WorldWideScience

Sample records for coupled hydro-mechanical effects

  1. On the use of effective stress in three-dimensional hydro-mechanical coupled model

    International Nuclear Information System (INIS)

    Arairo, W.; Prunier, F.; Djeran-Maigre, I.; Millard, A.

    2014-01-01

    In the last decades, a number of hydro-mechanical elastoplastic constitutive models for unsaturated soils have been proposed. Those models couple the hydraulic and mechanical behaviour of unsaturated soils, and take into account the effects of the degree of saturation on the stress-strain behaviour and the effects of deformation on the soil-water characteristic response with a simple reversible part for the hysteresis. In addition, the influence of the suction on the stress-strain behaviour is considered. However, until now, few models predict the stress-strain and soil-water characteristic responses of unsaturated soils in a fully three-dimensional Finite Element code. This paper presents the predictions of an unsaturated soil model in a Three-dimensional Framework, and develops a study on the effect of partial saturation on the stability of shallow foundation resting on unsaturated silty soil. Qualitative predictions of the constitutive model show that incorporating a special formulation for the effective stress into an elastoplastic coupled hydro-mechanical model opens a full range of possibilities in modelling unsaturated soil behaviour. (authors)

  2. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Science.gov (United States)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  3. Bonding Strength Effects in Hydro-Mechanical Coupling Transport in Granular Porous Media by Pore-Scale Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqiang Chen

    2016-03-01

    Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.

  4. A multi-scale computational scheme for anisotropic hydro-mechanical couplings in saturated heterogeneous porous media

    NARCIS (Netherlands)

    Mercatoris, B.C.N.; Massart, T.J.; Sluys, L.J.

    2013-01-01

    This contribution discusses a coupled two-scale framework for hydro-mechanical problems in saturated heterogeneous porous geomaterials. The heterogeneous nature of such materials can lead to an anisotropy of the hydro-mechanical couplings and non-linear effects. Based on an assumed model of the

  5. Electro-chemo-hydro-mechanical coupling in clayey media

    International Nuclear Information System (INIS)

    Lemaire, Th.

    2004-12-01

    The aim of this study is to understand coupled phenomena that occur in swelling porous materials like clays. Electro-chemo-hydro-mechanical contributions are taken into account to analyze transfers in such minerals. In a first part, a general discussion is proposed to introduce mineralogical and physico- chemical considerations of clayey media. An important objective of this chapter is to show the crucial role of the microstructure. In a second part is presented an imbibition test in a MX80 bentonite powder. The hydraulic diffusivity versus water content curve's decrease is explained thanks to a double porosity model that shows the progressive collapse of meso-pores due to swelling effects at the micro-scale. Thus a multi-scale analysis is necessary to well describe clayey media behaviour. The third chapter exposes such a multi-scale modelling (periodic homogenization). It is based on the double-layer theory and introduces an innovative concept of virtual electrolyte solution. First numerical results are given in a simple geometry (parallel platelets). In the next part are proposed numerical simulations of two kinds: response of the system to a chemical gradient and simulation of electro-osmosis. The end of this chapter puts into relief the necessity to integrate pH effects in the model. In the last part, chemical surface exchanges are incorporated in the modelling to understand pH and ionic force roles in electro-osmotic process. (author)

  6. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media

    Science.gov (United States)

    Yan, Xia; Huang, Zhaoqin; Yao, Jun; Li, Yang; Fan, Dongyan; Zhang, Kai

    2018-02-01

    In this paper, a numerical model is developed for coupled analysis of deforming fractured porous media with multiscale fractures. In this model, the macro-fractures are modeled explicitly by the embedded discrete fracture model, and the supporting effects of fluid and fillings in these fractures are represented explicitly in the geomechanics model. On the other hand, matrix and micro-fractures are modeled by a multi-porosity model, which aims to accurately describe the transient matrix-fracture fluid exchange process. A stabilized extended finite element method scheme is developed based on the polynomial pressure projection technique to address the displacement oscillation along macro-fracture boundaries. After that, the mixed space discretization and modified fixed stress sequential implicit methods based on non-matching grids are applied to solve the coupling model. Finally, we demonstrate the accuracy and application of the proposed method to capture the coupled hydro-mechanical impacts of multiscale fractures on fractured porous media.

  7. Analysis and modeling of coupled thermo-hydro-mechanical phenomena in 3D fractured media

    International Nuclear Information System (INIS)

    Canamon Valera, I.

    2006-11-01

    negligible (matrix permeability may embody some finer fracturing in addition to pore space). When fracture flow is complemented by significant matrix permeability, it may be possible to avoid empirical connectivity-based corrections, which are used in the literature to account for non-percolation effects. The superposition approach is also applied here to coupled Hydro-Mechanical problems to obtain the equivalent coefficients of the 3D fractured medium, including the permeability tensor, but also elastic stiffness or compliance coefficients, as well as pressure-strain coupling coefficients (Biot). Finally, these results are used to develop a continuum equivalent model for 3D coupled Thermo-Hydro-Mechanics, including: hydro-mechanical coupling via tensorial Biot equations (non-orthotropic), a Darcian flow in an equivalent porous medium (anisotropic permeability), as well as thermal stresses and heat transport by diffusion and convection, taking into account the thermal expansivity of water. Transient simulations of the excavation of the FEBEX gallery, and of the heating due to hypothetical radioactive waste canisters, are conducted using the Comsol Multiphysics software (3D finite elements). The results of numerical simulations are analyzed for different cases and different ways of stressing the system. Finally, preliminary comparisons of simulations with time series data collected during the 'In-Situ Test' of FEBEX yield encouraging results. (author)

  8. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Outline report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Shiozaki, Isao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  9. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. Result report

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao; Neyama, Atsushi; Iwata, Hiroshi; Nakagawa, Koichi; Ishihara, Yoshinao; Sagawa, Hiroshi

    2002-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, this study has been studied on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and preliminary coupling analysis by using development environmental tool (Diffpack) for numerical analysis. (1) In order to prepare the strategy on the addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES), we have studied on the requirement of THAMES-Transport and methodology of coupling analysis. After that we set out modification plan by the Eulerian-Lagrangian (EL) method. (2) Based on the document of modification plan, we have done addition of the mass transport model to the coupled thermo-hydro-mechanical analysis code (THAMES) and carried out verification analysis in order to confirm on the accuracy of THAMES-Transport. (3) In order to understand on the behavior of NaCl in the porewater under the coupled thermo-hydro-mechanical phenomena in the HLW engineered barrier system, we have calculated coupling phenomenon by using THAMES-Transport. Transportation and concentration phenomena of NaCl are calculated but precipitation of NaCl is not occurred under the analysis conditions in this report. (4) In order to confirm about feasibility of coupling analysis under the development environmental tool (Diffpack) for numerical analysis, we have carried out on the design work and writing program of the preliminary coupling system. In this study, we have adopted existing transport model (HYDROGEOCHEM) and geochemical model (phreeqe 60) for preliminary coupling system. (5) In order to confirm program correctness of preliminary coupling system, we have carried out benchmarking analysis by using existing reactive-transport analysis code (HYDROGEOCHEM). (6) We have been prepared short-range development plan based on through the modification study of THAMES and writing program of the preliminary coupling

  10. Effective Hydro-Mechanical Properties of Fluid-Saturated Fracture Networks

    Science.gov (United States)

    Pollmann, N.; Vinci, C.; Renner, J.; Steeb, H.

    2015-12-01

    Consideration of hydro-mechanical processes is essential for the characterization of liquid-resources as well as for many engineering applications. Furthermore, the modeling of seismic waves in fractured porous media finds application not only in geophysical exploration but also reservoir management. Fractures exhibit high-aspect-ratio geometries, i.e. they constitute thin and long hydraulic conduits. Motivated by this peculiar geometry, the investigation of the hydro-mechanically coupled processes is performed by means of a hybrid-dimensional modeling approach. The effective material behavior of domains including complex fracture patterns in a porous rock is assessed by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Classical balance equations are combined with a Poiseuille-type flow in the dimensionally reduced fracture. In the porous surrounding rock, the classical Biot-theory is applied. For simple geometries, our findings show that two main fluid-flow processes occur, leak-off from fractures to the surrounding rock and fracture flow within and between the connected fractures. The separation of critical frequencies of the two flow processes is not straightforward, in particular for systems containing a large number of fractures. Our aim is to model three dimensional hydro-mechanically coupled processes within complex fracture patterns and in particular determine the frequency-dependent attenuation characteristics. Furthermore, the effect of asperities of the fracture surfaces on the fracture stiffness and on the hydraulic conductivity will be added to the approach.

  11. Development of a finite element code to solve thermo-hydro-mechanical coupling and simulate induced seismicity.

    Science.gov (United States)

    María Gómez Castro, Berta; De Simone, Silvia; Rossi, Riccardo; Larese De Tetto, Antonia; Carrera Ramírez, Jesús

    2015-04-01

    Coupled thermo-hydro-mechanical modeling is essential for CO2 storage because of (1) large amounts of CO2 will be injected, which will cause large pressure buildups and might compromise the mechanical stability of the caprock seal, (2) the most efficient technique to inject CO2 is the cold injection, which induces thermal stress changes in the reservoir and seal. These stress variations can cause mechanical failure in the caprock and can also trigger induced earthquakes. To properly assess these effects, numerical models that take into account the short and long-term thermo-hydro-mechanical coupling are an important tool. For this purpose, there is a growing need of codes that couple these processes efficiently and accurately. This work involves the development of an open-source, finite element code written in C ++ for correctly modeling the effects of thermo-hydro-mechanical coupling in the field of CO2 storage and in others fields related to these processes (geothermal energy systems, fracking, nuclear waste disposal, etc.), and capable to simulate induced seismicity. In order to be able to simulate earthquakes, a new lower dimensional interface element will be implemented in the code to represent preexisting fractures, where pressure continuity will be imposed across the fractures.

  12. Numerical modeling for hydro-mechanical coupled problems in the context of geo-materials

    International Nuclear Information System (INIS)

    Fernandes, R.

    2009-01-01

    The main technical purpose of this PhD Thesis is to build up and validate a regularisation method, able to remedy to the spurious mesh dependency of post localized computations, in order to make possible hydro-mechanical coupling studies for geo-materials. The proposed model is based on the framework of second gradient models and is called the micro-dilation model. It allows to predict robustly the hydro-mechanical coupled behaviors related to the degradation of natural soils and rocks. This modeling is a clear enhancement with respect to classical second gradient computations since it requires less degrees of freedom and consequently is less time consuming. Its efficiency is shown through hydro-mechanical coupled simulations of underground excavations. Finally, an algorithm to detect several solutions in the direction of singular modes associated with negative eigenvalues is presented. It allows us to deal with the non-linear nature of the irreversible behavior of soils and rocks. The scope of this bifurcation analysis is restricted to symmetrical operators. Through the simulations of homogeneous biaxial tests and underground excavations under drained conditions, it is shown that this algorithm is an efficient and robust tool not only to detect several solutions but also to overcome numerical instabilities near singular points or due to snap-back. (author)

  13. A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bary, B.; Carpentier, O. [CEA Saclay, DEN/DPC/SCCME/LECBA, F-91191 Gif Sur Yvette, (France); Ranc, G. [CEA VALRHO, DEN/DTEC/L2EC/LCEC, F-30207 Bagnols Sur Ceze, (France); Durand, S. [CEA Saclay, DEN/DM2S/SEMT/LM2S, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    This study focuses on the concrete behavior subjected to moderate temperatures, with a particular emphasis on the transient thermo-hydric stage. A simplified coupled thermo-hydro-mechanical model is developed with the assumption that the gaseous phase is composed uniquely of vapor. Estimations of the mechanical parameters, Biot coefficient and permeability as a function of damage and saturation degree are provided by applying effective-medium approximation schemes. The isotherm adsorption curves are supposed to depend upon both temperature and crack-induced porosity. The effects of damage and parameters linked to transfer (in particular the adsorption curves) on the concrete structure response in the transient phase of heating are then investigated and evaluated. To this aim, the model is applied to the simulation of concrete cylinders with height and diameter of 0.80 m subjected to heating rates of 0.1 and 10 degrees C/min up to 160 degrees C. The numerical results are analyzed, commented and compared with experimental ones in terms of water mass loss, temperatures and gas pressures evolutions. A numerical study indicates that some parameters have a greater influence on the results than others, and that certain coupling terms in the mass conservation equation of water may be neglected. (authors)

  14. DECOVALEX III PROJECT. Thermal-Hydro-Mechanical Coupled Processes in Safety Assessments. Report of Task 4

    International Nuclear Information System (INIS)

    Andersson, Johan

    2005-02-01

    A part (Task 4) of the International DECOVALEX III project on coupled thermo-hydro-mechanical (T-H-M) processes focuses on T-H-M modelling applications in safety and performance assessment of deep geological nuclear waste repositories. A previous phase, DECOVALEX II, saw a need to improve such modelling. In order to address this need Task 4 of DECOVALEX III has: Analysed two major T-H-M experiments (Task 1 and Task 2) and three different Bench Mark Tests (Task 3) set-up to explore the significance of T-H-M in some potentially important safety assessment applications. Compiled and evaluated the use of T-H-M modelling in safety assessments at the time of the year 2000. Organised a forum a forum of interchange between PA-analysts and THM modelers at each DECOVALEX III workshop. Based on this information the current report discusses the findings and strives for reaching recommendations as regards good practices in addressing coupled T-H-M issues in safety assessments. The full development of T-H-M modelling is still at an early stage and it is not evident whether current codes provide the information that is required. However, although the geosphere is a system of fully coupled processes, this does not directly imply that all existing coupled mechanisms must be represented numerically. Modelling is conducted for specific purposes and the required confidence level should be considered. It is necessary to match the confidence level with the modelling objective. Coupled THM modelling has to incorporate uncertainties. These uncertainties mainly concern uncertainties in the conceptual model and uncertainty in data. Assessing data uncertainty is important when judging the need to model coupled processes. Often data uncertainty is more significant than the coupled effects. The emphasis on the need for THM modelling differs among disciplines. For geological radioactive waste disposal in crystalline and other similar hard rock formations DECOVALEX III shows it is essential to

  15. DECOVALEX III PROJECT. Thermal-Hydro-Mechanical Coupled Processes in Safety Assessments. Report of Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden)

    2005-02-15

    A part (Task 4) of the International DECOVALEX III project on coupled thermo-hydro-mechanical (T-H-M) processes focuses on T-H-M modelling applications in safety and performance assessment of deep geological nuclear waste repositories. A previous phase, DECOVALEX II, saw a need to improve such modelling. In order to address this need Task 4 of DECOVALEX III has: Analysed two major T-H-M experiments (Task 1 and Task 2) and three different Bench Mark Tests (Task 3) set-up to explore the significance of T-H-M in some potentially important safety assessment applications. Compiled and evaluated the use of T-H-M modelling in safety assessments at the time of the year 2000. Organised a forum a forum of interchange between PA-analysts and THM modelers at each DECOVALEX III workshop. Based on this information the current report discusses the findings and strives for reaching recommendations as regards good practices in addressing coupled T-H-M issues in safety assessments. The full development of T-H-M modelling is still at an early stage and it is not evident whether current codes provide the information that is required. However, although the geosphere is a system of fully coupled processes, this does not directly imply that all existing coupled mechanisms must be represented numerically. Modelling is conducted for specific purposes and the required confidence level should be considered. It is necessary to match the confidence level with the modelling objective. Coupled THM modelling has to incorporate uncertainties. These uncertainties mainly concern uncertainties in the conceptual model and uncertainty in data. Assessing data uncertainty is important when judging the need to model coupled processes. Often data uncertainty is more significant than the coupled effects. The emphasis on the need for THM modelling differs among disciplines. For geological radioactive waste disposal in crystalline and other similar hard rock formations DECOVALEX III shows it is essential to

  16. Coupled thermo-hydro-mechanical experiment at Kamaishi mine. Technical note 15-99-02. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Chijimatsu, Masakazu; Sugita, Yutaka; Fujita, Tomoo [Tokai Works, Waste Management and Fuel Cycle Research Center, Waste Isolation Research Division, Barrier Performance Group, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Amemiya, Kiyoshi [Hazama Corp., Tokyo (Japan)

    1999-07-01

    It is an important part of the near field performance assessment of nuclear waste disposal to evaluate coupled thermo-hydro-mechanical (T-H-M) phenomena, e.g., thermal effects on groundwater flow through rock matrix and water seepage into the buffer material, the generation of swelling pressure of the buffer material, and thermal stresses potentially affecting porosity and fracture apertures of the rock. An in-situ T-H-M experiment named Engineered Barrier Experiment' has been conducted at the Kamaishi Mine, of which host rock is granodiorite, in order to establish conceptual models of the coupled T-H-M processes and to build confidence in mathematical and computer codes. In 1995, fourteen boreholes were excavated in order to install the various sensors. After the hydraulic tests, mechanical tests were carried out to obtain the rock properties. After that, a test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. During the excavation, the change of pore pressure, displacement and temperature of rock mass were measured. In 1996, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. The field experiment leads to a better understanding of the behavior of the coupled thermo-hydro-mechanical phenomena in the near field. (author)

  17. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of saturated-unsaturated medium

    International Nuclear Information System (INIS)

    Ohnishi, Y.; Shibata, H.; Kobayashi, A.

    1985-01-01

    A model is presented which describes fully coupled thermo-hydro-mechanical behavior of porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. The medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in plane strain condition; water in the ground does not change its phase; heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively in the coupled model. Several types of problems are analyzed. The one is a study of some of the effects of completely coupled thermo-hydro-mechanical behavior on the response of a saturated-unsaturated porous rock containing a buried heat source. Excavation of an underground opening which has radioactive wastes at elevated temperatures is modeled and analyzed. The results shows that the coupling phenomena can be estimated at some degree by the numerical procedure. The computer code has a powerful ability to analyze of the repository the complex nature of the repository

  18. A dissolution-diffusion sliding model for soft rock grains with hydro-mechanical effect

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2018-06-01

    Full Text Available The deformation and failure of soft rock affected by hydro-mechanical (HM effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect. Keywords: Soft rock, Hydro-mechanical (HM effect, Mineral dissolution-diffusion, Grain sliding model

  19. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    International Nuclear Information System (INIS)

    Sistaninia, M; Drezet, J-M; Rappaz, M; Phillion, A B

    2012-01-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.

  20. Thermo-hydro-mechanical coupling in long-term sedimentary rock response

    Science.gov (United States)

    Makhnenko, R. Y.; Podladchikov, Y.

    2017-12-01

    Storage of nuclear waste or CO2 affects the state of stress and pore pressure in the subsurface and may induce large thermal gradients in the rock formations. In general, the associated coupled thermo-hydro-mechanical effect on long-term rock deformation and fluid flow have to be studied. Principles behind mathematical models for poroviscoelastic response are reviewed, and poroviscous model parameter, the bulk viscosity, is included in the constitutive equations. Time-dependent response (creep) of fluid-filled sedimentary rocks is experimentally quantified at isotropic stress states. Three poroelastic parameters are measured by drained, undrained, and unjacketed geomechanical tests for quartz-rich Berea sandstone, calcite-rich Apulian limestone, and clay-rich Jurassic shale. The bulk viscosity is calculated from the measurements of pore pressure growth under undrained conditions, which requires time scales 104 s. The bulk viscosity is reported to be on the order of 1015 Pa•s for the sandstone, limestone, and shale. It is found to be decreasing with the increase of pore pressure despite corresponding decrease in the effective stress. Additionally, increase of temperature (from 24 ºC to 40 ºC) enhances creep, where the most pronounced effect is reported for the shale with bulk viscosity decrease by a factor of 3. Viscous compaction of fluid-filled porous media allows a generation of a special type of fluid flow instability that leads to formation of high-porosity, high-permeability domains that are able to self-propagate upwards due to interplay between buoyancy and viscous resistance of the deforming porous matrix. This instability is known as "porosity wave" and its formation is possible under conditions applicable to deep CO2 storage in reservoirs and explains creation of high-porosity channels and chimneys. The reported experiments show that the formation of high-permeability pathways is most likely to occur in low-permeable clay-rich materials (caprock

  1. DECOVALEX II project. Nirex RCF Shaft Excavation Task 1C - Coupled hydro-mechanical effects of shaft sinking within Sector 7

    International Nuclear Information System (INIS)

    Hakami, H.

    1999-12-01

    Within the framework for an international co-operation in the field of geohydrological and mechanical processes associated with radioactive waste disposal deep in rock masses (DECOVALEX II), the present work involved a number of numerical investigations in order to gain an understanding of the consequences a shaft sinking at Sellafield, England, may bring about. Research groups from five countries approached the modelling of the shaft sinking in the rock mass in question with different numerical methods. Both continuum as well as discontinuum representations of the rock mass were made. Itasca chose the code FLAC 3D , a three dimensional finite difference based computer code to carry out the numerical analyses necessary. As a first approach, an equivalent material model was chosen where discontinuities at all levels assumed to have smeared out in a rock matrix, to produce a theoretical material that would behave elasto-plastically under loading. By selecting the Mohr-Coulomb failure criterion, numerical analyses were carried out that depicted the perturbations in stress and deformational field, the shaft sinking would produce. The sinking of the shaft disturbs the flow regime of the rock mass. By presuming a number of assumptions, the approximate discharge into selected sections of the shaft were computed. Also, by numerically 'monitoring' the pore pressure drawdowns in two boreholes in close vicinity of the shaft the effect of the shaft sinking on the flow was evaluated. Having evaluated the outcome of the first series of the numerical analyses, improvements were made in the model set-up, by introducing three major flow zones with enhanced porosity and permeability in a grid that was otherwise a low conductive medium with very low porosity. A new set of flow analyses were carried out that typified the effect of the added flow zones on the general characteristics of flow in the rock mass in question. Also, by introducing a new failure criterion emerged from both

  2. DECOVALEX II project. Nirex RCF Shaft Excavation Task 1C - Coupled hydro-mechanical effects of shaft sinking within Sector 7

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, H. [Itasca Geomekanik AB, Stockholm (Sweden)

    1999-12-01

    Within the framework for an international co-operation in the field of geohydrological and mechanical processes associated with radioactive waste disposal deep in rock masses (DECOVALEX II), the present work involved a number of numerical investigations in order to gain an understanding of the consequences a shaft sinking at Sellafield, England, may bring about. Research groups from five countries approached the modelling of the shaft sinking in the rock mass in question with different numerical methods. Both continuum as well as discontinuum representations of the rock mass were made. Itasca chose the code FLAC{sup 3D}, a three dimensional finite difference based computer code to carry out the numerical analyses necessary. As a first approach, an equivalent material model was chosen where discontinuities at all levels assumed to have smeared out in a rock matrix, to produce a theoretical material that would behave elasto-plastically under loading. By selecting the Mohr-Coulomb failure criterion, numerical analyses were carried out that depicted the perturbations in stress and deformational field, the shaft sinking would produce. The sinking of the shaft disturbs the flow regime of the rock mass. By presuming a number of assumptions, the approximate discharge into selected sections of the shaft were computed. Also, by numerically 'monitoring' the pore pressure drawdowns in two boreholes in close vicinity of the shaft the effect of the shaft sinking on the flow was evaluated. Having evaluated the outcome of the first series of the numerical analyses, improvements were made in the model set-up, by introducing three major flow zones with enhanced porosity and permeability in a grid that was otherwise a low conductive medium with very low porosity. A new set of flow analyses were carried out that typified the effect of the added flow zones on the general characteristics of flow in the rock mass in question. Also, by introducing a new failure criterion emerged

  3. Coupled thermo-hydro-mechanical processes associated with a radioactive waste repository

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1988-01-01

    The performance assessment of a nuclear waste geologic repository presents a scientific and technical problem of a scope far beyond the evaluation of most civil and geologic constructions. First performance prediction must be made for tens of thousands of years, and a secondly, in calculating potential leakage rates from a repository to the biosphere the authors must determine not only the mean or average travel time but also the shorter travel times of low concentrations. These two criteria demand an understanding of all significant physical and chemical processes likely to occur around a nuclear waste repository. In particular, processes coupling thermal transfer fluid flow, mechanical deformation and chemical reactors, which may be slow in a laboratory time scale, may become very important. This paper gives a general survey on the subject, with specific examples of a number of relevant coupled thermo-hydro-mechanical processes associated with nuclear waste repository

  4. Role of temperature and composition on the thermal-hydro-mechanical coupling of concretes

    International Nuclear Information System (INIS)

    Brue, Flore

    2009-01-01

    The French project of the storage of nuclear wastes, which is managed by the Andra, needs some experimental data on the durability of the concrete. Loadings which are taken into account are the desaturation/re-saturation processes, the heat load and the mechanical evolution. Hence this study focuses on the coupling thermo-hydro-mechanical on concretes of the research program of Andra, made with CEM I and CEM V/A cement type. The water saturation degree and shrinkages of materials, which are subjected to desiccation or re-saturation, are dependent on the imposed thermal and hydrous conditions and on their microstructural characteristics. Moreover the study of the mechanical evolution is gone further at 20 C in function of the water saturation degree. Different short-term tests highlight a hydrous damage, which determine the mechanical behaviour. The long-term study of desiccation creep shows the coupling between the durability, the mechanical evolution and the desiccation. (author)

  5. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 4

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Sagawa, Hiroshi; Matsuoka, Fushiki; Chijimatsu, Masakazu; Amemiya, Kiyoshi

    2005-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu-3D·EL and PHREEQC, those are existing analysis code, is developed in this study. (1) We have introduced 8 nodes element for THAMES code in order to solve the coupled thermal, hydraulic and mechanical phenomena. Furthermore, in order to obtain the reliable resolution, each phenomenon is solved separately instead of full coupling. (2) In order to upgrade Dtransu-3D·EL model, we have introduced gas diffusion independent on aqueous element. (3) We have adopted surface site density for the bentonite depend on water content and CSH solid phase based on the ratio of C/S for cementitious material in the geochemistry module, and studied on the methodology of time mesh for kinetic model and separate method for pore water chemistry in the bentonite. (4) In order to develop THMC code, we have modified Multi p hreeqc to keep efficiency distributed processing for geochemical calculation and modified COUPLYS to calculate continuous treatment, and studied on the coupling module. After THAMES, Dtransu, PHREEQC and the hydraulic conductivity module were installed in COUPLYS, verification study was carried out to check basic function. (5) In order to ensure efficiency of analysis processor, we have developed supporting tool for graphic processor for THMC code and supporting tool of interpretation for geochemistry results. (author)

  6. Modelling of thermo-hydro-mechanical couplings and damage of viscoplastic rocks in the context of radioactive waste storage

    International Nuclear Information System (INIS)

    Kharkhour, H.

    2002-12-01

    Trying to develop a model taking into account the complex rheology of a geologic media characterized by visco-plasticity, damage and thermo-hydro-mechanical couplings is unusual in geotechnics. This is not the case for radioactive waste storage that presents specificities from several viewpoints. Indeed, the scales of time and space concerned by this type of storage are disproportionate to those of civil engineering works or mines. Another specificity of the radioactive waste storage lies in the coupled processes involved. No effect likely to compromise the long-term security of the storage could be ignored. For example this is the case of damage, a phenomenon which does not necessarily lead to a major change of the mechanical behavior of the works but can influence the permeability of the medium in relation with a migration of radionuclides. It can be conceived that this phenomenon finds all its importance in the context of the thermo-hydro-mechanical couplings of a waste storage with high activity. However, the interaction between the damage and the THM coupled processes was the object of very few research subject up to now. This. is even more true for viscoplastic media considered as ductile, and therefore, less prone to cracking than brittle media. It is exactly in this 'original' but difficult context that took place the research presented in this report. This study was dedicated to the analysis of the phenomena and the thermal, hydraulic and mechanical couplings occurring in the near and far field of a high activity radioactive waste storage. Two examples of geological media were considered in this report: the clayey rock of Callovo-Oxfordian, called ' Argilites de l'Est ', target rock of the ANDRA project to carry out a subterranean laboratory for the study of long life radioactive waste storage; and the salt rock of the. subterranean laboratory in the old salt mine of Asse in Germany. (author)

  7. High-performance coupled poro-hydro-mechanical models to resolve fluid escape pipes

    Science.gov (United States)

    Räss, Ludovic; Makhnenko, Roman; Podladchikov, Yury

    2017-04-01

    Field observations and laboratory experiments exhibit inelastic deformation features arising in many coupled settings relevant to geo-applications. These irreversible deformations and their specific patterns suggest a rather ductile or brittle mechanism, such as viscous creep or micro cracks, taking place on both geological (long) and human (short) timescales. In order to understand the underlying mechanisms responsible for these deformation features, there is a current need to accurately resolve the non-linearities inherent to strongly coupled physical processes. Among the large variety of modelling tools and softwares available nowadays in the community, very few are capable to efficiently solve coupled systems with high accuracy in both space and time and run efficiently on modern hardware. Here, we propose a robust framework to solve coupled multi-physics hydro-mechanical processes on very high spatial and temporal resolution in both two and three dimensions. Our software relies on the Finite-Difference Method and a pseudo-transient scheme is used to converge to the implicit solution of the system of poro-visco-elasto-plastic equations at each physical time step. The rheology including viscosity estimates for major reservoir rock types is inferred from novel lab experiments and confirms the ease of flow of sedimentary rocks. Our results propose a physical mechanism responsible for the generation of high permeability pathways in fluid saturated porous media and predict their propagation in rates observable on operational timescales. Finally, our software scales linearly on more than 5000 GPUs.

  8. Research on evaluation of coupled thermo-hydro-mechanical phenomena in the near-field

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Imai, Hisashi; Fukutome, Kazuhito; Kayukawa, Koji; Sasaki, Hajime; Moro, Yoshiji

    2004-02-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. We carried out the simulation against the Task 1 (simulation of FEBEX in-situ full-scale experiment), Task 3 BMT1 (Bench Mark Test against the near field coupling phenomena) and Task 3 BMT2 (Bench Mark Test against the up-scaling of fractured rock mass). This report shows the simulation results against these tasks. Furthermore, technical investigations about the in-situ full-scale experiment (called Prototype Repository Project) in Aespoe HRL facility by SKB of Sweden were performed. In order to evaluate the coupled phenomena in the engineered barrier, we use the new swelling model based on the theoretical approach. In this paper, we introduce the modeling approach and applicability about the new model. (author)

  9. A Coupled Thermo-Hydro-Mechanical Model of Jointed Hard Rock for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhuang

    2014-01-01

    Full Text Available Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.

  10. Full-scale test on coupled thermo-hydro-mechanical processes in engineered barrier system

    International Nuclear Information System (INIS)

    Moro, Yoshiji; Fujita, Tomoo; Kanno, Takeshi; Kobayashi, Akira.

    1994-01-01

    On dynamic behavior within artificial barrier in ground layer disposal of high level radioactive wastes, some phenomena such as exotherm from the wastes, penetration of groundwater from surrounding base rock, swelling pressure formation of buffer material due to penetration of groundwater, ground pressure change of the surrounding base rock, and so forth are supposed to affect each other. It is one of important problems from a viewpoint of elucidation of near field environment in the property evaluation study to evaluate such thermo-hydro-mechanical coupled phenomena. As results of the investigation from such reason and its application to actual test in accompany with execution of heating and water inserting test in the Big-Ben (Big-Bentonite facility), the following informations were obtained: (1) In heating and water inserting test, data on temperature distribution, water content ratio distribution and swelling pressure of each portion for 5 months could be obtained. (2) water migration due to water slope was divided to migrations due to steam and liquid water, of which models were made according to Fick and Darcy laws, respectively. (3) As a simulation of water migration, water diffusion coefficient due to temperature slope could be expressed almost by a model with nonlinearity to temperature. (G.K.)

  11. Fully-coupled hydro-mechanical modelling of the D-holes and validation drift inflow

    International Nuclear Information System (INIS)

    Monsen, K.; Barton, N.; Makurat, A.

    1992-02-01

    This report presents the results from fully-coupled hydro-mechanical modelling of the D-hole and drift inflows. Joints represented in Harwells stochastically generated 8m x 8m x 8m cubes were used to select two possible joint geometries for two-dimensional rock mechanics simulations of the 2.8 x 2.2m validation drift, and the rock mass response to its excavation. The joints intersecting the four end faces of these cubes were set up in distinct element UDEC-BB models and loaded with boundary stresses of 10 MPa vertically and 14 MPa horizontally. In numerical models 5 and 8, which were run first as mechanical response (M) models (TR 91-05), full H-M coupling was performed, with calculations of inflow. In general, response to excavation was a little stronger than in hte un-coupled mechanical response (M) modelling. In the D-hole simulations, however, channel development int he disturbed zone could not occur due to less displacement taking place in the rock mass. For this reason, the stress levels were also generally much more moderate, preventing the joints from closing as much as in the drift simulations. Consequently, the D-hole model had a much better radial connectivity. It was possible to observe that the radial inflow to the D-holes was significantly higher than the flow into the drift models. However, due to the extremely small joint apertures involved (<1μm), time steps and calculation times were very slow in the H-M models, and although mechanical behaviour appeared to have reached equilibrium, there was evidence of continued transients in some of the flow regions. The drift excavation caused nearly total closing of critical joints due to local normal stress inceases. Near-blockage of fluid transportation routes was demonstrated. (au)

  12. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 2. Result report

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito Takaya; Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao; Neyama, Atsushi; Tanaka, Yumiko

    2003-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code on the thermo-hydro-mechanical-chemical phenomena by THAMES, Dtransu and phreeqe60, which are existing analysis code, is developed in this study. And we carried out the case analysis on the thermo-hydro-mechanical-chemical phenomena by this code. (1) We have developed coupling analysis system to manage coupling analysis and to control coupling process automatically for THAMES (thermo-hydro-mechanical analysis code), Dtransu (mass transport analysis code) and phreeqe60 (geochemical analysis code). (2) Some supporting module, which includes transfer of dissolution concentration and total concentration (dissolution + precipitation concentration), was prepared as a functional expansion. And in order to treat multi-chemical elements, we have codified mass transport analysis code. (3) We have prepared hydraulic conductivity module of buffer material depending on change of dry density due to chemical equilibrium (dissolution and precipitation of minerals), and change of concentration of NaCl solutions. After THAMES, Dtransu, phreeqe60 and hydraulic conductivity module were installed in the COUPLYS, sensitivity analysis was carried out to check basic operation. (4) In order to confirm the applicability of the developed THMC analysis code, we have carried out case analysis on 1-dimensional and 3-dimensional model which including vitrified waste, over-pack, buffer material and rock in the HLW near-field. (author)

  13. A Rock Mechanics and Coupled Hydro mechanical Analysis of Geological Repository of High Level Nuclear Waste in Fractured Rocks

    International Nuclear Information System (INIS)

    Min, Kibok

    2011-01-01

    This paper introduces a few case studies on fractured hard rock based on geological data from Sweden, Korea is one of a few countries where crystalline rock is the most promising rock formation as a candidate site of geological repository of high level nuclear waste. Despite the progress made in the area of rock mechanics and coupled hydro mechanics, extensive site specific study on multiple candidate sites is essential in order to choose the optimal site. For many countries concerned about the safe isolation of nuclear wastes from the biosphere, disposal in a deep geological formation is considered an attractive option. In geological repository, thermal loading continuously disturbs the repository system in addition to disturbances a recent development in rock mechanics and coupled hydro mechanical study using DFN(Discrete Fracture Network) - DEM(Discrete Element Method) approach mainly applied in hard, crystalline rock containing numerous fracture which are main sources of deformation and groundwater flow

  14. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    Science.gov (United States)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach

  15. Electro-chemo-hydro-mechanical coupling in clayey media; Couplage electro-chimio-hydro-mecaniques dans les milieux argileux

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, Th

    2004-12-15

    The aim of this study is to understand coupled phenomena that occur in swelling porous materials like clays. Electro-chemo-hydro-mechanical contributions are taken into account to analyze transfers in such minerals. In a first part, a general discussion is proposed to introduce mineralogical and physico- chemical considerations of clayey media. An important objective of this chapter is to show the crucial role of the microstructure. In a second part is presented an imbibition test in a MX80 bentonite powder. The hydraulic diffusivity versus water content curve's decrease is explained thanks to a double porosity model that shows the progressive collapse of meso-pores due to swelling effects at the micro-scale. Thus a multi-scale analysis is necessary to well describe clayey media behaviour. The third chapter exposes such a multi-scale modelling (periodic homogenization). It is based on the double-layer theory and introduces an innovative concept of virtual electrolyte solution. First numerical results are given in a simple geometry (parallel platelets). In the next part are proposed numerical simulations of two kinds: response of the system to a chemical gradient and simulation of electro-osmosis. The end of this chapter puts into relief the necessity to integrate pH effects in the model. In the last part, chemical surface exchanges are incorporated in the modelling to understand pH and ionic force roles in electro-osmotic process. (author)

  16. Hydro-mechanical coupling and transport in Meuse/Haute-Marne argillite: experimental and multi-scale approaches

    International Nuclear Information System (INIS)

    Cariou, S.

    2010-07-01

    This thesis deals with the hydro-mechanical behaviour of argillite. Classical Biot theory is shown to be badly adapted to the case of argillite. An original state equation is then built by use of homogenization tools, and takes into account the microstructure of argillite as well as physical phenomena happening inside the material, like the swelling overpressure inside the clay particles or the capillary effects in the porous network. This state equation explains some experiments which were not by the classical Biot theory. It is then improved by integrating the experimental data that are the dependency of the elasticity tensor with the saturation degree and the existence of a porosity surrounding the inclusions. Combined with the monitoring of length variation under hydric loading, this relevant state equation permits one to determine the Biot tensor of argillite. Since this state equation is coupled with the hydric state of the material, one is interested in modelling the variation of the saturation degree during a drying process. Two transport models are studied and compared, then a model for the porous network is proposed in order to explain the unusual permeability measurements. (author)

  17. Results of laboratory and in-situ measurements for the description of coupled thermo-hydro-mechanical processes in clays

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ingeborg; Alheid, Hans-Joachim [BGR Hannover, Stilleweg 2, D-30655 Hannover (Germany); Jockwer, Norbert [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, 38122 Braunschweig (Germany); Mayor, Juan Carlos [ENRESA, Emilio Vargas 7, E-Madrid (Spain); Garcia-Sineriz, Jose Luis [AITEMIN, c/ Alenza, 1 - 28003 Madrid (Spain); Alonso, Eduardo [International Center for Numerical Methods in Engineering, CIMNE, Edificio C-1, Campus Norte UPC, C/Gran Capitan, s/n, 08034 Barcelona (Spain); Weber, Hans Peter [NAGRA, Hardstrasse 73, CH-5430 Wettingen (Switzerland); Ploetze, Michael [ETHZ, Eidgenoessische Technische Hochschule Zuerich, ETH Zentrum, HG Raemistrasse 101, CH-8092 Zuerich (Switzerland); Klubertanz, Georg [COLENCO Power Engineering Ltd, CPE, Taefern Str. 26, 5405 Baden-Daettwil (Switzerland); Ammon, Christian [Rothpletz, Lienhard, Cie AG, Schifflaendestrasse 35, 5001 Aarau (Switzerland)

    2004-07-01

    The Heater Experiment at the Mont Terri Underground Laboratory aims at producing a validated model of thermo-hydro-mechanically (THM) coupled processes. The experiment consists of an engineered barrier system where in a vertical borehole, a heater is embedded in bentonite blocks, surrounded by the host rock, Opalinus Clay. The experimental programme comprises permanent monitoring before, during, and after the heating phase, complemented by geotechnical, hydraulic, and seismic in-situ measurements as well as laboratory analyses of mineralogical and rock mechanics properties. After the heating, the experiment was dismantled for further investigations. Major results of the experimental findings are outlined. (authors)

  18. Effect of Hydraulic Pressure on Warm Hydro Mechanical Deep Drawing of Magnesium Alloy Sheet

    Science.gov (United States)

    Liu, Wei; Wu, Linzhi; Yuan, Shijian

    The uniaxial tensile test and hydraulic bulging test of AZ31 magnesium alloy sheets were applied to study the influence of temperature on the material properties and obtain the forming limit curves at different temperatures. Numerical simulations of warm hydro mechanical deep drawing were carried out to investigate the effect of hydraulic pressure on the formability of a cylindrical cup, and the simplified hydraulic pressure profiles were used to simulate the loading procedure of hydraulic pressure. The optimal hydraulic pressure at different temperatures were given and verified by experimental studies at temperature 100°C and 170V.

  19. Coupled Large Scale Hydro-mechanical Modelling for cap-rock Failure Risk Assessment of CO2 Storage in Deep Saline Aquifers

    International Nuclear Information System (INIS)

    Rohmer, J.; Seyedi, D.M.

    2010-01-01

    This work presents a numerical strategy of large scale hydro-mechanical simulations to assess the risk of damage in cap-rock formations during a CO 2 injection process. The proposed methodology is based on the development of a sequential coupling between a multiphase fluid flow (TOUGH2) and a hydro-mechanical calculation code (Code-Aster) that enables us to perform coupled hydro-mechanical simulation at a regional scale. The likelihood of different cap-rock damage mechanisms can then be evaluated based on the results of the coupled simulations. A scenario based approach is proposed to take into account the effect of the uncertainty of model parameters on damage likelihood. The developed methodology is applied for the cap-rock failure analysis of deep aquifer of the Dogger formation in the context of the Paris basin multilayered geological system as a demonstration example. The simulation is carried out at a regional scale (100 km) considering an industrial mass injection rate of CO 2 of 10 Mt/y. The assessment of the stress state after 10 years of injection is conducted through the developed sequential coupling. Two failure mechanisms have been taken into account, namely the tensile fracturing and the shear slip reactivation of pre-existing fractures. To deal with the large uncertainties due to sparse data on the layer formations, a scenario based strategy is undertaken. It consists in defining a first reference modelling scenario considering the mean values of the hydro-mechanical properties for each layer. A sensitivity analysis is then carried out and shows the importance of both the initial stress state and the reservoir hydraulic properties on the cap-rock failure tendency. On this basis, a second scenario denoted 'critical' is defined so that the most influential model parameters are taken in their worst configuration. None of these failure criteria is activated for the considered conditions. At a phenomenological level, this study points out three key

  20. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  1. Coupled thermo-hydro-mechanical processes around a bentonite buffer embedded in Opalinus Clay - Comparison between measurements and calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ingeborg; Alheid, Hans-Joachim [BGR Hannover, Stilleweg 2, D-30655 Hannover (Germany); Jockwer, Norbert [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, 38122 Braunschweig (Germany); Mayor, Juan Carlos [ENRESA, Emilio Vargas 7, E-Madrid (Spain); Garcia-Sineriz, Jose Luis [AITEMIN, c/ Alenza, 1 - 28003 Madrid (Spain); Alonso, Eduardo; Munoz, Juan Jorge [International Center for Numerical Methods in Engineering, CIMNE, Edificio C-1, Campus Norte UPC, C/Gran Capitan, s/n, 08034 Barcelona (Spain); Weber, Hans Peter [NAGRA, Hardstrasse 73, CH-5430 Wettingen (Switzerland); Ploetze, Michael [ETHZ, Eidgenoessische Technische Hochschule Zuerich, ETH Zentrum, HG Raemistrasse 101, CH-8092 Zuerich (Switzerland); Klubertanz, Georg [COLENCO Power Engineering Ltd, CPE, Taefern Str. 26, 5405 Baden-Daettwil (Switzerland); Ammon, Christian [Rothpletz, Lienhard, Cie AG, Schifflaendestrasse 35, 5001 Aarau (Switzerland)

    2004-07-01

    The Heater Experiment at the Mont Terri Underground Laboratory consists of an engineered barrier system composed of compacted bentonite blocks around a heater. The bentonite barrier is embedded in Opalinus Clay. The aim of the project is improved understanding of thermo-hydro mechanically (THM) coupled processes. Calculations are performed by 2 Finite-Element programs, CODE-BRIGHT and MHERLIN, the former for the near-field modeling and the latter for the rock modeling. Numerical modeling is carried out during all phases of the project to give input for design tasks such as cooling and dismantling, and to finally produce verified models of the THM coupled engineered barrier system. Results of both programs are discussed in the light of the experimental findings. (authors)

  2. Investigation into the factors that influence inverse bulging effect during sheet hydro-mechanical deep drawing

    Directory of Open Access Journals (Sweden)

    Lang Lihui

    2015-01-01

    Full Text Available The factors that influence inverse bulging effect during sheet hydro-mechanical deep drawing are especially researched in this paper. According to the different inverse bulging process, two modes can be singled: the initial inverse bulging (IIB and the local inverse bulging (LIB. IIB includes two parameters: inverse bulging height ratio (HIb/t and inverse bulging pressure ratio (PIb/t. LIB is influenced by IIB and has a direct relationship with liquid chamber pressure in the forming process. The optimal inverse bulging parameters of hemispherical bottom cylindrical part and flat bottom cylindrical part are obtained by numerical simulation. Process parameters including the clearance between the punch and the blank holder and the blank holder entrance radius that have a large influence on inverse bulging effect are optimized, so as to make inverse bulging effect behave better in hydroforming process. Finally, the accuracy of the numerical simulation results was verified by experiments.

  3. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.

    2018-01-01

    A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...

  4. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  5. Summary report of research on evaluation of coupled thermo-hydro-mechanical behavior in the engineered barrier

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Amemiya, Kiyoshi; Yamashita, Ryo

    2002-02-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in to the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. In the above numerical code, swelling phenomenon is modeled as the function of water potential. However it dose no evaluate the experiment results enough. Then, we try to apply the new model. (author)

  6. A Dual-Continuum Model for Brine Migration in Salt Associated with Heat-Generating Nuclear Waste: Fully Coupled Thermal-Hydro-Mechanical Analysis

    Science.gov (United States)

    Hu, M.; Rutqvist, J.

    2017-12-01

    The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.

  7. Coupled Hydro-Mechanical Simulations of CO2 Storage Supported by Pressure Management Demonstrate Synergy Benefits from Simultaneous Formation Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Kempka Thomas

    2015-04-01

    Full Text Available We assessed the synergetic benefits of simultaneous formation fluid extraction during CO2 injection for reservoir pressure management by coupled hydro-mechanical simulations at the prospective Vedsted storage site located in northern Denmark. Effectiveness of reservoir pressure management was investigated by simulation of CO2 storage without any fluid extraction as well as with 66% and 100% equivalent volume formation fluid extraction from four wells positioned for geothermal heat recovery. Simulation results demonstrate that a total pressure reduction of up to about 1.1 MPa can be achieved at the injection well. Furthermore, the areal pressure perturbation in the storage reservoir can be significantly decreased compared to the simulation scenario without any formation fluid extraction. Following a stress regime analysis, two stress regimes were considered in the coupled hydro-mechanical simulations indicating that the maximum ground surface uplift is about 0.24 m in the absence of any reservoir pressure management. However, a ground uplift mitigation of up to 37.3% (from 0.24 m to 0.15 m can be achieved at the injection well by 100% equivalent volume formation fluid extraction. Well-based adaptation of fluid extraction rates can support achieving zero displacements at the proposed formation fluid extraction wells located close to urban infrastructure. Since shear and tensile failure do not occur under both stress regimes for all investigated scenarios, it is concluded that a safe operation of CO2 injection with simultaneous formation fluid extraction for geothermal heat recovery can be implemented at the Vedsted site.

  8. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 3. Result Report

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito, Takaya; Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao

    2004-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu and phreeqc, which are existing analysis code, is developed in this study. And some case analyses on THMC phenomena are carried out by this code. (1) Some supporting modules, which include the transfer of dissolution concentration and total concentration (dissolution + precipitation concentration), were prepared as a functional expansion. And in order to add on the function of treat de-gases and gases diffusion, accumulation and dilution phenomena, the mass transport analysis code was modified. (2) We have modified reactive transport module to treat ionic exchange, surface reaction and kinetic reaction in the each barrier. (3) We have prepared hydraulic conductivity module of buffer material depending on change of dry density due to chemical equilibrium (dissolution and precipitation of minerals), degradation of buffer material such as Ca-type bentonite and change of concentration of NaCl solutions. After THAMES, Dtransu, phreeqc and the hydraulic conductivity module were installed in COUPLYS (Coupling Analysis), verification study was carried out to check basic function. And we have modified COUPLYS to control coupling process. (4) In order to confirm the applicability of the developed THMC analysis code (existing analysis code and COUPLYS), we have carried out case analyses on 1-dimensional and 3-dimensional model which are including vitrified waste, over-pack, buffer material and rock in the HLW near-field. (author)

  9. Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-11-01

    Full Text Available The water leak-off during hydraulic fracturing in shale gas reservoirs is a complicated transport behavior involving thermal (T, hydrodynamic (H, mechanical (M and chemical (C processes. Although many leak-off models have been published, none of the models fully coupled the transient fluid flow modeling with heat transfer, chemical-potential equilibrium and natural-fracture dilation phenomena. In this paper, a coupled thermo-hydro-mechanical-chemical (THMC model based on non-equilibrium thermodynamics, hydrodynamics, thermo-poroelastic rock mechanics, and non-isothermal chemical-potential equations is presented to simulate the water leak-off process in shale gas reservoirs. The THMC model takes into account a triple-porosity medium, which includes hydraulic fractures, natural fractures and shale matrix. The leak-off simulation with the THMC model involves all the important processes in this triple-porosity medium, including: (1 water transport driven by hydraulic, capillary, chemical and thermal osmotic convections; (2 gas transport induced by both hydraulic pressure driven convection and adsorption; (3 heat transport driven by thermal convection and conduction; and (4 natural-fracture dilation considered as a thermo-poroelastic rock deformation. The fluid and heat transport, coupled with rock deformation, are described by a set of partial differential equations resulting from the conservation of mass, momentum, and energy. The semi-implicit finite-difference algorithm is proposed to solve these equations. The evolution of pressure, temperature, saturation and salinity profiles of hydraulic fractures, natural fractures and matrix is calculated, revealing the multi-field coupled water leak-off process in shale gas reservoirs. The influences of hydraulic pressure, natural-fracture dilation, chemical osmosis and thermal osmosis on water leak-off are investigated. Results from this study are expected to provide a better understanding of the

  10. Hydro-mechanical coupling in non-saturated medium with phase change. Application to desiccation shrinkage

    International Nuclear Information System (INIS)

    Lassabatere, Thierry

    1994-01-01

    The target of this research is to set up a unified and coherent working frame based upon the rigorous principles of thermodynamics and making it possible to model a large class of physical phenomena acting in unsaturated porous media, as well as the related interactions with the mechanical state of the structures. This class corresponds to reactive phenomena among which one finds the phase change (desiccation) for which the whole of its subsequent actions (creep but essentially shrinkage) is modelled and which will be treated as a specific application example. The first chapter recalls the bases of the adopted description of the porous medium as well as the global thermodynamical frame which underlays the whole modelling. Chapter II deals with the mainly new formulation and the identification of a non linear elastic constitutive law of the medium involved. Various reflexion elements related to the microscopic behaviours of the components and to experiments have orientated the model towards some more limitative hypotheses making it possible to have a complete and explicit determination of a law for the macroscopic behaviour. Chapter IV and V are examples of application: chapter IV studies the problem of shrinkage and creep in a coupled linear elastic behaviour. Chapter V is limited to the case of shrinkage treated by a numerical application of the whole non-linear elastic model. The results obtained are in good agreement with the corresponding experiments. (author) [fr

  11. Effect of surface loading on the hydro-mechanical response of a tunnel in saturated ground

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2016-09-01

    Full Text Available The design of underground spaces in urban areas must account not only for the current overburden load but also for future surface loads, such as from construction of high-rise buildings above underground structures. In saturated ground, the surface load will generate an additional mechanical response through stress changes and ground displacement, as well as a hydraulic response through pore pressure changes. These hydro-mechanical (H-M changes can severely influence tunnel stability. This paper examines the effect of surface loading on the H-M response of a typical horseshoe-shaped tunnel in saturated ground. Two tunnel models were created in the computer code Fast Lagrangian Analysis of Continua (FLAC. One model represented weak and low permeability ground (stiff clay, and the other represented strong and high permeability ground (weathered granite. Each of the models was run under two liner permeabilities: permeable and impermeable. Two main cases were compared. In Case 1, the surface load was applied 10 years after tunnel construction. In Case 2, the surface load was applied after the steady state pore pressure condition was achieved. The simulation results show that tunnels with impermeable liners experienced the most severe influence from the surface loading, with high pore pressures, large inward displacement around the tunnels, and high bending moments in the liner. In addition, the severity of the response increased toward steady state. This induced H-M response was worse for tunnels in clay than for those in granite. Furthermore, the long-term liner stabilities in Case 1 and Case 2 were similar, indicating that the influence of the length of time between when the tunnel was completed and when the surface load was applied was negligible. These findings suggest that under surface loading, in addition to the ground strength, tunnel stability in saturated ground is largely influenced by liner permeability and the long-term H-M response of

  12. Coupled thermo-hydro-mechanical experiment at Kamaishi mine. Technical note 08-96-01. Measurement data related to excavation of the test pit

    International Nuclear Information System (INIS)

    Fujita, T.; Chijimatsu, M.; Sugita, Y.; Ishikawa, H.

    1997-07-01

    It is an important part of the near field performance assessment of nuclear waste disposal to evaluate coupled thermo-hydro-mechanical (T-H-M) phenomena, e.g., thermal effects on groundwater flow through rock matrix and water seepage into the buffer material, the generation of swelling pressure of the buffer material, and thermal stresses potentially affecting porosity and fracture apertures of the rock. An in-situ T-H-M experiment named Engineered Barrier Experiment ' has been conducted at the Kamaishi Mine, of which host rock is granodiorite, in order to establish conceptual models of the coupled T-H-M processes and to build confidence in mathematical models and computer codes. In 1995, fourteen boreholes were excavated in order to install the various sensors. After the hydraulic tests, mechanical tests were carried out to obtain the rock properties. After that, a test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. During the excavation, the change of pore pressure, displacement and temperature of rock mass were measured. Furthermore, pit convergence was measured. This note shows the results of mechanical tests and measurement data during the excavation of test pit. (author)

  13. Hydro-mechanical processes

    Energy Technology Data Exchange (ETDEWEB)

    Laouafa, F.; Kazmierczak, J.B. [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, 60 - Verneuil en Halatte (France); Armand, G. [Agence Nationale pour la Gestion des Dechets Radioactifs, Lab. de Souterrain de Meuse/Haute-Marne, 55 - Bure (France); Vaunat, J. [Catalonia UPC- Technical Univ., Barcelona (Spain); Jobmann, M.; Polster, M. [DBETEC- DBE Technology GmbH, Peine (Germany); Su, K.; Lebon, P.; Plas, F.; Armand, G.; Abou-Chakra Guery, A.; Cormery, F.; Shao, J.F.; Kondo, D. [ANDRA - Agence Nationale pour la Gestion des Dechets Radioactifs, 92 - Chatenay Malabry (France); Souley, M. [Institut National de l' Environnement Industriel et des Risques (INERIS), 54 - Nancy (France); Coll, C.; Charlier, R.; Collin, F.; Gerard, P. [Liege Univ., Dept. ArGEnCo (Belgium); Xiang Ling, Li [ESV EURIDICE, SCK.CEN, Belgian Nuclear Research Centre, Mol (Belgium); Collin, F. [Liege Univ., Charge de Recherches FNRS (Belgium); Pellet, F.L.; Fabre, G. [University Joseph Fourier, Laboratory 3S-R, 38 - Grenoble (France); Garcia-Sineriz, J.L.; Rey, M. [AITEMIN - Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid (Spain); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Castellanos, E.; Romero, E.; Lloret, A.; Gens, A. [Catalunya Univ. Politecnica, UPC (Spain); Villar, M.V. [CIEMAT - Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Chambon, R. [Laboratoire 3S, UJF-INPG-CNRS, 38 - Grenoble (France); Czaikowski, O.; Lux, K.H. [Clausthal Univ. of Technology, Professorship for Waste Disposal and Geomechanics, Clausthal-Zellerfeld (Germany); Van Geet, M.; Bastiaens, W.; Volckaert, G.; Weetjens, E.; Sillen, X. [SCK-CEN, Waste and Disposal dept., Mol (Belgium); ONDRAF/NIRAS, Brussel (Belgium); Imbert, Ch. [CEA Saclay, Dept. de Physico-Chimie (DPC/SCCME/LECBA), 91 - Gif sur Yvette (France)] [and others

    2007-07-01

    This session gathers 13 articles dealing with: three-dimensional and time stepping modelling of the whole Meuse/Haute-Marne ANDRA URL (F. Laouafa, J.B. Kazmierczak, G. Armand, J. Vaunat, M. Jobmann, M. Polster); a constitutive model for a deep argillaceous rock using Hoek-Brown criteria (K. Su, C. Chavant, M. Souley); the long term behaviour of the Boom clay: influence of viscosity on the pore pressure distribution (C. Coll, R. Charlier, X.L. Li, F. Collin); the microstructural changes induced by viscoplastic deformations in argillaceous rocks (F.L. Pellet, G. Fabre, K. Su, P. Lebon); the engineered barrier experiment at Mont Terri rock laboratory (J.L. Garcia-Sineriz, M. Rey, J.C. Mayor); the chemical influence on the Hydro-Mechanical behaviour of high-density FEBEX bentonite (E. Castellanos, M.V. Villar, E. Romero, A. Lloret, A. Gens); the influence of water exchanges on the gallery convergence (P. Gerard, R. Charlier, R. Chambon, F. Collin); a new method for ageing resistant storage of argillaceous rock samples to achieve reproducible experimental results even after long intermediate storage times (O. Czaikowski, K.H. Lux); the installation and evaluation of a large-scale in-situ shaft seal experiment in Boom clay the RESEAL project M. Van Geet, W. Bastiaens, G. Volckaert, E. Weetjens, X. Sillen, A. Gens, M.V. Villar, Ch. Imbert, M. Filippi, F. Plas); the hydro-Mechanical response of the Callovo-Oxfordian mud-stone around a deep vertical drift (J. Vaunat, B. Garitte, A. Gens, K. Su, G. Armand); the sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite (J.F. Harrington, D.J. Birchall, P. Sellin); the comparison of the poro-elastic behavior of Meuse/Haute Marne and Tournemire argillites: effect of loading and saturation states (E. Bemer, A. Noiret, F. Homand, A. Rejeb); and the multi-scale modelling of the argillites mechanical behaviour (A. Abou-Chakra Guery, F. Cormery, K. Su, J.F. Shao, D. Kondo)

  14. Development of a new code to solve hydro-mechanical coupling, shear failure and tensile failure due to hydraulic fracturing operations.

    Science.gov (United States)

    María Gómez Castro, Berta; De Simone, Silvia; Carrera, Jesús

    2016-04-01

    Nowadays, there are still some unsolved relevant questions which must be faced if we want to proceed to the hydraulic fracturing in a safe way. How much will the fracture propagate? This is one of the most important questions that have to be solved in order to avoid the formation of pathways leading to aquifer targets and atmospheric release. Will the fracture failure provoke a microseismic event? Probably this is the biggest fear that people have in fracking. The aim of this work (developed as a part of the EU - FracRisk project) is to understand the hydro-mechanical coupling that controls the shear of existing fractures and their propagation during a hydraulic fracturing operation, in order to identify the key parameters that dominate these processes and answer the mentioned questions. This investigation focuses on the development of a new C++ code which simulates hydro-mechanical coupling, shear movement and propagation of a fracture. The framework employed, called Kratos, uses the Finite Element Method and the fractures are represented with an interface element which is zero thickness. This means that both sides of the element lie together in the initial configuration (it seems a 1D element in a 2D domain, and a 2D element in a 3D domain) and separate as the adjacent matrix elements deform. Since we are working in hard, fragile rocks, we can assume an elastic matrix and impose irreversible displacements in fractures when rock failure occurs. The formulation used to simulate shear and tensile failures is based on the analytical solution proposed by Okada, 1992 and it is part of an iterative process. In conclusion, the objective of this work is to employ the new code developed to analyze the main uncertainties related with the hydro-mechanical behavior of fractures derived from the hydraulic fracturing operations.

  15. Long-term stability of the near-field about high-level radioactive waste repository in thermo-hydro-mechanical coupling action condition

    International Nuclear Information System (INIS)

    Liu Yuemiao; Wang Ju; Ke Dan; Cai Meifeng

    2008-01-01

    It is a long-term process for the high-level radioactive waste repository, from opening, construction to end of its service. The long-term stability of the near-field is the key issue for the design of HLW repository because the opening and heat generated from the HLW. Through a nationwide investigation, Beishan area, a Gobi desert in Gansu province, is considered as a suitable candidate and GMZ bentonite deposit which located in Xinghe County, Inner Mongolia has been proposed for the supplier of buffer/backfill material for HLW geological repository in China. According to the R and D guide of high-level radioactive waste disposal in China, the 3D model of HLW repository with high-level radioactive waste, canister and buffer/backfill material is established using FLAC3D. To take into account in situ stress, geothermal gradient, groundwater, thermal relief of HLW and swelling pressure of buffer/backfill material, the evolution of temperature, stress and displacement of HLW repository under thermo-mechanical coupling, hydro-mechanical coupling and thermo-hydro-mechanical coupling conditions was analyzed respectively. The long-term stability of HLW repository in Beishan area was studied. (authors)

  16. Sensitivity analysis of a coupled hydro-mechanical paleo-climate model of density-dependent groundwater flow in discretely fractured crystalline rock

    International Nuclear Information System (INIS)

    Normani, S.D.; Sykes, J.F.

    2011-01-01

    A high resolution three-dimensional sub-regional scale (104 km 2 ) density-dependent, discretely fractured groundwater flow model with hydro-mechanical coupling and pseudo-permafrost was developed from a larger 5734 km 2 regional-scale groundwater flow model of a Canadian Shield setting. The objective of the work is to determine the sensitivity of modelled groundwater system evolution to the hydro-mechanical parameters. The discrete fracture dual continuum numerical model FRAC3DVS-OPG was used for all simulations. A discrete fracture network model delineated from surface features was superimposed onto an approximate 790 000 element domain mesh with approximately 850 000 nodes. Orthogonal fracture faces (between adjacent finite element grid blocks) were used to best represent the irregular discrete fracture zone network. Interconnectivity of the permeable fracture zones is an important pathway for the possible migration and subsequent reduction in groundwater and contaminant residence times. The crystalline rock matrix between these structural discontinuities was assigned mechanical and flow properties characteristic of those reported for the Canadian Shield. The variation of total dissolved solids with depth was assigned using literature data for the Canadian Shield. Performance measures for the sensitivity analysis include equivalent freshwater heads, environmental heads, linear velocities, and depth of penetration by conservative non-decaying tracers released at the surface. A 121 000 year North American continental scale paleo-climate simulation was applied to the domain with ice-sheet histories estimated by the University of Toronto Glacial Systems Model (UofT GSM). Hydro-mechanical coupling between the rock matrix and the pore fluid, due to the ice sheet normal stress, was included in the simulations. The flow model included the influence of vertical strain and assumed that areal loads were homogeneous. Permafrost depth was applied as a permeability reduction

  17. Analysis and modeling of coupled thermo-hydro-mechanical phenomena in 3D fractured media; Analyse et modelisation des phenomenes couples thermo-hydromecaniques en milieux fractures 3D

    Energy Technology Data Exchange (ETDEWEB)

    Canamon Valera, I

    2006-11-15

    the rock matrix is not negligible (matrix permeability may embody some finer fracturing in addition to pore space). When fracture flow is complemented by significant matrix permeability, it may be possible to avoid empirical connectivity-based corrections, which are used in the literature to account for non-percolation effects. The superposition approach is also applied here to coupled Hydro-Mechanical problems to obtain the equivalent coefficients of the 3D fractured medium, including the permeability tensor, but also elastic stiffness or compliance coefficients, as well as pressure-strain coupling coefficients (Biot). Finally, these results are used to develop a continuum equivalent model for 3D coupled Thermo-Hydro-Mechanics, including: hydro-mechanical coupling via tensorial Biot equations (non-orthotropic), a Darcian flow in an equivalent porous medium (anisotropic permeability), as well as thermal stresses and heat transport by diffusion and convection, taking into account the thermal expansivity of water. Transient simulations of the excavation of the FEBEX gallery, and of the heating due to hypothetical radioactive waste canisters, are conducted using the Comsol Multiphysics software (3D finite elements). The results of numerical simulations are analyzed for different cases and different ways of stressing the system. Finally, preliminary comparisons of simulations with time series data collected during the 'In-Situ Test' of FEBEX yield encouraging results. (author)

  18. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of a saturated-unsaturated medium

    International Nuclear Information System (INIS)

    Ohnishi, Y.; Shibata, H.; Kobsayashi, A.

    1987-01-01

    A model is presented which describes fully coupled thermo-hydro-mechanical behavior of a porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. If the medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in the plane strain condition; that water in the ground does not change its phase; and that heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively, in the coupled model. Several types of problems are analyzed

  19. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2017-12-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  20. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2018-05-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  1. Advances on study of temperature effects on hydro-mechanical behaviour of densely compacted bentonite

    International Nuclear Information System (INIS)

    Ye Weimin; Wan Min; Chen Bao; Liu Yuemiao; Cui Yujun

    2008-01-01

    During the operation of a multiple-barrier geological repository, bentonite that works as a buffer/fill material of an artificial barrier will suffer complex coupling effects of thermal (T), hydrological (H), mechanical (M) process, which comes from heat of the nuclear waste radiation, mechanical stress from parent rock mass and seepage action of groundwater. The scientific results show that temperature has influence on the water retention, saturated permeability, swelling pressure, swelling strain and thermal strain of compacted bentonite. As a whole, the research about GMZ (Gao Miaozi) bentonite, which may potentially be chose as Chinese buffer/backfill material for high radioactive nuclear waste disposal, has a long way to go compare to developed contraries. Based on comprehensive laboratory tests and advanced theoretical framework, both of the study on behaviour of compacted GMZ bentonite under HTM coupling conditions, and the establishment of a constitutive relation for prediction of behaviour of compacted bentonite under multi-field coupling conditions are important in theoretic and practical way. (authors)

  2. Hydro mechanical coupling for non linear behaviour laws. Application to petroleum problems; Couplage hydromecanique pour des lois de comportement non lineaires Application a des problemes petroliers

    Energy Technology Data Exchange (ETDEWEB)

    Longuemare, P.

    1996-11-28

    The aim of this study is to provide a better description of the rock contribution to fluid flows in sedimentary basins and petroleum reservoirs. After a study of the mechanical behaviour of high porosity chalks and shales, we present the elaboration of an elastoplastic constitutive model for the description of their behaviour under various strain and stress paths. This model is introduced in a coupled poro-mechanical approach and used to study the advantages of a good description of strain and stress paths in petroleum reservoirs and sedimentary basins studies. Hydro-mechanical modelling of the behaviour of petroleum reservoir allowed us to analyse the influence of boundary limit conditions on stress paths recovery rates. The study of sedimentary basins showed the importance of the consideration of the evolution of the porosity with time due to the time-scale difference between the laboratory and the field data. (author) 58 refs.

  3. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L.; Stephansson, O. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Tsang, C.F. [Lawrence Berkely National Laboratory, Berkeley, CA (United States). Earth Science Div.; Mayor, J.C. [ENRESA, Madrid (Spain); Kautzky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)] (eds.)

    2005-02-15

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project

  4. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    International Nuclear Information System (INIS)

    Jing, L.; Stephansson, O.; Kautzky, F.

    2005-02-01

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project. The

  5. Axisymmetric alternating direction explicit scheme for efficient coupled simulation of hydro-mechanical interaction in geotechnical engineering—Application to circular footing and deep tunnel in saturated ground

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2018-04-01

    Full Text Available Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical (H-M interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit (ADE scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in non-uniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourth-order finite difference (FD approximation to the spatial derivatives of the axisymmetric fluid–diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps, giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua (FLAC. This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%–50% that of FLAC's basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%

  6. A Thermo-Hydro-Mechanical coupled Numerical modeling of Injection-induced seismicity on a pre-existing fault

    Science.gov (United States)

    Kim, Jongchan; Archer, Rosalind

    2017-04-01

    In terms of energy development (oil, gas and geothermal field) and environmental improvement (carbon dioxide sequestration), fluid injection into subsurface has been dramatically increased. As a side effect of these operations, a number of injection-induced seismic activities have also significantly risen. It is known that the main causes of induced seismicity are changes in local shear and normal stresses and pore pressure as well. This mechanism leads to increase in the probability of earthquake occurrence on permeable pre-existing fault zones predominantly. In this 2D fully coupled THM geothermal reservoir numerical simulation of injection-induced seismicity, we investigate the thermal, hydraulic and mechanical behavior of the fracture zone, considering a variety of 1) fault permeability, 2) injection rate and 3) injection temperature to identify major contributing parameters to induced seismic activity. We also calculate spatiotemporal variation of the Coulomb stress which is a combination of shear stress, normal stress and pore pressure and lastly forecast the seismicity rate on the fault zone by computing the seismic prediction model of Dieterich (1994).

  7. Microstructure and Thermo-Hydro-Mechanical effects as an explanation for rate dependency during seismic slip

    Science.gov (United States)

    Stefanou, I.; Rattez, H.; Sulem, J.

    2017-12-01

    Rapid shear tests of granulated fault gouges show pronounced rate-dependency. For this reason rate-dependent constitutive laws are frequently used for describing fault friction.Here we propose a micromechanical, physics-based continuum approach by considering the characteristic size of the microstructure and the thermal- and pore-pressure-diffusion mechanisms that take place in the fault gouge during rapid shearing. It is shown that even for rate-independent materials, the apparent, macroscopic behavior of the system is rate-dependent. This is due to the competition of the characteristic lengths and time scales introduced indirectly by the microstructure and the thermal and hydraulic diffusivities.Both weakening and shear band thickness are rate dependent, despite the fact that the constitutive description of the material was considered rate-independent. Moreover the size of the microstructure, which here is identified with the grain size of the fault gouge (D50), plays an important role in the slope of the softening branch of the shear stress-strain response curve and consequently in the transition from aseismic to seismic slip.References Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84(B5), 2161. http://doi.org/10.1029/JB084iB05p02161 Scholz, C. H. (2002). The mechanics of earthquakes and faulting (Second). Cambridge. Sulem, J., & Stefanou, I. (2016). Thermal and chemical effects in shear and compaction bands. Geomechanics for Energy and the Environment, 6, 4-21. http://doi.org/10.1016/j.gete.2015.12.004

  8. Numerical Simulation of Hydro-mechanical Deep Drawing — A Study on the Effect of Process Parameters on Drawability and Thickness Variation

    Science.gov (United States)

    Singh, Swadesh Kumar; Kumar, D. Ravi

    2005-08-01

    Hydro-mechanical deep drawing is a process for producing cup shaped parts with the assistance of a pressurized fluid. In the present work, numerical simulation of the conventional and counter pressure deep drawing processes has been done with the help of a finite element method based software. Simulation results were analyzed to study the improvement in drawability by using hydro-mechanical processes. The thickness variations in the drawn cups were analyzed and also the effect of counter pressure and oil gap on the thickness distribution was studied. Numerical simulations were also used for the die design, which combines both drawing and ironing processes in a single operation. This modification in the die provides high drawability, facilitates smooth material flow, gives more uniform thickness distribution and corrects the shape distortion.

  9. Coupled thermo-hydro-mechanical analysis for the conceptual repository of high-level radioactive waste in China

    International Nuclear Information System (INIS)

    Lin, Y.M.; Wang, J.; Ke, D.; Cai, M.F.

    2010-01-01

    In order to safely dispose of the high-level radioactive waste (HLW), RD guide of HLW disposal was published in February 2006 in China. The spent fuel from nuclear power plants will be reprocessed first, followed by verification and final disposal. A conceptual repository 3D configuration comprises a single vertical borehole in a continuous and homogeneous hard rock, containing a canister surrounded by an over-pack and a bentonite layer, and the backfilled upper portion of the gallery using FLAC3D. To take into account in situ stress, geothermal gradient and groundwater of Beishan area, thermal relief of HLW and swelling pressure of buffer/backfill material made by GMZ01 bentonite, the TM, HM and THM evolution of the whole configuration is simulated over a period of 100 years. The results demonstrate that temperature is hardly affected by the couplings. In contrast, the influence of the couplings on the mechanical stresses is considerable. The repository has long-term stability in fully THM coupling action condition. (authors)

  10. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    Science.gov (United States)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR

  11. A model for coupled electro-hydro-mechanical processes in fine grained soils accounting for gas generation and transport

    Directory of Open Access Journals (Sweden)

    Claudio Tamagnini

    2010-03-01

    Full Text Available A theoretical and numerical model is developed for the quantitative analysis of coupled processes taking place in active waste containment systems, such as electrokinetic barriers or fences, in which alow intensity DC current is circulated across the clay barrier to move polar and non-polar contaminants. A novel feature of the proposed approach is the allowance for the presence of air in the pore space. Under unsaturated conditions, all transport coefficients involved in the electrokinetic process are strongly dependent on the degree of saturation of pore liquid. In order to assess the predictive capability of the proposed theory and to appreciate the impact of gas production at the electrodes, a series of numerical simulations of simple onedimensional electrokinetic tests have been performed. The results of the simulations compare reasonably well with data obtained from laboratory experiments performed on an illitic clayey silt. The numerical results indicate that the impact of gas production at the electrodes can be significant, even in low-intensity and short-duration treatments.Um modelo teórico e computacional é desenvolvido para a análise quantitativa de processos acoplados que tomam lugar em sistemas de contenção de lixo tais como barreiras ou grades eletrocinéticas no qual uma DC corrente de baixa intensidade é circulada através da barreira de argila para movimentar contaminantes polares e não polares. Uma nova característica da abordagem proposta é permitir a presença de ar nos poros. Sob condições não saturadas todos os coeficientes de transporte envolvidos nos processos eletrocinéticos são fortemente dependentes do grau de saturação do líquido. Com o objetivo de avaliar a capacidade do modelo proposto de predizer e de apreciar o impacto da produção de gás nos eletrodos uma série de simulações numéricas foi realizada em testes eletrocinéticos simples unidimensionais. Os resultados das simulações concordam

  12. Hydro-mechanical coupling and permeability of an unsaturated swelling clay under hydrous and thermal stress: sorption curve and water permeability

    International Nuclear Information System (INIS)

    Olchitzky, E.

    2002-02-01

    The use of swelling clay for engineered safety barriers of radioactive waste disposal require the understanding of its thermal-hydro-mechanical behaviour. This work concerns particularly the characterization and the modelling of the behaviour of one of these clays: the FoCa7 clay. The characteristics of the studied material are: the sorption (desorption) curve and the water permeability. For each of them, new experiments have allowed to acquire data in fields still few explored: in temperature (between 20 and 80 C) for the sorption curve and in the unsaturated field for the water permeability. The analysis of these results and of bibliographic data has allowed in one hand to estimate the importance of the hysteresis phenomenon and the temperature influence on the sorption curve and in another hand, to establish the requirement to introduce in the modelling of the sorption curve, a plastic parameter due to the irreversible deformations occurring during the compaction. Moreover, the tests carried out for data acquirement have been used too to give validation elements to the non linear behaviour laws proposed by O. Coussy and P. Dangla for the non saturated porous media. The particularity of these laws is to suppose the existence of an effective constraint in the non saturated field, this shows the importance of the validation elements presented here. (O.M.)

  13. Evaluation of coupled thermo-hydro-mechanical phenomena in the near field for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Fujita, Tomoo; Sugita, Yutaka; Taniguchi, Wataru

    2000-01-01

    , fracture survey, hydraulic test and the measurement of inflow rate into the test pit, which was excavated at the floor of the experiment drift, were conducted. In Chapter 4, hydraulic analyses were conducted using the rock properties obtained by the hydraulic test described in Chapter 3. Analyses were performed by tow kinds of methods; continuum approach and discrete approach. In Chapter 5, the results of in-situ coupled thermo-hydro-mechanical experiment at Kamaishi mine was described. The test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. After the excavation of test pit, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. In Chapter 6, development of coupled T-H-M model and the validation analyses of model were described. As validation, the analysis of BIG-BEN experiment at Tokai Works in JNC and the analysis of in-situ experiment at Kamaishi mine etc. were performed. In Chapter 7, the coupled T-H-M processes in the near field were simulated with fully coupled model. The material of buffer is bentonite-sand mixture and dry density is 1.6 g/cm 3 . From the results, the following results were obtained; re-saturation time of buffer is strongly dependent on the water pressure in the rock mass. However, it is not dependent on the permeability of rock mass if the intrinsic permeability of rock mass is in the 10 -13 - 10 -18 m 2 range. In the case that the intrinsic permeability of rock mass is approximately 10 -15 m 2 , the initial water content in the buffer does not exert influence on the re-saturation time of buffer. Two dimensional coupled T-H-M analysis in consideration of water drawdown due to the excavation of drift is carried our. As a

  14. Evaluation of coupled thermo-hydro-mechanical phenomena in the near field for geological disposal of high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Chijimatsu, Masakazu; Fujita, Tomoo; Sugita, Yutaka; Taniguchi, Wataru [Japan Nuclear Cycle Development Inst., Tokai Works, Waste Management and Fuel Cycle Research Center, Waste Isolation Research Division, Barrier Performance Group, Tokai, Ibaraki (Japan)

    2000-01-01

    , fracture survey, hydraulic test and the measurement of inflow rate into the test pit, which was excavated at the floor of the experiment drift, were conducted. In Chapter 4, hydraulic analyses were conducted using the rock properties obtained by the hydraulic test described in Chapter 3. Analyses were performed by tow kinds of methods; continuum approach and discrete approach. In Chapter 5, the results of in-situ coupled thermo-hydro-mechanical experiment at Kamaishi mine was described. The test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. After the excavation of test pit, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. In Chapter 6, development of coupled T-H-M model and the validation analyses of model were described. As validation, the analysis of BIG-BEN experiment at Tokai Works in JNC and the analysis of in-situ experiment at Kamaishi mine etc. were performed. In Chapter 7, the coupled T-H-M processes in the near field were simulated with fully coupled model. The material of buffer is bentonite-sand mixture and dry density is 1.6 g/cm{sup 3}. From the results, the following results were obtained; re-saturation time of buffer is strongly dependent on the water pressure in the rock mass. However, it is not dependent on the permeability of rock mass if the intrinsic permeability of rock mass is in the 10{sup -13} - 10{sup -18} m{sup 2} range. In the case that the intrinsic permeability of rock mass is approximately 10{sup -15} m{sup 2}, the initial water content in the buffer does not exert influence on the re-saturation time of buffer. Two dimensional coupled T-H-M analysis in consideration of water drawdown due to the excavation

  15. BENCHPAR PROJECT. How to Incorporate ThermaI-Hydro-Mechanical Coupled Processes into Performance Assessments and Design Studies for Radioactive Waste Disposal in Geological Formations. Guidance Document

    International Nuclear Information System (INIS)

    Stephansson, O.; Andersson, Johan

    2005-02-01

    The objective of this Guidance Document is to provide advice on how to incorporate thermo-hydro-mechanical (THM) coupled processes into Performance Assessments (PAS) and design studies for radioactive waste disposal in geological formations to be experienced in a European context. The document has been generated by the EU research project BENCHPAR: Benchmark Tests and Guidance on Coupled Processes for Performance Assessment of Nuclear Waste Repositories. The document starts in Section 1 with an explanation of why numerical analyses incorporating THM mechanisms are required for radioactive waste studies and provides background material on the subject. Then, the THM processes and their interactions are explained in Section 2. Three case examples of THM numerical analysis are presented in Section 3 to illustrate the type of work that can be conducted to study the near-field, upscaling, and the far-field. For the three cases, there is discussion on the main findings, the relevance to a safety case, the relative importance of the different couplings, and the uncertainties involved. The importance and priority of the THM couplings are then summarized in Section 4. It is especially important to be able to technically audit the numerical analyses in order to establish that all the relevant variables, parameters and mechanisms have been included in the modelling and hence that the numerical model adequately represents the rock and engineering reality. Accordingly, recommended soft and hard auditing procedures are presented in Section 5. In this Guidance Document, we emphasize especially that the most important step in numerical modelling is not executing the calculations per se, but the earlier conceptualization of the problem regarding the dominant processes, the material properties and parameters, the engineering perturbations, and their mathematical presentations. The associated modelling component of addressing the uncertainties and estimating their influence on the

  16. Analysis of long-term closure in drifts excavated in Callovo-Oxfordian clay-stone: roles of anisotropy and hydro-mechanical couplings

    International Nuclear Information System (INIS)

    Guayacan Carrillo, Lina Maria

    2016-01-01

    different supports systems with different conditions of installation. This broad range of cases permits to refine the analysis for reliable predictions of the convergence evolution in the long term. This approach can thus be used for the design of various types of support and the evaluation of its performance in the long term. On the other hand, the pore pressure evolution induced by excavation of drifts as recorded in-situ has been analyzed. The anisotropic response observed in-situ suggests that the intrinsic anisotropy of the material plays a key role in the response of the rock formation. To understand these phenomena, an anisotropic poro-elastic analysis of the pore pressure evolution induced by the drift excavation is performed. The main goal is to simulate the main trends of the pore pressure evolution with a simple model taking into account the inherent anisotropy of the material. Finally, an analysis of the onset of failure shows the key role of the hydro-mechanical coupling on the extension of the failed zone around the drifts. (author) [fr

  17. The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis

    Science.gov (United States)

    Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean

    2018-06-01

    A Thermo-Hydro-Mechanical (THM) model for Cosserat continua is developed to explore the influence of frictional heating and thermal pore fluid pressurization on the strain localization phenomenon. A general framework is presented to conduct a bifurcation analysis for elasto-plastic Cosserat continua with THM couplings and predict the onset of instability. The presence of internal lengths in Cosserat continua enables to estimate the thickness of the localization zone. This is done by performing a linear stability analysis of the system and looking for the selected wavelength corresponding to the instability mode with fastest finite growth coefficient. These concepts are applied to the study of fault zones under fast shearing. For doing so, we consider a model of a sheared saturated infinite granular layer. The influence of THM couplings on the bifurcation state and the shear band width is investigated. Taking representative parameters for a centroidal fault gouge, the evolution of the thickness of the localized zone under continuous shear is studied. Furthermore, the effect of grain crushing inside the shear band is explored by varying the internal length of the constitutive law.

  18. The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis

    Science.gov (United States)

    Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean; Veveakis, Manolis; Poulet, Thomas

    2018-06-01

    In this paper we study the phenomenon of localization of deformation in fault gouges during seismic slip. This process is of key importance to understand frictional heating and energy budget during an earthquake. A infinite layer of fault gouge is modeled as a Cosserat continuum taking into account Thermo-Hydro-Mechanical (THM) couplings. The theoretical aspects of the problem are presented in the companion paper (Rattez et al., 2017a), together with a linear stability analysis to determine the conditions of localization and estimate the shear band thickness. In this Part II of the study, we investigate the post-bifurcation evolution of the system by integrating numerically the full system of non-linear equations using the method of Finite Elements. The problem is formulated in the framework of Cosserat theory. It enables to introduce information about the microstructure of the material in the constitutive equations and to regularize the mathematical problem in the post-localization regime. We emphasize the influence of the size of the microstructure and of the softening law on the material response and the strain localization process. The weakening effect of pore fluid thermal pressurization induced by shear heating is examined and quantified. It enhances the weakening process and contributes to the narrowing of shear band thickness. Moreover, due to THM couplings an apparent rate-dependency is observed, even for rate-independent material behavior. Finally, comparisons show that when the perturbed field of shear deformation dominates, the estimation of the shear band thickness obtained from linear stability analysis differs from the one obtained from the finite element computations, demonstrating the importance of post-localization numerical simulations.

  19. Effect of the heating rate on residual thermo-hydro-mechanical properties of a high-strength concrete in the context of nuclear waste storage

    International Nuclear Information System (INIS)

    Galle, C.; Pin, M.; Ranc, G.; Rodrigues, S.

    2003-01-01

    Concrete is likely to be used in massive structures for nuclear waste long-term storage facilities in France. In the framework of vitrified waste and spent fuel management, these structures could be submitted to high temperatures. In standard conditions, ambient temperature should not exceed 60 degC but in case of failure of a cooling system, concretes could be temporarily exposed to temperatures up to 250 degC. Depending on the temperature rise kinetics, concretes could be damaged to a greater or lesser extent. In this context, an experimental study on the effect of heating rate on concrete thermo-hydro-mechanical properties exposed to high temperatures (110 - 250 degC) was carried out at the French Atomic Energy Commission (CEA). Data analysis and interpretation provided enough arguments to conclude that, at local scale, the impact of heating rate on residual properties was real though relatively limited. (author)

  20. Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole. Influence of hydraulic rock properties on the water saturation phase

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, J.

    1999-12-01

    The wetting process in deposition holes designed according to the KBS-3-concept has been simulated with finite element calculations of the thermo-hydro-mechanical processes in the buffer, backfill and surrounding rock. The buffer material has been modelled according to the preliminary material models developed for swelling clay. The properties of the rock have been varied in order to investigate the influence of the rock properties and the hydraulic conditions on the wetting processes. In the modelling of the test holes the permeability of the rock matrix, the water supply from the backfill, the water pressure in the surrounding rock, the permeability of the disturbed zone around the deposition hole, the water retention properties of the rock, and the transmissivity of two fractures intersecting the deposition hole have been varied. The calculations indicate that the wetting takes about 5 years if the water pressure in the rock is high and if the permeability of the rock is so high that the properties of the bentonite determine the wetting rate. However, it may take considerably more than 30 years if the rock is very tight and the water pressure in the rock is low. The calculations also show that the influence of the rock structure is rather large except for the influence of the transmissivity T of the fractures, which turned out to be insignificant for the values used in the calculations

  1. Development of Hydro-Mechanical Deep Drawing

    DEFF Research Database (Denmark)

    Zhang, Shi-Hong; Danckert, Joachim

    1998-01-01

    The hydro-mechanical deep-drawing process is reviewed in this article. The process principles and features are introduced and the developments of the hydro-mechanical deep-drawing process in process performances, in theory and in numerical simulation are described. The applications are summarized....... Some other related hydraulic forming processes are also dealt with as a comparison....

  2. Modelling of thermo-hydro-mechanical couplings and damage of viscoplastic rocks in the context of radioactive waste storage; Modelisation des couplages thermo-hydro-mecaniques et de l'endommagement des roches viscoplastiques dans le contexte du stockage de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Kharkhour, H

    2002-12-01

    Trying to develop a model taking into account the complex rheology of a geologic media characterized by visco-plasticity, damage and thermo-hydro-mechanical couplings is unusual in geotechnics. This is not the case for radioactive waste storage that presents specificities from several viewpoints. Indeed, the scales of time and space concerned by this type of storage are disproportionate to those of civil engineering works or mines. Another specificity of the radioactive waste storage lies in the coupled processes involved. No effect likely to compromise the long-term security of the storage could be ignored. For example this is the case of damage, a phenomenon which does not necessarily lead to a major change of the mechanical behavior of the works but can influence the permeability of the medium in relation with a migration of radionuclides. It can be conceived that this phenomenon finds all its importance in the context of the thermo-hydro-mechanical couplings of a waste storage with high activity. However, the interaction between the damage and the THM coupled processes was the object of very few research subject up to now. This. is even more true for viscoplastic media considered as ductile, and therefore, less prone to cracking than brittle media. It is exactly in this 'original' but difficult context that took place the research presented in this report. This study was dedicated to the analysis of the phenomena and the thermal, hydraulic and mechanical couplings occurring in the near and far field of a high activity radioactive waste storage. Two examples of geological media were considered in this report: the clayey rock of Callovo-Oxfordian, called ' Argilites de l'Est ', target rock of the ANDRA project to carry out a subterranean laboratory for the study of long life radioactive waste storage; and the salt rock of the. subterranean laboratory in the old salt mine of Asse in Germany. (author)

  3. Multi-scale modelling of the hydro-mechanical behaviour of argillaceous rocks

    International Nuclear Information System (INIS)

    Van den Eijnden, Bram

    2015-01-01

    theoretical developments of this extension are implemented in the finite element code Lagamine (Liege) as an independent constitutive relation. For the modelling of localization of deformation, which in classical FE methods suffers from the well-known mesh dependency, the double-scale approach of hydro-mechanical coupling is combined with a local second gradient model to control the internal length scale of localized deformation. By accepting the periodic boundary conditions as a regularization of the microscale deformation, the use of the multi-scale model in combination with the local second gradient model can be used for modelling localization phenomena in HM-coupled settings with material softening. The modelling capacities of the approach are demonstrated by means of simulations of odometer tests and biaxial compression tests. The approach is demonstrated to be a powerful way to model anisotropy in the mechanical as well as the hydraulic behaviour of the material both in the initial material state and as an effect of hydro-mechanical alterations. For the application to the modelling of Callovo-Oxfordian clay-stone, microstructural REVs are calibrated to geometrical characteristics of the inclusion that form the microstructure under consideration and to macro-scale experimental results of the mechanical behaviour. The calibrated constitutive relation is used in the simulation of gallery excavation processes. These computations give a proof of concept of the double-scale assessment of the hydro-mechanical behaviour of the excavation damaged zones around galleries in the context of nuclear waste disposal. (author) [fr

  4. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    Science.gov (United States)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance

  5. The hydro-mechanical modeling of the fractured media

    International Nuclear Information System (INIS)

    Kadiri, I.

    2002-10-01

    analyzed with the aim to catch the nature of hydro-mechanical coupling. The modeling of Coaraze allowed to reproduce in situ measurements and to give an opinion on the problems of the hydro-mechanical coupling in the fractured mediums. (author)

  6. Chemo-hydro-mechanical behaviour of unsaturated clays

    International Nuclear Information System (INIS)

    Mokni, N.; Olivella, S.; Alonso, E.E.; Romero, E.

    2010-01-01

    Document available in extended abstract form only. Understanding of the chemical effects on clays is essential for many problems ranging from pollution studies and waste-containment. Several studies examined the effect of changes in pore fluid composition on the mechanical and hydraulic properties. Volume changes (contraction/ expansion) have been measured on clay specimens upon exposure to salt solutions or permeation with organic liquids. Moreover, it was shown that permeation of clay with brine induces an increase of the shear strength. In addition, several models have been proposed to describe the chemo-mechanical behaviour of saturated clays under saturated conditions. A new chemo-hydro-mechanical model for unsaturated clays is under development. The chemo-mechanical effects are described within an elasto-plastic framework using the concept that chemical effects act on the plastic properties by increasing or decreasing the pre-consolidation stress. The model is based on the distinction within the material of a microstructural and a macro-structural levels. Chemical loading has a significant effect on the microstructure. The negative pressure associated with the capillary water plays its role in the interconnected macro pores. By adopting simple assumptions concerning the coupling between the two levels it is intended to reproduce the features of the behaviour of unsaturated clays when there is a change in pore fluid composition (increase or decrease of concentration). A yield surface which defines the set of yield pre-consolidation stress values, for each associated capillary suction and concentration of pore fluid should be defined. In addition, the behaviour of clays under unsaturated condition and the behaviour at full saturation under chemical loading represent two limiting cases of the framework. Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest on the

  7. A Cascade Disaster Caused by Geological and Coupled Hydro-Mechanical Factors—Water Inrush Mechanism from Karst Collapse Column under Confining Pressure

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-11-01

    Full Text Available The water inrush from karst collapse column (KCC is a cascading, vicious cycle disaster caused by geological and mining activities, that can cause serious casualties and property losses. The key to preventing this risk is to study the mechanism of water inrush under confining pressure. Aiming at the investigationg the characteristics of the KCC named X1 in Chensilou mine, a series of methods, including connectivity experiments, water pressure monitoring tests in two side-walls, and numerical simulations based on plastic damage-seepage (PD-S theory have been developed. The methods are used to test the security of the 2519 mining area, the damage thickness, pore water pressure, and seepage vector in the X1. The results indicate that the X1 has a certain water blocking capacity. In addition, with the decrease of confining pressure and increase of shear stress, deviatoric stress could cause the increase of permeability, the reduction of strength, and the reduction of pore water pressure in KCC. Therefore the increased effective stress in the rock will force the rock to become more fractured. Conversely, the broken rock could cause the change of stress, and further initiate new plastic strains, damage and pore water pressure until a new equilibrium is reached. This cascading water inrush mechanism will contribute to the exploitation of deep coal resources in complex geological and hydrogeological conditions.

  8. A posteriori error analysis for hydro-mechanical couplings and implementation in Code-Aster; Analyse d'erreur a posteriori pour les couplages hydro-mecaniques et mise en oeuvre dans Code-Aster

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, S

    2007-11-15

    We analyse approximations by finite elements in space and finite differences in time of coupled Hydro-Mechanical (HM) problems related to the quasi-static linear poro-elasticity theory. The physical bases of this theory are briefly restated and an abstract setting is proposed to perform the mathematical study of the stationary and un-stationary versions of the HM problem. For the stationary version, the well-posedness of the continuous and discrete problems are established and the a priori error analysis is performed. Then, we propose the a posteriori error analysis by using two different techniques suited to estimate the displacement error and the pressure error, respectively, both in the H{sub x}{sup 1}-norm. The classical properties of reliability and optimality are proved for the associated error estimators. Some numerical experiments using Code-Aster illustrate the theoretical results. For the un-stationary version, we first establish a stability result for the continuous problem. Then, we present an optimal a priori error analysis using elliptic projection techniques. Finally, the a posteriori error analysis is performed by using two different approaches: a direct approach and an elliptic reconstruction approach. The first is suited to estimate the pressure error in the L{sub t}{sup 2}(H{sub x}{sup 1})-norm and the second is suited to estimate the displacement error in the L{sub t}{sup {infinity}}(H{sub x}{sup 1})-norm and the pressure error in the L{sub t}{sup {infinity}}(H{sub x}{sup 1})-norm. Numerical experiments using Code-Aster complete the theoretical results. (author)

  9. Thermo-hydro-mechanical modelling of buffer, synthesis report

    International Nuclear Information System (INIS)

    Toprak, E.; Mokni, N.; Olivella, S.; Pintado, X.

    2013-08-01

    This study addresses analyses of coupled thermo-hydro-mechanical (THM) processes in a scheme considered for the spent nuclear fuel repository in Olkiluoto (Finland). The finite element code CODE B RIGHT is used to perform modelling calculations. The objective of the THM modelling was to study some fundamental design parameters. The time required to reach full saturation, the maximum temperature reached in the canister, the deformations in the buffer-backfill interface, the stress-deformation balance between the buffer and the backfill, the swelling pressure developed and the homogenization process development are critical variables. Because of the complexity of the THM processes developed, only a single deposition hole has been modelled with realistic boundary conditions which take into account the entire repository. A thermal calculation has been performed to adopt appropriate boundary conditions for a reduced domain. The modelling has been done under axisymmetric conditions. As a material model for the buffer bentonite and backfill soil, the Barcelona Basic Model (BBM) has been used. Simulation of laboratory tests conducted at B and Tech under supervision of Posiva has been carried out in order to determine the fundamental mechanical parameters for modelling the behaviour of MX-80 bentonite using the BBM model. The modelling process of the buffer-backfill interface is an essential part of tunnel backfill design. The calculations will aim to determine deformations in this intersection, the behaviour of which is important for the buffer swelling. The homogenization process is a key issue as well. Porosity evolution during the saturation process is evaluated in order to check if the final saturated density accomplishes the homogenization requirements. This report also describes the effect of the existence of an air-filled gap located between the canister and the bentonite block rings in thermo-hydro-mechanical behaviour of the future spent nuclear fuel repository in

  10. Thermo-hydro-mechanical modelling of buffer, synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Toprak, E.; Mokni, N.; Olivella, S. [Universitat Politecnica de Catalunya, Barcelona (Spain); Pintado, X. [B and Tech Oy, Helsinki (Finland)

    2013-08-15

    This study addresses analyses of coupled thermo-hydro-mechanical (THM) processes in a scheme considered for the spent nuclear fuel repository in Olkiluoto (Finland). The finite element code CODE{sub B}RIGHT is used to perform modelling calculations. The objective of the THM modelling was to study some fundamental design parameters. The time required to reach full saturation, the maximum temperature reached in the canister, the deformations in the buffer-backfill interface, the stress-deformation balance between the buffer and the backfill, the swelling pressure developed and the homogenization process development are critical variables. Because of the complexity of the THM processes developed, only a single deposition hole has been modelled with realistic boundary conditions which take into account the entire repository. A thermal calculation has been performed to adopt appropriate boundary conditions for a reduced domain. The modelling has been done under axisymmetric conditions. As a material model for the buffer bentonite and backfill soil, the Barcelona Basic Model (BBM) has been used. Simulation of laboratory tests conducted at B and Tech under supervision of Posiva has been carried out in order to determine the fundamental mechanical parameters for modelling the behaviour of MX-80 bentonite using the BBM model. The modelling process of the buffer-backfill interface is an essential part of tunnel backfill design. The calculations will aim to determine deformations in this intersection, the behaviour of which is important for the buffer swelling. The homogenization process is a key issue as well. Porosity evolution during the saturation process is evaluated in order to check if the final saturated density accomplishes the homogenization requirements. This report also describes the effect of the existence of an air-filled gap located between the canister and the bentonite block rings in thermo-hydro-mechanical behaviour of the future spent nuclear fuel

  11. Thermo-hydro-mechanical behaviour of Boom clay; Comportement thermo-hydro-mecanique de l'argile de Boom

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T

    2008-01-15

    This thesis studied the thermo-hydro-mechanical properties of Boom clay, which was chosen to be the host material for the radioactive waste disposal in Mol, Belgium. Firstly, the research was concentrated on the soil water retention properties and the hydro-mechanical coupling by carrying out axial compression tests with suction monitoring. The results obtained permitted elaborating a rational experimental procedure for triaxial tests. Secondly, the systems for high pressure triaxial test at controlled temperature were developed to carry out compression, heating, and shearing tests at different temperatures. The obtained results showed clear visco-elasto-plastic behaviour of the soil. This behaviour was modelled by extending the thermo-elasto-plastic model of Cui et al. (2000) to creep effect. (author)

  12. Thermo-hydro-mechanical behavior of argillite

    International Nuclear Information System (INIS)

    Tran, Duy Thuong; Dormieux, Luc; Lemarchand, Eric; Skoczylas, Frederic

    2012-01-01

    Document available in extended abstract form only. Argillite is a very low permeability geo-material widely encountered: that is the reason why it is an excellent candidate for the storage of long-term nuclear waste depositories. This study focuses on argillites from Meuse-Haute-Marne (East of France) which forms a geological layer located approximately 400 m and 500 m depth. We know that this material is made up of a mixture of shale, quartz and calcite phases. The multi-scale definition of this material suggests the derivation of micro-mechanics reasonings in order to better account for the mechanisms occurring at the local (nano and micro-) scale and controlling the macroscopic mechanical behavior. In this work, up-scaling techniques are used in the context of thermo-hydro-mechanical couplings. The first step consists in clarifying the morphology of the microstructure at the relevant scales (particles arrangement, pore size distribution) and identifying the mechanisms that take place at those scales. These local informations provide the input data of micro-mechanics based models. Schematic picture of the microstructure where the argillite material behaves as a dual-porosity, with liquid in both micro-pores and interlayer space in between clay solid platelets, seems a reasonable starting point for this micro-mechanical modelling of clay. This allows us to link the physical phenomena (swelling clays) and the mechanical properties (elastic moduli, Poisson's ratio). At the pressure applied by the fluid on the solid platelets appears as the sum of the uniform pressure in the micro-pores and of a swelling overpressure depending on the distance between platelets and on the ion concentration in the micro-pores. The latter is proved to be responsible for a local elastic modulus of physical origin. This additional elastic component may strongly be influenced by both relative humidity and temperature. A first contribution of this study is to analysing this local elastic

  13. Hydro-mechanical coupling and transport in Meuse/Haute-Marne argillite: experimental and multi-scale approaches; Couplage hydro-me canique et transfert dans l'argilite de Meuse/Haute-Marne: approches experimentale et multi-echelle

    Energy Technology Data Exchange (ETDEWEB)

    Cariou, S.

    2010-07-15

    This thesis deals with the hydro-mechanical behaviour of argillite. Classical Biot theory is shown to be badly adapted to the case of argillite. An original state equation is then built by use of homogenization tools, and takes into account the microstructure of argillite as well as physical phenomena happening inside the material, like the swelling overpressure inside the clay particles or the capillary effects in the porous network. This state equation explains some experiments which were not by the classical Biot theory. It is then improved by integrating the experimental data that are the dependency of the elasticity tensor with the saturation degree and the existence of a porosity surrounding the inclusions. Combined with the monitoring of length variation under hydric loading, this relevant state equation permits one to determine the Biot tensor of argillite. Since this state equation is coupled with the hydric state of the material, one is interested in modelling the variation of the saturation degree during a drying process. Two transport models are studied and compared, then a model for the porous network is proposed in order to explain the unusual permeability measurements. (author)

  14. Experimental study of thermo-hydro-mechanical behaviour of Callovo-Oxfordian Clay-stone

    International Nuclear Information System (INIS)

    Mohajerani, M.

    2011-01-01

    During the different phases of the exothermic radioactive waste deep disposal (excavation, operation) and after permanent closure, the host rock is submitted to various coupled mechanical, hydraulic and thermal phenomena. Hence, a thorough investigation of the thermo-hydro-mechanical behaviour of the rock is necessary to complete existing data and to better understand and model the short and long term behaviour of the Callovo-Oxfordian (COx) clay formation in Bure (Meuse/Haute-Marne - M/HM), considered by ANDRA as a potential host rock in France.In this work, the compression - swelling behaviour of the COx Clay-stone was first investigated by carrying out a series of high-pressure oedometric tests. The results, interpreted in terms of coupling between damage and swelling, showed that the magnitude of swelling was linked to the density of the fissures created during compression. In a second step, the hydro-mechanical and thermo-hydro-mechanical behaviour of the saturated Clay-stone under a mean stress close to the in situ one were investigated by using two devices with short drainage path (10 mm), namely a isotropic cell and a newly designed hollow cylinder triaxial cell with local displacement measurements. These devices helped to solve two majors problems related to testing very low permeability materials: i) a satisfactory previous sample saturation (indicated by good Skempton values) and ii) satisfactory drainage conditions. Some typical constitutive parameters (Skempton and Biot's coefficients, drained and undrained compressibility coefficients) have been determined at ambient temperature through isotropic compression tests that also confirmed the transverse isotropy of the Clay-stone. The consistency of the obtained parameters has been checked in a saturated poro-elastic framework. Two aspects of the thermo-hydro-mechanical behaviour of the COx Clay-stone have then been investigated through different heating tests and through drained and undrained isotropic

  15. Application of a Multi-Scale form of Terzaghi’s Effective Stress Principle for Unsaturated Expansive Clays to Simulate Hydro-Mechanical Behavior During Hydration

    Directory of Open Access Journals (Sweden)

    Mainka Julia

    2016-01-01

    Full Text Available Our recently developed multi-scale form of Terzaghi’s effective stress principle for unsaturated swelling clays that was rigorously derived by periodic homogenization starting from micro- and nano-mechanical analyses is applied to numerically simulate one-dimensional swelling pressure tests of compacted bentonites during hydration. The total macroscopic stress captures the coupling between disjoining forces at the nanoscopic scale of clay platelets and capillary effects at the microscopic scale of clay aggregates over the entire water content range. The numerical results allow to draw conclusions on the water transfer mechanism between inter- and intra-aggregate pores during hydration and consequently on the evolution of the external swelling pressure resulting from the competition between capillary and disjoining forces. In addition, such application highlights the abilities and the limits of the electrical double-layer theory to compute the disjoining pressure in the nano-pores. For large platelet distances, in the range of osmotic swelling, the nature of the disjoining pressure is electro-chemical and can be computed from Poisson-Boltzmann theory. Conversely, at small distances, in the crystalline swelling, a solvation component has to be added to account for the molecular nature of the solvent. As a first improvement of the nano-scale description the solvent is treated as a hard sphere fluid using Density Functional Theory.

  16. Numerical analysis of thermal impact on hydro-mechanical properties of clay

    Directory of Open Access Journals (Sweden)

    Xuerui Wang

    2014-10-01

    Full Text Available As is known, high-level radioactive waste (HLW is commonly heat-emitting. Heat output from HLW will dissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical (THMC processes. In highly consolidated clayey rocks, thermal effects are particularly significant because of their very low permeability and water-saturated state. Thermal impact on the integrity of the geological barriers is of most importance with regard to the long-term safety of repositories. This study focuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using a coupled thermo-mechanical multiphase flow (TH2M model which is implemented in the finite element programme OpenGeoSys (OGS. The material properties of the numerical model are characterised by a transversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model based on van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based on Fourier's law. In the numerical approaches, special attention has been paid to the thermal expansion of three different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity. Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in the present model. The model has been applied to simulate a laboratory heating experiment on claystone. The numerical model gives a satisfactory representation of the observed material behaviour in the laboratory experiment. The comparison of the calculated results with the laboratory findings verifies that the simulation with the present numerical model could provide a deeper understanding of the observed effects.

  17. DECOVALEX III/BENCHPAR PROJECTS. Implications of Thermal-Hydro-Mechanical Coupling on the Near-Field Safety of a Nuclear Waste Repository in a Homogeneous Rock Mass. Report of BMT1B/WP2

    International Nuclear Information System (INIS)

    Jing, L.

    2005-02-01

    This report presents the works performed for the second phase (BMT1B) of BMT1 of the DECOVALEX III project for the period of 1999-2002. The works of BMT1 is divided into three phases: BMT1A, BMT1B and BMT1C. The BMT1A concerns with calibration of the computer codes with a reference T-H-M experiment at Kamaishi Mine, Japan. The objective is to validate the numerical approaches, computer codes and material models, so that the teams simulating tools are at a comparable level of maturity and sophistication. The BMT1B uses the calibrated codes to perform scoping calculations, considering varying degrees of THM coupling and varying permeability values of the surrounding rock for a reference generic repository design without fractures. The aim is to identify the coupling mechanisms of importance for construction, performance and safety of the repository. The chosen measures for evaluating the long term safety and performance of the repository are the maximal temperature created by the thermal loading from the emplaced wastes, the time for re-saturation of the buffer, the maximal swelling stress developed in the buffer, the structural integrity of the rock mass and the permeability evolution in the rock mass. Six teams participated in BMT1B: IRSN/CEA (France), CNSC (Canada), ANDRA/INERIS (France), JNC (Japan), BGR/ISEB-ZAG (Germany) and SKI/KTH (Sweden). All teams used FEM approach except the ANDRA/INERIS team who used the FDM approach, with different codes. All research teams except ISEB/ZAG used models with full THM coupling capabilities. The governing equations in these models were derived within the framework of Biot's theory of consolidation and have for primary unknown variables: temperature, pore fluid pressure and displacements of the solid skeleton. Since the original Biot's theory of consolidation is applicable to saturated materials and isothermal conditions, the research teams have to extend Biot's theory in order to deal with thermal effects and the variably

  18. DECOVALEX III/BENCHPAR PROJECTS. Implications of Thermal-Hydro-Mechanical Coupling on the Near-Field Safety of a Nuclear Waste Repository in a Homogeneous Rock Mass. Report of BMT1B/WP2

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Nguyen, T.S. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)] (eds.)

    2005-02-15

    This report presents the works performed for the second phase (BMT1B) of BMT1 of the DECOVALEX III project for the period of 1999-2002. The works of BMT1 is divided into three phases: BMT1A, BMT1B and BMT1C. The BMT1A concerns with calibration of the computer codes with a reference T-H-M experiment at Kamaishi Mine, Japan. The objective is to validate the numerical approaches, computer codes and material models, so that the teams simulating tools are at a comparable level of maturity and sophistication. The BMT1B uses the calibrated codes to perform scoping calculations, considering varying degrees of THM coupling and varying permeability values of the surrounding rock for a reference generic repository design without fractures. The aim is to identify the coupling mechanisms of importance for construction, performance and safety of the repository. The chosen measures for evaluating the long term safety and performance of the repository are the maximal temperature created by the thermal loading from the emplaced wastes, the time for re-saturation of the buffer, the maximal swelling stress developed in the buffer, the structural integrity of the rock mass and the permeability evolution in the rock mass. Six teams participated in BMT1B: IRSN/CEA (France), CNSC (Canada), ANDRA/INERIS (France), JNC (Japan), BGR/ISEB-ZAG (Germany) and SKI/KTH (Sweden). All teams used FEM approach except the ANDRA/INERIS team who used the FDM approach, with different codes. All research teams except ISEB/ZAG used models with full THM coupling capabilities. The governing equations in these models were derived within the framework of Biot's theory of consolidation and have for primary unknown variables: temperature, pore fluid pressure and displacements of the solid skeleton. Since the original Biot's theory of consolidation is applicable to saturated materials and isothermal conditions, the research teams have to extend Biot's theory in order to deal with thermal effects and

  19. Comparative modelling approaches of hydro-mechanical processes in sealing experiments at the Tournemire URL

    Czech Academy of Sciences Publication Activity Database

    Millard, A.; Mokni, N.; Barnichon, J. D.; Thatcher, K. E.; Bond, A.; Fraser-Harris, A.; Mc Dermott, C.; Blaheta, Radim; Michalec, Zdeněk; Hasal, Martin; Nguyen, T.; Nasir, O.; Yi, H.; Kolditz, O.

    2017-01-01

    Roč. 76, č. 2 (2017), č. článku 78. ISSN 1866-6280 Institutional support: RVO:68145535 Keywords : hydro-mechanical (HM) coupling * numerical modelling * sealing systems * compacted bentonite–sand mixture Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.569, year: 2016 https://link.springer.com/article/10.1007/s12665-016-6324-8

  20. The hydro-mechanical modeling of the fractured media; Modelisation hydromecanique des milieux fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kadiri, I

    2002-10-15

    analyzed with the aim to catch the nature of hydro-mechanical coupling. The modeling of Coaraze allowed to reproduce in situ measurements and to give an opinion on the problems of the hydro-mechanical coupling in the fractured mediums. (author)

  1. Temperature buffer test. Hydro-mechanical and chemical/ mineralogical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Olsson, Siv; Dueck, Ann; Nilsson, Ulf; Karnland, Ola [Clay Technology AB, Lund (Sweden); Kiviranta, Leena; Kumpulainen, Sirpa [BandTech Oy, Helsinki (Finland); Linden, Johan [Aabo Akademi, Aabo (Finland)

    2012-01-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aspo HRL. It was installed during the spring of 2003. Two steel heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by rings of compacted Wyoming bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the hydro-mechanical and chemical/mineralogical characterization program which was launched subsequent to the dismantling operation. The main goal has been to investigate if any significant differences could be observed between material from the field experiment and the reference material. The field samples were mainly taken from Ring 4 (located at the mid-section around the lower heater), in which the temperature in the innermost part reached 155 deg C. The following hydro-mechanical properties have been determined for the material (test technique within brackets): hydraulic conductivity (swelling pressure device), swelling pressure (swelling pressure device), unconfined compression strength (mechanical press), shear strength (triaxial cell) and retention properties (jar method). The following chemical/mineralogical properties (methods within brackets) were determined: anion analysis of water leachates (IC), chemical composition (ICP/AES+MS, EGA), cation exchange capacity (CEC, Cu-trien method) and exchangeable cations (exchange with NH4, ICPAES), mineralogical composition (XRD and FTIR), element distribution and microstructure (SEM and

  2. On the hydro-mechanical behaviour of MX80 bentonite-based materials

    Directory of Open Access Journals (Sweden)

    Yu-Jun Cui

    2017-06-01

    Full Text Available Bentonite-based materials have been considered in many countries as engineered barrier/backfilling materials in deep geological disposal of high-level radioactive waste. During the long period of waste storage, these materials will play an essential role in ensuring the integrity of the storage system that consists of the waste canisters, the engineered barrier/backfill, the retaining structures as well as the geological barrier. Thus, it is essential to well understand the hydro-mechanical behaviours of these bentonite-based materials. This review paper presents the recent advances of knowledge on MX80 bentonite-based materials, in terms of water retention properties, hydraulic behaviour and mechanical behaviour. Emphasis is put on the effect of technological voids and the role of the dry density of bentonite. The swelling anisotropy is also discussed based on the results from swelling tests with measurements of both axial and radial swelling pressures on a sand-bentonite mixture compacted at different densities. Microstructure observation was used to help the interpretation of macroscopic hydro-mechanical behaviour. Also, the evolution of soil microstructure thus the soil density over time is discussed based on the results from mock-up tests. This evolution is essential for understanding the long-term hydro-mechanical behaviour of the engineered barrier/backfill.

  3. Hydro-mechanical characterisation of Vendian clay from Russia

    International Nuclear Information System (INIS)

    Tang, A.M.; Cui, Y.J.; Hong, P.Y.; Li, X.L.; Rumynin, V.G.

    2010-01-01

    when the axial stress exceeds 2% (dilatant). This indicates that the soil is over-consolidated. Oedometer tests were performed on all three samples. Some results are shown. The soil specimens were firstly re-saturated by NaCl solution having the same electric conductivity of 'in-situ' pore-water. The saturation was performed under the 'in-situ' stress in order to avoid the soil swelling. Loading and unloading cycles were then applied in steps. On the one hand, these oedometer tests allow evaluation of the compressibility of the soil. On the other hand, the hydraulic conductivity can be deduced from the consolidation curves; for the core No. 2, the hydraulic conductivity varies from 3 x 10 -11 to 3 x 10 -10 (m/s) for the void ratio in the range of 0.26-0.32. In addition, the comparison between test Od02 and test Od04 allowed analyse of the effect of pore-water chemistry on the compressibility. Indeed, test Od04 (using the in situ pore-water) shows a higher compressibility than that of test Od02 (using the NaCl solution). This preliminary laboratory study on the limited samples taken from different depths of the site has allowed obtaining basic hydro-geotechnical characteristics of the soil layer Vkt1. More detailed investigations are necessary to assess the variability of the hydro-mechanical properties with depth, with mineralogical components, etc. (authors)

  4. Hydro-mechanical coupling and permeability of an unsaturated swelling clay under hydrous and thermal stress: sorption curve and water permeability; Couplage hydromecanique et permeabilite d'une argile gonflante non saturee sous sollicitations hydriques et thermiques: courbe de sorption et permeabilite a l'eau

    Energy Technology Data Exchange (ETDEWEB)

    Olchitzky, E

    2002-02-15

    The use of swelling clay for engineered safety barriers of radioactive waste disposal require the understanding of its thermal-hydro-mechanical behaviour. This work concerns particularly the characterization and the modelling of the behaviour of one of these clays: the FoCa7 clay. The characteristics of the studied material are: the sorption (desorption) curve and the water permeability. For each of them, new experiments have allowed to acquire data in fields still few explored: in temperature (between 20 and 80 C) for the sorption curve and in the unsaturated field for the water permeability. The analysis of these results and of bibliographic data has allowed in one hand to estimate the importance of the hysteresis phenomenon and the temperature influence on the sorption curve and in another hand, to establish the requirement to introduce in the modelling of the sorption curve, a plastic parameter due to the irreversible deformations occurring during the compaction. Moreover, the tests carried out for data acquirement have been used too to give validation elements to the non linear behaviour laws proposed by O. Coussy and P. Dangla for the non saturated porous media. The particularity of these laws is to suppose the existence of an effective constraint in the non saturated field, this shows the importance of the validation elements presented here. (O.M.)

  5. Thermo-hydro mechanical modeling in unsaturated hard clay: application to nuclear waste storage

    International Nuclear Information System (INIS)

    Jia, Y.

    2006-07-01

    This work presents an elastoplastic damage model for argillite in unsaturated conditions. A short resume of experimental investigations is presented in the first part. The results obtained show an important plastic deformation coupled with damage induced by initiation and growth of microcracks. Influences of water content on the mechanical behaviour are also investigated. Based on experimental data and micro-mechanical considerations, a general constitutive model is proposed for the poro-mechanical behavior of argillite in unsaturated conditions. The time dependent creep has also been incorporated in they model. The performance of the model is examined by comparing numerical simulation with experimental data in various load paths under saturated and unsaturated conditions. Finally, the model is applied to hydro-mechanical coupling study of the REP experiment and thermo-hydro-mechanical coupling study of the HE-D experiment. A good agreement is obtained between experimental data and numerical predictions. It has been shown that the proposed model describe correctly the main features of the mechanical behaviour of unsaturated rocks. (author)

  6. Hydro-mechanical modelling of an excavation in an underground research laboratory with an elasto-viscoplastic behaviour law and regularization by second gradient of dilation

    International Nuclear Information System (INIS)

    Plassart, Roland; Giraud, Albert; Hoxha, Dashnor; Laigle, Francois

    2013-01-01

    In the context of nuclear waste disposals, this paper deals with hydro-mechanical modelling in saturated conditions in deep geological formation, using a specific elasto-viscoplastic model hereafter called the L and K model. While classical Biot's framework is followed for the hydro-mechanical coupling, the mechanical L and K model offers a coupling between instantaneous and delayed behaviour and a variation of dilation of ten related to softening. These volumetric strains are especially highlighted in coupled hydro-mechanical conditions. In order to avoid mesh dependency and numerical localized solutions, this type of modelling needs the use of a regularization method which is here referred to as the second gradient dilation model. After describing the numeric tools, we use them for simulating a gallery of the underground research laboratory of Bure. The approach is validated by the good general agreement found between numeric results and in situ measures for both hydraulic pressure and displacement. (authors)

  7. Objective thermo-hydro-mechanical modelling of the damaged zone around a radioactive waste storage site

    International Nuclear Information System (INIS)

    Marinelli, Ferdinando

    2013-01-01

    We present two different approaches to describe the hydro-mechanical behaviour of geo-materials. In the first approach the porous media is studied through an equivalent continuum media where the interaction between the fluid and solid phases characterize the coupling behaviour at the macro-scale. We take into account this approach to model experimental tests performed over a hollow cylinder sample of clay rock (Boom Clay), considered for nuclear waste storage. The experimental results clearly show that the mechanical behaviour of the material is strongly anisotropic. For this reason we chose an elasto-plastic model based on Drucker-Prager criterion where the elastic part is characterized by cross anisotropy. The numerical results of boundary value problem clearly show localised strains around the inner hollow section. In order to regularize the numerical problem we consider a second gradient local continuum media with an enriched kinematic where an internal length can be introduced making the results mesh independent. The uniqueness study is carried out showing that changing the temporal discretization of the problem leads to different solutions. In the second approach we study the hydro-mechanical behaviour of a porous media that it is characterised by the microstructure of the material. The microstructure taken into account is composed by elastic grains, cohesive interfaces and a network of fluid channels. Using a periodic media a numerical homogenization (square finite element method) is considered to compute mass flux, stress and density of the mixture. In this way a pure numerical constitutive law is built from the microstructure of the media. This method has been implemented into a finite element code (Lagamine, Universite de Liege) to obtain results at the macro-scale. A validation of this implementation is performed for a pure mechanical boundary value problem and for a hydro-mechanical one. (author)

  8. 裂隙岩体水-冰相变及低温温度场-渗流场-应力场耦合研究%WATER-ICE PHASE TRANSITION AND THERMO-HYDRO-MECHANICAL COUPLING AT LOW TEMPERATURE IN FRACTURED ROCK

    Institute of Scientific and Technical Information of China (English)

    刘泉声; 康永水; 刘滨; 朱元广

    2011-01-01

    The problem of freezing-thawing damage of rock mass involves thermo-hydro-mechanic al(THM) coupling at low temperature. Based on the phase transition theory and the energy conservation principle, the expression of frozen ratio is derived. Using the dual-porosity medium theory, the governing equations of THM coupling of freezing rock are obtained according to the law of mass conservation, the law of energy conservation and the principle of static equilibrium. Finally, considering the influence of freezing process on permeability, an example of fractured tunnel is given to reveal the distribution of temperature field, stress field and pore pressure under THM coupling condition by using the method of equivalent thermal expansion coefficient.%岩体冻融损伤涉及低温环境下温度场、渗流场和应力场的耦合问题.基于水-冰相变理论和能量守恒原理,得出冻结率表达式.运用双重孔隙介质模型理论,根据质量守恒定律、能量守恒定律及静力平衡原理,得出冻结条件下裂隙岩体的温度场-渗流场-应力场(THM)耦合控制方程.最后,通过1个含裂隙隧道低温THM耦合算例,将围岩当作岩块与裂隙介质组成的系统,采用等效热膨胀系数法对夹冰(含水)裂隙的冻胀效应进行模拟,并考虑冻结过程对岩体渗透系数的影响,研究低温THM耦合条件下的温度场、应力场及孔隙压力等的分布规律.

  9. Comparative modelling of laboratory experiments for the hydro-mechanical behaviour of a compacted bentonite–sand\

    Czech Academy of Sciences Publication Activity Database

    Millard, A.; Mokni, N.; Barnichon, J. D.; Tatcher, K. E.; Bond, A.; Mc Dermott, C.; Blaheta, Radim; Michalec, Zdeněk; Hasal, Martin; Nguyen, T. S.; Nasir, O.; Fedors, S.; Yi, H.; Kolditz, O.

    2016-01-01

    Roč. 75, č. 20 (2016), s. 1311-1327 ISSN 1866-6280. [DECOVALEX 2015 /8./. Wakkanai, 13.10.2015-16.10.2015] Institutional support: RVO:68145535 Keywords : hydro-mechanical (hm) coupling * numerical modelling * sealing system s * compacted bentonite–sand mixture Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.569, year: 2016 http://link.springer.com/article/10.1007/s12665-016-6118-z

  10. Hydro-mechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling

    International Nuclear Information System (INIS)

    Gens, A.; Vallejan, B.; Sanchez, M.; Imbert, C.; Villar, M.V.; Van Geet, M.

    2011-01-01

    The paper describes a theoretical and experimental study of the coupled hydro-mechanical behaviour of a compacted mixture of bentonite powder and bentonite pellets intended as sealing material in underground repositories for nuclear waste. One of the main advantages of the use of powder/pellets mixtures is the reduction of the compaction effort required to achieve the value of average dry density necessary to attain the required swelling potential. However, the heterogeneous fabric of the material requires special approaches in order to describe adequately its behaviour during hydration. A double porosity formulation is presented to account for the presence of two distinct structural levels in the material. Hydraulic equilibrium between the two porosities is not assumed; instead a water exchange term between them is postulated. The formulation is applied to the modelling of a number of one-dimensional swelling pressure tests performed in the CEA (Commissariat a l'Energie Atomique, France) and CIEMAT (Spain) laboratories. A very satisfactory quantitative description of the experimental observations is obtained that includes a number of complex behaviour features such as size effects and non-monotonic development of swelling pressures. Some micro-fabric observations using X-ray tomography and mercury intrusion porosimetry lend support to the conceptual approach adopted. The formulation is then applied to the analysis of a long-term large-scale sealing test performed at the Hades underground facility in Belgium, using the same set of hydraulic and mechanical parameters employed in the modelling of the laboratory tests. Although the field observations exhibit a much higher degree of scatter, the basic behaviour of the field sealing test is satisfactorily simulated. A formulation that incorporates basic features of the micro-fabric of the mixture is thus able to span successfully over a large range of space and time scales. (authors)

  11. Study on micro hydro-mechanical deep drawing using finite element method

    Directory of Open Access Journals (Sweden)

    Ma Xiaoguang

    2016-01-01

    Full Text Available A numerical model was established to investigate the micro hydro-mechanical deep drawing process of austenitic stainless steel 304 foil (0.05 mm thickness. Due to the miniaturisation of the specimen size, the effect of grain size, gap distance and radial pressure during drawing process could be prominent. The results indicate that the appropriate radial pressure and gap distance could improve the limit drawing ratio (LDR of manufactured cylindrical cups by reducing the friction resistance. The maximum LDR obtained in the present work reaches 3.2, which is much higher than that obtained by conventional deep drawing process.

  12. Numerical modelling of crack initiation and propagation in concrete structure under hydro-mechanical loading

    International Nuclear Information System (INIS)

    Bian, H.B.; Jia, Y.; Shao, J.F.

    2012-01-01

    Document available in extended abstract form only. This subject is devoted to numerical analysis of crack initiation and propagation in concrete structures due to hydro-mechanical coupling processes. When the structures subjected to the variation in hydraulic conditions, fractures occur as a consequence of coalescence of diffuse damage. Consequently, the mechanical behaviour of concrete is described by an isotropic damage model. Once the damage reaches a critical value, a macroscopic crack is initiated. In the framework of extended Finite Element Method (XFEM), the propagation of localized crack is studied in this paper. Each crack is then considered as a discontinuity surface of displacement. According to the determination of crack propagation orientations, a tensile stress-based criterion is used. Furthermore, spatial variations of mechanical properties of concrete are also taken into account using the Weibull distribution function. Finally, the proposed model is applied to numerical analysis of a concrete liner in the context of feasibility studies for geological storage of radioactive wastes. The numerical results show that the proposed approach is capable to reproduce correctly the initiation and propagation crack process until the complete failure of concrete structures during hydro-mechanical loading. The concrete is most widely used construction material in many engineering applications. It is generally submitted to various environmental loading: such as the mechanical loading, the variation of relative humidity and the exposure to chemical risk, etc. In order to evaluate the safety and durability of concrete structures, it is necessary to get a good knowledge on the influence of loading path on the concrete behaviour. The objective of this paper is to study numerically the crack propagation in concrete structure under hydro-mechanical loading,.i.e. the mechanical behaviour of concrete subjected to drying process. The drying process leads to desiccation

  13. Temperature buffer test. Hydro-mechanical and chemical/ mineralogical characterizations

    International Nuclear Information System (INIS)

    Aakesson, Mattias; Olsson, Siv; Dueck, Ann; Nilsson, Ulf; Karnland, Ola; Kiviranta, Leena; Kumpulainen, Sirpa; Linden, Johan

    2012-01-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aspo HRL. It was installed during the spring of 2003. Two steel heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by rings of compacted Wyoming bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the hydro-mechanical and chemical/mineralogical characterization program which was launched subsequent to the dismantling operation. The main goal has been to investigate if any significant differences could be observed between material from the field experiment and the reference material. The field samples were mainly taken from Ring 4 (located at the mid-section around the lower heater), in which the temperature in the innermost part reached 155 deg C. The following hydro-mechanical properties have been determined for the material (test technique within brackets): hydraulic conductivity (swelling pressure device), swelling pressure (swelling pressure device), unconfined compression strength (mechanical press), shear strength (triaxial cell) and retention properties (jar method). The following chemical/mineralogical properties (methods within brackets) were determined: anion analysis of water leachates (IC), chemical composition (ICP/AES+MS, EGA), cation exchange capacity (CEC, Cu-trien method) and exchangeable cations (exchange with NH4, ICPAES), mineralogical composition (XRD and FTIR), element distribution and microstructure (SEM and

  14. Modelling the hydro-mechanical behaviour of swelling unsaturated soils; Modelisation du comportement hydromecanique des sols gonflants non satures

    Energy Technology Data Exchange (ETDEWEB)

    Mrad, M

    2005-10-15

    The use of compacted swelling soils in engineering practice is very widely spread, especially in geotechnical and environmental engineering. After their setup, these materials are likely to be subject to complex suction/stress paths involving significant variations of their hydro-mechanical properties which can affect their initial behaviour. It is important to be able to predict the hydro-mechanical behaviour of these materials taking into account the significant applications for which they are intended. Barcelona team developed a finite-element code (Code-Bright) for the thermo-hydro-mechanical coupling (THM) integrating the BBM elastoplastic model for unsaturated soils based on the independent variables approach. This model is recognized to correctly describe the hydro-mechanical behaviour of unsaturated soils but fails to take into account some particular observed aspects on swelling soils. A second model BExM was then proposed to address these aspects. The objective of this study is: (i) to implement the elastoplastic model BExM for the unsaturated swelling soils in the finite-element code (Code-Bright); (ii) to check the numerical model validity through the numerical simulation of laboratory tests made on swelling soils; and (iii) to apply this model to some practical problems. For this purpose, a new family of numerical procedures adapted to the BExM model was introduced into the code. The equation of the yield surface of this model for a given deviatoric stress states was given in a manner to facilitate calculations of its derivatives. The model was checked by the numerical simulation of suction-controlled odometric tests made on three different swelling soils. The simulation results showed that the numerical model is able to correctly reproduce the experimental data. Lastly, the model was applied to two practical problems: radioactive waste repository in deep geological layers and a shallow footing under the action of a swelling soil. The results obtained

  15. Basic rock properties for the thermo-hydro-mechanical analysis of a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kang, Chul Hyung

    1999-04-01

    Deep geological radioactive waste disposal is generally based on the isolation of the waste from the biosphere by multiple barriers. The host rock is one of these barriers which should provide a stable mechanical and chemical environment for the engineered barriers. In the evaluation of the safety of the high-level radioactive waste disposal systems, an important part of the safety analysis is an assessment of the coupling or interaction between thermal, hydrological, and mechanical effects. In order to do this assessment, adequate data on the characteristics of different host rocks are necessary. The properties of the rock and rock discontinuity are very complex and their values vary in a wide range. The accuracy of the result of the assessment depends on the values of these properties used. The present study is an attempt to bring together and condense data for the basic properties of various rock masses, which are needed in the thermo-hydro-mechanical analysis for the deep geological radioactive waste repository. The testing and measurement methods for these basic properties are also presented. Domestic data for deep geological media should be supplemented in the future, due to the insufficiency and the lack of accuracy of the data available at present. (author). 28 refs., 21 figs

  16. Basic rock properties for the thermo-hydro-mechanical analysis of a high-level radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jhin Wung; Kang, Chul Hyung

    1999-04-01

    Deep geological radioactive waste disposal is generally based on the isolation of the waste from the biosphere by multiple barriers. The host rock is one of these barriers which should provide a stable mechanical and chemical environment for the engineered barriers. In the evaluation of the safety of the high-level radioactive waste disposal systems, an important part of the safety analysis is an assessment of the coupling or interaction between thermal, hydrological, and mechanical effects. In order to do this assessment, adequate data on the characteristics of different host rocks are necessary. The properties of the rock and rock discontinuity are very complex and their values vary in a wide range. The accuracy of the result of the assessment depends on the values of these properties used. The present study is an attempt to bring together and condense data for the basic properties of various rock masses, which are needed in the thermo-hydro-mechanical analysis for the deep geological radioactive waste repository. The testing and measurement methods for these basic properties are also presented. Domestic data for deep geological media should be supplemented in the future, due to the insufficiency and the lack of accuracy of the data available at present. (author). 28 refs., 21 figs.

  17. Hydro-mechanical deep drawing of rolled magnesium sheets

    Energy Technology Data Exchange (ETDEWEB)

    Bach, F.W.; Rodman, M.; Rossberg, A. [Hannover Univ., Garbsen (Germany). Inst. of Materials Science; Behrens, B.A.; Vogt, O. [Hannover Univ., Garbsen (DE). Inst. of Metal Forming and Metal Forming Machine Tools (IFUM)

    2005-12-01

    Magnesium sheets offer high specific properties which make them very attractive in modern light weight constructions. The main obstacles for a wider usage are their high production costs, the poor corrosion properties and the limited ductility. Until today, forming processes have to be conducted at temperatures well above T=220 C. In the first place, this is a cost factor. Moreover, technical aspects, such as grain growth or the limited use of lubrication speak against high temperatures. The first aim of the presented research work is to increase the ductility at lower temperatures by alloy modification and by an adapted rolling technology. The key factor to reach isotropic mechanical properties and increased limit drawing ratios in deep drawing tools, is to achieve fine, homogeneous microstructures. This can be done by cross rolling at moderate temperatures. The heat treatment has to be adapted accordingly. In a second stage, hydro-mechanical deep drawing experiments were carried out at elevated temperature. The results show that the forming behaviour of the tested Mg-alloys is considerably improved compared to conventional deep drawing. (orig.)

  18. Hydro mechanical behaviour of shales. Application to the Tournemire site

    International Nuclear Information System (INIS)

    Ramambasoa, N.

    2001-01-01

    In order to fulfill its mission of research and expertise about deep nuclear waste disposals, the French Institute for Nuclear Protection and Safety has selected the Tournemire site to study the confining properties of argillaceous media. This study is mainly motivated by the apparition of cracks that after the excavation of two galleries perpendicularly to an old tunnel. These cracks are not of mechanical or tectonic origin. They are regularly spaced and follow the rock sub-horizontal stratification. Their aperture is very sensitive to the hygrometry in the galleries. These cracks are supposed to result of the rock desaturation, which is in contact with an unsaturated atmosphere. In order to validate this hypothesis, an hydro-mechanical constitutive law for Tournemire shale is proposed. In order to take account of the shale desaturation and of microscopic interactions specific of argillaceous media, chemical potential is used as an hydric variable instead of interstitial pressure, which is classically used in poro-mechanics. This constitutive law differs from classical elastic law by the dependence of elastic parameters with the water chemical potential and by the adding of shrinkage strains and mechanical strains to get total strains. The numerical simulation of the Tournemire galleries desaturation shows the existence of high tractions around the excavation that certainly lead to material failure. The propagation of the cracks at the front faces is modeled by taking account of the interactions between the cracks in order to predict their depth and to explain their almost periodical distribution on the site. (author)

  19. Thermo-hydro-mechanical behavior of fractured rock mass

    International Nuclear Information System (INIS)

    Coste, F.

    1997-12-01

    The purpose of this research is to model Thermo-Hydro-Mechanical behavior of fractured rock mass regarding a nuclear waste re-depository. For this, a methodology of modeling was proposed and was applied to a real underground site (EDF site at Nouvelle Romanche). This methodology consists, in a first step, to determine hydraulic and mechanical REV. Beyond the greatest of these REV, development of a finite element code allows to model all the fractures in an explicit manner. The homogenized mechanical properties are determined in drained and undrained boundary conditions by simulating triaxial tests that represent rock mass subject to loading. These simulations allow to study the evolution of hydraulic and mechanical properties as a function of stress state. Drained and undrained boundary conditions enable to discuss the validity of assimilation of a fractured rock mass to a porous medium. The simulations lead to a better understanding of the behavior of the fractured rock masses and allow to show the dominant role of the shear behavior of the fractures on the hydraulic and mechanical homogenized properties. From a thermal point of view, as long as conduction is dominant, thermal properties of the rock mass are almost the same as those the intact rock. (author)

  20. Hydro-mechanical paths within unsaturated compacted soil framed through water retention surfaces

    Directory of Open Access Journals (Sweden)

    Pelizzari Benjamin

    2016-01-01

    Full Text Available Compaction is a key issue of modern earthworks... From sustainable development, a need arise of using materials for compaction under given conditions that would normally be avoid due to unpredictable pathologies. The application of compaction on fine grained soils, without a change of gravimetric water content, lead to very important modifications of the void ratio and hence suction. Therefore the hydro-mechanical behaviour of fine grained soil need to be rendered around three variables: suction, void ratio, saturation degree or water content. The barring capacity of the soil is assessed through Penetrometers (In-situ manual penetrometer, CBR in order to assess gains through compaction. The three states variables are then assessed for in situ and frame through water retention surfaces, realized from Proctor tests, in which compaction effect and path could be described.

  1. Two-scale modelling for hydro-mechanical damage

    International Nuclear Information System (INIS)

    Frey, J.; Chambon, R.; Dascalu, C.

    2010-01-01

    Document available in extended abstract form only. Excavation works for underground storage create a damage zone for the rock nearby and affect its hydraulics properties. This degradation, already observed by laboratory tests, can create a leading path for fluids. The micro fracture phenomenon, which occur at a smaller scale and affect the rock permeability, must be fully understood to minimize the transfer process. Many methods can be used in order to take into account the microstructure of heterogeneous materials. Among them a method has been developed recently. Instead of using a constitutive equation obtained by phenomenological considerations or by some homogenization techniques, the representative elementary volume (R.E.V.) is modelled as a structure and the links between a prescribed kinematics and the corresponding dual forces are deduced numerically. This yields the so called Finite Element square method (FE2). In a numerical point of view, a finite element model is used at the macroscopic level, and for each Gauss point, computations on the microstructure gives the usual results of a constitutive law. This numerical approach is now classical in order to properly model some materials such as composites and the efficiency of such numerical homogenization process has been shown, and allows numerical modelling of deformation processes associated with various micro-structural changes. The aim of this work is to describe trough such a method, damage of the rock with a two scale hydro-mechanical model. The rock damage at the macroscopic scale is directly link with an analysis on the microstructure. At the macroscopic scale a two phase's problem is studied. A solid skeleton is filled up by a filtrating fluid. It is necessary to enforce two balance equation and two mass conservation equations. A classical way to deal with such a problem is to work with the balance equation of the whole mixture, and the mass fluid conservation written in a weak form, the mass

  2. FEBEX II Project Final report on thermo-hydro-mechanical laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Lloret, A.; Romero, E.; Villar, M. V.

    2004-07-01

    The results of the thermo-hydro-mechanical (THM) study of the FEBEX bentonite performed during FEBEX II are presented. The laboratory test program continued in part with the works carried out during FEBEX I, particularly in activities related to tests aimed to the calibration of the models, the acquisition of parameters by back-analysis and the improvement of the knowledge on the behaviour of expansive clays. But the program has also included tests on new areas: investigations about the influence of the microstructure changes in bentonite, of temperature and of the solute concentration on the behaviour of clay. Besides, several tests were proposed in order to understand the unexpected behaviour observed in the mock-up test, towards the end of year 2. Temperature effects on water retention curves in confined and unconfined conditions were determined, and swelling pressure, hydraulic conductivity and swelling and consolidation strains as a function of temperature were successfully measured. Different experimental techniques and equipments were developed to study thermal induced changes under partially saturated states, covering a wide range of suctions. FEBEX bentonite remains suitable as a sealing material in HLW repositories (from the hydro- mechanical point of view) for temperatures of up to 80 C, as it keeps its high water retention capacity, low permeability and self-healing ability. The extrapolation of results points out to the preservation of properties for at least up to 100 C. Mercury intrusion porosimetry and environmental scanning electron microscopy provided promising results in order to characterise the bentonite microstructure and to give information about the mechanisms influencing pore size distribution changes on high active clays. The use of digital imaging techniques allowed verifying that at micro-scale level, where chemical phenomena prevail, strains are almost reversible as it is considered in the two-level elasto-plastic models. The swelling

  3. FEBEX II Project Final report on thermo-hydro-mechanical laboratory tests

    International Nuclear Information System (INIS)

    Lloret, A.; Romero, E.; Villar, M. V.

    2004-01-01

    The results of the thermo-hydro-mechanical (THM) study of the FEBEX bentonite performed during FEBEX II are presented. The laboratory test program continued in part with the works carried out during FEBEX I, particularly in activities related to tests aimed to the calibration of the models, the acquisition of parameters by back-analysis and the improvement of the knowledge on the behaviour of expansive clays. But the program has also included tests on new areas: investigations about the influence of the microstructure changes in bentonite, of temperature and of the solute concentration on the behaviour of clay. Besides, several tests were proposed in order to understand the unexpected behaviour observed in the mock-up test, towards the end of year 2. Temperature effects on water retention curves in confined and unconfined conditions were determined, and swelling pressure, hydraulic conductivity and swelling and consolidation strains as a function of temperature were successfully measured. Different experimental techniques and equipments were developed to study thermal induced changes under partially saturated states, covering a wide range of suctions. FEBEX bentonite remains suitable as a sealing material in HLW repositories (from the hydro- mechanical point of view) for temperatures of up to 80 C, as it keeps its high water retention capacity, low permeability and self-healing ability. The extrapolation of results points out to the preservation of properties for at least up to 100 C. Mercury intrusion porosimetry and environmental scanning electron microscopy provided promising results in order to characterise the bentonite microstructure and to give information about the mechanisms influencing pore size distribution changes on high active clays. The use of digital imaging techniques allowed verifying that at micro-scale level, where chemical phenomena prevail, strains are almost reversible as it is considered in the two-level elasto-plastic models. The swelling

  4. Thermo-hydro-mechanical tests of buffer material

    Energy Technology Data Exchange (ETDEWEB)

    Pintado, X.; Hassan, Md. M.; Martikainen, J. [B and Tech Oy, Helsinki (Finland)

    2013-10-15

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m{sup 3} as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m{sup 3} as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m{sup 3} as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m{sup 3} and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m{sup 3} and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry

  5. Thermo-hydro-mechanical tests of buffer material

    International Nuclear Information System (INIS)

    Pintado, X.; Hassan, Md. M.; Martikainen, J.

    2013-10-01

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m 3 as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m 3 as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m 3 as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m 3 and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m 3 and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry density, water content, and

  6. Report on hydro-mechanical and chemical-mineralogical analyses of the bentonite buffer in Canister Retrieval Test

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann; Johannesson, Lars-Erik; Kristensson, Ola; Olsson, Siv [Clay Technology AB (Sweden)

    2011-12-15

    The effect of five years of exposure to repository-like conditions on compacted Wyoming bentonite was determined by comparing the hydraulic, mechanical, and mineralogical properties of samples from the bentonite buffer of the Canister Retrieval Test (CRT) with those of reference material. The CRT, located at the Swedish Aspo Hard Rock Laboratory (HRL), was a full-scale field experiment simulating conditions relevant for the Swedish KBS-3 concept for disposal of high-level radioactive waste in crystalline host rock. The compacted bentonite, surrounding a copper canister equipped with heaters, had been subjected to heating at temperatures up to 95 deg C and hydration by natural Na-Ca-Cl type groundwater for almost five years at the time of retrieval. Under the thermal and hydration gradients that prevailed during the test, sulfate in the bentonite was redistributed and accumulated as anhydrite close to the canister. The major change in the exchangeable cation pool was a loss in Mg in the outer parts of the blocks, suggesting replacement of Mg mainly by Ca along with the hydration with groundwater. Close to the copper canister, small amounts of Cu were incorporated in the bentonite. A reduction of strain at failure was observed in the innermost part of the bentonite buffer, but no influence was seen on the shear strength. No change of the swelling pressure was observed, while a modest decrease in hydraulic conductivity was found for the samples with the highest densities. No coupling was found between these changes in the hydro-mechanical properties and the montmorillonite . the X-ray diffraction characteristics, the cation exchange properties, and the average crystal chemistry of the Na-converted < 1 {mu}m fractions provided no evidence of any chemical/structural changes in the montmorillonite after the 5-year hydrothermal test.

  7. A hydro-mechanical framework for early warning of rainfall-induced landslides (Invited)

    Science.gov (United States)

    Godt, J.; Lu, N.; Baum, R. L.

    2013-12-01

    Landslide early warning requires an estimate of the location, timing, and magnitude of initial movement, and the change in volume and momentum of material as it travels down a slope or channel. In many locations advance assessment of landslide location, volume, and momentum is possible, but prediction of landslide timing entails understanding the evolution of rainfall and soil-water conditions, and consequent effects on slope stability in real time. Existing schemes for landslide prediction generally rely on empirical relations between landslide occurrence and rainfall amount and duration, however, these relations do not account for temporally variable rainfall nor the variably saturated processes that control the hydro-mechanical response of hillside materials to rainfall. Although limited by the resolution and accuracy of rainfall forecasts and now-casts in complex terrain and by the inherent difficulty in adequately characterizing subsurface materials, physics-based models provide a general means to quantitatively link rainfall and landslide occurrence. To obtain quantitative estimates of landslide potential from physics-based models using observed or forecasted rainfall requires explicit consideration of the changes in effective stress that result from changes in soil moisture and pore-water pressures. The physics that control soil-water conditions are transient, nonlinear, hysteretic, and dependent on material composition and history. In order to examine the physical processes that control infiltration and effective stress in variably saturated materials, we present field and laboratory results describing intrinsic relations among soil water and mechanical properties of hillside materials. At the REV (representative elementary volume) scale, the interaction between pore fluids and solid grains can be effectively described by the relation between soil suction, soil water content, hydraulic conductivity, and suction stress. We show that these relations can be

  8. Thermo-hydro-mechanical modelling of fractured rock masses application to radioactive wastes storage

    International Nuclear Information System (INIS)

    Vuillod, E.

    1995-01-01

    This work belongs to the Decovalex project (international cooperative project for the development of coupled models and their validation against experiments in nuclear waste isolation) of thermo-hydro-mechanical (THM) modeling of fractured rock massifs inside which high level radioactive waste disposal sites are simulated. The mathematical laws controlling the behaviour of the environment are resolved analytically in the case of a continuous environment (definition of an equivalent environment) and numerically if the environment is discontinuous (modeling of joints behaviour). The coupled THM models strongly influence the behaviour of a model. Modeling performed with the UDEC code shows the importance of HM couplings depending on whether the calculations are made in permanent or transient regime, and the influence of the loading path in the case of TM modeling. The geometry of fractures also influences the behaviour of the model. Studying the connexity of a fractures network allows to determine its degree of homogeneity. The comparison between two methods, continuous environment and discontinuous environment, has been carried out by determining the permeability tensor and the stress-deformation relations on fractured test-samples. It shows the differences in behaviour between an homogenized environment and a discrete environment. Finally two exercises of THM modeling of radioactive waste disposal sites illustrate the researches carried out. A far field model has permitted to compare the results obtained with calculation codes using different logics. The second model, a near field one, focusses more on the importance played by fracturing on the behaviour of the massif. The high density of the reference network has required some mathematical developments, in order to determine the representative equivalent volume (continuous approaches), and some mathematical analyses, to correctly simplify the environment (discontinuous approaches). These methods and analyses are

  9. Numerical analysis of thermo-hydro-mechanical (THM) processes in the clay based material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuerui

    2016-10-06

    Clay formations are investigated worldwide as potential host rock for the deep geological disposal of high-level radioactive waste (HLW). Usually bentonite is preferred as the buffer and backfill material in the disposal system. In the disposal of HLW, heat emission is one of the most important issues as it can generate a series of complex thermo-hydro-mechanical (THM) processes in the surrounding materials and thus change the material properties. In the context of safety assessment, it is important to understand the thermally induced THM interactions and the associated change in material properties. In this work, the thermally induced coupled THM behaviours in the clay host rock and in the bentonite buffer as well as the corresponding coupling effects among the relevant material properties are numerically analysed. A coupled non-isothermal Richards flow mechanical model and a non-isothermal multiphase flow model were developed based on the scientific computer codes OpenGeoSys (OGS). Heat transfer in the porous media is governed by thermal conduction and advective flow of the pore fluids. Within the hydraulic processes, evaporation, vapour diffusion, and the unsaturated flow field are considered. Darcy's law is used to describe the advective flux of gas and liquid phases. The relative permeability of each phase is considered. The elastic deformation process is modelled by the generalized Hooke's law complemented with additional strain caused by swelling/shrinkage behaviour and by temperature change. In this study, special attention has been paid to the analysis of the thermally induced changes in material properties. The strong mechanical and hydraulic anisotropic properties of clay rock are described by a transversely isotropic mechanical model and by a transversely isotropic permeability tensor, respectively. The thermal anisotropy is described by adoption of the bedding-orientation-dependent thermal conductivity. The dependency of the thermal

  10. Numerical analysis of thermo-hydro-mechanical (THM) processes in the clay based material

    International Nuclear Information System (INIS)

    Wang, Xuerui

    2016-01-01

    Clay formations are investigated worldwide as potential host rock for the deep geological disposal of high-level radioactive waste (HLW). Usually bentonite is preferred as the buffer and backfill material in the disposal system. In the disposal of HLW, heat emission is one of the most important issues as it can generate a series of complex thermo-hydro-mechanical (THM) processes in the surrounding materials and thus change the material properties. In the context of safety assessment, it is important to understand the thermally induced THM interactions and the associated change in material properties. In this work, the thermally induced coupled THM behaviours in the clay host rock and in the bentonite buffer as well as the corresponding coupling effects among the relevant material properties are numerically analysed. A coupled non-isothermal Richards flow mechanical model and a non-isothermal multiphase flow model were developed based on the scientific computer codes OpenGeoSys (OGS). Heat transfer in the porous media is governed by thermal conduction and advective flow of the pore fluids. Within the hydraulic processes, evaporation, vapour diffusion, and the unsaturated flow field are considered. Darcy's law is used to describe the advective flux of gas and liquid phases. The relative permeability of each phase is considered. The elastic deformation process is modelled by the generalized Hooke's law complemented with additional strain caused by swelling/shrinkage behaviour and by temperature change. In this study, special attention has been paid to the analysis of the thermally induced changes in material properties. The strong mechanical and hydraulic anisotropic properties of clay rock are described by a transversely isotropic mechanical model and by a transversely isotropic permeability tensor, respectively. The thermal anisotropy is described by adoption of the bedding-orientation-dependent thermal conductivity. The dependency of the thermal

  11. Laboratory hydro-mechanical characterisation of Boom Clay at Essen and Mol

    International Nuclear Information System (INIS)

    Deng, Y. F.; Tang, A. M.; Cui, Y. J.; Nguyen, X. P.; Li, X. L.; Wouters, L.

    2011-01-01

    Boom Clay has been selected as a potential host rock formation for the geological disposal of radioactive waste in Belgium. In the present work, the hydro-mechanical behaviour of Boom Clay samples from the borehole Essen-1 at a depth of 220-260 m and from HADES that is the underground rock laboratory at Mol in Belgium, at 223-m depth was investigated in the laboratory by performing low pressure odometer tests (vertical effective stress ranging from 0.05 to 3.2 MPa), high pressure odometer tests (vertical effective stress ranging from 0.125 to 32 MPa), isotropic consolidation tests (confining effective stress ranging from the in situ stress to 20 MPa) and triaxial shear tests. It has been observed that the mineralogy, geotechnical properties and hydro-mechanical behaviour of Boom Clay from Essen at 227-m, 240-m and 248-m depths are similar to that of Boom Clay from Mol. As in the case of Boom Clay at Mol, the failure envelope of Boom Clay at Essen in the p'- q plane is not linear. The slope of the portion beyond the pre-consolidation stress of Boom Clay from Essen is almost the same as that from Mol, suggesting a similar internal friction angle of about 13 deg. The compression curves (void index I v versus logarithm of vertical stress) beyond the pre-consolidation stress are the same for both samples from Mol and Essen, and situated between the intrinsic compression line (ICL) and the sedimentation compression line (SCL). The yield stress determined from odometer tests seems to be stress-path dependent and lower than the pre-consolidation stress. Thus determining the over-consolidation ratio (OCR) using the yield stress value would lead to an incorrect estimate. From a practical point view, the laboratory test results from Essen and their comparison with those from Mol provide important information regarding the transferability of knowledge on Boom Clay at different sites, taking into account the fact that most investigations have been carried out on Boom Clay at

  12. FEBEX Full-Scalle Engineered Barriers Experiment in Crystalline Host Rock Preoperational Thermo-Hydro-Mechanical (THM) Modelling of the Mock Up Test

    International Nuclear Information System (INIS)

    1998-01-01

    The object of this report is to present and discuss the results of a series of 1-D and 2-D coupled thermo-hydro-mechanical (THM) and 2-D coupled thermo-hydro-mechanical (THM) analyses modelling the FEBEX mock-up test. The analyses have been carried out during the preoperational storage of the test and attempt to incorporate all available information obtained from laboratory characterisation work. The aim is not only to offer the best estimate of test performance using current models and information but also to provide a basis for future model improvements. Both the theoretical framework adopted in the analysis and the computer code employed are briefly described. The set of parameters used in the computation is then presented with particular reference to the source from which they have been derived. Initial and boundary condition are also defined. The results of a 1-D radially symmetric analysis are used to examine the basic patterns of thermal, hydraulic and mechanical behaviour of the test. A set of sensitivity analyses has been carried out in order to check the effects that the variation of a number of important parameters has on test results. Only in this way it is possible to acquire a proper understanding of the internal structure of the problem and of the interactions between the various phenomena occurring in the buffer. A better reproduction of the geometry of the test is achieved by means of a 2-D mesh representing and axisymmetric longitudinal section. Due to two-dimensional effects, the analyses carried out using this geometry exhibit some differences when compared with the results of the 1-D case, but the basic test behaviour is very similar. The test was started with an initial flooding stage with the purpose of closing the gaps between bentonite blocks. A limited number of compilations using recently developed joint elements have been performed to assess approximately the effect of this initial step on subsequent test behaviour. The analyses reported

  13. Thermo-hydro-mechanical mode of canister retrieval test

    International Nuclear Information System (INIS)

    Zandarin, M.T.; Olivella, S.; Gens', A.; Alonso, E.E.

    2010-01-01

    Document available in extended abstract form only. The Canister Retrieval Tests (CRT) is a full scale in situ experiment performed by SKB at Aespoe Laboratory. The experiment involves placing a canister equipped with electrical heaters inside of a deposition hole bored in Aespoe diorite. The deposition hole is 8.55 metres deep and has a diameter of 1.76 metres. The space between canister and the hole is filled with a MX-80 bentonite buffer. The bentonite buffer was installed in form of blocks and rings of bentonite. At the top of the canister bentonite bricks occupy the volume between the canister top surface and the bottom surface of the plug. Due to the bentonite ring size there are two gaps; once between canister and buffer which was left empty and another one between buffer and rock that was filled with bentonite pellets. The top of the hole was sealed with a retaining plug composed of concrete and a steel plate. The plug was secured against heave caused by the swelling clay with nine cables anchored in the rock. An artificial pressurised saturation system was used because the supply of water from the rock was judged to be insufficient for saturating the buffer in a feasible time. A large number of instruments were installed to monitor the test as follows: - Canister - temperature and strain. - Rock mass - temperature and stress. - Retaining system - force and displacement. - Buffer - temperature, relative humidity, pore pressure and total pressure. After dismantling the tests the final dry density and water content of bentonite and pellets were measured. The comprehensive record of the Thermo-Hydro-Mechanical (THM) processes in the buffer give the possibility to investigate theoretical formulations and models, since the results of THM analyses can be checked against experimental data. As part of the European project THERESA, a 2-D axisymmetric model simulation of CRT bas been carried out. Some of the main objectives of this simulation are the study of the

  14. Hydro-Mechanical Modelling of Slow Slip Phenomena at the Subduction Interface.

    Science.gov (United States)

    Petrini, C.; Gerya, T.; Madonna, C.; van Dinther, Y.

    2016-12-01

    Subduction zones experience a spectrum of slip phenomena, ranging from large devastating megathrust earthquakes to aseismic slow slip events. Slow slip events, lasting hours to years and being perceptible only by instruments, are believed to have the capability to induce large earthquakes. It is also repeatedly proposed that such slow events are controlled by fluid-rock interactions along the subduction interface, thus calling for development of fully coupled seismo-hydro-mechanical modeling approaches to identify their physics and controlling parameters. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples mechanical deformation and fluid flow. We use this to investigate how the presence of fluids in the pore space of a (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model simulates the spontaneous occurrence of quasi-periodic slow slip phenomena along self-consistently forming highly localized shearbands, which accommodate shear displacement between two plates. The produced elastic rebound events show a slip velocity on the order of cm/yr, which is in good agreement with measured data. The governing gradual strength decrease along the slowly propagating shear bands is related to a drop in total pressure caused by shear localization at nearly constant (slightly decreasing) fluid pressure. Gradual reduction of the difference between the total and fluid pressure decreases brittle/plastic strength of fluid-bearing rocks along the shear bands, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  15. Analysing hydro-mechanical behaviour of reinforced slopes through centrifuge modelling

    Science.gov (United States)

    Veenhof, Rick; Wu, Wei

    2017-04-01

    Every year, slope instability is causing casualties and damage to properties and the environment. The behaviour of slopes during and after these kind of events is complex and depends on meteorological conditions, slope geometry, hydro-mechanical soil properties, boundary conditions and the initial state of the soils. This study describes the effects of adding reinforcement, consisting of randomly distributed polyolefin monofilament fibres or Ryegrass (Lolium), on the behaviour of medium-fine sand in loose and medium dense conditions. Direct shear tests were performed on sand specimens with different void ratios, water content and fibre or root density, respectively. To simulate the stress state of real scale field situations, centrifuge model tests were conducted on sand specimens with different slope angles, thickness of the reinforced layer, fibre density, void ratio and water content. An increase in peak shear strength is observed in all reinforced cases. Centrifuge tests show that for slopes that are reinforced the period until failure is extended. The location of shear band formation and patch displacement behaviour indicate that the design of slope reinforcement has a significant effect on the failure behaviour. Future research will focus on the effect of plant water uptake on soil cohesion.

  16. Hydro-mechanical analysis of results acquired by video-observations and deformation measurements performed in boreholes in the Opalinus clay of the URL Mont Terri supported by laboratory investigations on the hydro-mechanical behaviour of Opalinus clay

    International Nuclear Information System (INIS)

    Seeska, R.; Rutenberg, M.; Lux, K.H.

    2012-01-01

    also be detected. Furthermore, a significant influence of the hydraulic behaviour on the load-bearing and deformation behaviour of the investigated boreholes was observed. Therefore, laboratory investigations regarding the hydraulic sensitivity of Opalinus Clay have been performed in the TUC rock mechanic laboratory on rock samples from the URL Mont Terri in addition to the in-situ observations. To investigate the hydraulic sensitivity and the hydro-mechanically coupled behaviour of the clay-stone samples, a series of uniaxial strength tests with precisely controlled relative humidity and temperature of the air surrounding the specimen inside the test rig has been performed. Eventually, an attempt has been made to hydro-mechanically model the observed borehole behaviour by using a three-dimensional model covering a drift section and a borehole within the near field of the drift. The numerical simulations have been performed using an elastoplastic constitutive model named ubiquitous joint. Implemented in the FLAC3D software code, the constitutive model ubiquitous joint is capable of modelling the mechanical behaviour of the rock matrix as well as the highly anisotropic mechanical behaviour of the bedding planes. Furthermore, effects like time dependent desaturation of the rock mass, a reduction of strength in the damaged zones around the drift and the borehole, and the increase of hydraulic permeability within the damaged zones have also been taken into consideration when performing the numerical simulations. Figure 2 exemplarily shows the calculated pore pressure distribution around the drift and the borehole in a cross section along the borehole's longitudinal axis. The presentation includes a brief discussion of the results obtained by the logging tool and the discussion of the borehole videos that were recorded by the axial borehole camera as well as a discussion of the laboratory results before in the concluding part the results of the numerical simulations will be

  17. The Numerical Simulation of Coupling Behavior of Soil with Chemical Pollutant Effects

    Science.gov (United States)

    Liu, Z. J.; Li, X. K.; Tang, L. Q.

    2010-05-01

    The coupling behavior of clay plays a role in the integrity of clay barriers used in landfills. The clay barriers are subjected to mechanical and thermal effects coupled with hydraulic behavior, also, if the leachates become in contact with the clay liner, chemical effects may lead to some drastic changes in the properties of the clay. A numerical method to simulate the coupling behavior of soil with chemical pollutant effects is presented. Within the framework of Gens-Alonso model describing the constitutive behavior of unsaturated clay presented in reference[1], basing on the work of Wu[2] and Hueckel[3], a constitutive model describing the chemo-thermo-hydro-mechanical(CTHM) coupling behavior of clays in contact with a single organic contaminant is presented. The thermical softening and chemical softening is considered in the presented model. The strain arising in the material due to chemical and thermical effects can be decomposed into two parts: elastic expansion and plastic compaction. The chemical effects are described in terms of the mass concentration of the contaminant. The increases in temperature and contaminant concentration cause decreases of the pre-consolidation pressure and the cohesion. The mechanisms are called thermical softening and chemical softening. The presented coupled CTHM constitutive model has been integrated into the coupled thermo-hydro-mechanical mathematical model including contaminant transport in porous media. To solve the equilibrium equations, the grogram of finite element methods is developed with a stagger algorithm. The mechanisms taking place due to the coupling behaviour of the clay with a single contaminant solute are analysed with the presented numerical method.

  18. Density-dependent hydro-mechanical behaviour of a compacted expansive soil

    International Nuclear Information System (INIS)

    NOWAMOOZ, Hossein; MASROURI, Farimah

    2010-01-01

    Document available in extended abstract form only. Clayey soils are widely used in geotechnical engineering for dam cores, barriers in waste landfills and for engineered barriers in nuclear waste storage facilities. In the latter case, the used materials contain a large amount of smectite which is a highly swelling clay. On site, they can be submitted to complex suction/ stress/temperature variations that could change dramatically their hydro-mechanical behavior, meaning their saturated and unsaturated mechanical characteristics. To further our knowledge of the coupling between the hydraulic and mechanical behaviour of the swelling soils, this paper presents an experimental study on a swelling bentonite/silt mixture using osmotic odometers. A loading/unloading cycle was applied to samples with different initial dry densities (1.27, 1.48, and 1.55 Mg.m -3 ) at different constant suctions (0, 2, and 8 MPa). These experimental results provided a sufficient database to analytically model the mechanical behavior of the swelling soil and define three yielding surfaces: - the Suction Limit between Micro- and Macrostructure (s m/M ) and the Suction Limit between Nano- and Microstructure (s n/m ), which depend completely on the soil fabrics and the diameter separating the nano-, micro-, and macrostructure, - the Loading Collapse (LC) curve, representing the pre-consolidation stress variation as a function of suction, - the Saturation Curve (SC), representing the variation of the saturation stress (P sat ) as a function of suction. In general, we can state that the increase of compaction pressure unified the LC and SC surfaces and decreased the (s m/M ) value without modifying the (s n/m ) value. (authors)

  19. DECOVALEX III/BENCHPAR PROJECTS. Evaluation of the Impact of Thermal-Hydro-Mechanical Couplings in Bentonite and Near-Field Rock Barriers on a Nuclear Waste Repository in a Sparsely Fractured Hard Rock. Report of BMT1C/WP2

    International Nuclear Information System (INIS)

    Jing, L.

    2005-02-01

    temperature can be predicted accurately without consideration of coupling to hydraulic and mechanical processes. It is also clear that mechanical behaviour, that is, evolution of stress in the buffer-rock system, cannot be appropriately predicted without consideration of temperature effects and effects of fluid pressure. It is not clear at this point whether the hydraulic behaviour (for example resaturation of the buffer and radioactive nuclide transport) can be significantly impacted by T and M processes. For the parameter set adopted in this analysis, the resaturation time is slightly impacted by the effect of temperature whereas the mechanically induced changes in permeability does not significantly impact the resaturation process. The general results of the impact of various THM couplings for sparsely fractured rocks conducted in this paper are in line with those of a homogenous low permeability rock defined as in BMT1B. The main difference is that the hydraulic conducting fractures provide an additional water supply that prevents desaturation of the rock and accelerates the buffer resaturation process

  20. DECOVALEX III/BENCHPAR PROJECTS. Evaluation of the Impact of Thermal-Hydro-Mechanical Couplings in Bentonite and Near-Field Rock Barriers on a Nuclear Waste Repository in a Sparsely Fractured Hard Rock. Report of BMT1C/WP2

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Nguyen, T.S. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)] (eds.)

    2005-02-15

    temperature can be predicted accurately without consideration of coupling to hydraulic and mechanical processes. It is also clear that mechanical behaviour, that is, evolution of stress in the buffer-rock system, cannot be appropriately predicted without consideration of temperature effects and effects of fluid pressure. It is not clear at this point whether the hydraulic behaviour (for example resaturation of the buffer and radioactive nuclide transport) can be significantly impacted by T and M processes. For the parameter set adopted in this analysis, the resaturation time is slightly impacted by the effect of temperature whereas the mechanically induced changes in permeability does not significantly impact the resaturation process. The general results of the impact of various THM couplings for sparsely fractured rocks conducted in this paper are in line with those of a homogenous low permeability rock defined as in BMT1B. The main difference is that the hydraulic conducting fractures provide an additional water supply that prevents desaturation of the rock and accelerates the buffer resaturation process.

  1. Study of long term chemo-hydro-mechanic behaviour of hydraulic barrier reinforced by polymer

    International Nuclear Information System (INIS)

    Razakamanantsoa, Andry Rico

    2009-01-01

    Passive barrier for landfill liners are designed with bentonite material as Geo-synthetic Clay Liners (GCL's) or Sand Bentonite Mixtures (SBM). This thesis is focused on the experimental study of the long term Chemo-Hydro-Mechanic behaviour of polymer treated geo-materials. Tests are performed with two powder polyelectrolyte polymers (P1, P2). Soil and one selected type of bentonite from a set of six are used. The corresponding testing fluid is composed with: synthesized leachate, CaCl_2 and NaCl. This first step of the study is to select the suitable bentonite (B) and the corresponding polymer concentration (2%) that gives the best swelling ability to the bentonite. Compatibility test of the bentonite polymer mixture with synthesized leachable is done. Tests are performed by fabricating GL's, with filter press and oedo-permeameter. Results show that hydraulic performance grows with the bentonite concentration. And the LS aggressiveness occurs immediately in a case of bentonite. The effects of polymer treatment are different: P1 increases the swelling ability of bentonite by flocculation, P2 increases the hydraulic performance of the bentonite by dispersion. The long term hydraulic performance tests with SBM are carried out with a rigid wall permeameter. Tests results show that pre-hydration delays only the fluid aggressiveness in spite of reducing the corresponding effects. The long term effect of polymer treatment reveals benefits to geo-material behaviour by increasing water retention and reducing the undesired effects of pollutant. The chemical index is proposed to forecast the geo-material degradation. (author)

  2. Predictive hydro-mechanical excavation simulation of a mine-by test at the Mont Terri rock laboratory

    International Nuclear Information System (INIS)

    Krug, St.; Shao, H.; Hesser, J.; Nowak, T.; Kunz, H.; Vietor, T.

    2010-01-01

    33 deg. to southeast. The sensors around the niche during excavating were installed with the focus on deformation and pore pressure evolution in the near field. Different types of pore water pressure sensors (in 5-interval multi-packers, single mini-packer systems and modular multi packer systems), inclinometer chains for the measurement of angular strains, magnetic extensometers for the observation of axial deformations around the niche and additionally one reverse head extensometer along the axis of Niche 2, which is shortened during the excavation process, delivered measurements in 2 hour intervals during and after the niche excavation. The FE code RockFlow allows considering the transverse isotropic behaviour of clay-stone by turning the model around the y-axis with the dip of the bedding planes. That means rock material anisotropy can be considered by the definition of transverse isotropic elastic properties. The hydraulic behaviour is defined by different permeabilities parallel and perpendicular to the bedding. The anisotropic stress state of the Opalinus Clay is defined additionally. The model concept involves the hydro-mechanical coupling in the balance equation for the conservation of mass (Biot coupling scheme) and also by constitutive equations describing the behaviour of clay rock. In the present HM model the effective stress approach, a linear swelling and shrinkage model and the strain dependent porosity and permeability after Kozeny Carman are involved. Fluid flux is modelled by applying the Richard's approximation for unsaturated flow. The 3D numerical model has an extension of 100 m in each direction. The model geometry consists of the Gallery 08, which is already modelled in the completely excavated state with its horse-shoe profile and Niche 2 with an almost circular section geometry, whose axis is situated in the centre between the model boundaries. The excavation simulation is done step by step corresponding to the excavation process of

  3. Experiments on thermo-hydro-mechanical behaviour of Opalinus Clay at Mont Terri rock laboratory, Switzerland

    Directory of Open Access Journals (Sweden)

    Paul Bossart

    2017-06-01

    Full Text Available Repositories for deep geological disposal of radioactive waste rely on multi-barrier systems to isolate waste from the biosphere. A multi-barrier system typically comprises the natural geological barrier provided by the repository host rock – in our case the Opalinus Clay – and an engineered barrier system (EBS. The Swiss repository concept for spent fuel and vitrified high-level waste (HLW consists of waste canisters, which are emplaced horizontally in the middle of an emplacement gallery and are separated from the gallery wall by granular backfill material (GBM. We describe here a selection of five in-situ experiments where characteristic hydro-mechanical (HM and thermo-hydro-mechanical (THM processes have been observed. The first example is a coupled HM and mine-by test where the evolution of the excavation damaged zone (EDZ was monitored around a gallery in the Opalinus Clay (ED-B experiment. Measurements of pore-water pressures and convergences due to stress redistribution during excavation highlighted the HM behaviour. The same measurements were subsequently carried out in a heater test (HE-D where we were able to characterise the Opalinus Clay in terms of its THM behaviour. These yielded detailed data to better understand the THM behaviours of the granular backfill and the natural host rock. For a presentation of the Swiss concept for HLW storage, we designed three demonstration experiments that were subsequently implemented in the Mont Terri rock laboratory: (1 the engineered barrier (EB experiment, (2 the in-situ heater test on key-THM processes and parameters (HE-E experiment, and (3 the full-scale emplacement (FE experiment. The first demonstration experiment has been dismantled, but the last two ones are on-going.

  4. Multi-scale modelling and simulation of the thermo-hydro-mechanical behavior of concrete with explicit representation of cracking

    International Nuclear Information System (INIS)

    Tognevi, Amen

    2012-01-01

    The concrete structures of nuclear power plants can be subjected to moderate thermo-hydric loadings characterized by temperatures of the order of hundred of degrees in service conditions as well as in accidental ones. These loadings can be at the origin of important disorders, in particular cracking which accelerate hydric transfers in the structure. In the framework of the study of durability of these structures, a coupled thermo-hydro-mechanical model denoted THMs has been developed at Laboratoire d'Etude du Comportement des Betons et des Argiles (LECBA) of CEA Saclay in order to perform simulations of the concrete behavior submitted to such loadings. In this work, we focus on the improvement in the model THMs in one hand of the assessment of the mechanical and hydro-mechanical parameters of the unsaturated micro-cracked material and in the other hand of the description of cracking in terms of opening and propagation. The first part is devoted to the development of a model based on a multi-scale description of cement-based materials starting from the scale of the main hydrated products (portlandite, ettringite, C-S-H etc.) to the macroscopic scale of the cracked material. The investigated parameters are obtained at each scale of the description by applying analytical homogenization techniques. The second part concerns a fine numerical description of cracking. To this end, we choose to use combined finite element and discrete element methods. This procedure is presented and illustrated through a series of mechanical tests in order to show the feasibility of the method and to proceed to its validation. Finally, we apply the procedure to a heated wall and the proposed method for estimating the permeability shows the interest to take into account an anisotropic permeability tensor when dealing with mass transfers in cracked concrete structures. (author) [fr

  5. Hydro-mechanical behaviour of crushed COx argillite used as backfilling material in HLW repository

    International Nuclear Information System (INIS)

    Tang Chaosheng; Shi Bin; Cui Yujun; Anh-Minh Tang

    2010-01-01

    At present, the crushed Callovo-Oxfordian (COx) argillite powder is proposed as an alternative backfilling material in France, which will be constructed in the engineering barrier of high-level radioactive waste (HLW) repository. In this investigation, the compression behavior of two crushed COx argillite powders (coarser one and finer one) was studied by running l-D compression tests with several loading-unloading cycles. After the final dry density 2.0 g/cm 3 was reached, the specimen was flooding with distilled water and the evolution of axial stress was studied during saturation process. The effects of initial axial stress level and grain size distribution (GSD) on hydro-mechanical behaviour of compacted specimen were analyzed. The results show that the compression curves are significantly influenced by the GSD of the soils. To obtain the same degree of compaction, the axial stress applied to finer soil is much higher than that of coarser soil. In addition, the compression index of the finer soil is bigger than that of coarser soil. The swelling index at initial water content increases with the dry density and seems to be independent of the GSD. During saturation, the initial lower axial stress causes obvious swelling behavior for both the coarser and finer powder samples and the corresponding axial stress increase gradually. At initial higher axial stress condition, monotone collapse behavior is observed for the coarser powder samples. Whereas the axial stress decrease firstly, then increase and finally decrease again for the finer powder samples. After saturation, the equilibrium axial stresses of finer powder samples are higher than that of coarser powder samples. (authors)

  6. chemo-Hydro-mechanical modelling of in-situ disposal of a bituminized radioactive waste in boom clay

    International Nuclear Information System (INIS)

    Mokni, N.; Olivella, S.; Valcke, E.; Marien, A.; Smets, S.; Li, X.; Sillen, X.

    2012-01-01

    Document available in extended abstract form only. The current reference solution of the Belgian Agency for the Management of Radioactive Waste and Fissile Materials (ONDRAF/NIRAS) envisages underground disposal of Eurobitum Bituminized radioactive Waste (BW) in a geologically stable clay formation. In Belgium, the Boom Clay, which is a 30 to 35 million years old and ∼100 m thick marine sediment is being studied as a potential host formation because of its favorable properties to limit and delay the migration of the leached radionuclides to the biosphere over extended periods of time. The current disposal concept foresees that several drums (220 litres) of Eurobitum would be grouped in thick-walled cement-based secondary containers, which in turn would be placed in concrete-lined disposal galleries that are excavated at mid-depth in the clay layer. Only 80-90 % of the total volume of the drum is filled with Eurobitum.The remaining voids between the containers would be backfilled with a cement-based material. The interaction between the BW and the host clay formation is a very complicated chemo-hydro-mechanical process and depends not only on the hydro-mechanical behaviour of the Boom Clay itself, but also on that of the BW. In fact, the osmosis-induced uptake of water by the dehydrated hygroscopic salts embedded in the waste induces a geo-mechanical perturbation of the host formation, caused by the swelling and the increase of the pressure in and around the waste. The objectives of the Chemo-Hydro-Chemical (CHM) analysis presented in this work are (i) to get insights on the kinetics of water uptake by BW, dissolution of the embedded NaNO 3 crystals, solute leaching, and maximum generated pressure under disposal conditions and (ii) to study the stress redistribution due to the recompression of the clay around a gallery caused by the swelling pressure of the bitumen and the admissible swelling pressure for Boom clay. Firstly, a CHM formulation of chemically and

  7. Chemical influence on the hydro-mechanical behaviour of high-density bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, E.; Romero, E.; Lioret, A. [Technical Univ. of Catalonia UPC, Barcelona (Spain); Musso, G. [Politecnico di Torino, Torino (Italy)

    2005-07-01

    In radioactive waste disposal schemes, during the operational period of clay barriers, solute transport an d thermal gradients may alter the solute concentration of pore water. These induced changes have important consequences on hydro-mechanical properties and microstructural alterations (mineral composition and pore size distribution changes) of the clay barrier. Chemically induced changes originated by different imbibition fluids and soil mineral compositions have been a subject with a long research tradition. These researches have been mainly focused on the behaviour of reconstituted soils starting from slurry and saturated wit h saline solutions at elevated concentrations, where hydro-mechanical changes (soil compressibility and water permeability changes) are clearly detected. In contrast, available information concerning the response of high-density clays subjected to chemically induced actions with a wide range of pore solution concentrations is very limited in spite of its practical relevance to environmental geotechnics. This situation has been caused, at least in part, by the difficulties in detecting important hydro-mechanical changes when clays with low water storage capacity have been used. Nevertheless, this paper will demonstrate that even in the case of high-density fabrics, considerable changes can be observed when high-activity clays (bentonites) are imbibed with different pore fluid compositions. (authors)

  8. Hydro-mechanical and gas transport properties of bentonite blocks - role of interfaces

    International Nuclear Information System (INIS)

    Popp, Till; Roehlke, Christopher; Salzer, Klaus; Gruner, Matthias

    2012-01-01

    sealing elements. The investigations consist of: - long-term water injection tests in a new designed oedometer cell with different sample constellations under well controlled stress and swelling conditions to provide data about - time dependent interface 'permeability' changes during long-term compaction and fluid injection - gas entry pressures and relative gas permeability changes during pressure dependent gas injection; - shear tests to quantify mechanical interface properties of pre-saturated bentonite blocks under well controlled shear forces or displacements. As initial characterization both, triaxial and direct strength tests were performed, which allow to separate between matrix and interface properties. The investigations are being performed in the framework of the pan-European project FORGE project which aims on the generation and movement of repository gases. Results and interpretation The performed lab investigations cover a wide field of hydro-mechanical properties of bentonite blocks, which represent a favorable option for constructing sealing plugs in different host rock environments. Based on the experimental results the following conclusions can be drawn: - At dry conditions gas flow along interfaces is at least 4 orders higher than through the matrix. Increase of confinement significantly lowers the gas flow but the effect is more pronounced for interfaces → crack sealing. - Saturation of bentonite block assembly, i.e. blocks with a common interface, is not affected by the interfaces and only weakly by the acting confining pressure. - During gas injection a significant effect is only observed if the minimal stress is passed resulting in some minor gas flow. - The gas break through results in stationary inflow but no significant effect on the total stress is measured, probably due to the central gas injection. - The measured gas threshold pressures under constant volume conditions significantly exceed the sum of the swelling pressure and externally

  9. Study of the hydro-mechanical behaviour of expanded graphite gaskets; Etude du comportement et de l`etancheite de joints en graphite expnase

    Energy Technology Data Exchange (ETDEWEB)

    Patron, E. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    The poro-mechanical behaviour models developed by O. Coussy permit to consider various phenomena observed experimentally: thermo-hydro-mechanical couplings, plasticity, etc. The aim of this study is to implement the simplest poro-mechanical model (i.e. the isotropic linear poro-elastic model) to model the gasket hydro-mechanical behaviour. First, isotropic poro-elastic characteristics of expanded graphite have been estimated from these tests conducted at Departement Mecanique et Technologie des Composants (MTC) and data from literature. Then, analytical solutions of the tightness tests developed at the MTC Department have been carried out. These calculations provide a first estimation of porosity variations during a tightness tests with metal/metal contact or in elastic recovery, and during a `hot thermal transient`. Thickness controlled numerical calculations have proved the analytical calculations relevance. With regard to simulation of tests with metal/metal contact or `hot thermal transient`, stress controlled numerical calculations have pointed out: - a greater vertical displacement on the inner side of the graphite ring and - a z dependence of the radial displacement and thus a porous differential variation between the upper and lower faces of the ring. (author). 21 refs.

  10. Hydro-mechanical behaviour of bentonite-based materials used for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang, Q.

    2012-01-01

    This study deals with the hydro-mechanical behaviour of compacted bentonite-based materials used as sealing materials in high-level radioactive waste repositories. The pure MX80 bentonite, mixtures of MX80/crushed clay-stone and MX80/sand were used in the investigation. An experimental study on the swelling pressure of the bentonite-based materials was first performed. The results evidenced the effects of water chemistry, hydration procedure and duration, pre-existing technological void and experimental methods. Emphasis was put on the relationship between the swelling pressure and the final dry density of bentonite. Afterwards, the water retention test, hydration test and suction controlled oedometer test were conducted on samples with different voids including the technological void and the void inside the soil. By introducing the parameters as bentonite void ratio and water volume ratio, an overall analysis of the effects of voids on the hydro-mechanical response of the compacted material was performed. To get better insight into the seal evolution in case of technological void, the effects of final dry density and hydration time on the microstructure features were also characterized. Then, the hydraulic properties under unsaturated state were investigated by carrying out water retention test and infiltration test as well as the microstructure observation. The results obtained allowed relating the variation of hydraulic conductivity to the microstructure changes. A small scale (1/10) mock up test of the SEALEX in situ experiment was also performed to study the recovery capacity of bentonite-based material with consideration of a technological void. The results were used for interpreting the in-situ observations. With a reduced time scale, it provides useful information for estimating the saturation duration and sealing effectiveness of the field design. Finally, the experimental data obtained in the laboratory on bentonite/sand mixture were interpreted in the

  11. Study of the chemo-hydro-mechanical behavior of stiff clays in the context of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nguyen, Xuan Phu

    2013-01-01

    The present research aims to understand the chemo-hydro-mechanical behavior of stiff clays through two geological formations, the Boom Clay and the Ypresian clays which are considered as possible host formations for the radioactive wastes disposal in Belgium. The volume change behavior was studied in both intact and reconstituted states, and under different conditions: under K0 and isotropic loading, under loading/unloading loops. The results show that the volume change behavior is governed by the competition between the physico-chemical effect and the mechanical effect, characterized by a threshold stress which corresponds to the swelling stress in terms of structure changes. A constitutive law was developed to capture this aspect. The permeability was determined, compared with the results in literature and correlated with the parameters as void ratio. The permeability variation with depth shows the important role of macro-pores in fluids' transfer. The volume change behavior and permeability of intact Boom Clay and Ypresian clays are also influenced by pore water chemical composition changes which modify the diffuse double layer and give rise to the aggregation of clay particles. The elastic parameters, yield curve and failure envelope of Boom Clay and Ypresian clays were identified. A conceptual elasto-plastic model was developed, accounting for the swelling effects and the competition between the physico-chemical effect and the mechanical effect. (author)

  12. Sub-critical cohesive crack propagation with hydro-mechanical coupling and friction

    Directory of Open Access Journals (Sweden)

    S. Valente

    2016-01-01

    Full Text Available Looking at the long-time behaviour of a dam, it is necessary to assume that the water can penetrate a possible crack washing away some components of the concrete. This type of corrosion reduces the tensile strength and fracture energy of the concrete compared to the same parameters measured during a short-time laboratory test. This phenomenon causes the so called sub-critical crack propagation. That is the reason why the International Commission of Large Dams recommends to neglect the tensile strength of the joint between the dam and the foundation, which is the weakest point of a gravity dam. In these conditions a shear displacement discontinuity starts growing in a point, called Fictitious Crack Tip (shortened FCT, which is still subjected to a compression stress. In order to manage this problem, in this paper the cohesive crack model is re-formulated with the focus on the shear stress component. In this context, the classical Newton-Raphson method fails to converge to an equilibrium state. Therefore the approach used is based on two stages: (a a global one in which the FCT is moved ahead of one increment; (b a local one in which the non-linear conditions occurring in the Fracture Process Zone are taken into account. This two-stage approach, which is known in the literature as a Large Time Increment method, is able to model three different mechanical regimes occurring during the crack propagation between a dam and the foundation rock.

  13. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Gomez-Espina, R.

    2009-11-25

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs.

  14. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    International Nuclear Information System (INIS)

    Villar, M. V.; Gomez-Espina, R.

    2009-01-01

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs

  15. Couplings in multiphasic geo-materials: temperature and chemistry effects

    International Nuclear Information System (INIS)

    Ghasemzadeh, H.

    2006-05-01

    Transport of chemical components in soil through water is the major cause of pollution of the soil. This transport takes place around landfills and nuclear waste storage areas, tailings and mine wastes, and so on. A great number of these sites are unsaturated of water and in some cases heat can change the fate of chemical species, that lead us to a coupled problem. In this dissertation, numerical simulation with an existent thermo-hydro-mechanical model and theoretical modeling and numerical simulation of transport and interactions of one chemical species in multiphase media are presented. Integrated THM model in the Code-Aster is presented. Excavation, engineering barrier and thermal load of waste nuclear storage well are modeled. Verification of model is presented with these simulations. A thermo-hydro-mechanical behaviour coupled with chemical phenomena is presented with a fully coupled method that water, gas, chemical species and soil skeleton were considered as constituents and corresponding unknowns are temperature, water pressure, gas pressure, chemical concentration and displacements. For each constituent, mass balance equation and linear momentum equation are written and solved simultaneously to find related unknowns. The results of this model have been compared with the theoretical and experimental results existing in the literature. Furthermore, results of some applications of this model are included. Some areas where further work is required are identified. In particular, there is a need to perform experiments to obtain necessary soil parameters to permit accurate modelling of the heat and contaminant transport in unsaturated soils. (author)

  16. Possibilities for Automatic Control of Hydro-Mechanical Transmission and Birotating Electric Machine

    Directory of Open Access Journals (Sweden)

    V. V. Mikhailov

    2014-01-01

    Full Text Available The paper presents mathematical models and results of virtual investigations pertaining to the selected motion parameters of a mobile machine equipped with hydro mechanical and modernized transmissions. The machine has been tested in similar technological cycles and it has been equipped with a universal automatic control system. Changes in structure and type of power transmission have been obtained with the help of a control algorithm including an extra reversible electric machine which is switched in at some operational modes.Implementation of the proposed  concept makes it possible to obtain and check the improved C-code of the control system and enhance operational parameters of the transmission and machine efficiency, reduce slippage and tire wear while using braking energy for its later beneficial use which is usually considered as a consumable element.

  17. STRESS LOADING SIMULATION OF HYDRO-MECHANICAL TRANSMISSION OF DUMP TRUCK

    Directory of Open Access Journals (Sweden)

    S. A. Sidorov

    2006-01-01

    Full Text Available The Transmission model and software package to investigate stress loading of a hydromechanical transmission of a dump truck have been developed. The given software package allows to model stress loading of transmission gears in taking-off and acceleration modes at various road resistance, positions of an engine control pedal and initial revolutions of an engine crankshaft, various laws of friction clutch switching and some other parameters that permit to reveal a rate of various operational mode influence on stress loading of a dump truck transmission. An equivalence of the developed software is proved by the comparison of the experimentally obtained stress loading process of the hydro-mechanical transmission of a BelAZ- 7555 dump truck with the results of the simulation 

  18. Determination of Process Parameters in Multi-Stage Hydro-Mechanical Deep Drawing by FE Simulation

    Science.gov (United States)

    Kumar, D. Ravi; Manohar, M.

    2017-09-01

    In this work, analysis has been carried to simulate manufacturing of a near hemispherical bottom part with large depth by hydro-mechanical deep drawing with an aim to reduce the number of forming steps and to reduce the extent of thinning in the dome region. Inconel 718 has been considered as the material due to its importance in aerospace industry. It is a Ni-based super alloy and it is one of the most widely used of all super alloys primarily due to large-scale applications in aircraft engines. Using Finite Element Method (FEM), numerical simulations have been carried out for multi-stage hydro-mechanical deep drawing by using the same draw ratios and design parameters as in the case of conventional deep drawing in four stages. The results showed that the minimum thickness in the final part can be increased significantly when compared to conventional deep drawing. It has been found that the part could be deep drawn to the desired height (after trimming at the final stage) without any severe wrinkling. Blank holding force (BHF) and peak counter pressure have been found to have a strong influence on thinning in the component. Decreasing the coefficient of friction has marginally increased the minimum thickness in the final component. By increasing the draw ratio and optimizing BHF, counter pressure and die corner radius in the simulations, it has been found that it is possible to draw the final part in three stages. It has been found that thinning can be further reduced by decreasing the initial blank size without any reduction in the final height. This reduced the draw ratio at every stage and optimum combination of BHF and counter pressure have been found for the 3-stage process also.

  19. FEBEX Full-Scalle Engineered barriers experiment in crystalline host rock Preoperational thermo-hydro-mechanical (THM) modelling of the in situ test

    International Nuclear Information System (INIS)

    1998-01-01

    This report contains the results of a set of 1-D and 2-D coupled thermo-hydro-mechanical (THM) analyses carried out during the preoperational stage simulating the in situ FEBEX test. The analyses incorporate available information concerning rock and bentonite properties as well as the final test layout and conditions. The main goals are: -To provide the best estimate of test performance given current models and information - To define a basis for future model improvements. The theoretical bases of the analyses and the computer code used are reviewed. Special reference is made to the process of parameter estimation that tries to incorporate available information on material behaviour obtained in the characterisation work carried out both in the laboratory and in the field. Data obtained in the characterisation stage is also used to define initial and boundary conditions. The results of the 1-D THM Base Case analysis are used to gain a good understanding of expected test behaviour concerning thermal, hydraulic and mechanical problems. A quite extensive programme of sensitivity analyses is also reported in which the effect of a number of parameters and boundary conditions are examined. The results of the sensitivity analyses place an appropriate context the information obtained from the Base Case showing, for instance, that rock desaturation and degree of buffer hydration depend on some critical parameters in a complex way. Two-dimensional effects are discussed on the basis of the results of 2-D axisymmetric THM analysis performed using a longitudinal section that provides a better representation of real test geometry. Quantitative but not qualitative differences are found with respect to the 1-D results. Finally, a 2-D THM cross section analysis has been performed under plane strain conditions. No specific 2-D effects are observed in this case as quasi-axisymmetric conditions have been prescribed. The models employed in the analyses included in this report have not

  20. On a morphological approach of the meso-structure for the multi-scale analysis of the thermo-hydro-mechanical behaviour of cementitious materials

    International Nuclear Information System (INIS)

    Le, T.T.H.

    2011-01-01

    The investigation of the behavior of heated concrete is a major research topic which concerns the assessment of safety level of structures when exposed to high temperatures, for instance during a fire. For this purpose, several modeling approaches were developed within thermo-hydro-mechanical (THM) frameworks in order to take into account the involved physic-chemical and mechanical processes that affect stability of heated concrete. However, existing models often do note account explicitly for the heterogeneity of the material: concrete is composite material that may be schematized as an assembly of inclusions (aggregates) embedded in a cementitious matrix (cement paste). This latter may be described as a partially saturated open porous medium. The aggregates are characterized by their mineralogical nature together with their morphology and size distribution. The material heterogeneity bring an additional complexity: the need to take into account the microstructure in order to quantify the effect of matrix-inclusion thermal, hygral and mechanical incompatibilities on the THM behavior of concrete. This work is a first step in this direction. For this purpose, a three-dimensional (3D) multi-scale finite element model is developed. It allows affecting specific behaviors to matrix and inclusions. For the former, where mass transports occur within the connected porous network, a three-fluids approach (liquid water, vapor and dry air) is adopted and is coupled to a poro-mechanical damage based approach. For inclusions (aggregates) no hygral component arises a pure thermo-mechanical model is considered. The developed model is then used to investigate, either by 2D or 3D numerical simulations, effects of mineralogical nature, morphology and distribution of aggregates. Studied effects have mainly concerned the influence of these parameters on local fluctuations of simulated temperature, gas pressure and damage fields with regard to experimentally observed dispersion. The

  1. Study of the water retention and the consolidation of partially saturated soils in a thermo-hydro-mechanical framework

    International Nuclear Information System (INIS)

    Salager, Simon

    2007-01-01

    This work is concerned with the study of water retention and consolidation of unsaturated soils in a thermo-hydro-mechanical framework. It is organized into two parts which deal respectively with deformation and temperature effects on hydric behaviour, and suction and temperature effects on mechanical behaviour. In the first part, we point out the relevance of the characteristic surface concept for soils as opposed to the retention curve, which has limited modelling power in the case of deformable media. The characteristic surface concept is experimentally illustrated for the example of a clayey silty sand. Its modelling is based on a large sample of experimental investigations with about 240 measurements of the triplet void ratio, water content, suction. In addition, a thermo-hydric behaviour model is proposed in order to determine the characteristic surface and the retention curve for a given temperature. This model is validated for the case of two materials: a ceramic and a clayey silty sand through direct testing, and for other materials on the basis of an analysis of the literature. Finally, we present an application to the determination of the permeability of unsaturated soils taking into account deformation and temperature. In the second part, temperature and suction effects on the mechanical behaviour are studied through consolidation tests on 'Sion' silt. These tests are performed for different temperatures and suctions. For each test, swelling and compression indexes, as well as the pre-consolidation pressure are measured. The influence of temperature and suction on these essential parameters of mechanical behaviour is determined. Finally, we propose a theoretical model which account for pre-consolidation pressure as a function of temperature and suction. (author)

  2. Experimental Hydro-Mechanical Characterization of Full Load Pressure Surge in Francis Turbines

    Science.gov (United States)

    Müller, A.; Favrel, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2017-04-01

    Full load pressure surge limits the operating range of hydro-electric generating units by causing significant power output swings and by compromising the safety of the plant. It appears during the off-design operation of hydraulic machines, which is increasingly required to regulate the broad integration of volatile renewable energy sources into the existing power network. The underlying causes and governing physical mechanisms of this instability were investigated in the frame of a large European research project and this paper documents the main findings from two experimental campaigns on a reduced scale model of a Francis turbine. The multi-phase flow in the draft tube is characterized by Particle Image Velocimetry, Laser Doppler Velocimetry and high-speed visualizations, along with synchronized measurements of the relevant hydro-mechanical quantities. The final result is a comprehensive overview of how the unsteady draft tube flow and the mechanical torque on the runner shaft behave during one mean period of the pressure oscillation, thus defining the unstable fluid-structure interaction responsible for the power swings. A discussion of the root cause is initiated, based on the state of the art. Finally, the latest results will enable a validation of recent RANS flow simulations used for determining the key parameters of hydro-acoustic stability models.

  3. Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2004-07-01

    This document is a summary of the available information on the thermo-hydro-mechanical properties of the bentonite barrier of a high-level radioactive waste repository and of the processes taking place in it during the successive repository operation phases. Mainly the thermal properties, the volume change processes (swelling and consolidation), the permeability and the water retention capacity are analysed. A review is made of the existing experimental knowledge on the modification of the these properties by the effect of temperature, water salinity, humidity and density of the bentonite, and their foreseen evolution as a consequence of the processes expected in the repository. The compiled evolution refers mostly to the FEBEX (Spain), the MX-80 (US) and the FoCa (France) bentonite, considered as reference barrier materials in several European disposal concepts. (Author) 102 refs.

  4. Thermo-Hydro Mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository. State of the Art Report

    International Nuclear Information System (INIS)

    Villar, M. V.

    2004-01-01

    This document is a summary of the available information on the thermo-hydro-mechanical properties of the bentonite barrier of a high-level radioactive waste repository and of the processes taking place in it during the successive repository operation phases. Mainly the thermal properties, the volume change processes (swelling and consolidation), the permeability and the water retention capacity are analysed. A review is made of the existing experimental knowledge on the modification of the these properties by the effect of temperature, water salinity, humidity and density of the bentonite, and their foreseen evolution as a consequence of the processes expected in the repository. The compiled evolution refers mostly to the FEBEX (Spain), the MX-80 (USA) and the FoCa (France) bentonite, considered as reference barrier materials in several European disposal concepts. (Author) 102 refs

  5. Prediction of forming limit in hydro-mechanical deep drawing of steel sheets using ductile fracture criterion

    Science.gov (United States)

    Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.

    2006-04-01

    It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.

  6. Deformation and damage modes of deep argillaceous rocks under hydro-mechanical stresses

    International Nuclear Information System (INIS)

    Vales, F.

    2008-12-01

    An experimental identification of the hydro-mechanical behaviour of an argillite rock is proposed within a multi-scale approach. In particular, interest is focused on the spatial and temporal localization of strain and damage in a specimen during hydro-mechanical loading. Firstly, we describe the techniques used to follow the rock evolutions under loading, and in particular Digital Images Correlation (DIC), Acoustic Emission, microscopy and mercury intrusion porosimetry. Measurement errors and device limitations are discussed. The studied material is the Callovo-Oxfordian indurated argillaceous rock (or argillite) of the Bure site where ANDRA has built an underground research laboratory to study the radioactive waste storage. Petrophysical characterizations and microstructural observations by optical and scanning electron microscopy provide an identification of the constitutive phase and a characterization of their spatial distribution and typical sizes. Argillite can be described as a composite structure with a continuous clay matrix and embedded mineral particles, essentially quartz and carbonates. The typical size of these particles ranges from a few micrometers to a few hundreds micrometers, with an average close to 50 μ.m. The general experimental procedure combines two steps: in a fist time, imposed suctions bring samples to a given degree of water saturation, and, in a second time, uniaxial mechanical compression tests are performed. To understand the evolutions of the material under hydric and mechanical loading, samples are instrumented with standard measurement techniques, but also with Digital Image Correlation, at both the global scale of the sample and the local scale of the composite microstructure, and with Acoustic Emissions recording. Moisture transfers are imposed by controlled suctions on the range of 150 to 2.8 MPa, corresponding to the relative humidity range of 32 to 98%RH. During pure hydric solicitation, the changes in physical parameters

  7. Hydro-mechanical behaviour of bentonite-sand mixture used as sealing materials in radioactive waste disposal galleries

    International Nuclear Information System (INIS)

    Saba, Simona

    2013-01-01

    In order to verify the effectiveness of the geological high-level radioactive waste disposal, the French Institution of Radiation protection and Nuclear Safety (IRSN) has implemented the SEALEX project to control the long-term performance of swelling clay-based sealing systems, and to which this work is closely related. Within this project, In-situ tests are carried out on compacted bentonite-sand mixture in natural conditions and in a representative scale. This material is one of the most appropriate sealing materials because of its low permeability and good swelling capacity. Once installed, this material will be hydrated by water from the host-rock and start swelling to close all gaps in the system, in particular the internal pores, rock fractures and technological voids. Afterwards, swelling pressure will develop. In the present work, laboratory experiments were performed to investigate the sealing properties under this complex hydro-mechanical conditions taking into consideration the effect of technological voids. The microstructure of the material in its initial state was first examined by microfocus X-ray computed tomography (μCT). This allowed identification of the distribution of grains of sand and bentonite as well as the pores in the sample. Macro-pores are found concentrated at the periphery of the sample and between the grains of sand, which could affect in the short term the permeability. The hydration of the same material in limited swelling conditions was then observed by 2D photography and 3D μCT. The swelling mechanism with bentonite gel production, the swelling kinetics, the density decrease and the homogenisation of the material were analyzed. The hydration in the conditions of prevented swelling was also studied by swelling pressure tests with radial and axial measurements of swelling pressure. The difference found between the axial and radial swelling pressures suggested the presence of an anisotropic microstructure. Mock-up tests at a 1

  8. Hydro-mechanical behaviour of bentonite-sand mixture used as sealing materials in radioactive waste disposal galleries

    International Nuclear Information System (INIS)

    Saba, Simona

    2013-01-01

    In order to verify the effectiveness of the geological high-level radioactive waste disposal, the French Institute for Radiation protection and Nuclear Safety (IRSN) has implemented the SEALEX project to control the long-term performance of swelling clay-based sealing systems, and to which this work is closely related. Within this project, In-situ tests are carried out on compacted bentonite-sand mixture in natural conditions and in a representative scale. This material is one of the most appropriate sealing materials because of its low permeability and good swelling capacity. Once installed, this material will be hydrated by water from the host-rock and start swelling to close all gaps in the system, in particular the internal pores, rock fractures and technological voids. Afterwards, swelling pressure will develop. In the present work, laboratory experiments were performed to investigate the sealing properties under these complex hydro-mechanical conditions taking into consideration the effect of technological voids. The microstructure of the material in its initial state was first examined by microfocus X-ray computed tomography (μCT). This allowed identification of the distribution of grains of sand and bentonite as well as the pores in the sample. Macro-pores are found concentrated at the periphery of the sample and between the grains of sand, which could affect in the short term the permeability. The hydration of the same material in limited swelling conditions was then observed by 2D photography and 3D μCT. The swelling mechanism with bentonite gel production, the swelling kinetics, the density decrease and the homogenisation of the material were analyzed. The hydration in the conditions of prevented swelling was also studied by swelling pressure tests with radial and axial measurements of swelling pressure. The difference found between the axial and radial swelling pressures suggested the presence of an anisotropic microstructure. Mock-up tests at a 1

  9. Hydro-mechanical modelling of a shaft seal in crystalline and sedimentary host rock media using COMSOL

    Energy Technology Data Exchange (ETDEWEB)

    Priyanto, D.G. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Shaft seals are components of the engineered barriers system considered for closure of a Deep Geological Repository (DGR). These seals would be installed in strategic locations of the shafts, where significant fracture zones (FZ) are located and would serve to limit upward flow of groundwater from the repository level towards the surface. This paper presents the results of hydro-mechanical (HM) numerical modelling exercises to evaluate the performance of a shaft seal using a finite element computer code, COMSOL. This study considered a variety of host geological media as part of generic assessments of system evolution in a variety of environments including five hypothetical sedimentary and crystalline host rock conditions. Four simulations of a shaft seal in different sedimentary rocks were completed, including: shale with isotropic permeability; shale with anisotropic permeability; limestone with isotropic permeability; and limestone with anisotropic permeability. The other simulation was a shaft seal in crystalline rock with isotropic permeability. Two different stages were considered in these HM simulations. Stages 1 and 2 simulated the groundwater flow into an open shaft and after installation of shaft sealing components, respectively. As expected, the models were able to simulate that installation of the shaft seal limits groundwater flow through the shaft. Based on the conditions and assumptions defined for the host media and fracture features examined in this study, the following conclusions can be drawn from the results of the numerical modelling exercises. A shaft that remained open for a longer time was beneficial with respect to delaying of seal saturation because it could reduce the groundwater flow rate around the fracture zone. Delaying saturation time indicates slower movement of the groundwater or other substances that may be transported with the groundwater. The core of the shaft seal (i.e., the bentonite-sand mixture (BSM)) became fully saturated

  10. Multi-scale modeling of the thermo-hydro- mechanical behaviour of heterogeneous materials. Application to cement-based materials under severe loads

    International Nuclear Information System (INIS)

    Grondin, Frederic Alain

    2005-01-01

    The work of modeling presented here relates to the study of the thermo-hydro- mechanical behaviour of porous materials based on hydraulic binder such as concrete, High Performance Concrete or more generally cement-based materials. This work is based on the exploitation of the Digital Concrete model, of the finite element code Symphonie developed in the Scientific and Technical Centre for Building (CSTB), in coupling with the homogenization methods to obtain macroscopic behaviour laws drawn from the Micro-Macro relations. Scales of investigation, macroscopic and microscopic, has been exploited by simulation in order to allow the comprehension fine of the behaviour of cement-based materials according to thermal, hydrous and mechanical loads. It appears necessary to take into account various scales of modeling. In order to study the behaviour of the structure, we are brought to reduce the scale of investigation to study the material more particularly. The research tasks presented suggest a new approach for the identification of the multi-physic behaviour of materials by simulation. In complement of the purely experimental approach, based on observations on the sample with measurements of the apparent parameters on the macroscopic scale, this new approach allows to obtain the fine analysis of elementary mechanisms in acting within the material. These elementary mechanisms are at the origin of the evolution of the macroscopic parameters measured in experimental tests. In this work, coefficients of the thermo-hydro-mechanical behaviour law of porous materials and the equivalent hydraulic conductivity were obtained by a multi-scales approach. Applications has been carried out on the study of the damaged behaviour of cement-based materials, in the objective to determine the elasticity tensor and the permeability tensor of a High Performance Concrete at high temperatures under a mechanical load. Also, the study of the strain evolution of cement-based materials at low

  11. Numerical Analysis of a Class of THM Coupled Model for Porous Materials

    Science.gov (United States)

    Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi

    2018-01-01

    We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.

  12. Fractures inside crystalline rocks. Effects of deformations on fluid circulations

    International Nuclear Information System (INIS)

    Gentier, S.

    2005-01-01

    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)

  13. Acoustic wave coupled magnetoelectric effect

    International Nuclear Information System (INIS)

    Gao, J.S.; Zhang, N.

    2016-01-01

    Magnetoelectric (ME) coupling by acoustic waveguide was developed. Longitudinal and transversal ME effects of larger than 44 and 6 (V cm −1 Oe −1 ) were obtained with the waveguide-coupled ME device, respectively. Several resonant points were observed in the range of frequency lower than 47 kHz. Analysis showed that the standing waves in the waveguide were responsible for those resonances. The frequency and size dependence of the ME effects were investigated. A resonant condition about the geometrical size of the waveguide was obtained. Theory and experiments showed the resonant frequencies were closely influenced by the diameter and length of the waveguide. A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially. - Highlights: • Magnetoelectric (ME) coupling by acoustic waveguide was developed. • The frequency and size dependence of the ME effects were investigated. • A resonant condition about the geometrical size of the waveguide was obtained. • A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially.

  14. Exact Bremsstrahlung and effective couplings

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Institut für Physik, WA THEP, Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin (Germany); Pomoni, Elli [DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg (Germany); Physics Division, National Technical University of Athens,15780 Zografou Campus, Athens (Greece)

    2016-06-13

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of N=2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the N=4 SYM ones, we obtain interpolating functions f(g{sup 2}) such that a given N=2 SCFT observable is obtained by replacing in the corresponding N=4 SYM result the coupling constant by f(g{sup 2}). These “exact effective couplings” encode the finite, relative renormalization between the N=2 and the N=4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  15. Main outcomes from in situ thermo-hydro-mechanical experiments programme to demonstrate feasibility of radioactive high-level waste disposal in the Callovo-Oxfordian claystone

    Directory of Open Access Journals (Sweden)

    G. Armand

    2017-06-01

    Full Text Available In the context of radioactive waste disposal, an underground research laboratory (URL is a facility in which experiments are conducted to demonstrate the feasibility of constructing and operating a radioactive waste disposal facility within a geological formation. The Meuse/Haute-Marne URL is a site-specific facility planned to study the feasibility of a radioactive waste disposal in the Callovo-Oxfordian (COx claystone. The thermo-hydro-mechanical (THM behaviour of the host rock is significant for the design of the underground nuclear waste disposal facility and for its long-term safety. The French National Radioactive Waste Management Agency (Andra has begun a research programme aiming to demonstrate the relevancy of the French high-level waste (HLW concept. This paper presents the programme implemented from small-scale (small diameter boreholes to full-scale demonstration experiments to study the THM effects of the thermal transient on the COx claystone and the strategy implemented in this new programme to demonstrate and optimise current disposal facility components for HLW. It shows that the French high-level waste concept is feasible and working in the COx claystone. It also exhibits that, as for other plastic clay or claystone, heating-induced pore pressure increases and that the THM behaviour is anisotropic.

  16. Computational thermo-hydro-mechanics for freezing and thawing multiphase geological media in the finite deformation range

    Science.gov (United States)

    Sun, W.; Na, S.

    2017-12-01

    A stabilized thermo-hydro-mechanical (THM) finite element model is introduced to investigate the freeze-thaw action of frozen porous media in the finite deformation range. By applying the mixture theory, frozen soil is idealized as a composite consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized hardening rule at finite strain is adopted to replicate how the elasto-plastic responses and critical state evolve under the influence of phase transitions and heat transfer. The enhanced particle interlocking and ice strengthening during the freezing processes and the thawing-induced consolidation at the geometrical nonlinear regimes are both replicated in numerical examples. The numerical issues due to lack of two-fold inf-sup condition and ill-conditioning of the system of equations are addressed. Numerical examples for engineering applications at cold region are analyzed via the proposed model to predict the impacts of changing climate on infrastructure at cold regions.

  17. MX-80 Bentonite. Thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    International Nuclear Information System (INIS)

    Villar, M. V.

    2005-01-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60 0 C. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs

  18. MX-80 Bentonite. thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2005-07-01

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 60oC. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs.

  19. Fractures inside crystalline rocks. Effects of deformations on fluid circulations; Fractures dans les roches cristallines. Effets des deformations sur les circulations de fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gentier, S

    2005-07-01

    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)

  20. DECOVALEX III/BENCHPAR PROJECTS. The Thermal-Hydro-Mechanical Responses to a Glacial Cycle and their Potential Implications for Deep Geological Disposal of Nuclear Fuel Waste in a Fractured Crystalline Rock Mass. Report of BMT3/WP4

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.; Stanchell, F.W. [Atomic Energy of Canada Ltd, Toronto (Canada); Christiansson, R. [Swedish Nuclear Fuel and Waste Management Co., Figeholm (Sweden); Boulton, G.S. [Univ. of Edinburgh (United Kingdom). School of GeoSciences; Eriksson, L.O.; Vistrand, P.; Wallroth, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Geology; Hartikainen, J. [Helsinki Univ. of Technology (Finland). Inst. of Mathematics; Jensen, M.R. [0ntario Power Generation, Toronto (Canada); Mas lvars, D. [Royal Inst. of Technology, Stockholm (Sweden). Land and Water Resources engineering

    2005-02-15

    A number of studies related to past and on-going deep repository performance assessments have identified glaciation/deglaciation as major future events in the next few hundred thousand years capable of causing significant impact on the long term performance of the repository system. Benchmark Test 3 (BMT3) of the international DECOVALEX III project has been designed to provide an illustrative example that explores the mechanical and hydraulic response of a fractured crystalline rock mass to a period of glaciation. The primary purpose of this numerical study is to investigate whether transient events associated with a glacial cycle could significantly influence the performance of a deep geological repository in a crystalline shield setting. A conceptual site-scale (tens of kilometres) hydro-mechanical (HM) model was assembled based primarily on site-specific litho-structural, hydrogeological and geomechanical data from the Whiteshell Research Area in the Canadian Shield, with simplification and generalization. Continental glaciological modelling of the Laurentide ice sheet through the last glacial cycle lasting approximately 100,000 years suggests that this site was glaciated at about 60 ka and between about 22.5 ka and 11 ka before present with maximum ice sheet thickness reaching 2,500 m and maximum basal water pressure head reaching 2000 m. The ice-sheet/drainage model was scaled down to generate spatially and temporally variable hydraulic and mechanical glaciated surface boundary conditions for site-scale subsurface HM modelling and permafrost modelling. Under extreme periglacial conditions permafrost was able to develop down to the assumed 500-m repository horizon. Two- and three-dimensional coupled HM finite-element simulations indicate: during ice-sheet advance there is rapid rise in hydraulic head, high transient hydraulic gradients and high groundwater velocities 2-3 orders of magnitude higher than under nonglacial conditions; surface water recharges deeper

  1. DECOVALEX III/BENCHPAR PROJECTS. The Thermal-Hydro-Mechanical Responses to a Glacial Cycle and their Potential Implications for Deep Geological Disposal of Nuclear Fuel Waste in a Fractured Crystalline Rock Mass. Report of BMT3/WP4

    International Nuclear Information System (INIS)

    Chan, T.; Stanchell, F.W.; Christiansson, R.; Boulton, G.S.; Mas lvars, D.

    2005-02-01

    A number of studies related to past and on-going deep repository performance assessments have identified glaciation/deglaciation as major future events in the next few hundred thousand years capable of causing significant impact on the long term performance of the repository system. Benchmark Test 3 (BMT3) of the international DECOVALEX III project has been designed to provide an illustrative example that explores the mechanical and hydraulic response of a fractured crystalline rock mass to a period of glaciation. The primary purpose of this numerical study is to investigate whether transient events associated with a glacial cycle could significantly influence the performance of a deep geological repository in a crystalline shield setting. A conceptual site-scale (tens of kilometres) hydro-mechanical (HM) model was assembled based primarily on site-specific litho-structural, hydrogeological and geomechanical data from the Whiteshell Research Area in the Canadian Shield, with simplification and generalization. Continental glaciological modelling of the Laurentide ice sheet through the last glacial cycle lasting approximately 100,000 years suggests that this site was glaciated at about 60 ka and between about 22.5 ka and 11 ka before present with maximum ice sheet thickness reaching 2,500 m and maximum basal water pressure head reaching 2000 m. The ice-sheet/drainage model was scaled down to generate spatially and temporally variable hydraulic and mechanical glaciated surface boundary conditions for site-scale subsurface HM modelling and permafrost modelling. Under extreme periglacial conditions permafrost was able to develop down to the assumed 500-m repository horizon. Two- and three-dimensional coupled HM finite-element simulations indicate: during ice-sheet advance there is rapid rise in hydraulic head, high transient hydraulic gradients and high groundwater velocities 2-3 orders of magnitude higher than under nonglacial conditions; surface water recharges deeper

  2. OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media

    DEFF Research Database (Denmark)

    Kolditz, O.; Bauer, S.; Bilke, L.

    In this paper we describe the OpenGeoSys (OGS) project, which is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical processes in porous media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM...

  3. Experimental characterization of the hydro-mechanical behaviour of Meuse/Haute-Marne argilites

    International Nuclear Information System (INIS)

    Escoffier, S.

    2002-04-01

    Within the framework of a feasibility study of underground radioactive waste repository the experimental characterization of the coupled behavior of the host layer is of first importance. This work concerns the experimental characterization in laboratory of the poro-elastic behavior of argillite which constitutes the host layer of the future underground laboratory of ANDRA located at the limit of the Meuse/Haute-Marne. The theoretical approach is the Mechanics of Porous Media defined by Coussy [1991] which has the advantage of providing a formulation of the behavior laws using measurable parameters in laboratory. The difficulties or the feasibility of the characterization tests of these rocks coupled behavior are related to their very low permeability which requires an adaptation of the experimental devices initially used on more permeable rocks. Initially a synthesis on the knowledge of the poro-elastic parameters of Meuse/Haute-Marne argillite is given. Thereafter a first approach of the use of the studies of sensitivity as tools of decision-making aid is proposed. The experimental difficulties encountered by the various experimenters are illustrated by the diversity of the experimental choices, the test duration or by the results disparity. Because of economic, political and ecological stake, the studies of sensitivity could make it possible to direct the experimental efforts by giving indications on the dominating parameters in the coupled behavior of a rock. In the second time after the presentation of the test results of physical characterization 3 types of tests are described: permeability test (pulse test), determination of Biot coefficient under odometric loading and isotropic drained test. The complexity of these tests is related to the attack of the experimental limits. They are presented in detail: theoretical recalls, experimental set up, experimental protocol, unfolding and test results. (author)

  4. Effect of Group Cognitive Behavioral Couples Therapy on Couple Burnout and Divorce Tendency in Couples

    Directory of Open Access Journals (Sweden)

    M Mohammadi

    2017-02-01

    Full Text Available Background & aim: Couple burnout is one of the phenomena which involve many couples, it is among the main causes of emotional divorce, and without proper management and treatment, and it can lay the ground for formal divorce among couples. Cognitive behavioral couple therapy is one of the existing approaches in the couple therapy field, the efficiency of which has been established for resolving many marital problems. The present study was designed by the aim of investigating the effect of group cognitive behavioral couple therapy on couple burnout and divorce tendency in couples.   Methods: The present research was of applied research type. The research method was semi-empirical with a pretest-posttest with control group design. The research population included all the couples with marital conflict and problems who, after a recall announcement of the researcher, visited the counseling and psychological services center located in Gorgan city in 2014. By using the available sampling method, 20 couples were selected among the volunteer and qualified couples for the research, and they were assigned into experiment and control groups (10 couples per group by random assignment. In the present research, the Pines burnout questionnaire (1996 and divorce tendency scale of Rouswelt, Johnson, and Mouro (1986 were used for gathering the data. After taking the pretest, the group cognitive behavioral couple therapy based on the couple therapy model of Baucom  and colleagues (2008 was held in 10 2-hour weekly sessions for the experiment group couples, while the control group couples received no intervention. The data were analyzed through descriptive statistics method and multivariate covariance analysis (MANCOVA in SPSS v.20. Results: The multivariate covariance analysis results for couple burnout (F= 28.80 and divorce tendency (F= 51.25 suggested that there was a significant difference between the couples of experiment and control groups (P< 0

  5. Theoretical and numerical study of thermo-hydro-mechanical damage in unsaturated porous media

    International Nuclear Information System (INIS)

    Arson, Ch.

    2009-09-01

    Nuclear waste disposals are designed in multi-phase porous media. A new damage model, formulated in independent state variables (net stress, suction and thermal stress), is proposed for such geo-materials. The damage variable is a second-order tensor, which principal values grow with tensile strains. The stress/strain relations are derived from a postulated expression of the free energy. The degraded rigidities are computed by applying the Principle of Equivalent Elastic Energy for each stress state variable. Cracking effects are taken into account in transfers by introducing internal length parameters in the expressions of moisture conductivities. The damage model has been implemented in Θ-Stock Finite Element code. The mechanical model has been validated by comparing numerical results to experimental data and theoretical predictions. The qualitative evolutions given by the model in the parametric studies performed on realistic complex configurations show good trends. (author)

  6. Hydro-mechanical behaviour of two reference Belgian clay formations under non-isothermal conditions

    International Nuclear Information System (INIS)

    Lima, A.; Romero, E.; Gens, A.; Li, X.L.

    2012-01-01

    Document available in extended abstract form only. Two deep clay formations are being investigated in Belgium in connection with the design of a repository for 'High-Level Radioactive Waste': Boom clay BC at Mol (located between 160 and 270 m depths), considered the reference host formation, and Ypresian clay YC at Kallo (located between 300 and 450 m depths) as an alternative one. A comprehensive experimental programme has been carried out on these materials to explore water permeability at different temperatures and sample orientations, as well as to analyse volume change behaviour on loading/unloading at different temperatures and sample orientations (including pre and post-yield compressibility, yield properties and volume changes on drained thermal loading). Table 1 summarises some properties of BC and YC. Figure 1 presents the pore size distribution PSD curves of both clays obtained by mercury intrusion porosimetry. They display contrasting features (bi-modal pore network in YP with larger dominant pore sizes). Larger water permeability values are expected on YC as indicated in Table 1 and Figure 2, not only as a consequence of its higher void ratio but also due to these double porosity features. Water retention properties, of particular concern on sample retrieval from large depths, are also affected due to desaturation processes that are associated with the double porosity network of YP and its effects on air-entry value (a lower initial suction is measured on YP, despite being retrieved from larger depths). Figure 2 shows vertical and horizontal water permeability results under constant volume conditions and different temperatures. BC and YC display small anisotropy at sample scale - permeability is slightly larger on horizontal direction-. With regard to temperature effects, the figure shows that water permeability dependency on temperature in YC is slightly higher than the water viscosity prediction for both orientations. Instead BC displayed a thermal

  7. Hydro-mechanical aspects: glacial loading/erosion - the opalinus clay study

    International Nuclear Information System (INIS)

    Marschall, P.; Kupfer, T.; Kuhlmann, U.

    2004-01-01

    considerations concerning the rock deformation behaviour (Horseman, 2002) leads to the conclusion that the onset of significant dilatancy phenomena in the host rock is restricted to burial depths <200 m (Nagra, 2002). Given the moderate uplift rates in the area of interest, permeability enhancement due to embrittlement of the Opalinus Clay is not expected within the next million years. During glacial periods, ice cover and partial permafrost affect both, local and regional groundwater flow. An ice cover of several hundred metres thickness may impose a transient increase in effective stress in the host rock formation and excite the expulsion of contaminated pore-water from the disposal systems. In such scenarios, mass fluxes and transport paths of the expulsed pore water were inferred by hydrodynamic modelling. This paper summarises key result of modelling, which are presented in greater detail in Nagra (2002). (authors)

  8. Chimera states: Effects of different coupling topologies

    Science.gov (United States)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar; Perc, Matjaž

    2017-04-01

    Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.

  9. Effect of couplings in the resonance continuum

    International Nuclear Information System (INIS)

    Royal, J; Larson, A; Orel, A E

    2004-01-01

    Electronic coupling of two or more resonances via the electron scattering continuum is investigated. The effect of this coupling as a function of the resonance curves and autoionization widths is investigated, and the conditions for the maximum effect are determined. The theory is applied to two physical problems, the product state distribution produced by the dissociative recombination of electrons with HeH + and a one-dimensional model for ion-pair production resulting from electron collisions with H + 3 . It is found that the coupling does not affect the product state distribution in HeH + but produces a significant effect in the H + 3 model

  10. Data-driven fault mechanics: Inferring fault hydro-mechanical properties from in situ observations of injection-induced aseismic slip

    Science.gov (United States)

    Bhattacharya, P.; Viesca, R. C.

    2017-12-01

    In the absence of in situ field-scale observations of quantities such as fault slip, shear stress and pore pressure, observational constraints on models of fault slip have mostly been limited to laboratory and/or remote observations. Recent controlled fluid-injection experiments on well-instrumented faults fill this gap by simultaneously monitoring fault slip and pore pressure evolution in situ [Gugleilmi et al., 2015]. Such experiments can reveal interesting fault behavior, e.g., Gugleilmi et al. report fluid-activated aseismic slip followed only subsequently by the onset of micro-seismicity. We show that the Gugleilmi et al. dataset can be used to constrain the hydro-mechanical model parameters of a fluid-activated expanding shear rupture within a Bayesian framework. We assume that (1) pore-pressure diffuses radially outward (from the injection well) within a permeable pathway along the fault bounded by a narrow damage zone about the principal slip surface; (2) pore-pressure increase ativates slip on a pre-stressed planar fault due to reduction in frictional strength (expressed as a constant friction coefficient times the effective normal stress). Owing to efficient, parallel, numerical solutions to the axisymmetric fluid-diffusion and crack problems (under the imposed history of injection), we are able to jointly fit the observed history of pore-pressure and slip using an adaptive Monte Carlo technique. Our hydrological model provides an excellent fit to the pore-pressure data without requiring any statistically significant permeability enhancement due to the onset of slip. Further, for realistic elastic properties of the fault, the crack model fits both the onset of slip and its early time evolution reasonably well. However, our model requires unrealistic fault properties to fit the marked acceleration of slip observed later in the experiment (coinciding with the triggering of microseismicity). Therefore, besides producing meaningful and internally consistent

  11. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2011-01-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s)and the SU(2) L coupling α 2 (s). I will report on my recent package alphaQED, which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the R had package by Harlander and Steinhauser, the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy.

  12. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Humboldt-Universitaet, Berlin

    2011-07-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s) and the SU(2) L coupling α 2 (s). I report on my recent package alphaQED [1], which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the Rhad package by Harlander and Steinhauser [2], the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy. (orig.)

  13. DECOVALEX III/BENCHPAR PROJECTS. Approaches to Upscaling Thermal-Hydro-Mechanical Processes in a Fractured Rock. Mass and its Significance for Large-Scale Repository Performance Assessment. Summary of Findings. Report of BMT2/WP3

    International Nuclear Information System (INIS)

    Andersson, Johan; Staub, Isabelle; Knight, Les

    2005-02-01

    The Benchmark Test 2 of DECOVALEX III and Work Package 3 of BENCHPAR concerns the upscaling Thermal (T), Hydrological (H) and Mechanical (M) processes in a fractured rock mass and its significance for large-scale repository performance assessment. The work is primarily concerned with the extent to which various thermo-hydro-mechanical couplings in a fractured rock mass adjacent to a repository are significant in terms of solute transport typically calculated in large-scale repository performance assessments. Since the presence of even quite small fractures may control the hydraulic, mechanical and coupled hydromechanical behaviour of the rock mass, a key of the work has been to explore the extent to which these can be upscaled and represented by 'equivalent' continuum properties appropriate PA calculations. From these general aims the BMT was set-up as a numerical study of a large scale reference problem. Analysing this reference problem should: help explore how different means of simplifying the geometrical detail of a site, with its implications on model parameters, ('upscaling') impacts model predictions of relevance to repository performance, explore to what extent the THM-coupling needs to be considered in relation to PA-measures, compare the uncertainties in upscaling (both to uncertainty on how to upscale or uncertainty that arises due to the upscaling processes) and consideration of THM couplings with the inherent uncertainty and spatial variability of the site specific data. Furthermore, it has been an essential component of the work that individual teams not only produce numerical results but are forced to make their own judgements and to provide the proper justification for their conclusions based on their analysis. It should also be understood that conclusions drawn will partly be specific to the problem analysed, in particular as it mainly concerns a 2D application. This means that specific conclusions may have limited applicability to real problems in

  14. DECOVALEX III III/BENCHPAR PROJECTS. Approaches to Upscaling Thermal-Hydro-Mechanical Processes in a Fractured Rock. Mass and its Significance for Large-Scale Repository Performance Assessment. Summary of Findings. Report of BMT2/WP3

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan (comp.) [JA Streamflow AB, Aelvsjoe (Sweden); Staub, Isabelle (comp.) [Golder Associates AB, Stockholm (Sweden); Knight, Les (comp.) [Nirex UK Ltd, Oxon (United Kingdom)

    2005-02-15

    The Benchmark Test 2 of DECOVALEX III and Work Package 3 of BENCHPAR concerns the upscaling Thermal (T), Hydrological (H) and Mechanical (M) processes in a fractured rock mass and its significance for large-scale repository performance assessment. The work is primarily concerned with the extent to which various thermo-hydro-mechanical couplings in a fractured rock mass adjacent to a repository are significant in terms of solute transport typically calculated in large-scale repository performance assessments. Since the presence of even quite small fractures may control the hydraulic, mechanical and coupled hydromechanical behaviour of the rock mass, a key of the work has been to explore the extent to which these can be upscaled and represented by 'equivalent' continuum properties appropriate PA calculations. From these general aims the BMT was set-up as a numerical study of a large scale reference problem. Analysing this reference problem should: help explore how different means of simplifying the geometrical detail of a site, with its implications on model parameters, ('upscaling') impacts model predictions of relevance to repository performance, explore to what extent the THM-coupling needs to be considered in relation to PA-measures, compare the uncertainties in upscaling (both to uncertainty on how to upscale or uncertainty that arises due to the upscaling processes) and consideration of THM couplings with the inherent uncertainty and spatial variability of the site specific data. Furthermore, it has been an essential component of the work that individual teams not only produce numerical results but are forced to make their own judgements and to provide the proper justification for their conclusions based on their analysis. It should also be understood that conclusions drawn will partly be specific to the problem analysed, in particular as it mainly concerns a 2D application. This means that specific conclusions may have limited applicability

  15. Coupling effect on the Berry phase

    Directory of Open Access Journals (Sweden)

    Lijing Tian

    2016-11-01

    Full Text Available The Berry phase has universal applications in various fields. Here, we explore the coupling effect on the Berry phase of a two-level system adiabatically driven by a rotating classical field and interacting with a single quantized mode. Our simulations clearly reveal that the Berry phase change is quadratic proportional to the coupling constant if it is less than the level spacing between neighboring instantaneous eigenstates. Remarkably, if the nearest neighbouring level spacing is comparable with the coupling constant, this simple quadratic dependence is lost. Around this resonance, the Berry phase can be significantly tuned by slightly adjusting the parameters, such as the coupling constant, the frequency of the quantized mode, and the transition frequency. These numerical results, agreeing well with the perturbation theory calculations, provide an alternative approach to tune the Berry phase near the resonance, which is useful in quantum information science, i.e. designing quantum logic gates.

  16. Monitoring and modelling of thermo-hydro-mechanical processes - main results of a heater experiment at the Mont Terri underground rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ingeborg, G.; Alheid, H.J. [BGR - Federal Institute for Geosciences and Natural Resources, Hannover (Germany); Jockwerz, N. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) - Final Repository Research Division, Braunschweig (Germany); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Garcia-Siner, J.L. [AITEMIN -Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid, (Spain); Alonso, E. [CIMNE - Centre Internacional de Metodos Numerics en Ingenyeria, UPC, Barcelona (Spain); Weber, H.P. [NAGRA - National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Plotze, M. [ETHZ - Swiss Federal Institute of Technology Zurich, IGT, Zurich, (Switzerland); Klubertanz, G. [COLENCO Power Engineering Ltd., Baden (Switzerland)

    2005-07-01

    The long-term safety of permanent underground repositories relies on a combination of engineered and geological barriers, so that the interactions between the barriers in response to conditions expected in a high-level waste repository need to be identified and fully understood. Co-financed by the European Community, a heater experiment was realized on a pilot plant scale at the underground laboratory in Mont Terri, Switzerland. The experiment was accompanied by an extensive programme of continuous monitoring, experimental investigations on-site as well as in laboratories, and numerical modelling of the coupled thermo-hydro-mechanical processes. Heat-producing waste was simulated by a heater element of 10 cm diameter, held at a constant surface temperature of 100 C. The heater element (length 2 m) operated in a vertical borehole of 7 m depth at 4 to 6 m depth. It was embedded in a geotechnical barrier of pre-compacted bentonite blocks (outer diameter 30 cm) that were irrigated for 35 months before the heating phase (duration 18 months) began. The host rock is a highly consolidated stiff Jurassic clay stone (Opalinus Clay). After the heating phase, the vicinity of the heater element was explored by seismic, hydraulic, and geotechnical tests to investigate if the heating had induced changes in the Opalinus Clay. Additionally, rock mechanic specimens were tested in the laboratory. Finally, the experiment was dismantled to provide laboratory specimens of post - heating buffer and host rock material. The bentonite blocks were thoroughly wetted at the time of the dismantling. The volume increase amounted to 5 to 9% and was thus below the bentonite potential. Geo-electrical measurements showed no decrease of the water content in the vicinity of the heater during the heating phase. Decreasing energy input to the heater element over time suggests hence, that the bentonite dried leading to a decrease of its thermal conductivity. Gas release during the heating period occurred

  17. Numerical and Experimental Study on Manufacture of a Novel High-Capacity Engine Oil Pan Subjected to Hydro-Mechanical Deep Drawing

    Science.gov (United States)

    Chen, D. Y.; Xu, Y.; Zhang, S. H.; El-Aty, A. Abd; Ma, Y.

    2017-09-01

    The oil pan is equipped at the bottom of engine crankcase of the automobile to prevent impurity and collect the lubrication oil from the surfaces of the engine which is helpful for heat dissipation and oxidation prevention. The present study aims at manufacturing a novel high-capacity engine oil pan, which is considered as a complex shaped component with features of thin wall, large size and asymmetric deep cavity through both numerical and experimental methods. The result indicated that it is difficult to form the current part through the common deep drawing process. Accordingly, the hydro-mechanical deep drawing technology was conducted, which consisted of two steps, previous local drawing and the final integral deep drawing with hydraulic pressure. The finite element analysis (FEA) was carried out to investigate the influence of initial blank dimension and the key process parameters such as loading path, draw-bead force and fillet radius on the formability of the sheet blank. Compared with the common deep drawing, the limit drawing ratio by hydro-mechanical deep drawing can be increased from 2.34 to 2.77, while the reduction in blank wall thickness can be controlled in the range of 28%. The formability is greatly improved without any defects such as crack and wrinkle by means of parameters optimisation. The results gained from simulation keep a reasonable agreement with that obtained from experiment trials.

  18. DECOVALEX-THMC Project. Task C. Hydro-mechanical response of the Tournemire argillite to the underground openings excavation: unsaturated zones and mine-by-test experiment. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rejeb, A.; Rouabhi, A. (Ecole des Mines de Paris (France)); Millard, A. (Commissariat d' Energie Atomique (France)); Massmann, J. (Hannover Univ. (DE)); Uehara, S. (Kyoto Univ. (Japan))

    2008-06-15

    This report describes the final results of Task C of the international DECOVALEX-THMC project devoted to Excavation Damaged Zone (EDZ) in argillaceous rock at the Tounemire site in France. Task C is aimed to develop adequate numerical models for interpretation of observed damaged zones around three openings excavated at different times. The research teams are asked to model the evolution of the EDZ with time and to compare their results with measurements that were performed at the site. The main objective is to investigate the hydro-mechanical behavior of Tounemire argillite around the three openings (1881 tunnel, 1996 gallery, 2003 gallery) of Tournemire site. The work was divided into 3 parts: 1. Modelling of the unsaturated zones around the three openings; 2. Modelling of the mine-by-test experiment around the 2003 gallery; 3. EDZ modeling around the 3 openings. Each research team has performed its own HM numerical calculations based on the principal following considerations: The hydraulic time dependent boundary condition at each opening wall was calculated by the Kelvin equation using the provided humidities and temperatures; The effective stress approach of partially saturated medium was used; The swelling-shrinkage of Tournemire argillite was taken into account; The capillary pressure curve was assumed to be given by the Van Genuchten relation and calibrated from the provided data of the two successful laboratory tests; The influence of the degree of saturation on liquid water permeability was modelled using a relative permeability function which is based also on the Van Genuchten model; The intrinsic permeability was calibrated in order to get a better fit with experimental data. To achieve the first objective, the three research teams act as follows: 2D HM coupled simulations have been undertaken by ISEB-BGR team. Hydraulic and mechanical anisotropies were considered; 2D HM coupled simulations have been also undertaken by CEA-IRSN team. Only mechanical

  19. Hydro-mechanical properties of the red salt clay (T4) - Natural analogue of a clay barrier

    International Nuclear Information System (INIS)

    Minkley, W.; Popp, T.; Salzer, K.; Gruner, M.; Boettge, V.

    2010-01-01

    transition to the stable conditions is characterized by the change of mineral composition from Montmorillonite to Illite - Chlorite. This process is accompanied with a decrease of swelling pressure to a minimum and the change of mechanical behaviour, i.e. a decrease of plasticity corresponds with increasing rock stiffness. An extensive laboratory programme has been conducted using samples from different locations and focusing on the determination of geomechanical and hydraulic properties. The measured strength and creep data clearly demonstrate the influence of burial depth and temperature on the mechanical properties. The test results delivered a comprehensive basis for the subsequent performed rock mechanical modelling. Permeability was measured in the lab on core samples with gas- and water injection tests, which demonstrated low permeabilities in the order of 10 -19 to 10 -21 m 2 and lower. Because in repositories for radioactive or toxic waste a gas pressure may develop in the long term its potential impact on the integrity of a low permeable clay barrier has to be assessed. A long term field test (duration more than two years) has been performed in ∼ 500 m depth in a salt mine of NW-Germany where the Red Salt Clay is partly exposed. A funnel-shape oriented borehole array was installed consisting of the nearly horizontal central injection borehole (Diam. = 60 mm, sealed using a hydro-mechanical packer system) and four surrounding boreholes. Two of them were used for the detection of gas transport. In addition, in the other two boreholes a micro-seismic monitoring array was installed, each equipped with two seismic sensors. The performed multi-stage pulse tests showed very limited gas pressure decay, thus confirming the low permeability of the clay formation. In addition, although a gas-break occurred as the minimal stress criterion was transgressed, spontaneous self sealing was confirmed resulting in recovery of tightness after the gas pressure decreased. The large

  20. Effective gravitational coupling in modified teleparallel theories

    Science.gov (United States)

    Abedi, Habib; Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-04-01

    In the present study, we consider an extended form of teleparallel Lagrangian f (T ,ϕ ,X ) , as function of a scalar field ϕ , its kinetic term X and the torsion scalar T . We use linear perturbations to obtain the equation of matter density perturbations on sub-Hubble scales. The gravitational coupling is modified in scalar modes with respect to the one of general relativity, albeit vector modes decay and do not show any significant effects. We thus extend these results by involving multiple scalar field models. Further, we study conformal transformations in teleparallel gravity and we obtain the coupling as the scalar field is nonminimally coupled to both torsion and boundary terms. Finally, we propose the specific model f (T ,ϕ ,X )=T +∂μϕ ∂μϕ +ξ T ϕ2 . To check its goodness, we employ the observational Hubble data, constraining the coupling constant, ξ , through a Monte Carlo technique based on the Metropolis-Hastings algorithm. Hence, fixing ξ to its best-fit value got from our numerical analysis, we calculate the growth rate of matter perturbations and we compare our outcomes with the latest measurements and the predictions of the Λ CDM model.

  1. Hydro-mechanical foundation for blood swirling vortex flows formation in the cardio-vascular system and the problem of artificial heart creation

    Directory of Open Access Journals (Sweden)

    Sergey G. Chefranov

    2013-11-01

    Full Text Available Leonardo da Vinci perhaps was the first who paid attention to the energetic efficiency of existence of vortices emerging near sines of Valsalva and defining normal functioning (opening of aortal valve. However up to now a fundamental problem of defining of mechanisms of mysterious energetic efficiency of functioning of cardio-vascular system (CVS of blood feeding of the organism is still remaining significantly not solved and this is, for example, one of the main restriction for the creation of artificial heart and corresponding valve systems. In the present paper, results witnessing possible important role of the very hydro-mechanical mechanism in the realization of the noted energetic efficiency of CVS due to formation in the CVS of spiral structural organization of the arterial blood flow observed by methods of MRT and color Doppler-measuring in the left ventricular of the heart and in aorta.

  2. Mont Terri Project - Heater experiment : rock and bentonite thermo-hydro-mechanical (THM) processes in the near field of a thermal source for development of deep underground high level radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, I.; Alheid, H.-J.; Kaufhold, St.; Naumann, M.; Pletsch, Th.; Plischke, I.; Schnier, H.; Schuster, K.; Sprado, K. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Meyer, T.; Miehe, R.; Wieczorek, K. [Gesellschaft fuer Anlagen und Reaktorsicherheit mbH (GRS), Braunschweig (Germany); Mayor, J.C. [Empresa Nacional de Residuos Radioactivos SA (ENRESA), Madrid (Spain); Garcia-Sineriz, J.; Rey, M. [Asociacion para la Investigacion y Desarollo Industrial de los Recursos Naturales (AITEMIN), Madrid (Spain); Alonso, E.; Lloret, A.; Munoz, J.J. [Centre Internacional de Metodos Numerics en Ingenyeria (CIMNE), Barcelona (Spain); Weber, H. [National Cooperative for the Disposal of Radioactive Waste (Nagra), Wettingen (Switzerland); Ploetze, M. [Eidgenoessische Technische Hochschule Zuerich, Institut fuer Geotechnik, Zuerich (Switzerland); Klubertanz, G. [Colenco Power Engineering Ltd, Baden (Switzerland); Ammon, Ch. [Rothpletz Lienhard und Cie AG, Aarau (Switzerland); Graf, A.; Nussbaum, Ch.; Zingg, A. [Goetechnical Institute Ltd, Saint-Ursanne (Switzerland); Bossart, P. [Federal Office of Topography (swisstopo), Wabern (Switzerland); Buehler, Ch.; Kech, M.; Trick, Th. [Solexperts AG, Moenchaltorf (Switzerland); Emmerich, K. [ITC-WGT, Karlsruhe (Germany); Fernandez, A. M. [Ciemat, Madrid (Spain)

    2007-07-01

    The long-term safety of underground permanent repositories for radioactive waste relies on a combination of several engineered and geological barriers. The interactions between a host rock formation of the type 'Opalinus Clay' and an engineered barrier of the type 'bentonite buffer' are observed in the Heater Experiment (HE) during a hydration and a heating phase. The objective of the experiment is an improved understanding of the coupled thermo-hydro-mechanical (THM) processes in a host rock-buffer system achieved by experimental observations as well as numerical modelling. The basic objectives are in detail: a) Long-term monitoring in the vicinity of the heater during hydration and heating; especially observation and study of coupled THM processes in the near field, i.e. continuous measurements of temperatures, pore pressures, displacements, electric conductivity, and analysis of the gases and water released into the rock by effect of heating; b) Determination of the properties of barrier and host rock done mainly by laboratory and in situ experiments, i.e. general mechanical and mineralogical properties, mechanical state in-situ, and changes induced by the experiment; c) Study of the interaction between host rock and bentonite buffer as well as validation and refinement of existing tools for modelling THM processes; d) Study of the behaviour and reliability of instrumentation and measuring techniques, i.e. inspection of sensors after dismantling the experimental setting. To achieve the objectives, the experiment was accompanied by an extensive programme of continuous monitoring, experimental investigations on-site as well as in laboratories, and numerical modelling of the coupled THM processes. Finally, the experiment was dismantled to provide laboratory specimens of post-heating buffer and host rock material. The continuous monitoring of the experiment by a multitude of sensors (for temperature, pore pressure, total pressure, relative

  3. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I

  4. Component Energy Efficiencies in a Novel Linear to Rotary Motion Inter-conversion Hydro-mechanism Running a Solar Tracker

    Directory of Open Access Journals (Sweden)

    Kant Eliab Kanyarusoke

    2018-01-01

    Full Text Available A new mechanism interconverting linear and rotary motion was investigated for energy transfers among its components. It employed a gear-rack set, a Hooke coupling and a specially designed bladder-valve system that regulated the motion. The purpose was to estimate individual component mechanical efficiencies as they existed in the prototype so that future reengineering of the mechanism could be properly targeted. Theoretical modelling of the mechanism was first done to obtain equations for efficiencies of the key components. Two-stage experimentation followed when running a solar tracker. The first stage produced data for inputting into the model to determine the efficiencies’ theoretical variation with the Hooke coupling shaft angle. The second one verified results of the Engineering Equation Solver (EES software solutions of the model. It was found that the energy transfer to focus on was that between the Hooke coupling and the output shaft because its efficiency was below 4%

  5. Effect of thermo-coupled processes on the behaviour of a clay barrier submitted to heating and hydration

    Directory of Open Access Journals (Sweden)

    Marcelo Sánchez

    2010-03-01

    Full Text Available The storage of high level radioactive waste is still an unresolved problem of the nuclear industry, being geological disposal the most favoured option and, naturally, the one requiring the strongest geo-mechanical input. Most conceptual designs for the deep geological disposal of nuclear waste envisage placing the canisters containing the waste in horizontal drifts or vertical boreholes. The empty space surrounding the canisters is filled by an engineered barrier often made up of compacted swelling clay. Inthebarrierandthenearfield,significantthermo-hydro-mechanical(THM phenomena take place that interact in a complex way. A good understanding of THM issues is, therefore, necessary to ensure a correct performance of engineered barriers and seals. The conditions of the bentonite in an engineered barrier for high-level radioactive waste disposal are being simulated in a mock-up heating test at almost scale, at the premises of CIEMAT in Madrid. The evolution of the main Thermo-Hydro-Mechanical (THM variables of this test are analysed in this paper by using a fully coupled THM formulation and the corresponding finite element code. Special emphasis has been placed on the study of the effect of thermo-osmotic flow in the hydration of the clay barrier at an advanced staged of the experiment.O armazenamento de rejeitos altamente radioativos é ainda um problema em aberto na área de engenharia nuclear sendo os sítios geológicos ainda a opção mais favorável e naturalmente aquela que demanda maior conhecimento na área de geomecânica. A maioria dos projetos conceituais de armazenamento do lixo nuclear objetiva a alocação de cilindros que contêm os rejeitos em poços verticais ou horizontais. O espaço vazio que circunda os cilindros é preenchido por uma barreirade engenharia na maioria dos casos composta por uma argila expansiva. Na barreira e na vizinhança fenômenos significativos de acoplamento termo-hidro-mecânico(THM tomam lugar e

  6. Heater test in the Opalinus Clay of the Mont Terri URL. Gas release and water redistribution - Contribution to heater experiment (HE); Rock and bentonite thermo-hydro-mechanical (THM) processes in the nearfield

    International Nuclear Information System (INIS)

    Jockwer, N.; Wieczorek, K.

    2006-06-01

    Beside salt and granite, clay formations are investigated as potential host rocks for disposing radioactive waste. In Switzerland in the canton Jura close to the city of St. Ursanne, an underground laboratory was built in the vicinity of the reconnaissance gallery of a motorway tunnel. Since 1995, a consortium of 12 international organisations is running this laboratory for investigating the suitability of the Opalinus clay formation with regard to disposal of radioactive waste. In 1999, the Heater Experiment B (HE-B) was started for investigating the coupled thermo-hydro-mechanical (THM) processes of the Opalinus clay in interaction with the bentonite buffer. The principal contractors of this project were the Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), the Empresa Nacional de Residuos Radiactivos S. A. (ENRESA), the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, and the National Cooperative for the Disposal of Radioactive Waste (NAGRA). GRS participated in that experiment for determining the subjects of gas generation, gas release, water content, and water redistribution in the Opalinus clay during heating. This was achieved by analysing gas and water samples from the test field before, during, and after the heating period and by performing geoelectric tomography measurements in the heated region. The in-situ measurements were supported by an additional laboratory programme. This report deals with the work of GRS performed in this project during the years 1999 to 2005. All the results obtained in the frame of the project are presented. Additional laboratory measurements conducted by the Pore Water Laboratory at CIEMAT in Madrid are also presented. The participation of GRS was funded by German Ministry of Economics and Labour (BMWA) under the contract No. 02 E 9602 and by the Commission of the European Communities under the contract No. FIKW.CT-2001-00132. (orig.)

  7. Numerical study of the EDZ by a thermo-hydro-mechanical damage model dedicated to unsaturated geo-materials

    International Nuclear Information System (INIS)

    Arson, Chloe; Gatmiri, Behrouz

    2010-01-01

    Document available in extended abstract form only. The design of deep nuclear waste repositories requires the modelling of the effects of thermal loadings in the Excavation Damaged Zone (EDZ). The containers are to be stored in bentonite buffers surrounded by a geological massif. These two barriers are multi-phase porous media, in which coupled mechanical, capillary and thermal phenomena occur. The aim of this study is to develop a new damage model dedicated to non-isothermal unsaturated porous media, the 'THHMD' model. Contrary to almost all of the existing damage models dedicated to non dry media, it is formulated in independent stress state variables (net stress, suction and thermal stress). The damage variable is a second-order tensor, which gives a good approximation for the representation of anisotropic cracking in three dimensions. The behaviour laws stem from the combination of phenomenological and micromechanical principles. The total strain tensor is split into three components, each of which being conjugated to a stress state variable. The Helmholtz free energy is written as the sum of damaged elastic energies and residual-strain-potentials. The concept of effective stress, frequently used in Continuum Damaged Mechanics, is extended to the three stress state variables, by using the operator of Cordebois and Sidoroff. The damaged rigidities are computed by application of the Principle of Equivalent Elastic Energy (PEEE). The non-elastic strain components depend on the increment of damage, which is determined by an associative flow rule. Fracturing is also modelled in the transfer equations. The Representative Elementary Volume (REV) is assumed to be damaged by a microcrack network, among which liquid water and vapour flows are homogenized. A damaged intrinsic conductivity, which plays the role of an internal length parameter, is introduced. The influence of damage on air and heat flows is taken into account by means of porosity, which is also

  8. Optical model representation of coupled channel effects

    International Nuclear Information System (INIS)

    Wall, N.S.; Cowley, A.A.; Johnson, R.C.; Kobas, A.M.

    1977-01-01

    A modification to the usual 6-parameter Woods-Saxon parameterization of the optical model for the scattering of composite particles is proposed. This additional real term reflects the effect of coupling other channels to the elastic scattering. The analyses favor a repulsive interaction for this term, especially for alpha particles. It is found that the repulsive term when combined with a Woods-Saxon term yields potentials with central values and volume integrals similar to those found by uncoupled elastic scattering calculations. These values are V(r = 0) approximately equal to 125 MeV and J/4A approximately equal to 300 MeV-fm 3

  9. Couplings in multiphasic geo-materials: temperature and chemistry effects; Couplages dans les geomateriaux multiphasiques: effets de la temperature et de la chimie

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemzadeh, H.

    2006-05-15

    Transport of chemical components in soil through water is the major cause of pollution of the soil. This transport takes place around landfills and nuclear waste storage areas, tailings and mine wastes, and so on. A great number of these sites are unsaturated of water and in some cases heat can change the fate of chemical species, that lead us to a coupled problem. In this dissertation, numerical simulation with an existent thermo-hydro-mechanical model and theoretical modeling and numerical simulation of transport and interactions of one chemical species in multiphase media are presented. Integrated THM model in the Code-Aster is presented. Excavation, engineering barrier and thermal load of waste nuclear storage well are modeled. Verification of model is presented with these simulations. A thermo-hydro-mechanical behaviour coupled with chemical phenomena is presented with a fully coupled method that water, gas, chemical species and soil skeleton were considered as constituents and corresponding unknowns are temperature, water pressure, gas pressure, chemical concentration and displacements. For each constituent, mass balance equation and linear momentum equation are written and solved simultaneously to find related unknowns. The results of this model have been compared with the theoretical and experimental results existing in the literature. Furthermore, results of some applications of this model are included. Some areas where further work is required are identified. In particular, there is a need to perform experiments to obtain necessary soil parameters to permit accurate modelling of the heat and contaminant transport in unsaturated soils. (author)

  10. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  11. THM-issues in repository rock. Thermal, mechanical, thermo-mechanical and hydro-mechanical evolution of the rock at the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hoekmark, Harald; Loennqvist, Margareta; Faelth, Billy (Clay Technology AB, Lund (Sweden))

    2010-05-15

    The present report addresses aspects of the Thermo-Hydro-Mechanical (THM) evolution of the repository host rock that are of potential importance to the SR-Site safety assessment of a KBS-3 type spent nuclear fuel repository. The report covers the evolution of rock temperatures, rock stresses, pore pressures and fracture transmissivities during the excavation and operational phase, the temperate phase and a glacial cycle on different scales. The glacial cycle is assumed to include a period of pre-glacial permafrost with lowered temperatures and with increased pore pressures in the rock beneath the impermeable permafrost layer. The report also addresses the question of the peak temperature reached during the early temperate phase in the bentonite buffer surrounding the spent fuel canisters. The main text is devoted exclusively to the projected THM evolution of the rock at the Forsmark site in central Sweden. The focus is on the potential for stress-induced failures, i.e. spalling, in the walls of the deposition holes and on changes in the transmissivity of fractures and deformation zones. All analyses are conducted by a combination of numerical tools (3DEC) and analytical solutions. All phases are treated separately and independently of each other, although in reality construction will overlap with heat generation because of the step-by-step excavation/deposition approach with some 50 years between deposition of the first and last canisters. It is demonstrated here that the thermal and thermo-mechanical evolution of the near-field will be independent of heat generated by canisters that were deposited in the past, provided that deposition is made in an orderly fashion, deposition area by deposition area. Peak temperatures and near-field stresses can, consequently, be calculated as if all canisters were deposited simultaneously. The canister and tunnel spacing is specified such that the peak buffer temperature will not exceed 100 deg C in any deposition hole, i.e. not

  12. FEM Analyses for T-H-M-M Coupling Processes in Dual-Porosity Rock Mass under Stress Corrosion and Pressure Solution

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zhang

    2012-01-01

    Full Text Available The models of stress corrosion and pressure solution established by Yasuhara et al. were introduced into the 2D FEM code of thermo-hydro-mechanical-migratory coupling analysis for dual-porosity medium developed by the authors. Aiming at a hypothetical model for geological disposal of nuclear waste in an unsaturated rock mass from which there is a nuclide leak, two computation conditions were designed. Then the corresponding two-dimensional numerical simulation for the coupled thermo-hydro-mechanical-migratory processes were carried out, and the states of temperatures, rates and magnitudes of aperture closure, pore and fracture pressures, flow velocities, nuclide concentrations and stresses in the rock mass were investigated. The results show: the aperture closure rates caused by stress corrosion are almost six orders higher than those caused by pressure solution, and the two kinds of closure rates climb up and then decline, furthermore tend towards stability; when the effects of stress corrosion and pressure solution are considered, the negative fracture pressures in near field rise very highly; the fracture aperture and porosity are decreases in the case 1, so the relative permeability coefficients reduce, therefore the nuclide concentrations in pore and fracture in this case are higher than those in case 2.

  13. Quark and pion effective couplings from polarization effects

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)

    2016-05-15

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)

  14. Thermo-Hydro-Mechanical Characterisation of the Bentonite of a Simulated HLW Repository after Five Years Operation ( In Situ Test of the FEBEX Project)

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.

    2004-07-01

    After five years of operation, heater 1 of the FEBEX experimental at the Grimsel Test Sites was switched off in February 2002. Following cooling of the system, the bentonite barrier was dismantled and the heater extracted. During dismantling many bentonite samples were taken. Several determinations were carried out in these samples with the aim of: (1) characterise the actual state of the bentonite and (2) determine the possible changes in its properties occurred during the experiment. The results of the thermo-hydro-mechanical characterisation performed at CIEMAT are reported and analysed. The distribution of water content and dry density of the bentonite in vertical sections presents axial symmetry. The construction gaps of the barrier have been filled by the expansion of the bentonite. The water retention capacity, the hydraulic conductivity and the swelling capacity of the samples from Grimsel have not irreversible changed. The pre consolidation pressure of the Grimsel samples has decreased due to the microstructural changes associated to the volume increase experienced during hydration. The thermal conductivity is higher for the bentonite blocks of the external ring of the barrier. (Author)

  15. Long term thermo-hydro-mechanical interaction behavior study of the saturated, discontinuous granitic rock mass around the radwaste repository using a steady state flow algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jhin Wung; Bae, Dae Suk; Kang, Chul Hyung; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The objective of the present study is to understand the long term (500 years) thermo-hydro-mechanical interaction behavior of the 500 m depth underground radwaste repository in the saturated, discontinuous granitic rock mass using a steady state flow algorithm. The numerical model includes a saturated granitic rock mass with joints around the repository and a 45 .deg. C fault passing through the tunnel roof-wall intersection, and a canister with PWR spent fuels surrounded by the compacted bentonite and mixed-bentonite. Barton-Bandis joint constitutive model from the UDEC code is used for the joints. For the hydraulic analysis, a steady state flow algorithm is used for the groundwater flow through the rock joints. For the thermal analysis, heat transfer is modeled as isotropic conduction and heat decays exponentially with time. The results show that the variations of the hydraulic aperture, hydraulic conductivity, normal stress, normal displacements, and shear displacements of the joints are high in the vicinity of the repository and stay fairly constant on the region away from the repository. 14 refs., 15 figs., 11 tabs. (Author)

  16. Methods of Assessing the Resource of the Crankshaft Bearing of Internal Combustion Engine Based on the Calculation of Hydro-Mechanical Characteristics

    Directory of Open Access Journals (Sweden)

    I.G. Levanov

    2015-09-01

    Full Text Available The purpose of the article is to develop a tool to assess the theoretical resource crankshaft bearings of internal combustion engine. As a result, two methods for evaluating of the theoretical resource crankshaft bearings have been developed on the basis of the calculation of hydro-mechanical characteristics of bearings: the minimum film thickness and the extent of the zone of boundary friction. Under the theoretical resource of crankshaft bearing it is understood that during his work an increase of the radial clearance in the area of potential exposure (boundary friction is over the limit. The first technique is based on the bearing life dependence on the ratio between the minimum film thickness and its maximum allowable value. The second technique is based on the molecular-mechanical theory of friction and wear fatigue theory. Thus, these techniques may be used to estimate the resource of the crankshaft journal bearings at the design and finishing stage. However, some parameters of mathematical models have to be determined from the experimental test. The use of molecular-mechanical theory of friction and wear fatigue theory takes into account the influence of the physical and mechanical properties of a bearing material on his life.

  17. Thermo-Hydro-Mechanical Characterisation of the Bentonite of a Simulated HLW Repository after Five Years Operation ( In Situ Test of the FEBEX Project)

    International Nuclear Information System (INIS)

    Villar, M. V.

    2004-01-01

    After five years of operation, heater 1 of the FEBEX experimental at the Grimsel Test Sites was switched off in February 2002. Following cooling of the system, the bentonite barrier was dismantled and the heater extracted. During dismantling many bentonite samples were taken. Several determinations were carried out in these samples with the aim of: (1) characterise the actual state of the bentonite and (2) determine the possible changes in its properties occurred during the experiment. The results of the thermo-hydro-mechanical characterisation performed at CIEMAT are reported and analysed. The distribution of water content and dry density of the bentonite in vertical sections presents axial symmetry. The construction gaps of the barrier have been filled by the expansion of the bentonite. The water retention capaciaty, the hydraulic conductivity and the swelling capacity of the samples from Grimsel have not irreversible changed. The preconsolidation pressure of the Grimsel samples has decreased due to the microstructural changes asswociated to the volume increase experienced during hydration. The thermal conductivity is higher for the bentonite blocks of the external ring of the barrier. (Author)

  18. Radiation effects in charge coupled devices

    International Nuclear Information System (INIS)

    Williams, R.A.; Nelson, R.D.

    1975-01-01

    Charge coupled devices (CCD s) exhibit a number of advantages (low cost, low power, high bit density) in their several applications (serial memories, imagers, digital filters); however, fairly elementary theoretical considerations indicate that they will be very vulnerable to permanent radiation damage, by both neutrons and ionizing radiation, and to transient upset by pulsed ionizing radiation. Although studies of permanent ionizing-radiation damage in CCD's have been reported, little information has been published concerning their overall nuclear radiation vulnerability. This paper presents a fairly comprehensive experimental study of radiation effects in a 256-cell surface-channel, CCD shift-register. A limited amount of similar work is also presented for a 128-cell surface-channel device and a 130 cell peristaltic CCD shift register. The radiation effects phenomena discussed herein, include transient-ionizing-radiation responses, permanent ionizing- radiation damage to transfer efficiency, charge-carrying capacity and input transfer gate bias, and neutron damage to storage time--determined from dark current and charge-up time measurements

  19. 3D hydro-mechanical homogenization and equivalent continuum properties of a fractured porous clay-stone around a gallery: application to the damaged and fractured zone at the Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Ababou, Rachid; Canamon, Israel; Poutrel, Adrien

    2012-01-01

    Document available in extended abstract form only. The present work focuses on 3D homogenization, or 'up-scaling', of coupled Hydro-Mechanical (HM) equations and coefficients in a water-filled fractured and fissured porous clay rock. The parameters used in the up-scaling calculations correspond to the Meuse / Haute-Marne (MHM) Underground Research Laboratory (URL) located at Bure and operated by ANDRA (France). We focus on the fractured zone around a cylindrical excavation (gallery 'GMR') located in the Callovo-Oxfordian formation, a thick 130 m clay-stone layer between depths 400 m and 600 m. For up-scaling, we take into account two different sets of hydraulic and mechanical parameters: (i) the permeability and the stiffness coefficients of the intact porous matrix, and (ii) the crack properties, including their apertures, their hydraulic transmissivity (Darcy/Poiseuille), and their specific normal/shear stiffnesses. The geometry of cracks is summarized below. We consider two different types of 'cracks': (I) relatively small decimeter-scale 'dense fractures'; and (II) large distinct shear fractures organized in a 'chevron' pattern. A synthetic set comprising both the 'dense fractures' and the 'large fractures' is generated in 3D. Each subset is generated as follows: I. A statistical isotropic system of small fractures ('fissures'), consisting of isotropically oriented planar discs, with random diameters, apertures, and positions. All statistics are radially inhomogeneous, e.g., density decreases away from the wall. II. A periodic set of large curved fractures, organized along the axis of the gallery in a 'chevron' pattern. Each curved fracture is individually modelled as a parametric conoidal surface. Each surface is then discretized as a set of triangular patches. The local HM coefficients of the water-filled porous rock, with dense near-wall fractures and large distinct 'chevron' fractures, are homogenized using a quasi-linear superposition approach. This leads

  20. Experimental and numerical approaches of the hydro-mechanical behaviour of a quasi-saturated compacted clayey soil

    Directory of Open Access Journals (Sweden)

    Li Zhong-Sen

    2016-01-01

    Full Text Available The present research is funded by the French National Project « TerreDurable », which is dedicated to the study of soils in quasi-saturated conditions (close to saturation for the analysis of stability and settlement of earth structures such as embankment, dams. A global presentation of the drying-wetting test shows the volume change, air entry and soil-water characteristics of the soil at slurry and oven-dried conditions. Unsaturated undrained triaxial test was carried out in order to investigate the variation of pore-water pressure from quasi-saturated domain to saturation. The experimental results of the triaxial test are then modeled using a two-dimensional explicit finite difference program (Flac 2D. A constitutive law developed in the TerreDurable project allows better understanding the behaviour of quasi-saturated soils using the water retention curve of quasi-saturated domain proposed by Boutonnier (2007, 2010. A simple effective stress model is used (Cam Clay by taking into account both the suction and the compressibility of equivalent fluid (water + air. The results from numerical calculation and experimental measurements are compared.

  1. Hydro-mechanical model of a reactivated paleo-salt karst system in the Lisan area, Jordan

    Science.gov (United States)

    Closson, Damien; Abou Karaki, Najib

    2015-04-01

    The Dead Sea is a pull-apart basin forming a terminal lake (-429 m) located over the Jordan - Dead Sea transform fault. The slope of the fresh/saline interface is ten times shallower than observed near the ocean because salinity is ten times greater than in the average sea water. Underground lateral extension is acting as a high density layer over which groundwater is in hydrostatic equilibrium. Since the 1960s, a slice of brine 0.033 km x 77 km x 16.5 km vanished due to water resources over-exploitation in the catchment area. Monitoring of wells in the Dead Sea zone indicated that the water table does not drop at the same pace as the lake. The head difference is increasing with time. Groundwater moves so rapidly towards the lake to compensate for the imbalance provoking the proliferation of sinkholes, subsidence, and landslides. Since the 1980s, the emerged spaces have been covered by industrial and touristic infrastructures. Such a dynamic system provides a test bed to study an Early Warning System to help minimizing geo-hazards effects. The reactivation of a paleo-channel located below a US 48 M salt evaporation pond of the Arab Potash Company, Lisan peninsula, provides an illustrative case-study. Sinkholes lineaments whose orientations fit with the main structural directions highlight the role of conduit played by faults and fractures. Rapid underground water circulation explains the appearance of tamarisk in unexpected places. Time series analysis of high and very high resolution visible/radar satellite images acquired from the 1970s and on indicated major changes in the landscape. This work underlines the need of very carefully analyzing all available data sources acquired prior to and during the recession of the lake level before the development of human activities along the coast. This work is supported by the Arab Potash Company. Thanks are due to H.E. Eng. Jaman Sarayreh, Chairman of the Arab Potash Company, and to Dr Dureid Mahasneh et Mr. Bisher

  2. Hydro-mechanical evolution of the EDZ as transport path for radionuclides and gas: insights from the Mont Terri rock laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Paul Marschall, P.; Giger, S.; La Vassière De, R.

    2017-01-01

    The excavation damaged zone (EDZ) around the backfilled underground structures of a geological repository represents a release path for radionuclides, which needs to be addressed in the assessment of long-term safety. Additionally, the EDZ may form a highly efficient escape route for corrosion and degradation gases, thus limiting the gas overpressures in the backfilled repository structures. The efficiency of this release path depends not only on the shape and extent of the EDZ, but also on the self-sealing capacity of the host rock formation and the prevailing state conditions, such as in situ stresses and pore pressure. The hydro-mechanical and chemico-osmotic phenomena associated with the formation and temporal evolution of the EDZ are complex, thus precluding a detailed representation of the EDZ in conventional modelling tools for safety assessment. Therefore, simplified EDZ models, able to mimic the safety-relevant functional features of the EDZ in a traceable manner are required. In the framework of the Mont Terri Project, a versatile modelling approach has been developed for the simulation of flow and transport processes along the EDZ with the goal of capturing the evolution of hydraulic significance of the EDZ after closure of the backfilled underground structures. The approach draws on both empirical evidence and experimental data, collected in the niches and tunnels of the Mont Terri rock laboratory. The model was benchmarked with a data set from an in situ self-sealing experiment at the Mont Terri rock laboratory. This paper summarises the outcomes of the benchmark exercise that comprises relevant empirical evidence, experimental data bases and the conceptual framework for modelling the evolution of the hydraulic significance of the EDZ around a backfilled tunnel section during the entire re-saturation phase. (authors)

  3. Hydro-mechanical evolution of the EDZ as transport path for radionuclides and gas: insights from the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Paul Marschall, P.; Giger, S. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); La Vassière De, R. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); and others

    2017-04-15

    The excavation damaged zone (EDZ) around the backfilled underground structures of a geological repository represents a release path for radionuclides, which needs to be addressed in the assessment of long-term safety. Additionally, the EDZ may form a highly efficient escape route for corrosion and degradation gases, thus limiting the gas overpressures in the backfilled repository structures. The efficiency of this release path depends not only on the shape and extent of the EDZ, but also on the self-sealing capacity of the host rock formation and the prevailing state conditions, such as in situ stresses and pore pressure. The hydro-mechanical and chemico-osmotic phenomena associated with the formation and temporal evolution of the EDZ are complex, thus precluding a detailed representation of the EDZ in conventional modelling tools for safety assessment. Therefore, simplified EDZ models, able to mimic the safety-relevant functional features of the EDZ in a traceable manner are required. In the framework of the Mont Terri Project, a versatile modelling approach has been developed for the simulation of flow and transport processes along the EDZ with the goal of capturing the evolution of hydraulic significance of the EDZ after closure of the backfilled underground structures. The approach draws on both empirical evidence and experimental data, collected in the niches and tunnels of the Mont Terri rock laboratory. The model was benchmarked with a data set from an in situ self-sealing experiment at the Mont Terri rock laboratory. This paper summarises the outcomes of the benchmark exercise that comprises relevant empirical evidence, experimental data bases and the conceptual framework for modelling the evolution of the hydraulic significance of the EDZ around a backfilled tunnel section during the entire re-saturation phase. (authors)

  4. Effect of Couple Therapy Based on the Choice Theory on Social Commitment of Couples

    Directory of Open Access Journals (Sweden)

    Hossein Abbasi

    2017-09-01

    Full Text Available Background and Objective: Commitment to spouse, marriage, and family is one of the most important factors ensuring the continuity of marriage and strength of family bonds that has attracted considerable attention in the contemporary family and marriage studies. In this study, we sought to determine the effect of couple therapy based on the choice theory on the social commitment of couples. Materials and Methods: This was a quasi-experimental study with pretest-posttest design and a control group that was performed among volunteer couples visiting Isfahan Counseling and Psychology Centers in Isfahan, Iran, during 2015. The subjects consisted of 32 incompatible couples who were selected through convenience sampling and were randomly assigned into experimental (16 couples and control (16 couples groups. Then, the experimental group received nine sessions of group couple therapy during three months on family life skills based on choice theory. It is worth mentioning that the dependent variable was the social commitment of couples evaluated by the dimensions of commitment inventory of Adams and Jones (1997. The collected data were analyzed by multivariate analysis of covariance in SPSS, version 20. Results: At the post-test stage, couple therapy based on choice theory significantly enhanced social commitment in the experimental group compared to the control group (P<0.001. Conclusion: According to the findings of this study, couple therapy based on the choice theory is an effective strategy in promoting commitment and loyalty to spouse, marriage, and family and can decrease and prevent family-related problems and threats such as divorce and marital infidelity.

  5. Coupling methodology within the software platform alliances

    Energy Technology Data Exchange (ETDEWEB)

    Montarnal, Ph; Deville, E; Adam, E; Bengaouer, A [CEA Saclay, Dept. de Modelisation des Systemes et Structures 91 - Gif-sur-Yvette (France); Dimier, A; Gaombalet, J; Loth, L [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Chavant, C [Electricite de France (EDF), 92 - Clamart (France)

    2005-07-01

    CEA, ANDRA and EDF are jointly developing the software platform ALLIANCES which aim is to produce a tool for the simulation of nuclear waste storage and disposal repository. This type of simulations deals with highly coupled thermo-hydro-mechanical and chemical (T-H-M-C) processes. A key objective of Alliances is to give the capability for coupling algorithms development between existing codes. The aim of this paper is to present coupling methodology use in the context of this software platform. (author)

  6. Coupling methodology within the software platform alliances

    International Nuclear Information System (INIS)

    Montarnal, Ph.; Deville, E.; Adam, E.; Bengaouer, A.; Dimier, A.; Gaombalet, J.; Loth, L.; Chavant, C.

    2005-01-01

    CEA, ANDRA and EDF are jointly developing the software platform ALLIANCES which aim is to produce a tool for the simulation of nuclear waste storage and disposal repository. This type of simulations deals with highly coupled thermo-hydro-mechanical and chemical (T-H-M-C) processes. A key objective of Alliances is to give the capability for coupling algorithms development between existing codes. The aim of this paper is to present coupling methodology use in the context of this software platform. (author)

  7. Two sides of a coin : A critical review, and mathematical and phenomenological study of what we call hydromechanical coupling

    NARCIS (Netherlands)

    Huyghe, J. M.; Nikooee, E.; Sweijen, T.; Hassanizadeh, S. Majid; Schrefler, B.; Onate, E.; Papadrakakis, M.

    2015-01-01

    In this paper a brief and critical review of the current literature on hydro-mechanical coupling is presented. Furthermore, an enhanced discrete element model is used to investigate the mutual relationship of soil water retention curve and suction stress curves and how the two are affected as a

  8. Hydro-mechanical improvement of the cap cover of a surface landfill for low and intermediate level radioactive waste short life time

    International Nuclear Information System (INIS)

    Verstaevel, Matthieu

    2015-01-01

    This study related to the Manche storage center (CSM), one of the first landfill in the world dedicated to low and intermediate radioactive waste short-live time. The researches considered in this thesis supported by industrial companies, focus on the hydraulic study of cap cover materials of the site, and their hydro-mechanical improvement. The aim is to improve their impermeability in order to be substituted to the geo-membrane as cap cover liner. A specification imposed by Andra was to consider a solution of the re-use of the in situ material by adding of additive. The initial material is a sandy silt, a material with a significant proportion of fines. In the literature there are many studies on the mechanical improvement of fine materials (applications to road infrastructure) and the treatment of sandy materials by adding a fine fraction (constitution of waterproof barriers). On the other hand there are very few studies on the impermeability improvement of fine soils. A physical tests campaign on treated materials with bentonite was carried out at various treatment rates. The results showed that the addition of additive induces a decrease in optimum dry unit weight for a normal Proctor compaction energy and increases their optimum water content. In addition, the susceptibility to erosion, internal or external, observed during oedo-permeameter test was assessed from various stability criteria available in the literature. Unlike the treatment of soil for road embankments, the increase of the material stiffness is not wanted and flexibility is preferred what is observed with the treatment tested. The comparative hydraulic conductivity of the untreated and treated materials were measured. In this study different devices (oedo-permeameter, permeameters, triaxial device) were used. The influence of the treatment rate of the material on the decrease of the hydraulic conductivity was observed. Four large scale experimentations were designed; they should be monitored

  9. Effects of Coupling Lens on Optical Refrigeration of Semiconductors

    International Nuclear Information System (INIS)

    Kai, Ding; Yi-Ping, Zeng

    2008-01-01

    Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Disentangling running coupling and conformal effects in QCD

    CERN Document Server

    Brodsky, S J; Grunberg, G; Rathsman, J

    2001-01-01

    We investigate the relation between a postulated skeleton expansion and the conformal limit of QCD. We begin by developing some consequences of an Abelian-like skeleton expansion, which allows one to disentangle running-coupling effects from the remaining skeleton coefficients. The latter are by construction renormalon free, and hence hopefully better behaved. We consider a simple ansatz for the expansion, where an observable is written as a sum of integrals over the running coupling. We show that in this framework one can set a unique Brodsky-Lepage-Mackenzie (BLM) scale-setting procedure as an approximation to the running-coupling integrals, where the BLM coefficients coincide with the skeleton ones. Alternatively, the running-coupling integrals can be approximated using the effective charge method. We discuss the limitations in disentangling running coupling effects in the absence of a diagrammatic construction of the skeleton expansion. Independently of the assumed skeleton structure we show that BLM coef...

  11. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  12. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  13. Nonlinear charge reduction effect in strongly coupled plasmas

    International Nuclear Information System (INIS)

    Sarmah, D; Tessarotto, M; Salimullah, M

    2006-01-01

    The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas

  14. Effect of spin rotation coupling on spin transport

    International Nuclear Information System (INIS)

    Chowdhury, Debashree; Basu, B.

    2013-01-01

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied

  15. Effect of spin rotation coupling on spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  16. Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2010-01-01

    Full Text Available Diversity antennas play an important role in wireless communications. However, mutual coupling between multiple ports of a diversity antenna has significant effects on wireless radio links and channel capacity. In this paper, dual-port pattern diversity antennas for femtocell applications are proposed to cover GSM1800, UMTS, and WLAN frequency bands. The channel capacities of the proposed antennas and two ideal dipoles with different mutual coupling levels are investigated in an indoor environment. The relation between mutual coupling and channel capacity is observed through investigations of these antennas.

  17. Coupling a 1D Dual-permeability Model with an Infinite Slope Stability Approach to Quantify the Influence of Preferential Flow on Slope Stability

    NARCIS (Netherlands)

    Shao, W.; Bogaard, T.A.; Su, Y.; Bakker, M.

    2016-01-01

    In this study, a 1D hydro-mechanical model was developed by coupling a dual-permeability model with an infinite slope stability approach to investigate the influence of preferential flow on pressure propagation and slope stability. The dual-permeability model used two modified Darcy-Richards

  18. Autaptic effects on synchrony of neurons coupled by electrical synapses

    Science.gov (United States)

    Kim, Youngtae

    2017-07-01

    In this paper, we numerically study the effects of a special synapse known as autapse on synchronization of population of Morris-Lecar (ML) neurons coupled by electrical synapses. Several configurations of the ML neuronal populations such as a pair or a ring or a globally coupled network with and without autapses are examined. While most of the papers on the autaptic effects on synchronization have used networks of neurons of same spiking rate, we use the network of neurons of different spiking rates. We find that the optimal autaptic coupling strength and the autaptic time delay enhance synchronization in our neural networks. We use the phase response curve analysis to explain the enhanced synchronization by autapses. Our findings reveal the important relationship between the intraneuronal feedback loop and the interneuronal coupling.

  19. Heavy components coupling effect on building response spectra generation

    International Nuclear Information System (INIS)

    Liu, T.H.; Johnson, E.R.

    1985-01-01

    This study investigates the dynamic coupling effect on the floor response spectra between the heavy components and the Reactor Interior (R/I) building in a PWR. The following cases were studied: (I) simplified models of one and two lump mass models representing building and heavy components, and (II) actual plant building and heavy component models. Response spectra are developed at building nodes for all models, using time-history analysis methods. Comparisons of response spectra from various models are made to observe the coupling effects. In some cases, this study found that the coupling would reduce the response spectra values in certain frequency regions even if the coupling is not required according to the above criteria. (orig./HP)

  20. Z' effects and anomalous gauge couplings at LC with polarization

    International Nuclear Information System (INIS)

    Pankov, A.A.; Paver, N.; Verzegnassi, C.

    1996-12-01

    We show that the availability of longitudinally polarized electron beams at a 500 GeV Linear Collider would allow, from an analysis of the reaction e + e - → W + W - , to set stringent bounds on the couplings of a Z' of the most general type. In addition, to some extent it would be possible to disentangle observable effects of the Z' from analogous ones due to competitor models with anomalous tri-linear gauge couplings. (author). 21 refs, 6 figs

  1. Effective interactions and coupling schemes in nuclei

    International Nuclear Information System (INIS)

    Talmi, I.

    1994-01-01

    Eigenstates of the shell model are obtained by diagonalization of the Hamiltonian submatrix defined by a given shell model subspace. Matrix elements of the effective nuclear interaction can be determined from experiment in a consistent way. This approach was introduced in 1956 with the 38 Cl- 40 K spectra, has been applied in many cases and its latest success is in the s, d shell. This way, general features of the effective interaction have been determined. The T=1 interaction is diagonal in the seniority scheme as clearly demonstrated in proton 1g 9/2 n and 1h 11/2 n configurations and in the description of semimagic nuclei by generalized seniority. Apart from a strong and attractive pairing term, T=1 interactions are repulsive on the average. The T=0 interaction is attractive and is the origin of the central potential well in which nucleons are bound. It breaks seniority in a major way leading to deformed nuclei and rotational spectra. Such an interaction may be approximated by a quadrupole-quadrupole interaction which is the basis of the interacting boson model. Identical nucleons with pairing and quadrupole interactions cannot be models of actual nuclei. Symmetry properties of states with maximum T are very different from those of ground states of actual nuclei. The T=1 interaction between identical nucleons cannot be approximated by pairing and quadrupole interactions. The rich variety of nuclear spectra is due to the competition between seniority conserving T=1 interactions and the T=0 quadrupole interaction between protons and neutrons. (orig.)

  2. Direct coupled amplifiers using field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-03-15

    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with

  3. The surface mock-up KENTEX: on the thermal-hydro-mechanical behaviors in the buffer of a Korean HLW repository

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin; Choi, Jong Won

    2008-01-01

    The concept for a disposal of high-level wastes (HLW) in Korea is based upon a multi barrier system composed of engineered barriers and its surrounding plutonic rock (Kang et. al., 2002). A repository is constructed in a bedrock of several hundred meters in depth below the ground surface. The engineered barrier system (EBS), which is similar to the configuration considered by many other countries, consists of the HLW-encapsulating disposal container, the buffer between the container and the wall of a borehole, and the backfill in the inside space of the emplacement room, to isolate the HLW from the surrounding rock masses. The engineering performance of a HLW repository is dependent, to a large extent, upon the thermal-hydro-mechanical (THM) behaviors in the buffer which are complicated by the processes such as the decay heat generated from the HLW, the ground water flowing in from the surrounding host rock, and the swelling pressure exerted by compacted bentonite. For this reason, the Korea Atomic Energy Research Institute (KAERI), to investigate the THM behaviors in the buffer of the Korean reference disposal system (KRS), planned large-scale tests to be conducted in two stages: a surface mock-up and then a full-scale 'in situ' test. This paper deals with the surface mock-up called as 'KENTEX' and presents the THM behaviors in the buffer which have been investigated from the KENTEX test. The KENTEX is a third scale of the KRS. It consists of five major components: a heating system, a confining cylinder, a hydration tank, bentonite blocks, and sensors and instruments. The heating system measures 0.41 m in diameter and 0.68 m in length, which includes three heating elements in its inside, capable of supplying a thermal power of 1 kW each. The confining cylinder, which plays a role of the wall of a borehole excavated in the host rock, is a steel body with a length of 1.36 m and an inner diameter of 0.75 m, the inside wall of which is lined with layers of geotextile

  4. Effects of couple stresses on MHD Couette flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1978-01-01

    An exact analysis of the effects of the couple stresses on the MHD Couette flow of an electrically conducting, viscous incompressible fluid is carried out. Closed form solutions are derived for the velocity, the current density, the skin-friction at the lower plate, the force to move the upper plate, and the coefficient of mass flux for (i) A→infinity, and (ii) 2M/A 1, where a is the couple stress parameter and M is the Hartmann number. These are shown graphically followed by a discussion. During the course of discussion the effects of A are quantitatively compared with those in the ordinary case. It is observed that in the presence of a magnetic field the skin friction is affected by the couple stresses. (Auth.)

  5. Cryochemistry: freezing effect on peptide coupling in different organic solutions.

    Science.gov (United States)

    Vajda, T; Szókán, G; Hollósi, M

    1998-06-01

    The freezing effect on peptide coupling in organic solutions of different polarity has been investigated and compared with the results obtained in liquid phase. The model reaction of DCC-activated coupling of Boc-Ala-Phe-OH with H-Ala-OBu(t) has been carried out in dioxane, dimethylsulfoxide and formamide, as well as in mixtures (90%/10%, v/v) of dioxane with acetonitrile, dimethylformamide, dimethylsulfoxide and formamide. The reactions have been traced and evaluated by RP-HPLC analysis. Freezing the reaction mixture resulted in all cases in a significant suppression of the N-dipeptidylurea side-product formation together with a slight decrease of tripeptide epimerization. The coupling yields and the side effects depended on the solvent, with the dioxane and dioxane/acetonitrile mixture produced the best results. The role of freezing and solvent in the improved results is discussed.

  6. Flavour Geometry and Effective Yukawa Couplings in the MSSM

    CERN Document Server

    Ellis, John; Lee, Jae Sik; Pilaftsis, Apostolos

    2010-01-01

    We present a new geometric approach to the flavour decomposition of an arbitrary soft supersymmetry-breaking sector in the MSSM. Our approach is based on the geometry that results from the quark and lepton Yukawa couplings, and enables us to derive the necessary and sufficient conditions for a linearly-independent basis of matrices related to the completeness of the internal [SU(3) x U(1)]^5 flavour space. In a second step, we calculate the effective Yukawa couplings that are enhanced at large values of tan(beta) for general soft supersymmetry-breaking mass parameters. We highlight the contributions due to non-universal terms in the flavour decompositions of the sfermion mass matrices. We present numerical examples illustrating how such terms are induced by renormalization-group evolution starting from universal input boundary conditions, and demonstrate their importance for the flavour-violating effective Yukawa couplings of quarks.

  7. Effective field theory: A modern approach to anomalous couplings

    International Nuclear Information System (INIS)

    Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen

    2013-01-01

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics

  8. The Casual Effects of Emotion on Couples' Cognition and Behavior

    Science.gov (United States)

    Tashiro, Ty; Frazier, Patricia

    2007-01-01

    The authors conducted 2 translational studies that assessed the causal effects of emotion on maladaptive cognitions and behaviors in couples. Specifically, the authors examined whether negative emotions increased and positive emotions decreased partner attributions and demand-withdraw behaviors. Study 1 (N=164) used video clips to assess the…

  9. Synchronization of coupled stochastic oscillators: The effect of ...

    Indian Academy of Sciences (India)

    as an approximate means of accounting for a separation of time-scales between ... phase relationships between coupled oscillator systems as well as to effect a variety ... ations are often termed as internal noise since their origin is in the very ..... design and control of synthetic biological networks where synchronous ...

  10. Effects of couple stresses in MHD channel flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1977-01-01

    An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)

  11. Renormalization of g-boson effects under weak coupling condition

    International Nuclear Information System (INIS)

    Zhang Zhanjun; Yang Jie; Liu Yong; Sang Jianping

    1998-01-01

    An approach based on perturbation theory is proposed to renormalized g-boson effects for sdgIBM system, which modifies that presented earlier by Druce et al. The weak coupling condition as the usage premise of the two approaches is proved to be satisfied. Two renormalization spectra are calculated for comparison and analyses. Results show that the g-boson effects are renormalized more completely by the approach proposed

  12. Effect of proton transfer on the electronic coupling in DNA

    International Nuclear Information System (INIS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-01-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, V da , in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate V da for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the V da matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the V da matrix elements are also analyzed

  13. Inverse Edelstein effect induced by magnon-phonon coupling

    Science.gov (United States)

    Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika

    2018-05-01

    We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.

  14. Acquired Immune Deficiency Syndrome: A Preliminary Examination of the Effects on Gay Couples and Coupling.

    Science.gov (United States)

    Carl, Douglas

    1986-01-01

    The Acquired Immune Deficiency Syndrome (AIDS) epidemic significantly influences attitudes about life and lifestyles. Homosexuals have to give increased consideration to coupling, the nature of coupled relationships, sex and intimacy, and death long before the normal time. Discusses impact of AIDS on the early stages of gay coupling and on the…

  15. Strong-coupling polaron effect in quantum dots

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-11-01

    Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease by increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases. (author). 15 refs, 4 figs

  16. Effect of reactive feedback on the transverse mode coupling instability

    International Nuclear Information System (INIS)

    Myers, S.

    1984-08-01

    An important and realistic test to examine the effect of reactive feedback on the transverse mode coupling instability could be performed at PEP using the existing feedback system with some minor modifications. This test would of necessity take place at low energy and low synchrotron tune. Such an experiment is of great importance for the design of the LEP reactive feedback system and for the ultimate evaluation of LEP performance

  17. Coupling effect on the electronic transport through dimolecular junctions

    International Nuclear Information System (INIS)

    Long, Meng-Qiu; Wang, Lingling; Chen, Ke-Qiu; Li, Xiao-Fei; Zou, B.S.; Shuai, Z.

    2007-01-01

    Using nonequilibrium Green's function and first-principle calculations, we investigate the transport behaviors of a dimolecule device with two 1,4-Dithiolbenzenes (DTB) sandwiched between two gold electrodes. The results show that the intermolecular coupling effect plays an important role in the conducting behavior of the system. By changing the dihedral angles between the two DTB molecules, namely changing the magnitude of the intermolecular interaction, a different transport behavior can be observed in the system

  18. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu; Santamarina, Carlos

    2016-01-01

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  19. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu

    2016-06-11

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  20. All-Silicon Switchable Magnetoelectric Effect through Interlayer Exchange Coupling.

    Science.gov (United States)

    Liu, Hang; Sun, Jia-Tao; Fu, Hui-Xia; Sun, Pei-Jie; Feng, Y P; Meng, Sheng

    2017-07-19

    The magnetoelectric (ME) effect originating from the effective coupling between electric field and magnetism is an exciting frontier in nanoscale science such as magnetic tunneling junction (MTJ), ferroelectric/piezoelectric heterojunctions etc. The realization of switchable ME effect under external electric field in d0 semiconducting materials of single composition is needed especially for all-silicon spintronics applications because of its natural compatibility with current industry. We employ density functional theory (DFT) to reveal that the pristine Si(111)-3×3 R30° (Si3 hereafter) reconstructed surfaces of thin films with a thickness smaller than eleven bilayers support a sizeable linear ME effect with switchable direction of magnetic moment under external electric field. This is achieved through the interlayer exchange coupling effect in the antiferromagnetic regime, where the spin-up and spin-down magnetized density is located on opposite surfaces of Si3 thin films. The obtained coefficient for the linear ME effect can be four times larger than that of ferromagnetic Fe films, which fail to have the reversal switching capabilities. The larger ME effect originates from the spin-dependent screening of the spin-polarized Dirac fermion. The prediction will promote the realization of well-controlled and switchable data storage in all-silicon electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    Science.gov (United States)

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  2. Unsteady coupling effects of wet steam in steam turbines flows

    International Nuclear Information System (INIS)

    Blondel, Frederic

    2014-01-01

    In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)

  3. Correlation effects in side-coupled quantum dots

    International Nuclear Information System (INIS)

    Zitko, R; Bonca, J

    2007-01-01

    Using Wilson's numerical renormalization group (NRG) technique, we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system, a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures

  4. Experimental characterization of the hydro-mechanical behaviour of Meuse/Haute-Marne argilites; Caracterisation experimentale du comportement hydromecanique des argilites de Meuse/Haute-Marne

    Energy Technology Data Exchange (ETDEWEB)

    Escoffier, S

    2002-04-01

    Within the framework of a feasibility study of underground radioactive waste repository the experimental characterization of the coupled behavior of the host layer is of first importance. This work concerns the experimental characterization in laboratory of the poro-elastic behavior of argillite which constitutes the host layer of the future underground laboratory of ANDRA located at the limit of the Meuse/Haute-Marne. The theoretical approach is the Mechanics of Porous Media defined by Coussy [1991] which has the advantage of providing a formulation of the behavior laws using measurable parameters in laboratory. The difficulties or the feasibility of the characterization tests of these rocks coupled behavior are related to their very low permeability which requires an adaptation of the experimental devices initially used on more permeable rocks. Initially a synthesis on the knowledge of the poro-elastic parameters of Meuse/Haute-Marne argillite is given. Thereafter a first approach of the use of the studies of sensitivity as tools of decision-making aid is proposed. The experimental difficulties encountered by the various experimenters are illustrated by the diversity of the experimental choices, the test duration or by the results disparity. Because of economic, political and ecological stake, the studies of sensitivity could make it possible to direct the experimental efforts by giving indications on the dominating parameters in the coupled behavior of a rock. In the second time after the presentation of the test results of physical characterization 3 types of tests are described: permeability test (pulse test), determination of Biot coefficient under odometric loading and isotropic drained test. The complexity of these tests is related to the attack of the experimental limits. They are presented in detail: theoretical recalls, experimental set up, experimental protocol, unfolding and test results. (author)

  5. Tunneling effect in cavity-resonator-coupled arrays

    International Nuclear Information System (INIS)

    Ma Hua; Xu Zhuo; Qu Shao-Bo; Zhang Jie-Qiu; Wang Jia-Fu; Liang Chang-Hong

    2013-01-01

    The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits

    International Nuclear Information System (INIS)

    Liu Jianxin; Yan Zhanyuan; Song Yonghua

    2006-01-01

    Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finite-difference Schroedinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved. The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schroedinger equation can be divided into two Mathieu equations in p-circumflex representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.

  7. Transverse-Longitudinal Coupling Effect in Laser Bunch Slicing

    International Nuclear Information System (INIS)

    Shimada, M.; Katoh, M.; Adachi, M.; Kimura, S.; Tanikawa, T.; Hosaka, M.; Yamamoto, N.; Takashima, Y.; Takahashi, T.

    2009-01-01

    We report turn-by-turn observation of coherent synchrotron radiation (CSR) produced by the laser bunch slicing technique at an electron storage ring operated with a small momentum compaction factor. CSR emission was intermittent, and its interval depended strongly on the betatron tune. This peculiar behavior of the CSR could be interpreted as a result of coupling between the transverse and longitudinal motion of the electrons. This is the first observation of such an effect, which would be important not only for controlling the CSR emission but also for generating and transporting ultrashort electron bunches or electron bunches with microdensity structures in advanced accelerators.

  8. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  9. Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems

    International Nuclear Information System (INIS)

    Wu, C.W.

    2003-01-01

    In a recent paper, wavelet analysis is used to perturb the coupling matrix in an array of identical chaotic systems in order to improve its synchronization. When the coupling matrix is symmetric, the synchronization criterion is determined by the second smallest eigenvalue λ 2 of the coupling matrix and the problem is reduced to studying how λ 2 of the coupling matrix changes with perturbation. In the aforementioned paper, a small percentage of the wavelet coefficients are modified. However, this results in a perturbed matrix where every element is modified and nonzero. The purpose of this Letter is to present some results on the change of λ 2 due to perturbation. In particular, we show that as the number of systems n→∞, perturbations which only add local coupling will not change λ 2 . On the other hand, we show that there exists perturbations which modify an arbitrarily small percentage of matrix elements, each of which is changed by an arbitrarily small amount and yet can make λ 2 arbitrarily large. These results give conditions on what the perturbation should be in order to improve the synchronizability in an array of coupled chaotic systems. This analysis allows us to justify and explain some of the synchronization phenomena observed in a recently studied network where random coupling is added to a locally connected array. We propose to classify various classes of coupling matrices such as small world networks and scale free networks according to their synchronizability in the limit. Finally, we briefly discuss the case of time-varying coupling

  10. Analysing home-ownership of couples: the effect of selecting couples at the time of the survey.

    Science.gov (United States)

    Mulder, C H

    1996-09-01

    "The analysis of events encountered by couple and family households may suffer from sample selection bias when data are restricted to couples existing at the moment of interview. The paper discusses the effect of sample selection bias on event history analyses of buying a home [in the Netherlands] by comparing analyses performed on a sample of existing couples with analyses of a more complete sample including past as well as current partner relationships. The results show that, although home-buying in relationships that have ended differs clearly from behaviour in existing relationships, sample selection bias is not alarmingly large." (SUMMARY IN FRE) excerpt

  11. The Effectiveness of Collaborative Couple Therapy on Communication Patterns and Intimacy of Couples Referring to Counseling Centers of Behbahan, Iran

    Directory of Open Access Journals (Sweden)

    M Sodani

    2017-07-01

    Full Text Available Abstract Background and Aim: Intimacy is a key characteristic of marital relationships and is one of the most prominent characteristics of a successful marriage. Communication patterns can also determine marital satisfaction. The aim of this study was to determine the effectiveness of coupled collaborative therapy on communication patterns and intimacy of couples referring to Behbahan counseling centers. Methods: In this research, a single-trial experimental design, which was also called a single-trial trial, was used as a clinical trial. This design has different types. In the present study, several asynchronous base lines were used. Contrary to large-scale group comparison schemes, this design focuses on individual levels, not on average differences in pre-test and post-test. Another point of this plan is that fewer subjects are needed and couples completed the intimate questionnaire and communication patterns on the baseline, treatment and follow-up. Purposeful sampling was voluntary. The population of the study consisted of all disturbed couples referring to Behbahan psychological clinics. From these couples, 3 couples were selected based on entry and exit criteria. For analyzing the data, visual analysis (chart drawing, clinical significance (the changeover index and normative comparison, as well as the percentage of recovery, have been used. Results: The results indicated that couples experience improvement in intimacy (30.95% and interactive constructive communication model (47.05%, and in the communication model, the expected return (29.55% and communication pattern Interactive avoidance (33.64% showed a decrease. Likewise, data analysis using normative comparison showed that the couples after the treatment did not differ from the couples to the norm. Conclusion: Participatory couples’s therapy may increase the intimacy and constructive communication patterns and decrease the communication patterns of waiting and withdrawal

  12. A Study On the Effectiveness of Emotionally Focused Couple Therapy and Integrated Systemic Couple Therapy on reducing Intimacy Anxiety

    Directory of Open Access Journals (Sweden)

    هاجر فلاح زاده

    2015-04-01

    Full Text Available This study examined the effectiveness of emotionally focused couple therapy (EFT and integrated systemic couple therapy (IST on resolving intimacy anxiety. For this purpose, 30 couples were randomly selected and based on their pretests were assigned into two experimental and one control groups. Research instruments were Fear of Intimacy Scale (FIS (Descutner & Thelen, and the Dyadic Adjustment Scale (DAS (Spanier, 1976. A Nine-session of EFT was conducted for one experiment group and eight sessions of IST for the other. The control group did not receive any treatment. These three groups completed post test at the end of the experiment, and follow-up test 3 months later. Results indicated that EFT and IST significantly decreased intimacy anxiety in couples, and the treatment effect was consistent after 3 months follow-up.

  13. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    Science.gov (United States)

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (Pmagnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (Pmagnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright

  14. Contribution to the study of cementitious and clayey materials behaviour in the context of deep geological disposal: transport aspect, durability and thermo-hydro-mechanical behaviour

    International Nuclear Information System (INIS)

    Galle, C.

    2011-07-01

    Deep geological formation disposal is the reference solution in France for the management of medium and high activities radioactive waste. In this context, to demonstrate the feasibility of such a disposal, it is necessary to evaluate the long-term performances and the behaviour of the materials engaged in the elaboration of engineered barrier systems (EBS) and waste package elements. The studies mentioned and synthesized in this HDR thesis focused mainly on the convective transport of gas (under pressure gradient) in cementitious matrices, by coupling microstructure aspect (porosity/pores sizes distribution) and hydric environment (water saturation). Works on physico-chemical durability allowed the description of the chemical degradation of cement-based materials in extreme conditions using ammonium nitrate, to increase the materials damaging processes in order to identify functional margins. In relationship with the interim storage management phase, studies related to the behaviour and characterization of concrete submitted to high temperatures (up to 400 C) were also described. Finally, results concerning the gas (H 2 ) overpressure resistance of engineered barriers made of compacted clays were summarized. (author)

  15. Mechanisms and effects of lightning current coupling to structures

    International Nuclear Information System (INIS)

    Foboda, Marek

    1999-01-01

    To evaluate the effects of a lightning discharge on a structure, it is necessary to know the modes of interaction of lightning electromagnetic field pulses to structures. The effects to these interactions are considered by means to the concept to equivalent collection areas. The equations to calculate the distance and equivalent collection areas due to lightning discharges are given in this article. Additionally, the possible modes of a direct lightning strike to the incoming line and the equations to calculate the resultant over voltages are also given. This article ends with the calculation of voltage drops due to direct and nearby lightning strike and induced voltages due to magnetic coupling. Several examples of calculations of the different mentioned cases are given

  16. On plasma coupling and turbulence effects in low velocity stopping

    Energy Technology Data Exchange (ETDEWEB)

    Kurilenkov, Yu K [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation); Maynard, G [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Barriga-Carrasco, M D [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Valuev, A A [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation)

    2006-04-28

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly.

  17. On plasma coupling and turbulence effects in low velocity stopping

    International Nuclear Information System (INIS)

    Kurilenkov, Yu K; Maynard, G; Barriga-Carrasco, M D; Valuev, A A

    2006-01-01

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly

  18. Strong-coupling effects in superfluid 3He in aerogel

    International Nuclear Information System (INIS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2007-01-01

    Effects of impurity scatterings on the strong-coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau free energy of superfluid 3 He are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid 3 He in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys. Rev. B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally

  19. Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.

    Science.gov (United States)

    Han, Wei

    1995-11-01

    This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of

  20. Thermo-hydro-mechanical processes in the nearfield around a HLW repository in argillaceous formations. Vol. II. In-situ-investigations and interpretative modelling. May 2007 to May 2013

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang; Czaikowski, Oliver; Komischke, Michael; Wieczorek, Klaus

    2014-06-15

    Deep disposal of heat-emitting high-level radioactive waste (HLW) in clay formations will inevitably induce thermo-hydro-mechanical-chemical disturbances to the host rock and engineered barriers over very long periods of time. The responses and resulting property changes of the natural and engineered barriers are to be well understood, characterized, and predicted for assessing the long-term performance and safety of the repositories. In accordance with the R and D programme defined by the German Federal Ministry of Economics and Technology (BMWi), GRS has intensively performed site-independent research work on argillaceous rocks during the last decade. Most of the investigations have been carried out on the Callovo-Oxfordian argillite and the Opalinus clay by par-ticipation in international research projects conducted at the underground research laboratories at Bure in France (MHM-URL) and Mont-Terri in Switzerland (MT-URL). The THM-TON project, which was funded by BMWi under contract number 02E10377, in-vestigated the THM behaviours of the clay host rock and clay-based backfill/sealing materials with laboratory tests, in situ experiments and numerical modelling.

  1. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  2. Matrix effects in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Chen, Xiaoshan.

    1995-01-01

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the open-quotes Fasselclose quotes TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids

  3. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  4. Cost-effective treatment for the couple with infertility.

    Science.gov (United States)

    Van Voorhis, B J; Syrop, C H

    2000-12-01

    Although the evaluation of cost-effective approaches to infertility treatment remains in its infancy, several important principles have emerged from the initial studies in this field. Currently, in treating couples with infertility without tubal disease or severe male-factor infertility, the most cost-effective approach is to start with IUI or superovulation-IUI treatments before resorting to IVF procedures. The woman's age and number of sperm present for insemination are significant factors influencing cost-effectiveness. The influence of certain diagnoses on the cost-effectiveness of infertility treatments requires further study. Even when accounting for the costs associated with multiple gestations and premature deliveries, the cost of IVF decreases within the range of other cost-effective medical procedures and decreases to less than the willingness to pay for these procedures. Indeed, for patients with severe tubal disease, IVF has been found to be more cost-effective than surgical repair. The cost-effectiveness of IVF will likely improve as success rates show continued improvements over the course of time. In addition, usefulness of embryo selection and practices to reduce the likelihood of high-order multiple pregnancies, without reductions in pregnancy rates, will significantly impact cost-effectiveness. The exclusion of infertility treatments from insurance plans is unfortunate and accentuates the importance of physicians understanding the economics of infertility treatment with costs that are often passed directly to the patient. The erroneous economic policies and judgments that have led to inequities in access to infertility health care should not be tolerated.

  5. Experimental identification of smart material coupling effects in composite structures

    International Nuclear Information System (INIS)

    Chesne, S; Jean-Mistral, C; Gaudiller, L

    2013-01-01

    Smart composite structures have an enormous potential for industrial applications, in terms of mass reduction, high material resistance and flexibility. The correct characterization of these complex structures is essential for active vibration control or structural health monitoring applications. The identification process generally calls for the determination of a generalized electromechanical coupling coefficient. As this process can in practice be difficult to implement, an original approach, presented in this paper, has been developed for the identification of the coupling effects of a smart material used in a composite curved beam. The accuracy of the proposed identification technique is tested by applying active modal control to the beam, using a reduced model based on this identification. The studied structure was as close to reality as possible, and made use of integrated transducers, low-cost sensors, clamped boundary conditions and substantial, complex excitation sources. PVDF (polyvinylidene fluoride) and MFC (macrofiber composite) transducers were integrated into the composite structure, to ensure their protection from environmental damage. The experimental identification described here was based on a curve fitting approach combined with the reduced model. It allowed a reliable, powerful modal control system to be built, controlling two modes of the structure. A linear quadratic Gaussian algorithm was used to determine the modal controller–observer gains. The selected modes were found to have an attenuation as strong as −13 dB in experiments, revealing the effectiveness of this method. In this study a generalized approach is proposed, which can be extended to most complex or composite industrial structures when they are subjected to vibration. (paper)

  6. Effect of coupled anthropogenic perturbations on stratospheric ozone

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  7. Hydro-mechanical properties of pressure core sediments recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02

    Science.gov (United States)

    Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Waite, W. F.; Jang, J.; Kumar, P.; Tenma, N.

    2017-12-01

    Pressure coring and analysis technology allows for gas hydrate to be recovered from the deep seabed, transferred to the laboratory and characterized while continuously maintaining gas hydrate stability. For this study, dozens of hydrate-bearing pressure core sediment subsections recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02 were tested with Pressure Core Non-destructive Analysis Tools (PNATs) through a collaboration between Japan and India. PNATs, originally developed by AIST as a part of the Japanese National hydrate research program (MH21, funded by METI) conducted permeability, compression and consolidation tests under various effective stress conditions, including the in situ stress state estimated from downhole bulk density measurements. At the in situ effective stress, gas hydrate-bearing sediments had an effective permeability range of 0.01-10mD even at pore-space hydrate saturations above 60%. Permeability increased by 10 to 100 times after hydrate dissociation at the same effective stress, but these post-dissociation gains were erased when effective stress was increased from in situ values ( 1 MPa) to 10MPa in a simulation of the depressurization method for methane extraction from hydrate. Vertical-to-horizontal permeability anisotropy was also investigated. First-ever multi-stage loading tests and strain-rate alternation compression tests were successfully conducted for evaluating sediment strengthening dependence on the rate and magnitude of effective confining stress changes. In addition, oedometer tests were performed up to 40MPa of consolidation stress to simulate the depressurization method in ultra-deep sea environments. Consolidation curves measured with and without gas hydrate were investigated over a wide range of effective confining stresses. Compression curves for gas hydrate-bearing sediments were convex downward due to high hydrate saturations. Consolidation tests show that

  8. Effective interactions in strongly-coupled quantum systems

    International Nuclear Information System (INIS)

    Chen, J.M.C.

    1986-01-01

    In this thesis, they study the role of effective interactions in strongly-coupled Fermi systems where the short-range correlations introduce difficulties requiring special treatment. The correlated basis function method provides the means to incorporate the short-range correlations and generate the matrix elements of the Hamiltonian and identity operators in a nonorthogonal basis of states which are so important to their studies. In the first half of the thesis, the particle-hole channel is examined to elucidate the effects of collective excitations. Proceeding from a least-action principle, a generalization of the random-phase approximation is developed capable of describing such strongly-interacting Fermi systems as nuclei, nuclear matter, neutron-star matter, and liquid 3 He. A linear response of dynamically correlated system to a weak external perturbation is also derived based on the same framework. In the second half of the thesis, the particle-particle channel is examined to elucidate the effects of pairing in nuclear and neutron-star matter

  9. Effects of electron inertia in capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Xiang Nong

    2004-01-01

    The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant

  10. Heat Recovery from Multiple-Fracture Enhanced Geothermal Systems: The Effect of Thermoelastic Fracture Interactions

    DEFF Research Database (Denmark)

    Vik, Hedda Slatlem; Salimzadeh, Saeed; Nick, Hamid

    2018-01-01

    This study investigates the effect of thermoelastic interactions between multiple parallel fractures on energy production from a multiple-fracture enhanced geothermal system. A coupled thermo-hydro-mechanical finite element model has been developed that accounts for non-isothermal fluid flow within...... increased to maximise the net energy production from the system. Otherwise, the multiple-fracture system fails to improve the energy recovery from the geothermal reservoir, as initially intended....... aperture in the adjacent fracture, and facilitates the creation of favourable flow pathways between the injection and production wells. These flow paths reduce the energy production from the system. The effects of fracture spacing, reservoir temperature gradient and mechanical properties of the rock matrix...

  11. Linkages of fracture network geometry and hydro-mechanical properties to spatio-temporal variations of seismicity in Koyna-Warna Seismic Zone

    Science.gov (United States)

    Selles, A.; Mikhailov, V. O.; Arora, K.; Ponomarev, A.; Gopinadh, D.; Smirnov, V.; Srinu, Y.; Satyavani, N.; Chadha, R. K.; Davulluri, S.; Rao, N. P.

    2017-12-01

    Well logging data and core samples from the deep boreholes in the Koyna-Warna Seismic Zone (KWSZ) provided a glimpse of the 3-D fracture network responsible for triggered earthquakes in the region. The space-time pattern of earthquakes during the last five decades show strong linkage of favourably oriented fractures system deciphered from airborne LiDAR and borehole structural logging to the seismicity. We used SAR interferometry data on surface displacements to estimate activity of the inferred faults. The failure in rocks at depths is largely governed by overlying lithostatic and pore fluid pressure in the rock matrix which are subject to change in space and time. While lithostatic pressure tends to increase with depth pore pressure is prone to fluctuations due to any change in the hydrological regime. Based on the earthquake catalogue data, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level were analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. An increase in pore fluid pressure can result in rock fracture and oscillating pore fluid pressures due to a reservoir loading and unloading cycles can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. These regularities were verified by laboratory physical modeling. Based on our observations of main trends of spatio-temporal variations in seismicity as well as the spatial distribution of fracture network a conceptual model is presented to explain the triggered earthquakes in the KWSZ. The work was supported under the joint Russian-Indian project of the Russian Science Foundation (RSF) and the Department of Science and Technology (DST) of India (RSF project no. 16-47-02003 and DST project INT/RUS/RSF/P-13).

  12. Developing confidence in a coupled TH model based on the results of experiment by using engineering scale test facility, 'COUPLE'

    International Nuclear Information System (INIS)

    Fujisaki, Kiyoshi; Suzuki, Hideaki; Fujita, Tomoo

    2008-03-01

    It is necessary to understand quantitative changes of near-field conditions and processes over time and space for modeling the near-field evolution after emplacement of engineered barriers. However, the coupled phenomena in near-field are complicated because thermo-, hydro-, mechanical, chemical processes will interact each other. The question is, therefore, whether the applied model will represent the coupled behavior adequately or not. In order to develop confidence in the modeling, it is necessary to compare with results of coupled behavior experiments in laboratory or in site. In this report, we evaluated the applicability of a coupled T-H model under the conditions of simulated near-field for the results of coupled T-H experiment in laboratory. As a result, it has been shown that the fitting by the modeling with the measured data is reasonable under this condition. (author)

  13. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam

    2017-05-11

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  14. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam; McNellis, Erik R.; Nielsen, Christian B.; Chen, Hung-Yang; Watanabe, Shun; Tanaka, Hisaaki; McCulloch, Iain; Takimiya, Kazuo; Sinova, Jairo; Sirringhaus, Henning

    2017-01-01

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  15. Effects Of Emotional Intelligence On Marital Adjustment Of Couples ...

    African Journals Online (AJOL)

    Couples should be helped to develop emotion management skills. Couples should be taught emotional sensitivity skills. Our educational systems should not only develop learners' Intelligence (IQ) but their Emotional intelligence (EQI) competencies too. Emotional intelligence should form part of the criteria for marital choice ...

  16. The effect of anxiety and depression scores of couples who ...

    African Journals Online (AJOL)

    The study data was collected by using a semi-structured questionnaire and the Turkish version of the State-Trait Anxiety Inventory (STAI), and Beck Depression Inventory (BDI). The questionnaire, STAI and BDI were applied to couples who initiated ART treatment. Couples' state anxiety scores were re-evaluated after ...

  17. Deformation and damage modes of deep argillaceous rocks under hydro-mechanical stresses; Modes de deformation et d'endommagement de roches argileuses profondes sous sollicitations hydro-mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Vales, F.

    2008-12-15

    An experimental identification of the hydro-mechanical behaviour of an argillite rock is proposed within a multi-scale approach. In particular, interest is focused on the spatial and temporal localization of strain and damage in a specimen during hydro-mechanical loading. Firstly, we describe the techniques used to follow the rock evolutions under loading, and in particular Digital Images Correlation (DIC), Acoustic Emission, microscopy and mercury intrusion porosimetry. Measurement errors and device limitations are discussed. The studied material is the Callovo-Oxfordian indurated argillaceous rock (or argillite) of the Bure site where ANDRA has built an underground research laboratory to study the radioactive waste storage. Petrophysical characterizations and microstructural observations by optical and scanning electron microscopy provide an identification of the constitutive phase and a characterization of their spatial distribution and typical sizes. Argillite can be described as a composite structure with a continuous clay matrix and embedded mineral particles, essentially quartz and carbonates. The typical size of these particles ranges from a few micrometers to a few hundreds micrometers, with an average close to 50 {mu}.m. The general experimental procedure combines two steps: in a fist time, imposed suctions bring samples to a given degree of water saturation, and, in a second time, uniaxial mechanical compression tests are performed. To understand the evolutions of the material under hydric and mechanical loading, samples are instrumented with standard measurement techniques, but also with Digital Image Correlation, at both the global scale of the sample and the local scale of the composite microstructure, and with Acoustic Emissions recording. Moisture transfers are imposed by controlled suctions on the range of 150 to 2.8 MPa, corresponding to the relative humidity range of 32 to 98%RH. During pure hydric solicitation, the changes in physical parameters

  18. DECOVALEX III/BENCHPAR PROJECTS. Implications of Thermal-Hydro-Mechanical Coupling on the Near-Field Safety of a Nuclear Waste Repository. Report of BMT1A/WP2

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Nguyen, T.S. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)] (eds.)

    2005-02-15

    This report presents the works performed for the first phase (BMT1A) of BMT1 of the DECOVALEX III project for the period of 1999-2002. The works of BMT1 is divided into three phases: BMT1A, BMT1B and BMT1C. The BMT1A concerns with calibration of the computer codes with a reference T-H-M experiment at Kamaishi Mine, Japan. The objective is to validate the numerical approaches, computer codes and material models, so that the teams simulating tools are at a comparable level of maturity and sophistication in order to perform the scooping calculations defined in BMT1B and BMT1C. Five teams participated in studying BMT1A: CNSC (Canada), JNC (Japan), IRSN/CEA (France), ANDRA/INERIS (France) and SKI/KTH (Sweden), using FEM approach except the INERIS team (Using FDM approach). A simplified calibration test case of the in-situ experiment was proposed and defined as an axisymmetric model. The case focuses on the THM behaviour along a radial line (with a radial distance r as the coordinate) from the centre of the heater. The desired output parameters are: temperature, radial displacement, pore pressure, water content, the total radial stress and the radial and tangential strains, respectively. Time histories of these output parameters were calculated for both the heating and cooling phases. A number of improvements to the modelling of the Kamaishi Mine heater test were suggested and tested in this study. Although the model geometry is much simplified compared to the field test conditions, improved simulation of the general THM responses were obtained, as compared with the Task 2C results of DECOVALEX II. The measures taken for improvement were: i) Parameter changes (reduced rock mass permeability and rock mass thermal expansion by the SKI/KTH team, and increased thermal expansion coefficient and reduced swelling pressure constant of the buffer by JNC team); ii) Inclusion of the sealing of rock fractures by penetrating bentonite by the SKI/KTH team, which can explain the uniform (axisymmetric) wetting of the bentonite; iii) An improved swelling/shrinking strain function combined with an increased thermal expansion of the bentonite giving a good match of the mechanical (stress, strain) behavior of the buffer by the KTH/SKI team and iv) Use of higher E (Young's modulus) and v (Poisson's ratio) of the bentonite near the heater, and use of a 'sealed' layer of rock around the bentonite by the CNSC team. As a results of the above measures, the results from the simplified axisymmetric model used in the re-evaluation of the Kamaishi mine experiment showed general improvement over the original models used in the prediction phase during the DECOVALEX II project. The calculated temperature results agree very well with the experimental values, for all teams. The results of stress and strain behaviour in the bentonite are generally improved, at least qualitatively though, with the measured results. The water content near the heater (at point 1) is relatively well predicted by all teams, although the saturation front at the bentonite/rock interface are still predicted to advance much faster than in reality. In general, the mechanical behaviour of the buffer is complex with forces contributing from shrinking/swelling in all part of the bentonite, external stress from the thermal expansion of the heater and rock, and internal thermal expansion of the bentonite itself. However, the BMT1A results show that a reasonable prediction of the mechanical behaviour can be done if all relevant bentonite properties are known from laboratory tests.

  19. Multi-disciplinary coupling effects for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  20. Modelling the effects of pore-water chemistry on the behaviour of unsaturated clays

    Directory of Open Access Journals (Sweden)

    Lei Xiaoqin

    2016-01-01

    Full Text Available Due to their various applications in geo-environmental engineering, such as in landfill and nuclear waste disposals, the coupled chemo-hydro-mechanical analysis of expansive soils has gained more and more attention recently. These expansive soils are usually unsaturated under field conditions; therefore the capillary effects need to be taken into account appropriately. For this purpose, based on a rigorous thermodynamic framework (Lei et al., 2014, the authors have extended the chemo-mechanical model of Loret el al. (2002 for saturated homoionic expansive soils to the unsaturated case (Lei, 2015. In this paper, this chemo-mechanical unsaturated model is adopted to simulate the chemo-elastic-plastic consolidation process of an unsaturated expansive soil layer. Logical tendencies of changes in the chemical, mechanical and hydraulic field quantities are obtained.

  1. The effect of anxiety and depression scores of couples who ...

    African Journals Online (AJOL)

    Keywords: Infertility assisted reproductive techniques, anxiety, depression, pregnancy outcome. ... couples under stress women may have problems with ovulation induction, missed cycles, ..... sity Students Depression Inventory. Journal of ...

  2. Role of HHM coupling mechanisms on the evolution of rock masses around nuclear waste disposals in the context of gas generation

    International Nuclear Information System (INIS)

    Hoxha, D.; Do, D.-P.; Wendling, J.; Poutrel, A.

    2010-01-01

    developed on the bases of experimental results have been used. This model combined in one hand the inviscid plasticity and in the other hand a creep component. The model parameters have been chosen to fit the laboratory results on instantaneous compression tests and uniaxial creep tests. For the upper layers rocks an elastic behaviour is assumed and their poro-mechanical properties were chosen form laboratory results. The modelling was performed in the framework of poro-mechanical theory of multiphase flow taking into account classical hydro-mechanical coupling of porous media as proposed by an extension of Biot's theory. In particularly the gas phases is constituted by H 2 and water vapour, supposed to be perfect gases following the Kelvin law of equilibrium. The Darcy advection, Fick's diffusion and Henry's dissolution are the principal mechanism governing the flow and the exchanges between different phases. Mainly three kinds of numerical analyses were performed: a) simple two phase flow analyses with no coupling with mechanics (HH analyses); b) coupled hydro-mechanical analyses with no variation of permeability with damage (HHM-W); c) fully coupled HHM analyses with evolution of permeability as a function of rock damage. The principal results of these analyses are shortly mentioned hereafter: - The maximal gas pressure obtained under the conditions and hypothesis of our analyses is inferior of 7 MPa. - There are no significant differences in results (in terms of gas and water pressure and saturation) between HH analyses and HHM-W analyses. As much as the permeability does not evolve the dilatancy of rock (so the variation of the porosity) has a minor role in the variation of pore pressure. - The principal impact of gas pressure and coupling effects is an amplification of rock damage. However its influence on the creep is limited. - The mechanics most important role in hydraulics is resumed in the variation of the permeability that could significantly

  3. Ponderomotive force effects on slow-wave coupling

    International Nuclear Information System (INIS)

    Wilson, J.R.; Wong, K.L.

    1982-01-01

    Localized plasma density depressions are observed to form near a multi-ring slow-wave structure when the value of the nonlinearity parameter, s = ω 2 /sub p/eVertical BarE/sub z/Vertical Bar 2 /8πω 2 nkappaT, is of order unity. Consequent changes in the wave propagation and coupling efficiency are reported. For large enough values of s, the coupling efficiency may be reduced by 50% from the linear value

  4. Effect of Magnetohydrodynamic Couple Stresses on Dynamic Characteristics of Exponential Slider Bearing

    Directory of Open Access Journals (Sweden)

    N.B. Naduvinamani

    2017-05-01

    Full Text Available The effect of couple stresses on static and dynamic characteristics of exponential slider bearing in the presence of magnetic field considering squeeze action is theoretically analyzed in this paper. The modified magnetohydrodynamic couple stress Reynolds type equation is derived on the basis of Stokes couple stress model and closed form expressions are obtained for static and dynamic character coefficients. Comparing with bearing lubricated with non-conducting Newtonian lubricants, the magnetohydrodynamic couple stress lubrication provides the higher steady load carrying capacity, dynamic stiffness and damping coefficient. The exponential bearing shows higher efficiency for small film thickness at higher value of couple stress parameter and Hartmann number.

  5. The effect of a coupling field on the entanglement dynamics of a three-level atom

    International Nuclear Information System (INIS)

    Mortezapour, Ali; Mahmoudi, Mohammad; Abedi, Majid; Khajehpour, M R H

    2011-01-01

    The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.

  6. The effect of a coupling field on the entanglement dynamics of a three-level atom

    Energy Technology Data Exchange (ETDEWEB)

    Mortezapour, Ali; Mahmoudi, Mohammad [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Abedi, Majid; Khajehpour, M R H, E-mail: mahmoudi@iasbs.ac.ir, E-mail: pour@iasbs.ac.ir [Institute for Advanced Studies in Basic Sciences, PO Box 45195-159, Zanjan (Iran, Islamic Republic of)

    2011-04-28

    The effect of a coupling laser field on the entanglement of a three-level quantum system and its spontaneous emission is investigated via the reduced quantum entropy. We consider two schemes: the upper- and lower-level couplings. By calculating the degree of entanglement (DEM) for both systems, it is shown that the entanglement between the atom and its spontaneous emission can be controlled by the coupling laser field. This field, however, affects the entanglement differently in the two schemes; it is only the lower-level coupling scheme that shows a non-zero steady state DEM which can be controlled by the intensity and detuning of the coupling laser field.

  7. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  8. Nuclear-Coupled Flow Instabilities and Their Effects on Dryout

    Energy Technology Data Exchange (ETDEWEB)

    M. Ishii; X. Sunn; S. Kuran

    2004-09-27

    Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.

  9. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    Science.gov (United States)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  10. Stress effects in prism coupling measurements of thin polymer films

    NARCIS (Netherlands)

    Agan, S.; Ay, F.; Kocabas, A.; Aydinli, A.

    Due to the increasingly important role of some polymers in optical waveguide technologies, precise measurement of their optical properties has become important. Typically, prism coupling to slab waveguides made of materials of interest is used to measure the relevant optical parameters. However,

  11. Inter-dot coupling effects on transport through correlated parallel

    Indian Academy of Sciences (India)

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...

  12. Coupling Effect between Mechanical Loading and Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Maršík, František

    2009-01-01

    Roč. 113, č. 44 (2009), s. 14689-14697 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA106/08/0557 Institutional research plan: CEZ:AV0Z20760514 Keywords : coupling * dynamic loading * reaction kinetics Subject RIV: FI - Traumatology, Orthopedics Impact factor: 3.471, year: 2009

  13. Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED

    International Nuclear Information System (INIS)

    Sturm, Christian

    2013-01-01

    The running of the effective electromagnetic coupling is for many electroweak observables the dominant correction. It plays an important role for deriving constraints on the Standard Model in the context of electroweak precision measurements. We compute the four-loop QED corrections to the running of the effective electromagnetic coupling and perform a numerical evaluation of the different gauge invariant subsets

  14. Comparison of the cable coupling effects under two kinds of HEMP environment

    CERN Document Server

    Sun Bei Yun; Xie Yan Zhao

    2002-01-01

    There are various kinds of HEMP environment definitions. The coupling effects of electronic system are more different under different HEMP environment. The responds of cable of different length are investigated under 1976 HEMP and 1996 HEMP environment. The results indicate that the cable coupling effects under 1976 HEMP environment are more serious than those under 1996 HEMP environment

  15. The exact effective couplings of 4D N=2 gauge theories

    International Nuclear Information System (INIS)

    Mitev, Vladimir; Humboldt-Universitaet, Berlin; Pomoni, Elli; National Technical Univ. Athens

    2014-07-01

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  16. The exact effective couplings of 4D N=2 gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); National Technical Univ. Athens (Greece). Physics Division

    2014-07-15

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  17. Stabilization effect of fission source in coupled Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Borge; Dufek, Jan [Div. of Nuclear Reactor Technology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm (Sweden)

    2017-08-15

    A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  18. The effect of different anesthetics on neurovascular coupling

    Science.gov (United States)

    Franceschini, Maria Angela; Radhakrishnan, Harsha; Thakur, Kiran; Wu, Weicheng; Ruvinskaya, Svetlana; Carp, Stefan; Boas, David A.

    2010-01-01

    To date, the majority of neurovascular coupling studies focused on the thalamic afferents' activity in layer IV and the corresponding large spiking activity as responsible for functional hyperemia. This paper highlights the role of the secondary and late cortico-cortical transmission in neurovascular coupling. Simultaneous scalp electroencephalography (EEG) and diffuse optical imaging (DOI) measurements were obtained during multiple conditions of event-related electrical forepaw stimulation in 33 male Sprague-Dawley rats divided into 6 groups depending on the maintaining anesthetic - alpha-chloralose, pentobarbital, ketamine-xylazine, fentanyl-droperidol, isoflurane, or propofol. The somatosensory evoked potentials (SEP) were decomposed into four components and the question of which best predicts the hemodynamic responses was investigated. Results of the linear regression analysis show that the hemodynamic response is best correlated with the secondary and late cortico-cortical transmissions and not with the initial thalamic input activity in layer IV. Baseline cerebral blood flow (CBF) interacts with neural activity and influences the evoked hemodynamic responses. Finally, neurovascular coupling appears to be the same across all anesthetics used. PMID:20350606

  19. Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings.

    Science.gov (United States)

    He, Jiaqing; Shen, Qingchen; Yang, Shuai; He, Gufeng; Tao, Peng; Song, Chengyi; Wu, Jianbo; Deng, Tao; Shang, Wen

    2018-01-03

    This paper presents the study of the coupling effects of three dimensional (3D) plasmonic nanostructures templated by Morpho butterfly wings. Different from the random deposition of metallic nanoparticles (NPs) or conformal coating of metallic layers on butterfly wings reported previously, the 3D plasmonic nanostructures studied in this work consist of gold (Au) nanostrips quasi-periodically arranged in 3D, which allows us to investigate the plasmonic coupling effects. Through refractive index (RI) matching, the plasmonic coupling can be differentiated from the optical contribution of butterfly wings. By tuning the deposition thickness of Au from 30 to 90 nm, the plasmonic coupling effects between the 3D Au nanostrips are gradually enhanced. In particular, the near-field coupling results in two resonant modes and enhances the surface-enhanced Raman scattering (SERS) signals.

  20. Influence of End-Effects on Static Torque Performance of Misaligned Cylindrical Permanent Magnet Couplings

    DEFF Research Database (Denmark)

    Högberg, Stig; Hansen, Hilary; Jensen, Bogi Bech

    2014-01-01

    Permanent magnet couplings are widely used in applications requiring torque to be transmitted through an air- gap. The aim of this study is to observe and explain the effect of radial and axial misalignment in a 12-pole, cylindrical permanent magnet coupling. Pull-out torque was measured for two...

  1. Effects of Coupling Distance on Synchronization and Coherence in Chaotic Neural Networks

    International Nuclear Information System (INIS)

    Wang Maosheng

    2009-01-01

    Effects of coupling distance on synchronization and coherence of chaotic neurons in complex networks are numerically investigated. We find that it is not beneficial to neurons synchronization if confining the coupling distance of random edges to a limit d max , but help to improve their coherence. Moreover, there is an optimal value of d max at which the coherence is maximum.

  2. Effects of Coping-Oriented Couples Therapy on Depression: A Randomized Clinical Trial

    Science.gov (United States)

    Bodenmann, Guy; Plancherel, Bernard; Beach, Steven R. H.; Widmer, Kathrin; Gabriel, Barbara; Meuwly, Nathalie; Charvoz, Linda; Hautzinger, Martin; Schramm, Elisabeth

    2008-01-01

    The aim of this study was to evaluate the effectiveness of treating depression with coping-oriented couples therapy (COCT) as compared with cognitive-behavioral therapy (CBT; A. T. Beck, C. Ward, & M. Mendelson, 1961) and interpersonal psychotherapy (IPT; M. M. Weissman, J. C. Markowitz, & G. L. Klerman, 2000). Sixty couples, including 1…

  3. Effects of quantum coupling on the performance of metal-oxide

    Indian Academy of Sciences (India)

    Based on the analysis of the three-dimensional Schrödinger equation, the effects of quantum coupling between the transverse and the longitudinal components of channel electron motion on the performance of ballistic MOSFETs have been theoretically investigated by self-consistently solving the coupled ...

  4. Stabilization effect of fission source in coupled Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Börge Olsen

    2017-08-01

    Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  5. Control rod calibration including the rod coupling effect

    International Nuclear Information System (INIS)

    Szilard, R.; Nelson, G.W.

    1984-01-01

    In a reactor containing more than one control rod, which includes all reactors licensed in the United States, there will be a 'coupling' or 'shadowing' of control rod flux at the location of a control rod as a result of the flux depression caused by another control rod. It was decided to investigate this phenomenon further, and eventually to put calibration table data or formulae in a small computer in the control room, so once could insert the positions of the three control rods and receive the excess reactivity without referring to separate tables. For this to be accomplished, a 'three control- rod reactivity function' would be used which would include the flux coupling between the rods. The function is design and measured data was fitted into it to determine the calibration constants. The input data for fitting the trial functions consisted of 254 data points, each consisting of the position of the reg, shim, and transient rods, and the total excess reactivity. (About 200 of these points were 'critical balance points', that is the rod positions for which reactor was critical, and the remainder were determined by positive period measurements.) Although this may be unrealistic from a physical viewpoint, the function derived gave a very accurate recalculation of the input data, and thus would faithfully give the excess reactivity for any possible combination of the locations of the three control rods. The next step, incorporation of the three-rod function into the minicomputer, will be pursued in the summer and fall of 1984

  6. Effects of Intermolecular Coupling on Excimer Formation and Singlet Fission

    Science.gov (United States)

    Mauck, Catherine McKay

    The development of organic photovoltaic devices benefits from understanding the fundamental processes underlying charge generation in thin films of organic semiconductors. This dissertation exploits model systems of pi-stacked chromophores such as perylene-3,4:9,10-bis(dicarboximide) (PDI) and 3,6-bis(aryl)diketopyrrolopyrrole (DPP) to study these processes using ultrafast electronic and vibrational spectroscopy. In particular, the characterization of covalent molecular dimers, thin films, and solution aggregates can reveal how supramolecular order affects photophysical properties. PDI and DPP are organic semiconductors that have been widely studied in organic photovoltaics, due to their strong visible absorption and excellent chemical stability. As solution-phase monomers, they are highly fluorescent, but in the thin film environment of photovoltaic devices these planar aromatic molecules couple to one another, stacking largely through pi-pi interactions. In self-assembled stacks of PDI, strong interchromophore coupling may disrupt charge separation through the formation of excimer states, preventing the generation of free carriers. By studying molecular dimers of PDI with different pi-stacked geometry, femtosecond visible pump mid-infrared probe spectroscopy allows direct observation of the structural dynamics associated with excimer state relaxation, showing that this low-energy state is primarily coupled to the core modes that shift as planarization and rotation lead to the most stable excimer geometry. PDI is also able to undergo singlet fission in thin films and aggregates. Singlet fission is the process in which a singlet excited state is downconverted into two triplet excitons, when the energy of its first singlet excited state is at least twice the energy of the lowest triplet state in an appropriately coupled molecular system. This spin-allowed, ultrafast process enables a theoretical yield of two charge carriers per incident photon, making it a

  7. Effect of isovector coupling channel on the macroscopic part of the nuclear binding energy

    International Nuclear Information System (INIS)

    Haddad, S.

    2011-04-01

    The effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy is determined utilizing the relativistic density dependent Thomas-Fermi approach for the calculation of the macroscopic part of the nuclear binding energy, and the dependency of this effect on the numbers of neutrons and protons is studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect sharpens with growing excess of the number of neutrons on the number of protons. (author)

  8. The quantum Zeno and anti-Zeno effects with strong system-environment coupling.

    Science.gov (United States)

    Chaudhry, Adam Zaman

    2017-05-11

    To date, studies of the quantum Zeno and anti-Zeno effects focus on quantum systems that are weakly interacting with their environment. In this paper, we investigate what happens to a quantum system under the action of repeated measurements if the quantum system is strongly interacting with its environment. We consider as the quantum system a single two-level system coupled strongly to a collection of harmonic oscillators. A so-called polaron transformation is then used to make the problem in the strong system-environment coupling regime tractable. We find that the strong coupling case exhibits quantitative and qualitative differences as compared with the weak coupling case. In particular, the effective decay rate does not depend linearly on the spectral density of the environment. This then means that, in the strong coupling regime that we investigate, increasing the system-environment coupling strength can actually decrease the effective decay rate. We also consider a collection of two-level atoms coupled strongly with a common environment. In this case, we find that there are further differences between the weak and strong coupling cases since the two-level atoms can now indirectly interact with one another due to the common environment.

  9. Jahn-Teller effect in Rydberg series: A multi-state vibronic coupling problem

    International Nuclear Information System (INIS)

    Staib, A.; Domcke, W.; Sobolewski, A.L.

    1990-01-01

    Two simple limiting cases of Jahn-Teller (JT) coupling in Rydberg states of polyatomic molecules are considered, namely (i) JT coupling in Rydberg orbitals as well as in the ionization continuum (nondegenerate ion core, degenerate Rydberg series) and (ii) JT coupling in the ion core (degenerate ion core, nondegenerate Rydberg series). For both models simple and efficient algorithms for the computation of spectra (dynamical JT effect) are developed. The orbital JT effect is shown to represent a novel type of multi-state vibronic coupling, giving rise to interesting spectroscopic phenomena, among them resonant inter-Rydberg perturbations and JT induced autoionization. Particular attention is paid to the demonstration of the characteristic spectroscopic signatures of the two types of JT coupling in Rydberg states. (orig.)

  10. Study on water migration of tunnel surrounding rock in nuclear waste repository based on coupling theory

    International Nuclear Information System (INIS)

    Jiang Zhongming; Zhang Xinmin

    2008-01-01

    Excavation of tunnel changes not only the stresses and deformation of tunnel surrounding rock, but also disturbs the underground water environment in tunnel surrounding rock Water migration happens due to variation of pore water pressure and redistribution. Based on the mechanics of porous media, saturated and unsaturated hydro-mechanical coupling analysis method is employed to study the variation of the stresses, deformation and pore pressure of the surrounding rock. Case study indicates that the excavation of tunnel will induce redistribution of stress and pore water pressure. Redistribution of pore water pressure will seriously affect on evaluation of surrounding rock stability and diffusion of nucleon in the pore water. (authors)

  11. Analyticity of effective coupling and propagators in massless models of quantum field theory

    International Nuclear Information System (INIS)

    Oehme, R.

    1982-01-01

    For massless models of quantum field theory, some general theorems are proved concerning the analytic continuation of the renormalization group functions as well as the effective coupling and the propagators. Starting points are analytic properties of the effective coupling and the propagators in the momentum variable k 2 , which can be converted into analyticity of β- and γ-functions in the coupling parameter lambda. It is shown that the β-function can have branch point singularities related to stationary points of the effective coupling as a function of k 2 . The type of these singularities of β(lambda) can be determined explicitly. Examples of possible physical interest are extremal values of the effective coupling at space-like points in the momentum variable, as well as complex conjugate stationary points close to the real k 2 -axis. The latter may be related to the sudden transition between weak and strong coupling regimes of the system. Finally, for the effective coupling and for the propagators, the analytic continuation in both variables k 2 and lambda is discussed. (orig.)

  12. Gamma radiation effect on sisal / polyurethane composites without coupling agents

    Directory of Open Access Journals (Sweden)

    Marina Cardoso Vasco

    Full Text Available Abstract Natural fibers and polyurethane based composites may present chemical bonding between the components of the polymer and the lignin of the fiber. The incidence of radiation can cause degradation of the polymeric material and alter its mechanical properties. The objective of this study was to obtain and characterize cold pressed composites from polyurethane derived from castor oil and sisal fibers, without coupling agents, through thermogravimetric and mechanical tests, before and after the incidence of 25 kGy dose of gamma radiation. Woven composites that were not irradiated had maximum values of 4.40 GPa for flexural elastic modulus on three point flexural test and dispersed fiber composite that were not irradiated had maximum values of 2.25 GPa. These materials are adequate for use in non-structural applications in radiotherapy and radiodiagnostic rooms.

  13. Gamma radiation effect on sisal / polyurethane composites without coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Marina Cardoso; Claro Neto, Salvador; Nascimento, Eduardo Mauro; Azevedo, Elaine, E-mail: marina.mcv@gmail.com [University of Patras (Greece); Universidade de Sao Paulo (USP) Sao Carlos, SP (Brazil); Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2017-04-15

    Natural fibers and polyurethane based composites may present chemical bonding between the components of the polymer and the lignin of the fiber. The incidence of radiation can cause degradation of the polymeric material and alter its mechanical properties. The objective of this study was to obtain and characterize cold pressed composites from polyurethane derived from castor oil and sisal fibers, without coupling agents, through thermogravimetric and mechanical tests, before and after the incidence of 25 kGy dose of gamma radiation. Woven composites that were not irradiated had maximum values of 4.40 GPa for flexural elastic modulus on three point flexural test and dispersed fiber composite that were not irradiated had maximum values of 2.25 GPa. These materials are adequate for use in non-structural applications in radiotherapy and radiodiagnostic rooms. (author)

  14. Effect of interchain coupling on the excited polaron in conjugated polymers

    International Nuclear Information System (INIS)

    Li, Xiao-xue; Chen, Gang

    2017-01-01

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  15. Effect of interchain coupling on the excited polaron in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-xue, E-mail: sps_lixx@ujn.edu.cn; Chen, Gang, E-mail: ss_cheng@ujn.edu.cn

    2017-02-05

    Based on the one-dimensional extended Su–Schrieffer–Heeger model, we theoretically investigate the effect of interchain coupling on the formation and polarization of the single-excited state of polaron in conjugated polymers. It is found that there exists a turnover value of the coupling strength, over which the excited polaron could not be formed in either of the two coupled chains. Instead, a polaron-like particle is localized at the center of each chain. In addition, we also find that the reverse polarization of the excited polaron could be enhanced for some cases in polymer when the interchain coupling becomes strong until it exceeds the critical value. - Highlights: • Effect of interchain coupling on the single-excited state of polaron is studied. • When coupling strength exceeds critical value, the excited polaron is dissociated. • Soliton pair could be dissociated into polaron-like particle with strong coupling. • Reverse polarization of excited polaron is enhanced by weak interchain coupling. • Reverse polarization is obtained more easily in solid film of polymer molecules.

  16. Coupling effects of depletion interactions in a three-sphere colloidal system

    International Nuclear Information System (INIS)

    Chen Ze-Shun; Dai Gang; Gao Hai-Xia; Xiao Chang-Ming

    2013-01-01

    In a three-sphere system, the middle sphere is acted upon by two opposite depletion forces from the other two spheres. It is found that, in this system, the two depletion forces are coupled with each other and result in a strengthened depletion force. So the difference of the depletion forces of the three-sphere system and its corresponding two two-sphere systems is introduced to describe the coupling effect of the depletion interactions. The numerical results obtained by Monte-Carlo simulations show that this coupling effect is affected by both the concentration of small spheres and the geometrical confinement. Meanwhile, it is also found that the mechanisms of the coupling effect and the effect on the depletion force from the geometry factor are the same. (interdisciplinary physics and related areas of science and technology)

  17. Effects of quantum coupling on the performance of metal-oxide ...

    Indian Academy of Sciences (India)

    LING-FENG MAO. School of Electronics & Information Engineering, Soochow University, ... Quantum coupling; metal-oxide-semiconductor field transistors. ... effects of the barrier height reduction caused by the channel electron velocity due to.

  18. Experimental Effects of Student Evaluations Coupled with Collaborative Consultation on College Professors' Instructional Skills

    NARCIS (Netherlands)

    Knol, M.H.; in 't Veld, R.; Vorst, H.C.M.; van Driel, J.H.; Mellenbergh, G.J.

    2013-01-01

    This experimental study concerned the effects of repeated students’ evaluations of teaching coupled with collaborative consultation on professors’ instructional skills. Twenty-five psychology professors from a Dutch university were randomly assigned to either a control group or an experimental

  19. Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Santa Barbara, KITP

    2014-01-08

    I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.

  20. Eddy-current effect on resonant magnetoelectric coupling in magnetostrictive-piezoelectric laminated composites

    Science.gov (United States)

    Liu, Guoxi; Zhang, Chunli; Chen, Weiqiu; Dong, Shuxiang

    2013-07-01

    An analytical model of resonant magnetoelectric (ME) coupling in magnetostrictive (MS)-piezoelectric (PE) laminated composites in consideration of eddy-current effect in MS layer using equivalent circuit method is presented. Numerical calculations show that: (1) the eddy-current has a strong effect on ME coupling in MS-PE laminated composites at resonant frequency; and (2) the resonant ME coupling is then significantly dependent on the sizes of ME laminated composites, which were neglected in most previous theoretical analyses. The achieved results provide a theoretical guidance for the practice engineering design, manufacture, and application of ME laminated composites and devices.

  1. Effects of coupling and asymmetries on load resilience of IC ITER-like structures

    International Nuclear Information System (INIS)

    Bosia, G.; Bremond, S.; Colas, L.

    2005-01-01

    ITER-like structures feature an intrinsic resilience to load variations, which is related to the symmetry of the currents in the two branches of the structure. It has been suggested that the effects of coupling between the array elements would significantly impair the load resilience of the structure. In this paper the effect of inter strap coupling and of however induced electrical array asymmetries on the structure load resilience are quantitatively examined

  2. A Coupled Plastic Damage Model for Concrete considering the Effect of Damage on Plastic Flow

    OpenAIRE

    Zhou, Feng; Cheng, Guangxu

    2015-01-01

    A coupled plastic damage model with two damage scalars is proposed to describe the nonlinear features of concrete. The constitutive formulations are developed by assuming that damage can be represented effectively in the material compliance tensor. Damage evolution law and plastic damage coupling are described using the framework of irreversible thermodynamics. The plasticity part is developed without using the effective stress concept. A plastic yield function based on the true stress is ado...

  3. Vibronic coupling effect on the electron transport through molecules

    Science.gov (United States)

    Tsukada, Masaru; Mitsutake, Kunihiro

    2007-03-01

    Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.

  4. Effects of Interfacial Translation-rotation Coupling for Confined Ferrofluids

    Science.gov (United States)

    Fang, Angbo

    2011-03-01

    Ferrofluids have wide applications ranging from semiconductor fabrications to biomedical processes. The hydrodynamic spin diffusion theory for ferrofluids has been successful in explaining many experimental data, but it suffers from some fatal flaws. For example, it fails to predict the incorrect flow direction for a ferrofluid confined in a concentric cylinder channel in the presence of a rotating magnetic field. In this work we develop a method to establish the general hydrodynamic boundary conditions (BCs) for micro-polar fluids such as ferrofluids. Through a dynamic generalization of the mesoscopic diffuse interface model, we are able to obtain the surface dissipation functional, in which the interfacial translation-rotation coupling plays a significant role. The generalized hydrodynamic BCs can be obtained straightforwardly by using Onsager's variational approach. The resulted velocity profile and other quantities compares well with the experimental data, strikingly different from traditional theories. The methodology can be applied to study the hydrodynamic behavior of other structured fluids in confined channels or multi-phase flows. The work is supported by a research award made by the King Abdullah University of Science and Technology.

  5. Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators

    Science.gov (United States)

    Dean, L. W.

    1977-01-01

    Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.

  6. Effect of galvanic coupling between overpack materials for high-level nuclear waste containers

    International Nuclear Information System (INIS)

    Dunn, D.S.; Cragnolino, G.A.; Sridhar, N.

    1998-01-01

    The effect of environmental parameters and area ratio on the galvanic protection of Alloy 825 by A516 steel was studied. A simplified model was used to calculate the potential and corrosion current density of the bimetallic couple as a function of the galvanic coupling efficiency. Galvanic corrosion tests were performed to gain confidence in the calculated values. Both the calculations and laboratory testing indicate that, with highly efficient coupling, the potential of the galvanic couple is maintained below the repassivation potential for Alloy 825 in chloride-containing solutions. As a result, the initiation of localized corrosion on Alloy 825 is prevented. The formation of oxides, scales, and corrosion product layers between the barriers is shown to reduce the efficiency of the galvanic couple, which may result in conditions under which the localized corrosion of the inner corrosion resistant barrier can occur

  7. The Effects of Partnered Exercise on Physical Intimacy in Couples Coping with Prostate Cancer

    Science.gov (United States)

    Lyons, Karen S.; Winters-Stone, Kerri M.; Bennett, Jill A.; Beer, Tomasz M.

    2015-01-01

    Objective The study examined whether couples coping with prostate cancer participating in a partnered exercise program - Exercising Together (ET) - experienced higher levels of physical intimacy (i.e., affectionate & sexual behavior) than couples in a usual care (UC) control group. Method Men and their wives (n=64 couples) were randomly assigned to either the ET or UC group. Couples in the ET group engaged in partnered strength-training twice weekly for six months. Multilevel modeling was used to explore the effects of ET on husband and wife engagement in both affectionate and sexual behaviors over time. Results Controlling for relationship quality, wives in ET showed significant increases in engagement in affectionate behaviors compared to wives in UC. No intervention effects were found for husbands. Conclusion Couple-based approaches to physical intimacy, after a cancer diagnosis, that facilitate collaborative engagement in non-sexual physical activities for the couple have potential to be effective for wives. More research is needed in this area to determine couples most amenable to such exercise strategies, optimal timing in the cancer trajectory, and the benefits of combining partnered exercise with more traditional relationship-focused strategies. PMID:26462060

  8. Sensitivity analysis of a new dual-porosity hydroloigcal model coupled with the SOSlope model for the numerical simulations of rainfall triggered shallow landslides.

    Science.gov (United States)

    Schwarz, Massimiliano; Cohen, Denis

    2017-04-01

    Morphology and extent of hydrological pathways, in combination with the spatio-temporal variability of rainfall events and the heterogeneities of hydro-mechanical properties of soils, has a major impact on the hydrological conditions that locally determine the triggering of shallow landslides. The coupling of these processes at different spatial scales is an enormous challenge for slope stability modeling at the catchment scale. In this work we present a sensitivity analysis of a new dual-porosity hydrological model implemented in the hydro-mechanical model SOSlope for the modeling of shallow landslides on vegetated hillslopes. The proposed model links the calculation of the saturation dynamic of preferential flow-paths based on hydrological and topographical characteristics of the landscape to the hydro-mechanical behavior of the soil along a potential failure surface due to the changes of soil matrix saturation. Furthermore, the hydro-mechanical changes of soil conditions are linked to the local stress-strain properties of the (rooted-)soil that ultimately determine the force redistribution and related deformations at the hillslope scale. The model considers forces to be redistributed through three types of solicitations: tension, compression, and shearing. The present analysis shows how the conditions of deformation due to the passive earth pressure mobilized at the toe of the landslide are particularly important in defining the timing and extension of shallow landslides. The model also shows that, in densely rooted hillslopes, lateral force redistribution under tension through the root-network may substantially contribute to stabilizing slopes, avoiding crack formation and large deformations. The results of the sensitivity analysis are discussed in the context of protection forest management and bioengineering techniques.

  9. The Effects of a Couples-Based Health Behavior Intervention During Pregnancy on Latino Couples' Dyadic Satisfaction Postpartum.

    Science.gov (United States)

    Coop Gordon, Kristina; Roberson, Patricia N E; Hughes, Jessica A; Khaddouma, Alexander M; Swamy, Geeta K; Noonan, Devon; Gonzalez, Alicia M; Fish, Laura; Pollak, Kathryn I

    2018-03-30

    Many couples tend to report steadily decreasing relationship quality following the birth of a child. However, little is known about the postpartum period for Latino couples, a rapidly growing ethnic group who are notably underserved by mental and physical health caregivers in the United States. Thus, this study investigated whether a brief couples' intervention focused on helping couples support each other while increasing healthy behaviors might improve dyadic functioning postpartum. This study presents secondary analyses of data regarding couple functioning from a larger randomized controlled trial with 348 Latino couples to promote smoking cessation. Portions of the intervention taught the couple communication and problem-solving skills to increase healthy behavior. Couples participated in four face-to-face assessments across 1 year starting at the end of the first trimester. Latent growth curve analyses revealed that the treatment group reported an increase in relationship satisfaction and constructive communication after the intervention, which diminished by 1-year follow-up, returning couples to their baseline levels of satisfaction. Results suggest that incorporating a brief couple intervention as part of a larger health intervention for Latinos may prevent postpartum decreases in relationship satisfaction. © 2018 Family Process Institute.

  10. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators

    Science.gov (United States)

    Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander

    2018-03-01

    We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices. The model system under study represents two oscillators based on thermally coupled VO2 switches. Numerical simulation shows that the effective action radius RTC of coupling depends both on the total energy released during switching and on the average power. It is experimentally and numerically proved that the temperature change ΔT commences almost synchronously with the released power peak and T-coupling reveals itself up to a frequency of about 10 kHz. For the studied switching structure configuration, the RTC value varies over a wide range from 4 to 45 μm, depending on the external circuit capacitance C and resistance Ri, but the variation of Ri is more promising from the practical viewpoint. In the case of a "weak" coupling, synchronization is accompanied by attraction effect and decrease of the main spectra harmonics width. In the case of a "strong" coupling, the number of effects increases, synchronization can occur on subharmonics resulting in multilevel stable synchronization of two oscillators. An advanced algorithm for synchronization efficiency and subharmonic ratio calculation is proposed. It is shown that of the two oscillators the leading one is that with a higher main frequency, and, in addition, the frequency stabilization effect is observed. Also, in the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by ∼10%. The obtained results have a universal character and open up a new kind of coupling in ONNs, namely, T-coupling, which allows for easy transition from 2D to 3D integration. The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.

  11. Global Effects of Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales

    Science.gov (United States)

    Qin, Hongchen; Pritchard, Michael S.; Kooperman, Gabriel J.; Parishani, Hossein

    2018-02-01

    Many conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce what is now recognized as overly strong land-atmosphere (L-A) coupling. We investigate the effects of cloud Superparameterization (SP) on L-A coupling on timescales beyond diurnal where it has been recently shown to have a favorable muting effect hydrologically. Using the Community Atmosphere Model v3.5 (CAM3.5) and its Superparameterized counterpart SPCAM3.5, we conducted soil moisture interference experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. The results show that, on weekly-to-subseasonal timescales, SP also mutes hydrologic L-A coupling. This is detectable globally, and happens through the evapotranspiration-precipitation segment. But on seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two robust regional effects of SP on thermal L-A coupling have also been explored. Over the Arabian Peninsula, SP reduces thermal L-A coupling through a straightforward control by mean rainfall reduction. More counterintuitively, over the Southwestern US and Northern Mexico, SP enhances the thermal L-A coupling in a way that is independent of rainfall and soil moisture. This signal is associated with a systematic and previously unrecognized effect of SP that produces an amplified Bowen ratio, and is detectable in multiple SP model versions and experiment designs. In addition to amplifying the present-day Bowen ratio, SP is found to amplify the climate sensitivity of Bowen ratio as well, which likely plays a role in influencing climate change predictions at the L-A interface.

  12. Baryon non-invariant couplings in Higgs effective field theory

    International Nuclear Information System (INIS)

    Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario

    2017-01-01

    The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)

  13. On the coupling effects of piezoelectricity and flexoelectricity in piezoelectric nanostructures

    Directory of Open Access Journals (Sweden)

    Liwen He

    2017-10-01

    Full Text Available Flexoelectricity is a novel kind of electromechanical coupling phenomenon that is prevalent in all solid dielectrics and usually of vital importance in nanostructures and soft materials. Although the fundamental theory of flexoelectric solids and related beam or plate theories were extensively studied in recent years, the coupling effect of flexoelectricity and piezoelectricity in piezoelectric nanostructures has not been completely clarified yet. In the present work, a geometrically nonlinear piezoelectric plate model is established with a focus on the coupling effect. The constitutive equations for piezoelectric plates are derived under both the electrically short-circuit and open-circuit conditions. It is found that due to the coupling between flexoelectricity and piezoelectricity, stretching-bending coupling stiffness arises in the homogeneous plate and its specific value relies on the applied electrical boundary conditions. The effects of the flexoelectric-piezoelectric coupling on the effective mechanical behavior and the electromechanical behavior of nanobeams and nanoplates are also discussed. The developed model and presented results are expected to benefit the design and analysis of piezoelectric and flexoelectric devices and systems.

  14. The effect of coupling a flat-plat collector on the solar still productivity

    International Nuclear Information System (INIS)

    Badran, O. O.; Al-Tahaineh, H. A.

    2006-01-01

    Experimental investigation to study the effect of coupling a flat plate solar collector on the productivity of solar stills was carried out. Other different parameters (i.e. water depth, direction of still, solar radiation) to enhance the productivity were also studied. Single slope solar still with mirrors fixed to its interior sides was coupled with a flat plate collector. It has been found that coupling of a solar collector with a still has increased the productivity by 56%. Also the increase of water depth has decreased the productivity, while the still productivity is found to be proportional to the solar radiation intensity.(Author)

  15. Effect of surface modes on coupling to fast waves in the LHRF

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Colestock, P.L.

    1990-01-01

    The effect of surface modes of propagation on coupling to fast waves in the LHRF is studied theoretically and experimentally. The previously reported 'up-down' poloidal phasing asymmetry for coupling to a uniform plasma is shown to be due to the properties of a mode which carries energy along the plasma-conducting wall interface. Comparison of the theory with coupling experiments performed on the PLT tokamak with a phased array of twelve dielectric-loaded waveguides at 800 MHz shows that the observed dependence of the net reflection coefficient on toroidal phase angle can be explained only if the surface wave is taken into account. 43 refs., 10 figs

  16. Effects of (un)employment on young couples' health and life satisfaction.

    Science.gov (United States)

    Haid, Marja-Lena; Seiffge-Krenke, Inge

    2013-01-01

    This study investigated effects of employed and unemployed job status on health outcomes with questionnaires in 50 young couples. Analysis of variance revealed higher pessimism, higher stress levels, and lower life satisfaction in couples in which one partner was unemployed. These couples also exhibited more health risk behaviours compared to couples in which both partners were working. The dyadic analysis of data, using an actor-partner interdependence model, demonstrated strong actor and partner effects for male partner's job status. Being unemployed was significantly associated not only with male partner's life satisfaction but also with the life satisfaction of his female partner. In addition, male partner's pessimism was identified as a significant variable which mediates between male partner's job status and female partner's life satisfaction. The study highlights the relevance of the accomplishment of tasks in the domains of work and partnership during young adulthood and it emphasises the gender specific importance.

  17. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hsien, E-mail: chli@nknucc.nknu.edu.tw [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: syyang@math.ncu.edu.tw [Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan (China)

    2015-10-23

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability.

  18. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    International Nuclear Information System (INIS)

    Li, Chun-Hsien; Yang, Suh-Yuh

    2015-01-01

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability

  19. Solvent isotope effects upon the thermodynamics of some transition-metal redox couples in aqueous media

    International Nuclear Information System (INIS)

    Weaver, M.J.; Nettles, S.M.

    1980-01-01

    The effects of substituting D 2 O for H 2 O as solvent upon the formal potentials of a number of transition-metal redox couples containing aquo, ammine, and simple chelating ligands have been investigated with the intention of evaluating the importance of specific solvation factors in the thermodynamics of such couples. The solvent liquid junction formed between H 2 O and D 2 O was shown to have a negligible effect on the measured formal potentials. Substantial solvent isotope effects were observed for a number of these systems, particularly for couples containing aquo ligands. The effects of separately deuterating the ligands and the surrounding solvent were investigated for some ammine couples. Possible origins of the solvent isotope effects are discussed in terms of changes in metal-ligand and ligand-solvent interactions. It is tentatively concluded that the latter influence provides the predominant contribution to the observed effects for aquo couples arising from increases in the extent of hydrogen bonding between the aquo ligands and surrounding solvent when D 2 O replaces H 2 O. The implications of these results in unraveling the solvent isotope effects upon the kinetics of simple redox reactions are also considered

  20. Effect of hall currents on thermal instability of dusty couple stress fluid

    Directory of Open Access Journals (Sweden)

    Aggarwal Amrish Kumar

    2016-09-01

    Full Text Available In this paper, effect of Hall currents on the thermal instability of couple-stress fluid permeated with dust particles has been considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary convection, dust particles and Hall currents are found to have destabilizing effect while couple stresses have stabilizing effect on the system. Magnetic field induced by Hall currents has stabilizing/destabilizing effect under certain conditions. It is found that due to the presence of Hall currents (hence magnetic field, oscillatory modes are produced which were non-existent in their absence.

  1. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    International Nuclear Information System (INIS)

    Karna, S.P.

    1997-01-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society

  2. Couples and work and family conflict : the effects of role salience crossover

    OpenAIRE

    Abeysekera, Lakmal Hasanga Dias Jayasuriya

    2017-01-01

    An examination of work and family conflict literature over the past quarter-century suggests employed individuals in married or de facto relationships tend to experience conflict at the couple-level rather than the widely researched individual-level. Yet, there are few available studies investigating work and family conflict at the couple-level. With the aim of addressing this gap within work-family literature, this thesis examines the ‘crossover’ effects between partners in addition to the w...

  3. Study of the coupling between real gas effects and rarefied effects on hypersonic aerodynamics

    Science.gov (United States)

    Chen, Song; Hu, Yuan; Sun, Quanhua

    2012-11-01

    Hypersonic vehicles travel across the atmosphere at very high speed, and the surrounding gas experiences complicated physical and chemical processes. These processes produce real gas effects at high temperature and rarefied gas effects at high altitude where the two effects are coupled through molecular collisions. In this study, we aim to identify the individual real gas and rarefied gas effects by simulating hypersonic flow over a 2D cylinder, a sphere and a blunted cone using a continuum-based CFD approach and the direct simulation Monte Carlo method. It is found that physical processes such as vibrational excitation and chemical reaction will reduce significantly the shock stand-off distance and flow temperature for flows having small Knudsen number. The calculated skin friction and surface heat flux will decrease when the real gas effects are considered in simulations. The trend, however, gets weakened as the Knudsen number increases. It is concluded that the rarefied gas effects weaken the real gas effects on hypersonic flows.

  4. DECOVALEX - Mathematical models of coupled T-H-M processes for nuclear waste repositories. Executive summary for Phases I,II and III

    International Nuclear Information System (INIS)

    Jing, L.; Stephansson, O.; Tsang, C.F.; Kautsky, F.

    1996-06-01

    This executive summary presents the motivation, structure, objectives, methodologies and results of the first stage of the international DECOVALEX project - DECOVALEX I (1992-1995). The acronym stands for Development of Coupled Models and their Validation against Experiment in Nuclear Waste Isolation, and the project is an international effort to develop mathematical models, numerical methods and computer codes for coupled thermo-hydro-mechanical processes in fractured rocks and buffer materials for geological isolation of spent nuclear fuel and other radioactive wastes, and validate them against laboratory and field experiments. 24 refs

  5. Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices

    International Nuclear Information System (INIS)

    Chiolerio, Alessandro; Allia, Paolo; Graziano, Mariagrazia

    2012-01-01

    Physical limitations foreshadow the eventual end to traditional Complementary Metal Oxide Semiconductor (CMOS) scaling. Therefore, interest has turned to various materials and technologies aimed to succeed to traditional CMOS. Magnetic Quantum dot Cellular Automata (MQCA) are one of these technologies. Working MQCA arrays require very complex techniques and an excellent control on the geometry of the nanomagnets and on the quality of the magnetic thin film, thus limiting the possibility for MQCA of representing a definite solution to cost-effective, high density and low power consumption device demand. Counter-intuitively, moving towards bigger sizes and lighter technologies it is still possible to develop multi-state logic devices, as we demonstrated, whose main advantage is cost-effectiveness. Applications may be seen in low cost logic devices where integration and computational power are not the main issue, eventually using flexible substrates and taking advantage of the intrinsic mechanical toughness of systems where long range interactions do not need wirings. We realized cobalt micrometric MQCA arrays by means of Electron Beam Lithography, exploiting cost-effective processes such as lift-off and RF sputtering that usually are avoided due to their low control on array geometry and film roughness. Information relative to the magnetic configuration of MQCA elements including their eventual magnetic interactions was obtained from Magnetic Force Microscope (MFM) images, enhanced by means of a numerical procedure and presented in differential maps. We report the existence of bi-stable magnetic patterns, as detected by MFM while sampling the z-component of magnetic induction field, arising from dipolar inter-element magnetostatic coupling, able to store and propagate binary information. This is achieved despite the array quality and element magnetic state, which are low and multi-domain, respectively. We discuss in detail shape, inter-element spacing and dot profile

  6. Survey the Effect of Pre-marriage Counseling on Knowledge and Attitudes Couple in Yazd

    Directory of Open Access Journals (Sweden)

    ss Mazloomi mahmodabad

    2016-07-01

    Full Text Available Abstract Introduction : Holding true premarital counseling courses helps to couples to acquire the necessary knowledge in the field of reproductive health issues. The aim of this study was determination of effect of pre-marriage counseling on knowledge and attitudes couple in Yazd. Methods: This was an semi experimental and pre and post study In which 200 couples participating in premarital counseling courses were selected randomly. Finally, the data were analysed by SPSS18 software and t-test and ANOVA statistical tests. Results: The data showen that  couples before attending in counseling courses have acquired respectively 37.6%  and 48.1%  and after training respectively 65.1% and 57.6% from knowledge and attitude scores. Also mean score of knowledge and attitude according to sex, education level and occupation were statistically significant (P≤0.05. Conclusion: Considering to small change of attitude couples, it is suggested after counseling classes are given the opportunity into couple that express your questions privately. Also to achieve a relatively stable behavior in young couples and promoting their health levels, must besides holding training courses before marriage, pay more attention to the quality of these courses. 

  7. Thermodynamics of strong coupling superconductors including the effect of anisotropy

    Science.gov (United States)

    Daams, J. M.; Carbotte, J. P.

    1981-05-01

    The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.

  8. Induced magnetic-field effects in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Rognlien, T.D.

    1995-01-01

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest

  9. The effect of instruction on knowledge and attitude of couples attending pre-marriage counseling classes.

    Science.gov (United States)

    Moodi, Mitra; Miri, Mohammad-Reza; Reza Sharifirad, Gholam

    2013-01-01

    Marriages and establishing a family is one of the most important events in the life of each person. It has significant effects on personal and social health, if it occurs with sufficient knowledge in the proper conditions. The aim of this study is to determine the effect of pre-marriage instruction on the knowledge and health attitudes of the couples attending the pre-marriage counseling classes. This pre and post quasi-experimental study was conducted on 250 couples attending the pre-marriage counseling classes. The required information was collected using an autonomous questionnaire designed based on the research objectives. The questionnaire included three parts: Demographic information, knowledge (27 questions) and attitude (18 questions. The questionnaire was filled out before and after the pre-marriage counseling program, which was presented as lectures. The effect of the instructional program was analyzed using a statistical test. The results showed that 83.2% of the couples had poor knowledge, 16% average, and 0.8% had good knowledge before the intervention. After the intervention, 60.4% of couples had poor knowledge, 31.6% average and 8% had good knowledge. The results also revealed that that the difference in mean scores of knowledge and attitudes regarding reproductive health, family planning, genetic diseases and disabilities was statistically significant (P < 0.001). Despite the mean scores of knowledge and attitude of the couples had increased after the instructional intervention, the increase in knowledge level was not very high. So the knowledge score of the couples increased just 4.3%, and only 8% of the couples had good knowledge after the instructional intervention. Therefore, to achieve a relatively stable behavior change in individuals and improving the health level of the young couples, it is recommended that more attention pay to the quality of the instructional classes.

  10. Coupling of a reservoir model and of a poro-mechanical model. Application to the study of the compaction of petroleum reservoirs and of the associated subsidence; Couplage d'un modele de gisement et d'un modele mecanique. Application a l'etude de la compaction des reservoirs petroliers et de la subsidence associee

    Energy Technology Data Exchange (ETDEWEB)

    Bevillon, D.

    2000-11-30

    The aim of this study is to provide a better description of the rock contribution to fluid flows in petroleum reservoirs. The production of oil/gas in soft highly compacting reservoirs induces important reduction of the pore volume, which increases oil productivity. This compaction leads to undesirable effects such as surface subsidence or damage of well equipment. Analysis of compaction and subsidence can be performed using either engineering reservoir models or coupled poro-mechanical models. Poro-mechanical model offers a rigorous mechanical framework, but does not permit a complete description of the fluids. The reservoir model gives a good description of the fluid phases, but the description of the mechanic phenomenon is then simplified. To satisfy the set of equations (mechanical equilibrium and diffusivity equations), two simulators can be used together sequentially. Each of the two simulators solves its own system independently, and information passed both directions between simulators. This technique is usually referred to the partially coupled scheme. In this study, reservoir and hydro-mechanical simulations show that reservoir theory is not a rigorous framework to represent the evolution of the high porous rocks strains. Then, we introduce a partially coupled scheme that is shown to be consistent and unconditionally stable, which permits to describe correctly poro-mechanical theory in reservoir models. (author)

  11. Low energy constituent quark and pion effective couplings in a weak external magnetic field

    Science.gov (United States)

    Braghin, Fábio L.

    2018-03-01

    An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.

  12. Effect of electromagnetic coupling on MHD flow in the manifold of fusion liquid metal blanket

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Meng, Zi; Feng, Jingchao; He, Qingyun

    2014-10-15

    In fusion liquid metal (LM) blanket, magnetohydrodynamics (MHD) effects will dominate the flow patterns and the heat transfer characteristics of the liquid metal flow. Manifold is a key component in LM blanket in charge of distributing or collecting the liquid metal coolant. In this region, the complex three dimensional MHD phenomena will be occurred, and the velocity, pressure and flow rate distributions may be dramatically influenced. One important aspect is the electromagnetic coupling effect resulting from an exchange of electric currents between two neighboring fluid domains that can lead to modifications of flow distribution and pressure drop compared to that in electrical separated channels. Understanding the electromagnetic coupling effect in manifold is necessary to optimize the liquid metal blanket design. In this work, a numerical study was carried out to investigate the effect of electromagnetic coupling on MHD flow in a manifold region. The typical manifold geometry in LM blanket was considered, a rectangular supply duct entering a rectangular expansion area, finally feeding into 3 rectangular parallel channels. This paper investigated the effect of electromagnetic coupling on MHD flow in a manifold region. Different electromagnetic coupling modes with different combinations of electrical conductivity of walls were studied numerically. The flow distribution and pressure drop of these modes have been evaluated.

  13. The behaviour of effective coupling constants in 'finite' grand unification theories in curved spacetime

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Odintsov, S.D.; Lichtzier, I.M.

    1989-01-01

    The question of the behaviour of effective coupling constants in one-loop 'finite' grand unification theories in curved spacetime is investigated. It is shown that in strong gravitational fields the effective coupling constant, corresponding to the parameter of non-minimal interaction of scalar and gravitational fields, tends to the conformal value or increases in an exponential fashion. The one-loop effective potential is obtained with accuracy to linear curvature terms. It is shown that, in external supergravity, supersymmetric finite theories admit asymptotic conformal invariance. (Author)

  14. Precise measurement of coupling strength and high temperature quantum effect in a nonlinearly coupled qubit-oscillator system

    Science.gov (United States)

    Ge, Li; Zhao, Nan

    2018-04-01

    We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.

  15. Visualization of viscous coupling effects in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Arango, J.D. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Kantzas, A. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Some heavy oil reservoirs in Venezuela and Canada have shown higher than expected production rates attributed to the effects of foamy oil or enhanced solution gas drive. However, foamy oil 2-phase flow does not fully explain oil rate enhancement in heavy oil reservoirs. In this study, flow visualization experiments were conducted in a 2-D etched network micromodel in order to determine the effect of the viscosity ratio on oil mobility at the pore scale. The micromodel's pattern was characterized by macroscopic heterogeneities with a random network of larger pore bodies interconnected with a random network of smaller pore throats. Displacement tests were conducted with green-dyed distilled water as a wetting phase. N-octane, bromododecane and mineral oil were used as non-wetting phases. An unsteady-state method was used to obtain displacement data, and the Alternate method was used to calculate relative permeabilities. Results of the study showed that relative permeabilities depended on the viscosity ratio of the fluids flowing through the porous medium. Channel and annular flows co-existed, and water lubrication was stronger at higher water saturations. The results of the study explained the abnormally high production rates in heavier oil fields. 19 refs., 3 tabs., 14 figs.

  16. Effect of couple-stress on the pure bending of a prismatic bar

    International Nuclear Information System (INIS)

    Tzung, F.; Kao, B.; Ho, F.; Tang, P.

    1981-02-01

    An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. The linear couple-stress theory, the origins of which go back to the turn of the last century, adds linear relations between couple-stresses and rotation gradients to the classical stress-strain law. By adopting the classical assumption that the plane cross section remains plane after deformation, the pure-bending problem is reduced to a plane couple-stress problem with traction-free boundary conditions. A general solution for an isotropic elastic prismatic bar under pure bending is then obtained using the Airy stress function and another stress function wich accounts for the couple-stresss. For a cylindrical bar, it reduces to a simple series solution. The moment-curvature and stress-curvature relations derived for a cylindrical bar from the general solution are used to examine the effect of couple-stresses. Numerical compilation of relations indicates that the couple stress parameters can be practically determined by measuring the moment-curvature ratio of various diametered specimens under bending. Although there is not sufficient data for such evaluation at present, it appears that the theory is consistent with the limited bend and tensile strength data of cylindrical specimens for H-451 graphite

  17. Effect of coupling behavior on groundwater flow for geological disposal of radioactive high level waste

    International Nuclear Information System (INIS)

    Kurikami, Hiroshi; Kobayashi, Akira; Ohnishi, Yuzo; Chijimatsu, Masakazu

    2003-01-01

    In order to estimate the effects of coupled thermal-hydraulic-mechanical phenomena in near-field for geological disposal of high-level radioactive waste on a vast groundwater flow system, a far-field analysis was simulated based on the results of the simulation of coupled phenomena in near-field using averaged tensor and heat flux. From the results of the coupled analyses of near-field and far-field it was clarified that groundwater flow system was influenced by coupled phenomena in near-field. Moreover, it can be said that groundwater flux into a disposal tunnel is regarded as a complement to safety assessment of a disposal because it strongly correlates with traveling time of groundwater. (author)

  18. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  19. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  20. Universality for the parameter-mismatching effect on weak synchronization in coupled chaotic systems

    International Nuclear Information System (INIS)

    Lim, Woochang; Kim, Sang-Yoon

    2004-01-01

    To examine the universality for the parameter-mismatching effect on weak chaotic synchronization, we study coupled multidimensional invertible systems such as the coupled Henon maps and coupled pendula. By generalizing the method proposed in coupled one-dimensional (1D) noninvertible maps, we introduce the parameter sensitivity exponent δ to measure the degree of the parameter sensitivity of a weakly stable synchronous chaotic attractor. In terms of the parameter sensitivity exponents, we characterize the effect of the parameter mismatch on the intermittent bursting and the basin riddling occurring in the regime of weak synchronization. It is thus found that the scaling exponent μ for the average characteristic time (i.e., the average interburst time and the average chaotic transient lifetime) for both the bubbling and riddling cases is given by the reciprocal of the parameter sensitivity exponent, as in the simple system of coupled 1D maps. Hence, the reciprocal relation (i.e., μ = 1/δ) seems to be 'universal', in the sense that it holds in typical coupled chaotic systems of different nature

  1. The Effect of Provision of Information Regarding Infertility Treatment Strategies on Anxiety Level of Infertile Couples

    Directory of Open Access Journals (Sweden)

    Mustafa Hamdieh

    2009-01-01

    Full Text Available Background: Infertility may have many emotional and psychological implications on infertilecouples. So far, different methods for reducing anxiety in infertile couples have been evaluated. Thegoal of this study is to evaluate the effect of provision of information regarding infertility treatmentto infertile couples on their anxiety levels.Materials and Methods: This study was conducted as a before and after clinical trial. Forty-twoindividuals were considered as cases and 40 as controls. In order to evaluate anxiety and depressionin participants, the Hamilton Anxiety and Depression Scale (HADS questionnaire was used. Theintervention group received information about infertility treatment through a two hour face-to-facemeeting and was provided with a brochure. Anxiety level was assessed at the time of admission,immediately after the session and two weeks later. Assessment was performed twice for the controlgroup; once at the time of admission and secondly, two weeks later.Results: Our results show that receiving information about infertility treatment significantlydecreases anxiety among infertile couples two weeks post-training. This decline does not have asignificant correlation with age, sex, education level of the couple, and neither with the durationnor the cause of infertility. Providing information does not have any significant effect on the rate ofdepression among couples.Conclusion: It is recommended that provision of information regarding infertility treatmentmethods should be considered as a means of decreasing anxiety among infertile couples who referto infertility treatment centers.

  2. Effects of dynamic coupling between freestanding steel containment and attached piping

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Kincaid, R.H.; Short, S.A.

    1981-01-01

    This paper presents an accurate, practical method of converting uncoupled response time history results obtained from an uncoupled structure model into coupled response time histories using a post-processor routine. The method is rigorous and only requires the modal properties of the uncoupled structure model, the modal properties of the uncoupled attached equipment model, and the uncoupled time histories of the attachment points on the structure. Coupled response spectra or time histories for use as input to an uncoupled equipment model are obtained. Comparisons of coupled versus uncoupled analysis results are presented for representative piping systems attached to a typical BWR Mark III steel containment subjected to vibration from safety relief valve discharge with a fundamental frequency of 12 Hz. It is shown that the coupled response spectra at piping attachment points are reduced by a factor between 2 and 5 from the amplified uncoupled spectra at each significant piping modal frequency above 20 Hz for representative major piping systems attached to the unstiffened portion of the steel shell. Responses at lower frequencies are not generally reduced and may increase by coupling effects for the input loading and shell model studied. Peak accerations are generally significantly reduced while peak displacements may be decreased or increased. Rules are presented for estimating the coupling effects between freestanding steel shells and attached equipment. (orig./HP)

  3. Effects of toroidal coupling on the stability of tearing modes

    International Nuclear Information System (INIS)

    Carreras, B.; Hicks, H.R.; Lee, D.K.

    1980-06-01

    The time evolution of tearing modes in toroidal geometry is studied in the low-β and large aspect ratio limit. An initial value three-dimensional computer code, which numerically advances the reduced set of resistive magnetohydrodynamic equations is employed. Toroidicity has, in general, a destabilizing effect on tearing modes in this limit. A generalization of the Δ' formalism can be used to study the linear regime. The results obtained in this way are in very good agreement with the results from the initial value code. The nonlinear phase of the evolution is also followed numerically. In the case of strong interaction of different helicities, a larger region of stochastic magnetic field lines results than in the cylindrical geometry case

  4. Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe

    KAUST Repository

    Huang, Bin-Juine; Chong, Tze-Ling; Wu, Po-Hsien; Dai, Han-Yi; Kao, Yeong-Chuan

    2015-01-01

    © 2015 Elsevier B.V. A novel solar still with spiral-shape multiple-effect diffusion unit is developed in the present study. The test results of a 14-effect unit coupled with vacuum-tube solar collector (absorber area 1.08m2) show that the highest

  5. Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe

    KAUST Repository

    Chong, Tze-Ling; Huang, Bin-Juine; Wu, Po-Hsien; Kao, Yeong-Chuan

    2014-01-01

    The present study develops a multiple-effect diffusion solar still (MEDS) with a bended-plate design in multiple-effect diffusion unit (MDU) to solve the peel-off problem of wick material. The MDU is coupled with a vacuum-tube solar collector

  6. Effects of a partnership support program for couples undergoing fertility treatment.

    Science.gov (United States)

    Asazawa, Kyoko

    2015-10-01

    The study's purpose was to examine the effects of providing a partnership support program. It was designed to improve Japanese couples' partnership, maintain quality of life, decrease psychological distress, and improve marital relationship satisfaction while they underwent infertility treatment that included the possibility of using assisted reproductive technology. This quasi-experimental study with a two-group pretest-post-test design used purposive sampling and non-random assignment of 318 consenting Japanese patients from previous phases of assisted reproductive technology fertility treatment who were patients from a fertility clinic in Tokyo, Japan. The intervention group of 152 patients (76 couples) participated in the partnership support program. The comparison group of 166 patients (83 couples) received usual care. Recruitment was age matched. The program provided information and used a participatory-interactive approach to enhance understanding and cooperation in couples undergoing fertility treatment. The main outcome measures were: "partnership", FertiQoL, Quality Marriage Index, and "psychological distress". There were 311 participants (intervention group n = 148; comparison group, n = 163). The intervention group showed significant improvement in the couples' partnerships and a significant decrease in women's psychological distress using subgroup analysis. The partnership support program provided effective improvement in partnership for the couples, and reduced psychological distress for the women; however, it had less impact for the men. The program was not effective in improving couples' overall quality of life (QOL); however, it was effective in improving the "mind-body" aspects of the QOL subscale. © 2015 The Author. Japan Journal of Nursing Science © 2015 Japan Academy of Nursing Science.

  7. Effect of practical application of intimate relationship skills program in marital commitment of couples

    Directory of Open Access Journals (Sweden)

    Bahareh Chitsazzadeh Alaf

    2017-06-01

    Full Text Available Nowadays, due to the increasing rate of divorce and betrayals, the marital commitment has been concerned in marriage and family studies. The research aimed to evaluate the effect of Practical Application of Intimate Relationship Skills (PAIRS program in marital commitment of couples. The method was quasi-experimental and the design was pretest-posttest with a control group. The convenience sampling method was employed to choose 16 couples whose marital commitment score was below the mean in Isfahan, Iran. These couples were randomly assigned to the experimental and control groups (N=8 in each group. Data gathering was carried out using Adams and Jones dimensions of commitment inventory (DCI that was filled out by the members of both groups in the pretest stage. Then, the experimental group received the PAIRS training program in thirteen 90-minute sessions. 35 percent of the total variance belongs to the group membership due to the effectiveness of this educational program. This educational program attempts to make couples aware of themselves and their spouses, enhance, intimacy and empathy and develop effective relationship skills and problem-solving skills. The results demonstrated that the PAIRS program showed a positive effect on marital commitment. Hence, the PAIRS program can be employed to prevent divorce by increasing marital commitment in couples.

  8. Effects of Working Couple's Retirement Sequence on Satisfaction in Patriarchal Culture Country: Probing on Gender Difference.

    Science.gov (United States)

    Lee, Ayoung; Cho, Joonmo

    2017-01-01

    We examined the effects of the differences in the retirement sequence (i.e., who retires first between spouses) on satisfaction in Korea of patriarchal culture. Our empirical study demonstrates that households where men retired first had a much lower satisfaction than households where women retired first. In addition, men were found to show lower satisfaction than wives in both households where women retire first and the households where men retire first. Retirement sequence affecting their satisfaction at the point when only one of the spouses is retired continues to affect their satisfaction after both of them are retired. This means that the difference in the couple's retirement sequence has an ongoing effect on their later happiness. The analysis of the effect of a couple's retirement sequence on the satisfaction in their old life may be useful for improving an individual and couples' quality of life in countries with similar cultures.

  9. Improvements in closeness, communication, and psychological distress mediate effects of couple therapy for veterans.

    Science.gov (United States)

    Doss, Brian D; Mitchell, Alexandra; Georgia, Emily J; Biesen, Judith N; Rowe, Lorelei Simpson

    2015-04-01

    Empirically based couple therapy results in significant improvements in relationship satisfaction for the average couple; however, further research is needed to identify mediators that lead to change and to ensure that improvements in mediators predict subsequent-not just concurrent-relationship satisfaction. In addition, given that much of the current literature on couple therapy examines outcomes in a research environment, it is important to examine mediators in a treatment-as-usual setting. To address these questions, 161 heterosexual couples (322 individuals) received treatment-as-usual couple therapy at one of two Veteran Administration Medical Centers (M = 5.0 and 13.0 sessions at the two sites) and were assessed before every session. The majority of couples were married (85%) and had been together for a median of 7.8 years (SD = 13). Participants were primarily White, non-Hispanic (69%), African American (21%), and White, Hispanic/Latino (8%). Individuals' own self-reported improvements in communication, emotional closeness, and psychological distress (but not frequency of behaviors targeted in treatment) mediated the effect of treatment on their subsequent relationship satisfaction. When all significant mediators were examined simultaneously, improvements in men's and women's emotional closeness and men's psychological distress independently mediated subsequent relationship satisfaction. In contrast, improvements in earlier relationship satisfaction mediated the effect of treatment only on subsequent psychological distress. This study identifies unique mediators of treatment effects and shows that gains in mechanisms predict subsequent relationship satisfaction. Future investigations should focus on the role of emotional closeness and psychological distress-constructs that have often been neglected-in couple therapy. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  10. Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism

    Science.gov (United States)

    Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu

    2018-02-01

    Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.

  11. Coupling of reciprocal vectors and corresponding degeneracy effect in a dual-periodic optical superlattice

    International Nuclear Information System (INIS)

    Qin Yiqiang

    2006-01-01

    A dual-periodic structure for quasi-phase matching cascaded optical parametric interactions is proposed. Due to the coupling of reciprocal vectors between the original and imposed periodic sequence, the reciprocal vectors and the corresponding effective nonlinear coefficients is no longer the simple combination of two periodic structures. The new analytical expression of the effective nonlinear coefficients is deduced and given. The degeneracy phenomena and the novel extinction rule resulting from the coupling of reciprocal vectors are found and investigated. The corresponding physical nature is also discussed

  12. Triple-effect absorption refrigeration system with double-condenser coupling

    Science.gov (United States)

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  13. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  14. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.

    2007-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  15. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Science.gov (United States)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2007-09-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  16. Computations of the chirality-sensitive effect induced by an antisymmetric indirect spin–spin coupling

    Science.gov (United States)

    Garbacz, Piotr

    2018-05-01

    Results of quantum mechanical computations of the antisymmetric part of the indirect spin-spin coupling tensor, ?, performed using the coupled-cluster method, the second-order polarisation propagator approximation, and the density functional theory for 25 molecules and nearly 100 spin-spin couplings are reported. These results are used for an estimation of the magnitude of the recently proposed liquid-state nuclear magnetic resonance chirality-sensitive effect, which allows to determine the molecular chirality directly, i.e. without the need for the application of any chiral agent. The following were found: (i) the antisymmetry J⋆ is usually larger for the coupling between spins separated by two chemical bonds in comparison with the coupling through one bond, (ii) promising samples are those which contain fluorine, and (iii) the antisymmetry of the spin-spin coupling tensor is of the order of a few hertz for commercially available chemical compounds. Therefore, the relevant property of the experiment, the pseudoscalar Jc, for them is of the order of 1 nHz m/V.

  17. A dyadic analysis of relationships and health: does couple-level context condition partner effects?

    Science.gov (United States)

    Barr, Ashley B; Simons, Ronald L

    2014-08-01

    Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g., dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g., partner strain and support), predicted young adults' physical and mental health. Using dyadic data from a sample of 249 young, primarily Black couples, we hypothesized and found support for the importance of couple-level context, partner behavior, and their interaction in predicting health. Interracial couples (all Black/non-Black pairings) reported worse health than monoracial Black couples. Union type, however, did not directly predict health but was a significant moderator of partner strain. That is, the negative association between partner strain and self-reported health was stronger for cohabiting and married couples versus their dating counterparts, suggesting that coresidence, more so than marital status, may be important for understanding partner effects on physical health. For psychological distress, however, partner support proved equally beneficial across union types.

  18. The effects of marriage education for army couples with a history of infidelity.

    Science.gov (United States)

    Allen, Elizabeth S; Rhoades, Galena K; Stanley, Scott M; Loew, Benjamin; Markman, Howard J

    2012-02-01

    While existing literature has begun to explore risk factors which may predict differential response to marriage education, a history of couple infidelity has not been examined to determine whether infidelity moderates the impacts of marriage education. The current study evaluated self-report marital satisfaction and communication skills in a sample of 662 married Army couples randomly assigned to marriage education (i.e., PREP) or a no-treatment control group and assessed prior to intervention, post intervention, and at 1 year after intervention. Of these, 23.4% couples reported a history of infidelity in their marriage. Multilevel modeling analyses indicated that having a history of infidelity significantly moderated the impact of PREP for marital satisfaction, with a trend for a similar effect on communication skills. However, couples with a history of infidelity assigned to PREP did not reach the same levels of marital satisfaction after intervention seen in the group of couples without infidelity assigned to PREP, although they did show comparable scores on communication skills after intervention. Implications of these findings for relationship education with couples with a history of infidelity are discussed.

  19. A Dyadic Analysis of Relationships and Health: Does Couple-Level Context Condition Partner Effects?

    Science.gov (United States)

    Barr, Ashley B.; Simons, Ronald L.

    2014-01-01

    Adding to the growing literature explicating the links between romantic relationships and health, this study examined how both couple-level characteristics, particularly union type (e.g. dating, cohabiting, or marriage) and interracial pairing, and interpersonal characteristics (e.g. partner strain and support) predicted young adults’ physical and mental health. Using dyadic data from a sample of 249 young, primarily African American couples, we hypothesized and found support for the importance of couple-level context, partner behavior, and their interaction in predicting health. Interracial couples (all Black/non-Black pairings) reported worse health than monoracial Black couples. Union type, however, did not directly predict health but was a significant moderator of partner strain. That is, the negative association between partner strain and self-reported health was stronger for cohabiting and married couples versus their dating counterparts, suggesting that coresidence more so than marital status may be important for understanding partner effects on physical health. For psychological distress, however, partner support proved equally beneficial across union types. PMID:25090254

  20. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    International Nuclear Information System (INIS)

    Lal, Shankar; Pant, K. K.

    2016-01-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  1. The effects of the tensor coupling term in the Zimanyi-Moszkowski model for unpolarized nuclear matter

    International Nuclear Information System (INIS)

    Ru-Keng Su; Li Li; Hong-Qiu Song

    1998-01-01

    The effects of the tensor coupling term on nuclear matter in the Zimanyi-Moszkowki (ZM) model are investigated. It is shown that the tensor coupling term in the ZM model leaves the thermodynamical properties of nuclear matter almost unchanged. The corrections of tensor coupling to the critical point of the liquid-gas phase transition are given. (author)

  2. Effects of a Randomized Couple-Based Intervention on Quality of Life of Breast Cancer Patients and Their Partners

    Science.gov (United States)

    Kayser, Karen; Feldman, Barry N.; Borstelmann, Nancy A.; Daniels, Ann A.

    2010-01-01

    The purpose of this study was to determine the effectiveness of a couple-based intervention on the quality of life (QOL) of early-stage breast cancer patients and their partners. A randomized controlled design was used to assign couples to either the hospital standard social work services (SSWS) or a couple-based intervention, the Partners in…

  3. Short and long-term effectiveness of couple counselling: a study protocol

    Directory of Open Access Journals (Sweden)

    Schofield Margot J

    2012-09-01

    Full Text Available Abstract Background Healthy couple relationships are fundamental to a healthy society, whereas relationship breakdown and discord are linked to a wide range of negative health and wellbeing outcomes. Two types of relationship services (couple counselling and relationship education have demonstrated efficacy in many controlled studies but evidence of the effectiveness of community-based relationship services has lagged behind. This study protocol describes an effectiveness evaluation of the two types of community-based relationship services. The aims of the Evaluation of Couple Counselling study are to: map the profiles of clients seeking agency-based couple counselling and relationship enhancement programs in terms of socio-demographic, relationship, health, and health service use indicators; to determine 3 and 12-month outcomes for relationship satisfaction, commitment, and depression; and determine relative contributions of client and therapy factors to outcomes. Methods/Design A quasi-experimental pre-post-post evaluation design is used to assess outcomes for couples presenting for the two types of community-based relationship services. The longitudinal design involves a pre-treatment survey and two follow-up surveys at 3- and 12-months post-intervention. The study is set in eight Relationships Australia Victoria centres, across metropolitan, outer suburbs, and regional/rural sites. Relationships Australia, a non-government organisation, is the largest provider of couple counselling and relationship services in Australia. The key outcomes are couple satisfaction, relationship commitment, and depression measured by the CESD-10. Multi-level modelling will be used to account for the dyadic nature of couple data. Discussion The study protocol describes the first large scale investigation of the effectiveness of two types of relationship services to be conducted in Australia. Its significance lies in providing more detailed profiles of couples who

  4. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A

    2017-01-01

    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  5. Effects of the electron-phonon coupling activation in collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Zarkadoula, Eva, E-mail: zarkadoulae@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Samolyuk, German [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Weber, William J. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-07-15

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally, we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage. - Highlights: •The electron-phonon interactions in irradiation affect the energy dissipation. •The resulting damage depends on the electron-phonon interaction activation time. •The electronic stopping acts on the ions before the electron-phonon interactions.

  6. Practical method of dynamic analysis considering coupling effects between equipment and piping systems

    International Nuclear Information System (INIS)

    Koyanagi, Ryoichi

    1984-01-01

    Many piping systems are supported by flexible structures or attached to thin shell walls so it is very important to consider the dynamic coupling effects between these systems in dynamic analysis. This paper presents a practical method of dynamic analysis of an individual system considering the dynamic coupling effects of coupled equipment-piping systems. In this method, dynamic responses are calculated by using the modal information which is obtained from the other analysis for associative structure. Analytical results for the complete model and of this method for an individual system are presented in the piping-supporting structure system and a piping-shell system. From the comparison of these results, it shows that this method is accurate, useful and economically applicable to the dynamic analysis of large model. (author)

  7. Impact of the coupling effect and the configuration on a compact rectenna array

    Science.gov (United States)

    Rivière, J.; Douyere, A.; Luk, J. D. Lan Sun

    2014-10-01

    This paper proposes an experimental study of the coupling effect of a rectenna array. The rectifying antenna consists of a compact and efficient rectifying circuit in a series topology, coupled with a small metamaterial-inspired antenna. The measurements are investigated in the X plane on the rectenna array's behavior, with series and parallel DC- combining configuration of two and three spaced rectennas from 3 cm to 10 cm. This study shows that the maximum efficiency is reached for the series configuration, with a resistive load of 10 kQ. The optimal distance is not significant for series or parallel configuration. Then, a comparison between a rectenna array with non-optimal mutual coupling and a more traditional patch rectenna is performed. Finally, a practical application is tested to demonstrate the effectiveness of such small rectenna array.

  8. Spin Hall effect in a 2DEG in the presence of magnetic couplings

    International Nuclear Information System (INIS)

    Gorini, C; Schwab, P; Dzierzawa, M; Raimondi, R; Milletari, M

    2009-01-01

    It is now well established that the peculiar linear-in-momentum dependence of the Rashba (and of the Dresselhaus) spin-orbit coupling leads to the vanishing of the spin Hall conductivity in the bulk of a two-dimensional electron gas (2DEG). In this paper we discuss how generic magnetic couplings change this behaviour providing then a potential handle on the spin Hall effect. In particular we examine the influence of magnetic impurities and an in-plane magnetic field. We find that in both cases there is a finite spin Hall effect and we provide explicit expressions for the spin Hall conductivity. The results can be obtained by means of the quasiclassical Green function approach, that we have recently extended to spin-orbit coupled electron systems.

  9. The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors

    International Nuclear Information System (INIS)

    Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang

    2012-01-01

    We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Jahn-Teller effect versus Hund's rule coupling in C60N-

    Science.gov (United States)

    Wehrli, S.; Sigrist, M.

    2007-09-01

    We propose variational states for the ground state and the low-energy collective rotator excitations in negatively charged C60N- ions (N=1,…,5) . The approach includes the linear electron-phonon coupling and the Coulomb interaction on the same level. The electron-phonon coupling is treated within the effective mode approximation which yields the linear t1u⊗Hg Jahn-Teller problem whereas the Coulomb interaction gives rise to Hund’s rule coupling for N=2,3,4 . The Hamiltonian has accidental SO(3) symmetry which allows an elegant formulation in terms of angular momenta. Trial states are constructed from coherent states and using projection operators onto angular momentum subspaces which results in good variational states for the complete parameter range. The evaluation of the corresponding energies is to a large extent analytical. We use the approach for a detailed analysis of the competition between Jahn-Teller effect and Hund’s rule coupling, which determines the spin state for N=2,3,4 . We calculate the low-spin-high-spin gap for N=2,3,4 as a function of the Hund’s rule coupling constant J . We find that the experimentally measured gaps suggest a coupling constant in the range J=60-80meV . Using a finite value for J , we recalculate the ground state energies of the C60N- ions and find that the Jahn-Teller energy gain is partly counterbalanced by the Hund’s rule coupling. In particular, the ground state energies for N=2,3,4 are almost equal.

  11. Mass transport in low permeability rocks under the influence of coupled thermomechanical and hydrochemical effects - an overview

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1984-10-01

    The present paper gives a general overview of mass transport in low permeability rocks under the coupled thermomechanical and hydrochemical effects associated with a nuclear waste repository. A classification of coupled processes is given. Then an ess is presented. example of a coupled process is presented. Discussions of coupled processes based on a recent LBL Panel meeting are summarized. 5 references, 3 figures, 4 tables

  12. Electromagnetic and structural coupled analysis with the effect of large deflection

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Niho, Tomoya

    1997-01-01

    In the designs of future fusion reactors and magnetic levitated vehicles, thin shell conducting structures are located in a high electromagnetic field. The transient magnetic field induces the eddy current on the conductive structure. While the Lorentz force by the eddy current and the magnetic field is loaded to the thin shell structure, the electromotive force by the deflection velocity and magnetic field reduces the eddy current. Therefore, the electromagnetic and structural coupled analysis is required for the design of these components. This paper describes a coupled finite element analysis for the eddy current and the structure. A formulation is presented considering the effect of the large deflection of shell structures by the total Lagrangian formulation. Both matrix equations for the eddy current and the structure are solved simultaneously using coupling sub-matrices. A coupled problem of a cantilever bending plate is analyzed. Based on the analysis results, the influence of the large deflection on the coupling effect is discussed. The condition that the large deflection analysis is required is examined through some parametric analyses

  13. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  14. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    Science.gov (United States)

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  15. Effect of the isovector coupling channel on the macroscopic part of ...

    Indian Academy of Sciences (India)

    Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria. E-mail: pscientific@aec.org.sy. MS received 10 June 2012; revised 18 October 2012; accepted 12 December 2012. Abstract. The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied ...

  16. Effective potential in N=1, d=4 supergravity coupled to the Volkov-Akulov field

    International Nuclear Information System (INIS)

    Jasinschi, R.S.; Smith, A.W.

    1984-01-01

    The only-loop effective potential for N=1, d=4 supergravity theory coupled to the Volkov-Akulov field is calculated. Then it is shown that after an ajustment of some parameters the local supersymmetry is dynamically broken and as a consequence the gravitino acquires mass. (Author) [pt

  17. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan; Heo, Junseok; Bayraktaroglu, Adrian; Guo, Wei; Ng, Tien Khee; Phillips, Jamie; Ooi, Boon S.; Bhattacharya, Pallab

    2012-01-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non

  18. Effect of Topology Structures on Synchronization Transition in Coupled Neuron Cells System

    International Nuclear Information System (INIS)

    Liang Li-Si; Zhang Ji-Qian; Xu Gui-Xia; Liu Le-Zhu; Huang Shou-Fang

    2013-01-01

    In this paper, by the help of evolutionary algorithm and using Hindmarsh—Rose (HR) neuron model, we investigate the effect of topology structures on synchronization transition between different states in coupled neuron cells system. First, we build different coupling structure with N cells, and found the effect of synchronized transition contact not only closely with the topology of the system, but also with whether there exist the ring structures in the system. In particular, both the size and the number of rings have greater effects on such transition behavior. Secondly, we introduce synchronization error to qualitative analyze the effect of the topology structure. Furthermore, by fitting the simulation results, we find that with the increment of the neurons number, there always exist the optimization structures which have the minimum number of connecting edges in the coupling systems. Above results show that the topology structures have a very crucial role on synchronization transition in coupled neuron system. Biological system may gradually acquire such efficient topology structures through the long-term evolution, thus the systems' information process may be optimized by this scheme. (interdisciplinary physics and related areas of science and technology)

  19. Relationship Enhancement with Premarital Couples: An Assessment of Effects on Relationship Quality.

    Science.gov (United States)

    Ridley, Carl A.; And Others

    1982-01-01

    Assessed the effects of a relationship enhancement program on the relationship adjustment; trust and intimacy; empathy, warmth and genuineness; and communication of premarital couples (N=25). Results showed that following training the experimental group, relative to the control group, made significant increases on all dependent variables. (Author)

  20. The effective baryon-lepton coupling constant and the parity of leptons

    International Nuclear Information System (INIS)

    Lucha, W.; Stremnitzer, H.

    1981-01-01

    Using a phenomenological ansatz for the Lagrangian of baryon- and lepton-number violating interactions the effective baryon-lepton coupling constant is calculated within the framework of a relativistic quark model. Apart from a calculation of B-number violating cross-sections and decays this ansatz allows for a definition of the parity of leptons relative to baryons. (Auth.)

  1. The Effect of Daily Challenges in Children with Autism on Parents’ Couple Problem-Solving Interactions

    Science.gov (United States)

    Hartley, Sigan L.; Papp, Lauren M.; Blumenstock, Shari; Floyd, Frank; Goetz, Greta L.

    2016-01-01

    The vulnerability-stress-adaptation model guided this examination of the impact of daily fluctuations in the symptoms and co-occurring behavior problems of children with autism spectrum disorder (ASD) on parents’ couple problem-solving interactions in natural settings and as these interactions spontaneously occur. A 14-day daily diary was completed by mothers and fathers in 176 families who had a child with ASD. On each day of the diary, parents separately reported on the child with ASD's daily level of symptoms and co-occurring behavior problems and the topic and level of negative affect in their most meaningful or important daily couple problem-solving interaction. Multilevel modeling was used to account for the within-person, within-couple nested structure of the data. Results indicated that many parents are resilient to experiencing a day with a high level of child ASD symptoms and co-occurring behavior problems and do not report more negative couple problem-solving interactions. However, household income, level of parental broader autism phenotype, and presence of multiple children with special care needs served as vulnerability factors in that they were related to a higher overall rating of negative affect in couple interactions and moderated the impact of reporting a day with a high level of child ASD symptoms and co-occurring behavior problems on next-day ratings of negative couple problem-solving interactions. The magnitude of these effects was small. Understanding mechanisms that support adaptive couple interactions in parents of children with ASD is critical for promoting best outcomes. PMID:27336179

  2. arXiv Hybrid Fluid Models from Mutual Effective Metric Couplings

    CERN Document Server

    Kurkela, Aleksi; Preis, Florian; Rebhan, Anton; Soloviev, Alexander

    Motivated by a semi-holographic approach to the dynamics of quark-gluon plasma which combines holographic and perturbative descriptions of a strongly coupled infrared and a more weakly coupled ultraviolet sector, we construct a hybrid two-fluid model where interactions between its two sectors are encoded by their effective metric backgrounds, which are determined mutually by their energy-momentum tensors. We derive the most general consistent ultralocal interactions such that the full system has a total conserved energy-momentum tensor in flat Minkowski space and study its consequences in and near thermal equilibrium by working out its phase structure and its hydrodynamic modes.

  3. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    Science.gov (United States)

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  4. Synchronization effects in two coupled one-dimensional lattices of phase oscillators

    International Nuclear Information System (INIS)

    Pando L, Carlos L.

    2001-03-01

    We study synchronization effects in a model consisting of two identical unidirectionally coupled 1-D arrays of phase oscillators. The master array is in the spatio-temporal chaos regime and the coupling across the two arrays is not strong enough in order to reach complete synchronization. The time series of the distance between the arrays is the main object of our study and this shows on-off intermittency. We can approximate the dynamics of the aforementioned time series with that of a first-order Markov process with two symbols. This model can be implemented in arrays of phase-locked loops (PPL) and Josephson junctions. (author)

  5. Small Displacement Coupled Analysis of Concrete Gravity Dam Foundations: Static and Dynamic Conditions

    Science.gov (United States)

    Farinha, Maria Luísa Braga; Azevedo, Nuno Monteiro; Candeias, Mariline

    2017-02-01

    The explicit formulation of a small displacement model for the coupled hydro-mechanical analysis of concrete gravity dam foundations based on joint finite elements is presented. The proposed coupled model requires a thorough pre-processing stage in order to ensure that the interaction between the various blocks which represent both the rock mass foundation and the dam is always edge to edge. The mechanical part of the model, though limited to small displacements, has the advantage of allowing an accurate representation of the stress distribution along the interfaces, such as rock mass joints. The hydraulic part and the mechanical part of the model are fully compatible. The coupled model is validated using a real case of a dam in operation, by comparison of the results with those obtained with a large displacement discrete model. It is shown that it is possible to assess the sliding stability of concrete gravity dams using small displacement models under both static and dynamic conditions.

  6. Mutual Coupling Effects for Radar Cross Section (RCS of a Series-Fed Dipole Antenna Array

    Directory of Open Access Journals (Sweden)

    H. L. Sneha

    2012-01-01

    Full Text Available The estimation of RCS of a phased array depends on various parameters, namely, array geometry, operational frequency, feed network, mutual coupling between the antenna elements and so fourth. This paper presents the estimation of RCS of linear dipole array with series-feed network by tracing the signal path from the antenna aperture into the feed network. The effect of mutual coupling exhibited by the dipole antenna is considered for three configurations namely, side by side, collinear, and parallel in echelon. It is shown that the mutual coupling affects the antenna pattern (and hence RCS significantly for larger scan angles. Further it is inferred that the RCS of phased array can be optimized by (i reducing the length of the dipole, (ii termination of the isolation port of the coupler with a suitable load, and (iii using suitable amplitude distribution.

  7. Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes

    International Nuclear Information System (INIS)

    Rui-Qiang, Wang; Kai-Ming, Jiang

    2009-01-01

    The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron–phonon coupling strength. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Effect of Turbulence on Power for Bend-Twist Coupled Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    that it might be related to the dynamic response of bend-twist coupled blades in turbulent flow. This paper contains estimations of the power curve from nonlinear time simulations, a linear frequency domain based method and a normal distribution weighted average method. It is shown that the frequency domain...... that changes in power due to turbulence are similar for coupled and uncoupled blades. Power gains at low wind speeds are related to the curvature of the steady state power curve. Losses around rated wind speed are caused by the effects of controller switching between partial and full power operation.......Bend-twist coupling of wind turbine blades reduces the structural loads of the turbine but it also results in a decrease of the annual energy production. The main part of the power loss can be mitigated by pretwisting the blade, but some power loss remains and previous studies indicate...

  9. Impact of coupled heat and moisture transfer effects on buildings energy consuption

    Directory of Open Access Journals (Sweden)

    Ferroukhi Mohammed Yacine

    2017-01-01

    Full Text Available Coupled heat, air, and moisture transfers through building envelope have an important effect on prediction of building energy requirements. Several works were conducted in order to integrate hygrothermal transfers in dynamic buildings simulations codes. However, the incorporation of multidirectional hygrothermal transfer analysis in the envelope into building simulation tools is rarely considered. In this work, coupled heat, air, and moisture (HAM transfer model in multilayer walls was established. Thereafter, the HAM model is coupled dynamically to a building behavior code (BES.The coupling concerns a co-simulation between COMSOL Multiphysics and TRNSYS software. Afterward, the HAM-BES co-simulation accuracy was verified. Then, HAM-BES co-simulation platform was applied to a case study with various types of climates (temperate, hot and humid, cold and humid. Three simulations cases were carried out. The first simulation case consists of the TRNSYS model without HAM transfer model. The second simulation case, 1-D HAM model for the envelope was integrated in TRNSYS code. For the third one, 1-D HAM model for the wall and 2-D HAM model for thermal bridges were coupled to the thermal building model of TRNSYS. Analysis of the results confirms the significant impact of 2-D envelope hygrothermal transfers on the indoor thermal and moisture behavior of building as well as on the energy building assessment. These conclusions are shown for different studied climates.

  10. The magnetoelectric coupling effect in multiferroic composites based on PZT–ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowska, J.A., E-mail: joanna.bartkowska@us.edu.pl

    2015-01-15

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the values of magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the ferroelectric–ferromagnetic composite PZT–ferrite type, namely PSZTC–NiZn and PBZTN–NiZn. The main component of the ferroelectric–ferromagnetic composite was PZT type powder (with ferroelectric properties), which was synthesized using sintering of a mixture of simple oxides in solid phase. The second element of the ferroelectric–ferromagnetic composite was the ferrite powder (with ferromagnetic properties). Ferrite powder was synthesized using calcination. Next, the mixed components were synthesized using sintering of the mixture of simple oxides in a solid phase (compaction by a free sintering method). The temperature dependences of the dielectric permittivity (ε) for the different frequencies and for both multiferroic composites were investigated. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified. - Highlights: • The magnetoelectric effect at two different ferroelectric–ferromagnetic composites based on a PZT and nickel–zinc ferrite. • Multiferroics composite incorporate both ferroelectric and magnetic phases. • The mechanism of the magnetoelectric coupling between ferroelectric and magnetic properties, in multiferroic composites, is caused by the strain. • The determination of the magnetoelectric coupling coefficient based on a theoretical model and the measurements of dielectric permittivity.

  11. The magnetoelectric coupling effect in multiferroic composites based on PZT–ferrite

    International Nuclear Information System (INIS)

    Bartkowska, J.A.

    2015-01-01

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the values of magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the ferroelectric–ferromagnetic composite PZT–ferrite type, namely PSZTC–NiZn and PBZTN–NiZn. The main component of the ferroelectric–ferromagnetic composite was PZT type powder (with ferroelectric properties), which was synthesized using sintering of a mixture of simple oxides in solid phase. The second element of the ferroelectric–ferromagnetic composite was the ferrite powder (with ferromagnetic properties). Ferrite powder was synthesized using calcination. Next, the mixed components were synthesized using sintering of the mixture of simple oxides in a solid phase (compaction by a free sintering method). The temperature dependences of the dielectric permittivity (ε) for the different frequencies and for both multiferroic composites were investigated. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified. - Highlights: • The magnetoelectric effect at two different ferroelectric–ferromagnetic composites based on a PZT and nickel–zinc ferrite. • Multiferroics composite incorporate both ferroelectric and magnetic phases. • The mechanism of the magnetoelectric coupling between ferroelectric and magnetic properties, in multiferroic composites, is caused by the strain. • The determination of the magnetoelectric coupling coefficient based on a theoretical model and the measurements of dielectric permittivity

  12. Effects of Mechanical Coupling Between Cardiomyocytes and Cardiac Fibroblasts on Myocardium

    Science.gov (United States)

    Zorlutuna, Pinar; Nguyen, Trung Dung; Nagarajan, Neerajha

    Cardiomyocytes show excitatory responses to stimulation solely by mechanical forces through their stretch-activated ion channels, and can fire action potentials upon mechanical stimulation through a pathway known as mechano-electric feedback. Furthermore, cardiomyocyte (CM) - cardiac fibroblasts (CF) can couple mechanically through cell-cell junctions. Here we investigated the effects of CM and CF mechanical coupling on myocardial physiology and pathology using a bio-nanoindentered coupled with fast calcium imaging and microelectrode arrays. In order to study mechanical signal transmission, we measured the contractile forces generated by CMs, as well as by CFs that were coupled to the CMs. We observed that CFs were beating with the same frequency but at smaller magnitude compared to CMs, and their contractility was dependent on the substrate stiffness. Our results showed that beating CMs actively stretched neighbouring CFs through the deformation of the substrate the cells were seeded on, which promoted the myocardial contractility through mechanical coupling. The results also revealed that CM contractility was propagated greater on soft substrates than stiff ones. Results of this study could help identify the role of the infarcted tissue stiffness and size on heart failure. This study is supported by NSF Grant No: 1530884.

  13. Structural-acoustic coupling effects on the non-vacuum packaging vibratory cylinder gyroscope.

    Science.gov (United States)

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang

    2013-12-13

    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  14. Structural-Acoustic Coupling Effects on the Non-Vacuum Packaging Vibratory Cylinder Gyroscope

    Directory of Open Access Journals (Sweden)

    Xiang Xi

    2013-12-01

    Full Text Available The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  15. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively lo...... with the contact resistance artificially increased by resistors. The results emphasize the importance of keeping contact resistance low in CR measurements....

  16. Effects of non-linearity of material properties on the coupled mechanical-hydraulic-thermal behavior in rock mass

    International Nuclear Information System (INIS)

    Kobayashi, Akira; Ohnishi, Yuzo

    1986-01-01

    The nonlinearity of material properties used in the coupled mechanical-hydraulic-thermal analysis is investigated from the past literatures. Some nonlinearity that is respectively effective for the system is introduced into our computer code for analysis such a coupling problem by using finite element method. And the effects of nonlinearity of each material property on the coupled behavior in rock mass are examined for simple model and Stripa project model with the computer code. (author)

  17. Correlation effects beyond coupled cluster singles and doubles approximation through Fock matrix dressing.

    Science.gov (United States)

    Maitra, Rahul; Nakajima, Takahito

    2017-11-28

    We present an accurate single reference coupled cluster theory in which the conventional Fock operator matrix is suitably dressed to simulate the effect of triple and higher excitations within a singles and doubles framework. The dressing thus invoked originates from a second-order perturbative approximation of a similarity transformed Hamiltonian and induces higher rank excitations through local renormalization of individual occupied and unoccupied orbital lines. Such a dressing is able to recover a significant amount of correlation effects beyond singles and doubles approximation, but only with an economic n 5 additional cost. Due to the inclusion of higher rank excitations via the Fock matrix dressing, this method is a natural improvement over conventional coupled cluster theory with singles and doubles approximation, and this method would be demonstrated via applications on some challenging systems. This highly promising scheme has a conceptually simple structure which is also easily generalizable to a multi-reference coupled cluster scheme for treating strong degeneracy. We shall demonstrate that this method is a natural lowest order perturbative approximation to the recently developed iterative n-body excitation inclusive coupled cluster singles and doubles scheme [R. Maitra et al., J. Chem. Phys. 147, 074103 (2017)].

  18. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    Directory of Open Access Journals (Sweden)

    B. W. Bai

    2015-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  19. Effects of breakup couplings on 8B + 58 Ni elastic scattering

    International Nuclear Information System (INIS)

    Lubian, J.; Correa, T.; Gomes, P.R.S.; Canto, L.F.; Aguilera, E.F.; Gomez-Camacho, A.; Quiroz, E.M.

    2009-01-01

    Full text: Nuclear reactions involving weakly bound nuclei have been extensively investigated over the last years. Because of the low breakup threshold, collisions of weakly bound systems have large breakup cross sections. Nuclear reactions induced by 8 B projectiles have attracted particular interest, because the Coulomb dissociation of this nucleus leads to important information for understanding solar neutrino emission. Because the breakup process involves unbound states of the projectile's fragments is necessary to approximate the continuum by a finite number of channels. This is achieved by continuum discretized coupled channel (CDCC) method. Recently, new data have become available for the 8 B + 58 Ni system. Aguilera et al measured elastic angular distributions at several collisions energies, in the barrier region. In the present work, we perform a theoretical study of the effect of the breakup channel on the elastic angular distributions for the 8 B + 58 Ni system, using the CDCC method. The result of our calculations were in excellent agreement with the experimental results. We have also investigated the effects of inelastic excitations and of continuum-continuum couplings on the angular distributions. We found that inelastic excitations do not have an appreciable influence while continuum- continuum couplings are of utmost importance. We have shown that the multipole expansion of the coupling interaction is dominated by monopole, dipole, and quadrupole terms. Higher multipoles can be neglected. (author)

  20. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  1. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  2. Flexoelectric Effect on Vibration of Piezoelectric Microbeams Based on a Modified Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    Xingjia Li

    2017-01-01

    Full Text Available A novel electric Gibbs function was proposed for the piezoelectric microbeams (PMBs by employing a modified couple stress theory. Based on the new Gibbs function and the Euler-Bernoulli beam theory, the governing equations which incorporate the effects of couple stress, flexoelectricity, and piezoelectricity were derived for the mechanics of PMBs. The analysis of the effective bending rigidity shows the effects of size and flexoelectricity can greaten the stiffness of PMBs so that the natural frequency increases significantly compared with the Euler-Bernoulli beam, and then the mechanical and electrical properties of PMBs are enhanced compared to the classical beam. This study can guide the design of microscale piezoelectric/flexoelectric structures which may find potential applications in the microelectromechanical systems (MEMS.

  3. Couple disagreement about short-term fertility desires in Austria: Effects on intentions and contraceptive behaviour

    Directory of Open Access Journals (Sweden)

    Maria Rita Testa

    2012-02-01

    Full Text Available BACKGROUND Because of the dyadic nature of reproduction, the couple is the most suitable context forstudying reproductive decision-making. OBJECTIVE I investigate the effects of couple disagreement about short-term childbearing desires on the formulation and implementation of fertility intentions. Do men and women incorporate the perception of a disagreement with the partner about wanting a(nother child now in their reports on short-term fertility intentions and contraceptive behaviour? Are there relevant differences by type of disagreement, parity, gender and gender equality within the couple? METHODS Using individual-level data from the Austrian Generation and Gender Survey conductedin 2008, I regress respondent's short-term fertility intentions (ordinal regression modelsand non-use of contraception (logistic regression model on couple's short-term childbearing desires and a set of background variables. RESULTS The findings show that disagreement is shifted toward a pregnancy intentionpregnancy-seeking behaviour at parity zero and toward avoiding pregnancy and maintainingcontraceptive use at higher parities. Childless women are less responsive to the perceptionof their partner's desires than childless men when they express their short-termchildbearing intentions. Neither women nor men are likely to stop contraception if they perceive a disagreement with their partner about wanting a(nother child. Moreover, if theman is actively involved in childcare duties the chance to resolve the couple conflict in favour of childbearing increases. CONCLUSIONS This paper calls for the collection of data from both members of each couple so that theanalysis of the partner's actual desires can complement the analysis of the partner's perceived desires.

  4. Coupling and corona effects research plan for transmission lines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, J E; Formanek, V C

    1976-06-01

    Concern has arisen over the possible effects of electric and magnetic fields produced by EHV-UHV transmission lines. Past and ongoing research concerning the electric and magnetic field effects from EHV-UHV transmission lines was reviewed as it pertains to the following areas: (1) electromagnetic interference, (2) acoustic noise, (3) generation of gaseous effluents, and (4) safety considerations of induced voltages and currents. The intent of this review was to identify the short and long range research projects required to address these areas. The research plan identifies and gives priority to twenty programs in corona and coupling effects. In the case of the corona effects, a number of programs were recommended for acoustic noise and electromagnetic interference to delineate improved power line design criteria in terms of social, meteorological, geographical and cost constraints. Only one project is recommended in the case of ozone generation, because the results of comprehensive analyses, laboratory studies and field measurements have demonstrated that power lines do not contribute significant quantities of ozone. In the case of the coupling effects, a number of programs are recommended for HVAC transmission lines to improve the theoretically developed design guidelines by considering practical constraints. For HVDC transmission lines, programs are suggested to engender a better theoretical understanding and practical measurements capability for the coupling mechanisms of the dc electric and magnetic field with nearby objects. The interrelationship of the programs and their role in a long-term research plan is also discussed.

  5. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  6. Actor and partner effects of coping on adjustment in couples undergoing assisted reproduction treatment

    Directory of Open Access Journals (Sweden)

    Aleksandra Kroemeke

    2017-06-01

    Full Text Available Background Infertility is a shared experience as it affects both partners. However, mutual dependencies between coping and adjustment at the couple level remain to be fully elucidated. The study attempted to address this issue using the Actor-Partner Interdependence Model (APIM to examine the actor effect (the extent to which an individual’s score on coping predicted their own level of depressive symptoms and life purpose and the partner effect (the extent to which an individual’s score on coping predicted the level of adjustment in the partner in couples undergoing assisted reproduction treatment (ART. Participants and procedure Coping strategies, depressive symptoms, and life purpose were assessed among 31 married couples (aged 27-38 years undergoing ART. The Brief COPE, CES-D, and PIL questionnaires were used. Data were analyzed by multilevel modeling (MLM. Results The results of MLM indicated that focus on positive and active coping had an actor effect with depressive symptoms and life purpose, respectively. The actor effect of evasive coping on depression was moderated by gender and significant only in women. The partner effect was demonstrated for evasive coping, social support seeking, and substance use – the first two were gender moderated and significant in men. Conclusions Coping efforts in the couple during infertility treatment are not only associated with the individual but also the partner’s adjustment to that situation. Although the focus on positive and active coping was associated with individual benefits, other coping strategies which have the function of a protective buffer may also result in the occurrence of side effects, especially in females.

  7. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  8. Coupling a system code with computational fluid dynamics for the simulation of complex coolant reactivity effects

    International Nuclear Information System (INIS)

    Bertolotto, D.

    2011-11-01

    The current doctoral research is focused on the development and validation of a coupled computational tool, to combine the advantages of computational fluid dynamics (CFD) in analyzing complex flow fields and of state-of-the-art system codes employed for nuclear power plant (NPP) simulations. Such a tool can considerably enhance the analysis of NPP transient behavior, e.g. in the case of pressurized water reactor (PWR) accident scenarios such as Main Steam Line Break (MSLB) and boron dilution, in which strong coolant flow asymmetries and multi-dimensional mixing effects strongly influence the reactivity of the reactor core, as described in Chap. 1. To start with, a literature review on code coupling is presented in Chap. 2, together with the corresponding ongoing projects in the international community. Special reference is made to the framework in which this research has been carried out, i.e. the Paul Scherrer Institute's (PSI) project STARS (Steady-state and Transient Analysis Research for the Swiss reactors). In particular, the codes chosen for the coupling, i.e. the CFD code ANSYS CFX V11.0 and the system code US-NRC TRACE V5.0, are part of the STARS codes system. Their main features are also described in Chap. 2. The development of the coupled tool, named CFX/TRACE from the names of the two constitutive codes, has proven to be a complex and broad-based task, and therefore constraints had to be put on the target requirements, while keeping in mind a certain modularity to allow future extensions to be made with minimal efforts. After careful consideration, the coupling was defined to be on-line, parallel and with non-overlapping domains connected by an interface, which was developed through the Parallel Virtual Machines (PVM) software, as described in Chap. 3. Moreover, two numerical coupling schemes were implemented and tested: a sequential explicit scheme and a sequential semi-implicit scheme. Finally, it was decided that the coupling would be single

  9. Refractive index modulation based on excitonic effects in GaInAs-InP coupled asymmetric quantum wells

    DEFF Research Database (Denmark)

    Thirstrup, Carsten

    1995-01-01

    The effect of excitons in GaInAs-InP coupled asymmetric quantum wells on the refractive index modulation, is analyzed numerically using a model based on the effective mass approximation. It is shown that two coupled quantum wells brought in resonance by an applied electric field will, due...

  10. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  11. Coupling of the electrocaloric and electromechanical effects for solid-state refrigeration

    Science.gov (United States)

    Bradeško, A.; Juričić, Äń.; Santo Zarnik, M.; Malič, B.; Kutnjak, Z.; Rojac, T.

    2016-10-01

    Electrocaloric (EC) materials have shown the potential to replace some of the technologies in current commercial refrigeration systems. The key problem when fabricating an efficient EC refrigerator is the small adiabatic temperature change that current bulk materials can achieve. Therefore, such a solid-state EC refrigerator should be engineered to enhance the EC temperature change by rectifying the induced EC heat flow. Here, we present a numerical study of a device that couples the EC and electromechanical (EM) effects in a single active material. The device consists of several elements made from a functional material with coupled EC and EM properties, allowing the elements to bend and change their temperature with the application of an electric field. The periodic excitation of these elements results in a temperature span across the device. By assuming heat exchange with the environment and a low thermal contact resistivity between the elements, we show that a device with 15 elements and an EC effect of 1.2 K achieves a temperature span between the hot and cold sides of the device equal to 12.6 K. Since the temperature span can be controlled by the number of elements in the device, the results suggest that in combination with the so-called "giant" EC effect (ΔTEC ≥ 10 K), a very large temperature span would be possible. The results of this work should motivate the development of efficient EC refrigeration systems based on a coupling of the EC and EM effects.

  12. Rashba spin–orbit coupling effects on a current-induced domain wall motion

    International Nuclear Information System (INIS)

    Ryu, Jisu; Seo, Soo-Man; Lee, Kyung-Jin; Lee, Hyun-Woo

    2012-01-01

    A current-induced domain wall motion in magnetic nanowires with a strong structural inversion asymmetry [I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Nat. Mat. 10 (2011) 419] seems to have novel features such as the domain wall motion along the current direction or the delay of the onset of the Walker breakdown. In such a highly asymmetric system, the Rashba spin–orbit coupling (RSOC) may affect a domain wall motion. We studied theoretically the RSOC effects on a domain wall motion and found that the RSOC, indeed, can induce the domain wall motion along the current direction in certain situations. It also delays the Walker breakdown and for a strong RSOC, the Walker breakdown does not occur at all. The RSOC effects are sensitive to the magnetic anisotropy of nanowires and also to the ratio between the Gilbert damping parameter α and the non-adiabaticity parameter β. - Highlights: ► Effects of Rashba spin–orbit coupling on a domain wall motion is calculated. ► The effects depend highly on the anisotropy of a magnetic system. ► It modifies the wall velocity for the system with a perpendicular magnetic anisotropy. ► The modified velocity can be along the current direction in certain situations. ► Rashba spin–orbit coupling also hinders the onset of the Walker breakdown.

  13. Phase correction of electromagnetic coupling effects in cross-borehole EIT measurements

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2015-01-01

    Borehole EIT measurements in a broad frequency range (mHz to kHz) are used to study subsurface geophysical properties. However, accurate measurements have long been difficult because the required long electric cables introduce undesired inductive and capacitive coupling effects. Recently, it has been shown that such effects can successfully be corrected in the case of single-borehole measurements. The aim of this paper is to extend the previously developed correction procedure for inductive coupling during EIT measurements in a single borehole to cross-borehole EIT measurements with multiple borehole electrode chains. In order to accelerate and simplify the previously developed correction procedure for inductive coupling, a pole–pole matrix of mutual inductances is defined. This consists of the inductances of each individual chain obtained from calibration measurements and the inductances between two chains calculated from the known cable positions using numerical modelling. The new correction procedure is successfully verified with measurements in a water-filled pool under controlled conditions where the errors introduced by capacitive coupling were well-defined and could be estimated by FEM forward modelling. In addition, EIT field measurements demonstrate that the correction methods increase the phase accuracy considerably. Overall, the phase accuracy of cross-hole EIT measurements after correction of inductive and capacitive coupling is improved to better than 1 mrad up to a frequency of 1 kHz, which substantially improves our ability to characterize the frequency-dependent complex electrical resistivity of weakly polarizable soils and sediments in situ. (paper)

  14. Macroscopic Magnetic Coupling Effect: The Physical Origination of a High-Temperature Superconducting Flux Pump

    Science.gov (United States)

    Wang, Wei; Coombs, Tim

    2018-04-01

    We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.

  15. Flavor changing effects in theories with a heavy Z' boson with family nonuniversal couplings

    International Nuclear Information System (INIS)

    Langacker, Paul; Pluemacher, Michael

    2000-01-01

    There are theoretical and phenomenological motivations that there may exist additional heavy Z ' bosons with family nonuniversal couplings. Flavor mixing in the quark and lepton sectors will then lead to flavor changing couplings of the heavy Z ' , and also of the ordinary Z when Z-Z ' mixing is included. The general formalism of such effects is described, and applications are made to a variety of flavor changing and CP-violating tree and loop processes. Results are described for three specific cases motivated by a specific heterotic string model and by phenomenological considerations, including cases in which all three families have different couplings, and those in which the first two families, but not the third, have the same couplings. Even within a specific theory the results are model dependent because of unknown quark and lepton mixing matrices. However, assuming that typical mixings are comparable to the Cabibbo-Kobayashi-Maskawa matrix, processes such as coherent μ-e conversion in a muonic atom, K 0 -K(bar sign) 0 and B-B(bar sign) mixing, ε, and ε ' /ε lead to significant constraints on Z ' bosons in the theoretically and phenomenologically motivated range M Z ' ∼1 TeV. (c) 2000 The American Physical Society

  16. Fano–Kondo Effect in a Triple Quantum Dots Coupled to Ferromagnetic Leads

    International Nuclear Information System (INIS)

    Ai-Hua, Bi; Shao-Quan, Wu; Tao, Hou; Wei-Li, Sun

    2008-01-01

    Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we have qualitatively studied the spin-dependent transport of a triple-QD system in the Kondo regime. It is shown that the Kondo resonance and Fano interference coexist, and in this system the Fano–Kondo effect shows dip behaviours richer than that in the T-shaped QDs. The interdot coupling, the energy level of the side coupled QDs and the spin polarization strength greatly influence the DOS of the central quantum dot QD 0 . Either the increase of the coupling strength between the two QDs or that of the energy levels of the side coupled QDs enhances the Kondo resonance. Especially, the Kondo resonance is strengthened greatly when the side dot energy is fixed at the Fermi energy. Meanwhile, the Kondo resonance splits for the spin-up and spin-down configurations due to the polarization: the down-spin resonance is enhanced, and the up-spin resonance is suppressed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.

    Science.gov (United States)

    Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit

    2017-01-01

    In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.

  18. Effect of Education on the Awareness of Primigravida Couples toward Infant Care

    Directory of Open Access Journals (Sweden)

    Maryam Bagheri

    2016-12-01

    Full Text Available Background: Infancy is one of the most critical stages of life, which requires parents to have adequate knowledge in order to provide careful nursing, attention and care for newborns. Given the importance of infant health, it is essential to teach proper child care techniques and principles to primigravida parents. This study aimed to evaluate the effect of education on the awareness of primigravida couples toward infant care. Methods: This clinical trial was conducted on 50 couples in the healthcare centers affiliated to Mashhad University of Medical Sciences, Mashhad, Iran. Study tools were researcher-made questionnaires, and data analysis was performed in SPSS version 16 using analysis of variance (ANOVA. Results: In this study, poor awareness of infant care was observed in the couples before training, which improved to moderate awareness after the educational sessions. Moreover, mean score of parental awareness significantly increased in mothers (P=0.005 and fathers (P=0.05 after the training. Conclusion: According to the results of this study, educational intervention could promote parental awareness in primigravida couples. Therefore, application of this method could help parents to provide nursing care for their newborns.

  19. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    International Nuclear Information System (INIS)

    Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)

  20. Hey Mr. Sandman: dyadic effects of anxiety, depressive symptoms and sleep among married couples.

    Science.gov (United States)

    Revenson, Tracey A; Marín-Chollom, Amanda M; Rundle, Andrew G; Wisnivesky, Juan; Neugut, Alfred I

    2016-04-01

    This study examined associations among anxiety, depressive symptoms, and sleep duration in a sample of middle-aged couples using the actor-partner interaction model with dyadic data. Self-report measures were completed independently by both partners as part of the health histories obtained during their annual preventive medical examinations in 2011 and 2012. Results showed that husbands' anxiety and depressive symptoms had a stronger effect on their wives' anxiety and depression than the other way around, but this was not moderated by one's own sleep duration. For both wives and husbands, higher levels of depressive symptoms and anxiety predicted shorter sleep duration for their partner 1 year later, although the effect of husbands' mental health on their wives' was again stronger. The findings suggest that sleep problems might better be treated as a couple-level phenomenon than an individual one, particularly for women.

  1. Effects of Tightening Torque on Dynamic Characteristics of Low Pressure Rotors Connected by a Spline Coupling

    Institute of Scientific and Technical Information of China (English)

    Chen Xi; Liao M ingfu; Li Quankun

    2017-01-01

    A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic character-istics of low pressure rotors connected by a spline coupling .The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement .Through simulating calculation and experiments ,the effects of tightening torque on the dynamic characteristics of the rotor system con-nected by a spline coupling including critical speeds ,vibration modes and unbalance responses are analyzed .The results show that when increasing the tightening torque ,the first two critical speeds and the amplitudes of unbal-ance response gradually increase in varying degrees while the vibration modes are essentially unchanged .In addi-tion ,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change .

  2. Modeling of capacitor charging dynamics in an energy harvesting system considering accurate electromechanical coupling effects

    Science.gov (United States)

    Bagheri, Shahriar; Wu, Nan; Filizadeh, Shaahin

    2018-06-01

    This paper presents an iterative numerical method that accurately models an energy harvesting system charging a capacitor with piezoelectric patches. The constitutive relations of piezoelectric materials connected with an external charging circuit with a diode bridge and capacitors lead to the electromechanical coupling effect and the difficulty of deriving accurate transient mechanical response, as well as the charging progress. The proposed model is built upon the Euler-Bernoulli beam theory and takes into account the electromechanical coupling effects as well as the dynamic process of charging an external storage capacitor. The model is validated through experimental tests on a cantilever beam coated with piezoelectric patches. Several parametric studies are performed and the functionality of the model is verified. The efficiency of power harvesting system can be predicted and tuned considering variations in different design parameters. Such a model can be utilized to design robust and optimal energy harvesting system.

  3. Effects of randomness on chaos and order of coupled logistic maps

    International Nuclear Information System (INIS)

    Savi, Marcelo A.

    2007-01-01

    Natural systems are essentially nonlinear being neither completely ordered nor completely random. These nonlinearities are responsible for a great variety of possibilities that includes chaos. On this basis, the effect of randomness on chaos and order of nonlinear dynamical systems is an important feature to be understood. This Letter considers randomness as fluctuations and uncertainties due to noise and investigates its influence in the nonlinear dynamical behavior of coupled logistic maps. The noise effect is included by adding random variations either to parameters or to state variables. Besides, the coupling uncertainty is investigated by assuming tinny values for the connection parameters, representing the idea that all Nature is, in some sense, weakly connected. Results from numerical simulations show situations where noise alters the system nonlinear dynamics

  4. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas

    International Nuclear Information System (INIS)

    Chen Zhipeng; Li Hong; Liu Qiuyan; Luo Chen; Xie Jinlin; Liu Wandong

    2011-01-01

    A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications. (low temperature plasma)

  5. Coupling effects of grey-grey separate spatial screening soliton pairs

    International Nuclear Information System (INIS)

    Jiang Qichang; Su Yanli; Ji Xuanmang

    2012-01-01

    The existence and coupling effects of grey-grey separate spatial soliton pairs in a biased series non-photovoltaic photorefractive crystal circuit are investigated in this paper. The numerical solution of grey-grey soliton pairs is derived. The coupling effects between two grey solitons resulting from the input optical intensity and crystal temperature are analyzed numerically. The results show that when the input optical intensity of one crystal changes, two grey solitons in a soliton pair will all change; that is, two grey solitons can affect each other by the light-induced current that flows from one crystal to another. When the temperature of one crystal increases, the intensity width of the grey soliton in this crystal first decreases and then increases. Simultaneously, the intensity width of another grey soliton increases monotonically.

  6. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2013-01-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now

  7. Strong coupling gauge theories and effective field theories. Proceedings of the 2002 international workshop

    International Nuclear Information System (INIS)

    Harada, Masayasu; Kikukawa, Yoshio; Yamawaki, Koichi

    2003-01-01

    This issue presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis in a placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories. The 43 of the presented papers are indexed individually. (J.P.N)

  8. The effect of diffusion couple tin content on the superconductivity of filamentary niobium tin composites

    International Nuclear Information System (INIS)

    McDougall, I.L.

    1978-01-01

    The precision with which composites can be designed to meet magnet specifications is improved by considering the effect of non-equilibrium growth in the bronze niobium diffusion couples. Evidence is presented for the suggestion that high growth rates induce lattice microfaulting which reduced Tsub(c) and Hsub(c2) and gives a large gradient in grain size which reduces Jsub(c). (author)

  9. Coupling effects on turning points of infectious diseases epidemics in scale-free networks.

    Science.gov (United States)

    Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung

    2017-05-31

    Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.

  10. Coupling effects of chemical stresses and external mechanical stresses on diffusion

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2009-01-01

    Interaction between diffusion and stress fields has been investigated extensively in the past. However, most of the previous investigations were focused on the effect of chemical stress on diffusion due to the unbalanced mass transport. In this work, the coupling effects of external mechanical stress and chemical stress on diffusion are studied. A self-consistent diffusion equation including the chemical stress and external mechanical stress gradient is developed under the framework of the thermodynamic theory and Fick's law. For a thin plate subjected to unidirectional tensile stress fields, the external stress coupled diffusion equation is solved numerically with the help of the finite difference method for one-side and both-side charging processes. Results show that, for such two types of charging processes, the external stress gradient will accelerate the diffusion process and thus increase the value of concentration while reducing the magnitude of chemical stress when the direction of diffusion is identical to that of the stress gradient. In contrast, when the direction of diffusion is opposite to that of the stress gradient, the external stress gradient will obstruct the process of solute penetration by decreasing the value of concentration and increasing the magnitude of chemical stress. For both-side charging process, compared with that without the coupling effect of external stress, an asymmetric distribution of concentration is produced due to the asymmetric mechanical stress field feedback to diffusion.

  11. Effects of spin-orbit activated interchannel coupling on dipole photoelectron angular distribution asymmetry parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Tashkent 70125 (Uzbekistan); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2004-02-28

    The effects of spin-orbit induced interchannel coupling on the dipole photoelectron angular asymmetry parameter {beta}{sub 3d} for Xe, Cs and Ba are explored using a modified version of the spin-polarized random phase approximation with exchange (SPRPAE) methodology. For Xe, {beta}{sub 3d{sub 5/2}} is modified somewhat by the interchannel coupling in the vicinity of the 3d{sub 3/2} {yields} {epsilon}f shape resonance, and this effect is significantly more pronounced in Cs where the resonance is larger. In Ba, however, where f-wave orbital collapse has occurred, the shape resonance has moved below threshold and the effect of interchannel coupling on {beta}{sub 3d{sub 5/2}} above the 3d{sub 3/2} threshold is negligible. But below the 3d{sub 3/2} threshold, {beta}{sub 3d{sub 5/2}} is dominated by the huge broad 3d{sub 3/2} {yields} 4f resonance.

  12. Effect of hydroelastic coupling on the response of a nuclear reactor to ground acceleration

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Skinner, D.A.

    1977-01-01

    The dynamical characteristics of a nuclear reactor vessel and its internal components is affected by the coolant inside the vessel. Recent studies in flow-induced vibration of reactor internal components show that the effect of the entrapped coolant can be properly accounted for by adding a 'hydrodynamic mass' matrix to the physical mass of the fluid structure system. In the past few years, analytical expressions for this hydrodynamic mass matrix have been derived, usually under greatly simplifying assumptions on the geometry of the structure. Typical examples are slender-cylinder and simply-supported-cylinder assumptions. While expressions derived based on these assumptions can still bring out the general characteristics of hydroelastic coupling of structure, their application to seismic analysis of reactor components is limited because these structutres, even though generally cylindrical, are usually neither slender nor simply supported. This paper presents an anlytical and experimental study of the effects of hydroelastic coupling on the seismic response of a reactor vessel and its internal components. The hydrodynamic mass matrix for cylindrical shell structures with arbitrary D/l ratios. Two specific examples are included to illustrate the effect of hydroelastic coupling on the response of a PWR to ground acceleration. (Auth.)

  13. Effects of Thermal Lattice Vibration on the Effective Potential of Weak-Coupling Bipolaron in a Quantum Dot

    International Nuclear Information System (INIS)

    Eerdunchaolu; Xiao Xin; Han Chao; Xin Wei; Wuyunqimuge

    2012-01-01

    Based on the Huybrechts' linear-combination operator, effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory. The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength, but decreases with increasing the temperature and the distance of electrons, respectively; the absolute value of the effective potential increases with increasing the radius of the quantum dot, electron-phonon coupling strength and the distance of electrons, respectively, but decreases with increasing the temperature; the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron: the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower; the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Effectiveness of psychiatric and counseling interventions On fertility rate in infertile couples

    Directory of Open Access Journals (Sweden)

    Ramezanzadeh F.

    2007-10-01

    Full Text Available Background: Considering the psycho-social model of diseases, the aim of this study was to evaluate the effect of psychiatric intervention on the pregnancy rate of infertile couples