    2015-01-01

    Solving multi-objective multi-issue negotiation problems involving interdependent issues distributed among multiple control domains is inherent to most non-trivial cyber-physical systems. In these systems, the coordinated operation of interconnected subsystems performing autonomous control....... The proposed approach can solve negotiation problems with interdependent issues across multiple coupled control domains. We demonstrate our approach by solving a coordination problem where a Combined Heat and Power Plant must allocate electricity for three commercial greenhouses to ensure the required plant...

  19. Photon control by multi-periodic binary grating waveguides: A coupled-mode theory approach

    DEFF Research Database (Denmark)

    Adam, Jost; Lüder, Hannes; Gerken, Martina

    only lead to quantitative results outside the device’s band gaps, since only radiative propagation loss is calculated.n order to provide more physical and quantitative insight to grating-induced waveguide losses, we implemented a coupled-mode theory (CMT) approach for the semi-analytical treatment...

  20. Geometry Optimization Approaches of Inductively Coupled Printed Spiral Coils for Remote Powering of Implantable Biomedical Sensors

    Directory of Open Access Journals (Sweden)

    Sondos Mehri

    2016-01-01

    Full Text Available Electronic biomedical implantable sensors need power to perform. Among the main reported approaches, inductive link is the most commonly used method for remote powering of such devices. Power efficiency is the most important characteristic to be considered when designing inductive links to transfer energy to implantable biomedical sensors. The maximum power efficiency is obtained for maximum coupling and quality factors of the coils and is generally limited as the coupling between the inductors is usually very small. This paper is dealing with geometry optimization of inductively coupled printed spiral coils for powering a given implantable sensor system. For this aim, Iterative Procedure (IP and Genetic Algorithm (GA analytic based optimization approaches are proposed. Both of these approaches implement simple mathematical models that approximate the coil parameters and the link efficiency values. Using numerical simulations based on Finite Element Method (FEM and with experimental validation, the proposed analytic approaches are shown to have improved accurate performance results in comparison with the obtained performance of a reference design case. The analytical GA and IP optimization methods are also compared to a purely Finite Element Method based on numerical optimization approach (GA-FEM. Numerical and experimental validations confirmed the accuracy and the effectiveness of the analytical optimization approaches to design the optimal coil geometries for the best values of efficiency.

  1. Photo-Ionization of Noble Gases: A Demonstration of Hybrid Coupled Channels Approach

    Directory of Open Access Journals (Sweden)

    Vinay Pramod Majety

    2015-01-01

    Full Text Available We present here an application of the recently developed hybrid coupled channels approach to study photo-ionization of noble gas atoms: Neon and Argon. We first compute multi-photon ionization rates and cross-sections for these inert gas atoms with our approach and compare them with reliable data available from R-matrix Floquet theory. The good agreement between coupled channels and R-matrix Floquet theory show that our method treats multi-electron systems on par with the well established R-matrix theory. We then apply the time dependent surface flux (tSURFF method with our approach to compute total and angle resolved photo-electron spectra from Argon with linearly and circularly polarized 12 nm wavelength laser fields, a typical wavelength available from Free Electron Lasers (FELs.

  2. Low-energy coupling of individual and collective degrees of freedom: a general microscopic approach

    International Nuclear Information System (INIS)

    Quentin, P.; Meyer, M.

    1988-01-01

    A general microscopic approach of low energy coupling of individual and collective degrees of freedom is presented. The ingredients of a Bohr-Mottelson unified model description are determined consistently from the Skyrme SIII effective interaction, through the adiabatic limit of the time-dependent Hartree-Fock-Bogoliubov approximation. Three specific aspects will be mostly developed: i) the effect of pairing correlations on adiabatic mass parameters and collective dynamics; ii) a consistent coupling of collective and individual degrees of freedom to describe odd nuclei; iii) a study of spectroscopic data in odd-odd nuclei as a test of effective nucleon-nucleon interactions. (author)

  3. Transition to Coherence in Populations of Coupled Chaotic Oscillators: A Linear Response Approach

    International Nuclear Information System (INIS)

    Topaj, Dmitri; Kye, Won-Ho; Pikovsky, Arkady

    2001-01-01

    We consider the collective dynamics in an ensemble of globally coupled chaotic maps. The transition to the coherent state with a macroscopic mean field is analyzed in the framework of the linear response theory. The linear response function for the chaotic system is obtained using the perturbation approach to the Frobenius-Perron operator. The transition point is defined from this function by virtue of the self-excitation condition for the feedback loop. Analytical results for the coupled Bernoulli maps are confirmed by the numerics

  4. An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2014-01-01

    Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

  5. Dependence of synchronization transitions on mean field approach in two-way coupled neural system

    Science.gov (United States)

    Shi, J. C.; Luo, M.; Huang, C. S.

    2018-03-01

    This work investigates the synchronization transitions in two-way coupled neural system by mean field approach. Results show that, there exists a critical noise intensity for the synchronization transitions, i.e., above (or below) the critical noise intensity, the synchronization transitions are decreased (or hardly change) with increasing the noise intensity. Meanwhile, the heterogeneity effect plays a negative role for the synchronization transitions, and above critical coupling strength, the heterogeneity effect on synchronization transitions can be negligible. Furthermore, when an external signal is introduced into the coupled system, the novel frequency-induced and amplitude-induced synchronization transitions are found, and there exist an optimal frequency and an optimal amplitude of external signal which makes the system to display the best synchronization transitions. In particular, it is observed that the synchronization transitions can not be further affected above critical frequency of external signal.

  6. Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong H., E-mail: myeong.lee@warwick.ac.uk; Troisi, Alessandro [Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-06-07

    Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.

  7. An innovative computationally efficient hydromechanical coupling approach for fault reactivation in geological subsurface utilization

    Science.gov (United States)

    Adams, M.; Kempka, T.; Chabab, E.; Ziegler, M.

    2018-02-01

    Estimating the efficiency and sustainability of geological subsurface utilization, i.e., Carbon Capture and Storage (CCS) requires an integrated risk assessment approach, considering the occurring coupled processes, beside others, the potential reactivation of existing faults. In this context, hydraulic and mechanical parameter uncertainties as well as different injection rates have to be considered and quantified to elaborate reliable environmental impact assessments. Consequently, the required sensitivity analyses consume significant computational time due to the high number of realizations that have to be carried out. Due to the high computational costs of two-way coupled simulations in large-scale 3D multiphase fluid flow systems, these are not applicable for the purpose of uncertainty and risk assessments. Hence, an innovative semi-analytical hydromechanical coupling approach for hydraulic fault reactivation will be introduced. This approach determines the void ratio evolution in representative fault elements using one preliminary base simulation, considering one model geometry and one set of hydromechanical parameters. The void ratio development is then approximated and related to one reference pressure at the base of the fault. The parametrization of the resulting functions is then directly implemented into a multiphase fluid flow simulator to carry out the semi-analytical coupling for the simulation of hydromechanical processes. Hereby, the iterative parameter exchange between the multiphase and mechanical simulators is omitted, since the update of porosity and permeability is controlled by one reference pore pressure at the fault base. The suggested procedure is capable to reduce the computational time required by coupled hydromechanical simulations of a multitude of injection rates by a factor of up to 15.

  8. Enhancing the Relationship Adjustment of South Asian Canadian Couples Using a Systemic-Constructivist Approach to Couple Therapy.

    Science.gov (United States)

    Ahmad, Saunia; Reid, David W

    2016-10-01

    The effectiveness of systemic-constructivist couple therapy (SCCT) in improving the relationship adjustment of South Asian Canadian couples in ways that attend to their culture was evaluated. The SCCT interventions engage partners in reflexive processing of both their own and their partner's ways of construing, and the reciprocity between these two. A core change mechanism of SCCT, couple identity ("we-ness"), that connotes the ability for thinking and experiencing relationally, was coded from verbatim transcripts of partners' within-session dialogue. As predicted, South Asian partners' relationship adjustment improved significantly from the first to final session of SCCT, and concurrent increases in each partner's couple identity mediated such improvements. The implications for considering culture and couple identity in couple therapy are discussed. Video Abstract is found in the online version of the article. © 2016 American Association for Marriage and Family Therapy.

  9. Robust adiabatic approach to optical spin entangling in coupled quantum dots

    International Nuclear Information System (INIS)

    Gauger, Erik M; Benjamin, Simon C; Lovett, Brendon W; Nazir, Ahsan; Stace, Thomas M

    2008-01-01

    Excitonic transitions offer a possible route to ultrafast optical spin manipulation in coupled nanostructures. We perform here a detailed study of the three principal exciton-mediated decoherence channels for optically controlled electron spin qubits in coupled quantum dots: radiative decay of the excitonic state, exciton-phonon interactions, and Landau-Zener transitions between laser-dressed states. We consider a scheme for producing an entangling controlled-phase gate on a pair of coupled spins which, in its simplest dynamic form, renders the system subject to fast decoherence rates associated with exciton creation during the gating operation. In contrast, we show that an adiabatic approach employing off-resonant laser excitation allows us to suppress all sources of decoherence simultaneously, significantly increasing the fidelity of operations at only a relatively small gating time cost. We find that controlled-phase gates accurate to one part in 10 2 can realistically be achieved with the adiabatic approach, whereas the conventional dynamic approach does not appear to support a fidelity suitable for scalable quantum computation. Our predictions could be demonstrated experimentally in the near future

  10. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  11. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  12. Bending localization of nitrous oxide under anharmonicity and Fermi coupling: the dynamical potential approach

    International Nuclear Information System (INIS)

    Zhang Chi; Wu Guo-Zhen; Fang Chao

    2010-01-01

    This paper studies the vibrational nonlinear dynamics of nitrous oxide with Fermi coupling between the symmetric stretching and bending coordinates by classical dynamical potential approach. This is a global approach in the sense that the overall dynamics is evidenced by the classical nonlinear variables such as the fixed points and the focus are on a set of levels instead of individual ones. The dynamics of nitrous oxide is demonstrated to be not so much dependent on the excitation energy. Moreover, the localized bending mode is shown to be ubiquitous in all the energy range studied

  13. A modal approach to light emission and propagation in coupled cavity waveguide systems

    DEFF Research Database (Denmark)

    Gregersen, Niels; Kristensen, P. T.; de Lasson, Jakob Rosenkrantz

    2016-01-01

    We theoretically investigate systems of optical cavities coupled to waveguides,which necessitates the introduction of non-trivial radiation conditions and normalization procedures. In return, the approach provides simple and accurate modeling of Green functions,Purcell factors and perturbation...... corrections, as well as an alternative approach to the so-calledcoupled mode theory. In combination, these results may form part of the foundations for highly efficient, yet physically transparent models of light emission and propagation in both classical and quantum integrated photonic circuits....

  14. A coupled PFEM-Eulerian approach for the solution of porous FSI problems

    Science.gov (United States)

    Larese, A.; Rossi, R.; Oñate, E.; Idelsohn, S. R.

    2012-12-01

    This paper aims to present a coupled solution strategy for the problem of seepage through a rockfill dam taking into account the free-surface flow within the solid as well as in its vicinity. A combination of a Lagrangian model for the structural behavior and an Eulerian approach for the fluid is used. The particle finite element method is adopted for the evaluation of the structural response, whereas an Eulerian fixed-mesh approach is employed for the fluid. The free surface is tracked by the use of a level set technique. The numerical results are validated with experiments on scale models rockfill dams.

  15. Analysis of transient pressure response near a horizontal well - a coupled diffusion-deformation approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Wong, R. K. C. [Calgary Univ., AB (Canada); Yeung, K. C. [Suncor Energy Inc., Calgary, AB (Canada)

    1998-12-31

    Results of an analysis of transient pressure near a horizontal well using a coupled diffusion-deformation method are discussed. The results are compared with those obtained from the single diffusivity equation. Implications for practical applications such as well testing are addressed. Results indicate that the diffusion-deformation behaviour of porous material affects the transient pressure response near a horizontal well. Evaluation by conventional well testing, based as it is on the single diffusion equation, would likely result in an overestimate of the permeability value. Comparison of results between the coupled diffusion-deformation approach and the single diffusion equation suggests that a better prediction of pressure response could be derived from total compressibility than by using only fluid compressibility. 6 refs., 9 figs.

  16. Competencies for addressing gender and power in couple therapy: a socio emotional approach.

    Science.gov (United States)

    Knudson-Martin, Carmen; Huenergardt, Douglas; Lafontant, Ketsia; Bishop, Les; Schaepper, Johannes; Wells, Melissa

    2015-04-01

    Power imbalances between partners are intrinsic to relationship distress and intricately connected to emotional experience, couple communication processes, and socio cultural contexts such as gender. The ability to work with the power dynamics between partners is thus critical to the practice of couple therapy. However, few practical guidelines for dealing with this issue are available. The authors present seven clinical competencies regarding gender and power issues that they identified by examining their own work: (a) identify enactments of cultural discourse, (b) attune to underlying socio cultural emotion, (c) name underlying power processes, (d) facilitate relational safety, (e) foster mutual attunement, (f) create a model of equality, and (g) facilitate shared relationship responsibility. Each competency is illustrated through a case example. The competencies represent an over-arching guide to practice that may be integrated with other clinical approaches and is particularly useful for training and supervision. © 2014 American Association for Marriage and Family Therapy.

  17. Coupled thermomechanical behavior of graphene using the spring-based finite element approach

    Energy Technology Data Exchange (ETDEWEB)

    Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr [Machine Design Laboratory, Department of Mechanical Engineering and Aeronautics, University of Patras, Rio, 26500 Patras (Greece); Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr [Materials Science Laboratory, Department of Mechanical Engineering, Technological Educational Institute of Western Greece, 1 Megalou Alexandrou Street, 26334 Patras (Greece)

    2016-07-07

    The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations are analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.

  18. A modified CAS-CI approach for an efficient calculation of magnetic exchange coupling constants

    Science.gov (United States)

    Fink, Karin; Staemmler, Volker

    2013-09-01

    A modification of the conventional wavefunction-based CAS-CI method for the calculation of magnetic exchange coupling constants J in small molecules and transition metal complexes is presented. In general, CAS-CI approaches yield much too small values for J since the energies of the important charge transfer configurations are calculated with the ground state orbitals and are therefore much too high. In the present approach we improve these energies by accounting for the relaxation of the orbitals in the charge transfer configurations. The necessary relaxation energies R can be obtained in separate calculations using mononuclear or binuclear model systems. The method is applied to a few examples, small molecules, binuclear transition metal complexes, and bulk NiO. It allows to obtaining fairly reliable estimates for J at costs that are not higher than those of conventional CAS-CI calculations. Therefore, extended and very time-consuming perturbation theory (PT2), configuration interaction (CI), or coupled cluster (CC) schemes on top of the CAS-CI calculation can be avoided and the modified CAS-CI (MCAS-CI) approach can be applied to rather large systems.

  19. A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale

    Science.gov (United States)

    Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; Bochev, Pavel

    2017-11-01

    We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson-Nernst-Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.

  20. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    Science.gov (United States)

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  1. Exploiting Flexibility in Coupled Electricity and Natural Gas Markets: A Price-Based Approach

    DEFF Research Database (Denmark)

    Ordoudis, Christos; Delikaraoglou, Stefanos; Pinson, Pierre

    2017-01-01

    Natural gas-fired power plants (NGFPPs) are considered a highly flexible component of the energy system and can facilitate the large-scale integration of intermittent renewable generation. Therefore, it is necessary to improve the coordination between electric power and natural gas systems....... Considering a market-based coupling of these systems, we introduce a decision support tool that increases market efficiency in the current setup where day-ahead and balancing markets are cleared sequentially. The proposed approach relies on the optimal adjustment of natural gas price to modify the scheduling...

  2. Coupling-matrix approach to the Chern number calculation in disordered systems

    International Nuclear Information System (INIS)

    Zhang Yi-Fu; Ju Yan; Sheng Li; Shen Rui; Xing Ding-Yu; Yang Yun-You; Sheng Dong-Ning

    2013-01-01

    The Chern number is often used to distinguish different topological phases of matter in two-dimensional electron systems. A fast and efficient coupling-matrix method is designed to calculate the Chern number in finite crystalline and disordered systems. To show its effectiveness, we apply the approach to the Haldane model and the lattice Hofstadter model, and obtain the correct quantized Chern numbers. The disorder-induced topological phase transition is well reproduced, when the disorder strength is increased beyond the critical value. We expect the method to be widely applicable to the study of topological quantum numbers. (rapid communication)

  3. New approach to the determination phosphorothioate oligonucleotides by ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Studzińska, Sylwia; Mounicou, Sandra; Szpunar, Joanna; Łobiński, Ryszard; Buszewski, Bogusław

    2015-01-15

    This text presents a novel method for the separation and detection of phosphorothioate oligonucleotides with the use of ion pair ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry The research showed that hexafluoroisopropanol/triethylamine based mobile phases may be successfully used when liquid chromatography is coupled with such elemental detection. However, the concentration of both HFIP and TEA influences the final result. The lower concentration of HFIP, the lower the background in ICP-MS and the greater the sensitivity. The method applied for the analysis of serum samples was based on high resolution inductively coupled plasma mass spectrometry. Utilization of this method allows determination of fifty times lower quantity of phosphorothioate oligonucleotides than in the case of quadrupole mass analyzer. Monitoring of (31)P may be used to quantify these compounds at the level of 80 μg L(-1), while simultaneous determination of sulfur is very useful for qualitative analysis. Moreover, the results presented in this paper demonstrate the practical applicability of coupling LC with ICP-MS in determining phosphorothioate oligonucleotides and their metabolites in serum within 7 min with a very good sensitivity. The method was linear in the concentration range between 0.2 and 3 mg L(-1). The limit of detection was in the range of 0.07 and 0.13 mg L(-1). Accuracy varied with concentration, but was in the range of 3%. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A new approach using artificial neural networks for determination of the thermodynamic properties of fluid couples

    International Nuclear Information System (INIS)

    Sencan, Arzu; Kalogirou, Soteris A.

    2005-01-01

    This paper presents a new approach using artificial neural networks (ANN) to determine the thermodynamic properties of two alternative refrigerant/absorbent couples (LiCl-H 2 O and LiBr + LiNO 3 + LiI + LiCl-H 2 O). These pairs can be used in absorption heat pump systems, and their main advantage is that they do not cause ozone depletion. In order to train the network, limited experimental measurements were used as training and test data. Two feedforward ANNs were trained, one for each pair, using the Levenberg-Marquardt algorithm. The training and validation were performed with good accuracy. The correlation coefficient obtained when unknown data were applied to the networks was 0.9997 and 0.9987 for the two pairs, respectively, which is very satisfactory. The present methodology proved to be much better than linear multiple regression analysis. Using the weights obtained from the trained network, a new formulation is presented for determination of the vapor pressures of the two refrigerant/absorbent couples. The use of this new formulation, which can be employed with any programming language or spreadsheet program for estimation of the vapor pressures of fluid couples, as described in this paper, may make the use of dedicated ANN software unnecessary

  5. Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics

    Science.gov (United States)

    Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel

    2018-04-01

    We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.

  6. Indirect Pursuits of Intimacy in Romantic Couples Everyday Conversations: A Discourse Analytic Approach

    Directory of Open Access Journals (Sweden)

    Neill Korobov

    2018-05-01

    Full Text Available A discourse analytic approach was used to examine how twenty young adult romantic couples (ages 19-26 employed criticisms and insinuations of infidelity in their natural unstructured interactions to indirectly and creatively pursue closeness. The research has been motivated by an expanding arena of research that shows that ostensibly contentious interactional moments among young adult intimates may not be adversarial, but rather may be methods that promote a playful repartee that leads to affiliation. I demonstrate how criticisms are both often highly gendered and typically formulated and responded to in tongue-in-cheek, non-serious ways that involve the creative use of various forms of irony, laughter, rekeyings, abrupt non-sequiturs, and topic shifts that mitigate the potential for the criticisms to become adversarial. Similarly, the insinuations of infidelity were often designed by the couples to attend to interactional breaches. They functioned as a brief but effective way for one partner to signal that they had been dismissed or neglected in the preceding discursive turns. My central finding is that young adult romantic couples maintain closeness amidst potential conflict in their natural everyday conversational interactions.

  7. Estimating absolute configurational entropies of macromolecules: the minimally coupled subspace approach.

    Directory of Open Access Journals (Sweden)

    Ulf Hensen

    Full Text Available We develop a general minimally coupled subspace approach (MCSA to compute absolute entropies of macromolecules, such as proteins, from computer generated canonical ensembles. Our approach overcomes limitations of current estimates such as the quasi-harmonic approximation which neglects non-linear and higher-order correlations as well as multi-minima characteristics of protein energy landscapes. Here, Full Correlation Analysis, adaptive kernel density estimation, and mutual information expansions are combined and high accuracy is demonstrated for a number of test systems ranging from alkanes to a 14 residue peptide. We further computed the configurational entropy for the full 67-residue cofactor of the TATA box binding protein illustrating that MCSA yields improved results also for large macromolecular systems.

  8. Two-step approach to the dynamics of coupled anharmonic oscillators

    International Nuclear Information System (INIS)

    Chung, N. N.; Chew, L. Y.

    2009-01-01

    We have further extended the two-step approach developed by Chung and Chew [N. N. Chung and L. Y. Chew, Phys. Rev. A 76, 032113 (2007)] to the solution of the quantum dynamics of general systems of N-coupled anharmonic oscillators. The idea is to employ an optimized basis set to represent the dynamical quantum states of these oscillator systems. The set is generated via the action of the optimized Bogoliubov transformed bosonic operators on the optimal squeezed vacuum product state. The procedure requires (i) applying the two-step approach to the eigendecomposition of the time evolution operator and (ii) transforming the representation of the initial state from the original to the optimal bases. We have applied the formalism to examine the dynamics of squeezing and entanglement of several anharmonic oscillator systems.

  9. Whole ecosystem approaches for assessing the coupling of N and P cycles in small streams

    Science.gov (United States)

    Schade, J. D.; Thomas, S. A.; Seybold, E. C.; Drake, T.; Lewis, K.; MacNeill, K.; Zimov, N.

    2010-12-01

    The most pressing environmental problems faced by society are manifestations of changes in biogeochemical cycles. The urgency of mitigating these problems has brought into sharp focus the need for a stronger mechanistic understanding of the factors that control biogeochemical cycles and how these factors affect multiple elements. Our overarching goal is to assess the strength of coupling between carbon, nitrogen, and phosphorus cycles in small headwater streams, including streams draining small watersheds in Northern California and the East Siberian Arctic. We have used a range of whole ecosystem approaches, rooted in nutrient spiraling theory, including plateau and pulsed nutrient enrichment experiments at a range of N:P ratios in heterotrophic and autotrophic streams. We use these experiments to calculate changes in nutrient spiraling metrics in response to changes in absolute and relative supply of N and P, and we use these results to infer the strength of the linkage between N and P cycles. In all California study streams, ecological processes are N limited, and we have observed significant changes in the strength of N and P coupling depending on position along the stream network. In small heterotrophic streams, addition of N caused significant increases in P uptake, while P had little influence on N. In larger autotrophic streams, N and P were only weakly coupled, which we attributed to a shift towards dominance of uptake by algae rather than heterotrophic bacteria, which is associated with differences in cellular structures. In addition, we have observed a small but consistent reduction in P uptake at high N:P of supply in autotrophic streams, which we speculate may indicate a suppression of N fixers at high N supply. In the Arctic, we have observed less consistency in the response of streams to nutrient enrichment, with some streams showing very little change in N or P uptake with changes in supply N:P, and others showing a decrease in N uptake in response

  10. Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach

    Science.gov (United States)

    Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene

    2018-03-01

    When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.

  11. Coupled transient thermo-fluid/thermal-stress analysis approach in a VTBM setting

    International Nuclear Information System (INIS)

    Ying, A.; Narula, M.; Zhang, H.; Abdou, M.

    2008-01-01

    A virtual test blanket module (VTBM) has been envisioned as a utility to aid in streamlining and optimizing the US ITER TBM design effort by providing an integrated multi-code, multi-physics modeling environment. Within this effort, an integrated simulation approach is being developed for TBM design calculations and performance evaluation. Particularly, integrated thermo-fluid/thermal-stress analysis is important for enabling TBM design and performance calculations. In this paper, procedures involved in transient coupled thermo-fluid/thermal-stress analysis are investigated. The established procedure is applied to study the impact of pulsed operational phenomenon on the thermal-stress response of the TBM first wall. A two-way coupling between the thermal strain and temperature field is also studied, in the context of a change in thermal conductivity of the beryllium pebble bed in a solid breeder blanket TBM due to thermal strain. The temperature field determines the thermal strain in beryllium, which in turn changes the temperature field. Iterative thermo-fluid/thermal strain calculations have been applied to both steady-state and pulsed operation conditions. All calculations have been carried out in three dimensions with representative MCAD models, including all the TBM components in their entirety

  12. Feasible approach of contactless power transfer technology combined with HTS coils based on electromagnetic resonance coupling

    International Nuclear Information System (INIS)

    Chang, Yoon Do; Yim, Seong Woo; Hwang, Si Dole

    2013-01-01

    The contactless power transfer (CPT) systems have been recently gaining popularity widely since it is an available option to realize the power delivery and storage with connector-free devices across a large air gap. Especially, the CPT with electromagnetic resonance coupling method is possible to exchange energy within 2 m efficiently. However, the power transfer efficiency of CPT in commercialized products has been limited because the impedance matching of coupled coils is sensitive. As a reasonable approach, we combined the CPT system with HTS wire technology and called as, superconducting contactless power transfer (SUCPT) system. Since the superconducting coils have an enough current density, the superconducting antenna and receiver coils at CPT system have a merit to deliver and receive a mass amount of electric energy. In this paper, we present the feasibility of the SUCPT system and examine the transmission properties of SUCPT phenomenon between room temperature and very low temperature at 77 K as long as the receiver is within 1.0 m distance.

  13. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    International Nuclear Information System (INIS)

    Janecky, D.R.

    1988-01-01

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs

  14. Infrared behavior of the effective coupling in quantum chromodynamics: A non-perturbative approach

    International Nuclear Information System (INIS)

    Bar-Gadda, U.

    1980-01-01

    In this paper we examine a different viewpoint, based on a self-consistent approach. This means that rather than attempting to identify any particular physical mechanism as dominating the QCD vacuum state we use the non-perturbative Schwinger-Dyson equations and Slavnov-Taylor identities of QCD as well as the renormalization group equation to obtain the self-consistent behavior of the effective coupling in the infrared region. We show that the infrared effective coupling behavior anti g(q 2 /μ 2 , gsub(R)(μ)) = (μ 2 /q 2 )sup(lambda/2)gsub(R)(μ) in the infrared limit q 2 /μ 2 → 0, where μ 2 is the euclidean subtraction point; lambda = 1/2(d - 2), where d is the space-time dimension, is the preferred solution if a sufficient self-consistency condition is satisfied. Finally we briefly discuss the nature of the dynamical mass Λ and the 1/N expansion as well as an effective bound state equation. (orig.)

  15. Magnetic exchange couplings from constrained density functional theory: an efficient approach utilizing analytic derivatives.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2011-11-14

    We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics

  16. Heavy flavor at the large hadron collider in a strong coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    He, Min [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Fries, Rainer J.; Rapp, Ralf [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-3366 (United States)

    2014-07-30

    Employing nonperturbative transport coefficients for heavy-flavor (HF) diffusion through quark–gluon plasma (QGP), hadronization and hadronic matter, we compute D- and B-meson observables in Pb+Pb (√(s)=2.76 TeV) collisions at the LHC. Elastic heavy-quark scattering in the QGP is evaluated within a thermodynamic T-matrix approach, generating resonances close to the critical temperature which are utilized for recombination into D and B mesons, followed by hadronic diffusion using effective hadronic scattering amplitudes. The transport coefficients are implemented via Fokker–Planck Langevin dynamics within hydrodynamic simulations of the bulk medium in nuclear collisions. The hydro expansion is quantitatively constrained by transverse-momentum spectra and elliptic flow of light hadrons. Our approach thus incorporates the paradigm of a strongly coupled medium in both bulk and HF dynamics throughout the thermal evolution of the system. At low and intermediate p{sub T}, HF observables at LHC are reasonably well accounted for, while discrepancies at high p{sub T} are indicative for radiative mechanisms not included in our approach.

  17. General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Cuautli Yanehowi Flores-Niño

    2015-06-01

    Full Text Available In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.

  18. Synchronization of delay-coupled nonlinear oscillators : an approach based on the stability analysis of synchronized equilibria

    NARCIS (Netherlands)

    Michiels, W.; Nijmeijer, H.

    2009-01-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the

  19. Electron-impact ionization of oriented molecules using the time-dependent close-coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Pindzola, M S, E-mail: jcolgan@lanl.gov [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2011-04-01

    An overview is given on recent progress on computing triple differential cross sections for electron-impact ionization of the hydrogen molecule using a time-dependent close-coupling approach. Our calculations, when averaged over all molecular orientations, are generally in very good agreement with (e,2e) measurements made on H{sub 2}, where the molecular orientation is unknown, for a range of incident energies and outgoing electron angles and energies. In this paper, we present TDCS for ionization of H{sub 2} at specific molecular orientations. It is hoped that this study will help stimulate future measurements of TDCS from oriented H{sub 2} at medium impact energies.

  20. A coupled thermo-mechanical pseudo inverse approach for preform design in forging

    Science.gov (United States)

    Thomas, Anoop Ebey; Abbes, Boussad; Li, Yu Ming; Abbes, Fazilay; Guo, Ying-Qiao; Duval, Jean-Louis

    2017-10-01

    Hot forging is a process used to form difficult to form materials as well as to achieve complex geometries. This is possible due to the reduction of yield stress at high temperatures and a subsequent increase in formability. Numerical methods have been used to predict the material yield and the stress/strain states of the final product. Pseudo Inverse Approach (PIA) developed in the context of cold forming provides a quick estimate of the stress and strain fields in the final product for a given initial shape. In this paper, PIA is extended to include the thermal effects on the forging process. A Johnson-Cook thermo-viscoplastic material law is considered and a staggered scheme is employed for the coupling between the mechanical and thermal problems. The results are compared with available commercial codes to show the efficiency and the limitations of PIA.

  1. A risk management process for reinforced concrete structures by coupling modelling, monitoring and Bayesian approaches

    International Nuclear Information System (INIS)

    Capra, Bruno; Li, Kefei; Wolff, Valentin; Bernard, Olivier; Gerard, Bruno

    2004-01-01

    The impact of steel corrosion on the durability of reinforced concrete structures has since a long time been a major concern in civil engineering. The main electrochemical mechanisms of the steel corrosion are know well known. The material and structure degradation is attributed to the progressive formation of an expansive corrosion product at the steel-concrete interface. To assess quantitatively the structure lifetime, a two-stage service life model has been accepted widely. So far, the research attention is mainly given to the corrosion in an un-cracked concrete. However. practically one is often confronted to the reinforcement corrosion in an already cracked concrete. How to quantify the corrosion risk is of great interest for the long term durability of these cracked structures. To this end, this paper proposes a service life modeling for the corrosion process by carbonation in a cracked or un-cracked concrete depending on the observation or monitoring data available. Some recent experimental investigations are used to calibrate the models. Then, the models are applied to a shell structure to quantify the corrosion process and determine the optimal maintenance strategy. As corrosion processes are very difficult to model and subjected to material and environmental random variations, an example of structure reassessment is presented taking into account in situ information by the mean of Bayesian approaches. The coupling of monitoring, modelling and updating leads to a new global maintenance strategy of infrastructure. In conclusion: This paper presents an unified methodology coupling predictive models, observations and Bayesian approaches in order to assess the degradation degree of an ageing structure. The particular case of corrosion is treated on an innovative way by the development of a service life model taking into account cracking effects on the kinetics of the phenomena. At a material level, the dominant factors are the crack opening and the crack nature

  2. On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials

    Science.gov (United States)

    Bartels, A.; Bartel, T.; Canadija, M.; Mosler, J.

    2015-09-01

    This paper deals with the thermomechanical coupling in dissipative materials. The focus lies on finite strain plasticity theory and the temperature increase resulting from plastic deformation. For this type of problem, two fundamentally different modeling approaches can be found in the literature: (a) models based on thermodynamical considerations and (b) models based on the so-called Taylor-Quinney factor. While a naive straightforward implementation of thermodynamically consistent approaches usually leads to an over-prediction of the temperature increase due to plastic deformation, models relying on the Taylor-Quinney factor often violate fundamental physical principles such as the first and the second law of thermodynamics. In this paper, a thermodynamically consistent framework is elaborated which indeed allows the realistic prediction of the temperature evolution. In contrast to previously proposed frameworks, it is based on a fully three-dimensional, finite strain setting and it naturally covers coupled isotropic and kinematic hardening - also based on non-associative evolution equations. Considering a variationally consistent description based on incremental energy minimization, it is shown that the aforementioned problem (thermodynamical consistency and a realistic temperature prediction) is essentially equivalent to correctly defining the decomposition of the total energy into stored and dissipative parts. Interestingly, this decomposition shows strong analogies to the Taylor-Quinney factor. In this respect, the Taylor-Quinney factor can be well motivated from a physical point of view. Furthermore, certain intervals for this factor can be derived in order to guarantee that fundamental physically principles are fulfilled a priori. Representative examples demonstrate the predictive capabilities of the final constitutive modeling framework.

  3. Development of an experimental approach to study coupled soil-plant-atmosphere processes using plant analogs

    Science.gov (United States)

    Trautz, Andrew C.; Illangasekare, Tissa H.; Rodriguez-Iturbe, Ignacio; Heck, Katharina; Helmig, Rainer

    2017-04-01

    The atmosphere, soils, and vegetation near the land-atmosphere interface are in a state of continuous dynamic interaction via a myriad of complex interrelated feedback processes which collectively, remain poorly understood. Studying the fundamental nature and dynamics of such processes in atmospheric, ecological, and/or hydrological contexts in the field setting presents many challenges; current experimental approaches are an important factor given a general lack of control and high measurement uncertainty. In an effort to address these issues and reduce overall complexity, new experimental design considerations (two-dimensional intermediate-scale coupled wind tunnel-synthetic aquifer testing using synthetic plants) for studying soil-plant-atmosphere continuum soil moisture dynamics are introduced and tested in this study. Validation of these experimental considerations, particularly the adoption of synthetic plants, is required prior to their application in future research. A comparison of three experiments with bare soil surfaces or transplanted with a Stargazer lily/limestone block was used to evaluate the feasibility of the proposed approaches. Results demonstrate that coupled wind tunnel-porous media experimentation, used to simulate field conditions, reduces complexity, and enhances control while allowing fine spatial-temporal resolution measurements to be made using state-of-the-art technologies. Synthetic plants further help reduce system complexity (e.g., airflow) while preserving the basic hydrodynamic functions of plants (e.g., water uptake and transpiration). The trends and distributions of key measured atmospheric and subsurface spatial and temporal variables (e.g., soil moisture, relative humidity, temperature, air velocity) were comparable, showing that synthetic plants can be used as simple, idealized, nonbiological analogs for living vegetation in fundamental hydrodynamic studies.

  4. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    International Nuclear Information System (INIS)

    Manoli, Gabriele; Rossi, Matteo; Pasetto, Damiano; Deiana, Rita; Ferraris, Stefano; Cassiani, Giorgio; Putti, Mario

    2015-01-01

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequential inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment

  5. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    Energy Technology Data Exchange (ETDEWEB)

    Manoli, Gabriele, E-mail: manoli@dmsa.unipd.it [Department of Mathematics, University of Padova, Via Trieste 63, 35121 Padova (Italy); Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Rossi, Matteo [Department of Geosciences, University of Padova, Via Gradenigo 6, 35131 Padova (Italy); Pasetto, Damiano [Department of Mathematics, University of Padova, Via Trieste 63, 35121 Padova (Italy); Deiana, Rita [Dipartimento dei Beni Culturali, University of Padova, Piazza Capitaniato 7, 35139 Padova (Italy); Ferraris, Stefano [Interuniversity Department of Regional and Urban Studies and Planning, Politecnico and University of Torino, Viale Mattioli 39, 10125 Torino (Italy); Cassiani, Giorgio [Department of Geosciences, University of Padova, Via Gradenigo 6, 35131 Padova (Italy); Putti, Mario [Department of Mathematics, University of Padova, Via Trieste 63, 35121 Padova (Italy)

    2015-02-15

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequential inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.

  6. Exciton Scattering approach for conjugated macromolecules: from electronic spectra to electron-phonon coupling

    Science.gov (United States)

    Tretiak, Sergei

    2014-03-01

    The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  7. The strong coupling constant: its theoretical derivation from a geometric approach to hadron structure

    International Nuclear Information System (INIS)

    Recami, E.; Tonin-Zanchin, V.

    1991-01-01

    Since more than a decade, a bi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to strong gravity theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength α s, ordinarily called the (perturbative) coupling-constant square, can be evaluated within our theory, and found to decrease (increase) as the distance r decreases (increases). This yields both the confinement of the hadron constituents for large values of r, and their asymptotic freedom [for small values of r inside the hadron]: in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of α s on r which had been previously found only on phenomenological and heuristical grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours about calculating meson mass-spectra. (author)

  8. Communication: General variational approach to nuclear-quadrupole coupling in rovibrational spectra of polyatomic molecules

    Science.gov (United States)

    Yachmenev, Andrey; Küpper, Jochen

    2017-10-01

    A general algorithm for computing the quadrupole-hyperfine effects in the rovibrational spectra of polyatomic molecules is presented for the case of ammonia (NH3). The method extends the general variational approach TROVE [J. Mol. Spectrosc. 245, 126-140 (2007)] by adding the extra term in the Hamiltonian that describes the nuclear quadrupole coupling, with no inherent limitation on the number of quadrupolar nuclei in a molecule. We applied the new approach to compute the nitrogen-nuclear-quadrupole hyperfine structure in the rovibrational spectrum of NH143. These results agree very well with recent experimental spectroscopic data for the pure rotational transitions in the ground vibrational and ν2 states and the rovibrational transitions in the ν1, ν3, 2ν4, and ν1 + ν3 bands. The computed hyperfine-resolved rovibrational spectrum of ammonia will be beneficial for the assignment of experimental rovibrational spectra, further detection of ammonia in interstellar space, and studies of the proton-to-electron mass variation.

  9. Novel Approaches for Mutual Coupling Reduction among Vertical and Planar Monopole Elements

    Science.gov (United States)

    Isaac, Ayman A.

    Modern wireless systems such as 4G LTE-A, RFID, Wi-Fi, WiMAX, and GPS utilize miniaturized antenna array elements to improve performance and reliability through diversity and increase throughput using spatial multiplexing schemes of MIMO systems. One original contribution in this thesis is to significantly reduce the complexity of traditional design approaches targeting mutual coupling reductions such as metamaterials, defected ground plane structures, soft electromagnetic surfaces using novel design alternatives. A decoupling network is proposed, which consists of a rectangular metallic ring along with two tuning strips printed on a dielectric substrate, surrounding a two-element monopole antenna array fed by a coplanar waveguide or microstrip structure. The array design offers a reduction in mutual coupling level by around 20 dB at 2.4 GHz as compared to the same array in which the two monopoles share the same ground plane but without the decoupling network. The array achieves a -10 dB S11 bandwidth of 0.63 GHz, (2.12 GHz - 2.75 GHz), a 0.24 GHz (2.33 GHz - 2.57 GHz) bandwidth in which S21 is less than -20 dB, respectively. A total realized gain of 1.6 to 1.69 dB in the frequency range over which S11 and S21 is less than -10 dB and -20 dB respectively. The boresight of the radiation patterns of two vertical monopole wire antennas operating at 2.4 GHz and separated by 8 mm are shown to be orthogonal and inclined by 45° with respect to the horizon while maintaining the shape of the isolated single antenna element. Hence, we denote this design as the descattered and decoupled orthogonal MIMO antenna array, which is reported for the first time in this dissertation, providing the ideal far-field radiation characteristics as theoretically deemed for handheld MIMO devices. Moreover, two new approaches for the reduction of mutual coupling between two rectangular planar monopole antennas printed on a dielectric substrate with a partial ground plane are presented in this

  10. Direction of coupling from phases of interacting oscillators: An information-theoretic approach

    Science.gov (United States)

    Paluš, Milan; Stefanovska, Aneta

    2003-05-01

    A directionality index based on conditional mutual information is proposed for application to the instantaneous phases of weakly coupled oscillators. Its abilities to distinguish unidirectional from bidirectional coupling, as well as to reveal and quantify asymmetry in bidirectional coupling, are demonstrated using numerical examples of quasiperiodic, chaotic, and noisy oscillators, as well as real human cardiorespiratory data.

  11. Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.

    2008-04-01

    Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution

  12. Conversion analysis of a cylindrical biomass particle with a DEM-CFD coupling approach

    Directory of Open Access Journals (Sweden)

    Mohammad Mohseni

    2017-09-01

    Full Text Available Biomass as a renewable energy source has attracted more attention nowadays due to ecological and economical benefits. The main objective of this work is studying the biomass conversion with employing a DEM-CFD coupling approach. In this model, the solid particulates are considered as discrete elements coupled via heat, mass and momentum transfer to the surrounding gas as continuous phase. That is, a comprehensive three-dimensional numerical model is developed and applied to investigate the complex phenomena taking place during biomass conversion in a reactor. In this case, the physical and chemical processes as heat-up, drying, pyrolysis, gasification and combustion are taken into account based on the relevant homogeneous and heterogeneous reactions. This platform predicts the motion of discrete particles based on the newton's equations of motion; and the thermodynamic state of each particle is extended according to the related algorithms. The thermodynamic state estimates the temperature and species distributions inside the particle due to external heat sources and chemical reactions. The reaction rates are described with Arrhenius model, and the reactions in the gas phase are modeled using Partially Stirred Reactor (PaSR model with the standard k−ϵ turbulent model. The conductive and radiative heat transfer between particles as well as convective heat transfer between particles and gas phase are also observed. Due to layered behavior of biomass materials, the shape of particle is considered as cylindrical rather than spherical to predict more realistic results. In order to improve the numerical modeling of biomass conversion, a shrinkage model is also developed and validated with experimental data in literature.

  13. Coupled human and natural systems approach to wildlife research and conservation

    Directory of Open Access Journals (Sweden)

    Neil H. Carter

    2014-09-01

    Full Text Available Conserving wildlife while simultaneously meeting the resource needs of a growing human population is a major sustainability challenge. As such, using combined social and environmental perspectives to understand how people and wildlife are interlinked, together with the mechanisms that may weaken or strengthen those linkages, is of utmost importance. However, such integrated information is lacking. To help fill this information gap, we describe an integrated coupled human and natural systems (CHANS approach for analyzing the patterns, causes, and consequences of changes in wildlife population and habitat, human population and land use, and their interactions. Using this approach, we synthesize research in two sites, Wolong Nature Reserve in China and Chitwan National Park in Nepal, to explicate key relationships between people and two globally endangered wildlife conservation icons, the giant panda and the Bengal tiger. This synthesis reveals that local resident characteristics such as household socioeconomics and demography, as well as community-level attributes such as resource management organizations, affect wildlife and their habitats in complex and even countervailing ways. Human impacts on wildlife and their habitats are in turn modifying the suite of ecosystem services that they provide to local residents in both sites, including access to forest products and cultural values. These interactions are further complicated by human and natural disturbance (e.g., civil wars, earthquakes, feedbacks (including policies, and telecouplings (socioeconomic and environmental interactions over distances that increasingly link the focal systems with other distant systems. We highlight several important implications of using a CHANS approach for wildlife research and conservation that is useful not only in China and Nepal but in many other places around the world facing similar challenges.

  14. A coupled factorial-analysis-based interval programming approach and its application to air quality management.

    Science.gov (United States)

    Wang, S; Huang, G H

    2013-02-01

    In this study, a coupled factorial-analysis-based interval programming (CFA-IP) approach is developed through incorporating factorial analysis within an interval-parameter linear programming framework. CFA-IP can tackle uncertainties presented as intervals that exist in the objective function and the left- and right-hand sides of constraints, as well as robustly reflect interval information in the solutions for the objective-function value and decision variables. Moreover CFA-IP has the advantage of investigating the potential interactions among input parameters and their influences on lower- and upper-bound solutions, which is meaningful for supporting an in-depth analysis of uncertainty. A regional air quality management problem is studied to demonstrate applicability of the proposed CFA-IP approach. The results indicate that useful solutions have been generated for planning the air quality management practices. They can help decision makers identify desired pollution mitigation strategies with minimized total cost and maximized environmental efficiency, as well as screen out dominant parameters and explore the valuable information that may be veiled beneath their interrelationships. The CFA-IP approach can not only tackle uncertainties presented as intervals that exist in the objective function and the left- and right-hand sides of constraints, but also investigate their interactive effects on model outputs, which is meaningful for supporting an in-depth analysis of uncertainty. Thus CFA-IP would be applicable to air quality management problems under uncertainty. The results obtained from CFA-IP can help decision makers identify desired pollution mitigation strategies, as well as investigate the potential interactions among factors and analyze their consequent effects on modeling results.

  15. Similarity transformed coupled cluster response (ST-CCR) theory--a time-dependent similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach.

    Science.gov (United States)

    Landau, Arie

    2013-07-07

    This paper presents a new method for calculating spectroscopic properties in the framework of response theory utilizing a sequence of similarity transformations (STs). The STs are preformed using the coupled cluster (CC) and Fock-space coupled cluster operators. The linear and quadratic response functions of the new similarity transformed CC response (ST-CCR) method are derived. The poles of the linear response yield excitation-energy (EE) expressions identical to the ones in the similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach. ST-CCR and STEOM-CC complement each other, in analogy to the complementarity of CC response (CCR) and equation-of-motion coupled cluster (EOM-CC). ST-CCR/STEOM-CC and CCR/EOM-CC yield size-extensive and size-intensive EEs, respectively. Other electronic-properties, e.g., transition dipole strengths, are also size-extensive within ST-CCR, in contrast to STEOM-CC. Moreover, analysis suggests that in comparison with CCR, the ST-CCR expressions may be confined to a smaller subspace, however, the precise scope of the truncation can only be determined numerically. In addition, reformulation of the time-independent STEOM-CC using the same parameterization as in ST-CCR, as well as an efficient truncation scheme, is presented. The shown convergence of the time-dependent and time-independent expressions displays the completeness of the presented formalism.

  16. A Modeling Approach for Evaluating the Coupled Riparian Vegetation-Geomorphic Response to Altered Flow Regimes

    Science.gov (United States)

    Manners, R.; Wilcox, A. C.; Merritt, D. M.

    2016-12-01

    The ecogeomorphic response of riparian ecosystems to a change in hydrologic properties is difficult to predict because of the interactions and feedbacks among plants, water, and sediment. Most riparian models of community dynamics assume a static channel, yet geomorphic processes strongly control the establishment and survival of riparian vegetation. Using a combination of approaches that includes empirical relationships and hydrodynamic models, we model the coupled vegetation-topographic response of three cross-sections on the Yampa and Green Rivers in Dinosaur National Monument, to a shift in the flow regime. The locations represent the variable geomorphology and vegetation composition of these canyon-bound rivers. We account for the inundation and hydraulic properties of vegetation plots surveyed over three years within International River Interface Cooperative (iRIC) Fastmech, equipped with a vegetation module that accounts for flexible stems and plant reconfiguration. The presence of functional groupings of plants, or those plants that respond similarly to environmental factors such as water availability and disturbance are determined from flow response curves developed for the Yampa River. Using field measurements of vegetation morphology, distance from the channel centerline, and dominant particle size and modeled inundation properties we develop an empirical relationship between these variables and topographic change. We evaluate vegetation and channel form changes over decadal timescales, allowing for the integration of processes over time. From our analyses, we identify thresholds in the flow regime that alter the distribution of plants and reduce geomorphic complexity, predominately through side-channel and backwater infilling. Simplification of some processes (e.g., empirically-derived sedimentation) and detailed treatment of others (e.g., plant-flow interactions) allows us to model the coupled dynamics of riparian ecosystems and evaluate the impact of

  17. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    Science.gov (United States)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  18. One-particle versus two-particle crossover in weakly coupled Hubbard chains and ladders: perturbative renormalization group approach

    International Nuclear Information System (INIS)

    Kishine, Jun-Ichiro; Yonemitsu, Kenji

    1998-01-01

    Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group (PRG) approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to. In the present work, we discuss the nature of the dimensional crossovers in the weakly coupled chains and ladders, with emphasis on the difference between the two cases within the framework of the PRG approach. The difference of the universality class of the isolated chain and ladder profoundly affects the relevance or irrelevance of the inter-chain/ladder one-particle hopping. The strong coupling phase of the isolated ladder makes the one-particle process irrelevant so that the d-wave superconducting transition can be induced via the two-particle crossover in the weakly coupled ladders. The weak coupling phase of the isolated chain makes the one-particle process relevant so that the two-particle crossover can hardly be realized in the coupled chains. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  19. Frequency Response Studies using Receptance Coupling Approach in High Speed Spindles

    Science.gov (United States)

    Shaik, Jakeer Hussain; Ramakotaiah, K.; Srinivas, J.

    2018-01-01

    In order to assess the stability of high speed machining, estimate the frequency response at the end of tool tip is of great importance. Evaluating dynamic response of several combinations of integrated spindle-tool holder-tool will consume a lot of time. This paper presents coupled field dynamic response at tool tip for the entire integrated spindle tool unit. The spindle unit is assumed to be relying over the front and rear bearings and investigated using the Timoshenko beam theory to arrive the receptances at different locations of the spindle-tool unit. The responses are further validated with conventional finite element model as well as with the experiments. This approach permits quick outputs without losing accuracy of solution and further these methods are utilized to analyze the various design variables on system dynamics. The results obtained through this analysis are needed to design the better spindle unit in an attempt to reduce the frequency amplitudes at the tool tip to improvise the milling stability during cutting process.

  20. G-protein-coupled receptors: new approaches to maximise the impact of GPCRS in drug discovery.

    Science.gov (United States)

    Davey, John

    2004-04-01

    IBC's Drug Discovery Technology Series is a group of conferences highlighting technological advances and applications in niche areas of the drug discovery pipeline. This 2-day meeting focused on G-protein-coupled receptors (GPCRs), probably the most important and certainly the most valuable class of targets for drug discovery. The meeting was chaired by J Beesley (Vice President, European Business Development for LifeSpan Biosciences, Seattle, USA) and included 17 presentations on various aspects of GPCR activity, drug screens and therapeutic analyses. Keynote Addresses covered two of the emerging areas in GPCR regulation; receptor dimerisation (G Milligan, Professor of Molecular Pharmacology and Biochemistry, University of Glasgow, UK) and proteins that interact with GPCRs (J Bockaert, Laboratory of Functional Genomics, CNRS Montpellier, France). A third Keynote Address from W Thomsen (Director of GPCR Drug Screening, Arena Pharmaceuticals, USA) discussed Arena's general approach to drug discovery and illustrated this with reference to the development of an agonist with potential efficacy in Type II diabetes.

  1. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Grell, Gilbert; Bokarev, Sergey I., E-mail: sergey.bokarev@uni-rostock.de; Kühn, Oliver [Institut für Physik, Universität Rostock, D-18051 Rostock (Germany); Winter, Bernd; Seidel, Robert [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Aziz, Emad F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Department of Physics, Freie Universität Berlin, Arnimalle 14, D-14159 Berlin (Germany); Aziz, Saadullah G. [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah (Saudi Arabia)

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  2. A Newton-based Jacobian-free approach for neutronic-Monte Carlo/thermal-hydraulic static coupled analysis

    International Nuclear Information System (INIS)

    Mylonakis, Antonios G.; Varvayanni, M.; Catsaros, N.

    2017-01-01

    Highlights: •A Newton-based Jacobian-free Monte Carlo/thermal-hydraulic coupling approach is introduced. •OpenMC is coupled with COBRA-EN with a Newton-based approach. •The introduced coupling approach is tested in numerical experiments. •The performance of the new approach is compared with the traditional “serial” coupling approach. -- Abstract: In the field of nuclear reactor analysis, multi-physics calculations that account for the bonded nature of the neutronic and thermal-hydraulic phenomena are of major importance for both reactor safety and design. So far in the context of Monte-Carlo neutronic analysis a kind of “serial” algorithm has been mainly used for coupling with thermal-hydraulics. The main motivation of this work is the interest for an algorithm that could maintain the distinct treatment of the involved fields within a tight coupling context that could be translated into higher convergence rates and more stable behaviour. This work investigates the possibility of replacing the usually used “serial” iteration with an approximate Newton algorithm. The selected algorithm, called Approximate Block Newton, is actually a version of the Jacobian-free Newton Krylov method suitably modified for coupling mono-disciplinary solvers. Within this Newton scheme the linearised system is solved with a Krylov solver in order to avoid the creation of the Jacobian matrix. A coupling algorithm between Monte-Carlo neutronics and thermal-hydraulics based on the above-mentioned methodology is developed and its performance is analysed. More specifically, OpenMC, a Monte-Carlo neutronics code and COBRA-EN, a thermal-hydraulics code for sub-channel and core analysis, are merged in a coupling scheme using the Approximate Block Newton method aiming to examine the performance of this scheme and compare with that of the “traditional” serial iterative scheme. First results show a clear improvement of the convergence especially in problems where significant

  3. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    Science.gov (United States)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  4. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    International Nuclear Information System (INIS)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-01-01

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  5. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-10-20

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  6. Direction of Coupling from Phases of Interacting Oscillators: A Permutation Information Approach

    Science.gov (United States)

    Bahraminasab, A.; Ghasemi, F.; Stefanovska, A.; McClintock, P. V. E.; Kantz, H.

    2008-02-01

    We introduce a directionality index for a time series based on a comparison of neighboring values. It can distinguish unidirectional from bidirectional coupling, as well as reveal and quantify asymmetry in bidirectional coupling. It is tested on a numerical model of coupled van der Pol oscillators, and applied to cardiorespiratory data from healthy subjects. There is no need for preprocessing and fine-tuning the parameters, which makes the method very simple, computationally fast and robust.

  7. A new approach for applying residual dipolar couplings as restraints in structure elucidation

    International Nuclear Information System (INIS)

    Meiler, Jens; Blomberg, Niklas; Nilges, Michael; Griesinger, Christian

    2000-01-01

    Residual dipolar couplings are useful global structural restraints. The dipolar couplings define the orientation of a vector with respect to the alignment tensor. Although the size of the alignment tensor can be derived from the distribution of the experimental dipolar couplings, its orientation with respect to the coordinate system of the molecule is unknown at the beginning of structure determination. This causes convergence problems in the simulated annealing process. We therefore propose a protocol that translates dipolar couplings into intervector projection angles, which are independent of the orientation of the alignment tensor with respect to the molecule. These restraints can be used during the whole simulated annealing protocol

  8. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yonghao; Chadha, Arvinder; Zhao, Deyin; Shuai, Yichen; Menon, Laxmy; Yang, Hongjun; Zhou, Weidong, E-mail: wzhou@uta.edu [Nanophotonics Lab, Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Piper, Jessica R.; Fan, Shanhui [Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Jia, Yichen; Xia, Fengnian [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Ma, Zhenqiang [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-03

    We demonstrate experimentally close to total absorption in monolayer graphene based on critical coupling with guided resonances in transfer printed photonic crystal Fano resonance filters at near infrared. Measured peak absorptions of 35% and 85% were obtained from cavity coupled monolayer graphene for the structures without and with back reflectors, respectively. These measured values agree very well with the theoretical values predicted with the coupled mode theory based critical coupling design. Such strong light-matter interactions can lead to extremely compact and high performance photonic devices based on large area monolayer graphene and other two–dimensional materials.

  9. Coupling structure in LED System-In-Package design: a physical responses-based critical parameter sheet like approach

    NARCIS (Netherlands)

    Borst, de E.C.M.; Gielen, A.W.J.; Etman, L.F.P.

    2012-01-01

    Abstract This paper introduces an approach to study the coupling structure between the design parameters and design objectives of a LED system-in-package (SiP) design concept [1]. The LED SiP is an integrated device that combines the LED chip with driver chips and potential other components in a

  10. Coupling structure in LED System-in-Package design: a physical responses-based critical parameter sheet like approach

    NARCIS (Netherlands)

    Borst, E.C.M. de; Gielen, A.W.J.; Etman, L.F.P.

    2012-01-01

    This paper introduces an approach to study the coupling structure between the design parameters and design objectives of a LED system-in-package (SiP) design concept [1]. The LED SiP is an integrated device that combines the LED chip with driver chips and potential other components in a single

  11. One-Particle vs. Two-Particle Crossover in Weakly Coupled Hubbard Chains and Ladders: Perturbative Renormalization Group Approach

    OpenAIRE

    Kishine, Jun-ichiro; Yonemitsu, Kenji

    1997-01-01

    Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to.

  12. Revisiting liquid lubrication methods by means of a fully coupled approach combining plastic deformation and liquid lubrication

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin

    2017-01-01

    This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and the plasticdeformation of the metallic material in metal forming are solved simultaneously. The proposed method is an alternativeto conventional modelling techniques which allow studying the effect...... andanalytical model, and by variations in drawing speed. Good agreement is found with the experimental observations....

  13. Investigation of Drag Force on Fibres of Bonded Spherical Elements using a Coupled CFD-DEM Approach

    DEFF Research Database (Denmark)

    Jensen, Anna Lyhne; Sørensen, Henrik; Rosendahl, Lasse Aistrup

    2016-01-01

    Clogging in wastewater pumps is often caused by flexible, stringy objects. Therefore, simulation of clogging effects in wastewater pumps entails simulation of such flexible objects and the interaction between these objects and fluid in the pump. Using a coupled CFD-DEM approach, the flexible obje...

  14. Improving Dyadic Coping in Couples with a Stress-Oriented Approach: A 2-Year Longitudinal Study

    Science.gov (United States)

    Bodenmann, Guy; Pihet, Sandrine; Shantinath, Shachi D.; Cina, Annette; Widmer, Kathrin

    2006-01-01

    This study sought to assess the effectiveness of a marital distress prevention program for couples by examining how marital quality, especially marital competencies such as dyadic coping, could be improved by means of a prevention program focusing on the enhancement of coping resources (Couples Coping Enhancement Training). The study consisted of…

  15. A virtual structure approach to formation control of unicycle mobile robots using mutual coupling

    NARCIS (Netherlands)

    Sadowska, A.D.; van den Broek, T.H.A.; Huijberts, H.J.C.; Wouw, van de N.; Kostic, D.; Nijmeijer, H.

    2011-01-01

    In this article, the formation control problem for unicycle mobile robots is studied. A distributed virtual structure control strategy with mutual coupling between the robots is proposed. The rationale behind the introduction of the coupling terms is the fact that these introduce additional

  16. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    Science.gov (United States)

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging.

    Science.gov (United States)

    Wu, Ying; Shi, Jian; Su, Chanmin; Zou, Qingze

    2009-04-01

    In this article, an approach based on the recently developed inversion-based iterative control (IIC) to cancel the cross-axis coupling effect of piezoelectric tube scanners (piezoscanners) in tapping-mode atomic force microscope (AFM) imaging is proposed. Cross-axis coupling effect generally exists in piezoscanners used for three-dimensional (x-y-z axes) nanopositioning in applications such as AFM, where the vertical z-axis movement can be generated by the lateral x-y axes scanning. Such x/y-to-z cross-coupling becomes pronounced when the scanning is at large range and/or at high speed. In AFM applications, the coupling-caused position errors, when large, can generate various adverse effects, including large imaging and topography distortions, and damage of the cantilever probe and/or the sample. This paper utilizes the IIC technique to obtain the control input to precisely track the coupling-caused x/y-to-z displacement (with sign-flipped). Then the obtained input is augmented as a feedforward control to the existing feedback control in tapping-mode imaging, resulting in the cancellation of the coupling effect. The proposed approach is illustrated through two exemplary applications in industry, the pole-tip recession examination, and the nanoasperity measurement on hard-disk drive. Experimental results show that the x/y-to-z coupling effect in large-range (20 and 45 microm) tapping-mode imaging at both low to high scan rates (2, 12.2 to 24.4 Hz) can be effectively removed.

  18. A Coupled Field Multiphysics Modeling Approach to Investigate RF MEMS Switch Failure Modes under Various Operational Conditions

    Directory of Open Access Journals (Sweden)

    Khaled Sadek

    2009-10-01

    Full Text Available In this paper, the reliability of capacitive shunt RF MEMS switches have been investigated using three dimensional (3D coupled multiphysics finite element (FE analysis. The coupled field analysis involved three consecutive multiphysics interactions. The first interaction is characterized as a two-way sequential electromagnetic (EM-thermal field coupling. The second interaction represented a one-way sequential thermal-structural field coupling. The third interaction portrayed a two-way sequential structural-electrostatic field coupling. An automated substructuring algorithm was utilized to reduce the computational cost of the complicated coupled multiphysics FE analysis. The results of the substructured FE model with coupled field analysis is shown to be in good agreement with the outcome of previously published experimental and numerical studies. The current numerical results indicate that the pull-in voltage and the buckling temperature of the RF switch are functions of the microfabrication residual stress state, the switch operational frequency and the surrounding packaging temperature. Furthermore, the current results point out that by introducing proper mechanical approaches such as corrugated switches and through-holes in the switch membrane, it is possible to achieve reliable pull-in voltages, at various operating temperatures. The performed analysis also shows that by controlling the mean and gradient residual stresses, generated during microfabrication, in conjunction with the proposed mechanical approaches, the power handling capability of RF MEMS switches can be increased, at a wide range of operational frequencies. These design features of RF MEMS switches are of particular importance in applications where a high RF power (frequencies above 10 GHz and large temperature variations are expected, such as in satellites and airplane condition monitoring.

  19. A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis

    Science.gov (United States)

    Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann

    2017-04-01

    The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for

  20. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae

    International Nuclear Information System (INIS)

    Lobato, Justo; González del Campo, Araceli; Fernández, Francisco J.; Cañizares, Pablo; Rodrigo, Manuel A.

    2013-01-01

    Highlights: • An algae cathode of a MFC has been used without artificial mediators or catalysts. • To perform a lagooning wastewater treatment coupled with energy-producing MFC. • The producing electricity operates under day/night irradiation cycles, is shown. - Abstract: The paper focused on the start-up and performance characterisation of a new type of microbial fuel cell (MFC), in which an algae culture was seeded in the cathodic chamber to produce the oxygen required to complete the electrochemical reactions of the MFC, thus circumventing the need for a mechanical aerator. The system did not use mediators or high cost catalysts and it can be started-up easily using a straightforward three-stage procedure. The start-up consists of the separate production of the electricity-producing microorganisms and the algae cultures (stage I), replacement of the mechanical aeration system by the algae culture (stage II) and a change in the light dosage from a continuous input to a dynamic day/night profile. The MFC was operated under a regime of 12 h light and 12 h dark and was also operated in batch and continuous substrate-feeding modes. The same cell voltage was achieved when the cathode compartment was operated with air supplied by aerators, which means that this configuration can perform as well as the traditional one. The results also show the influence of both the organic load and light irradiation on electricity production and demonstrate that this type MFC is a robust and promising technology that can be considered as a first approach to perform a lagooning wastewater treatment with microbial fuel cells

  1. Use of new phosphonylating and coupling agents in the synthesis of oligodeoxyribonucleotides via the H-phosphonate approach.

    OpenAIRE

    Sakatsume, O; Yamane, H; Takaku, H; Yamamoto, N

    1990-01-01

    New phosphonylating and coupling agents for the synthesis of oligodeoxyribonucleotides via H-phosphonate approach have been developed. Tris(1,1,1,3,3,3-hexafluoro-2-propyl) phosphite, prepared by the reaction of lithium salt of 1,1,1,3,3,3-hexafluoro-2-propoxide with PCl3, reacts with deoxyribonucleosides in the presence of a catalytic amount of triethylamine to produce in the high yield the corresponding deoxyribonucleoside 3'-H-phosphonate units. The use of a new coupling reagent, 1,3-dimet...

  2. A new approach to sum frequency generation of single-frequency blue light in a coupled ring cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2014-01-01

    We present a generic approach for the generation of tunable single-frequency light and demonstrate generation of more than 300 mW tunable light around 460 nm. One tapered diode laser is operated in a coupled ring cavity containing the nonlinear crystal and another tapered diode laser is sent thro...... through the nonlinear crystal in a single pass. A high conversion efficiency of more than 25 % of the single-pass laser is enabled by the high circulating power in the coupled cavity. The system is entirely self-stabilized with no need for electronic locking....

  3. Achieving pregnancy safely for HIV-serodiscordant couples: a social ecological approach.

    Science.gov (United States)

    Saleem, Haneefa T; Narasimhan, Manjulaa; Denison, Julie A; Kennedy, Caitlin E

    2017-03-08

    The recognition and fulfilment of the sexual and reproductive health and rights (SRHR) of all individuals and couples affected by HIV, including HIV-serodiscordant couples, requires intervention strategies aimed at achieving safe and healthy pregnancies and preventing undesired pregnancies. Reducing risk of horizontal and vertical transmission and addressing HIV-related infertility are key components of such interventions. In this commentary, we present challenges and opportunities for achieving safe pregnancies for serodiscordant couples through a social ecological lens. At the individual level, knowledge (e.g. of HIV status, assisted reproductive technologies) and skills (e.g. adhering to antiretroviral therapy or pre-exposure prophylaxis) are important. At the couple level, communication between partners around HIV status disclosure, fertility desires and safer pregnancy is required. Within the structural domain, social norms, stigma and discrimination from families, community and social networks influence individual and couple experiences. The availability and quality of safer conception and fertility support services within the healthcare system remains essential, including training for healthcare providers and strengthening integration of SRHR and HIV services. Policies, legislation and funding can improve access to SRHR services. A social ecological framework allows us to examine interactions between levels and how interventions at multiple levels can better support HIV-serodiscordant couples to achieve safe pregnancies. Strategies to achieve safer pregnancies should consider interrelated challenges at different levels of a social ecological framework. Interventions across multiple levels, implemented concurrently, have the potential to maximize impact and ensure the full SRHR of HIV-serodiscordant couples.

  4. Towards a hybrid strong/weak coupling approach to jet quenching

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2014-01-01

    We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.

  5. A variational master equation approach to quantum dynamics with off-diagonal coupling in a sub-Ohmic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ke-Wei [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Fujihashi, Yuta; Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-05-28

    A master equation approach based on an optimized polaron transformation is adopted for dynamics simulation with simultaneous diagonal and off-diagonal spin-boson coupling. Two types of bath spectral density functions are considered, the Ohmic and the sub-Ohmic. The off-diagonal coupling leads asymptotically to a thermal equilibrium with a nonzero population difference P{sub z}(t → ∞) ≠ 0, which implies localization of the system, and it also plays a role in restraining coherent dynamics for the sub-Ohmic case. Since the new method can extend to the stronger coupling regime, we can investigate the coherent-incoherent transition in the sub-Ohmic environment. Relevant phase diagrams are obtained for different temperatures. It is found that the sub-Ohmic environment allows coherent dynamics at a higher temperature than the Ohmic environment.

  6. Modelling of large sodium fires: A coupled experimental and calculational approach

    International Nuclear Information System (INIS)

    Astegiano, J.C.; Balard, F.; Cartier, L.; De Pascale, C.; Forestier, A.; Merigot, C.; Roubin, P.; Tenchine, D.; Bakouta, N.

    1996-01-01

    The consequences of large sodium leaks in secondary circuit of Super-Phenix have been studied mainly with the FEUMIX code, on the basis of sodium fire experiments. This paper presents the status of the coupled AIRBUS (water experiment) FEUMIX approach under development in order to strengthen the extrapolation made for the Super-Phenix secondary circuits calculations for large leakage flow. FEUMIX code is a point code based on the concept of a global interfacial area between sodium and air. Mass and heat transfers through this global area is supposed to be similar. Then, global interfacial transfer coefficient Sih is an important parameter of the model. Correlations for the interfacial area are extracted from a large number of sodium tests. For the studies of hypothetical large sodium leak in secondary circuit of Super-Phenix, flow rates of more than 1 t/s have been considered and extrapolation was made from the existing results (maximum flow rate 225 kg/s). In order to strengthen the extrapolation, water test has been contemplated, on the basis of a thermal hydraulic similarity. The principle is to measure the interfacial area of a hot water jet in air, then to transpose the Sih to sodium without combustion, and to use this value in FEUMIX with combustion modelling. AIRBUS test section is a parallelepipedic gastight tank, 106 m 3 (5.7 x 3.7 x 5) internally insulated. Water jet is injected from heated external auxiliary tank into the cell using pressurized air tank and specific valve. The main measurements performed during each test are injected flow rate air pressure water temperature gas temperature A first series of tests were performed in order to qualify the methodology: typical FCA and IGNA sodium fire tests were represented in AIRBUS, and a comparison of the FEUMIX calculation using Sih value deduced from water experiments show satisfactory agreement. A second series of test for large flow rate, corresponding to large sodium leak in secondary circuit of Super

  7. An assessment of mode-coupling and falling-friction mechanisms in railway curve squeal through a simplified approach

    Science.gov (United States)

    Ding, Bo; Squicciarini, Giacomo; Thompson, David; Corradi, Roberto

    2018-06-01

    Curve squeal is one of the most annoying types of noise caused by the railway system. It usually occurs when a train or tram is running around tight curves. Although this phenomenon has been studied for many years, the generation mechanism is still the subject of controversy and not fully understood. A negative slope in the friction curve under full sliding has been considered to be the main cause of curve squeal for a long time but more recently mode coupling has been demonstrated to be another possible explanation. Mode coupling relies on the inclusion of both the lateral and vertical dynamics at the contact and an exchange of energy occurs between the normal and the axial directions. The purpose of this paper is to assess the role of the mode-coupling and falling-friction mechanisms in curve squeal through the use of a simple approach based on practical parameter values representative of an actual situation. A tramway wheel is adopted to study the effect of the adhesion coefficient, the lateral contact position, the contact angle and the damping ratio. Cases corresponding to both inner and outer wheels in the curve are considered and it is shown that there are situations in which both wheels can squeal due to mode coupling. Additionally, a negative slope is introduced in the friction curve while keeping active the vertical dynamics in order to analyse both mechanisms together. It is shown that, in the presence of mode coupling, the squealing frequency can differ from the natural frequency of either of the coupled wheel modes. Moreover, a phase difference between wheel vibration in the vertical and lateral directions is observed as a characteristic of mode coupling. For both these features a qualitative comparison is shown with field measurements which show the same behaviour.

  8. Coupling model and solving approach for performance evaluation of natural draft counter-flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available When searching for the optimum condenser cooling water flow in a thermal power plant with natural draft cooling towers, it is essential to evaluate the outlet water temperature of cooling towers when the cooling water flow and inlet water temperature change. However, the air outlet temperature and tower draft or inlet air velocity are strongly coupled for natural draft cooling towers. Traditional methods, such as trial and error method, graphic method and iterative methods are not simple and efficient enough to be used for plant practice. In this paper, we combine Merkel equation with draft equation, and develop the coupled description for performance evaluation of natural draft cooling towers. This model contains two inputs: the cooling water flow, the inlet cooling water temperature and two outputs: the outlet water temperature, the inlet air velocity, equivalent to tower draft. In this model, we furthermore put forward a soft-sensing algorithm to calculate the total drag coefficient instead of empirical correlations. Finally, we design an iterative approach to solve this coupling model, and illustrate three cases to prove that the coupling model and solving approach proposed in our paper are effective for cooling tower performance evaluation.

  9. Convergence of an L2-approach in the coupled-channels optical potential method for e-H scattering

    International Nuclear Information System (INIS)

    Bray, I.; Konovalov, D.A.; McCarthy, I.E.

    1990-08-01

    An L 2 approach to the coupled-channels optical method is studied. The investigation is done for electron-hydrogen elastic scattering at projectile energies of 30, 50, 100 and 200 eV. Weak coupling, free-particle Green's function and no exchange in Q-space are appoximations used to calculate the polarization potential. This model problem is solved exactly using actual hydrogen discrete and continuum functions. The convergence of an L 2 approach with the Laguerre basis to the exact result is investigated. It is found that a basis of 10 Laguerre functions is sufficient for convergence of approximately 5% in the polarization potential matrix elements and 2% in the differential cross sections for non-large angles. The convergence is faster for smaller energies. In general, the convergence to the exact result is slow. 12 refs., 2 tabs., 2 figs

  10. Integrated Approaches for Genome-wide Interrogation of the Druggable Non-olfactory G Protein-coupled Receptor Superfamily.

    Science.gov (United States)

    Roth, Bryan L; Kroeze, Wesley K

    2015-08-07

    G-protein-coupled receptors (GPCRs) are frequent and fruitful targets for drug discovery and development, as well as being off-targets for the side effects of a variety of medications. Much of the druggable non-olfactory human GPCR-ome remains under-interrogated, and we present here various approaches that we and others have used to shine light into these previously dark corners of the human genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A convergent approach to the total synthesis of telmisartan via a Suzuki cross-coupling reaction between two functionalized benzimidazoles.

    Science.gov (United States)

    Martin, Alex D; Siamaki, Ali R; Belecki, Katherine; Gupton, B Frank

    2015-02-06

    A direct and efficient total synthesis has been developed for telmisartan, a widely prescribed treatment for hypertension. This approach brings together two functionalized benzimidazoles using a high-yielding Suzuki reaction that can be catalyzed by either a homogeneous palladium source or graphene-supported palladium nanoparticles. The ability to perform the cross-coupling reaction was facilitated by the regio-controlled preparation of the 2-bromo-1-methylbenzimidazole precursor. This convergent approach provides telmisartan in an overall yield of 72% while circumventing many issues associated with previously reported processes.

  12. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria.

    Science.gov (United States)

    Michiels, Wim; Nijmeijer, Henk

    2009-09-01

    We consider the synchronization problem of an arbitrary number of coupled nonlinear oscillators with delays in the interconnections. The network topology is described by a directed graph. Unlike the conventional approach of deriving directly sufficient synchronization conditions, the approach of the paper starts from an exact stability analysis in a (gain, delay) parameter space of a synchronized equilibrium and extracts insights from an analysis of its bifurcations and from the corresponding emerging behavior. Instrumental to this analysis a factorization of the characteristic equation is employed that not only facilitates the analysis and reduces computational cost but also allows to determine the precise role of the individual agents and the topology of the network in the (in)stability mechanisms. The study provides an algorithm to perform a stability and bifurcation analysis of synchronized equilibria. Furthermore, it reveals fundamental limitations to synchronization and it explains under which conditions on the topology of the network and on the characteristics of the coupling the systems are expected to synchronize. In the second part of the paper the results are applied to coupled Lorenz systems. The main results show that for sufficiently large coupling gains, delay-coupled Lorenz systems exhibit a generic behavior that does not depend on the number of systems and the topology of the network, as long as some basic assumptions are satisfied, including the strong connectivity of the graph. Here the linearized stability analysis is strengthened by a nonlinear stability analysis which confirms the predictions based on the linearized stability and bifurcation analysis. This illustrates the usefulness of the exact linearized analysis in a situation where a direct nonlinear stability analysis is not possible or where it yields conservative conditions from which it is hard to get qualitative insights in the synchronization mechanisms and their scaling properties

  13. The fractional coupled KdV equations: Exact solutions and white noise functional approach

    International Nuclear Information System (INIS)

    Ghany, Hossam A.; El Bab, A. S. Okb; Zabel, A. M.; Hyder, Abd-Allah

    2013-01-01

    Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types. (general)

  14. Comparative study of the Peach Bottom turbine trip experiment using two different coupled codes approaches

    International Nuclear Information System (INIS)

    Bambara, M.; Bousbia-Salah, A.; D'Auria, F.

    2005-01-01

    Full text of publication follows: In the last years a great concern about the neutron-3D/thermal-hydraulic codes coupling took place. Owing to the improved computational technology, 'best estimate' analyses are today a common tool to assess safety features, and they are necessary if an asymmetric behaviour in the core region exists, or if strong interactions between the core neutronics and reactor thermal-hydraulic occur. In order to validate the coupled codes performances, several international programmes were issued. Among these activities, the OECD/NEA BWR Turbine Trip (TT) was chosen for further sensitivity analyses. It consists of a turbine trip (TT) experiment carried out at the Peach Bottom 2 BWR. In this paper, the results of two different coupled codes systems are summarized and compared. The BWR TT simulations were carried out coupling the thermal-hydraulic system code RELAP5/mode 3.2 to the 3D neutron kinetics code Parcs/2.3, and also the system code ATHLET to the neutronics code QUABOX-CUBBOX. An exhaustive overview of the main features is given, and those aspects, which need further developments and experiences, are pointed out. (authors)

  15. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity

    Czech Academy of Sciences Publication Activity Database

    Štibingerová, Iva; Voltrová, Svatava; Kočová, Šárka; Lindale, M.; Šrogl, Jiří

    2016-01-01

    Roč. 18, č. 2 (2016), s. 312-315 ISSN 1523-7060 R&D Projects: GA MŠk LH12012 Institutional support: RVO:61388963 Keywords : polysiloxane gels * Suzuki coupling * palladium nanoparticles Subject RIV: CC - Organic Chemistry Impact factor: 6.579, year: 2016

  16. Control of the dynamics of coupled atomic-molecular Bose-Einstein condensates: Modified Gross-Pitaevskii approach

    International Nuclear Information System (INIS)

    Gupta, Moumita; Dastidar, Krishna Rai

    2009-01-01

    We study the dynamics of the atomic and molecular Bose-Einstein condensates (BECs) of 87 Rb in a spherically symmetric trap coupled by stimulated Raman photoassociation process. Considering the higher order nonlinearity in the atom-atom interaction we analyze the dynamics of the system using coupled modified Gross-Pitaevskii (MGP) equations and compare it with mean-field coupled Gross-Pitaevskii (GP) dynamics. Considerable differences in the dynamics are obtained in these two approaches at large scattering length, i.e., for large values of peak-gas parameter x pk ≥10 -3 . We show how the dynamics of the coupled system is affected when the atom-molecule and molecule-molecule interactions are considered together with the atom-atom interaction and also when the strengths of these three interactions are increased. The effect of detuning on the efficiency of conversion of atomic fractions into molecules is demonstrated and the feasibility of maximum molecular BEC formation by varying the Raman detuning parameter at different values of time is explored. Thus by varying the Raman detuning and the scattering length for atom-atom interaction one can control the dynamics of the coupled atomic-molecular BEC system. We have also solved coupled Gross-Pitaevskii equations for atomic to molecular condensate formation through magnetic Feshbach resonance in a BEC of 85 Rb. We found similar features for oscillations between atomic and molecular condensates noted in previous theoretical study and obtained fairly good agreement with the evolution of total atomic condensate observed experimentally.

  17. Woody debris transport modelling by a coupled DE-SW approach

    Science.gov (United States)

    Persi, Elisabetta; Petaccia, Gabriella; Sibilla, Stefano

    2016-04-01

    The presence of wood in rivers is gaining more and more attention: on one side, the inclusion of woody debris in streams is emphasized for its ecological benefits; on the other hand, particular attention must be paid to its management, not to affect hydraulic safety. Recent events have shown that wood can be mobilized during floodings (Comiti et al. 2008, Lange and Bezzola 2006), aggravating inundations, in particular near urban areas. For this reason, the inclusion of woody debris influence on the prediction of flooded areas is an important step toward the reduction of hydraulic risk. Numerical modelling plays an important role to this purpose. Ruiz-Villanueva et al. (2014) use a two-dimensional numerical model to calculate the kinetics of cylindrical woody debris transport, taking into account also the hydrodynamic effects of wood. The model here presented couples a Discrete Element approach (DE) for the calculation of motion of a cylindrical log with the solution of the Shallow Water Equations (SW), in order to simulate woody debris transport in a two-dimensional stream. In a first step, drag force, added mass force and side force are calculated from flow and log velocities, assuming a reference area and hydrodynamic coefficients taken from literature. Then, the equations of dynamics are solved to model the planar roto-translation of the wooden cylinder. Model results and its physical reliability are clearly affected by the values of the drag and side coefficients, which in turn depend upon log submergence and angle towards the flow direction. Experimental studies to evaluate drag and side coefficients can be found for a submerged cylinder, with various orientations (Gippel et al. 1996; Hoang et al. 2015). To extend such results to the case of a floating (non-totally submerged) cylinder, the authors performed a series of laboratory tests whose outcomes are implemented in the proposed DE-SW model, to assess the effects of these values on the dynamic of woody

  18. Enhancement of couples' communication and dyadic coping by a self-directed approach: a randomized controlled trial.

    Science.gov (United States)

    Bodenmann, Guy; Hilpert, Peter; Nussbeck, Fridtjof W; Bradbury, Thomas N

    2014-08-01

    Although prevention of relationship distress and dissolution has potential to strengthen the well-being of partners and any children they are raising, dissemination of prevention programs can be limited because couples face many barriers to in-person participation. An alternative strategy, providing couples with an instructional DVD, is tested in the present study, in which 330 Caucasian couples (N = 660 participants; mean age: men 41.4 years, women 40.0 years) were randomly assigned to a DVD group without any further support, a DVD group with technical telephone coaching, or a wait-list control group. Couples completed questionnaires at pretest, posttest, and 3 and 6 months after completion of the intervention. Self-report measures of dyadic coping, communication quality, ineffective arguing, and relationship satisfaction were used to test whether the intervention groups improved in comparison with the control group. Women in both intervention groups increased in dyadic coping, reduced conflict behavior, and were more satisfied with their relationship 6 months after the intervention. Effects for men were mixed. Participants with poorer skills reported stronger improvement. Intimate relationships can, within limits, be positively influenced by a self-directed approach. Effective dissemination of principles underlying successful relationships can be facilitated through the use of emerging low-cost tools and technologies. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. K -essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João [Departamento de Física, Universidade da Beira Interior, Rua Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal); Morais, João [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); Zhuk, Alexander, E-mail: mbl@ubi.pt, E-mail: sravan@ubi.pt, E-mail: jmarto@ubi.pt, E-mail: jviegas001@ikasle.ehu.eus, E-mail: ai.zhuk2@gmail.com [Astronomical Observatory, Odessa National University, Street Dvoryanskaya 2, Odessa 65082 (Ukraine)

    2016-07-01

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K -essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K -essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K -essence models: (i) the pure kinetic K -essence field, (ii) a K -essence with a constant speed of sound and (iii) the K -essence model with the Lagrangian bX + cX {sup 2}− V (φ). We demonstrate that if the K -essence is coupled, all these K -essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.

  20. Pastoral Care Functional Approach as Panacea For Involuntary Childlessness Among Christian Couples In Africa

    Directory of Open Access Journals (Sweden)

    Stephen Oladele Ayankeye

    2013-07-01

    Full Text Available The phenomenon of involuntary childlessness is a serious one in Africa where parenthood is given a pride of place. The fact that there is a high population growth has not removed the trauma associated with inability to reproduce from the African society. The weight of the crisis cuts across socio-economic and religious boundaries. Little wonder why studies continue to emerge from various fields on the issue. This paper focused on the application of some functions of pastoral care that can be of help while pastoral caregivers and counsellors are caring for childless couples in Africa. The functions are educating healing and sustaining. The intention, since there have been several papers on causes and effects of childlessness, is to avail pastoral caregivers with a handy guideline in the process of ministering to the involuntarily childless couples in Africa

  1. A regime-switching copula approach to modeling day-ahead prices in coupled electricity markets

    DEFF Research Database (Denmark)

    Pircalabu, Anca; Benth, Fred Espen

    2017-01-01

    significant evidence of tail dependence in all pairs of interconnected areas we consider. As a first application of the proposed model, we consider the pricing of financial transmission rights, and highlight how the choice of marginal distributions and copula impacts prices. As a second application we......The recent price coupling of many European electricity markets has triggered a fundamental change in the interaction of day-ahead prices, challenging additionally the modeling of the joint behavior of prices in interconnected markets. In this paper we propose a regime-switching AR–GARCH copula...... to model pairs of day-ahead electricity prices in coupled European markets. While capturing key stylized facts empirically substantiated in the literature, this model easily allows us to 1) deviate from the assumption of normal margins and 2) include a more detailed description of the dependence between...

  2. Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach

    Science.gov (United States)

    Comolli, Alessandro; Dentz, Marco

    2017-09-01

    We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in

  3. Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions

    OpenAIRE

    Chandrasekharan, Shailesh; Li, Anyi

    2010-01-01

    We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...

  4. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei

    2016-01-04

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  5. Bootstrapping gravity: A consistent approach to energy-momentum self-coupling

    International Nuclear Information System (INIS)

    Butcher, Luke M.; Hobson, Michael; Lasenby, Anthony

    2009-01-01

    It is generally believed that coupling the graviton (a classical Fierz-Pauli massless spin-2 field) to its own energy-momentum tensor successfully recreates the dynamics of the Einstein field equations order by order; however the validity of this idea has recently been brought into doubt [T. Padmanabhan, Int. J. Mod. Phys. D 17, 367 (2008).]. Motivated by this, we present a graviton action for which energy-momentum self-coupling is indeed consistent with the Einstein field equations. The Hilbert energy-momentum tensor for this graviton is calculated explicitly and shown to supply the correct second-order term in the field equations; in contrast, the Fierz-Pauli action fails to supply the correct term. A formalism for perturbative expansions of metric-based gravitational theories is then developed, and these techniques employed to demonstrate that our graviton action is a starting point for a straightforward energy-momentum self-coupling procedure that, order by order, generates the Einstein-Hilbert action (up to a classically irrelevant surface term). The perturbative formalism is extended to include matter and a cosmological constant, and interactions between perturbations of a free matter field and the gravitational field are studied in a vacuum background. Finally, the effect of a nonvacuum background is examined, and the graviton is found to develop a nonvanishing 'mass-term' in the action.

  6. Learning robotic eye-arm-hand coordination from human demonstration: a coupled dynamical systems approach.

    Science.gov (United States)

    Lukic, Luka; Santos-Victor, José; Billard, Aude

    2014-04-01

    We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target. Furthermore, we demonstrate that the notion of workspace travelled by the hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting obstacles on the way when performing reaching. We find that the gaze proactively coordinates the pattern of eye-arm motion during obstacle avoidance. This study provides also a quantitative assessment of the coupling between the eye-arm-hand motion. We show that the coupling follows regular phase dependencies and is unaltered during obstacle avoidance. These observations provide a basis for the design of a computational model. Our controller extends the coupled dynamical systems framework and provides fast and synchronous control of the eyes, the arm and the hand within a single and compact framework, mimicking similar control system found in humans. We validate our model for visuomotor control of a humanoid robot.

  7. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei; Lubineau, Gilles; Azdoud, Yan; Askari, Abe

    2016-01-01

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  8. Approach and Avoidance Sexual Goals in Couples with Provoked Vestibulodynia: Associations with Sexual, Relational, and Psychological Well-Being.

    Science.gov (United States)

    Rosen, Natalie O; Muise, Amy; Bergeron, Sophie; Impett, Emily A; Boudreau, Gillian K

    2015-08-01

    Provoked vestibulodynia (PVD) is a prevalent vulvovaginal pain condition that is triggered primarily during sexual intercourse. PVD adversely impacts women's and their partners' sexual relationship and psychological well-being. Over 80% of women with PVD continue to have intercourse, possibly because of sexual goals that include wanting to pursue desirable outcomes (i.e., approach goals; such as a desire to maintain intimacy) and avoid negative outcomes (i.e., avoidance goals; such as avoiding a partner's disappointment). The aim of this study was to investigate associations between approach and avoidance sexual goals and women's pain, as well as the sexual, relational, and psychological well-being of affected couples. Women with PVD (N = 107) and their partners completed measures of sexual goals, sexual satisfaction, relationship satisfaction, and depression. Women also completed measures of pain during intercourse and sexual functioning. (1) Global Measure of Sexual Satisfaction Scale, (2) Dyadic Adjustment Scale-Revised or the Couple Satisfaction Index, (3) Beck Depression Inventory-II, (4) numerical rating scale of pain during intercourse, and (5) Female Sexual Function Index. When women reported higher avoidance sexual goals, they reported lower sexual and relationship satisfaction, and higher levels of depressive symptoms. In addition, when partners of women reported higher avoidance sexual goals, they reported lower relationship satisfaction. When women reported higher approach sexual goals, they also reported higher sexual and relationship satisfaction. Targeting approach and avoidance sexual goals could enhance the quality and efficacy of psychological couple interventions for women with PVD and their partners. © 2015 International Society for Sexual Medicine.

  9. New approach to the theory of coupled πNN-NN systems. 4. Completion of formal development

    International Nuclear Information System (INIS)

    Avishai, Y.; Mizutani, T.

    1980-05-01

    We complete our discussion pertaining to the coupled πNN-NN system in succession of our previous works and approach the problem in two independent ways. The first one starts from a Hamiltonian formalism and coupled Schroedinger equations whereas the second one employs an off-mass-shell relativistic theory of classifying perturbation diagrams. Both ways lead to connected equations among transition operators in which πNN vertices as well as nucleon propagators are completely dressed and renormalized. Furthermore, the physical amplitudes obey two and three body unitarity relations. The resultant equations form a sound theoretical basis for subsequent numerical calculations leading to the evaluation of physical observables in the reactions π+d→π+d, π+d→N+N and N+N→N+N

  10. Study of doubly excited states of H- and He in the coupled-channel hypersperical adiabatic approach

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Abrashkevich, D.G.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.

    1989-01-01

    Doubly excited states (DES) of H - and He are investigated within the coupled-channel hyperspherical adiabatic (HSA) approach. Influence of the angular and radial electron correlations on the rate of convergence of the values of the potential curves and matrix elements of radial coupling is studied numerically. The scheme based on molecular classification of the HSA basis states is used for the classification of DES. The results of the multichannel calculations of 1 S e and 1 P 0 DES of H - and He below the second threshold are presented. The obtained results are compared with other calculations and experiment. The region of applicability of the adiabatic approximation is discussed. 75 refs.; 10 tabs

  11. Effective stress in unsaturated soils: A thermodynamic approach based on the interfacial energy and hydromechanical coupling

    NARCIS (Netherlands)

    Nikooee, E.; Habibagahi, G.; Hassanizadeh, S.M.; Ghahramani, A.

    2012-01-01

    In recent years, the effective stress approach has received much attention in the constitutive modeling of unsaturated soils. In this approach, the effective stress parameter is very important. This parameter needs a correct definition and has to be determined properly. In this paper, a

  12. Seasonal Climate Predictability in a Coupled OAGCM Using a Different Approach for Ensemble Forecasts.

    Science.gov (United States)

    Luo, Jing-Jia; Masson, Sebastien; Behera, Swadhin; Shingu, Satoru; Yamagata, Toshio

    2005-11-01

    Predictabilities of tropical climate signals are investigated using a relatively high resolution Scale Interaction Experiment Frontier Research Center for Global Change (FRCGC) coupled GCM (SINTEX-F). Five ensemble forecast members are generated by perturbing the model’s coupling physics, which accounts for the uncertainties of both initial conditions and model physics. Because of the model’s good performance in simulating the climatology and ENSO in the tropical Pacific, a simple coupled SST-nudging scheme generates realistic thermocline and surface wind variations in the equatorial Pacific. Several westerly and easterly wind bursts in the western Pacific are also captured.Hindcast results for the period 1982 2001 show a high predictability of ENSO. All past El Niño and La Niña events, including the strongest 1997/98 warm episode, are successfully predicted with the anomaly correlation coefficient (ACC) skill scores above 0.7 at the 12-month lead time. The predicted signals of some particular events, however, become weak with a delay in the phase at mid and long lead times. This is found to be related to the intraseasonal wind bursts that are unpredicted beyond a few months of lead time. The model forecasts also show a “spring prediction barrier” similar to that in observations. Spatial SST anomalies, teleconnection, and global drought/flood during three different phases of ENSO are successfully predicted at 9 12-month lead times.In the tropical North Atlantic and southwestern Indian Ocean, where ENSO has predominant influences, the model shows skillful predictions at the 7 12-month lead times. The distinct signal of the Indian Ocean dipole (IOD) event in 1994 is predicted at the 6-month lead time. SST anomalies near the western coast of Australia are also predicted beyond the 12-month lead time because of pronounced decadal signals there.

  13. Inductive coupling between overhead power lines and nearby metallic pipelines. A neural network approach

    Directory of Open Access Journals (Sweden)

    Levente Czumbil

    2015-12-01

    Full Text Available The current paper presents an artificial intelligence based technique applied in the investigation of electromagnetic interference problems between high voltage power lines (HVPL and nearby underground metallic pipelines (MP. An artificial neural network (NN solution has been implemented by the authors to evaluate the inductive coupling between HVPL and MP for different constructive geometries of an electromagnetic interference problem considering a multi-layer soil structure. Obtained results are compared to solutions provided by a finite element method (FEM based analysis and considered as reference. The advantage of the proposed method yields in a simplified computation model compared to FEM, and implicitly a lower computational time.

  14. Coupled map lattice (CML) approach to power reactor dynamics (I) - preservation of normality

    International Nuclear Information System (INIS)

    Konno, H.

    1996-01-01

    An application of coupled map lattice (CML) model for simulating power fluctuations in nuclear power reactors is presented. (1) Preservation of Gaussianity in the point model is studied in a chaotic force driven Langevin equation in conjunction with the Gaussian-white noise driven Langevin equation. (2) Preservation of Guassianity is also studied in the space-dependent model with the use of a CML model near the onset of the Hopf bifurcation point. It is shown that the spatial dimensionality decreases as the maximum eigenvalue of the system increases. The result is consistent with the observation of neutron fluctuation in a BWR. (author)

  15. Lattice Hamiltonian approach to the Schwinger model. Further results from the strong coupling expansion

    International Nuclear Information System (INIS)

    Szyniszewski, Marcin; Manchester Univ.; Cichy, Krzysztof; Poznan Univ.; Kujawa-Cichy, Agnieszka

    2014-10-01

    We employ exact diagonalization with strong coupling expansion to the massless and massive Schwinger model. New results are presented for the ground state energy and scalar mass gap in the massless model, which improve the precision to nearly 10 -9 %. We also investigate the chiral condensate and compare our calculations to previous results available in the literature. Oscillations of the chiral condensate which are present while increasing the expansion order are also studied and are shown to be directly linked to the presence of flux loops in the system.

  16. An Explicit Approach Toward Modeling Thermo-Coupled Deformation Behaviors of SMPs

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-03-01

    Full Text Available A new elastoplastic J 2 -flow models with thermal effects is proposed toward simulating thermo-coupled finite deformation behaviors of shape memory polymers. In this new model, an elastic potential evolving with development of plastic flow is incorporated to characterize the stress-softening effect at unloading and, moreover, thermo-induced plastic flow is introduced to represent the strain recovery effect at heating. It is shown that any given test data for both effects may be accurately simulated by means of direct and explicit procedures. Numerical examples for model predictions compare well with test data in literature.

  17. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    Lyutorovich, N.; Tselyaev, V. [Physical Faculty, St. Petersburg State University, RU-198504 St. Petersburg (Russian Federation); Speth, J., E-mail: J.Speth@fz-juelich.de [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Krewald, S.; Grümmer, F. [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Reinhard, P.-G. [Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany)

    2015-10-07

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  18. Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji

    2014-06-01

    We study the six-point gluon scattering amplitudes in N=4 super Yang-Mills theory at strong coupling based on the twisted Z 4 -symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.

  19. A unitary approach to the coupling between the NN and πNN channels

    International Nuclear Information System (INIS)

    Blankleider, B.

    1980-11-01

    Some basic properties of the πNN system, in particular its coupling to the NN channel, are investigated. A set of linear integral equations that couple the N-N to the π-d channel, and satisfy two- and three-body unitarity is derived. By including the π-N amplitude in the P 11 channel, and retaining certain disconnected diagrams, it is found that the propagators for the nucleons, and form factors for the vertices, become dressed without changing the basic structure of the equations. For the numerical solution relativistic kinematics for the pion and non-relativistic kinematics for the nucleons are used. There is uncertainty about the importance of real pion absorption in the π-d elastic scattering reaction. Although the effect of absorption can be very large, its influence is cancelled to a large extent by the further inclusion of P 11 rescattering. The inclusion of absorption signnificantly lowers the dips in the π-d differential cross sections at higher energies. The model is able to reproduce the sole experimental value of the tensor polarization t 20 at 180 deg. so far available. Numerical results for the reaction NN→πd are in excellent agreement with the differential cross sections at all but the very high energies

  20. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    Directory of Open Access Journals (Sweden)

    N. Lyutorovich

    2015-10-01

    Full Text Available We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA. All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  1. An approach for heterogeneous and loosely coupled geospatial data distributed computing

    Science.gov (United States)

    Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui

    2010-07-01

    Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.

  2. An approach for the modeling of interface-body coupled nonlocal damage

    Directory of Open Access Journals (Sweden)

    J. Toti

    2010-04-01

    Full Text Available Fiber Reinforced Plastic (FRP can be used for strengthening concrete or masonry constructions. One of the main problem in the use of FRP is the possible detachment of the reinforcement from the support material. This paper deals with the modeling of the FRP-concrete or masonry damage interface, accounting for the coupling occurring between the degradation of the cohesive material and the FRP detachment. To this end, a damage model is considered for the quasi-brittle material. In order to prevent strain localization and strong mesh sensitivity of the solution, an integral-type of nonlocal model based on the weighted spatial averaging of a strain-like quantity is developed. Regarding the interface, the damage is governed by the relative displacement occurring at bond. A suitable interface model which accounts for the mode I, mode II and mixed mode of damage is developed. The coupling between the body damage and the interface damage is performed computing the body damage on the bond surface. Numerical examples are presented.

  3. A safety assessment approach using coupled NEAR3D and CHAN3D - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars (Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)); Gylling, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    Safety assessment calculations for the Forsmark site were performed using a new code, which couples the far-field code CHAN3D and the near-field code NEAR3D. In addition, the package has a Graphical User Interface (GUI) and a code that governs the simulations (Coupling). The simulations were performed for 90 different canister locations, which were randomly chosen. Deterministic data were used for tunnels, deposition holes, and shafts. The background fractures were stochastically generated in two HRD realizations. The F-ratio and the water travel time distributions were used to study the performance of the simulations. Near-field calculations were not performed for the Forsmark site using the new coded presented in the prevailing report. However, the obtained results in this study are compared with the results from the Task 2 model of the ConnectFlow report /Joyce et al. 2010/. Although the results cannot be compared directly, a reasonably good agreement is obtained for the F-ratio

  4. Cooling Systems Design in Hot Stamping Tools by a Thermal-Fluid-Mechanical Coupled Approach

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2014-06-01

    Full Text Available Hot stamping tools with cooling systems are the key facilities for hot stamping process of Ultrahigh strength steels (UHSS in automotive industry. Hot stamping tools have significant influence on the final microstructure and properties of the hot stamped parts. In serials production, the tools should be rapidly cooled by cooling water. Hence, design of hot stamping tools with cooling systems is important not only for workpieces of good quality but also for the tools with good cooling performance and long life. In this paper, a new multifield simulation method was proposed for the design of hot stamping tools with cooling system. The deformation of the tools was also analyzed by this method. Based on MpCCI (Mesh-based parallel Code Coupling Interface, thermal-fluid simulation and thermal-fluid-mechanical coupled simulation were performed. Subsequently, the geometrical parameters of the cooling system are investigated for the design. The results show that, both the distance between the ducts and the distance between the ducts and the tools loaded contour have significant influence on the quenching effect. And better quenching effect can be achieved with the shorter distance from the tool surface and with smaller distance between ducts. It is also shown that, thermal expansion is the main reason for deformation of the hot forming tools, which causes the distortion of the cooling ducts, and the stress concentration at corner of the ducts.

  5. Effect of δ meson and ρ-ω cross couplings in effective field theory motivated Lagrangian approach

    International Nuclear Information System (INIS)

    Jagota, R.K.; Dhiman, S.K.; Sharma, B.K.; Arumugam, P.; Patra, S.K.

    2005-01-01

    It is shown that the self and cross couplings of ω meson plays an important role to make the nuclear equation of state (EOS) softer. The parameter set G2, obtained from the effective field theory motivated Lagrangian (E-RMF) approach, is very successful to reproduce the nuclear matter properties including the structure of neutron star as well as of finite nuclei. The motivation of the present report is to see the effects of these terms in the E-RMF Lagrangian on infinite nuclear matter as well as finite nuclei

  6. Abelian color cycles: A new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at

    2017-03-15

    We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).

  7. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    International Nuclear Information System (INIS)

    Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M

    2014-01-01

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)

  8. An improved hybrid topology optimization approach coupling simulated annealing and SIMP (SA-SIMP)

    International Nuclear Information System (INIS)

    Garcia-Lopez, N P; Sanchez-Silva, M; Medaglia, A L; Chateauneuf, A

    2010-01-01

    The Solid Isotropic Material with Penalization (SIMP) methodology has been used extensively due to its versatility and ease of implementation. However, one of its main drawbacks is that resulting topologies exhibit areas of intermediate densities which lack any physical meaning. This paper presents a hybrid methodology which couples simulated annealing and SIMP (SA-SIMP) in order to achieve solutions which are stiffer and predominantly black and white. Under a look-ahead strategy, the algorithm gradually fixes or removes those elements whose density resulting from SIMP is intermediate. Different strategies for selecting and fixing the fractional elements are examined using benchmark examples, which show that topologies resulting from SA-SIMP are more rigid than SIMP and predominantly black and white.

  9. A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil

    Science.gov (United States)

    Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa

    2017-12-01

    In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.

  10. The Performance of Structure-Controller Coupled Systems Analysis Using Probabilistic Evaluation and Identification Model Approach

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2017-01-01

    Full Text Available This study evaluates the performance of passively controlled steel frame building under dynamic loads using time series analysis. A novel application is utilized for the time and frequency domains evaluation to analyze the behavior of controlling systems. In addition, the autoregressive moving average (ARMA neural networks are employed to identify the performance of the controller system. Three passive vibration control devices are utilized in this study, namely, tuned mass damper (TMD, tuned liquid damper (TLD, and tuned liquid column damper (TLCD. The results show that the TMD control system is a more reliable controller than TLD and TLCD systems in terms of vibration mitigation. The probabilistic evaluation and identification model showed that the probability analysis and ARMA neural network model are suitable to evaluate and predict the response of coupled building-controller systems.

  11. A Novel Approach Based on MEMS-Gyro's Data Deep Coupling for Determining the Centroid of Star Spot

    Directory of Open Access Journals (Sweden)

    Xing Fei

    2012-01-01

    Full Text Available The traditional approach of star tracker for determining the centroid of spot requires enough energy and good shape, so a relatively long exposure time and stable three-axis state become necessary conditions to maintain high accuracy, these limit its update rate and dynamic performance. In view of these issues, this paper presents an approach for determining the centroid of star spot which based on MEMS-Gyro's data deep coupling, it achieves the deep fusion of the data of star tracker and MEMS-Gyro at star map level through the introduction of EKF. The trajectory predicted by using the angular velocity of three axes can be used to set the extraction window, this enhances the dynamic performance because of the accurate extraction when the satellite has angular speed. The optimal estimations of the centroid position and the drift in the output signal of MEMS-Gyro through this approach reduce the influence of noise of the detector on accuracy of the traditional approach for determining the centroid and effectively correct the output signal of MEMS-Gyro. At the end of this paper, feasibility of this approach is verified by simulation.

  12. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.

    Science.gov (United States)

    Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The odd couple: using biomedical and intersectional approaches to address health inequities.

    Science.gov (United States)

    Hankivsky, Olena; Doyal, Lesley; Einstein, Gillian; Kelly, Ursula; Shim, Janet; Weber, Lynn; Repta, Robin

    Better understanding and addressing health inequities is a growing global priority. In this paper, we contribute to the literature examining complex relationships between biological and social dimensions in the field of health inequalities. Specifically, we explore the potential of intersectionality to advance current approaches to socio-biological entwinements. We provide a brief overview of current approaches to combining both biological and social factors in a single study, and then investigate the contributions of an intersectional framework to such work. We offer a number of concrete examples of how intersectionality has been used empirically to bring both biological and social factors together in the areas of HIV, post-traumatic stress disorder, female genital circumcision/mutilation/cutting, and cardiovascular disease. We argue that an intersectional approach can further research that integrates biological and social aspects of human lives and human health and ultimately generate better and more precise evidence for effective policies and practices aimed at tackling health inequities.

  14. Implementation of a Loosely-Coupled Lockstep Approach in the Xilinx Zynq-7000 All Programmable SoC for High Consequence Applications

    Science.gov (United States)

    2017-03-01

    Programmable SoC™ is made possible through the use of ARM® Cortex ™-A9 MPCore™ Asymmetric Multiprocessing; processor configurations utilizing the...core ARM Cortex -A9 MPCore based Processing System (PS) and Programmable Logic (PL) portions. These features allow for two processors to run...SoC™ precludes a tightly-coupled lockstep approach between the two processors . Therefore, a loosely-coupled lockstep approach implemented by a

  15. Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data

    Science.gov (United States)

    Croce, Pierpaolo; Zappasodi, Filippo; Merla, Arcangelo; Chiarelli, Antonio Maria

    2017-08-01

    Objective. Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown. Approach. Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF). Main results. We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements. Significance. The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.

  16. EEG cross-frequency coupling associated with attentional performance: An RDoC approach to attention

    NARCIS (Netherlands)

    Gerrits, B.J.L.; Vollebregt, M.A.; Olbrich, S.; Kessels, R.P.C.; Palmer, D.; Gordon, E.; Arns, M.W.

    2016-01-01

    19th biennial IPEG Meeting: Nijmegen, The Netherlands. 26-30 October 2016. The quality of attentional performance plays a crucial role in goaldirected behavior in daily life activities, cognitive task performance, and in multiple psychiatric illnesses. The Research Domain Criteria (RDoC) approach

  17. Evaluation of micronozzle performance through DSMC, navier-stokes and coupled dsmc/navier-stokes approaches

    NARCIS (Netherlands)

    Torre, F. la; Kenjeres, S.; Kleijn, C.R.; Moerel, J.L.P.A.

    2009-01-01

    Both the particle based Direct Simulation Monte Carlo (DSMC) method and a compressible Navier-Stokes based continuum method are used to investigate the flow inside micronozzles and to predict the performance of such devices. For the Navier-Stokes approach, both slip and no-slip boundary conditions

  18. Thermal radiation transfer calculations in combustion fields using the SLW model coupled with a modified reference approach

    Science.gov (United States)

    Darbandi, Masoud; Abrar, Bagher

    2018-01-01

    The spectral-line weighted-sum-of-gray-gases (SLW) model is considered as a modern global model, which can be used in predicting the thermal radiation heat transfer within the combustion fields. The past SLW model users have mostly employed the reference approach to calculate the local values of gray gases' absorption coefficient. This classical reference approach assumes that the absorption spectra of gases at different thermodynamic conditions are scalable with the absorption spectrum of gas at a reference thermodynamic state in the domain. However, this assumption cannot be reasonable in combustion fields, where the gas temperature is very different from the reference temperature. Consequently, the results of SLW model incorporated with the classical reference approach, say the classical SLW method, are highly sensitive to the reference temperature magnitude in non-isothermal combustion fields. To lessen this sensitivity, the current work combines the SLW model with a modified reference approach, which is a particular one among the eight possible reference approach forms reported recently by Solovjov, et al. [DOI: 10.1016/j.jqsrt.2017.01.034, 2017]. The combination is called "modified SLW method". This work shows that the modified reference approach can provide more accurate total emissivity calculation than the classical reference approach if it is coupled with the SLW method. This would be particularly helpful for more accurate calculation of radiation transfer in highly non-isothermal combustion fields. To approve this, we use both the classical and modified SLW methods and calculate the radiation transfer in such fields. It is shown that the modified SLW method can almost eliminate the sensitivity of achieved results to the chosen reference temperature in treating highly non-isothermal combustion fields.

  19. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour

    Science.gov (United States)

    Belcher, Claire; Hudpsith, Victoria

    2016-04-01

    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  20. Dynamical System Approach for Edge Detection Using Coupled FitzHugh-Nagumo Neurons.

    Science.gov (United States)

    Li, Shaobai; Dasmahapatra, Srinandan; Maharatna, Koushik

    2015-12-01

    The prospect of emulating the impressive computational capabilities of biological systems has led to considerable interest in the design of analog circuits that are potentially implementable in very large scale integration CMOS technology and are guided by biologically motivated models. For example, simple image processing tasks, such as the detection of edges in binary and grayscale images, have been performed by networks of FitzHugh-Nagumo-type neurons using the reaction-diffusion models. However, in these studies, the one-to-one mapping of image pixels to component neurons makes the size of the network a critical factor in any such implementation. In this paper, we develop a simplified version of the employed reaction-diffusion model in three steps. In the first step, we perform a detailed study to locate this threshold using continuous Lyapunov exponents from dynamical system theory. Furthermore, we render the diffusion in the system to be anisotropic, with the degree of anisotropy being set by the gradients of grayscale values in each image. The final step involves a simplification of the model that is achieved by eliminating the terms that couple the membrane potentials of adjacent neurons. We apply our technique to detect edges in data sets of artificially generated and real images, and we demonstrate that the performance is as good if not better than that of the previous methods without increasing the size of the network.

  1. Anomalous triple gauge couplings in the effective field theory approach at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, Adam [Laboratoire de Physique Théorique,Bat. 210, Université Paris-Sud, 91405 Orsay (France); González-Alonso, Martín [IPN de Lyon/CNRS,Universite Lyon 1, Villeurbanne (France); Greljo, Admir [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Faculty of Science, University of Sarajevo,Zmaja od Bosne 33-35, 71000 Sarajevo (Bosnia and Herzegovina); Marzocca, David [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Son, Minho [Department of Physics, Korea Advanced Institute of Science and Technology,291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2017-02-22

    We discuss how to perform consistent extractions of anomalous triple gauge couplings (aTGC) from electroweak boson pair production at the LHC in the Standard Model Effective Field Theory (SMEFT). After recasting recent ATLAS and CMS searches in pp→WZ(WW)→ℓ{sup ′}νℓ{sup +}ℓ{sup −}(ν{sub ℓ}) channels, we find that: (a) working consistently at order Λ{sup −2} in the SMEFT expansion the existing aTGC bounds from Higgs and LEP-2 data are not improved, (b) the strong limits quoted by the experimental collaborations are due to the partial Λ{sup −4} corrections (dimension-6 squared contributions). Using helicity selection rule arguments we are able to explain the suppression in some of the interference terms, and discuss conditions on New Physics (NP) models that can benefit from such LHC analyses. Furthermore, standard analyses assume implicitly a quite large NP scale, an assumption that can be relaxed by imposing cuts on the underlying scale of the process (√(ŝ)). In practice, we find almost no correlation between √(ŝ) and the experimentally accessible quantities, which complicates the SMEFT interpretation. Nevertheless, we provide a method to set (conservative) aTGC bounds in this situation, and recast the present searches accordingly. Finally, we introduce a simple NP model for aTGC to compare the bounds obtained directly in the model with those from the SMEFT analysis.

  2. A Taylor Series Approach for Service-Coupled Queueing Systems with Intermediate Load

    Directory of Open Access Journals (Sweden)

    Ekaterina Evdokimova

    2017-01-01

    Full Text Available This paper investigates the performance of a queueing model with multiple finite queues and a single server. Departures from the queues are synchronised or coupled which means that a service completion leads to a departure in every queue and that service is temporarily interrupted whenever any of the queues is empty. We focus on the numerical analysis of this queueing model in a Markovian setting: the arrivals in the different queues constitute Poisson processes and the service times are exponentially distributed. Taking into account the state space explosion problem associated with multidimensional Markov processes, we calculate the terms in the series expansion in the service rate of the stationary distribution of the Markov chain as well as various performance measures when the system is (i overloaded and (ii under intermediate load. Our numerical results reveal that, by calculating the series expansions of performance measures around a few service rates, we get accurate estimates of various performance measures once the load is above 40% to 50%.

  3. Subcritical set coupled to accelerator (ADS) for transmutation of radioactive wastes: an approach of computational modelling

    International Nuclear Information System (INIS)

    Torres, Mirta B.; Dominguez, Dany S.

    2013-01-01

    Nuclear fission devices coupled to particle accelerators ADS are being widely studied. These devices have several applications, including nuclear waste transmutation and producing hydrogen, both applications with strong social and environmental impact. The essence of this work was to model an ADS geometry composed of small TRISO fuel loaded with a mixture of MOX uranium and thorium target material spallation of uranium, using methods of computational modeling probabilistic, in particular the MCNPX 2.6e program to evaluate the physical characteristics of the device and their ability to transmutation. As a result of the characterization of the spallation target, it can be concluded that production of neutrons per incident proton increases with increasing dimensions of the spallation target (thickness and radius), until it reached the maximum production of neutrons per incident proton or call the region saturation. The results obtained in modeling the ADS device bed kind of balls with respect to isotopic variation in the isotopes of plutonium and minor actinides considered in the analysis revealed that accumulation of mass of the isotopes of plutonium and minor actinides increase for subcritical configuration considered. In the particular case of the isotope 239 Pu, it is observed a reduction of the mass from the time of burning of 99 days. The increase of power in the core, whereas tungsten spallation targets and Lead is among the key future developments of this work

  4. Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach

    Science.gov (United States)

    Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich

    2018-04-01

    Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.

  5. Quasinormal modes of a strongly coupled nonconformal plasma and approach to criticality

    Science.gov (United States)

    Betzios, Panagiotis; Gürsoy, Umut; Järvinen, Matti; Policastro, Giuseppe

    2018-04-01

    We study fluctuations around equilibrium in a class of strongly interacting nonconformal plasmas using holographic techniques. In particular, we calculate the quasinormal mode spectrum of black hole backgrounds that approach Chamblin-Reall plasmas in the IR. In a specific limit, related to the exact linear-dilaton background in string theory, we observe that the plasma approaches criticality and we obtain the quasinormal spectrum analytically. We regulate the critical limit by gluing the IR geometry that corresponds to the nonconformal plasma to a part of AdS space-time in the UV. Near criticality, the spectrum can still be computed analytically and we find two sets of quasinormal modes, related to the IR and UV parts of the geometry. In the critical limit, the quasinormal modes accumulate to form a branch cut in the correlators of the energy-momentum tensor on the real axis of the complex frequency plane.

  6. Granular flow in static mixers by coupled DEM/CFD approach

    OpenAIRE

    Pezo Lato; Pezo Milada; Jovanović Aca; Kosanić Nenad; Petrović Aleksandar; Lević Ljubinko

    2016-01-01

    The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modell...

  7. Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design

    Science.gov (United States)

    Basith, Shaherin; Cui, Minghua; Macalino, Stephani J. Y.; Park, Jongmi; Clavio, Nina A. B.; Kang, Soosung; Choi, Sun

    2018-01-01

    The primary goal of rational drug discovery is the identification of selective ligands which act on single or multiple drug targets to achieve the desired clinical outcome through the exploration of total chemical space. To identify such desired compounds, computational approaches are necessary in predicting their drug-like properties. G Protein-Coupled Receptors (GPCRs) represent one of the largest and most important integral membrane protein families. These receptors serve as increasingly attractive drug targets due to their relevance in the treatment of various diseases, such as inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were solved for diverse GPCRs, thus referring to this period as the “golden age for GPCR structural biology.” Moreover, accumulation of data about the chemical properties of GPCR ligands has garnered much interest toward the exploration of GPCR chemical space. Due to the steady increase in the structural, ligand, and functional data of GPCRs, several cheminformatics approaches have been implemented in its drug discovery pipeline. In this review, we mainly focus on the cheminformatics-based paradigms in GPCR drug discovery. We provide a comprehensive view on the ligand– and structure-based cheminformatics approaches which are best illustrated via GPCR case studies. Furthermore, an appropriate combination of ligand-based knowledge with structure-based ones, i.e., integrated approach, which is emerging as a promising strategy for cheminformatics-based GPCR drug design is also discussed. PMID:29593527

  8. A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models

    Science.gov (United States)

    Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.

    2016-12-01

    Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.

  9. Generation of scenarios from calibrated ensemble forecasts with a dual ensemble copula coupling approach

    DEFF Research Database (Denmark)

    Ben Bouallègue, Zied; Heppelmann, Tobias; Theis, Susanne E.

    2016-01-01

    the original ensemble forecasts. Based on the assumption of error stationarity, parametric methods aim to fully describe the forecast dependence structures. In this study, the concept of ECC is combined with past data statistics in order to account for the autocorrelation of the forecast error. The new...... approach, called d-ECC, is applied to wind forecasts from the high resolution ensemble system COSMO-DE-EPS run operationally at the German weather service. Scenarios generated by ECC and d-ECC are compared and assessed in the form of time series by means of multivariate verification tools and in a product...

  10. Calculation of vibrational frequencies through a variational reduced-coupling approach.

    Science.gov (United States)

    Scribano, Yohann; Benoit, David M

    2007-10-28

    In this study, we present a new method to perform accurate and efficient vibrational configuration interaction computations for large molecular systems. We use the vibrational self-consistent field (VSCF) method to compute an initial description of the vibrational wave function of the system, combined with the single-to-all approach to compute a sparse potential energy surface at the chosen ab initio level of theory. A Davidson scheme is then used to diagonalize the Hamiltonian matrix built on the VSCF virtual basis. Our method is applied to the computation of the OH-stretch frequency of formic acid and benzoic acid to demonstrate the efficiency and accuracy of this new technique.

  11. Optimal coupling of heat and electricity systems: A stochastic hierarchical approach

    DEFF Research Database (Denmark)

    Mitridati, Lesia Marie-Jeanne Mariane; Pinson, Pierre

    2016-01-01

    modelled using a finite set of scenarios. This model takes advantage of existing market structures and provides a decision-making tool for heat system operators. The proposed model is implemented in a case study and results are discussed to show the benefits and applicability of this approach....... penetration of CHPs and wind. The objective of this optimization problem is to minimize the heat production cost, subject to constraints describing day-ahead electricity market clearing scenarios. Uncertainties concerning wind power production, electricity demand and rival participants offers are efficiently...

  12. Coupled multi-physics simulation frameworks for reactor simulation: A bottom-up approach

    International Nuclear Information System (INIS)

    Tautges, Timothy J.; Caceres, Alvaro; Jain, Rajeev; Kim, Hong-Jun; Kraftcheck, Jason A.; Smith, Brandon M.

    2011-01-01

    A 'bottom-up' approach to multi-physics frameworks is described, where first common interfaces to simulation data are developed, then existing physics modules are adapted to communicate through those interfaces. Physics modules read and write data through those common interfaces, which also provide access to common simulation services like parallel IO, mesh partitioning, etc.. Multi-physics codes are assembled as a combination of physics modules, services, interface implementations, and driver code which coordinates calling these various pieces. Examples of various physics modules and services connected to this framework are given. (author)

  13. Fundamental (f) oscillations in a magnetically coupled solar interior-atmosphere system - An analytical approach

    Science.gov (United States)

    Pintér, Balázs; Erdélyi, R.

    2018-01-01

    Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω =√{ gk }), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to

  14. The Bodenmann Couples Coping Enhancement Training (CCET): A New Approach to Prevention of Marital Distress Based upon Stress and Coping

    Science.gov (United States)

    Bodenmann, Guy; Shantinath, S. D.

    2004-01-01

    We describe a distress prevention training program for couples and three empirical studies that support its effectiveness. The program, Couples Coping Enhancement Training (CCET), is based both upon stress and coping theory and research on couples. In addition to traditional elements of couples programs (e.g., communication and problem-solving…

  15. Automatic image-based analyses using a coupled quadtree-SBFEM/SCM approach

    Science.gov (United States)

    Gravenkamp, Hauke; Duczek, Sascha

    2017-10-01

    Quadtree-based domain decomposition algorithms offer an efficient option to create meshes for automatic image-based analyses. Without introducing hanging nodes the scaled boundary finite element method (SBFEM) can directly operate on such meshes by only discretizing the edges of each subdomain. However, the convergence of a numerical method that relies on a quadtree-based geometry approximation is often suboptimal due to the inaccurate representation of the boundary. To overcome this problem a combination of the SBFEM with the spectral cell method (SCM) is proposed. The basic idea is to treat each uncut quadtree cell as an SBFEM polygon, while all cut quadtree cells are computed employing the SCM. This methodology not only reduces the required number of degrees of freedom but also avoids a two-dimensional quadrature in all uncut quadtree cells. Numerical examples including static, harmonic, modal and transient analyses of complex geometries are studied, highlighting the performance of this novel approach.

  16. A fully-coupled approach to simulate three-dimensional flexible flapping wings

    Science.gov (United States)

    Yang, Tao; Wei, Mingjun

    2010-11-01

    The algorithm in this study is based on a combined Eulerian description of both fluid flow and solid structure which then can be solved in a monolithic manner. Thus, the algorithm is especially suitable to solve fluid-structure interaction problems involving large and nonlinear deformation. In fact, we have successfully applied the same approach to our previous study of two-dimensional pitching-and-plunging problems and found many unique features from the passive pitching introduced by wing flexibility. With the current non-trivial extension of the algorithm to three-dimensional configuration, we can eventually reveal the complex vortex and structural dynamics behind the amazing performance of nature's fliers such as hummingbirds.

  17. The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function.

    Science.gov (United States)

    Xu, Enhua; Li, Shuhua

    2015-03-07

    An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.

  18. Atomic motions in the αβ-region of glass-forming polymers: molecular versus mode coupling theory approach

    International Nuclear Information System (INIS)

    Colmenero, Juan; Narros, Arturo; Alvarez, Fernando; Arbe, Arantxa; Moreno, Angel J

    2007-01-01

    We present fully atomistic molecular dynamics simulation results on a main-chain polymer, 1,4-polybutadiene, in the merging region of the α- and β-relaxations. A real-space analysis reveals the occurrence of localized motions ('β-like') in addition to the diffusive structural relaxation. A molecular approach provides a direct connection between the local conformational changes reflected in the atomic motions and the secondary relaxations in this polymer. Such local processes occur just in the time window where the β-process of the mode coupling theory is expected. We show that the application of this theory is still possible and yields an unusually large value of the exponent parameter. This result might originate from the competition between two mechanisms for dynamic arrest: intermolecular packing and intramolecular barriers for local conformational changes ('β-like')

  19. New approach to the theory of coupled πNN-NN system. III. A three-body limit

    International Nuclear Information System (INIS)

    Avishai, Y.; Mizutani, T.

    1980-01-01

    In the limit where the pion is restricted to be emitted only by the nucleon that first absorbed it, it is shown that the equations previously developed to describe the couple πNN (πd) - NN system reduce to conventional three-body equations. Specifically, it is found in this limit that the input πN p 11 amplitude which, put on-shell, is directly related to the experimental phase shift, contrary to the original equations where the direct (dressed) nucleon pole term and the non-pole part of this partial wave enter separately. The present study clarifies the limitation of pure three-body approach to the πNN-NN problems as well as suggests a rare opportunity of observing a possible resonance behavior in the non-pole part of the πN P 11 amplitude through πd experiments

  20. Coupling pervaporation to AAS for inorganic and organic mercury determination. A new approach to speciation of Hg in environmental samples.

    Science.gov (United States)

    Fernandez-Rivas, C; Muñoz-Olivas, R; Camara, C

    2001-12-01

    The design and development of a new approach for Hg speciation in environmental samples is described in detail. This method, consisting of the coupling of pervaporation and atomic absorption spectrometry, is based on a membrane phenomenon that combines the evaporation of volatile analytes and their diffusion through a polymeric membrane. It is proposed here as an alternative to gas chromatography for speciation of inorganic and organic Hg compounds, as the latter compounds are volatile and can be separated by applying the principles mentioned above. The interest of this method lies in its easy handling, low cost, and rapidity for the analysis of liquid and solid samples. This method has been applied to Hg speciation in a compost sample provided by a waste water treatment plant.

  1. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach.

    Science.gov (United States)

    Yang, Jie; Graf, Thomas; Herold, Maria; Ptak, Thomas

    2013-06-01

    Coastal aquifers are complex hydrologic systems because many physical processes interact: (i) variably saturated flow, (ii) spatial-temporal fluid density variations, (iii) tidal fluctuations, (iv) storm surges overtopping dykes, and (v) surface runoff of storm water. The HydroGeoSphere model is used to numerically simulate coastal flow dynamics, assuming a fully coupled surface-subsurface approach, accounting for all processes listed above. The diffusive wave approximation of the St. Venant equation is used to describe surface flow. Surface flow and salt transport are fully coupled with subsurficial variably saturated, variable-density flow and salt transport through mathematical terms that represent exchange of fluid mass and solute mass, respectively. Tides and storm surges induce a time-variant head that is applied to nodes of the surface domain. The approach is applied to real cases of tide and storm surge events. Tide simulation results confirm the existence of a recirculating zone, forming beneath the upper part of the intertidal zone. By monitoring the exchange fluid flux rates through the beach, it was found that the major inflow to the aquifer takes place at the upper part of the intertidal zone, which explains the formation of the recirculating zone. The recirculating zone is forming particularly during rising tide. Results from a storm surge simulation show that plume fingers develop below the flooded land surface. Natural remediation by seaward flowing freshwater is relatively slow, such that reducing the salt concentration in the aquifer down to drinking water standards takes up to 10 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleoecological approaches

    Science.gov (United States)

    Saros, Jasmine E.; Stone, Jeffery R.; Pederson, Gregory T.; Slemmons, Krista; Spanbauer, Trisha; Schliep, Anna; Cahl, Douglas; Williamson, Craig E.; Engstrom, Daniel R.

    2015-01-01

    Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.

  3. Dynamic debonding in layered structures: a coupled ALE-cohesive approach

    Directory of Open Access Journals (Sweden)

    Marco Francesco Funari

    2017-07-01

    Full Text Available . A computational formulation able to simulate crack initiation and growth in layered structural systems is proposed. In order to identify the position of the onset interfacial defects and their dynamic debonding mechanisms, a moving mesh strategy, based on Arbitrary Lagrangian-Eulerian (ALE approach, is combined with a cohesive interface methodology, in which weak based moving connections are implemented by using a finite element formulation. The numerical formulation has been implemented by means of separate steps, concerned, at first, to identify the correct position of the crack onset and, subsequently, the growth by changing the computational geometry of the interfaces. In order to verify the accuracy and to validate the proposed methodology, comparisons with experimental and numerical results are developed. In particular, results, in terms of location and speed of the debonding front, obtained by the proposed model, are compared with the ones arising from the literature. Moreover, a parametric study in terms of geometrical characteristics of the layered structure are developed. The investigation reveals the impact of the stiffening of the reinforced strip and of adhesive thickness on the dynamic debonding mechanisms.

  4. Granular flow in static mixers by coupled DEM/CFD approach

    Directory of Open Access Journals (Sweden)

    Pezo Lato

    2016-01-01

    Full Text Available The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modelling of granular flow in multiple static mixer applications (1 - 3 Komax or Ross mixing elements were utilized, while the Computational Fluid Dynamic method was chosen for fluid flow modelling, using the Eulerian multiphase model. The main aim of this article is to predict the behaviour of granules being gravitationally transported in different mixer configuration and to choose the best configuration of the mixer taking into account the total particle path, the number of mixing elements and the quality of the obtained mixture. The results of the numerical simulations in the static mixers were compared to experimental results, the mixing quality is examined by RSD (relative standard deviation criterion, and the effects on the mixer type and the number of mixing elements on mixing process were studied. The effects of the mixer type and the number of mixing elements on mixing process were studied using analysis of variance (ANOVA. Mathematical modelling is used for optimization of number of Ross and Komax segments in mixer in order to gain desirable mixing results. [Projekat Ministarstva nauke Republike Srbije, br. TR31055

  5. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach

    Science.gov (United States)

    Norman, Laura M.; Sankey, Joel B.; Dean, David; Caster, Joshua J.; DeLong, Stephen B.; Henderson-DeLong, Whitney; Pelletier, Jon D.

    2017-01-01

    Rock-detention structures are used as restoration treatments to engineer ephemeral stream channels of southeast Arizona, USA, to reduce streamflow velocity, limit erosion, retain sediment, and promote surface-water infiltration. Structures are intended to aggrade incised stream channels, yet little quantified evidence of efficacy is available. The goal of this 3-year study was to characterize the geomorphic impacts of rock-detention structures used as a restoration strategy and develop a methodology to predict the associated changes. We studied reaches of two ephemeral streams with different watershed management histories: one where thousands of loose-rock check dams were installed 30 years prior to our study, and one with structures constructed at the beginning of our study. The methods used included runoff, sediment transport, and geomorphic modelling and repeat terrestrial laser scanner (TLS) surveys to map landscape change. Where discharge data were not available, event-based runoff was estimated using KINEROS2, a one-dimensional kinematic-wave runoff and erosion model. Discharge measurements and estimates were used as input to a two-dimensional unsteady flow-and-sedimentation model (Nays2DH) that combined a gridded flow, transport, and bed and bank simulation with geomorphic change. Through comparison of consecutive DEMs, the potential to substitute uncalibrated models to analyze stream restoration is introduced. We demonstrate a new approach to assess hydraulics and associated patterns of aggradation and degradation resulting from the construction of check-dams and other transverse structures. Notably, we find that stream restoration using rock-detention structures is effective across vastly different timescales.

  6. Three-gluon running coupling from lattice QCD at N{sub f}=2+1+1: a consistency check of the OPE approach

    Energy Technology Data Exchange (ETDEWEB)

    Boucaud, Ph. [Laboratoire Physique Théorique, Université de Paris XI,Bâtiment 210, 91405 Orsay Cedex (France); Brinet, M. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3/UJF,53, avenue des Martyrs, 38026 Grenoble (France); Soto, F. De [Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide,41013 Sevilla (Spain); Morenas, V. [Laboratoire de Physique Corpusculaire, Université Blaise Pascal, CNRS/IN2P3,63177 Aubière Cedex (France); Pène, O. [Laboratoire Physique Théorique, Université de Paris XI,Bâtiment 210, 91405 Orsay Cedex (France); Petrov, K. [Laboratoire de l’Accélérateur Linéaire, Centre Scientifique d’Orsay,Bâtiment 200, 91898 ORSAY Cedex (France); Rodríguez-Quintero, J. [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva,21071 Huelva (Spain); CAFPE, Universidad de Granada,E-18071 Granada (Spain)

    2014-04-11

    We present a lattice calculation of the renormalized running coupling constant in symmetric (MOM) and asymmetric ( (MOM)-tilde ) momentum substraction schemes including u, d, s and c quarks in the sea. An Operator Product Expansion dominated by the dimension-two 〈A{sup 2}〉 condensate is used to fit the running of the coupling. We argue that the agreement in the predicted 〈A{sup 2}〉 condensate for both schemes is a strong support for the validity of the OPE approach and the effect of this non-gauge invariant condensate over the running of the strong coupling.

  7. Novel approaches in analysis of Fusarium mycotoxins in cereals employing ultra performance liquid chromatography coupled with high resolution mass spectrometry

    International Nuclear Information System (INIS)

    Zachariasova, M.; Lacina, O.; Malachova, A.; Kostelanska, M.; Poustka, J.; Godula, M.; Hajslova, J.

    2010-01-01

    Rapid, simple and cost-effective analytical methods with performance characteristics matching regulatory requirements are needed for effective control of occurrence of Fusarium toxins in cereals and cereal-based products to which they might be transferred during processing. Within this study, two alternative approaches enabling retrospective data analysis and identification of unknown signals in sample extracts have been implemented and validated for determination of 11 major Fusarium toxins. In both cases, ultra-high performance liquid chromatography (U-HPLC) coupled with high resolution mass spectrometry (HR MS) was employed. 13 C isotopically labeled surrogates as well as matrix-matched standards were employed for quantification. As far as time of flight mass analyzer (TOF-MS) was a detection tool, the use of modified QuEChERS (quick easy cheap effective rugged and safe) sample preparation procedure, widely employed in multi-pesticides residue analysis, was shown as an optimal approach to obtain low detection limits. The second challenging alternative, enabling direct analysis of crude extract, was the use of mass analyzer based on Orbitrap technology. In addition to demonstration of full compliance of the new methods with Commission Regulation (EC) No. 401/2006, also their potential to be used for confirmatory purposes according to Commission Decision 2002/657/EC has been critically assessed.

  8. A cut-cell finite volume - finite element coupling approach for fluid-structure interaction in compressible flow

    Science.gov (United States)

    Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.

    2016-02-01

    We present a loosely coupled approach for the solution of fluid-structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet-Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid-structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.

  9. A cut-cell finite volume – finite element coupling approach for fluid–structure interaction in compressible flow

    International Nuclear Information System (INIS)

    Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.

    2016-01-01

    We present a loosely coupled approach for the solution of fluid–structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.

  10. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method.

    Science.gov (United States)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-21

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Moller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol(-1). Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  11. Exploring allosteric coupling in the α-subunit of Heterotrimeric G proteins using evolutionary and ensemble-based approaches

    Directory of Open Access Journals (Sweden)

    Hilser Vincent J

    2008-05-01

    Full Text Available Abstract Background Allosteric coupling, which can be defined as propagation of a perturbation at one region of the protein molecule (such as ligand binding to distant sites in the same molecule, constitutes the most general mechanism of regulation of protein function. However, unlike molecular details of ligand binding, structural elements involved in allosteric effects are difficult to diagnose. Here, we identified allosteric linkages in the α-subunits of heterotrimeric G proteins, which were evolved to transmit membrane receptor signals by allosteric mechanisms, by using two different approaches that utilize fundamentally different and independent information. Results We analyzed: 1 correlated mutations in the family of G protein α-subunits, and 2 cooperativity of the native state ensemble of the Gαi1 or transducin. The combination of these approaches not only recovered already-known details such as the switch regions that change conformation upon nucleotide exchange, and those regions that are involved in receptor, effector or Gβγ interactions (indicating that the predictions of the analyses can be viewed with a measure of confidence, but also predicted new sites that are potentially involved in allosteric communication in the Gα protein. A summary of the new sites found in the present analysis, which were not apparent in crystallographic data, is given along with known functional and structural information. Implications of the results are discussed. Conclusion A set of residues and/or structural elements that are potentially involved in allosteric communication in Gα is presented. This information can be used as a guide to structural, spectroscopic, mutational, and theoretical studies on the allosteric network in Gα proteins, which will provide a better understanding of G protein-mediated signal transduction.

  12. A coupled hydrogeophysical modeling approach to estimate soil moisture redistribution in the face of land use changes

    Science.gov (United States)

    Kuhl, A.; Hyndman, D. W.; Van Dam, R. L.

    2013-12-01

    Predicting the impacts of land use changes on local water balances requires knowledge of the detailed water uptake dynamics associated with different plants. Mapping the extent of roots and quantifying their relationships to the movement of water through the vadose zone is critical to better understand this aspect of plant physiology. Electrical resistivity (ER) methods offer the ability to non-invasively capture this crucial hydrologic information at relevant scales, bridging the spatial gap between remote sensing and in-situ point measurements. Our research uses a coupled hydrogeophysical model to image the boundary of root zones and the control roots have on hydrologic fluxes. Advantages of this approach include: incorporating basic hydrologic parameters to constrain the model physics and using a forward geophysical model to avoid errors related to non-unique solutions and imaging. The model optimizes root distributions to correlate with soil moisture variability characterized by ER surveys, maximizing the value of the geophysics and yielding information that can answer questions related to water budgets in the face of land use and climate changes. To validate this approach, preliminary ER data was collected from two sites in south-east Michigan instrumented with permanent lines of electrodes, enabling consistent surveys through time. One site traverses a progression of vegetation types over a relatively short distance, reflecting the type of natural plant succession associated with passive land use changes in the area. Early interpretations of the ER results indicate that apparent resistivity is controlled by the varying plant regimes. The other is part of the Great Lakes Bioenergy Research Center, spanning a stand of maize, which is ideal for initial models because root zone development has been extensively researched for this crop.

  13. Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: a RT-TDDFT/FDTD Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hanning; McMahon, J. M.; Ratner, Mark A.; Schatz, George C.

    2010-09-02

    A new multiscale computational methodology was developed to effectively incorporate the scattered electric field of a plasmonic nanoparticle into a quantum mechanical (QM) optical property calculation for a nearby dye molecule. For a given location of the dye molecule with respect to the nanoparticle, a frequency-dependent scattering response function was first determined by the classical electrodynamics (ED) finite-difference time-domain (FDTD) approach. Subsequently, the time-dependent scattered electric field at the dye molecule was calculated using the FDTD scattering response function through a multidimensional Fourier transform to reflect the effect of polarization of the nanoparticle on the local field at the molecule. Finally, a real-time time-dependent density function theory (RT-TDDFT) approach was employed to obtain a desired optical property (such as absorption cross section) of the dye molecule in the presence of the nanoparticle’s scattered electric field. Our hybrid QM/ED methodology was demonstrated by investigating the absorption spectrum of the N3 dye molecule and the Raman spectrum of pyridine, both of which were shown to be significantly enhanced by a 20 nm diameter silver sphere. In contrast to traditional quantum mechanical optical calculations in which the field at the molecule is entirely determined by intensity and polarization direction of the incident light, in this work we show that the light propagation direction as well as polarization and intensity are important to nanoparticle-bound dye molecule response. At no additional computation cost compared to conventional ED and QM calculations, this method provides a reliable way to couple the response of the dye molecule’s individual electrons to the collective dielectric response of the nanoparticle.

  14. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    International Nuclear Information System (INIS)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard

  15. Numerical Evaluation and Optimization of Multiple Hydraulically Fractured Parameters Using a Flow-Stress-Damage Coupled Approach

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-04-01

    Full Text Available Multiple-factor analysis and optimization play a critical role in the the ability to maximizethe stimulated reservoir volume (SRV and the success of economic shale gas production. In this paper, taking the typical continental naturally fractured silty laminae shale in China as anexample, response surface methodology (RSM was employed to optimize multiple hydraulic fracturing parameters to maximize the stimulated area in combination with numerical modeling based on the coupled flow-stress-damage (FSD approach. This paper demonstrates hydraulic fracturing effectiveness by defining two indicesnamelythe stimulated reservoir area (SRA and stimulated silty laminae area (SLA. Seven uncertain parameters, such as laminae thickness, spacing, dip angle, cohesion, internal friction angle (IFA, in situ stress difference (SD, and an operational parameter-injection rate (IR with a reasonable range based on silty Laminae Shale, Southeastern Ordos Basin, are used to fit a response of SRA and SLA as the objective function, and finally identity the optimum design under the parameters based on simultaneously maximizingSRA and SLA. In addition, asensitivity analysis of the influential factors is conducted for SRA and SLA. The aim of the study is to improve the artificial ability to control the fracturing network by means of multi-parameteroptimization. This work promises to provide insights into the effective exploitation of unconventional shale gas reservoirs via optimization of the fracturing design for continental shale, Southeastern Ordos Basin, China.

  16. Couple psychotherapy from an attachment theory perspective: a case study approach to challenging the dual nihilism of being an older person and someone with a terminal illness.

    Science.gov (United States)

    McWilliams, A E

    2004-12-01

    This article outlines the basic tenets of attachment theory and its relevance to adult couple psychotherapy. The paper also explores the nihilism around psychic change in older people and people with cancer and explores some possible reasons for this nihilism. A case study of older people, a couple, one of whom has a terminal cancer diagnosis, is presented to demonstrate the usefulness of therapeutic intervention in such cases from an attachment theory perspective. A discussion of the usefulness and difficulties of this approach follows. Other therapeutic models could also be applied usefully to this type of clinical presentation. However, the focus of this paper is the specific elucidation of attachment theory to demonstrate that change can occur regardless of a person's age and physical circumstances. The particular therapeutic approach presented here also represents the specialist interest and training of the writer in regard to couple work.

  17. Simulation and verification studies of reactivity initiated accident by comparative approach of NK/TH coupling codes and RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Ud-Din Khan, Salah [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics; King Saud Univ., Riyadh (Saudi Arabia). Sustainable Energy Technologies Center; Peng, Minjun [Harbin Engineering Univ. (China). College of Nuclear Science and Technology; Yuntao, Song; Ud-Din Khan, Shahab [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics; Haider, Sajjad [King Saud Univ., Riyadh (Saudi Arabia). Sustainable Energy Technologies Center

    2017-02-15

    The objective is to analyze the safety of small modular nuclear reactors of 220 MWe power. Reactivity initiated accidents (RIA) were investigated by neutron kinetic/thermal hydraulic (NK/TH) coupling approach and thermal hydraulic code i.e., RELAP5. The results obtained by these approaches were compared for validation and accuracy of simulation. In the NK/TH coupling technique, three codes (HELIOS, REMARK, THEATRe) were used. These codes calculate different parameters of the reactor core (fission power, reactivity, fuel temperature and inlet/outlet temperatures). The data exchanges between the codes were assessed by running the codes simultaneously. The results obtained from both (NK/TH coupling) and RELAP5 code analyses complement each other, hence confirming the accuracy of simulation.

  18. Impact of marriage on HIV/AIDS risk behaviors among impoverished, at-risk couples: A multilevel latent variable approach

    OpenAIRE

    Stein, JA; Nyamathi, A; Ullman, JB; Bentler, PM

    2007-01-01

    Studies among normative samples generally demonstrate a positive impact of marriage on health behaviors and other related attitudes. In this study, we examine the impact of marriage on HIV/AIDS risk behaviors and attitudes among impoverished, highly stressed, homeless couples, many with severe substance abuse problems. A multilevel analysis of 368 high-risk sexually intimate married and unmarried heterosexual couples assessed individual and couple-level effects on social support, substance us...

  19. Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, Susanne; Smith, Albert A.; Agarwal, Vipin; Hunkeler, Andreas [ETH Zürich, Physical Chemistry (Switzerland); Org, Mai-Liis; Samoson, Ago, E-mail: ago.samoson@ttu.ee [Tallinn University of Technology, NMR Instituut, Tartu Teadus, Tehnomeedikum (Estonia); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Ernst, Matthias, E-mail: maer@ethz.ch; Meier, Beat H., E-mail: beme@ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2015-10-15

    We discuss the optimum experimental conditions to obtain assignment spectra for solid proteins at magic-angle spinning (MAS) frequencies around 100 kHz. We present a systematic examination of the MAS dependence of the amide proton T{sub 2}′ times and a site-specific comparison of T{sub 2}′ at 93 kHz versus 60 kHz MAS frequency. A quantitative analysis of transfer efficiencies of building blocks, as they are used for typical 3D experiments, was performed. To do this, we compared dipolar-coupling and J-coupling based transfer steps. The building blocks were then combined into 3D experiments for sequential resonance assignment, where we evaluated signal-to-noise ratio and information content of the different 3D spectra in order to identify the best assignment strategy. Based on this comparison, six experiments were selected to optimally assign the model protein ubiquitin, solely using spectra acquired at 93 kHz MAS. Within 3 days of instrument time, the required spectra were recorded from which the backbone resonances have been assigned to over 96 %.

  20. Coupling a 1D Dual-permeability Model with an Infinite Slope Stability Approach to Quantify the Influence of Preferential Flow on Slope Stability

    NARCIS (Netherlands)

    Shao, W.; Bogaard, T.A.; Su, Y.; Bakker, M.

    2016-01-01

    In this study, a 1D hydro-mechanical model was developed by coupling a dual-permeability model with an infinite slope stability approach to investigate the influence of preferential flow on pressure propagation and slope stability. The dual-permeability model used two modified Darcy-Richards

  1. Modeling of a fluid-loaded smart shell structure for active noise and vibration control using a coupled finite element–boundary element approach

    International Nuclear Information System (INIS)

    Ringwelski, S; Gabbert, U

    2010-01-01

    A recently developed approach for the simulation and design of a fluid-loaded lightweight structure with surface-mounted piezoelectric actuators and sensors capable of actively reducing the sound radiation and the vibration is presented. The objective of this paper is to describe the theoretical background of the approach in which the FEM is applied to model the actively controlled shell structure. The FEM is also employed to model finite fluid domains around the shell structure as well as fluid domains that are partially or totally bounded by the structure. Boundary elements are used to characterize the unbounded acoustic pressure fields. The approach presented is based on the coupling of piezoelectric and acoustic finite elements with boundary elements. A coupled finite element–boundary element model is derived by introducing coupling conditions at the fluid–fluid and fluid–structure interfaces. Because of the possibility of using piezoelectric patches as actuators and sensors, feedback control algorithms can be implemented directly into the multi-coupled structural–acoustic approach to provide a closed-loop model for the design of active noise and vibration control. In order to demonstrate the applicability of the approach developed, a number of test simulations are carried out and the results are compared with experimental data. As a test case, a box-shaped shell structure with surface-mounted piezoelectric actuators and four sensors and an open rearward end is considered. A comparison between the measured values and those predicted by the coupled finite element–boundary element model shows a good agreement

  2. Calculation of radial couplings in the model-potential and pseudopotential approaches: The NaH quasimolecule

    International Nuclear Information System (INIS)

    Mo, O.; Riera, A.; Yaez, M.

    1985-01-01

    We present an extension of the analytical method of Macias and Riera to calculate radial couplings, to include model potentials or (local and nonlocal) pseudopotentials, in the Hamiltonian. As an illustration, energies, couplings, and momentum matrix elements are presented and discussed for the two-effective-electron NaH quasimolecule, as a stringent test case

  3. Calculation of radial couplings in the model-potential and pseudopotential approaches: The NaH quasimolecule

    Energy Technology Data Exchange (ETDEWEB)

    Mo, O.; Riera, A.; Yaez, M.

    1985-06-01

    We present an extension of the analytical method of Macias and Riera to calculate radial couplings, to include model potentials or (local and nonlocal) pseudopotentials, in the Hamiltonian. As an illustration, energies, couplings, and momentum matrix elements are presented and discussed for the two-effective-electron NaH quasimolecule, as a stringent test case.

  4. Impact of marriage on HIV/AIDS risk behaviors among impoverished, at-risk couples: a multilevel latent variable approach.

    Science.gov (United States)

    Stein, Judith A; Nyamathi, Adeline; Ullman, Jodie B; Bentler, Peter M

    2007-01-01

    Studies among normative samples generally demonstrate a positive impact of marriage on health behaviors and other related attitudes. In this study, we examine the impact of marriage on HIV/AIDS risk behaviors and attitudes among impoverished, highly stressed, homeless couples, many with severe substance abuse problems. A multilevel analysis of 368 high-risk sexually intimate married and unmarried heterosexual couples assessed individual and couple-level effects on social support, substance use problems, HIV/AIDS knowledge, perceived HIV/AIDS risk, needle-sharing, condom use, multiple sex partners, and HIV/AIDS testing. More variance was explained in the protective and risk variables by couple-level latent variable predictors than by individual latent variable predictors, although some gender effects were found (e.g., more alcohol problems among men). The couple-level variable of marriage predicted lower perceived risk, less deviant social support, and fewer sex partners but predicted more needle-sharing.

  5. Two-dimensional spectroscopy: An approach to distinguish Förster and Dexter transfer processes in coupled nanostructures

    Science.gov (United States)

    Specht, Judith F.; Knorr, Andreas; Richter, Marten

    2015-04-01

    The linear and two-dimensional coherent optical spectra of Coulomb-coupled quantum emitters are discussed with respect to the underlying coupling processes. We present a theoretical analysis of the two different resonance energy transfer mechanisms between coupled nanostructures: Förster and Dexter interaction. Our investigation shows that the features visible in optical spectra of coupled quantum dots can be traced back to the nature of the underlying coupling mechanism (Förster or Dexter). Therefore, we discuss how the excitation transfer pathways can be controlled by choosing particular laser polarizations and mutual orientations of the quantum emitters in coherent two-dimensional spectroscopy. In this context, we analyze to what extent the delocalized double-excitonic states are bound to the optical selection rules of the uncoupled system.

  6. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    International Nuclear Information System (INIS)

    Lee, Jun Hee; Fishman, Randy S; Kézsmáki, István

    2016-01-01

    Due to the complicated magnetic and crystallographic structures of BiFeO 3 , its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a first-principles approach, we uncover all possible ME couplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO 3 . First-principles calculations are used to understand the microscopic origins of the ME couplings. We find that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamic ME effects in BiFeO 3 . A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic ME couplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hidden ME couplings on the atomic scale and for exploiting optical ME effects in the next generation of technological devices such as optical diodes. (paper)

  7. Modelling floods in the Ammer catchment: limitations and challenges with a coupled meteo-hydrological model approach

    Directory of Open Access Journals (Sweden)

    R. Ludwig

    2003-01-01

    Full Text Available Numerous applications of hydrological models have shown their capability to simulate hydrological processes with a reasonable degree of certainty. For flood modelling, the quality of precipitation data — the key input parameter — is very important but often remains questionable. This paper presents a critical review of experience in the EU-funded RAPHAEL project. Different meteorological data sources were evaluated to assess their applicability for flood modelling and forecasting in the Bavarian pre-alpine catchment of the Ammer river (709 km2, for which the hydrological aspects of runoff production are described as well as the complex nature of floods. Apart from conventional rain gauge data, forecasts from several Numerical Weather Prediction Models (NWP as well as rain radar data are examined, scaled and applied within the framework of a GIS-structured and physically based hydrological model. Multi-scenario results are compared and analysed. The synergetic approach leads to promising results under certain meteorological conditions but emphasises various drawbacks. At present, NWPs are the only source of rainfall forecasts (up to 96 hours with large spatial coverage and high temporal resolution. On the other hand, the coarse spatial resolution of NWP grids cannot yet address, adequately, the heterogeneous structures of orographic rainfields in complex convective situations; hence, a major downscaling problem for mountain catchment applications is introduced. As shown for two selected Ammer flood events, a high variability in prediction accuracy has still to be accepted at present. Sensitivity analysis of both meteo-data input and hydrological model performance in terms of process description are discussed and positive conclusions have been drawn for future applications of an advanced meteo-hydro model synergy. Keywords: RAPHAEL, modelling, forecasting, model coupling, PROMET-D, TOPMODEL

  8. Lake on life support: Evaluating urban lake management measures by using a coupled 1D-modelling approach

    Science.gov (United States)

    Ladwig, Robert; Kirillin, Georgiy; Hinkelmann, Reinhard; Hupfer, Michael

    2017-04-01

    Urban surface water systems and especially lakes are heavily stressed and modified systems to comply with water management goals and expectations. In this study we focus on Lake Tegel in Berlin, Germany, as a representative of heavily modified urban lakes. In the 20th century, Lake Tegel received increased loadings of nutrients and leached heavy metals from an upstream sewage farm resulting in severe eutrophication problems. The construction of two upstream treatment plants caused a lowering of nutrient concentrations and a re-oligotrophication of the lake. Additionally, artificial aerators, to keep the hypolimnion oxic, and a lake pipeline, to bypass water for maintaining a minimum discharge, went into operation. Lake Tegel is still heavily used for drinking water extraction by bank filtration. These interacting management measures make the system vulnerable to changing climate conditions and pollutant loads. Past modelling studies have shown the complex hydrodynamics of the lake. Here, we are following a simplified approach by using a less computational time consuming vertical 1D-model to simulate the hydrodynamics and the ecological interactions of the system by coupling the General Lake Model to the Aquatic Ecodynamics Model Library 2. For calibration of the multidimensional parameter space we applied the Covariance Matrix Adaption-Evolution Strategy algorithm. The model is able to sufficiently replicate the vertical field temperature profiles of Lake Tegel as well as to simulate similar concentration ranges of phosphate, dissolved oxygen and nitrate. The calibrated model is used to run an uncertainty analysis by sampling the simulated data within the meaning of the Metropolis-Hastings algorithm. Finally, we are evaluating different scenarios: (1) changing air temperatures, precipitation and wind speed due to effects of climate change, (2) decreased discharges into the lake due to bypassing treated effluents into a near stream instead of Lake Tegel, and (3

  9. A Multi-Level Approach to Modeling Rapidly Growing Mega-Regions as a Coupled Human-Natural System

    Science.gov (United States)

    Koch, J. A.; Tang, W.; Meentemeyer, R. K.

    2013-12-01

    The FUTure Urban-Regional Environment Simulation (FUTURES) integrates information on nonstationary drivers of land change (per capita land area demand, site suitability, and spatial structure of conversion events) into spatial-temporal projections of changes in landscape patterns (Meentemeyer et al., 2013). One striking feature of FUTURES is its patch-growth algorithm that includes feedback effects of former development events across several temporal and spatial scales: cell-level transition events are aggregated into patches of land change and their further growth is based on empirically derived parameters controlling its size, shape, and dispersion. Here, we augment the FUTURES modeling framework by expanding its multilevel structure and its representation of human decision making. The new modeling framework is hierarchically organized as nested subsystems including the latest theory on telecouplings in coupled human-natural systems (Liu et al., 2013). Each subsystem represents a specific level of spatial scale and embraces agents that have decision making authority at a particular level. The subsystems are characterized with regard to their spatial representation and are connected via flows of information (e.g. regulations and policies) or material (e.g. population migration). To provide a modeling framework that is applicable to a wide range of settings and geographical regions and to keep it computationally manageable, we implement a 'zooming factor' that allows to enable or disable subsystems (and hence the represented processes), based on the extent of the study region. The implementation of the FUTURES modeling framework for a specific case study follows the observational modeling approach described in Grimm et al. (2005), starting from the analysis of empirical data in order to capture the processes relevant for specific scales and to allow a rigorous calibration and validation of the model application. In this paper, we give an introduction to the basic

  10. Discrete and continuum approaches for the analysis of coupled thermal-mechanical processes in the near field of a HLW repository

    International Nuclear Information System (INIS)

    Shimizu, Hiroyuki; Fujita, Tomoo; Nakama, Shigeo; Koyama, Tomofumi; Chijimatsu, Masakazu

    2011-01-01

    This paper reports on the results of the numerical simulations for the analysis of coupled thermal-mechanical processes in the near field of a HLW repository using Finite Element Method (FEM) and Distinct Element Method (DEM). The FEM approach provides quantitative information of the change of stress during excavation and heating process. On the other hand, the DEM approach shows the crack propagation process at the borehole surface, and this result agrees qualitatively well with the experimental observation. By comparing these results obtained from both approaches, quantitative and qualitative insights into various aspects of the processes occurred in the near field can be obtained. (author)

  11. Within-couple specialisation in paid work: A long-term pattern? A dual trajectory approach to linking lives.

    Science.gov (United States)

    Langner, Laura Antonia

    2015-06-01

    Research on the division of labour has mainly focussed on transitions between individuals' labour market states during the first years of parenthood. A common conclusion has been that couples specialize--women in unpaid and men in paid work--either due to gender ideologies or a comparative advantage in the labour market. But what happens later in life? The German Socio-Economic Panel now provides researchers with a continuous measure of working hours across decades of couples' lives, enabling a dual trajectory analysis to explore couples' long-term specialisation patterns. I focus on the career trajectories of West German couples, and specifically, due to the relatively low institutional and normative support for female employment during its members' early years, on the 1956-65 female birth cohort. Even in this setting and with a conservative estimate, a surprisingly small number of couples--only a fifth--adopt full specialisation in later life. A sizable proportion--a third--moves into dual full-time employment. This trend is even more common among highly educated couples: half of those couples move into dual full-time employment. I find that highly educated women are not only less likely to permanently specialise but also more likely to try working full-time, possibly because their partners' comparative advantages are lower. But despite high opportunity costs, 45% of highly educated parents never try to pursue a dual career either because of a satiation of material wants or because of low societal support for maternal employment. The latter phenomenon is further underscored by the finding that many couples' increase in working hours occurs only when a youngest child is a teenager. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li; He, Ya-Ling [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Kang, Qinjun [Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM (United States); Tao, Wen-Quan, E-mail: wqtao@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.

  13. Verification of two-dimensional LBM-DEM coupling approach and its application in modeling episodic sand production in borehole

    Directory of Open Access Journals (Sweden)

    Yanhui Han

    2017-06-01

    Full Text Available The lattice Boltzmann method (LBM is implemented in the Particle Flow Code (PFC as a pore-scale CFD module and coupled with the particulate discrete element assemblage in PFC using an immersed boundary scheme. The implementation of LBM and LBM-PFC coupling is validated with the analytical solutions in a couple of hydrodynamics and fluid-particle interaction problems, i.e., the accuracy of LBM as a CFD solver is verified by solving channel flow driven by a pressure gradient for which the closed-form solution is also derived; the accuracy of LBM-PFC coupling is validated by solving flow across a cylinder, Taylor-Couette flow, Kármán vortex street, and fluid flow through a cylinder array. To demonstrate potential applications of this coupling code, a perforation cavity subjected to axial fluid flush is then tested, showing that the collapse and reconstruction of sand arch in the perforation cavity can be reproduced in this coupling system. The developed system is ready for exploring more complicated physical issues involved in sand production.

  14. Conflict resolution patterns and violence perpetration in adolescent couples: A gender-sensitive mixed-methods approach.

    Science.gov (United States)

    Fernet, Mylène; Hébert, Martine; Paradis, Alison

    2016-06-01

    This study used a sequential two-phase explanatory design. The first phase of this mixed-methods design aimed to explore conflict resolution strategies in adolescent dating couples, and the second phase to document, from both the perspective of the individual and of the couple, dyadic interaction patterns distinguishing youth inflicting dating violence from those who do not. A sample of 39 heterosexual couples (mean age 17.8 years) participated in semi-structured interviews and were observed during a 45 min dyadic interaction. At phase 1, qualitative analysis revealed three main types of conflict resolution strategies: 1) negotiating expectations and individual needs; 2) avoiding conflicts or their resolution; 3) imposing personal needs and rules through the use of violence. At phase 2, we focused on couples with conflictive patterns. Results indicate that couples who inflict violence differ from nonviolent couples by their tendency to experience conflicts when in disagreement and to resort to negative affects as a resolution strategy. In addition, while at an individual level, they show a tendency to withdraw from conflict and to use less positive affect, at a dyadic level they present less symmetry. Results offer important insights for prevention programs. Copyright © 2016. Published by Elsevier Ltd.

  15. Different Modelling Approaches to Coupling Wall and Floor Panels within a Dynamic Finite Element Model of a Lightweight Building

    DEFF Research Database (Denmark)

    Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin

    2012-01-01

    . With the number of modules in the three axial directions defined, wall and floor panels are constructed, placed and coupled in the global model. The core of this modular finite element model consists of connecting the different panels to each other in a rational manner, where the accuracy is as high as possible......, with as many applications as possible, for the least possible computational cost. The coupling method of the structural panels in the above mentioned modular finite element model is in this paper discussed and evaluated. The coupling of the panels are performed using the commercial finite element program....... In this way a well-defined master geometry is present onto which all panels can be tied. But as the skeleton is an element itself, it will have a physical mass and a corresponding stiffness to be included in the linear system of equations. This means that the skeleton will influence the structure...

  16. Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach

    Science.gov (United States)

    Nguyen-Thanh, Nhon; Li, Weidong; Zhou, Kun

    2018-03-01

    This paper develops a coupling approach which integrates the meshfree method and isogeometric analysis (IGA) for static and free-vibration analyses of cracks in thin-shell structures. In this approach, the domain surrounding the cracks is represented by the meshfree method while the rest domain is meshed by IGA. The present approach is capable of preserving geometry exactness and high continuity of IGA. The local refinement is achieved by adding the nodes along the background cells in the meshfree domain. Moreover, the equivalent domain integral technique for three-dimensional problems is derived from the additional Kirchhoff-Love theory to compute the J-integral for the thin-shell model. The proposed approach is able to address the problems involving through-the-thickness cracks without using additional rotational degrees of freedom, which facilitates the enrichment strategy for crack tips. The crack tip enrichment effects and the stress distribution and displacements around the crack tips are investigated. Free vibrations of cracks in thin shells are also analyzed. Numerical examples are presented to demonstrate the accuracy and computational efficiency of the coupling approach.

  17. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    Science.gov (United States)

    Lee, Jun Hee; Kézsmáki, István; Fishman, Randy S.

    2016-04-01

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a first-principles approach, we uncover all possible ME couplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of the ME couplings. We find that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamic ME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic ME couplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hidden ME couplings on the atomic scale and for exploiting optical ME effects in the next generation of technological devices such as optical diodes. This manuscript has been written by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

  18. A Dyadic Approach to Infertility Stress, Marital Adjustment, and Depression on Quality of Life in Infertile Couples.

    Science.gov (United States)

    Kim, Ju Hee; Shin, Hye Sook; Yun, Eun Kyoung

    2018-03-01

    This study was conducted to examine the level of infertility stress, marital adjustment, depression, and quality of life in infertile couples and assess the actor and partner effects in these areas using the actor-partner interdependence model. Cross-sectional study. Participants were 121 infertile couples. After pilot study, data were collected from November 2012 to March 2013 using the following questionnaires: the Fertility Quality of Life, Fertility Problem Inventory, Revised Dyadic Adjustment Scale, and Beck Depression Inventory. There was a gender difference in infertility stress, depression, and quality of life. Infertility stress had actor and partner effects on the quality of life. Marital adjustment had an actor effect on the quality of life for the wives. Depression had actor and partner effects on quality of life for the wives, but only an actor effect for the husbands. This study found that there were actor and partner effects of infertility stress, marital adjustment, and depression on the quality of life in infertile couples. These findings may help nurses be aware of such effects and can be used as a baseline data in the development of nursing interventions for infertile couples.

  19. A rigorous nonorthogonal configuration interaction approach for the calculation of electronic couplings between diabatic states applied to singlet fission

    NARCIS (Netherlands)

    Wibowo, Meilani; Broer, Ria; Havenith, Remco W. A.

    2017-01-01

    For the design of efficient singlet fission chromophores, knowledge of the factors that govern the singlet fission rate is important. This rate is approximately proportional to the electronic coupling between the lowest (diabatic) spin singlet state that is populated following photoexcitation state

  20. The Role of Strong Coupling in Z-Pinch-Driven Approaches to High Yield Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    MEHLHORN, THOMAS A.; DESJARLAIS, MICHAEL P.; HAILL, THOMAS A.; LASH, JOEL S.; ROSENTHAL, STEPHEN E.; SLUTZ, STEPHEN A.; STOLTZ, PETER H.; VESEY, ROGER A.; OLIVER, B.

    1999-01-01

    Peak x-ray powers as high as 280 ± 40 TW have been generated from the implosion of tungsten wire arrays on the Z Accelerator at Sandia National Laboratories. The high x-ray powers radiated by these z-pinches provide an attractive new driver option for high yield inertial confinement fusion (ICF). The high x-ray powers appear to be a result of using a large number of wires in the array which decreases the perturbation seed to the magnetic Rayleigh-Taylor (MRT) instability and diminishes other 3-D effects. Simulations to confirm this hypothesis require a 3-D MHD code capability, and associated databases, to follow the evolution of the wires from cold solid through melt, vaporization, ionization, and finally to dense imploded plasma. Strong coupling plays a role in this process, the importance of which depends on the wire material and the current time history of the pulsed power driver. Strong coupling regimes are involved in the plasmas in the convolute and transmission line of the powerflow system. Strong coupling can also play a role in the physics of the z-pinch-driven high yield ICF target. Finally, strong coupling can occur in certain z-pinch-driven application experiments

  1. Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach

    Science.gov (United States)

    Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.

    2017-07-01

    Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather

  2. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  3. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    International Nuclear Information System (INIS)

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-01-01

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  4. He atom scattering from ZnO surfaces: calculation of diffraction peak intensities using the close-coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Meyer, B [Interdisziplinaeres Zentrum fuer Molekulare Materialien ICMM and Computer-Chemie-Centrum CCC, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Naegelsbachstrasse 25, 91052 Erlangen (Germany); Traeger, F [Lehrstuhl fuer Physikalische Chemie I, Ruhr-Universitaet Bochum, 44801 Bochum (Germany); Woell, Ch, E-mail: r.martinezcasado@imperial.ac.u [Institut fuer Funktionelle Grenzflaechen, Karlsruher Institut fuer Technologie KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2010-08-04

    Diffraction intensities of a molecular He beam scattered off the clean and water-covered ZnO(101-bar0) surface have been simulated using a new potential model in conjunction with the close-coupling formalism. The effective corrugation functions for the systems He-ZnO(101-bar0) and He-H{sub 2}O/ZnO(101-bar0) have been obtained from density functional theory calculations within the Esbjerg-Noerskov approximation. Using these data a potential model is constructed consisting of a corrugated Morse potential at small He-surface distances and a semiempiric attractive part at larger distances. The diffraction patterns obtained from close-coupling calculations agree with the experimental data within about 10%, which opens the possibility to simulate He diffraction from surfaces of any structural complexity and to verify surface and adsorbate structures proposed theoretically by employing this kind of analysis.

  5. Are Mindfulness and Self-Compassion Related to Psychological Distress and Communication in Couples Facing Lung Cancer? A Dyadic Approach.

    Science.gov (United States)

    Schellekens, Melanie P J; Karremans, Johan C; van der Drift, Miep A; Molema, Johan; van den Hurk, Desiree G M; Prins, Judith B; Speckens, Anne E M

    2017-01-01

    Lung cancer patients and their spouses report high rates of distress. Due to the increasing popularity of and evidence for mindfulness-based interventions in cancer, mindfulness and self-compassion have been identified as potentially helpful skills when coping with cancer. This dyadic study examined how mindfulness and self-compassion are related to psychological distress and communication about cancer in couples facing lung cancer. Using the actor-partner interdependence model, self-reported mindfulness, self-compassion, psychological distress and communication about cancer were analyzed in a cross-sectional sample of 88 couples facing lung cancer. Regarding psychological distress, no difference was found between patients and spouses. In both partners, own levels of mindfulness ( B  = -0.19, p  = .002) and self-compassion ( B  = -0.45, p  dyadic level, own self-compassion was less strongly associated with distress if the partner reported high self-compassion ( B  = 0.03, p  = .049). Regarding communication about cancer, patients reported to communicate more openly with their partner than with spouses. However, after controlling for gender, this difference was no longer significant. In both partners, own self-compassion ( B  = 0.03, p  = .010) was significantly associated with own communication while mindfulness was not. A trend showed that mindfulness of the partner was related to more open communication in the individual ( B  = 0.01, p  = .080). These findings give a first indication that mindfulness and self-compassion skills may go beyond the individual and could impact couple functioning. Future research should examine whether couples facing (lung) cancer may benefit from programs in which mindfulness and self-compassion are cultivated.

  6. Analytical Approach to Circulating Current Mitigation in Hexagram Converter-Based Grid-Connected Photovoltaic Systems Using Multiwinding Coupled Inductors

    Directory of Open Access Journals (Sweden)

    Abdullrahman A. Al-Shamma’a

    2018-01-01

    Full Text Available The hexagram multilevel converter (HMC is composed of six conventional two-level voltage source converters (VSCs, where each VSC module is connected to a string of PV arrays. The VSC modules are connected through inductors, which are essential to minimize the circulating current. Selecting inductors with suitable inductance is no simple process, where the inductance value should be large to minimize the circulating current as well as small to reduce an extra voltage drop. This paper analyzes the utilization of a multiwinding (e.g., two, three, and six windings coupled inductor to interconnect the six VSC modules instead of six single inductors, to minimize the circulating current inside the HMC. Then, a theoretical relationship between the total impedance to the circulating current, the number of coupled inductor windings, and the magnetizing inductance is derived. Owing to the coupled inductors, the impedance on the circulating current path is a multiple of six times the magnetizing inductance, whereas the terminal voltage is slightly affected by the leakage inductance. The HMC is controlled to work under variable solar radiation, providing active power to the grid. Additional functions such as DSTATCOM, during daytime, are also demonstrated. The controller performance is found to be satisfactory for both active and reactive power supplies.

  7. Neutronic and thermal-hydraulic coupling using Milonga and OpenFOAM codes: an approach using free software

    International Nuclear Information System (INIS)

    Silva, Vitor Vasconcelos Araújo

    2016-01-01

    The development of a fine mesh coupled neutronics/thermal-hydraulics framework mainly using open source software is presented. The contributions proposed go in two different directions: one, is the focus on the open software development, a concept widely spread in many fields of knowledge but rarely explored in the nuclear engineering field; the second, is the use of operating system shared memory as a fast and reliable storage area to couple the computational fluid dynamics (CFD) software OpenFOAM to the free and flexible reactor core analysis code Milonga. This concept was applied to simulate the behavior of the TRIGA Mark 1 IPR-R1 reactor fuel pin in steady-state mode. The macroscopic cross-sections for the model, a set of two-group cross-sections data, were generated using WIMSD-5B code. The results show that this innovative coupled system gives consistent results, encouraging system further development and its use for complex nuclear systems. (author)

  8. Socio-Ecohydrologic Agents And Services: Integrating Human And Natural Components To Address Coupled System Resilience

    Science.gov (United States)

    Pavao-zuckerman, M.; Pope, A.; Chan, D.; Curl, K.; Gimblett, H. R.; Hough, M.; House-Peters, L.; Lee, R.; Scott, C. A.

    2012-12-01

    Riparian corridors in arid regions are highly valued for their relative scarcity, and because healthy riparian systems support high levels of biodiversity, can meet human demand for water and water-related resources and functions. Our team is taking a transdiciplinary social-ecological systems approach to assessing riparian corridor resilience in two watersheds (the San Pedro River in USA and Mexico, and the Rio San Miguel in Mexico) through a project funded by the NSF CNH program ("Strengthening Resilience of Arid Region Riparian Corridors"). Multiple perspectives are integrated in the project, including hydrology, ecology, institutional dynamics, and decision making (at the level of both policy and individual choice), as well as the perspectives of various stakeholder groups and individuals in the watersheds. Here we discuss initial findings that center around linking changes in ecohydrology and livelihoods related to decisions in response to climatic, ecological, and social change. The research team is implementing two approaches to integrate the disparate disciplines participating in the research (and the varied perspectives among the stakeholders in this binational riparian context): (1) ecosystem service assessment, and (2) agent based model simulation. We are developing an ecosystem service perspective that provides a bridge between ecological dynamics in the landscape and varied stakeholder perspectives on the implications of ecohydrology for well-being (economic, cultural, ecological). Services are linked on one hand to the spatial patterns of traits of individuals within species (allowing a more predictive application of ecosystem services as they vary with community change in time), and to stakeholder perspectives (facilitating integration of ecosystem services into our understanding of decision making processes) in a case study in the San Pedro River National Conservation Area. The agent- based model (ABM) approach incorporates the influence of human

  9. Quaternion Approach to Solve Coupled Nonlinear Schrödinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems

    International Nuclear Information System (INIS)

    Liu Lan-Lan; Wu Chong-Qing; Wang Jian; Gao Kai-Qiang; Shang Chao

    2015-01-01

    The quaternion approach to solve the coupled nonlinear Schrödinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quaternion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Gbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4 mW, the crosstalk effect can be neglected; when the power is larger than 20 mW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincaré sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link. (paper)

  10. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  11. A new methodical approach in neuroscience: assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI hyperscanning

    Directory of Open Access Journals (Sweden)

    Felix eScholkmann

    2013-11-01

    Full Text Available Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: the assessment of the inter-brain coupling between two or more subjects, termed hyperscanning. The hyperscanning approach has the potential to enable a new view on how the brain works and will reveal as yet undiscovered brain functions based on brain-to-brain coupling, since the single-subject setting cannot capture them. In particular, functional near-infrared imaging (fNIRI hyperscanning is a promising new method, offering a cost-effective, easy to apply and reliable technology to measure inter-personal interactions in a natural context. In this short review we report on fNIRI hyperscanning studies published so far and summarize opportunities and challenges for future studies.

  12. Energy-based operator splitting approach for the time discretization of coupled systems of partial and ordinary differential equations for fluid flows: The Stokes case

    Science.gov (United States)

    Carichino, Lucia; Guidoboni, Giovanna; Szopos, Marcela

    2018-07-01

    The goal of this work is to develop a novel splitting approach for the numerical solution of multiscale problems involving the coupling between Stokes equations and ODE systems, as often encountered in blood flow modeling applications. The proposed algorithm is based on a semi-discretization in time based on operator splitting, whose design is guided by the rationale of ensuring that the physical energy balance is maintained at the discrete level. As a result, unconditional stability with respect to the time step choice is ensured by the implicit treatment of interface conditions within the Stokes substeps, whereas the coupling between Stokes and ODE substeps is enforced via appropriate initial conditions for each substep. Notably, unconditional stability is attained without the need of subiterating between Stokes and ODE substeps. Stability and convergence properties of the proposed algorithm are tested on three specific examples for which analytical solutions are derived.

  13. a System Dynamics Approach for Looking at the Human and Environmental Interactions of Community-Based Irrigation Systems in New Mexico

    Science.gov (United States)

    Ochoa, C. G.; Tidwell, V. C.

    2012-12-01

    In the arid southwestern United States community water management systems have adapted to cope with climate variability and with socio-cultural and economic changes that have occurred since the establishment of these systems more than 300 years ago. In New Mexico, the community-based irrigation systems were established by Spanish settlers and have endured climate variability in the form of low levels of precipitation and have prevailed over important socio-political changes including the transfer of territory between Spain and Mexico, and between Mexico and the United States. Because of their inherent nature of integrating land and water use with society involvement these community-based systems have multiple and complex economic, ecological, and cultural interactions. Current urban population growth and more variable climate conditions are adding pressure to the survival of these systems. We are conducting a multi-disciplinary research project that focuses on characterizing these intrinsically complex human and natural interactions in three community-based irrigation systems in northern New Mexico. We are using a system dynamics approach to integrate different hydrological, ecological, socio-cultural and economic aspects of these three irrigation systems. Coupled with intensive field data collection, we are building a system dynamics model that will enable us to simulate important linkages and interactions between environmental and human elements occurring in each of these water management systems. We will test different climate variability and population growth scenarios and the expectation is that we will be able to identify critical tipping points of these systems. Results from this model can be used to inform policy recommendations relevant to the environment and to urban and agricultural land use planning in the arid southwestern United States.

  14. Inverse modeling of rainfall infiltration with a dual permeability approach using different matrix-fracture coupling variants.

    Science.gov (United States)

    Blöcher, Johanna; Kuraz, Michal

    2017-04-01

    In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.

  15. An efficient approach to numerical study of the coupled-BBM system with B-spline collocation method

    Directory of Open Access Journals (Sweden)

    khalid ali

    2016-11-01

    Full Text Available In the present paper, a numerical method is proposed for the numerical solution of a coupled-BBM system with appropriate initial and boundary conditions by using collocation method with cubic trigonometric B-spline on the uniform mesh points. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms2L, ?L are computed. Furthermore, interaction of two and three solitary waves are used to discuss the effect of the behavior of the solitary waves after the interaction. These results show that the technique introduced here is easy to apply. We make linearization for the nonlinear term.

  16. Force on an electric/magnetic dipole and classical approach to spin-orbit coupling in hydrogen-like atoms

    Science.gov (United States)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2017-09-01

    We carry out the classical analysis of spin-orbit coupling in hydrogen-like atoms, using the modern expressions for the force and energy of an electric/magnetic dipole in an electromagnetic field. We disclose a novel physical meaning of this effect and show that for a laboratory observer the energy of spin-orbit interaction is represented solely by the mechanical energy of the spinning electron (considered as a gyroscope) due to the Thomas precession of its spin. Concurrently we disclose some errors in the old and new publications on this subject.

  17. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Modification of PTFE nanopowder by controlled electron beam irradiation: A useful approach for the development of PTFE coupled EPDM compounds

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available Low-temperature reactive mixing of controlled electron beam modified Polytetrafluoroethylene (PTFE nanopowder with Ethylene-Propylene-Diene-Monomer (EPDM rubber produced PTFE coupled EPDM rubber compounds with desired physical properties. The radiation-induced chemical alterations in PTFE nanopowder, determined by electron spin resonance (ESR and Fourier transform infrared (FTIR spectroscopy, showed increasing concentration of radicals and carboxylic groups (–COOH with increasing irradiation dose. The morphological variations of the PTFE nanopowder including its decreasing mean agglomerate size with the absorbed dose was investigated by particle size and scanning electron microscopy (SEM analysis. With increasing absorbed dose the wettability of the modified PTFE nanopowder determined by contact angle method increased in accordance with the (–COOH concentration. Transmission electron microscopy (TEM showed that modified PTFE nanopowder is obviously enwrapped by EPDM. This leads to a characteristic compatible interphase around the modified PTFE. Crystallization studies by differential scanning calorimetry (DSC also revealed the existence of a compatible interphase in the modified PTFE coupled EPDM.

  19. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach.

    Science.gov (United States)

    Huang, Zhi-Yong; Xie, Hong; Cao, Ying-Lan; Cai, Chao; Zhang, Zhi

    2014-02-15

    The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of (206)Pb, the contamination of exogenous Pb(2+) ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60-85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60-66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A novel approach for in vitro studies applying electrical fields to cell cultures by transformer-like coupling.

    Science.gov (United States)

    Hess, R; Neubert, H; Seifert, A; Bierbaum, S; Hart, D A; Scharnweber, D

    2012-12-01

    The purpose of this study was to develop a new apparatus for in vitro studies applying low frequency electrical fields to cells without interfering side effects like biochemical reactions or magnetic fields which occur in currently available systems. We developed a non-invasive method by means of the principle of transformer-like coupling where the magnetic field is concentrated in a toroid and, therefore, does not affect the cell culture. Next to an extensive characterization of the electrical field parameters, initial cell culture studies have focused on examining the response of bone marrow-derived human mesenchymal stem cells (MSCs) to pulsed electrical fields. While no significant differences in the proliferation of human MSCs could be detected, significant increases in ALP activity as well as in gene expression of other osteogenic markers were observed. The results indicate that transformer-like coupled electrical fields can be used to influence osteogenic differentiation of human MSCs in vitro and can pose a useful tool in understanding the influence of electrical fields on the cellular and molecular level.

  1. Summer nitrogenous nutrient transport and its fate in the Taiwan Strait: A coupled physical-biological modeling approach

    Science.gov (United States)

    Wang, Jia; Hong, Huasheng; Jiang, Yuwu; Chai, Fei; Yan, Xiao-Hai

    2013-09-01

    In order to understand the fate of nutrients in the Taiwan Strait during summer, we built a coupled physical-biological numerical ocean model, which can capture the basic hydrographic and biological features within the strait. The nutrient that we chose to model is dissolved inorganic nitrogen (DIN). The model includes individual reservoirs for nitrate (NO3) and ammonium (NH4). Both the observational evidence and model results show that NO3 in the strait originates primarily from the upwelling subsurface water in the northern South China Sea (SCS) that enters the strait via the eastern and western routes separated by the Taiwan Bank. The coupled physical and biological effects on the NO3 transport at these two routes are highlighted in the study. For the western route, the shallow topography and the coastal upwelling intensify the biological uptake of NO3 in the whole water column. Consequently, the nitrogenous contribution by this route is mainly in form of the particulate organic nitrogen (PON). In contrast, NO3 is transported conservatively below the nitricline at the deep eastern route, contributing the whole NO3 supply in the TWS. The model estimates the fluxes of DIN and PON into the TWS, from the northern SCS, are 1.8 and 4 kmol s-1, respectively. Over half (˜1 kmol s-1) of the DIN is synthesized into PON by the phytoplankton in the strait. Overall, this study estimates the physical and biological effects on the nutrient transport in the TWS during summer.

  2. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    Science.gov (United States)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  3. Tandem Affinity Purification Approach Coupled to Mass Spectrometry to Identify Post-translational Modifications of Histones Associated with Chromatin-Binding Proteins.

    Science.gov (United States)

    Beyer, Sophie; Robin, Philippe; Ait-Si-Ali, Slimane

    2017-01-01

    Protein purification by tandem affinity purification (TAP)-tag coupled to mass spectrometry analysis is usually used to reveal protein complex composition. Here we describe a TAP-tag purification of chromatin-bound proteins along with associated nucleosomes, which allow exhaustive identification of protein partners. Moreover, this method allows exhaustive identification of the post-translational modifications (PTMs) of the associated histones. Thus, in addition to partner characterization, this approach reveals the associated epigenetic landscape that can shed light on the function and properties of the studied chromatin-bound protein.

  4. A microscopic approach based on particle-vibration coupling: application to charge-exchange transitions and multiplets in odd nuclei

    Directory of Open Access Journals (Sweden)

    Colò Gianluca

    2016-01-01

    Full Text Available In this contribution, we shall describe a formalism that goes beyond the simple time-dependent mean field and is based on particle-vibration coupling (PVC. Such a formalism has been developed with the idea of being self-consistent. It makes use of Skyrme effective forces, and has been used for several applications. We will focus on charge-exchange transitions, namely we will show that our model describes well both the Gamow-Teller giant resonance width, and the low-lying transitions associated with β-decay. In this latter case, including PVC produces a significant improvement of the half-lives obtained at mean-field level, and leads to a good agreement with experimental data. We will end by discussing particle-phonon multiplets in odd nuclei.

  5. Landauer-Büttiker Approach to Strongly Coupled Quantum Thermodynamics: Inside-Outside Duality of Entropy Evolution

    Science.gov (United States)

    Bruch, Anton; Lewenkopf, Caio; von Oppen, Felix

    2018-03-01

    We develop a Landauer-Büttiker theory of entropy evolution in time-dependent, strongly coupled electron systems. The formalism naturally avoids the problem of the system-bath distinction by defining the entropy current in the attached leads. This current can then be used to infer changes of the entropy of the system which we refer to as the inside-outside duality. We carry out this program in an adiabatic expansion up to first order beyond the quasistatic limit. When combined with particle and energy currents, as well as the work required to change an external potential, our formalism provides a full thermodynamic description, applicable to arbitrary noninteracting electron systems in contact with reservoirs. This provides a clear understanding of the relation between heat and entropy currents generated by time-dependent potentials and their connection to the occurring dissipation.

  6. A phase field approach for the fully coupled thermo-electro-mechanical dynamics of nanoscale ferroelectric actuators

    Science.gov (United States)

    Wang, Dan; Du, Haoyuan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    The fully coupled thermo-electro-mechanical properties of nanoscale ferroelectric actuators are investigated by a phase field model. Firstly, the thermal effect is incorporated into the commonly-used phase field model for ferroelectric materials in a thermodynamic consistent way and the governing equation for the temperature field is derived. Afterwards, the modified model is numerically implemented to study a selected prototype of the ferroelectric actuators, where strain associated with electric field-induced non-180° domain switching is employed. The temperature variation and energy flow in the actuation process are presented, which enhances our understanding of the working mechanism of the actuators. Furthermore, the influences of the input voltage frequency and the thermal boundary condition on the temperature variation are demonstrated and carefully discussed in the context of thermal management for real applications.

  7. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi-Yong, E-mail: zhyhuang@jmu.edu.cn [College of Bioengineering, Jimei University, Xiamen 361021 (China); Xie, Hong [College of Bioengineering, Jimei University, Xiamen 361021 (China); Shandong Vocational Animal Science and Veterinary College, Weifang 261061 (China); Cao, Ying-Lan [College of Bioengineering, Jimei University, Xiamen 361021 (China); Cai, Chao [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhang, Zhi [College of Bioengineering, Jimei University, Xiamen 361021 (China)

    2014-02-15

    Highlights: • Large amounts of exogenous Pb were found to distribute in reducible fractions. • Very few of exogenous Pb were found to distribute in acid-extractable fractions. • More than 60% of exogenous Pb in rhizosphere soils lost after planting. • Isotopic labeling method and SEP enable to explore Pb bioavailability in soil. -- Abstract: The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of {sup 206}Pb, the contamination of exogenous Pb{sup 2+} ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60–85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60–66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation.

  8. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach

    KAUST Repository

    Chertock, A.

    2012-02-02

    Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh-Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis-fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis-fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299-344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis-fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. © 2012 Cambridge University Press.

  9. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach

    International Nuclear Information System (INIS)

    Huang, Zhi-Yong; Xie, Hong; Cao, Ying-Lan; Cai, Chao; Zhang, Zhi

    2014-01-01

    Highlights: • Large amounts of exogenous Pb were found to distribute in reducible fractions. • Very few of exogenous Pb were found to distribute in acid-extractable fractions. • More than 60% of exogenous Pb in rhizosphere soils lost after planting. • Isotopic labeling method and SEP enable to explore Pb bioavailability in soil. -- Abstract: The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of 206 Pb, the contamination of exogenous Pb 2+ ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60–85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60–66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation

  10. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    Science.gov (United States)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  11. Nonlinear coupled mode approach for modeling counterpropagating solitons in the presence of disorder-induced multiple scattering in photonic crystal waveguides

    Science.gov (United States)

    Mann, Nishan; Hughes, Stephen

    2018-02-01

    We present the analytical and numerical details behind our recently published article [Phys. Rev. Lett. 118, 253901 (2017), 10.1103/PhysRevLett.118.253901], describing the impact of disorder-induced multiple scattering on counterpropagating solitons in photonic crystal waveguides. Unlike current nonlinear approaches using the coupled mode formalism, we account for the effects of intraunit cell multiple scattering. To solve the resulting system of coupled semilinear partial differential equations, we introduce a modified Crank-Nicolson-type norm-preserving implicit finite difference scheme inspired by the transfer matrix method. We provide estimates of the numerical dispersion characteristics of our scheme so that optimal step sizes can be chosen to either minimize numerical dispersion or to mimic the exact dispersion. We then show numerical results of a fundamental soliton propagating in the presence of multiple scattering to demonstrate that choosing a subunit cell spatial step size is critical in accurately capturing the effects of multiple scattering, and illustrate the stochastic nature of disorder by simulating soliton propagation in various instances of disordered photonic crystal waveguides. Our approach is easily extended to include a wide range of optical nonlinearities and is applicable to various photonic nanostructures where power propagation is bidirectional, either by choice, or as a result of multiple scattering.

  12. Mode coupling analysis of coherent quasi-elastic neutron scattering from fluorite-type materials approaching the superionic transition

    International Nuclear Information System (INIS)

    Chaturvedi, D.K.; Tosi, M.P.

    1987-08-01

    Neutron scattering experiments on SrCl 2 , CaF 2 and PbF 2 have shown that intensity and width of the coherent diffuse quasi-elastic spectrum increase rapidly with temperature into the fast-ion conducting phase, the main feature in the integrated quasi-elastic intensity being a peak just beyond the (200) point along the (100) direction in scattering wave vector space. The Zwanzig-Mori memory function formalism is used in this work to analyze the quasi-elastic scattering cross section from charge density fluctuations in terms of anharmonic couplings between the vibrational modes of the crystal. The two- and three-mode channels are examined for compatibility with the quasi-elastic neutron scattering evidence, on the basis of (i) energy and momentum conservation and van Hove singularity arguments and (ii) measured phonon dispersion curves along the main symmetry directions in SrCl 2 , CaF 2 , SrF 2 and BaF 2 . The analysis identifies a specific microscopic role for the Raman-active optic branches. The eigenvectors of the relevant Raman-active and partner modes in the three-mode channel describe relative displacements of the two halogens in the unit cell superposed on relative displacements of the halogen and alkaline earth components. This microscopic picture is thus consistent with the superionic transition being associated with the onset of dynamic disorder in the anionic component of the crystal. (author). 13 refs, 2 tabs

  13. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    Science.gov (United States)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  14. Can green roofs reduce urban heat stress in vulnerable urban communities: A coupled atmospheric and social modeling approach

    Science.gov (United States)

    Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.

    2017-12-01

    Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.

  15. Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach.

    Directory of Open Access Journals (Sweden)

    John J Wade

    Full Text Available In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a "learning signal" to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity, and the modeling strategy may be extended to coordination among remote neuron clusters.

  16. Modeling of microalgal shear-induced flocculation and sedimentation using a coupled CFD-population balance approach.

    Science.gov (United States)

    Golzarijalal, Mohammad; Zokaee Ashtiani, Farzin; Dabir, Bahram

    2018-01-01

    In this study, shear-induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler-Euler two fluid models were coupled via Ansys-CFX-15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s -1 is a promising method of pre-concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160-174, 2018. © 2017 American Institute of Chemical Engineers.

  17. Hydro-mechanical coupling and transport in Meuse/Haute-Marne argillite: experimental and multi-scale approaches

    International Nuclear Information System (INIS)

    Cariou, S.

    2010-07-01

    This thesis deals with the hydro-mechanical behaviour of argillite. Classical Biot theory is shown to be badly adapted to the case of argillite. An original state equation is then built by use of homogenization tools, and takes into account the microstructure of argillite as well as physical phenomena happening inside the material, like the swelling overpressure inside the clay particles or the capillary effects in the porous network. This state equation explains some experiments which were not by the classical Biot theory. It is then improved by integrating the experimental data that are the dependency of the elasticity tensor with the saturation degree and the existence of a porosity surrounding the inclusions. Combined with the monitoring of length variation under hydric loading, this relevant state equation permits one to determine the Biot tensor of argillite. Since this state equation is coupled with the hydric state of the material, one is interested in modelling the variation of the saturation degree during a drying process. Two transport models are studied and compared, then a model for the porous network is proposed in order to explain the unusual permeability measurements. (author)

  18. Review of life-cycle approaches coupled with data envelopment analysis: launching the CFP + DEA method for energy policy making.

    Science.gov (United States)

    Vázquez-Rowe, Ian; Iribarren, Diego

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting.

  19. Asymmetrical flow field-flow fractionation coupled with multiple detections: A complementary approach in the characterization of egg yolk plasma.

    Science.gov (United States)

    Dou, Haiyang; Li, Yueqiu; Choi, Jaeyeong; Huo, Shuying; Ding, Liang; Shen, Shigang; Lee, Seungho

    2016-09-23

    The capability of asymmetrical flow field-flow fractionation (AF4) coupled with UV/VIS, multiangle light scattering (MALS) and quasi-elastic light scattering (QELS) (AF4-UV-MALS-QELS) for separation and characterization of egg yolk plasma was evaluated. The accuracy of hydrodynamic radius (Rh) obtained from QELS and AF4 theory (using both simplified and full expression of AF4 retention equations) was discussed. The conformation of low density lipoprotein (LDL) and its aggregates in egg yolk plasma was discussed based on the ratio of radius of gyration (Rg) to Rh together with the results from bio-transmission electron microscopy (Bio-TEM). The results indicate that the full retention equation is more relevant than simplified version for the Rh determination at high cross flow rate. The Rh from online QELS is reliable only at a specific range of sample concentration. The effect of programmed cross flow rate (linear and exponential decay) on the analysis of egg yolk plasma was also investigated. It was found that the use of an exponentially decaying cross flow rate not only reduces the AF4 analysis time of the egg yolk plasma, but also provides better resolution than the use of either a constant or linearly decaying cross flow rate. A combination of an exponentially decaying cross flow AF4-UV-MALS-QELS and the utilization of full retention equation was proved to be a useful method for the separation and characterization of egg yolk plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.

    Science.gov (United States)

    Nie, Guoping; Li, Yong; Wang, Feichi; Wang, Siwen; Hu, Xuehai

    2015-01-01

    G-protein-coupled receptors (GPCRs) are seven membrane-spanning proteins and regulate many important physiological processes, such as vision, neurotransmission, immune response and so on. GPCRs-related pathways are the targets of a large number of marketed drugs. Therefore, the design of a reliable computational model for predicting GPCRs from amino acid sequence has long been a significant biomedical problem. Chaos game representation (CGR) reveals the fractal patterns hidden in protein sequences, and then fractal dimension (FD) is an important feature of these highly irregular geometries with concise mathematical expression. Here, in order to extract important features from GPCR protein sequences, CGR algorithm, fractal dimension and amino acid composition (AAC) are employed to formulate the numerical features of protein samples. Four groups of features are considered, and each group is evaluated by support vector machine (SVM) and 10-fold cross-validation test. To test the performance of the present method, a new non-redundant dataset was built based on latest GPCRDB database. Comparing the results of numerical experiments, the group of combined features with AAC and FD gets the best result, the accuracy is 99.22% and Matthew's correlation coefficient (MCC) is 0.9845 for identifying GPCRs from non-GPCRs. Moreover, if it is classified as a GPCR, it will be further put into the second level, which will classify a GPCR into one of the five main subfamilies. At this level, the group of combined features with AAC and FD also gets best accuracy 85.73%. Finally, the proposed predictor is also compared with existing methods and shows better performances.

  1. A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream

    Science.gov (United States)

    Sleighter, Rachel L.; Cory, Rose M.; Kaplan, Louis A.; Abdulla, Hussain A. N.; Hatcher, Patrick G.

    2014-08-01

    The bioreactivity or susceptibility of dissolved organic matter (DOM) to microbial degradation in streams and rivers is of critical importance to global change studies, but a comprehensive understanding of DOM bioreactivity has been elusive due, in part, to the stunningly diverse assemblages of organic molecules within DOM. We approach this problem by employing a range of techniques to characterize DOM as it flows through biofilm reactors: dissolved organic carbon (DOC) concentrations, excitation emission matrix spectroscopy (EEMs), and ultrahigh resolution mass spectrometry. The EEMs and mass spectral data were analyzed using a combination of multivariate statistical approaches. We found that 45% of stream water DOC was biodegraded by microorganisms, including 31-45% of the humic DOC. This bioreactive DOM separated into two different groups: (1) H/C centered at 1.5 with O/C 0.1-0.5 or (2) low H/C of 0.5-1.0 spanning O/C 0.2-0.7 that were positively correlated (Spearman ranking) with chromophoric and fluorescent DOM (CDOM and FDOM, respectively). DOM that was more recalcitrant and resistant to microbial degradation aligned tightly in the center of the van Krevelen space (H/C 1.0-1.5, O/C 0.25-0.6) and negatively correlated (Spearman ranking) with CDOM and FDOM. These findings were supported further by principal component analysis and 2-D correlation analysis of the relative magnitudes of the mass spectral peaks assigned to molecular formulas. This study demonstrates that our approach of processing stream water through bioreactors followed by EEMs and FTICR-MS analyses, in combination with multivariate statistical analysis, allows for precise, robust characterization of compound bioreactivity and associated molecular level composition.

  2. An integrated modeling approach to support management decisions of coupled groundwater-agricultural systems under multiple uncertainties

    Science.gov (United States)

    Hagos Subagadis, Yohannes; Schütze, Niels; Grundmann, Jens

    2015-04-01

    The planning and implementation of effective water resources management strategies need an assessment of multiple (physical, environmental, and socio-economic) issues, and often requires new research in which knowledge of diverse disciplines are combined in a unified methodological and operational frameworks. Such integrative research to link different knowledge domains faces several practical challenges. Such complexities are further compounded by multiple actors frequently with conflicting interests and multiple uncertainties about the consequences of potential management decisions. A fuzzy-stochastic multiple criteria decision analysis tool was developed in this study to systematically quantify both probabilistic and fuzzy uncertainties associated with complex hydrosystems management. It integrated physical process-based models, fuzzy logic, expert involvement and stochastic simulation within a general framework. Subsequently, the proposed new approach is applied to a water-scarce coastal arid region water management problem in northern Oman, where saltwater intrusion into a coastal aquifer due to excessive groundwater extraction for irrigated agriculture has affected the aquifer sustainability, endangering associated socio-economic conditions as well as traditional social structure. Results from the developed method have provided key decision alternatives which can serve as a platform for negotiation and further exploration. In addition, this approach has enabled to systematically quantify both probabilistic and fuzzy uncertainties associated with the decision problem. Sensitivity analysis applied within the developed tool has shown that the decision makers' risk aversion and risk taking attitude may yield in different ranking of decision alternatives. The developed approach can be applied to address the complexities and uncertainties inherent in water resources systems to support management decisions, while serving as a platform for stakeholder participation.

  3. A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

    Science.gov (United States)

    Spandan, Vamsi; Meschini, Valentina; Ostilla-Mónico, Rodolfo; Lohse, Detlef; Querzoli, Giorgio; de Tullio, Marco D.; Verzicco, Roberto

    2017-11-01

    In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.

  4. A Co-Precursor Approach Coupled with a Supercritical Modification Method for Constructing Highly Transparent and Superhydrophobic Polymethylsilsesquioxane Aerogels.

    Science.gov (United States)

    Lei, Chaoshuai; Li, Junning; Sun, Chencheng; Yang, Hailong; Xia, Tao; Hu, Zijun; Zhang, Yue

    2018-03-30

    Polymethylsilsesquioxane (PMSQ) aerogels obtained from methyltrimethoxysilane (MTMS) are well-known high-performance porous materials. Highly transparent and hydrophobic PMSQ aerogel would play an important role in transparent vacuum insulation panels. Herein, the co-precursor approach and supercritical modification method were developed to prepare the PMSQ aerogels with high transparency and superhydrophobicity. Firstly, benefiting from the introduction of tetramethoxysilane (TMOS) in the precursor, the pore structure became more uniform and the particle size was decreased. As the TMOS content increased, the light transmittance increased gradually from 54.0% to 81.2%, whereas the contact angle of water droplet decreased from 141° to 99.9°, ascribed to the increase of hydroxyl groups on the skeleton surface. Hence, the supercritical modification method utilizing hexamethyldisilazane was also introduced to enhance the hydrophobic methyl groups on the aerogel's surface. As a result, the obtained aerogels revealed superhydrophobicity with a contact angle of 155°. Meanwhile, the developed surface modification method did not lead to any significant changes in the pore structure resulting in the superhydrophobic aerogel with a high transparency of 77.2%. The proposed co-precursor approach and supercritical modification method provide a new horizon in the fabrication of highly transparent and superhydrophobic PMSQ aerogels.

  5. New approach to exploit optimally the PV array output energy by maximizing the discharge rate of a directly-coupled photovoltaic water pumping system (DC/PVPS)

    International Nuclear Information System (INIS)

    Boutelhig, Azzedine; Hadj Arab, Amar; Hanini, Salah

    2016-01-01

    Highlights: • Mismatches on a designed d-c PV pumping system have been highlighted. • A new approach predicting the maximal discharge has been developed. • The approach has been discussed versus its linearity coefficient. • The approach effectiveness has been investigated and approved. • Theoretical and experimental obtained values have been compared and approved. - Abstract: A directly-coupled photovoltaic water pumping system (DC/PVPS) is generally designed by considering the worst month conditions on lowest daylight-hours, the maximum monthly daily required water volume and tank to store the excess water. In case of absence of hydraulic storage (water tank) or it is not enough dimensioned, the extra amount of pumped water is lost or is not reasonably used, when the system is operated on full daylight-hour. Beside that the extra amount of energy, which might be produced by the PV generator, is not exploited, when the system is operated only during a specified period-time needed to satisfy the demand. Beyond the accurate design that satisfying the end-user, a new approach has been developed as target to exploit maximally the PV array energy production, by maximizing the discharge rate of the system. The methodology consists of approaching maximally the demanded energy to the supplied energy on full operating day. Based on the demand/supply energy condition, the approach has been developed, upon the PV array and the pump performance models. The issued approach predicts the maximum delivery capacity of the system on monthly daily water volumes versus the monthly daily averages of solar irradiation, previously recorded. Its efficacy has been investigated and discussed according to the estimated and experimental values of its linearity coefficient, following the characterization tests of a designed system, carried out at our pumping test facility in Ghardaia (Algeria). The new theoretically and experimentally obtained flow-rates fit well, except

  6. Tight-coupling of groundwater flow and transport modelling engines with spatial databases and GIS technology: a new approach integrating Feflow and ArcGIS

    Directory of Open Access Journals (Sweden)

    Ezio Crestaz

    2012-09-01

    Full Text Available Implementation of groundwater flow and transport numerical models is generally a challenge, time-consuming and financially-demanding task, in charge to specialized modelers and consulting firms. At a later stage, within clearly stated limits of applicability, these models are often expected to be made available to less knowledgeable personnel to support/design and running of predictive simulations within more familiar environments than specialized simulation systems. GIS systems coupled with spatial databases appear to be ideal candidates to address problem above, due to their much wider diffusion and expertise availability. Current paper discusses the issue from a tight-coupling architecture perspective, aimed at integration of spatial databases, GIS and numerical simulation engines, addressing both observed and computed data management, retrieval and spatio-temporal analysis issues. Observed data can be migrated to the central database repository and then used to set up transient simulation conditions in the background, at run time, while limiting additional complexity and integrity failure risks as data duplication during data transfer through proprietary file formats. Similarly, simulation scenarios can be set up in a familiar GIS system and stored to spatial database for later reference. As numerical engine is tightly coupled with the GIS, simulations can be run within the environment and results themselves saved to the database. Further tasks, as spatio-temporal analysis (i.e. for postcalibration auditing scopes, cartography production and geovisualization, can then be addressed using traditional GIS tools. Benefits of such an approach include more effective data management practices, integration and availability of modeling facilities in a familiar environment, streamlining spatial analysis processes and geovisualization requirements for the non-modelers community. Major drawbacks include limited 3D and time-dependent support in

  7. Investigation in magnesium-aluminum-calcium-strontium system by computational thermodynamics approach coupled with first-principles energetics and experiments

    Science.gov (United States)

    Ozturk, Koray

    The thermodynamic database for the Mg-Al-Ca-Sr quaternary system was constructed by combining the thermodynamic descriptions of the constituent binary systems. There are six binaries in the quaternary system: Al-Ca, Al-Mg, Al-Sr, Ca-Sr, Ca-Mg and Mg-Sr. Only two of them had been absent from the databases: Al-Ca and Ca-Sr. Therefore, they were investigated in detail to develop their thermodynamic descriptions. They were evaluated using Thermo-Calc, the software developed at The Royal Institute of Technology, Sweden. It is based on the CALPHAD approach. The modeling in CALPHAD approach relies on the Gibbs energy of individual phases. Therefore, the Gibbs energy functions for each phase in the binaries were defined in the binary databases. The Ca-Sr system was modeled by using random solution model. In modeling of the Al-Ca system, both random solution and associate models were applied to liquid phase. It was also demonstrated for the Al-Ca that the first-principles calculations provide reliable enthalpies of formation for stoichiometric compounds. The constructed quaternary database were used to calculate the liquidus projections of the ternary Mg-Al-Ca, Mg-Al-Sr, Mg-Ca-Sr and Al-Ca-Sr systems. Their primary crystallization fields and invariant reaction points were determined. Two Mg-based Mg-Al-Ca alloys were studied experimentally. The equilibrium phases in the alloys were determined after heat treatment. The present experimental results as well as the literature data were compared with the present thermodynamic calculations. The database was also utilized to understand the microstructures and phase relationships of the two quaternary alloys. Scheil simulations and equilibrium calculations were performed for the solidification process and compared with experimental observations.

  8. A Decision Support System Coupling Fuzzy Logic and Probabilistic Graphical Approaches for the Agri-Food Industry: Prediction of Grape Berry Maturity.

    Science.gov (United States)

    Perrot, Nathalie; Baudrit, Cédric; Brousset, Jean Marie; Abbal, Philippe; Guillemin, Hervé; Perret, Bruno; Goulet, Etienne; Guerin, Laurence; Barbeau, Gérard; Picque, Daniel

    2015-01-01

    Agri-food is one of the most important sectors of the industry and a major contributor to the global warming potential in Europe. Sustainability issues pose a huge challenge for this sector. In this context, a big issue is to be able to predict the multiscale dynamics of those systems using computing science. A robust predictive mathematical tool is implemented for this sector and applied to the wine industry being easily able to be generalized to other applications. Grape berry maturation relies on complex and coupled physicochemical and biochemical reactions which are climate dependent. Moreover one experiment represents one year and the climate variability could not be covered exclusively by the experiments. Consequently, harvest mostly relies on expert predictions. A big challenge for the wine industry is nevertheless to be able to anticipate the reactions for sustainability purposes. We propose to implement a decision support system so called FGRAPEDBN able to (1) capitalize the heterogeneous fragmented knowledge available including data and expertise and (2) predict the sugar (resp. the acidity) concentrations with a relevant RMSE of 7 g/l (resp. 0.44 g/l and 0.11 g/kg). FGRAPEDBN is based on a coupling between a probabilistic graphical approach and a fuzzy expert system.

  9. Predicting the oral pharmacokinetic profiles of multiple-unit (pellet) dosage forms using a modeling and simulation approach coupled with biorelevant dissolution testing: case example diclofenac sodium.

    Science.gov (United States)

    Kambayashi, Atsushi; Blume, Henning; Dressman, Jennifer B

    2014-07-01

    The objective of this research was to characterize the dissolution profile of a poorly soluble drug, diclofenac, from a commercially available multiple-unit enteric coated dosage form, Diclo-Puren® capsules, and to develop a predictive model for its oral pharmacokinetic profile. The paddle method was used to obtain the dissolution profiles of this dosage form in biorelevant media, with the exposure to simulated gastric conditions being varied in order to simulate the gastric emptying behavior of pellets. A modified Noyes-Whitney theory was subsequently fitted to the dissolution data. A physiologically-based pharmacokinetic (PBPK) model for multiple-unit dosage forms was designed using STELLA® software and coupled with the biorelevant dissolution profiles in order to simulate the plasma concentration profiles of diclofenac from Diclo-Puren® capsule in both the fasted and fed state in humans. Gastric emptying kinetics relevant to multiple-units pellets were incorporated into the PBPK model by setting up a virtual patient population to account for physiological variations in emptying kinetics. Using in vitro biorelevant dissolution coupled with in silico PBPK modeling and simulation it was possible to predict the plasma profile of this multiple-unit formulation of diclofenac after oral administration in both the fasted and fed state. This approach might be useful to predict variability in the plasma profiles for other drugs housed in multiple-unit dosage forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Application of the graphical unitary group approach to the energy second derivative for CI wave functions via the coupled perturbed CI equations

    International Nuclear Information System (INIS)

    Fox, D.J.

    1983-10-01

    Analytic derivatives of the potential energy for Self-Consistent-Field (SCF) wave functions have been developed in recent years and found to be useful tools. The first derivative for configuration interaction (CI) wave functions is also available. This work details the extension of analytic methods to energy second derivatives for CI wave functions. The principal extension required for second derivatives is evaluation of the first order change in the CI wave function with respect to a nuclear perturbation. The shape driven graphical unitary group approach (SDGUGA) direct CI program was adapted to evaluate this term via the coupled-perturbed CI equations. Several iterative schemes are compared for use in solving these equations. The pilot program makes no use of molecular symmetry but the timing results show that utilization of molecular symmetry is desirable. The principles for defining and solving a set of symmetry adapted equations are discussed. Evaluation of the second derivative also requires the solution of the second order coupled-perturbed Hartree-Fock equations to obtain the correction to the molecular orbitals due to the nuclear perturbation. This process takes a consistently higher percentage of the computation time than for the first order equations alone and a strategy for its reduction is discussed

  11. The Combined Application of the Caco-2 Cell Bioassay Coupled with In Vivo (Gallus gallus Feeding Trial Represents an Effective Approach to Predicting Fe Bioavailability in Humans

    Directory of Open Access Journals (Sweden)

    Elad Tako

    2016-11-01

    Full Text Available Research methods that predict Fe bioavailability for humans can be extremely useful in evaluating food fortification strategies, developing Fe-biofortified enhanced staple food crops and assessing the Fe bioavailability of meal plans that include such crops. In this review, research from four recent poultry (Gallus gallus feeding trials coupled with in vitro analyses of Fe-biofortified crops will be compared to the parallel human efficacy studies which used the same varieties and harvests of the Fe-biofortified crops. Similar to the human studies, these trials were aimed to assess the potential effects of regular consumption of these enhanced staple crops on maintenance or improvement of iron status. The results demonstrate a strong agreement between the in vitro/in vivo screening approach and the parallel human studies. These observations therefore indicate that the in vitro/Caco-2 cell and Gallus gallus models can be integral tools to develop varieties of staple food crops and predict their effect on iron status in humans. The cost-effectiveness of this approach also means that it can be used to monitor the nutritional stability of the Fe-biofortified crop once a variety has released and integrated into the food system. These screening tools therefore represent a significant advancement to the field for crop development and can be applied to ensure the sustainability of the biofortification approach.

  12. The Combined Application of the Caco-2 Cell Bioassay Coupled with In Vivo (Gallus gallus) Feeding Trial Represents an Effective Approach to Predicting Fe Bioavailability in Humans

    Science.gov (United States)

    Tako, Elad; Bar, Haim; Glahn, Raymond P.

    2016-01-01

    Research methods that predict Fe bioavailability for humans can be extremely useful in evaluating food fortification strategies, developing Fe-biofortified enhanced staple food crops and assessing the Fe bioavailability of meal plans that include such crops. In this review, research from four recent poultry (Gallus gallus) feeding trials coupled with in vitro analyses of Fe-biofortified crops will be compared to the parallel human efficacy studies which used the same varieties and harvests of the Fe-biofortified crops. Similar to the human studies, these trials were aimed to assess the potential effects of regular consumption of these enhanced staple crops on maintenance or improvement of iron status. The results demonstrate a strong agreement between the in vitro/in vivo screening approach and the parallel human studies. These observations therefore indicate that the in vitro/Caco-2 cell and Gallus gallus models can be integral tools to develop varieties of staple food crops and predict their effect on iron status in humans. The cost-effectiveness of this approach also means that it can be used to monitor the nutritional stability of the Fe-biofortified crop once a variety has released and integrated into the food system. These screening tools therefore represent a significant advancement to the field for crop development and can be applied to ensure the sustainability of the biofortification approach. PMID:27869705

  13. An alternative approach to exact wave functions for time-dependent coupled oscillator model of charged particle in variable magnetic field

    International Nuclear Information System (INIS)

    Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol

    2010-01-01

    The quantum states of time-dependent coupled oscillator model for charged particles subjected to variable magnetic field are investigated using the invariant operator methods. To do this, we have taken advantage of an alternative method, so-called unitary transformation approach, available in the framework of quantum mechanics, as well as a generalized canonical transformation method in the classical regime. The transformed quantum Hamiltonian is obtained using suitable unitary operators and is represented in terms of two independent harmonic oscillators which have the same frequencies as that of the classically transformed one. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators. One can easily take a complete description of how the charged particle behaves under the given Hamiltonian by taking advantage of these analytical wave functions.

  14. High-resolution marine flood modelling coupling overflow and overtopping processes: framing the hazard based on historical and statistical approaches

    Science.gov (United States)

    Nicolae Lerma, Alexandre; Bulteau, Thomas; Elineau, Sylvain; Paris, François; Durand, Paul; Anselme, Brice; Pedreros, Rodrigo

    2018-01-01

    A modelling chain was implemented in order to propose a realistic appraisal of the risk in coastal areas affected by overflowing as well as overtopping processes. Simulations are performed through a nested downscaling strategy from regional to local scale at high spatial resolution with explicit buildings, urban structures such as sea front walls and hydraulic structures liable to affect the propagation of water in urban areas. Validation of the model performance is based on hard and soft available data analysis and conversion of qualitative to quantitative information to reconstruct the area affected by flooding and the succession of events during two recent storms. Two joint probability approaches (joint exceedance contour and environmental contour) are used to define 100-year offshore conditions scenarios and to investigate the flood response to each scenario in terms of (1) maximum spatial extent of flooded areas, (2) volumes of water propagation inland and (3) water level in flooded areas. Scenarios of sea level rise are also considered in order to evaluate the potential hazard evolution. Our simulations show that for a maximising 100-year hazard scenario, for the municipality as a whole, 38 % of the affected zones are prone to overflow flooding and 62 % to flooding by propagation of overtopping water volume along the seafront. Results also reveal that for the two kinds of statistic scenarios a difference of about 5 % in the forcing conditions (water level, wave height and period) can produce significant differences in terms of flooding like +13.5 % of water volumes propagating inland or +11.3 % of affected surfaces. In some areas, flood response appears to be very sensitive to the chosen scenario with differences of 0.3 to 0.5 m in water level. The developed approach enables one to frame the 100-year hazard and to characterize spatially the robustness or the uncertainty over the results. Considering a 100-year scenario with mean sea level rise (0.6 m), hazard

  15. Diffusion and coupled fluxes in concentrated alloys under irradiation: a self-consistent mean-field approach

    International Nuclear Information System (INIS)

    Nastar, M.

    2008-01-01

    When an alloy is irradiated, atomic transport can occur through the two types of defects which are created: vacancies and interstitials. Recent developments of the self-consistent mean field (SCMF) kinetic theory could treat within the same formalism diffusion due to vacancies and interstitials in a multi-component alloy. It starts from a microscopic model of the atomic transport via vacancies and interstitials and yields the fluxes with a complete Onsager matrix of the phenomenological coefficients. The jump frequencies depend on the local environment through a 'broken bond model' such that the large range of frequencies involved in concentrated alloys is produced by a small number of thermodynamic and kinetic parameters. Kinetic correlations are accounted for through a set of time-dependent effective interactions within a non-equilibrium distribution function of the system. The different approximations of the SCMF theory recover most of the previous diffusion models. Recent improvements of the theory were to extend the multi-frequency approach usually restricted to dilute alloys to diffusion in concentrated alloys with jump frequencies depending on local concentrations and to generalize the formalism first developed for the vacancy diffusion mechanism to the more complex diffusion mechanism of the interstitial in the dumbbell configuration. (author)

  16. Software fault detection and recovery in critical real-time systems: An approach based on loose coupling

    International Nuclear Information System (INIS)

    Alho, Pekka; Mattila, Jouni

    2014-01-01

    Highlights: •We analyze fault tolerance in mission-critical real-time systems. •Decoupled architectural model can be used to implement fault tolerance. •Prototype implementation for remote handling control system and service manager. •Recovery from transient faults by restarting services. -- Abstract: Remote handling (RH) systems are used to inspect, make changes to, and maintain components in the ITER machine and as such are an example of mission-critical system. Failure in a critical system may cause damage, significant financial losses and loss of experiment runtime, making dependability one of their most important properties. However, even if the software for RH control systems has been developed using best practices, the system might still fail due to undetected faults (bugs), hardware failures, etc. Critical systems therefore need capability to tolerate faults and resume operation after their occurrence. However, design of effective fault detection and recovery mechanisms poses a challenge due to timeliness requirements, growth in scale, and complex interactions. In this paper we evaluate effectiveness of service-oriented architectural approach to fault tolerance in mission-critical real-time systems. We use a prototype implementation for service management with an experimental RH control system and industrial manipulator. The fault tolerance is based on using the high level of decoupling between services to recover from transient faults by service restarts. In case the recovery process is not successful, the system can still be used if the fault was not in a critical software module

  17. Software fault detection and recovery in critical real-time systems: An approach based on loose coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alho, Pekka, E-mail: pekka.alho@tut.fi; Mattila, Jouni

    2014-10-15

    Highlights: •We analyze fault tolerance in mission-critical real-time systems. •Decoupled architectural model can be used to implement fault tolerance. •Prototype implementation for remote handling control system and service manager. •Recovery from transient faults by restarting services. -- Abstract: Remote handling (RH) systems are used to inspect, make changes to, and maintain components in the ITER machine and as such are an example of mission-critical system. Failure in a critical system may cause damage, significant financial losses and loss of experiment runtime, making dependability one of their most important properties. However, even if the software for RH control systems has been developed using best practices, the system might still fail due to undetected faults (bugs), hardware failures, etc. Critical systems therefore need capability to tolerate faults and resume operation after their occurrence. However, design of effective fault detection and recovery mechanisms poses a challenge due to timeliness requirements, growth in scale, and complex interactions. In this paper we evaluate effectiveness of service-oriented architectural approach to fault tolerance in mission-critical real-time systems. We use a prototype implementation for service management with an experimental RH control system and industrial manipulator. The fault tolerance is based on using the high level of decoupling between services to recover from transient faults by service restarts. In case the recovery process is not successful, the system can still be used if the fault was not in a critical software module.

  18. Validity of the toposequence approach along a rainfall gradient at a desert fringe

    Science.gov (United States)

    Yair, Aaron

    2017-04-01

    According to the "classic" toposequence approach soil's properties are closely related to the position of a soil along a slope. The positional differences in soil properties are usually attributed to spatial differences in runoff; erosion and deposition processes. These processes reflect long term effects of the spatial redistribution of water, solids and soluble materials, which are of great importance in respect of nutrient cycling on the landscape scale, and the structuring of natural ecosystems. The "classic" toposequence approach has been seriously questioned by Sommer and Schlichting (1997). They were followed by many scientists of various disciplines (hydrology, ecology, paleopedology, paleoclimate etc). The present study covers three topo-sequences, located in southern Israel, along an average annual rainfall gradient of 90-300 mm. The classic toposequence approach does not apply to none of them, and the controlling factors vary from one site to another.

  19. Tracing wastewater effluents in surface and groundwaters: a couple approach with organic/inorganic tracers and isotopes

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Baran, Nicole; Soulier, Coralie

    2017-04-01

    In the context of land use change, the origins of contamination of water resources are often multiple, including for a single chemical element or molecule. For instance, excess of nitrates in both surface and groundwater can originate from agricultural practices and wastewater effluents. The discrimination of the origins and vectors of contamination in the environment is both an environmental and societal issue in order to define an integrated water resources management at the catchment or water body scale by implementing appropriate measures to effectively struggle against pollution. The objective of this study is to define a methodology for the identification of a "domestic wastewater" contamination within surface waters and groundwater. An ideal tracer should be conservative, persistent in the different water compartments, present in quantity above the detection limit and originate from a single type of pollution source. There is, however, no ideal tracer in the strict sense. Indeed, even chloride which is present in quantity in wastewater, and which behaves conservatively in the environment, is not an univocal tracer of wastewater, as it may come from atmospheric inputs, from the dissolution of evaporitic rocks, from the salting of roads or from fertilizers. To overcome this limitation, in this study, we propose a multi-tracer approach (chemical and isotopic) to identify and validate the relevance of foreseen tracers. Among the relevant tracers of wastewater, the following may be used for their intrinsic or combined discriminant power: 1) organic effluent tracers: nitrogen contents and isotopic ratios of nitrogen and oxygen of nitrates; 2) tracer of detergents: boron contents and boron isotopes; 3) pharmaceuticals tracers: e.g. carbamazepine, ibuprofen, paracetamol, gadolinium anomaly; 4) life-style tracers: e.g. caffeine. The originality of the study relies on small capacities wastewater treatment plants without tertiary treatment process. Results on a

  20. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    Science.gov (United States)

    Senay, G.B.; Budde, Michael; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    upstream and downstream basins. A major advantage of the energy-balance approach is that it can be used to quantify spatial extent of irrigated fields and their water-use dynamics without reference to source of water as opposed to a water-balance model which requires knowledge of both the magnitude and temporal distribution of rainfall and irrigation applied to fields. ?? 2007 by MDPI.

  1. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches

    Science.gov (United States)

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-01

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.

  2. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    Science.gov (United States)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  3. Strategies for method development for an inductively coupled plasma mass spectrometer with bandpass reaction cell. Approaches with different reaction gases for the determination of selenium

    International Nuclear Information System (INIS)

    Hattendorf, Bodo; Guenther, Detlef

    2003-01-01

    An inductively coupled plasma mass spectrometer with dynamic reaction cell (DRC) was used to investigate different approaches for chemical resolution of Ar 2 + ions and to improve the determination of Se. Hydrogen, methane, oxygen and nitrous oxide were used as reaction gases. The method development for each approach consists of the acquisition of spectra for blank and spiked samples at different operating parameters, including reaction gas flow and transmission settings, of the DRC. Isotope ratio studies and the analytes signal to background ratio (SBR), were used as criteria to determine the operating conditions of the DRC where spectral interferences from the ion source or from polyatomic ions formed inside the DRC are minimized. Methane was found to provide the highest reaction efficiency for determination of Se. Nitrous oxide and oxygen also very efficiently suppress the Ar 2 + interference but reaction or scattering losses of Se + and SeO + are significant. Hydrogen is the least efficient gas for Ar 2 + reduction but little scattering or reactive loss lead to a good SBR. The determination of Se as SeO + was investigated with oxygen and nitrous oxide as reaction gases. The efficiency when using the oxygenation reaction was found to be similar to the efficiency for the charge transfer reactions but the slow oxygenation of the potentially interfering Mo + renders this approach less useful for analytical purposes. Using a natural water sample it could be shown that very good agreement is obtained using methane or hydrogen for analysis of 80 Se + at the μg/l level. Limits of detection are lowest (2 ng/l) when methane is used to suppress the Ar 2 + ion and when 80 Se + is used for analysis

  4. A novel approach of periodate oxidation coupled with HPLC-FLD for the quantitative determination of 3-chloro-1,2-propanediol in water and vegetable oil.

    Science.gov (United States)

    Hu, Zhixiong; Cheng, Peng; Guo, Mingli; Zhang, Weinong; Qi, Yutang

    2013-07-10

    A novel approach of periodate oxidation coupled with high-performance liquid chromatography (HPLC)-fluorescence detection (FLD) for the quantitative determination of 3-chloro-1,2-propanediol (3-MCPD) has been established. The essence of this approach lies in the production of chloroacetaldehyde by the oxidization cleavage of 3-MCPD with sodium periodate and the HPLC analysis of chloroacetaldehyde monitored by an FLD detector after fluorescence derivatization with adenine. The experimental parameters relating to the efficiency of the derivative reaction such as concentration of adenine, chloroacetaldehyde reaction temperature, and time were studied. Under the optimized conditions, the proposed method can provide high sensitivity, good linearity (r(2) = 0.999), and repeatability (percent relative standard deviations between 2.57% and 3.44%), the limits of detection and quantification were 0.36 and 1.20 ng/mL, respectively, and the recoveries obtained for water samples were in the range 93.39-97.39%. This method has been successfully applied to the analysis of real water samples. Also this method has been successfully used for the analysis of vegetable oil samples after pretreatment with liquid-liquid extraction; the recoveries obtained by a spiking experiment with soybean oil ranged from 96.27% to 102.42%. In comparison with gas chromatography or gas chromatography-mass spectrometry, the proposed method can provide the advantages of simple instrumental requirement, easy operation, low cost, and high efficiency, thus making this approach another good choice for the sensitive determination of 3-MCPD.

  5. OECD/DOE/CEA VVER-1000 coolant transient (V1000CT) benchmark - a consistent approach for assessing coupled codes for RIA analysis

    International Nuclear Information System (INIS)

    Boyan D Ivanov; Kostadin N Ivanov; Eric Royer; Sylvie Aniel; Nikola Kolev; Pavlin Groudev

    2005-01-01

    Full text of publication follows: The Rod Ejection Accident (REA) and Main Steam Line Break (MSLB) are two of the most important Design Basis Accidents (DBA) for VVER-1000 exhibiting significant localized space-time effects. A consistent approach for assessing coupled three-dimensional (3-D) neutron kinetics/thermal hydraulics codes for these Reactivity Insertion Accidents (RIA) is to first validate the codes using the available plant test (measured) data and after that perform cross code comparative analysis for REA and MSLB scenarios. In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Energie Atomique (CEA), France a coupled 3-D neutron kinetics/thermal hydraulics benchmark was defined. The benchmark is based on data from the Unit 6 of the Bulgarian Kozloduy Nuclear Power Plant (NPP). In performing this work the PSU, USA and CEA-Saclay, France have collaborated with Bulgarian organizations, in particular with the KNPP and the INRNE. The benchmark consists of two phases: Phase 1: Main Coolant Pump Switching On; Phase 2: Coolant Mixing Tests and MSLB. In addition to the measured (experiment) scenario, an extreme calculation scenario was defined for better testing 3-D neutronics/thermal-hydraulics techniques: rod ejection simulation with control rod being ejected in the core sector cooled by the switched on MCP. Since the previous coupled code benchmarks indicated that further development of the mixing computation models in the integrated codes is necessary, a coolant mixing experiment and MSLB transients are selected for simulation in Phase 2 of the benchmark. The MSLB event is characterized by a large asymmetric cooling of the core, stuck rods and a large primary coolant flow variation. Two scenarios are defined in Phase 2: the first scenario is taken from the current licensing practice and the second one is derived from the original one using aggravating

  6. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    International Nuclear Information System (INIS)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  7. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  8. An integrated approach for estimating global glacio isostatic adjustment, land ice, hydrology and ocean mass trends within a complete coupled Earth system framework

    Science.gov (United States)

    Schumacher, M.; Bamber, J. L.; Martin, A.

    2016-12-01

    Future sea level rise (SLR) is one of the most serious consequences of climate change. Therefore, understanding the drivers of past sea level change is crucial for improving predictions. SLR integrates many Earth system components including oceans, land ice, terrestrial water storage, as well as solid Earth effects. Traditionally, each component have been tackled separately, which has often lead to inconsistencies between discipline-specific estimates of each part of the sea level budget. To address these issues, the European Research Council has funded a five year project aimed at producing a physically-based, data-driven solution for the complete coupled land-ocean-solid Earth system that is consistent with the full suite of observations, prior knowledge and fundamental geophysical constraints. The project is called "GlobalMass" and based at University of Bristol. Observed mass movement from the GRACE mission plus vertical land motion from a global network of permanent GPS stations will be utilized in a data-driven approach to estimate glacial isostatic adjustment (GIA) without introducing any assumptions about the Earth structure or ice loading history. A Bayesian Hierarchical Model (BHM) will be used as the framework to combine the satellite and in-situ observations alongside prior information that incorporates the physics of the coupled system such as conservation of mass and characteristic length scales of different processes in both space and time. The BHM is used to implement a simultaneous solution at a global scale. It will produce a consistent partitioning of the integrated SLR signal into its steric (thermal) and barystatic (mass) component for the satellite era. The latter component is induced by hydrological mass trends and melting of land ice. The BHM was developed and tested on Antarctica, where it has been used to separate surface, ice dynamic and GIA signals simultaneously. We illustrate the approach and concepts with examples from this test case

  9. Primary processes of the electron-protic species coupling in pure aqueous phases: - femtosecond laser spectroscopy study; - quantum approach of the electron-water interaction

    International Nuclear Information System (INIS)

    Pommeret, Stanislas

    1991-01-01

    This thesis work deals with the coupling mechanisms between an electron, water molecules or protic species (hydronium ion, hydroxyl radical). Two complementary studies have been carry out in pure aqueous phases. The first one is concerned with the structural aspect of the hydrated electron which is studied via a semi-quantum approach Splitting Operator Method. The results indicates the importance of the second hydration shell in the localisation of an electron at 77 and 300 Kelvin. The second part of this work relates to the dynamic of the primary processes in light or heavy water at room temperature: the ion-molecule reaction, radical pair formation, geminate recombination of the hydrated electron with the hydronium ion and the hydroxyl radical. The dynamic of these reactions is studied by time resolved absorption spectroscopy from the near infrared to the near ultraviolet with a few tens femto-seconds temporal precision. The analysis of the primary processes takes into account the protic properties of water molecules. (author) [fr

  10. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-10-01

    Full Text Available Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS has rapidly established itself as the method of choice for generation of multi-element datasets for specific minerals, with broad applications in Earth science. Variation in absolute concentrations of different trace elements within common, widely distributed phases, such as pyrite, iron-oxides (magnetite and hematite, and key accessory minerals, such as apatite and titanite, can be particularly valuable for understanding processes of ore formation, and when trace element distributions vary systematically within a mineral system, for a vector approach in mineral exploration. LA-ICP-MS trace element data can assist in element deportment and geometallurgical studies, providing proof of which minerals host key elements of economic relevance, or elements that are deleterious to various metallurgical processes. This contribution reviews recent advances in LA-ICP-MS methodology, reference standards, the application of the method to new mineral matrices, outstanding analytical uncertainties that impact on the quality and usefulness of trace element data, and future applications of the technique. We illustrate how data interpretation is highly dependent on an adequate understanding of prevailing mineral textures, geological history, and in some cases, crystal structure.

  11. An integrated approach coupling physically based models and probabilistic method to assess quantitatively landslide susceptibility at different scale: application to different geomorphological environments

    Science.gov (United States)

    Vandromme, Rosalie; Thiéry, Yannick; Sedan, Olivier; Bernardie, Séverine

    2016-04-01

    Landslide hazard assessment is the estimation of a target area where landslides of a particular type, volume, runout and intensity may occur within a given period. The first step to analyze landslide hazard consists in assessing the spatial and temporal failure probability (when the information is available, i.e. susceptibility assessment). Two types of approach are generally recommended to achieve this goal: (i) qualitative approach (i.e. inventory based methods and knowledge data driven methods) and (ii) quantitative approach (i.e. data-driven methods or deterministic physically based methods). Among quantitative approaches, deterministic physically based methods (PBM) are generally used at local and/or site-specific scales (1:5,000-1:25,000 and >1:5,000, respectively). The main advantage of these methods is the calculation of probability of failure (safety factor) following some specific environmental conditions. For some models it is possible to integrate the land-uses and climatic change. At the opposite, major drawbacks are the large amounts of reliable and detailed data (especially materials type, their thickness and the geotechnical parameters heterogeneity over a large area) and the fact that only shallow landslides are taking into account. This is why they are often used at site-specific scales (> 1:5,000). Thus, to take into account (i) materials' heterogeneity , (ii) spatial variation of physical parameters, (iii) different landslide types, the French Geological Survey (i.e. BRGM) has developed a physically based model (PBM) implemented in a GIS environment. This PBM couples a global hydrological model (GARDENIA®) including a transient unsaturated/saturated hydrological component with a physically based model computing the stability of slopes (ALICE®, Assessment of Landslides Induced by Climatic Events) based on the Morgenstern-Price method for any slip surface. The variability of mechanical parameters is handled by Monte Carlo approach. The

  12. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...

  13. A mixture theory approach to model co- and counter-current two-phase flow in porous media accounting for viscous coupling

    Science.gov (United States)

    Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.

    2018-02-01

    It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.

  14. Rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry-based metabolomics approach to study the effects of jieduquyuziyin prescription on systemic lupus erythematosus.

    Science.gov (United States)

    Ding, Xinghong; Hu, Jinbo; Wen, Chengping; Ding, Zhishan; Yao, Li; Fan, Yongsheng

    2014-01-01

    Jieduquyuziyin prescription (JP), a traditional Chinese medicine (TCM) prescription, has been widely used for the clinical treatment of systemic lupus erythematosus (SLE). However, the complex chemical constituents of JP and the multifactorial pathogenesis of SLE make research on the therapeutic mechanism of JP in SLE challenging. In this paper, a serum metabolomics approach based on rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF/MS) was employed to acquire the metabolic characteristics of serum samples obtained from mice in the SLE model group, JP-treated group, prednisone acetate (PA)-treated group and control group. The orthogonal partial least squares (OPLS) was applied to recognize metabolic patterns, and an obvious separation of groups was obtained. Thirteen metabolites, namely, phosphatidylethanolamine (PE 20:3), hepoxilin B3, lyso- phosphatidylethanolamine (lyso-PE 22:6), 12S-hydroxypentaenoic acid (12S-HEPE), traumatic acid, serotonin, platelet-activating factor (PAF), phosphatidylcholine (PC 20:5),eicosapentaenoic acid (EPA), 12(S)-hydroxyei- cosatetraenoic acid (12S-HETE), 14-hydroxy docosahexaenoic acid (14-HDOHE), lyso-phosphatidylcholine (lyso-PC 20:4), and indole acetaldehyde, were identified and characterized as differential metabolites involved in the pathogenesis of SLE. After treatment with JP, the relative content of 12(S)-HETE, PAF, 12(S)-HEPE, EPA, PE (20:3), Lyso-PE(22:6), and 14-HDOHE were effectively regulated, which suggested that the therapeutic effects of JP on SLE may involve regulating disturbances to the metabolism of unsaturated fatty acid, tryptophan and phospholipid. This research also demonstrated that metabolomics is a powerful tool for researching complex disease mechanisms and evaluating the mechanism of action of TCM.

  15. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    OpenAIRE

    Shahabuddin, Syed; Hamime Ismail, Fatem; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydro...

  16. Approach to the calculation of energy deposition in a container of fuel irradiated by the neutronic codes coupling fluid-dynamics

    International Nuclear Information System (INIS)

    Hueso, C.; Aleman, A.; Colomer, C.; Fabbri, M.; Martin, M.; Saellas, J.

    2013-01-01

    In this work identifies a possible area of improvement through the creation of a code of coupling between deposition energy codes which calculate neutron (MCNP), and data from heading into fluid dynamics (ANSYS-Fluent) or codes thermomechanical, called MAFACS (Monte Carlo ANSYS Fluent Automatic Coupling Software), being possible to so summarize the process by shortening the needs of computing time, increasing the precision of the results and therefore improving the design of the components.

  17. Effect of Group Cognitive Behavioral Couples Therapy on Couple Burnout and Divorce Tendency in Couples

    Directory of Open Access Journals (Sweden)

    M Mohammadi

    2017-02-01

    Full Text Available Background & aim: Couple burnout is one of the phenomena which involve many couples, it is among the main causes of emotional divorce, and without proper management and treatment, and it can lay the ground for formal divorce among couples. Cognitive behavioral couple therapy is one of the existing approaches in the couple therapy field, the efficiency of which has been established for resolving many marital problems. The present study was designed by the aim of investigating the effect of group cognitive behavioral couple therapy on couple burnout and divorce tendency in couples.   Methods: The present research was of applied research type. The research method was semi-empirical with a pretest-posttest with control group design. The research population included all the couples with marital conflict and problems who, after a recall announcement of the researcher, visited the counseling and psychological services center located in Gorgan city in 2014. By using the available sampling method, 20 couples were selected among the volunteer and qualified couples for the research, and they were assigned into experiment and control groups (10 couples per group by random assignment. In the present research, the Pines burnout questionnaire (1996 and divorce tendency scale of Rouswelt, Johnson, and Mouro (1986 were used for gathering the data. After taking the pretest, the group cognitive behavioral couple therapy based on the couple therapy model of Baucom  and colleagues (2008 was held in 10 2-hour weekly sessions for the experiment group couples, while the control group couples received no intervention. The data were analyzed through descriptive statistics method and multivariate covariance analysis (MANCOVA in SPSS v.20. Results: The multivariate covariance analysis results for couple burnout (F= 28.80 and divorce tendency (F= 51.25 suggested that there was a significant difference between the couples of experiment and control groups (P< 0

  18. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound investment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  19. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound in-vestment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  20. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  1. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2015-01-01

    Full Text Available Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydroxyphenylethane, a trifunctional core molecule, to give well-defined triple-arm star-branched polystyrene.

  2. Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants

    International Nuclear Information System (INIS)

    Yang Chuiping

    2011-01-01

    We propose a way for generating n-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states with a three-level qubit system and (n-1) four-level qubit systems in a cavity. This proposal does not require identical qubit-cavity coupling constants and thus is tolerant to qubit-system parameter nonuniformity and nonexact placement of qubits in a cavity. The proposal does not require adjustment of the qubit-system level spacings during the entire operation. Moreover, it is shown that entanglement can be deterministically generated using this method and the operation time is independent of the number of qubits. The present proposal is quite general, which can be applied to physical systems such as various types of superconducting devices coupled to a resonator or atoms trapped in a cavity.

  3. Non-double-couple earthquake mechanism as an artifact of the point-source approach applied to a finite-extent focus

    Czech Academy of Sciences Publication Activity Database

    Adamová, Petra; Šílený, Jan

    2010-01-01

    Roč. 100, č. 2 (2010), s. 447-457 ISSN 0037-1106 R&D Projects: GA ČR GA205/09/0724 Grant - others:GA MŠk(CZ) specifický-výzkum Institutional research plan: CEZ:AV0Z30120515 Keywords : non-double-couple earthquake mechanism * moment tensor * finite-extent focus Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.027, year: 2010

  4. Pseudo-orbit approach to trajectories of resonances in quantum graphs with general vertex coupling: Fermi rule and high-energy asymptotics

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Lipovský, J.

    2017-01-01

    Roč. 58, č. 4 (2017), č. článku 042101. ISSN 0022-2488 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : self-adjoint coupling * high-energy regime * resonances in quantum graphs Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.077, year: 2016

  5. Numerical Approach of a Water Flow in an Unsaturated Porous Medium by Coupling Between the Navier–Stokes and Darcy–Forchheimer Equations

    Directory of Open Access Journals (Sweden)

    Hami K.

    2017-12-01

    Full Text Available In the present research, simulations have been conducted to determine numerically the dynamic behaviour of the flow of underground water fed by a river. The basic equations governing the problem studied are those of Navier–Stokes equations of conservation of momentum (flows between pores, coupled by the Darcy–Forchheimer equations (flows within these pores. To understand the phenomena involved, we first study the impact of flow rate on the pressure and the filtration velocity in the underground medium, the second part is devoted to the calculation of the elevation effect of the river water on the flow behaviour in the saturated and unsaturated zone of the aquifer.

  6. Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach.

    Science.gov (United States)

    Papoutsakis, Stefanos; Miralles-Cuevas, Sara; Gondrexon, Nicolas; Baup, Stéphane; Malato, Sixto; Pulgarin, César

    2015-01-01

    This study aims to evaluate the performance of a novel pilot-scale coupled system consisting of a high frequency ultrasonic reactor (400kHz) and a compound parabolic collector (CPC). The benefits of the concurrent application of ultrasound and the photo-Fenton process were studied in regard to the degradation behavior of a series of organic pollutants. Three compounds (phenol, bisphenol A and diuron) with different physicochemical properties have been chosen in order to identify possible synergistic effects and to obtain a better estimate of the general feasibility of such a system at field scale (10L). Bisphenol A and diuron were specifically chosen due to their high hydrophobicity, and thus their assumed higher affinity towards the cavitation bubble. Experiments were conducted under ultrasonic, photo-Fenton and combined treatments. Enhanced degradation kinetics were observed during the coupled treatment and synergy factors clearly in excess of 1 have been calculated for phenol as well as for saturated solutions of bisphenol A and diuron. Although the relatively high cost of ultrasound compared to photo-Fenton still presents a significant challenge towards mainstream industrial application, the observed behavior suggests that its prudent use has the potential to significantly benefit the photo-Fenton process, via the decrease of both treatment time and H2O2 consumption. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Science.gov (United States)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  8. Towards an integrated design of voluntary approaches and standardization processes: An analysis of issues and trends in the Italian regulation on ground coupled heat pumps

    International Nuclear Information System (INIS)

    Rizzi, Francesco; Frey, Marco; Iraldo, Fabio

    2011-01-01

    Highlights: → We investigate GCHP regulation development from an entrepreneurial perspective. → Threats in booming market orient entrepreneurs toward green management. → Command and control regulation is not sufficient to guarantee market sustainability. → Voluntary regulation encourage best performers to invest in long-term strategies. → Bottom-up regulation design advances integration of process and product standards. - Abstract: Despite the lack of specific incentives, ground coupled heat pump (GCHP) installations are booming in Italy both in the private and public sectors. Such rapid growth is coupled with increasing concern for environmental and technical performances since no comprehensive regulation and reliable standards currently exist. This paper discusses potential schemes aimed at balancing mandatory and voluntary requirements by using SWOT-based techniques and examining the opinions of sectoral leaders. The analysis suggests that standardization and voluntary schemes are perceived as efficient and effective tools to encourage the greening of Italian GCHP-SMEs in the short-term while laying the foundations for sustainable policies in the longer run. A potential scheme is discussed that was simulated by reflecting the supply-side of the market, and which involves process and product standards.

  9. Towards an integrated design of voluntary approaches and standardization processes: An analysis of issues and trends in the Italian regulation on ground coupled heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rizzi, Francesco, E-mail: f.rizzi@sssup.it [Scuola Superiore Sant' Anna - Istituto di Management, P.zza Martiri della Liberta 33, 56127 Pisa (Italy); Frey, Marco, E-mail: frey@sssup.it [Scuola Superiore Sant' Anna - Istituto di Management, P.zza Martiri della Liberta 33, 56127 Pisa (Italy); Iraldo, Fabio, E-mail: f.iraldo@sssup.it [Scuola Superiore Sant' Anna - Istituto di Management, P.zza Martiri della Liberta 33, 56127 Pisa (Italy)

    2011-09-15

    Highlights: {yields} We investigate GCHP regulation development from an entrepreneurial perspective. {yields} Threats in booming market orient entrepreneurs toward green management. {yields} Command and control regulation is not sufficient to guarantee market sustainability. {yields} Voluntary regulation encourage best performers to invest in long-term strategies. {yields} Bottom-up regulation design advances integration of process and product standards. - Abstract: Despite the lack of specific incentives, ground coupled heat pump (GCHP) installations are booming in Italy both in the private and public sectors. Such rapid growth is coupled with increasing concern for environmental and technical performances since no comprehensive regulation and reliable standards currently exist. This paper discusses potential schemes aimed at balancing mandatory and voluntary requirements by using SWOT-based techniques and examining the opinions of sectoral leaders. The analysis suggests that standardization and voluntary schemes are perceived as efficient and effective tools to encourage the greening of Italian GCHP-SMEs in the short-term while laying the foundations for sustainable policies in the longer run. A potential scheme is discussed that was simulated by reflecting the supply-side of the market, and which involves process and product standards.

  10. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Directory of Open Access Journals (Sweden)

    Sai Ho Yeung

    2015-09-01

    Full Text Available Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC stimulation, magnetic stimulation (MS and transcutaneous electrical nerve stimulation (TENS are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  11. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-15

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  12. New quantitative and multi-modal approach for in-vivo studies of small animals: coupling of the β-microprobe with magnetic techniques and development of voxelized rat and mouse phantoms

    International Nuclear Information System (INIS)

    Desbree, A.

    2005-09-01

    For the last 15 years, animal models that mimic human disorders have become ubiquitous participants to understand biological mechanisms and human disorders and to evaluate new therapeutic approaches. The necessity to study these models in the course of time has stimulated the development of instruments dedicated to in vivo small animal studies. To further understand physiopathological processes, the current challenge is to couple simultaneously several of these methods. Given this context, the combination of the magnetic and radioactive techniques remains an exciting challenge since it is still limited by strict technical constraints. Therefore we propose to couple the magnetic techniques with the radiosensitive Beta-Microprobe, developed in the IPB group and which shown to be an elegant alternative to PET measurements. In this context, the thesis was dedicated to the study of the coupling feasibility from a physical point of view, by simulation and experimental characterizations. Then, the determination of a biological protocol was carried out on the basis of pharmacokinetic studies. The experiments have shown the possibility to use the probe for radioactive measurements under intense magnetic field simultaneously to anatomical images acquisitions. Simultaneously, we have sought to improve the quantification of the radioactive signal using a voxelized phantom of a rat brain. Finally, the emergence of transgenic models led us to reproduce pharmacokinetic studies for the mouse and to develop voxelized mouse phantoms. (author)

  13. Spatiotemporal complexity in coupled map lattices

    International Nuclear Information System (INIS)

    Kaneko, Kunihiko

    1986-01-01

    Some spatiotemporal patterns of couple map lattices are presented. The chaotic kink-like motions are shown for the phase motion of the coupled circle lattices. An extension of the couple map lattice approach to Hamiltonian dynamics is briefly reported. An attempt to characterize the high-dimensional attractor by the extension of the correlation dimension is discussed. (author)

  14. Achieving Simultaneous CO2 and H2 S Conversion via a Coupled Solar-Driven Electrochemical Approach on Non-Precious-Metal Catalysts.

    Science.gov (United States)

    Ma, Weiguang; Wang, Hong; Yu, Wei; Wang, Xiaomei; Xu, Zhiqiang; Zong, Xu; Li, Can

    2018-03-19

    Carbon dioxide (CO 2 ) and hydrogen sulfide (H 2 S) are generally concomitant with methane (CH 4 ) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO 2 and H 2 S into value-added products is attractive; however it has not received enough attention. A solar-driven electrochemical process is demonstrated using graphene-encapsulated zinc oxide catalyst for CO 2 reduction and graphene catalyst for H 2 S oxidation mediated by EDTA-Fe 2+ /EDTA-Fe 3+ redox couples. The as-prepared solar-driven electrochemical system can realize the simultaneous conversion of CO 2 and H 2 S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A coupled FE and scaled boundary FE-approach for the earthquake response analysis of arch dam-reservoir-foundation system

    International Nuclear Information System (INIS)

    Wang Yi; Lin Gao; Hu Zhiqiang

    2010-01-01

    For efficient and accurate modelling of arch dam-reservoir-foundation system a coupled Finite Element method (FEM) and Scaled Boundary Finite Element method (SBFEM) is developed. Both the dam-foundation interaction and the dam-reservoir interaction including the effect of reservoir boundary absorption are taken into account. The arch dam is modelled by FEM, while the reservoir domain and the unbounded foundation are modelled by SBFEM. In order to make comparison with the results available in the literature, the Morrow Point arch dam is selected for numerical analysis. The analyses are carried out in the frequency domain, and then the time-domain response of the dam-reservoir-foundation system is obtained by Inverse Fourier Transform.

  16. Belpex and trilateral market coupling

    International Nuclear Information System (INIS)

    2006-01-01

    This document describes the operation of Belpex, the Belgian power transmission spot market, and its linking with the French (Powernext) and Dutch (APX) auction-style day-ahead spot markets. A last part deals with the extension of this trilateral market to other European countries. Content: Belpex day-ahead market (DAM) (Goals of the DAM: Provide consumers with a wider choice of electrical energy sources, Enable the ARP's to optimize their portfolio in terms of imbalance costs, Reduce trade and credit risks for market players compared with the risks involved in concluding bilateral contracts, Provide economic players with a transparent price benchmark, Stimulate the opening of the electricity market); Market model Product (description, Contracts, Collateral calculation, From 12 January to launch date Corporate and Legal Aspects, Next developments); Trilateral Market Coupling (What is market coupling and what are the benefits?, Implementation of trilateral market coupling ('TLC') in France/Belgium/Netherlands, From Trilateral to Multilateral, Implementation of Trilateral Market Coupling (TLC) in France/Belgium/Netherlands, Decentralized market coupling mechanism, influence of import and export on area prices); Decentralized market coupling (2 countries Situations: unconstrained/constrained, Decentralized market coupling: 3 countries, High Level Properties of Market Coupling, Maximize flow until prices across link converge (or ATC limit reached), Power flows from low price area to high price area, Implementing a decentralized technical approach, Market Coupling Daily Process, Impact on Existing Exchange Arrangements, Implementing a decentralized contractual approach, TLC Project Process); From Trilateral to Multilateral (Geographic extensions, Towards an Open and Multilateral Market Coupling, Management of Interconnection Capacities, Interconnection Capacities: current situation, TSO Roles and Responsibilities in the TLC, Other Import/Export products on the

  17. New perspectives in the PAW/GIPAW approach: J(P-O-Si) coupling constants, antisymmetric parts of shift tensors and NQR predictions.

    Science.gov (United States)

    Bonhomme, Christian; Gervais, Christel; Coelho, Cristina; Pourpoint, Frédérique; Azaïs, Thierry; Bonhomme-Coury, Laure; Babonneau, Florence; Jacob, Guy; Ferrari, Maude; Canet, Daniel; Yates, Jonathan R; Pickard, Chris J; Joyce, Siân A; Mauri, Francesco; Massiot, Dominique

    2010-12-01

    In 2001, Pickard and Mauri implemented the gauge including projected augmented wave (GIPAW) protocol for first-principles calculations of NMR parameters using periodic boundary conditions (chemical shift anisotropy and electric field gradient tensors). In this paper, three potentially interesting perspectives in connection with PAW/GIPAW in solid-state NMR and pure nuclear quadrupole resonance (NQR) are presented: (i) the calculation of J coupling tensors in inorganic solids; (ii) the calculation of the antisymmetric part of chemical shift tensors and (iii) the prediction of (14)N and (35)Cl pure NQR resonances including dynamics. We believe that these topics should open new insights in the combination of GIPAW, NMR/NQR crystallography, temperature effects and dynamics. Points (i), (ii) and (iii) will be illustrated by selected examples: (i) chemical shift tensors and heteronuclear (2)J(P-O-Si) coupling constants in the case of silicophosphates and calcium phosphates [Si(5)O(PO(4))(6), SiP(2)O(7) polymorphs and α-Ca(PO(3))(2)]; (ii) antisymmetric chemical shift tensors in cyclopropene derivatives, C(3)X(4) (X = H, Cl, F) and (iii) (14)N and (35)Cl NQR predictions in the case of RDX (C(3)H(6)N(6)O(6)), β-HMX (C(4)H(8)N(8)O(8)), α-NTO (C(2)H(2)N(4)O(3)) and AlOPCl(6). RDX, β-HMX and α-NTO are explosive compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Treating sub-valence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach

    KAUST Repository

    Bistoni, Giovanni; Riplinger, Christoph; Minenkov, Yury; Cavallo, Luigi; Auer, Alexander A.; Neese, Frank

    2017-01-01

    The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is applied for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF3, CaF2, CuF, GaF3, YF3, AgF, InF3, HfF4 and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions sub-valence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core-core, core-valence and valence-valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.

  19. Treating sub-valence correlation effects in domain based pair natural orbital coupled cluster calculations: an out-of-the-box approach

    KAUST Repository

    Bistoni, Giovanni

    2017-06-12

    The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is applied for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF3, CaF2, CuF, GaF3, YF3, AgF, InF3, HfF4 and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions sub-valence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core-core, core-valence and valence-valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.

  20. Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach

    Science.gov (United States)

    Xia, Jun; Wang, Qiang; Zhang, Xiang; Wang, Rui; She, Dunxian

    2018-04-01

    The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model-groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP's operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.

  1. Dark coupling

    International Nuclear Information System (INIS)

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2009-01-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed

  2. GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome.

    Science.gov (United States)

    Zhang, Jian; Yang, Jianyi; Jang, Richard; Zhang, Yang

    2015-08-04

    Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Metabolomic approaches for orange origin discrimination by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Díaz, Ramon; Pozo, Oscar J; Sancho, Juan V; Hernández, Félix

    2014-08-15

    In this work, hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) coupled to ultra high performance liquid chromatography (UHPLC) has been used for biomarkers identification for correct authentication of Valencia (Spain) oranges. Differentiation from foreign Argentinean, Brazilian and South African oranges has been carried out using XCMS application and multivariate analysis to UHPLC-(Q)TOF MS data acquired in both, positive and negative ionisation modes. Several markers have been found and corroborated by analysing two seasons samples. A seasonal independent marker was found and its structure elucidated using accurate mass data and MS(E) fragmentation spectrum information. Empirical formula was searched in Reaxys database applying sub-structure filtering from the fragments obtained. Three possible structures were found and citrusin D, a compound present in sweet oranges, has been identified as the most plausible as it fits better with the product ion scan performed for this compound. As a result of data obtained in this work, citrusin D is suggested as a potential marker to distinguish the geographic origin of oranges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-summation based approach

    Science.gov (United States)

    Yao, Yuan; Capecelatro, Jesse

    2018-03-01

    We present a numerical study on inertial electrically charged particles suspended in a turbulent carrier phase. Fluid-particle interactions are accounted for in an Eulerian-Lagrangian (EL) framework and coupled to a Fourier-based Ewald summation method, referred to as the particle-particle-particle-mesh (P3M ) method, to accurately capture short- and long-range electrostatic forces in a tractable manner. The EL P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charge densities. Simulations of like- and oppositely charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. It is found that even in dilute suspensions, the short-range electric potential plays an important role in flows that admit preferential concentration. Suspensions of oppositely charged particles are observed to agglomerate in the form of chains and rings. Comparisons between the particle-mesh method typically employed in fluid-particle calculations and P3M are reported, in addition to one-point and two-point statistics to quantify the level of clustering as a function of Reynolds number, Stokes number, and nondimensional electric settling velocity.

  5. Tracing and quantifying lake water and groundwater fluxes in the area under mining dewatering pressure using coupled O and H stable isotope approach.

    Science.gov (United States)

    Lewicka-Szczebak, Dominika; Jędrysek, Mariusz-Orion

    2013-01-01

    Oxygen and hydrogen stable isotopic compositions of precipitation, lake water and groundwater were used to quantitatively asses the water budget related to water inflow and water loss in natural lakes, and mixing between lake water and aquifer groundwater in a mining area of the Lignite Mine Konin, central Poland. While the isotopic composition of precipitation showed large seasonal variations (δ(2)H from-140 to+13 ‰ and δ(18)O from-19.3 to+7.6 ‰), the lake waters were variously affected by evaporation (δ(2)H from-44 to-21 ‰ and δ(18)O from-5.2 to-1.7 ‰) and the groundwater showed varying contribution from mixing with surface water (δ(2)H from-75 to-39 ‰ and δ(18)O from-10.4 to-4.8 ‰). The lake water budget was estimated using a Craig-Gordon model and isotopic mass balance constraint, which enabled us to identify various water sources and to quantify inflow and outflow for each lake. Moreover, we documented that a variable recharge of lake water into the Tertiary aquifer was dependent on mining drainage intensity. A comparison of coupled δ(2)H-δ(18)O data with hydrogeological results indicated better precision of the δ(2)H-based calculations.

  6. Achieving simultaneous CO{sub 2} and H{sub 2}S conversion via a coupled solar-driven electrochemical approach on non-precious-metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Weiguang; Yu, Wei; Zong, Xu; Li, Can [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian (China); Wang, Hong; Wang, Xiaomei; Xu, Zhiqiang [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian (China); University of Chinese Academy of Sciences, Beijing (China)

    2018-03-19

    Carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S) are generally concomitant with methane (CH{sub 4}) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO{sub 2} and H{sub 2}S into value-added products is attractive; however it has not received enough attention. A solar-driven electrochemical process is demonstrated using graphene-encapsulated zinc oxide catalyst for CO{sub 2} reduction and graphene catalyst for H{sub 2}S oxidation mediated by EDTA-Fe{sup 2+}/EDTA-Fe{sup 3+} redox couples. The as-prepared solar-driven electrochemical system can realize the simultaneous conversion of CO{sub 2} and H{sub 2}S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Simulation of CO and NO emissions in a SI engine using a 0D coherent flame model coupled with a tabulated chemistry approach

    International Nuclear Information System (INIS)

    Bougrine, S.; Richard, S.; Michel, J.-B.; Veynante, D.

    2014-01-01

    Highlights: • A new 0D combustion model (CFM1D-TC) based on a tabulation approach is proposed. • Complex chemistry calculations are used to deduce composition and relaxation times. • NO and CO exponentially relax from a perturbed state to the equilibrium state. • The new model is implemented in an engine simulation software. • Validations are performed by comparison with a wide range of experimental data. - Abstract: Environmental issues stimulate the elaboration of new powertrain systems and fuels for transport as an essential priority to decrease air pollution and green house gases emissions. Developments ranging from architecture definition to engine control and calibration are today increasingly performed using complete vehicle simulators running close to real times. The challenge for engineers is therefore to develop models able to accurately reproduce the engine response without altering the CPU efficiency of the simulator. For this purpose, 0-dimensional models are commonly used to describe combustion processes in engine combustion chambers. This paper extends a 0-dimensional coherent flame model (CFM), called CFM1D, to incorporate chemical effects related to the fuel composition and thermodynamic conditions at low computational costs. Improvements are carried out integrating the NO relaxation approach (NORA) based on a priori homogeneous reactor computations and initially developed for 3D simulations to describe post-oxidation processes in the burnt gases. In this work, this method is extended to the modeling of CO production and oxidation leading to the CORA (CO Relaxation Approach) model. Both NO and CO reaction rates are therefore written as linear relaxations towards their equilibrium mass fraction values Y k eq (where k stands for NO or CO) within a characteristic time τ k . In this approach, Y k eq and τ k are tabulated as functions of equivalence ratio, fresh gases dilution rate by burnt gases, pressure and enthalpy. The resulting new

  8. Influence of a Thiolate Chemical Layer on GaAs (100 Biofunctionalization: An Original Approach Coupling Atomic Force Microscopy and Mass Spectrometry Methods

    Directory of Open Access Journals (Sweden)

    Alex Bienaime

    2013-10-01

    Full Text Available Widely used in microelectronics and optoelectronics; Gallium Arsenide (GaAs is a III-V crystal with several interesting properties for microsystem and biosensor applications. Among these; its piezoelectric properties and the ability to directly biofunctionalize the bare surface, offer an opportunity to combine a highly sensitive transducer with a specific bio-interface; which are the two essential parts of a biosensor. To optimize the biorecognition part; it is necessary to control protein coverage and the binding affinity of the protein layer on the GaAs surface. In this paper; we investigate the potential of a specific chemical interface composed of thiolate molecules with different chain lengths; possessing hydroxyl (MUDO; for 11-mercapto-1-undecanol (HS(CH211OH or carboxyl (MHDA; for mercaptohexadecanoic acid (HS(CH215CO2H end groups; to reconstitute a dense and homogeneous albumin (Rat Serum Albumin; RSA protein layer on the GaAs (100 surface. The protein monolayer formation and the covalent binding existing between RSA proteins and carboxyl end groups were characterized by atomic force microscopy (AFM analysis. Characterization in terms of topography; protein layer thickness and stability lead us to propose the 10% MHDA/MUDO interface as the optimal chemical layer to efficiently graft proteins. This analysis was coupled with in situ MALDI-TOF mass spectrometry measurements; which proved the presence of a dense and uniform grafted protein layer on the 10% MHDA/MUDO interface. We show in this study that a critical number of carboxylic docking sites (10% is required to obtain homogeneous and dense protein coverage on GaAs. Such a protein bio-interface is of fundamental importance to ensure a highly specific and sensitive biosensor.

  9. Direct and seamless coupling of TiO{sub 2} nanotube photonic crystal to dye-sensitized solar cell: a single-step approach

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Cho Tung; Zhou, Limin [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (China); Huang, Haitao; Xie, Keyu; Wang, Yu. [Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University, Hung Hom, Kowloon (China); Feng, Tianhua; Li, Jensen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (China); Tam, Wing Yim [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (China)

    2011-12-15

    A TiO{sub 2} nanotube layer with a periodic structure is used as a photonic crystal to greatly enhance light harvesting in TiO{sub 2} nanotube-based dye-sensitized solar cells. Such a tube-on-tube structure fabricated by a single-step approach facilitates good physical contact, easy electrolyte infiltration, and efficient charge transport. An increase of over 50% in power conversion efficiency is obtained in comparison to reference cells without a photonic crystal layer (under similar total thickness and dye loading). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Institut d' Astrophysique de Paris, Université Pierre et Marie Curie, CNRS-UMR 7095, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2014-12-01

    The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.

  11. Comparing two metabolic profiling approaches (liquid chromatography and gas chromatography coupled to mass spectrometry) for extra-virgin olive oil phenolic compounds analysis: A botanical classification perspective.

    Science.gov (United States)

    Bajoub, Aadil; Pacchiarotta, Tiziana; Hurtado-Fernández, Elena; Olmo-García, Lucía; García-Villalba, Rocío; Fernández-Gutiérrez, Alberto; Mayboroda, Oleg A; Carrasco-Pancorbo, Alegría

    2016-01-08

    Over the last decades, the phenolic compounds from virgin olive oil (VOO) have become the subject of intensive research because of their biological activities and their influence on some of the most relevant attributes of this interesting matrix. Developing metabolic profiling approaches to determine them in monovarietal virgin olive oils could help to gain a deeper insight into olive oil phenolic compounds composition as well as to promote their use for botanical origin tracing purposes. To this end, two approaches were comparatively investigated (LC-ESI-TOF MS and GC-APCI-TOF MS) to evaluate their capacity to properly classify 25 olive oil samples belonging to five different varieties (Arbequina, Cornicabra, Hojiblanca, Frantoio and Picual), using the entire chromatographic phenolic profiles combined to chemometrics (principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA)). The application of PCA to LC-MS and GC-MS data showed the natural clustering of the samples, seeing that 2 varieties were dominating the models (Arbequina and Frantoio), suppressing any possible discrimination among the other cultivars. Afterwards, PLS-DA was used to build four different efficient predictive models for varietal classification of the samples under study. The varietal markers pointed out by each platform were compared. In general, with the exception of one GC-MS model, all exhibited proper quality parameters. The models constructed by using the LC-MS data demonstrated superior classification ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Thermomechanical Transport Approach and Application in Soil-Water System of Polluted Mining Areas considering the Three-Phase Coupling

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available The thermomechanical transport approach includes the process of diffusing or the condition of being diffused, absorption/desorption, swell/shrink, equilibrium/nonequilibrium, and thermomechanical transport of contaminant in three phases of polluted mining soil which are discussed. The thermomechanical transport model of the contaminants transport in polluted soil is established, and its basic equations are given. Based on that, the distribution regularities of the contaminant seepage in water-soil system are discussed in detail and the sensitivities of parameters are analyzed. The study shows that the parameter has important influence on the contamination distribution and transportation in polluted soil-water system. The influence degree is also related to the action of seepage force directly.

  13. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2017-12-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  14. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2018-05-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  15. Adjoint acceleration of Monte Carlo simulations using TORT/MCNP coupling approach: A case study on the shielding improvement for the cyclotron room of the Buddhist Tzu Chi General Hospital

    International Nuclear Information System (INIS)

    Sheu, R. J.; Sheu, R. D.; Jiang, S. H.; Kao, C. H.

    2005-01-01

    Full-scale Monte Carlo simulations of the cyclotron room of the Buddhist Tzu Chi General Hospital were carried out to improve the original inadequate maze design. Variance reduction techniques are indispensable in this study to facilitate the simulations for testing a variety of configurations of shielding modification. The TORT/MCNP manual coupling approach based on the Consistent Adjoint Driven Importance Sampling (CADIS) methodology has been used throughout this study. The CADIS utilises the source and transport biasing in a consistent manner. With this method, the computational efficiency was increased significantly by more than two orders of magnitude and the statistical convergence was also improved compared to the unbiased Monte Carlo run. This paper describes the shielding problem encountered, the procedure for coupling the TORT and MCNP codes to accelerate the calculations and the calculation results for the original and improved shielding designs. In order to verify the calculation results and seek additional accelerations, sensitivity studies on the space-dependent and energy-dependent parameters were also conducted. (authors)

  16. Engineered analogues of cement/clay interactions in the Tournemire experimental platform (France): a coupled mineralogical and geochemical approach to track tiny disturbances

    International Nuclear Information System (INIS)

    Techer, Isabelle; Michel, Pauline; Tinseau, Elisabeth; Devol-Brown, Isabelle; Bartier, Daniele; Boulvais, Philippe; Suchorski, Krzysztof

    2012-01-01

    A scientific program has been especially established to better understand the high-pH fluids / clay interactions through a mineralogical and geochemical study of three engineered analogues available by means of the IRSN Tournemire experimental platform. This platform, located in Aveyron (France), is based on a tunnel, excavated between 1882 and 1886 through Domerian marls and Toarcian argillites, and is dedicated since 1990 to multidisciplinary research programs. Different contexts presenting the argillite formation in contact with a cementitious material are encountered and are linked to its historical construction and scientific evolution. These rare examples of cement / clay contacts maintained over time scales ranging from a few years to a hundred of years are studied as engineered analogues of a deep geological storage. This approach is moreover completed by experiments (diffusion and advection) performed in laboratory over shorter time and smaller space scales in order to discriminate and control the major parameters involved in such interactions (details are given in another paper). This paper presents the scientific program developed on the three engineered analogues: tunnel walls recovered by lime after excavation; four concreted exploration boreholes; two experimental research galleries excavated in 2003

  17. Surrogate analyte approach for quantitation of endogenous NAD(+) in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Liu, Liling; Cui, Zhiyi; Deng, Yuzhong; Dean, Brian; Hop, Cornelis E C A; Liang, Xiaorong

    2016-02-01

    A high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of NAD(+) in human whole blood using a surrogate analyte approach was developed and validated. Human whole blood was acidified using 0.5N perchloric acid at a ratio of 1:3 (v:v, blood:perchloric acid) during sample collection. 25μL of acidified blood was extracted using a protein precipitation method and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization mass spectrometry. (13)C5-NAD(+) was used as the surrogate analyte for authentic analyte, NAD(+). The standard curve ranging from 0.250 to 25.0μg/mL in acidified human blood for (13)C5-NAD(+) was fitted to a 1/x(2) weighted linear regression model. The LC-MS/MS response between surrogate analyte and authentic analyte at the same concentration was obtained before and after the batch run. This response factor was not applied when determining the NAD(+) concentration from the (13)C5-NAD(+) standard curve since the percent difference was less than 5%. The precision and accuracy of the LC-MS/MS assay based on the five analytical QC levels were well within the acceptance criteria from both FDA and EMA guidance for bioanalytical method validation. Average extraction recovery of (13)C5-NAD(+) was 94.6% across the curve range. Matrix factor was 0.99 for both high and low QC indicating minimal ion suppression or enhancement. The validated assay was used to measure the baseline level of NAD(+) in 29 male and 21 female human subjects. This assay was also used to study the circadian effect of endogenous level of NAD(+) in 10 human subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Integrated Approach to Inform the New York City Water Supply System Coupling SAR Remote Sensing Observations and the SWAT Watershed Model

    Science.gov (United States)

    Tesser, D.; Hoang, L.; McDonald, K. C.

    2017-12-01

    Efforts to improve municipal water supply systems increasingly rely on an ability to elucidate variables that drive hydrologic dynamics within large watersheds. However, fundamental model variables such as precipitation, soil moisture, evapotranspiration, and soil freeze/thaw state remain difficult to measure empirically across large, heterogeneous watersheds. Satellite remote sensing presents a method to validate these spatially and temporally dynamic variables as well as better inform the watershed models that monitor the water supply for many of the planet's most populous urban centers. PALSAR 2 L-band, Sentinel 1 C-band, and SMAP L-band scenes covering the Cannonsville branch of the New York City (NYC) water supply watershed were obtained for the period of March 2015 - October 2017. The SAR data provides information on soil moisture, free/thaw state, seasonal surface inundation, and variable source areas within the study site. Integrating the remote sensing products with watershed model outputs and ground survey data improves the representation of related processes in the Soil and Water Assessment Tool (SWAT) utilized to monitor the NYC water supply. PALSAR 2 supports accurate mapping of the extent of variable source areas while Sentinel 1 presents a method to model the timing and magnitude of snowmelt runoff events. SMAP Active Radar soil moisture product directly validates SWAT outputs at the subbasin level. This blended approach verifies the distribution of soil wetness classes within the watershed that delineate Hydrologic Response Units (HRUs) in the modified SWAT-Hillslope. The research expands the ability to model the NYC water supply source beyond a subset of the watershed while also providing high resolution information across a larger spatial scale. The global availability of these remote sensing products provides a method to capture fundamental hydrology variables in regions where current modeling efforts and in situ data remain limited.

  19. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be

  20. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic

  1. A new, fully coupled, reaction-transport-mechanical approach to modeling the evolution of natural gas reservoirs in the Piceance Basin

    Science.gov (United States)

    Payne, Dorothy Frances

    The Piceance Basin is highly compartmented, and predicting the location and characteristics of producible reservoirs is difficult. Gas generation is an important consideration in quality and size of natural gas reserves, but it also may contribute to fracturing, and hence the creation of the reservoirs in which it is contained. The purpose of this dissertation is to use numerical modeling to study the evolution of these unconventional natural gas reservoirs in the Piceance Basin. In order to characterize the scale and structure of compartmentation in the Piceance Basin, a set of in-situ fluid pressure data were interpolated across the basin and the resulting fluid pressure distribution was analyzed. Results show complex basin- and field-scale compartmentation in the Upper Cretaceous units. There are no simple correlations between compartment location and such factors as stratigraphy, basin structure, or coal thickness and maturity. To account for gas generation in the Piceance Basin, a new chemical kinetic approach to modeling lignin maturation is developed, based primarily on structural transformations of the lignin molecule observed in naturally matured samples. This model calculates mole fractions of all species, functional group fractions, and elemental weight percents. Results show reasonable prediction of maturities at other sites in the Piceance Basin for vitrinite reflectance up to about 1.7 %Ro. The flexible design of the model allows it to be modified to account for compositionally heterogeneous source material. To evaluate the role of gas generation in this dynamical system, one-dimensional simulations have been performed using the CIRFB reaction-transport-mechanical (RTM) simulator. CIRFB accounts for compaction, fracturing, hydrocarbon generation, and multi-phase flow. These results suggest that by contributing to overpressure, gas generation has two important implications: (1) gas saturation in one unit affects fracturing in other units, thereby

  2. Analytical solutions of coupled-mode equations for microring ...

    Indian Academy of Sciences (India)

    equivalent to waveguide and single microring coupled system. The 3 × 3 coupled system is equivalent to waveguide and double microring coupled system. In this paper, we adopt a novel approach for obtaining coupled-mode equations for linearly distributed and circularly distributed multiwaveguide systems with different ...

  3. Optimization of mixed quantum-classical dynamics: Time-derivative coupling terms and selected couplings

    International Nuclear Information System (INIS)

    Pittner, Jiri; Lischka, Hans; Barbatti, Mario

    2009-01-01

    The usage of time-derivative non-adiabatic coupling terms and partially coupled time-dependent equations are investigated to accelerate non-adiabatic dynamics simulations at multireference configuration interaction (MRCI) level. The quality of the results and computational costs are compared against non-adiabatic benchmark dynamics calculations using non-adiabatic coupling vectors. In the comparison between the time-derivative couplings and coupling vectors, deviations in the adiabatic population of individual trajectories were observed in regions of rapid variation of the coupling terms. They, however, affected the average adiabatic population to only about 5%. For small multiconfiguration spaces, dynamics with time-derivative couplings are significantly faster than those with coupling vectors. This relation inverts for larger configuration spaces. The use of the partially coupled equations approach speeds up the simulations significantly while keeping the deviations in the population below few percent. Imidazole and the methaniminium cation are used as test examples

  4. Couple specialization in multiple equilibria

    NARCIS (Netherlands)

    Esping-Andersen, G.; Boertien, D.; Bonke, J.; Gracia, P.

    2013-01-01

    We address the issue of men’s lagged adaptation to the ongoing revolution of women’s roles. This article proposes a multiple equilibrium approach and shows how modes of couple specialization cluster around qualitatively distinct logics. We identify a traditional, egalitarian, and ‘unstable’

  5. Belpex and trilateral market coupling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-01-15

    This document describes the operation of Belpex, the Belgian power transmission spot market, and its linking with the French (Powernext) and Dutch (APX) auction-style day-ahead spot markets. A last part deals with the extension of this trilateral market to other European countries. Content: Belpex day-ahead market (DAM) (Goals of the DAM: Provide consumers with a wider choice of electrical energy sources, Enable the ARP's to optimize their portfolio in terms of imbalance costs, Reduce trade and credit risks for market players compared with the risks involved in concluding bilateral contracts, Provide economic players with a transparent price benchmark, Stimulate the opening of the electricity market); Market model Product (description, Contracts, Collateral calculation, From 12 January to launch date Corporate and Legal Aspects, Next developments); Trilateral Market Coupling (What is market coupling and what are the benefits?, Implementation of trilateral market coupling ('TLC') in France/Belgium/Netherlands, From Trilateral to Multilateral, Implementation of Trilateral Market Coupling (TLC) in France/Belgium/Netherlands, Decentralized market coupling mechanism, influence of import and export on area prices); Decentralized market coupling (2 countries Situations: unconstrained/constrained, Decentralized market coupling: 3 countries, High Level Properties of Market Coupling, Maximize flow until prices across link converge (or ATC limit reached), Power flows from low price area to high price area, Implementing a decentralized technical approach, Market Coupling Daily Process, Impact on Existing Exchange Arrangements, Implementing a decentralized contractual approach, TLC Project Process); From Trilateral to Multilateral (Geographic extensions, Towards an Open and Multilateral Market Coupling, Management of Interconnection Capacities, Interconnection Capacities: current situation, TSO Roles and Responsibilities in the TLC, Other Import/Export products

  6. HURRICANES' HYDROLOGICAL, ECOLOGICAL EFFECTS LINGER IN MAJOR U.S. ESTUARY. (R826938)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Hydrology, ecology, and management of riparian areas in the Madrean Archipelago

    Science.gov (United States)

    Daniel G. Neary; Peter F. Ffolliott; Leonard F. DeBano

    2005-01-01

    Riparian areas in the Madrean Archipelago have historically provided water necessary for people, livestock, and agricultural crops. European settlers were attracted to these areas in the 1880s, where they enjoyed shade and forage for themselves and their livestock and existed on the readily available wildlife and fish. Trees growing along stream banks were harvested...

  8. Two Kinds of New Lie Algebras for Producing Integrable Couplings

    International Nuclear Information System (INIS)

    Yan Qingyou; Qi Jianxun

    2006-01-01

    Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integrable systems may be obtained by the approach.

  9. Lie Algebras for Constructing Nonlinear Integrable Couplings

    International Nuclear Information System (INIS)

    Zhang Yufeng

    2011-01-01

    Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti-Johnson (GJ) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their Hamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations. (general)

  10. Numerical Approaches to Thermally Coupled Perfect Plasticity

    Czech Academy of Sciences Publication Activity Database

    Bartels, S.; Roubíček, Tomáš

    2013-01-01

    Roč. 29, č. 6 (2013), s. 1837-1863 ISSN 0749-159X R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : thermodynamics * Prandtl-Reuss plasticity * Kelvin-Voigt rheology Subject RIV: BA - General Mathematics Impact factor: 1.057, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/num.21779/full

  11. Path coupling and aggregate path coupling

    CERN Document Server

    Kovchegov, Yevgeniy

    2018-01-01

    This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.

  12. Intermarried Couples, gender positions and mental well being

    DEFF Research Database (Denmark)

    Singla, Rashmi

    ‘North’ (Denmark). Despite increase in numbers, intermarried couples are still almost invisible as a statistical category and in psychosocial services in the Danish context. The theoretical framework combines intersectionality approach, with life course perspective and the everyday life practices....... Implications for relevant mental health promotion and counselling for distressed couples are also included. Keywords: intermarried couples, visible ethnically different couples. intersectionality approach, gender positions, structural barriers, health promotion...

  13. Demonstration of Coupled Tiamat Single Assembly Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Novascone, Stephen R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gardner, Russell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pawlowski, R. P. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Toth, Alex [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clarno, Kevin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stimpson, Shane G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    This report corresponds to milestone L3:PHI.PCI.P15.03, which was originally intended to investigate the time discretization approaches with the newly developed fully coupled Tiamat capability, targeting single assembly problems.

  14. A Metabolomic Approach Applied to a Liquid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry Method (HPLC-ESI-HRMS/MS): Towards the Comprehensive Evaluation of the Chemical Composition of Cannabis Medicinal Extracts.

    Science.gov (United States)

    Citti, Cinzia; Battisti, Umberto Maria; Braghiroli, Daniela; Ciccarella, Giuseppe; Schmid, Martin; Vandelli, Maria Angela; Cannazza, Giuseppe

    2018-03-01

    Cannabis sativa L. is a powerful medicinal plant and its use has recently increased for the treatment of several pathologies. Nonetheless, side effects, like dizziness and hallucinations, and long-term effects concerning memory and cognition, can occur. Most alarming is the lack of a standardised procedure to extract medicinal cannabis. Indeed, each galenical preparation has an unknown chemical composition in terms of cannabinoids and other active principles that depends on the extraction procedure. This study aims to highlight the main differences in the chemical composition of Bediol® extracts when the extraction is carried out with either ethyl alcohol or olive oil for various times (0, 60, 120 and 180 min for ethyl alcohol, and 0, 60, 90 and 120 min for olive oil). Cannabis medicinal extracts (CMEs) were analysed by liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS) using an untargeted metabolomics approach. The data sets were processed by unsupervised multivariate analysis. Our results suggested that the main difference lies in the ratio of acid to decarboxylated cannabinoids, which dramatically influences the pharmacological activity of CMEs. Minor cannabinoids, alkaloids, and amino acids contributing to this difference are also discussed. The main cannabinoids were quantified in each extract applying a recently validated LC-MS and LC-UV method. Notwithstanding the use of a standardised starting plant material, great changes are caused by different extraction procedures. The metabolomics approach is a useful tool for the evaluation of the chemical composition of cannabis extracts. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Comprehensive quality evaluation of medical Cannabis sativa L. inflorescence and macerated oils based on HS-SPME coupled to GC-MS and LC-HRMS (q-exactive orbitrap®) approach.

    Science.gov (United States)

    Calvi, Lorenzo; Pentimalli, Daniela; Panseri, Sara; Giupponi, Luca; Gelmini, Fabrizio; Beretta, Giangiacomo; Vitali, Davide; Bruno, Massimo; Zilio, Emanuela; Pavlovic, Radmila; Giorgi, Annamaria

    2018-02-20

    There are at least 554 identified compounds in C. sativa L., among them 113 phytocannabinoids and 120 terpenes. Phytocomplex composition differences between the pharmaceutical properties of different medical cannabis chemotype have been attributed to strict interactions, defined as 'entourage effect', between cannabinoids and terpenes as a result of synergic action. The chemical complexity of its bioactive constituents highlight the need for standardised and well-defined analytical approaches able to characterise the plant chemotype, the herbal drug quality as well as to monitor the quality of pharmaceutical cannabis extracts and preparations. Hence, in the first part of this study an analytical procedures involving the combination of headspace-solid-phase microextraction (HS-SPME) coupled to GC-MS and High Resolution Mass-Spectrometry LC-HRMS (Orbitrap ® ) were set up, validated and applied for the in-depth profiling and fingerprinting of cannabinoids and terpenes in two authorised medical grade varieties of Cannabis sativa L. inflorescences (Bedrocan ® and Bediol ® ) and in obtained macerated oils. To better understand the trend of all volatile compounds and cannabinoids during oil storage a new procedure for cannabis macerated oil preparation without any thermal step was tested and compared with the existing conventional methods to assess the potentially detrimental effect of heating on overall product quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. TrueNTH sexual recovery study protocol: a multi-institutional collaborative approach to developing and testing a web-based intervention for couples coping with the side-effects of prostate cancer treatment in a randomized controlled trial.

    Science.gov (United States)

    Wittmann, D; Mehta, A; Northouse, L; Dunn, R; Braun, T; Duby, A; An, L; Arab, L; Bangs, R; Bober, S; Brandon, J; Coward, M; Dunn, M; Galbraith, M; Garcia, M; Giblin, J; Glode, M; Koontz, B; Lowe, A; Mitchell, S; Mulhall, J; Nelson, C; Paich, K; Saigal, C; Skolarus, T; Stanford, J; Walsh, T; Pollack, C E

    2017-10-02

    Over half of men who receive treatment for prostate suffer from a range of sexual problems that affect negatively their sexual health, sexual intimacy with their partners and their quality of life. In clinical practice, however, care for the sexual side effects of treatment is often suboptimal or unavailable. The goal of the current study is to test a web-based intervention to support the recovery of sexual intimacy of prostate cancer survivors and their partners after treatment. The study team developed an interactive, web-based intervention, tailored to type of treatment received, relationship status (partnered/non-partnered) and sexual orientation. It consists of 10 modules, six follow the trajectory of the illness and four are theme based. They address sexual side effects, rehabilitation, psychological impacts and coaching for self-efficacy. Each includes a video to engage participants, psychoeducation and activities completed by participants on the web. Tailored strategies for identified concerns are sent by email after each module. Six of these modules will be tested in a randomized controlled trial and compared to usual care. Men with localized prostate cancer with partners will be recruited from five academic medical centers. These couples (N = 140) will be assessed prior to treatment, then 3 months and 6 months after treatment. The primary outcome will be the survivors' and partners' Global Satisfaction with Sex Life, assessed by a Patient Reported Outcome Measure Information Systems (PROMIS) measure. Secondary outcomes will include interest in sex, sexual activity, use of sexual aids, dyadic coping, knowledge about sexual recovery, grief about the loss of sexual function, and quality of life. The impact of the intervention on the couple will be assessed using the Actor-Partner Interaction Model, a mixed-effects linear regression model able to estimate both the association of partner characteristics with partner and patient outcomes and the association

  17. Measuring Relative Coupling Strength in Circadian Systems.

    Science.gov (United States)

    Schmal, Christoph; Herzog, Erik D; Herzel, Hanspeter

    2018-02-01

    Modern imaging techniques allow the monitoring of circadian rhythms of single cells. Coupling between these single cellular circadian oscillators can generate coherent periodic signals on the tissue level that subsequently orchestrate physiological outputs. The strength of coupling in such systems of oscillators is often unclear. In particular, effects on coupling strength by varying cell densities, by knockouts, and by inhibitor applications are debated. In this study, we suggest to quantify the relative coupling strength via analyzing period, phase, and amplitude distributions in ensembles of individual circadian oscillators. Simulations of different oscillator networks show that period and phase distributions become narrower with increasing coupling strength. Moreover, amplitudes can increase due to resonance effects. Variances of periods and phases decay monotonically with coupling strength, and can serve therefore as measures of relative coupling strength. Our theoretical predictions are confirmed by studying recently published experimental data from PERIOD2 expression in slices of the suprachiasmatic nucleus during and after the application of tetrodotoxin (TTX). On analyzing the corresponding period, phase, and amplitude distributions, we can show that treatment with TTX can be associated with a reduced coupling strength in the system of coupled oscillators. Analysis of an oscillator network derived directly from the data confirms our conclusions. We suggest that our approach is also applicable to quantify coupling in fibroblast cultures and hepatocyte networks, and for social synchronization of circadian rhythmicity in rodents, flies, and bees.

  18. Coupled Semi-Supervised Learning

    Science.gov (United States)

    2010-05-01

    Additionally, specify the expected category of each relation argument to enable type-checking. Subsystem components and the KI can benefit from methods that...confirm that our coupled semi-supervised learning approaches can scale to hun- dreds of predicates and can benefit from using a diverse set of...organization yes California Institute of Technology vegetable food yes carrots vehicle item yes airplanes vertebrate animal yes videoGame product yes

  19. Hydromechanical coupling in geologic processes

    Science.gov (United States)

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  20. Toward realization of 'mix-and-use' approach in ⁶⁸Ga radiopharmacy: preparation, evaluation and preliminary clinical utilization of ⁶⁸Ga-labeled NODAGA-coupled RGD peptide derivative.

    Science.gov (United States)

    Chakraborty, Sudipta; Chakravarty, Rubel; Vatsa, Rakhee; Bhusari, Priya; Sarma, H D; Shukla, Jaya; Mittal, B R; Dash, Ashutosh

    2016-01-01

    The present article demonstrates a 'mix-and-use' approach for radiolabeling RGD peptide derivative with (68)Ga, which is easily adaptable in hospital radiopharmacy practice. The radiotracer thus formulated was successfully used for positron emission tomography (PET) imaging of breast cancer in human patients. The conditions for radiolabeling NODAGA-coupled dimeric cyclic RGD peptide derivative [NODAGA-(RGD)2] with (68)Ga were optimized using (68)Ga obtained from a (68)Ge/(68)Ga generator developed in-house with CeO2-PAN composite sorbent as well as from a commercial (68)Ge/(68)Ga generator obtained from ITG, Germany. Preclinical studies were carried out in C57BL/6 mice bearing melanoma tumors. The radiotracer was prepared in a hospital radiopharmacy using (68)Ga obtained from ITG generator and used for monitoring breast cancer patients by positron emission tomography (PET) imaging. (68)Ga-NODAGA-(RGD)2 could be prepared with high radiolabeling yield (>98%) and specific activity (~50 GBq/μmol) within 10 min at room temperature by mixing (68)Ga with the solution of the peptide conjugate. In vivo biodistribution studies showed significant uptake (5.24±0.39% ID/g) in melanoma tumor at 30 min post-injection, with high tumor-to-background contrast. The integrin αvβ3 specificity of the tracer was corroborated by blocking study. Preliminary clinical studies in locally advanced breast cancer (LABC) patients indicated specifically high tumor uptake (SUVmax 10-15) with good contrast. This is one of the very few reports which presents preliminary clinical data on use of (68)Ga-NODAGA-(RGD)2 and the developed 'mix-and-use' holds tremendous prospect in clinical PET imaging using (68)Ga. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ultra-high performance liquid chromatography coupled with quadrupole/time of flight mass spectrometry based chemical profiling approach for the holistic quality control of complex Kang-Jing formula preparations.

    Science.gov (United States)

    Yang, Xiao-Huan; Cheng, Xiao-Lan; Qin, Bing; Cai, Zhuo-Ya; Cai, Xiong; Liu, Shao; Wang, Qi; Qin, Yong

    2016-05-30

    The Kang-Jing (KJ) formula is a compound preparation made from 12 kinds of herbs. So far, four different methods (M1-M4) have been documented for KJ preparation, but the influence of preparation methods on the holistic quality of KJ have remained unknown. In this study, a strategy was proposed to investigate the influence of different preparation methods on the holistic quality of KJ using ultra-high performance liquid chromatography coupled with quadrupole/time of flight mass spectrometry (UHPLC-QTOF-MS/MS) based chemical profiling. A total of 101 compounds mainly belonging to flavonoids, tanshinones, monoterpene glycosides, triterpenoid saponins, alkaloids, phenolic acids and volatile oils, were identified. Among these compounds, glaucine was detected only in M3/M4 samples, while two dehydrocorydaline isomers merely detected in M2/M3/M4 samples. Tetrahydrocolumbamine, ethylic lithospermic acid, salvianolic acid E and rosmarimic acid were only detected in M1/M3/M4 samples. In the subsequent quantitative analysis, 12 major compounds were determined by UHPLC-MS/MS. The proposed method was validated with respect to linearity, accuracy, precision and recovery. It was found that the contents of marker compounds varied significantly in samples prepared by different methods. These results demonstrated that preparation method does significantly affect the holistic quality of KJ. UHPLC-QTOF-MS/MS based chemical profiling approach is efficient and reliable for comprehensive quality evaluation of KJ. Collectively, this study provide the chemical evidence for revealing the material basis of KJ, and establish a simple and accurate chemical profiling method for its quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. An approach for the assessment of the statistical aspects of the SEA coupling loss factors and the vibrational energy transmission in complex aircraft structures: Experimental investigation and methods benchmark

    Science.gov (United States)

    Bouhaj, M.; von Estorff, O.; Peiffer, A.

    2017-09-01

    In the application of Statistical Energy Analysis "SEA" to complex assembled structures, a purely predictive model often exhibits errors. These errors are mainly due to a lack of accurate modelling of the power transmission mechanism described through the Coupling Loss Factors (CLF). Experimental SEA (ESEA) is practically used by the automotive and aerospace industry to verify and update the model or to derive the CLFs for use in an SEA predictive model when analytical estimates cannot be made. This work is particularly motivated by the lack of procedures that allow an estimate to be made of the variance and confidence intervals of the statistical quantities when using the ESEA technique. The aim of this paper is to introduce procedures enabling a statistical description of measured power input, vibration energies and the derived SEA parameters. Particular emphasis is placed on the identification of structural CLFs of complex built-up structures comparing different methods. By adopting a Stochastic Energy Model (SEM), the ensemble average in ESEA is also addressed. For this purpose, expressions are obtained to randomly perturb the energy matrix elements and generate individual samples for the Monte Carlo (MC) technique applied to derive the ensemble averaged CLF. From results of ESEA tests conducted on an aircraft fuselage section, the SEM approach provides a better performance of estimated CLFs compared to classical matrix inversion methods. The expected range of CLF values and the synthesized energy are used as quality criteria of the matrix inversion, allowing to assess critical SEA subsystems, which might require a more refined statistical description of the excitation and the response fields. Moreover, the impact of the variance of the normalized vibration energy on uncertainty of the derived CLFs is outlined.

  3. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  4. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    Science.gov (United States)

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  5. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding

    International Nuclear Information System (INIS)

    Krause, Katharina; Klopper, Wim

    2016-01-01

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian

  6. L’aggressività della coppia criminale: la strage di Erba analizzata nell’ottica della coscienza intersoggettiva di D. Stern/L'agressivité des couples criminels : le massacre de Erba analysé par l'approche de la conscience intersubjective de Daniel Stern/The agressiveness of the criminal couples: the analysed massacre of Erba using the approach of the intersubjective conscience of Daniel Stern

    Directory of Open Access Journals (Sweden)

    Pasquale Caponnetto

    2013-12-01

    Stern. A criminal couple is an uncommon phenomenon because the majority of criminals commit crime alone or they involve other people only by chance. Nevertheless, literature tells about a series of criminal couples who committed different types of crimes (homicide included. Some of them kill for money, some others because of hatred, love, revenge or perversion. Bonnie and Clyde, Olindo and Rosa, Erika and Omar are some examples of the phenomenon of “crime in a couple”. These are situations of “madness shared by two” (folie à deux, deprived of any romantic meaning and materialised in something horrifying and uncontrolleable. In this article, we are going to analyse the criminal couple presented by the authors of the massacre of Erba (Northern Italy. Our aim is to examine this couple using the approach of the intersubjective conscience of Daniel Stern.

  7. Conversation, coupling and complexity

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Abney, Drew; Bahrami, Bahador

    We investigate the linguistic co-construction of interpersonal synergies. By applying a measure of coupling between complex systems to an experimentally elicited corpus of joint decision dialogues, we show that interlocutors’ linguistic behavior displays increasing signature of multi-scale coupling......, known as complexity matching, over the course of interaction. Furthermore, we show that stronger coupling corresponds with more effective interaction, as measured by collective task performance....

  8. Equine Assisted Couples Therapy: An Exploratory Study

    OpenAIRE

    Ham, Taylor Marie

    2013-01-01

    Equine assisted psychotherapy (EAP) is an emerging experiential methodologythat has recently gained recognition as a method for addressing a range of presentingproblems for a wide variety of client populations. Couples therapy is one area that thepractice of equine assisted psychotherapy has recently gained traction. This studydescribes the practice of equine assisted couples therapy in terms of practitionercharacteristics, approach to treatment, therapeutic goals and outcomes. Mental healthp...

  9. Coupling Integrable Couplings of an Equation Hierarchy

    International Nuclear Information System (INIS)

    Wang Hui; Xia Tie-Cheng

    2013-01-01

    Based on a kind of Lie algebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy. (general)

  10. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  11. EPR of exchange coupled systems

    CERN Document Server

    Bencini, Alessandro

    2012-01-01

    From chemistry to solid state physics to biology, the applications of Electron Paramagnetic Resonance (EPR) are relevant to many areas. This unified treatment is based on the spin Hamiltonian approach and makes extensive use of irreducible tensor techniques to analyze systems in which two or more spins are magnetically coupled. This edition contains a new Introduction by coauthor Dante Gatteschi, a pioneer and scholar of molecular magnetism.The first two chapters review the foundations of exchange interactions, followed by examinations of the spectra of pairs and clusters, relaxation in oligon

  12. A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of unprocessed Angelica sinensis and its 4 kinds of processed products.

    Science.gov (United States)

    Ji, Peng; Wei, Yanming; Hua, Yongli; Zhang, Xiaosong; Yao, Wanling; Ma, Qi; Yuan, Ziwen; Wen, Yanqiao; Yang, Chaoxue

    2018-01-30

    Angelica sinensis (AS), root of Angelica sinensis (Oliv.) Diels, an important kind of Chinese traditional herbal medicine, has been used for women to enrich the blood for thousands of years. It is mainly distributed in Gansu province of China. According to Traditional Chinese medicine usage, unprocessed AS (UAS) and its 4 kinds of processed products (ASs) are all used to treat different diseases or syndromes. The difference among the enriching-blood effects of ASs is unclear. And their exact mechanisms of enriching the blood are not fully understood. In this study, our aim is to compare the enriching-blood effect and explain the related mechanism of ASs, to lay the foundation for the blood deficiency diagnosis and the rational use of ASs in the clinic. ASs were used to intervene the blood deficiency syndrome model mice induced by acetyl phenylhydrazine (APH) and cyclophosphamide (CTX). A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of ASs was established. The blood routine examination, ATPase, glucose-6-phosphate dehydrogenase, methemoglobin, glutathion peroxidase, glutathione reductase, and erythropoietin were measured. Two biofluids (plasma and urine) obtained from mice were analyzed with GC-MS. Distinct changes in metabolite patterns of the two biofluids after mice were induced by APH and CTX, and mice were intervened with ASs were analyzed using partial least squares-discriminant analysis. Potential biomarkers were found using a novel method including variable importance in the projection (VIP) >1.0, volcano plot analysis, and significance analysis of microarray. The results of hematological, biochemical parameters and the integrated metabolomics all showed the blood deficiency syndrome model was built successfully, ASs exhibited different degree of enriching-blood effect, and AS pached with alcohol (AAS) exhibited the best enriching-blood effect. 16 metabolites in

  13. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    Science.gov (United States)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  14. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  15. Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.

    Science.gov (United States)

    Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M

    2015-06-05

    We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.

  16. Coupling in the Tevatron

    International Nuclear Information System (INIS)

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-β quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note

  17. Coupling effect on the Berry phase

    Directory of Open Access Journals (Sweden)

    Lijing Tian

    2016-11-01

    Full Text Available The Berry phase has universal applications in various fields. Here, we explore the coupling effect on the Berry phase of a two-level system adiabatically driven by a rotating classical field and interacting with a single quantized mode. Our simulations clearly reveal that the Berry phase change is quadratic proportional to the coupling constant if it is less than the level spacing between neighboring instantaneous eigenstates. Remarkably, if the nearest neighbouring level spacing is comparable with the coupling constant, this simple quadratic dependence is lost. Around this resonance, the Berry phase can be significantly tuned by slightly adjusting the parameters, such as the coupling constant, the frequency of the quantized mode, and the transition frequency. These numerical results, agreeing well with the perturbation theory calculations, provide an alternative approach to tune the Berry phase near the resonance, which is useful in quantum information science, i.e. designing quantum logic gates.

  18. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  19. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    . The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....

  20. Coupled transverse motion

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs

  1. [Enhanced prenatal HIV couple oriented counselling session and couple communication about HIV (ANRS 12127 Prenahtest Trial)].

    Science.gov (United States)

    Plazy, M; Orne-Gliemann, J; Balestre, E; Miric, M; Darak, S; Butsashvili, M; Tchendjou, P; Dabis, F; Desgrées du Loû, A

    2013-08-01

    The Prenahtest study investigated the efficacy of a couple-oriented HIV counselling session (COC) in encouraging couple HIV counselling and testing, and improving intra-couple communication about sexual and reproductive health. We report here on the effect of COC on intra-couple communication about HIV. Within this 4-country trial (India, Georgia, Dominican Republic and Cameroon), 484 to 491 pregnant women per site were recruited and individually randomized to receive either the COC intervention, enhanced counselling with role playing, or standard post-test HIV counselling. Women were interviewed at recruitment, before HIV testing (T0), and 2 to 8 weeks after post-test HIV counselling (T1). Four dichotomous variables documented intra-couple communication about HIV at T1: 1) discussion about HIV, 2) discussion about condom use, 3) suggesting HIV testing and 4) suggesting couple HIV counselling to the partner. An intra-couple HIV communication index was created: low degree of communication ("yes" response to zero or one of the four variables), intermediate degree of communication ("yes" to two or three variables) or high degree of communication ("yes" to the four variables). To estimate the impact of COC on the intra-couple HIV communication index, multivariable logistic regressions were conducted. One thousand six hundred and seven women were included in the analysis of whom 54 (3.4%) were HIV-infected (49 in Cameroon). In the four countries, the counselling group was associated with intra-couple HIV communication (P≤0.03): women allocated to the COC group were significantly more likely to report high or intermediate degrees of intra-couple communication about HIV (versus low degree of communication) than women allocated to standard counselling. COC improved short-term communication about HIV within couples in different sociocultural contexts, a positive finding for a couple approach to HIV prevention. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Coupled CFD - system-code simulation of a gas cooled reactor

    International Nuclear Information System (INIS)

    Yan, Yizhou; Rizwan-uddin

    2011-01-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  3. Magnetically coupled impedance-source inverters

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2012-01-01

    input-to-output gain, and the presence of an impedance network. The former means a high dc-link voltage, which can stress the semiconductor switches unnecessarily. The latter leads to increases in cost and size, which similarly are undesirable. To lessen these concerns, an interesting approach is to use...... magnetically coupled transformers or inductors to raise the gain and modulation ratio simultaneously, while reducing the number of passive components needed. A study of the approach is now presented to show how various existing magnetically coupled inverters can be derived by applying a generic methodology....... The same methodology is then applied to develop more magnetically coupled Z-source inverters with advantages that have not been identified in the literature. These findings have already been proven in experiments....

  4. Strategic Coupling Based on Natural Resources

    DEFF Research Database (Denmark)

    Hauge, Mads Martinus

    The topic of this thesis is the resourced-based industrialization of the Mekong River Delta (MRD) Region of Vietnam. It shows how a region is linked with the world market and how settlements and living conditions are being transformed as part of a globalized regional development. A modular theory......-building approach rooted in the Global Production Network (GPN) framework constitutes the analytical approach to the thesis, providing pertinent conceptualizations to explore and discuss how a globalized regional development unfolds. The main theoretical concept of the thesis is that of strategic coupling......, an established concept within the GPN framework that explores and explains how local assets are molded to complement the needs of the global market. However, existing applications of the notion of strategic coupling do not cover the situation in which a resource-based economy is coupled with the world market...

  5. Antigravity: Spin-gravity coupling in action

    Science.gov (United States)

    Plyatsko, Roman; Fenyk, Mykola

    2016-08-01

    The typical motions of a spinning test particle in Schwarzschild's background which show the strong repulsive action of the highly relativistic spin-gravity coupling are considered using the exact Mathisson-Papapetrou equations. An approximated approach to choice solutions of these equations which describe motions of the particle's proper center of mass is developed.

  6. The no conclusion intervention for couples in conflict.

    Science.gov (United States)

    Migerode, Lieven

    2014-07-01

    Dealing with difference is central to all couple therapy. This article presents an intervention designed to assist couples in handling conflict. Central to this approach is the acceptance that most conflicts cannot be solved. Couples are in need of a different understanding of couples conflict. This understanding is found in the analysis of love in context and in relational dialectics. Couples are guided through different steps: deciding on the valence of the issue as individuals, helping them decide which differences can be resolved and which issues demand new ways of living with the inevitable, and the introduction in the suggested no conclusion dialogue. This article briefly describes the five day intensive couple therapy program, in which the no intervention is embedded. The theoretical foundation of the intervention, followed by the step by step description of the intervention forms the major part of the article. A case vignette illustrates this approach. © 2012 American Association for Marriage and Family Therapy.

  7. Projected coupled cluster theory.

    Science.gov (United States)

    Qiu, Yiheng; Henderson, Thomas M; Zhao, Jinmo; Scuseria, Gustavo E

    2017-08-14

    Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration. In this work, we combine and try to retain the merits of these two methods by applying symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature of states resulting from the application of symmetry projection operators furnishes particle-hole excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we provide a solution via a disentanglement framework theory that can be approximated rigorously and systematically. Results of projected coupled cluster theory are presented for molecules and the Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-Fock.

  8. Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion

    Science.gov (United States)

    Scott, Charles J. C.; Thom, Alex J. W.

    2017-09-01

    We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.

  9. Tube coupling device

    Science.gov (United States)

    Myers, William N. (Inventor); Hein, Leopold A. (Inventor)

    1987-01-01

    A first annular ring of a tube coupling device has a keyed opening sized to fit around the nut region of a male coupling, and a second annular ring has a keyed opening sized to fit around the nut of a female coupling. Each ring has mating ratchet teeth and these rings are biased together, thereby engaging these teeth and preventing rotation of these rings. This in turn prevents the rotation of the male nut region with respect to the female nut. For tube-to-bulkhead locking, one facet of one ring is notched, and a pin is pressed into an opening in the bulkhead. This pin is sized to fit within one of the notches in the ring, thereby preventing rotation of this ring with respect to the bulkhead.

  10. EMP coupling to ships

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Cabayan, H.S.; Kunz, K.F.; Bevensee, R.M.; Martin, L.C.; Egbert, R.W.

    1980-01-01

    Scale-model tests were conducted to establish the adequacy and limitations of model measurements as tools for predicting electromagnetic pulse (EMP) coupling voltages and currents to the critical antennas, cables, and metallic structures on ships. The scale-model predictions are compared with the results of the full-scale EMP simulation test of the Canadian ASW ship, HMCS Huron. (The EMP coupling predictions in this report were made without prior knowledge of the results of the data from the HMCS Huron tests.) This report establishes that the scale-model tests in conjunction with the data base from EMP coupling modules provides the necessary information for source model development and permits effective, low-cost study of particular system configurations. 184 figures, 9 tables

  11. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Science.gov (United States)

    Lück, S.; Pikovsky, A.

    2011-07-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

  12. Quantum emitters coupled to surface plasmons of an nanowire

    DEFF Research Database (Denmark)

    Dzsotjan, David; Sørensen, Anders Søndberg; Fleischhauer, Michael

    2010-01-01

    We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nanowire using a Green's function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes and for the atom-plasmon coupling as well......-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling. Udgivelsesdato: 27 August...

  13. Coupled uncertainty provided by a multifractal random walker

    International Nuclear Information System (INIS)

    Koohi Lai, Z.; Vasheghani Farahani, S.; Movahed, S.M.S.; Jafari, G.R.

    2015-01-01

    The aim here is to study the concept of pairing multifractality between time series possessing non-Gaussian distributions. The increasing number of rare events creates “criticality”. We show how the pairing between two series is affected by rare events, which we call “coupled criticality”. A method is proposed for studying the coupled criticality born out of the interaction between two series, using the bivariate multifractal random walk (BiMRW). This method allows studying dependence of the coupled criticality on the criticality of each individual system. This approach is applied to data sets of gold and oil markets, and inflation and unemployment. - Highlights: • The coupled criticality between two systems is modeled by the bivariate multifractal random walk. • This coupled criticality is generally directed. • This coupled criticality is inversely proportional to the criticality of either of the systems. • The coupled criticality can emerge when at least one of the systems posses a Gaussian distribution

  14. Unsteady interfacial coupling of two-phase flow models

    International Nuclear Information System (INIS)

    Hurisse, O.

    2006-01-01

    The primary coolant circuit in a nuclear power plant contains several distinct components (vessel, core, pipes,...). For all components, specific codes based on the discretization of partial differential equations have already been developed. In order to obtain simulations for the whole circuit, the interfacial coupling of these codes is required. The approach examined within this work consists in coupling codes by providing unsteady information through the coupling interface. The numerical technique relies on the use of an interface model, which is combined with the basic strategy that was introduced by Greenberg and Leroux in order to compute approximations of steady solutions of non-homogeneous hyperbolic systems. Three different coupling cases have been examined: (i) the coupling of a one-dimensional Euler system with a two-dimensional Euler system; (ii) the coupling of two distinct homogeneous two-phase flow models; (iii) the coupling of a four-equation homogeneous model with the standard two-fluid model. (author)

  15. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  16. Coupled moderator neutronics

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-01-01

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source

  17. Coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, J; Scott, A C

    1983-01-01

    Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.

  18. Apodized coupled resonator waveguides.

    Science.gov (United States)

    Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A

    2007-08-06

    In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.

  19. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  20. Développement d'une approche couplée Automates Cellulaires – Eléments Finis pour la modélisation du développement des structures de grains en soudage TIG A coupled Cellular Automaton – Finite Element approach for the modelling of grain structure development in TIG welding

    Directory of Open Access Journals (Sweden)

    Chen Shijia

    2013-11-01

    Full Text Available Dans le domaine du soudage, les propriétés finales du cordon sont fortement liées à la structure de grains développée au cours des procédés de fusion / resolidification. La maîtrise des propriétés de l'assemblage final passe ainsi par une amélioration de la connaissance de sa structure de ce domaine. Dans cet objectif, un modèle couplé Automates Cellulaires – Eléments Finis est proposé pour simuler le développement, en volume, de cette structure, dans le cadre du soudage TIG. Ce modèle est appliqué au soudage d'acier Duplex 2202 et l'évolution de la structure de grains selon les paramètres procédés est discutée. In the welding area, the final properties of the weld bead are mainly induced by the grain structure developed during the melting and solidification steps. The mastery of the properties of the joining will be achieved with a better knowledge of the developed grain structure. A 3D coupled Cellular Automaton – Finite Element model is proposed in order to simulate the grains development in TIG process. This model is applied to the welding of a duplex stainless steel grade. The grain structure evolution is discussed for the various process parameters.

  1. ElectroWeak Bosons Couplings

    CERN Document Server

    Ouraou, Ahmimed; The ATLAS collaboration

    2016-01-01

    Latest results on the measurement of gauge boson couplings, from ATLAS and CMS at the LHC, are presented. This review starts with an introduction to boson couplings, then the measurements of Triple and Quartic Couplings are described. And finally, limits on anomalous couplings are summarized.

  2. Exact solutions of some coupled nonlinear diffusion-reaction ...

    Indian Academy of Sciences (India)

    certain coupled diffusion-reaction (D-R) equations of very general nature. In recent years, various direct methods have been proposed to find the exact solu- tions not only of nonlinear partial differential equations but also of their coupled versions. These methods include unified ansatz approach [3], extended hyperbolic func ...

  3. The coupling of condensed matter excitations to electron probes

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    Aspects of coupling of a classical electron with bulk and surface excitations in condensed matter have been sketched. Some considerations of a self-energy approach to the complete quantal treatment of this coupling have been given. 19 refs., 3 figs

  4. Equilibration and hydrodynamics at strong and weak coupling

    NARCIS (Netherlands)

    Schee, Wilke van der

    2017-01-01

    We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate

  5. Photoassociation spectroscopy of 87Rb2 (5s1/2+5p1/2)0u+ long-range molecular states: Coupling with the (5s1/2+5p3/2)0u+ series analyzed using the Lu-Fano approach

    International Nuclear Information System (INIS)

    Jelassi, H.; Viaris de Lesegno, B.; Pruvost, L.

    2006-01-01

    We report on photoassociation of cold 87 Rb atoms providing the spectroscopy of (5s 1/2 +5p 1/2 )0 u + long-range molecular states, in the energy range of [-12.5, -0.7 cm -1 ] below the dissociation limit. A Lu-Fano approach coupled to the LeRoy-Bernstein formula is used to analyze the data. The Lu-Fano graph exhibits the coupling of the molecular series with the (5s 1/2 +5p 3/2 )0 u + one, which is due to spin effects in the molecule. A two-channel model involving an improved LeRoy-Bernstein formula allows us to characterize the molecular series, to localize (5s 1/2 +5p 3/2 )0 u + levels, to evaluate the coupling, and to predict the energy and width of the first predissociated level of (5s 1/2 +5p 3/2 )0 u + series. An experimental spectrum confirms the prediction

  6. Calculating luminosity for a coupled Tevatron lattice

    International Nuclear Information System (INIS)

    Holt, J.A.; Martens, M.A.; Michelotti, L.; Goderre, G.

    1995-05-01

    The traditional formula for calculating luminosity assumes an uncoupled lattice and makes use of one-degree-of-freedom lattice functions, β H and β v , for relating transverse beam widths to emittances. Strong coupling requires changing this approach. It is simplest to employ directly the linear normal form coordinates of the one turn map. An equilibrium distribution in phase space is expressed as a function of the Jacobian's eigenvectors and beam size parameters or emittances. Using the equilibrium distributions an expression for the luminosity was derived and applied to the Tevatron lattice, which was coupled due to a quadrupole roll

  7. Link prediction via generalized coupled tensor factorisation

    DEFF Research Database (Denmark)

    Ermiş, Beyza; Evrim, Acar Ataman; Taylan Cemgil, A.

    2012-01-01

    and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using...... different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links....

  8. Couples' notions about preconception health: implications for framing social marketing plans.

    Science.gov (United States)

    Lewis, Megan A; Mitchell, Elizabeth W; Levis, Denise M; Isenberg, Karen; Kish-Doto, Julia

    2013-01-01

    To understand couples' notions of preconception health (PCH) and to inform the development of social marketing plans focused on PCH. APPROACH/DESIGN: We used a social marketing perspective to understand how couples considered PCH as a product, its potential price, how it should be promoted, and in what type of places it should be promoted. These variables are typically referred to as the four social marketing P's. Telephone interviews with couples recruited from a national database. A total of 58 couples (116 individuals) were segmented by five couple segments based on pregnancy planning intention and current parental status in which the wife or partner was 18 to 44 years of age. The five segments were combined into three categories: couples who were planning pregnancies, couples who were not planning pregnancies, or couples who were recent parents (interconception). Couple-based structured interviews lasting approximately 45 to 60 minutes were conducted via telephone. Questions inquired about couples' experience with PCH and the four social marketing P's. Commonalities existed across the four social marketing P's for the different couple segments. Notable couple-related themes that emerged included the importance of couple communication, support, and relationship quality. PCH was more relevant for couples planning a pregnancy, but nonplanning couples understood the benefits of PCH and related behaviors. Couples may be an important target audience when considering social marketing approaches for PCH. Many couples perceived the relevance of the issue to important aspects of their lives, such as health, family, and their relationships.

  9. Anomalous top magnetic couplings

    Indian Academy of Sciences (India)

    2012-11-09

    Nov 9, 2012 ... Corresponding author. E-mail: remartinezm@unal.edu.co. Abstract. The real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbW vertex in the Standard Model (SM) are computed. Keywords. Top; anomalous. PACS Nos 14.65.Ha; 12.15 ...

  10. HIV-discordant couples

    African Journals Online (AJOL)

    Winnie

    2006-06-02

    Jun 2, 2006 ... These may broadly be divided into factors that affect the transmissibility of HIV between couples per sex act and factors influencing the number of sex acts during which exposure may occur. Examples of the former include use of condoms or other barrier methods and certain sexual behaviours, such as sex.

  11. International Migration of Couples

    DEFF Research Database (Denmark)

    Junge, Martin; Munk, Martin D.; Nikolka, Till

    2018-01-01

    Migrant self-selection is important to labor markets and public finances in both origin and destination countries. We develop a theoretical model regarding the migration of dual-earner couples and test it using population-wide administrative data from Denmark. Our model predicts that the probabil...

  12. Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet H3+ to study reaction dynamics using coupled 3D time-dependent wave-packet approach.

    Science.gov (United States)

    Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2017-08-21

    The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H 3 + system (1 1 A ' , 2 1 A ' , and 3 1 A ' ) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D + + H 2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H 3 + . We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H 2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.

  13. Determining chiral couplings at NLO

    International Nuclear Information System (INIS)

    Rosell, Ignasi

    2007-01-01

    We present a general method that allows to estimate the low-energy constants of Chiral Perturbation Theory up to next-to-leading corrections in the 1/N C expansion, that is, keeping full control of the renormalization scale dependence. As a first step we have determined L 8 and C 38 , the couplings related to the difference of the two-point correlation functions of two scalar and pseudoscalar currents, L 8 r (μ 0 ) = (0.6±0.4)·10 -3 and C 38 r (μ 0 ) = (2±6)·10 -6 , with μ 0 0.77 GeV. As in many effective approaches, one of the main ingredients of this method is the matching procedure: some comments related to this topic are presented here

  14. Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick; Wendt, Fabian; Musial, Walter; Finucane, Z.; Hulliger, L.; Chilka, S.; Dolan, D.; Cushing, J.; O' Connell, D.; Falk, S.

    2017-06-19

    The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, the turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  15. Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    Science.gov (United States)

    Zuchowski, Loïc; Brun, Michael; De Martin, Florent

    2018-05-01

    The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.

  16. Role of contact couples and couple stress in the behaviour of granular media

    International Nuclear Information System (INIS)

    Dedecker, F.; Dubujet, P.; Cambou, B.

    1998-01-01

    This paper analyses the interest of taking into account contact couples in the granular material description as well as considering the inadequacy of the micropolar description. The study is made on two types of samples: one which takes into account contact couples, and the other which does not. The response of these two media, which are submitted to a biaxial test, is analysed from both the micromechanic and macroscopic viewpoints. A numerical study which is performed on these two samples shows the influence of the presence of couples on the local static variables as well as on the macroscopic behaviour. A statistical homogenization approach is analysed to simulate the effects of couples. Due to the presence of an internal variable, a numerical study proves that this approach is relevant. This internal variable allows the taking into consideration of the influence of contact couples. A first step in the description of couples versus contact orientation is made by the introduction of the standard deviation. Finally, the inadequacy of the micropolar description which takes into account micropolar stresses is pointed out. (orig.)

  17. Warthog: Coupling Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Shane W. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reardon, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-30

    The Warthog code was developed to couple codes that are developed in both the Multi-Physics Object-Oriented Simulation Environment (MOOSE) from Idaho National Laboratory (INL) and SHARP from Argonne National Laboratory (ANL). The initial phase of this work, focused on coupling the neutronics code PROTEUS with the fuel performance code BISON. The main technical challenge involves mapping the power density solution determined by PROTEUS to the fuel in BISON. This presents a challenge since PROTEUS uses the MOAB mesh format, but BISON, like all other MOOSE codes, uses the libMesh format. When coupling the different codes, one must consider that Warthog is a light-weight MOOSE-based program that uses the Data Transfer Kit (DTK) to transfer data between the various mesh types. Users set up inputs for the codes they want to run, and then Warthog transfers the data between them. Currently Warthog supports XSProc from SCALE or the Sub-Group Application Programming Interface (SGAPI) in PROTEUS for generating cross sections. It supports arbitrary geometries using PROTEUS and BISON. DTK will transfer power densities and temperatures between the codes where the domains overlap. In the past fiscal year (FY), much work has gone into demonstrating two-way coupling for simple pin cells of various materials. XSProc was used to calculate the cross sections, which were then passed to PROTEUS in an external file. PROTEUS calculates the fission/power density, and Warthog uses DTK to pass this information to BISON, where it is used as the heat source. BISON then calculates the temperature profile of the pin cell and sends it back to XSProc to obtain the temperature corrected cross sections. This process is repeated until the convergence criteria (tolerance on BISON solve, or number of time steps) is reached. Models have been constructed and run for both uranium oxide and uranium silicide fuels. These models demonstrate a clear difference in power shape that is not accounted for in a

  18. Synchronization in networks with heterogeneous coupling delays

    Science.gov (United States)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  19. Effects of Coupling Lens on Optical Refrigeration of Semiconductors

    International Nuclear Information System (INIS)

    Kai, Ding; Yi-Ping, Zeng

    2008-01-01

    Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Behaviour of coupling constants at high temperature in supersymmetric theories

    International Nuclear Information System (INIS)

    Swee Ping Chia.

    1986-04-01

    An analysis is presented of the temperature dependence of the coupling constants using the improved one-loop approximation in the Wess-Zumino model and the supersymmetric O(N) model. It is found that all the coupling constants, both bosonic (Φ 4 type) and Yukawa, approach constant nonzero values as T→∞. The asymptotic values of the bosonic couplings are slightly smaller than the corresponding zero-temperature values, and those of the Yukawa couplings are the same as the zero-temperature values. (author)

  1. Synchronization of coupled active rotators by common noise

    Science.gov (United States)

    Dolmatova, Anastasiya V.; Goldobin, Denis S.; Pikovsky, Arkady

    2017-12-01

    We study the effect of common noise on coupled active rotators. While such a noise always facilitates synchrony, coupling may be attractive (synchronizing) or repulsive (desynchronizing). We develop an analytical approach based on a transformation to approximate angle-action variables and averaging over fast rotations. For identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling. For nonidentical rotators, the most nontrivial effect occurs at moderate repulsive coupling, where a juxtaposition of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion obeys a nontrivial power law.

  2. Optically coupled semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Kumagaya, Naoki

    1988-11-18

    This invention concerns an optically coupled semiconductor device using the light as input signal and a MOS transistor for the output side in order to control on-off of the output side by the input signal which is insulated from the output. Concerning this sort of element, when a MOS transistor and a load resistance are planned to be accumulated on the same chip, a resistor and control of impurity concentration of the channel, etc. become necessary despite that the only formation of a simple P-N junction is enough, for a solar cell, hence cost reduction thereof cannot be done. In order to remove this defect, this invention offers an optically coupled semiconductor device featuring that two solar cells are connected in reverse parallel between the gate sources of the output MOS transistors and an operational light emitting element is individually set facing a respective solar cell. 4 figs.

  3. Magnetic coupling device

    Science.gov (United States)

    Nance, Thomas A [Aiken, SC

    2009-08-18

    A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

  4. Coupling of Hidden Sector

    OpenAIRE

    Królikowski, Wojciech

    2016-01-01

    A hypothetic Hidden Sector of the Universe, consisting of sterile fer\\-mions (``sterinos'') and sterile mediating bosons (``sterons'') of mass dimension 1 (not 2!) --- the last described by an antisymmetric tensor field --- requires to exist also a scalar isovector and scalar isoscalar in order to be able to construct electroweak invariant coupling (before spontaneously breaking its symmetry). The introduced scalar isoscalar might be a resonant source for the diphoton excess of 750 GeV, sugge...

  5. Quick torque coupling

    Science.gov (United States)

    Luft, Peter A [El Cerrito, CA

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  6. Coupling and decoupling

    International Nuclear Information System (INIS)

    Ravenal, E.C.

    1988-01-01

    This paper reports on the prospects of coupling and decoupling for extended deterrence. Thirty-eight years after the foundation of NATO, the defence of Western Europe still rests on the proposition that an American president will invite the destruction of US cities and the incineration of 100 million of its citizens to repel a Soviet incursion or resist a Soviet ultimatum in Western Europe. On its face, America's war plan---never denied by any president from Truman to Reagan, or by any Secretary of State from George Marshall to George Shultz---is the first use of nuclear weapons, if necessary, to defend Europe. Thus America threatens to turn local defeat into global holocaust. But under the surface, America's nuclear commitment to Europe is not so sure. The word that encapsulates this problem is coupling. Not the title of an Updike novel or an anthropological treatise by Margaret Mead, coupling is a term of art used by strategic analysts to connote the integrity of the chain of escalation, from conventional war in Europe, to theatre nuclear weapons, to the final use of America's ultimate strategic weapon

  7. Following Bariatric Surgery: an Exploration of the Couples' Experience.

    Science.gov (United States)

    Pories, Mary Lisa; Hodgson, Jennifer; Rose, Mary Ann; Pender, John; Sira, Natalia; Swanson, Melvin

    2016-01-01

    Bariatric surgery is the most effective intervention for morbid obesity, resulting in substantial weight loss and the resolution of co-morbid conditions. It is not clear what impact bariatric surgery and the subsequent life-style changes have on patients' couple relationships. The purpose of this phenomenological study was to examine the lived experience of couples after one member of the couple underwent bariatric surgery. This study utilized a phenomenological approach of semi-structured interviews of the couples jointly (n = 10 couples). Colaizzi's method of analysis for phenomenological studies was utilized to elucidate the central themes and distill the essence of the participants' experience. All of the couples felt their post-operative success was due to a joint effort on both members of the couples' part. The participant couples described the following five emerging thematic experiences: (a) changes in physical health, (b) changes in emotional health, (c) changes in eating habits, (d) greater intimacy in the relationship, and (e) the joint journey. This research provides greater insight into the experience of the couple than has been previously reported. The use of qualitative research techniques offer new approaches to examine the biopsychosocial outcomes and needs of bariatric surgery patients. Further research is warranted in order to develop culturally appropriate interventions to improve the patient's surgical and biopsychosocial outcomes.

  8. Automated and sensitive determination of four anabolic androgenic steroids in urine by online turbulent flow solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry: a novel approach for clinical monitoring and doping control.

    Science.gov (United States)

    Guo, Feng; Shao, Jing; Liu, Qian; Shi, Jian-Bo; Jiang, Gui-Bin

    2014-07-01

    A novel method for automated and sensitive analysis of testosterone, androstenedione, methyltestosterone and methenolone in urine samples by online turbulent flow solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry was developed. The optimization and validation of the method were discussed in detail. The Turboflow C18-P SPE column showed the best extraction efficiency for all the analytes. Nanogram per liter (ng/L) level of AAS could be determined directly and the limits of quantification (LOQs) were 0.01 ng/mL, which were much lower than normally concerned concentrations for these typical anabolic androgenic steroids (AAS) (0.1 ng/mL). The linearity range was from the LOQ to 100 ng/mL for each compound, with the coefficients of determination (r(2)) ranging from 0.9990 to 0.9999. The intraday and interday relative standard deviations (RSDs) ranged from 1.1% to 14.5% (n=5). The proposed method was successfully applied to the analysis of urine samples collected from 24 male athletes and 15 patients of prostate cancer. The proposed method provides an alternative practical way to rapidly determine AAS in urine samples, especially for clinical monitoring and doping control. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Unbiased Scanning Method and Data Banking Approach Using Ultra-High Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry for Quantitative Comparison of Metabolite Exposure in Plasma across Species Analyzed at Different Dates.

    Science.gov (United States)

    Gao, Hongying; Deng, Shibing; Obach, R Scott

    2015-12-01

    An unbiased scanning methodology using ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry was used to bank data and plasma samples for comparing the data generated at different dates. This method was applied to bank the data generated earlier in animal samples and then to compare the exposure to metabolites in animal versus human for safety assessment. With neither authentic standards nor prior knowledge of the identities and structures of metabolites, full scans for precursor ions and all ion fragments (AIF) were employed with a generic gradient LC method to analyze plasma samples at positive and negative polarity, respectively. In a total of 22 tested drugs and metabolites, 21 analytes were detected using this unbiased scanning method except that naproxen was not detected due to low sensitivity at negative polarity and interference at positive polarity; and 4'- or 5-hydroxy diclofenac was not separated by a generic UPLC method. Statistical analysis of the peak area ratios of the analytes versus the internal standard in five repetitive analyses over approximately 1 year demonstrated that the analysis variation was significantly different from sample instability. The confidence limits for comparing the exposure using peak area ratio of metabolites in animal plasma versus human plasma measured over approximately 1 year apart were comparable to the analysis undertaken side by side on the same days. These statistical analysis results showed it was feasible to compare data generated at different dates with neither authentic standards nor prior knowledge of the analytes.

  10. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  11. Coupled thermo-geophysical inversion for permafrost monitoring

    DEFF Research Database (Denmark)

    Tomaskovicova, Sona

    temperature dataset within ±0.55 ◦C, provided that the freeze-thaw water content hysteresis was accounted for. The calibrated model predicted the temperature variation in two testing datasets within ±0.32 to ±0.62 ◦C, depending on length of the testing timeseries. The coupled inversion approach showed...... on borehole temperatures. Thermal parameters optimized in coupled inversion predicted the temperature variation in the two testing datasets within ±0 ◦C to 0 ◦C. A number of possibilities and paths for improvement of both coupled and uncoupled optimization approaches has been identified and identification...

  12. Inflation with non-minimal coupling. Metric vs. Palatini formulations

    International Nuclear Information System (INIS)

    Bauer, F.; Demir, D.A.; Izmir Institute of Technology

    2008-03-01

    We analyze non-minimally coupled scalar field theories in metric (second-order) and Palatini (first-order) formalisms in a comparative fashion. After contrasting them in a general setup, we specialize to inflation and find that the two formalisms differ in their predictions for various cosmological parameters. The main reason is that dependencies on the non-minimal coupling parameter are different in the two formalisms. For successful inflation, the Palatini approach prefers a much larger value for the non-minimal coupling parameter than the Metric approach. Unlike the Metric formalism, in Palatini, the inflaton stays well below the Planck scale whereby providing a natural inflationary epoch. (orig.)

  13. Automatic design of permanent magnet coupling

    International Nuclear Information System (INIS)

    Yonnet, J.-P.; Pandele, P.; Coutel, C.; Wurtz, F.

    1998-01-01

    Up to now, two main methods have been used to design permanent magnet couplings : finite element calculation, and analytical expressions of the forces between the magnets. The two methods use the same starting point, the permanent magnet coupling dimensions. The calculated parameters are the forces and the torques. The optimization of the couplings shape is generally done by using different curves describing torque variations as a function of the different geometrical parameters. We have developed a very new approach solving the reverse problem. Choosing the value of the torque, the airgap and an optimization criterium, the new method automatically calculates the size of the magnets and the ideal number of poles. It is based on a software, PASCOSMA, using an analytical model of the coupling which can be eventually corrected by a finite element method like FLUX2D. The coupling optimization is automatically made, keeping the parameters between predefined values. For a given application, it is very easy to obtain the best design, for example with the minimum magnet volume. (orig.)

  14. Visible high power fiber coupled diode lasers

    Science.gov (United States)

    Köhler, Bernd; Drovs, Simon; Stoiber, Michael; Dürsch, Sascha; Kissel, Heiko; Könning, Tobias; Biesenbach, Jens; König, Harald; Lell, Alfred; Stojetz, Bernhard; Löffler, Andreas; Strauß, Uwe

    2018-02-01

    In this paper we report on further development of fiber coupled high-power diode lasers in the visible spectral range. New visible laser modules presented in this paper include the use of multi single emitter arrays @ 450 nm leading to a 120 W fiber coupled unit with a beam quality of 44 mm x mrad, as well as very compact modules with multi-W output power from 405 nm to 640 nm. However, as these lasers are based on single emitters, power scaling quickly leads to bulky laser units with a lot of optical components to be aligned. We also report on a new approach based on 450 nm diode laser bars, which dramatically reduces size and alignment effort. These activities were performed within the German government-funded project "BlauLas": a maximum output power of 80 W per bar has been demonstrated @ 450 nm. We show results of a 200 μm NA0.22 fiber coupled 35 W source @ 450 nm, which has been reduced in size by a factor of 25 compared to standard single emitter approach. In addition, we will present a 200 μm NA0.22 fiber coupled laser unit with an output power of 135 W.

  15. Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings

    DEFF Research Database (Denmark)

    Walldorf, Nicklas; Jauho, Antti-Pekka; Kaasbjerg, Kristen

    2017-01-01

    We study thermoelectric effects in Coulomb-coupled quantum-dot (CCQD) systems beyond lowest-order tunneling processes and the often applied wide-band approximation. To this end, we present a master-equation (ME) approach based on a perturbative T -matrix calculation of the charge and heat tunneli...

  16. An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatom inelastic collision

    Science.gov (United States)

    Yang, Dongzheng; Hu, Xixi; Zhang, Dong H.; Xie, Daiqian

    2018-02-01

    Solving the time-independent close coupling equations of a diatom-diatom inelastic collision system by using the rigorous close-coupling approach is numerically difficult because of its expensive matrix manipulation. The coupled-states approximation decouples the centrifugal matrix by neglecting the important Coriolis couplings completely. In this work, a new approximation method based on the coupled-states approximation is presented and applied to time-independent quantum dynamic calculations. This approach only considers the most important Coriolis coupling with the nearest neighbors and ignores weaker Coriolis couplings with farther K channels. As a result, it reduces the computational costs without a significant loss of accuracy. Numerical tests for para-H2+ortho-H2 and para-H2+HD inelastic collision were carried out and the results showed that the improved method dramatically reduces the errors due to the neglect of the Coriolis couplings in the coupled-states approximation. This strategy should be useful in quantum dynamics of other systems.

  17. Multivalued synchronization by Poincaré coupling

    Science.gov (United States)

    Ontañón-García, L. J.; Campos-Cantón, E.; Femat, R.; Campos-Cantón, I.; Bonilla-Marín, M.

    2013-10-01

    This work presents multivalued chaotic synchronization via coupling based on the Poincaré plane. The coupling is carried out by an underdamped signal, triggered every crossing event of the trajectory of the master system through a previously defined Poincaré plane. A master-slave system is explored, and the synchronization between the systems is detected via the auxiliary system approach and the maximum conditional Lyapunov exponent. Due to the response to specific conditions two phenomena may be obtained: univalued and multivalued synchronization. Since the Lyapunov exponent is not enough to detect these two phenomena, the distance between the pieces of trajectories of the slave and auxiliary systems with different initial conditions is also used as a tool for the detection of multivalued synchronization. Computer simulations using the benchmark chaotic systems of Lorenz and Rössler are used to exemplify the approach proposed.

  18. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  19. Couples' fertility decision-making

    Directory of Open Access Journals (Sweden)

    Petra Stein

    2014-06-01

    Full Text Available Background: The decision about whether to start a family within a partnership can be viewed as a result of an interaction process. The influence of each of the partners in a couple differs depending on their individual preferences and intentions towards having children. Both of the partners additionally influence each other's fertility intentions and preferences. Objective: We specify, estimate, and test a model that examines the decision about whether to have a child as a choice that is made jointly by the two partners. The transition to the birth of a (further child is investigated with the explicit consideration of both the female partner and the male partner in the partnership context. Methods: An approach for modelling the interactive influences of the two actors in the decision-making process was proposed. A trivariate distribution consisting of both the female and the male partners' fertility intentions, as well as the joint generative decision, was modelled. A multivariate non-linear probit model was chosen and the problem of identification in estimating the relative effects of the actors was resolved. These parameters were used to assess the relative importance of each of the partners' intentions in the decision. We carried out the analysis with MPLUS. Data from the panel of intimate relationships and family dynamics (pairfam was used to estimate the model. Results: The biographical context of each of the partners in relation to their own as well as to their partner's fertility intentions was found to be of considerable importance. Of the significant individual and partner effects, the male partner was shown to have the greater influence. But the female partner was found to have stronger parameters overall and she ultimately has a veto power in the couple's final decision.

  20. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  1. Loosely coupled class families

    DEFF Research Database (Denmark)

    Ernst, Erik

    2001-01-01

    are expressed using virtual classes seem to be very tightly coupled internally. While clients have achieved the freedom to dynamically use one or the other family, it seems that any given family contains a xed set of classes and we will need to create an entire family of its own just in order to replace one...... of the members with another class. This paper shows how to express class families in such a manner that the classes in these families can be used in many dierent combinations, still enabling family polymorphism and ensuring type safety....

  2. LIA longitudinal coupling impedance

    International Nuclear Information System (INIS)

    Faltens, A.

    1980-01-01

    The beam generated fields enter into the problems of waveform generation and longitudinal stability. In the former, provision must be made for the longitudinally defocusing forces due to the space charge and the beam loading effects on the accelerating voltage due to the current of a presumably known bunch. In the latter, the concern is for the growth of unintentional perturbations to unacceptably large values through the interaction of the charge and current fluctuations with the rest of the beam and the surrounding structures. These beam generated electric fields may be related to the beam current through a coupling impedance

  3. Recent advances in coupled-cluster methods

    CERN Document Server

    Bartlett, Rodney J

    1997-01-01

    Today, coupled-cluster (CC) theory has emerged as the most accurate, widely applicable approach for the correlation problem in molecules. Furthermore, the correct scaling of the energy and wavefunction with size (i.e. extensivity) recommends it for studies of polymers and crystals as well as molecules. CC methods have also paid dividends for nuclei, and for certain strongly correlated systems of interest in field theory.In order for CC methods to have achieved this distinction, it has been necessary to formulate new, theoretical approaches for the treatment of a variety of essential quantities

  4. Nonminimally coupled hybrid inflation

    International Nuclear Information System (INIS)

    Koh, Seoktae; Minamitsuji, Masato

    2011-01-01

    We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains φ 4 term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum-dominated region becomes either the type (I) or (II), resulting in a blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while around the local minimum it must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.

  5. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  6. How couples choose vasectomy.

    Science.gov (United States)

    Schehl, M

    1997-01-01

    A study conducted by AVSC International between 1992 and 1995 found that couples around the world go through a highly similar decision-making process when they choose vasectomy as their family planning methods. Study findings are based upon in-depth, qualitative interviews with couples using vasectomy in Bangladesh, Mexico, Kenya, and Rwanda, where the prevalence of vasectomy is relatively low, and Sri Lanka and the US, where it is relatively high. 218 separate interviews were conducted with male and female partners. Concerns about the woman's health were cited by respondents in each country as reasons to cease childbearing and to opt for vasectomy as the means to achieving that end. Also, almost all respondents mentioned varying degrees of financial hardship as contributing to their decision to end childbearing. These findings highlight the concept of partnership in relationships and family planning decision-making, and demonstrate the importance of going beyond traditional stereotypes about gender roles in decision-making. Social influences and the potential risks of using other forms of contraception also contributed to the choice of using vasectomy. The decision-making process and lessons learned are discussed.

  7. Magnetically Coupled Calorimeters

    Science.gov (United States)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  8. Electron-phonon coupling from finite differences

    Science.gov (United States)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  9. Coupling of 3D neutronics models with the system code ATHLET

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    1999-01-01

    The system code ATHLET for plant transient and accident analysis has been coupled with 3D neutronics models, like QUABOX/CUBBOX, for the realistic evaluation of some specific safety problems under discussion. The considerations for the coupling approach and its realization are discussed. The specific features of the coupled code system established are explained and experience from first applications is presented. (author)

  10. Discrete integrable couplings associated with Toda-type lattice and two hierarchies of discrete soliton equations

    International Nuclear Information System (INIS)

    Zhang Yufeng; Fan Engui; Zhang Yongqing

    2006-01-01

    With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations

  11. Using the Model Coupling Toolkit to couple earth system models

    Science.gov (United States)

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  12. Couple decision making and use of cultural scripts in Malawi.

    Science.gov (United States)

    Mbweza, Ellen; Norr, Kathleen F; McElmurry, Beverly

    2008-01-01

    To examine the decision-making processes of husband and wife dyads in matrilineal and patrilineal marriage traditions of Malawi in the areas of money, food, pregnancy, contraception, and sexual relations. Qualitative grounded theory using simultaneous interviews of 60 husbands and wives (30 couples). Data were analyzed according to the guidelines of simultaneous data collection and analysis. The analysis resulted in development of core categories and categories of decision-making process. Data matrixes were used to identify similarities and differences within couples and across cases. Most couples reported using a mix of final decision-making approaches: husband-dominated, wife-dominated, and shared. Gender based and nongender based cultural scripts provided rationales for their approaches to decision making. Gender based cultural scripts (husband-dominant and wife-dominant) were used to justify decision-making approaches. Non-gender based cultural scripts (communicating openly, maintaining harmony, and children's welfare) supported shared decision making. Gender based cultural scripts were used in decision making more often among couples from the district with a patrilineal marriage tradition and where the husband had less than secondary school education and was not formally employed. Nongender based cultural scripts to encourage shared decision making can be used in designing culturally tailored reproductive health interventions for couples. Nurses who work with women and families should be aware of the variations that occur in actual couple decision-making approaches. Shared decision making can be used to encourage the involvement of men in reproductive health programs.

  13. The two-qubit quantum Rabi model: inhomogeneous coupling

    International Nuclear Information System (INIS)

    Mao, Lijun; Huai, Sainan; Zhang, Yunbo

    2015-01-01

    We revisit the analytic solution of the two-qubit quantum Rabi model with inhomogeneous coupling and transition frequencies using a displaced oscillator basis. This approach enables us to apply the same truncation rules and techniques adopted in the Rabi model to the two qubits system. The derived analytical spectra match perfectly with the numerical solutions in the parameter regime where the qubits’ transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultrastrong coupling regime. We further explore the dynamical behavior of the two qubits as well as the evolution of entanglement. The analytical methods provide unexpectedly accurate results in describing the dynamics of the two qubits in the present experimentally accessible coupling regime. The time evolutions of the probability for the qubits show that the collapse-revival phenomena emerge, survive and finally disappear when one coupling strength increases from weak to strong coupling regimes and the other coupling strength is well into the ultrastrong coupling regime. The inhomogeneous coupling system exhibits new dynamics, which are different from the homogeneous coupling case. (paper)

  14. Fluid structure coupling algorithm

    International Nuclear Information System (INIS)

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.; Quinones, D.F.

    1980-01-01

    A fluid-structure-interaction algorithm has been developed and incorporated into the two-dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The fluid structure and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The code has been used to calculate loads and structural response from air blowdown and the oscillatory condensation of steam bubbles in water suppression pools typical of boiling water reactors. The techniques developed have been extended to three dimensions and implemented in the computer code PELE-3D

  15. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-06-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  16. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  17. Structural Coupling and Translation

    DEFF Research Database (Denmark)

    Tække, Jesper

    formations. After presenting the two theories the article put forward Twitter as an example making it possible to compare the two theories. Hereby the article also provides two analysis of how Twitter changes the communication milieu of modern society. In systems theory media can be seen as the mechanisms...... and translations the social medium of Twitter opens for. The second, but most prioritized, aim of the paper is to present, compare and discuss the two theories: How do they understand what becomes visible in their different optics, which observations become possible in the one or the other – and is it possible...... creating networks consisting in both humans and non-humans. Then the two appearing frameworks are used to observe Twitter and discuss which structural couplings and translations are made possible by this medium. In the end of the paper the two theories are discussed and compared....

  18. The LHC Transverse Coupled-Bunch Instability

    CERN Document Server

    Mounet, Nicolas; Métral, Elias

    In this thesis, the problem of the transverse coupled-bunch instabilities created by the Large Hadron Collider (LHC) beam-coupling impedance, that can possibly limit the machine operation, is addressed thanks to several new theories and tools. A rather complete vision of the problem is proposed here, going from the calculation of the impedances and wake functions of individual machine elements, to the beam dynamics study. Firstly, new results are obtained in the theory of the beam-coupling impedance for an axisymmetric two-dimensional structure, generalizing Zotter's theories, and a new general theory is derived for the impedance of an infinite flat two-dimensional structure. Then, a new approach has been found to compute the wake functions from such analytically obtained beam-coupling impedances, over-coming limitations that could be met with standard discrete Fourier transform procedures. Those results are then used to obtain an impedance and wake function model of the LHC, based on the (resistive-) wall im...

  19. SIMULATE-3 K coupled code applications

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Christian [Studsvik Scandpower AB, Vaesteraas (Sweden); Grandi, Gerardo; Judd, Jerry [Studsvik Scandpower Inc., Idaho Falls, ID (United States)

    2017-07-15

    This paper describes the coupled code system TRACE/SIMULATE-3 K/VIPRE and the application of this code system to the OECD PWR Main Steam Line Break. A short description is given for the application of the coupled system to analyze DNBR and the flexibility the system creates for the user. This includes the possibility to compare and evaluate the result with the TRACE/SIMULATE-3K (S3K) coupled code, the S3K standalone code (core calculation) as well as performing single-channel calculations with S3K and VIPRE. This is the typical separate-effect-analyses required for advanced calculations in order to develop methodologies to be used for safety analyses in general. The models and methods of the code systems are presented. The outline represents the analysis approach starting with the coupled code system, reactor and core model calculation (TRACE/S3K). This is followed by a more detailed core evaluation (S3K standalone) and finally a very detailed thermal-hydraulic investigation of the hot pin condition (VIPRE).

  20. Fractional dynamical model for neurovascular coupling

    KAUST Repository

    Belkhatir, Zehor

    2014-08-01

    The neurovascular coupling is a key mechanism linking the neural activity to the hemodynamic behavior. Modeling of this coupling is very important to understand the brain function but it is at the same time very complex due to the complexity of the involved phenomena. Many studies have reported a time delay between the neural activity and the cerebral blood flow, which has been described by adding a delay parameter in some of the existing models. An alternative approach is proposed in this paper, where a fractional system is used to model the neurovascular coupling. Thanks to its nonlocal property, a fractional derivative is suitable for modeling the phenomena with delay. The proposed model is coupled with the first version of the well-known balloon model, which relates the cerebral blood flow to the Blood Oxygen Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). Through some numerical simulations, the properties of the fractional model are explained and some preliminary comparisons to a real BOLD data set are provided. © 2014 IEEE.

  1. Gay and lesbian couples in Italy: comparisons with heterosexual couples.

    Science.gov (United States)

    Antonelli, Paolo; Dèttore, Davide; Lasagni, Irene; Snyder, Douglas K; Balderrama-Durbin, Christina

    2014-12-01

    Assessing couple relationships across diverse languages and cultures has important implications for both clinical intervention and prevention. This is especially true for nontraditional relationships potentially subject to various expressions of negative societal evaluation or bias. Few empirically validated measures of relationship functioning have been developed for cross-cultural applications, and none have been examined for their psychometric sufficiency for evaluating same-sex couples across different languages and cultures. The current study examined the psychometric properties of an Italian translation of the Marital Satisfaction Inventory - Revised (MSI-R), a 150-item 13-scale measure of couple relationship functioning, for its use in assessing the intimate relationships of gay and lesbian couples in Italy. Results for these couples were compared to data from heterosexual married and unmarried cohabiting couples from the same geographical region, as well as to previously published data for gay, lesbian, and unmarried heterosexual couples from the United States. Findings suggest that, despite unique societal pressures confronting Italian same-sex couples, these relationships appear resilient and fare well both overall and in specific domains of functioning compared to heterosexual couples both in Italy and the United States. © 2014 Family Process Institute.

  2. Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Austregesilo, H.; Velkov, K. [GRS, Garching (Germany)] [and others

    1997-07-01

    The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.

  3. Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes

    International Nuclear Information System (INIS)

    Langenbuch, S.; Austregesilo, H.; Velkov, K.

    1997-01-01

    The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes

  4. High-precision measurement of phenylalanine δ15N values for environmental samples: a new approach coupling high-pressure liquid chromatography purification and elemental analyzer isotope ratio mass spectrometry.

    Science.gov (United States)

    Broek, Taylor A B; Walker, Brett D; Andreasen, Dyke H; McCarthy, Matthew D

    2013-11-15

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is a powerful new tool for tracing nitrogen (N) source and transformation in biogeochemical cycles. Specifically, the δ(15)N value of phenylalanine (δ(15)N(Phe)) represents an increasingly used proxy for source δ(15)N signatures, with particular promise for paleoceanographic applications. However, current derivatization/gas chromatography methods require expensive and relatively uncommon instrumentation, and have relatively low precision, making many potential applications impractical. A new offline approach has been developed for high-precision δ(15)N measurements of amino acids (δ(15)N(AA)), optimized for δ(15)N(Phe) values. Amino acids (AAs) are first purified via high-pressure liquid chromatography (HPLC), using a mixed-phase column and automated fraction collection. The δ(15)N values are determined via offline elemental analyzer-isotope ratio mass spectrometry (EA-IRMS). The combined HPLC/EA-IRMS method separated most protein AAs with sufficient resolution to obtain accurate δ(15)N values, despite significant intra-peak isotopic fractionation. For δ(15)N(Phe) values, the precision was ±0.16‰ for standards, 4× better than gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS; ±0.64‰). We also compared a δ(15)N(Phe) paleo-record from a deep-sea bamboo coral from Monterey Bay, CA, USA, using our method versus GC/C/IRMS. The two methods produced equivalent δ(15)N(Phe) values within error; however, the δ(15)N(Phe) values from HPLC/EA-IRMS had approximately twice the precision of GC/C/IRMS (average stdev of 0.27‰ ± 0.14‰ vs 0.60‰ ± 0.20‰, respectively). These results demonstrate that offline HPLC represents a viable alternative to traditional GC/C/IMRS for δ(15)N(AA) measurement. HPLC/EA-IRMS is more precise and widely available, and therefore useful in applications requiring increased precision for data interpretation (e.g. δ(15)N paleoproxies

  5. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  6. Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings

    Science.gov (United States)

    Piatak, David J.; Nixon, Mark W.; Kosmatka, John B.

    1997-01-01

    Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach.

  7. Synchronizability of coupled PWL maps

    International Nuclear Information System (INIS)

    Polynikis, A.; Di Bernardo, M.; Hogan, S.J.

    2009-01-01

    In this paper we discuss the phenomenon of synchronization of chaotic systems in the case of coupled piecewise linear (PWL) continuous and discontinuous one-dimensional maps. We present numerical results for two examples of coupled systems consisting of two PWL maps. We illustrate how the coupled system can achieve synchronization and discuss the nature of the bifurcation that occurs at a critical value of the coupling strength. We then determine this critical coupling using linear stability analysis. We discuss the effects of variation of the parameters of the PWL maps on the critical coupling and present different bifurcation scenarios obtained for different sets of values of these parameters. Finally, we discuss an extension of our work to the synchronizability of networks consisting of two or more PWL maps. We show how the synchronizability of a network of PWL maps can be improved by tuning the map parameters.

  8. ESPC Coupled Global Prediction System

    Science.gov (United States)

    2015-09-30

    through an improvement to the sea ice albedo . Fig. 3: 2-m Temperature bias (deg C) of 120-h forecasts for the month of May 2014 for the Arctic...forecast system (NAVGEM) and ocean- sea ice forecast system (HYCOM/CICE) have never been coupled at high resolution. The coupled processes will be...winds and currents across the interface. The sea - ice component of this project requires modification of CICE versions 4 and 5 to run in the coupled

  9. Application of heteronuclear couplings to conformational analysis of oligonucleotides

    International Nuclear Information System (INIS)

    Zhu, G.; Live, D.; Bax, A.

    1994-01-01

    The value of vicinal coupling constants extracted from NMR spectra in deducing torsion angles for conformational analysis is well recognized. Due to the abundance of protons, their couplings have been mostly widely used. In many instances, couplings between protons and other nuclei may be a valuable complement to proton-proton couplings or, in some instances, may be the only coupling available to characterize the torsion angle about a bond. Recently, heteronuclear couplings have been used to great benefit in studies of isotopically enriched proteins, and this general approach has been extended to peptides at natural abundance. The possibility of using this approach to study oligonucleotides is also attractive but has not as yet been widely exploited. With the development of strategies for labeling such molecules, particularly RNAs, this may become an important component in conformational analysis. For DNA, labeling is less accessible, but sufficient quantities of unlabeled material are readily available for measuring these couplings at natural abundance. We chose several DNA systems to explore the usefulness of heteronuclear couplings in addressing the sugar conformation and the glycosidic torsion angle. Intensities of cross peaks in long-range HMQC experiments can be related to the couplings. Crosspeaks involving H1' and C1' atoms have been emphasized because of the superior shift dispersion at these positions between sugar protons and carbon atoms. Results will be shown for the self-complementary Dickerson duplex dodecamer sequence d(CGCGAATTCGCG) and for d(GGTCGG), which dimerizes to form a G-tetrad structure incorporating both syn and anti base orientations. The couplings provide a clear discrimination between presence of C3'-endo and C2'-endo conformations of the sugars and syn and anti bases arrangements

  10. Application of heteronuclear couplings to conformational analysis of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, G. [Univ. of Maryland, College Park, MD (United States); Live, D. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Bax, A. [NIDDK National Institutes of Health, Bethesda, MD (United States)

    1994-12-01

    The value of vicinal coupling constants extracted from NMR spectra in deducing torsion angles for conformational analysis is well recognized. Due to the abundance of protons, their couplings have been mostly widely used. In many instances, couplings between protons and other nuclei may be a valuable complement to proton-proton couplings or, in some instances, may be the only coupling available to characterize the torsion angle about a bond. Recently, heteronuclear couplings have been used to great benefit in studies of isotopically enriched proteins, and this general approach has been extended to peptides at natural abundance. The possibility of using this approach to study oligonucleotides is also attractive but has not as yet been widely exploited. With the development of strategies for labeling such molecules, particularly RNAs, this may become an important component in conformational analysis. For DNA, labeling is less accessible, but sufficient quantities of unlabeled material are readily available for measuring these couplings at natural abundance. We chose several DNA systems to explore the usefulness of heteronuclear couplings in addressing the sugar conformation and the glycosidic torsion angle. Intensities of cross peaks in long-range HMQC experiments can be related to the couplings. Crosspeaks involving H1{prime} and C1{prime} atoms have been emphasized because of the superior shift dispersion at these positions between sugar protons and carbon atoms. Results will be shown for the self-complementary Dickerson duplex dodecamer sequence d(CGCGAATTCGCG) and for d(GGTCGG), which dimerizes to form a G-tetrad structure incorporating both syn and anti base orientations. The couplings provide a clear discrimination between presence of C3{prime}-endo and C2{prime}-endo conformations of the sugars and syn and anti bases arrangements.

  11. A Physical Description of the Response of Coupled Beams

    DEFF Research Database (Denmark)

    Hugin, Claus Thomas

    1997-01-01

    An analytical method is presented for computing the vibrational response and the net transmitted power of bending wave fields in system consisting of coupled finite beams. The method is based on a wave approach that utilises the reflection and transmission coefficients of the different beam joint...... are valid for frequencies above which the influence of the reflected near fields for each of the beam elements is negligible. The method is demonstrated on different configurations of beams coupled in extension of each other....

  12. Cosmological tests of coupled Galileons

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Gubitosi, Giulia

    2015-01-01

    We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM

  13. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  14. Spin reorientation via antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, M., E-mail: mojtaba.ranjbar@physics.gu.se [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Sbiaa, R. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore); Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat (Oman); Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden); Piramanayagam, S. N. [Data Storage Institute, A-STAR (Agency for Science, Technology and Research), 5, Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    Spin reorientation in antiferromagnetically coupled (AFC) Co/Pd multilayers, wherein the thickness of the constituent Co layers was varied, was studied. AFC-Co/Pd multilayers were observed to have perpendicular magnetic anisotropy even for a Co sublayer thickness of 1 nm, much larger than what is usually observed in systems without antiferromagnetic coupling. When similar multilayer structures were prepared without antiferromagnetic coupling, this effect was not observed. The results indicate that the additional anisotropy energy contribution arising from the antiferromagnetic coupling, which is estimated to be around 6 × 10{sup 6} ergs/cm{sup 3}, induces the spin-reorientation.

  15. Performance assessment of coupled processes

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1987-01-01

    The author considers all processes to be coupled. For example, a waste package heats the surrounding rock and its pore water, creating gradients in density and pressure that result in increased water flow. That process can be described as coupled, in that the flow is a consequence of heating. In a narrower sense, one speaks also of the more weakly coupled transport processes, expressed by the Onsager reciprocal relations, that state that a transport current, i.e., flux, of heat is accompanied by a small transport current of material, as evidenced in isotope separation by thermal diffusion, the Thompson effect in thermoelectricity, etc. This paper presents a performance assessment of coupled processes

  16. Renormalization of g-boson effects under weak coupling condition

    International Nuclear Information System (INIS)

    Zhang Zhanjun; Yang Jie; Liu Yong; Sang Jianping

    1998-01-01

    An approach based on perturbation theory is proposed to renormalized g-boson effects for sdgIBM system, which modifies that presented earlier by Druce et al. The weak coupling condition as the usage premise of the two approaches is proved to be satisfied. Two renormalization spectra are calculated for comparison and analyses. Results show that the g-boson effects are renormalized more completely by the approach proposed

  17. Coupled calculation of diesel injection, primary spray propagation and spray formation using a multifluid approach and comparison with experiments in transparent model nozzles; Gekoppelte Berechnung von Dieseleinspritzung, primaerem Strahlzerfall und Spraybildung mit dem Multifluid-Ansatz und Vergleich mit Experimenten in transparenten Modellduesen

    Energy Technology Data Exchange (ETDEWEB)

    Berg, E. von; Edelbauer, W.; Alajbegovic, A.; Tatschl, R. [AVL List GmbH, Graz (Austria)

    2004-07-01

    Based on the Eulerian multi-fluid approach cavitating nozzle flow in Diesel injectors as well as spray formation downstream of the nozzle orifice can be simulated in a single calculation. Fuel liquid, fuel vapor, spray droplets, and air are treated as interpenetrating phases. For each of the phases separate sets of conservation equations are solved. Different flow regimes such as cavitating nozzle flow and spray regions are described by using appropriate interfacial exchange terms between the phases. Besides a simplified calculation procedure the main advantage of this methodology is the direct coupling of the different flow regimes. Thus, effects of the cavitating nozzle flow can directly enter the primary break-up model, which is based on locally resolved nozzle flow turbulence. This new approach is applied for single- and multi-hole full scale Diesel injectors as well as for a large-scale model injector operated with water. The results obtained on the basis of the CFD code FIRE show good agreement compared to experimental data and yield the correct trends for both spray penetration and spray angle for increasing injection pressure. (orig.)

  18. Process-independent strong running coupling

    International Nuclear Information System (INIS)

    Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; Roberts, Craig D.; Rodriguez-Quintero, Jose

    2017-01-01

    Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, this reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.

  19. Feedback control of coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.

    1993-05-01

    The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques

  20. Efficient shortcut techniques in evanescently coupled waveguides

    Science.gov (United States)

    Paul, Koushik; Sarma, Amarendra K.

    2016-10-01

    Shortcut to Adiabatic Passage (SHAPE) technique, in the context of coherent control of atomic systems has gained considerable attention in last few years. It is primarily because of its ability to manipulate population among the quantum states infinitely fast compared to the adiabatic processes. Two methods in this regard have been explored rigorously, namely the transitionless quantum driving and the Lewis-Riesenfeld invariant approach. We have applied these two methods to realize SHAPE in adiabatic waveguide coupler. Waveguide couplers are integral components of photonic circuits, primarily used as switching devices. Our study shows that with appropriate engineering of the coupling coefficient and propagation constants of the coupler it is possible to achieve efficient and complete power switching. We also observed that the coupler length could be reduced significantly without affecting the coupling efficiency of the system.