WorldWideScience

Sample records for coupled climate models

  1. An Appraisal of Coupled Climate Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K

    2004-02-24

    In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''

  2. On coupling global biome models with climate models

    OpenAIRE

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992; J. Biogeogr. 19: 117-134), which predicts global vegetation patterns in equilibrium with climate, was coupled with the ECHAM climate model of the Max-Planck-Institut fiir Meteorologie, Hamburg, Germany. It was found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only betw...

  3. Coupled Climate Model Appraisal a Benchmark for Future Studies

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; AchutaRao, K; Bader, D; Covey, C; Doutriaux, C M; Fiorino, M; Gleckler, P J; Sperber, K R; Taylor, K E

    2005-08-22

    The Program for Climate Model Diagnosis and Intercomparison (PCMDI) has produced an extensive appraisal of simulations of present-day climate by eleven representative coupled ocean-atmosphere general circulation models (OAGCMs) which were developed during the period 1995-2002. Because projections of potential future global climate change are derived chiefly from OAGCMs, there is a continuing need to test the credibility of these predictions by evaluating model performance in simulating the historically observed climate. For example, such an evaluation is an integral part of the periodic assessments of climate change that are reported by the Intergovernmental Panel on Climate Change. The PCMDI appraisal thus provides a useful benchmark for future studies of this type. The appraisal mainly analyzed multi-decadal simulations of present-day climate by models that employed diverse representations of climate processes for atmosphere, ocean, sea ice, and land, as well as different techniques for coupling these components (see Table). The selected models were a subset of those entered in phase 2 of the Coupled Model Intercomparison Project (CMIP2, Covey et al. 2003). For these ''CMIP2+ models'', more atmospheric or oceanic variables were provided than the minimum requirements for participation in CMIP2. However, the appraisal only considered those climate variables that were supplied from most of the CMIP2+ models. The appraisal focused on three facets of the simulations of current global climate: (1) secular trends in simulation time series which would be indicative of a problematical ''coupled climate drift''; (2) comparisons of temporally averaged fields of simulated atmospheric and oceanic climate variables with available observational climatologies; and (3) correspondences between simulated and observed modes of climatic variability. Highlights of these climatic aspects manifested by different CMIP2+ simulations are briefly

  4. Coupling Climate Models and Forward-Looking Economic Models

    Science.gov (United States)

    Judd, K.; Brock, W. A.

    2010-12-01

    Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward

  5. Representing Icebergs In A Fully Coupled Climate Model

    Science.gov (United States)

    Bügelmayer, Marianne; Roche, Didier; Renssen, Hans

    2014-05-01

    Changes in the global climate during past and current times strongly impact the Polar Regions, which in turn affect the global climate due to several mechanisms, such as albedo, topography, ablation and ice discharge. Icebergs are an important part of the climate system as they interact with the ocean, atmosphere and cryosphere. Several approaches have been taken to incorporate iceberg calving into numerical models under different climate forcings. The studies done so far have in common that the icebergs were moved by reconstructed or modelled forcing fields and that the initial size distribution of the icebergs was prescribed according to present day observations. Hence, uncertainties in the forcing fields and in the parameterization of the iceberg size may alter the results. To investigate the impact of the background forcing (atmosphere, ocean) and the pre-defined size distribution on the icebergs and consequently on the Northern hemisphere climate and the Greenland ice sheet, we have coupled an earth system model of intermediate complexity (iLOVECLIM, Roche et al., 2013) to an ice sheet/ice shelf model (GRISLI, Ritz et al., 2001) and an iceberg module (Jongma et al., 2009; Bügelmayer et al., 2014). Using this set-up, we performed 15 sensitivity experiments that differ in the applied forcing (atmosphere, ocean), the applied boundary conditions (pre-industrial, 4xCO2, 1/4 x CO2) and the initial size distribution of the icebergs. In the presented study only the Greenland ice sheet is considered. We find that, under pre-industrial conditions, the atmospheric forcing pushes the icebergs further away from their calving sites and further into the North Atlantic, whereas the ocean currents transport the bergs along the Greenland coast and southward along the Canadian coast. Although the purely atmospheric-forced bergs cause warmer oceanic conditions than the oceanic-driven bergs, the overall effect on climate and the resulting ice sheet due to variations in the

  6. Midsummer Drought Pattern simulated by a coupled regional climate model

    Science.gov (United States)

    Martinez-Lopez, Benjamin; Cabos Narvaez, William David; Sein, Dmitry; Quintanar, Arturo

    2017-04-01

    In this work, a regional climate model of limited area, in both atmospheric and coupled mode, is used to simulate the historical period over a domain including Mexico and Central America. In the atmospheric mode, the REMO atmosphere model is used, while in the coupled simulation, REMO is coupled to the MPI-OM ocean model. In all simulations, REMO is driven at the open boundaries by reanalysis data from ERA-40. Several numerical experiments are performed using three different spatial resolutions (100 km, 50 km, and 25 km). Taylor diagrams of some meteorological and oceanic variables are used to get a quantitative idea of model performance. Additionally, the observed patterns of the Midsummer Drought are compared with the simulated ones. Among the results, it is noted that the coupled model with the highest resolution has the best performance to simulate the observed pattern of the Midsummer Drought. Over the eastern Pacific warm pool region, the coupled simulation generate fields of sea surface temperature, wind, and sea level pressure gradients more consistent with independent observations that those simulated in the atmospheric mode. In particular, the wind strengthened observed in July is well reproduced in the coupled simulation, which lead to higher values of vertically integrated water vapour transport coming from both the eastern tropical Pacific and the Caribbean. Despite the increased atmospheric humidity available above this region, the simulated fluxes are divergent and therefore the precipitation is reduced in July, in agreement with the observations. This July divergence in the vertically integrated water vapour transport is not present in the atmospheric mode.

  7. Evaluation of Coupled Model Forecasts of Ethiopian Highlands Summer Climate

    Directory of Open Access Journals (Sweden)

    Mark R. Jury

    2014-01-01

    Full Text Available This study evaluates seasonal forecasts of rainfall and maximum temperature across the Ethiopian highlands from coupled ensemble models in the period 1981–2006, by comparison with gridded observational products (NMA + GPCC/CRU3. Early season forecasts from the coupled forecast system (CFS are steadier than European community medium range forecast (ECMWF. CFS and ECMWF April forecasts of June–August (JJA rainfall achieve significant fit (r2=0.27, 0.25, resp., but ECMWF forecasts tend to have a narrow range with drought underpredicted. Early season forecasts of JJA maximum temperature are weak in both models; hence ability to predict water resource gains may be better than losses. One aim of seasonal climate forecasting is to ensure that crop yields keep pace with Ethiopia’s growing population. Farmers using prediction technology are better informed to avoid risk in dry years and generate surplus in wet years.

  8. Decadal climate variability simulated in a coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Walland, D.J. [Bureau of Meteorology, Melbourne, VIC (Australia). National Climate Centre; Power, S.B. [Bureau of Meteorology, Melbourne, VIC (Australia). Research Centre; Hirst, A.C. [Commonwealth Scientific Industrial Research Organisation Division of Atmospheric Research (Australia)

    2000-02-01

    A 1000 year integration of the CSIRO coupled ocean-atmosphere general circulation model is used to study low frequency (decadal to centennial) climate variability in precipitation and temperature. The model is shown to exhibit sizeable decadal variability for these fields, generally accounting for approximately 20 to 40% of the variability (greater than one year) in precipitation and up to 80% for temperature. An empirical orthogonal function (EOF) analysis is applied to the model output to show some of the major statistical modes of low frequency variability. The first EOF spatial pattern looks very much like that of the interannual ENSO pattern. It bears considerable resemblance to observational estimates and is centred in the Pacific extending into both hemispheres. It modulates both precipitation and temperature globally. The EOF has a time evolution that appears to be more than just red noise. Finally, the link between SST in the Pacific with Australian rainfall variability seen in observations is also evident in the model. (orig.)

  9. Assess Climate Change's Impact on Coastal Rivers using a Coupled Climate-Hydrology Model

    Science.gov (United States)

    Xue, Z. G.; Gochis, D.; Yu, W.; Zang, Z.; Sampson, K. M.; Keim, B. D.

    2016-12-01

    In this study we present a coupled climate-hydrological model reproducing the water cycle of three coastal river basins along the northern Gulf of Mexico for the past three decades (1985-2014). Model simulated climate condition, surface physics, and streamflow were well validated against in situ data and satellite-derived products, giving us the confidence that the newly developed WRF-Hydro model can be a robust tool for evaluating climate change's impact on hydrological regime. Trend analysis of model simulated monthly and annual time series indicates that local climate is getting hotter and dryer, specifically during the growing season. Wavelet analysis reveals that local evapotranspiration is strongly correlated with temperature, while soil moisture, water surplus, and streamflow are coupled with precipitation. In addition, local climate is closely correlated with large-scale climate dynamics such as AMO and ENSO. A possible change-point is detected around year 2004, after which, the monthly precipitation decreased by 14.2%, evapotranspiration increased by 2.9%, and water surplus decreased by 36.5%. The implication of the difference between the water surplus (runoff) calculated using the classic Thornthwaite method and river discharge estimated using streamflow records to the coastal environment is also discussed.

  10. How to combine sparse proxy data and coupled climate models

    Science.gov (United States)

    Paul, André; Schäfer-Neth, Christian

    2005-04-01

    We address the problem of reconstructing a global field from proxy data with sparse spatial sampling such as the MARGO (multi-proxy approach for the reconstruction of the glacial ocean surface) SST (sea-surface temperature) and δ18O c (oxygen-18/oxygen-16 isotope ratio preserved in fossil carbonate shells of planktic foraminifera) data. To this end, we propose to `assimilate' these data into coupled climate models by adjusting some of their parameters and optimizing the fit. In particular, we suggest to combine a forward model and an objective function that quantifies the misfit to the data. Because of their computational efficiency, earth system models of intermediate complexity are particularly well-suited for this purpose. We used one such model (the University of Victoria Earth System Climate Model) and carried out a series of sensitivity experiments by varying a single model parameter through changing the atmospheric CO2 concentration. The unanalyzed World Ocean Atlas SST and the observed sea-ice concentration served as present-day targets. The sparse data coverage as implied by the locations of 756 ocean sediment cores from the MARGO SST database was indeed sufficient to determine the best fit. As anticipated, it turned out to be the 365 ppm experiment. We also found that the 200 ppm experiment came surprisingly close to what is commonly expected for the Last Glacial Maximum ocean circulation. Our strategy has a number of advantages over more traditional mapping methods, e.g., there is no need to force the results of different proxies into a single map, because they can be compared to the model output one at a time, properly taking into account the different seasons of plankton growth or varying depth habitats. It can be extended to more model parameters and even be automated.

  11. A 2D climate energy balance model coupled with a 3D deep ocean model

    Directory of Open Access Journals (Sweden)

    J. Ildefonso Diaz

    2007-05-01

    Full Text Available We study a three dimensional climate model which represents the coupling of the mean surface temperature with the ocean temperature. We prove the existence of a bounded weak solution by a fixed point argument.

  12. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  13. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens

    convective precipitation systems. As a result climate model simulations let alone future projections of precipitation often exhibit substantial biases. Here we show that the dynamical coupling of a regional climate model to a detailed fully distributed hydrological model - including groundwater-, overland...... of local precipitation dynamics are seen for time scales of app. Seasonal duration and longer. We show that these results can be attributed to a more complete treatment of land surface feedbacks. The local scale effect on the atmosphere suggests that coupled high-resolution climate-hydrology models...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies....

  14. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  15. Cloud tuning in a coupled climate model: Impact on 20th century warming

    National Research Council Canada - National Science Library

    Golaz, Jean‐Christophe; Horowitz, Larry W; Levy, Hiram

    2013-01-01

    .... A given radiation balance can be achieved by multiple combinations of parameters. We investigate the impact of cloud tuning in the CMIP5 GFDL CM3 coupled climate model by constructing two alternate configurations...

  16. Embedding complex hydrology in the regional climate system – Dynamic coupling across different modelling domains

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl

    2014-01-01

    To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling...... system. The OpenMI modelling interface is used to couple a comprehensive hydrological modelling system, MIKE SHE running on personal computers, and a regional climate modelling system, HIRHAM running on a high performance computing platform. The coupled model enables two-way interaction between...... the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological...

  17. Impact of an observational time window on coupled data assimilation: simulation with a simple climate model

    Science.gov (United States)

    Zhao, Yuxin; Deng, Xiong; Zhang, Shaoqing; Liu, Zhengyu; Liu, Chang; Vecchi, Gabriel; Han, Guijun; Wu, Xinrong

    2017-11-01

    Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA) pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW) is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.

  18. Impact of an observational time window on coupled data assimilation: simulation with a simple climate model

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-11-01

    Full Text Available Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.

  19. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    Science.gov (United States)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-12-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.

  20. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    Science.gov (United States)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  1. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    model, HIRHAM. The physics of the coupling is formulated using an energy-based SVAT (land surface) model while the numerical coupling exploits the OpenMI modelling interface. First, some investigations of the applicability of the SVAT model are presented, including our ability to characterise...

  2. Embedding complex hydrology in the climate system - Towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, Michael; Rasmussen, Søren H.; Ridler, Marc

    2013-01-01

    model, HIRHAM. The physics of the coupling is formulated using an energy-based SVAT (land surface) model while the numerical coupling exploits the OpenMI modelling interface. First, some investigations of the applicability of the SVAT model are presented, including our ability to characterise...

  3. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  4. A systematic investigation of climate drift in a global coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A.M. [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia); Gordon, H.B. [CSIRO, Mordialloc, Victoria (Australia). Division of Atmospheric Research

    1994-12-31

    Climate drift is a common and serious problem in most state-of-the-art coupled atmosphere ocean-sea-ice models. The authors consider the nature of climate drift in such a model, and in particular address the question of whether or not climate drift is inherent to the model, or whether the drift can be averted by a suitable choice of initial conditions or coupling procedure. Several experiments were performed which were designed to assess the impact of different coupling methodologies and changes in the initial conditions of the component models on the climate drift of the system. The results of their experiments indicate that climate drift is a problem inherent to the coupled model which is associated with incompatibilities in the surface fluxes required by the component models to maintain realistic climatologies. The authors conclude that climate drift can be averted only if the parameterizations of certain important physical processes are improved, which should have the effect of reducing or eliminating these incompatibilities

  5. Final Report on Hierarchical Coupled Modeling and Prediction of Regional Climate Change in the Atlantic Sector

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Ramalingam [Texas A& M University

    2011-10-30

    During the course of this project, we have accomplished the following: a) Carried out studies of climate changes in the past using a hierarchy of intermediate coupled models (Chang et al., 2008; Wan et al 2009; Wen et al., 2010a,b) b) Completed the development of a Coupled Regional Climate Model (CRCM; Patricola et al., 2011a,b) c) Carried out studies testing hypotheses testing the origin of systematic errors in the CRCM (Patricola et al., 2011a,b) d) Carried out studies of the impact of air-sea interaction on hurricanes, in the context of barrier layer interactions (Balaguru et al)

  6. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    Science.gov (United States)

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  7. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  8. Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee; Padhraic Smyth, UC Irvine

    2006-08-04

    The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics through atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.

  9. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  10. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin

    2016-01-01

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate...... simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface......, plant coverand the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub...

  11. Benthic-Pelagic Coupling in Biogeochemical and Climate Models: Existing Approaches, Recent developments and Roadblocks

    Science.gov (United States)

    Arndt, Sandra

    2016-04-01

    Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of

  12. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Benjamin; Wramneby, Anna (Dept. of Earth and Ecosystem Sciences, Lund Univ., Geocentrum II, Lund (Sweden)), e-mail: ben.smith.lu@gmail.com; Samuelsson, Patrick (Rossby Centre, Swedish Meteorological and Hydrological Inst., SE-60176, Norrkoeping (Sweden)); Rummukainen, Markku (Dept. of Earth and Ecosystem Sciences, Lund Univ., Geocentrum II, SE-22362, Lund (Sweden); Rossby Centre, Swedish Meteorological and Hydrological Inst., SE-60176, Norrkoeping (Sweden))

    2011-01-15

    Regional climate models (RCMs) primarily represent physical components of the climate system, omitting vegetation dynamics, ecosystem biogeochemistry and their associated feedbacks. To account for such feedbacks, we implemented a novel plant individual-based vegetation dynamics-ecosystem biogeochemistry scheme within the RCA3 RCM. Variations in leaf area index (LAI) of seven plant functional type (PFTs) in response to physical forcing and evolving vegetation state feed back to climate via adjustments in surface energy fluxes and surface properties. In an ERA-40-driven simulation over Europe, the model reproduces the recent past climate with comparable accuracy to the standard RCM. Large-scale patterns of LAI, net primary production and vegetation composition were comparable with observations, although winter LAI was systematically overestimated compared to satellite estimates. Analysis of the ERA-40 simulation and an A1B climate-change simulation revealed considerable covariation among dynamic variables of the physical climate and vegetation. At a Mediterranean site, periodic soil water limitation led to fluctuations in leaf cover and a likely positive feedback to near-surface temperature. At an alpine site, rising temperatures led to forest advance onto tundra areas, reducing albedo and effecting a likely positive feedback on temperature. Climate vegetation coupling was less pronounced but still apparent at intermediate temperate and boreal sites

  13. Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

    Science.gov (United States)

    Yu, Xiaolin; Zhang, Shaoqing; Lin, Xiaopei; Li, Mingkui

    2017-03-01

    The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto model parameters. The signal-to-noise ratio of error covariance between the model state and the parameter being estimated directly determines whether the parameter estimation succeeds or not. With a conceptual climate model that couples the stochastic atmosphere and slow-varying ocean, this study examines the sensitivity of state-parameter covariance on the accuracy of estimated model states in different model components of a coupled system. Due to the interaction of multiple timescales, the fast-varying atmosphere with a chaotic nature is the major source of the inaccuracy of estimated state-parameter covariance. Thus, enhancing the estimation accuracy of atmospheric states is very important for the success of coupled model parameter estimation, especially for the parameters in the air-sea interaction processes. The impact of chaotic-to-periodic ratio in state variability on parameter estimation is also discussed. This simple model study provides a guideline when real observations are used to optimize model parameters in a coupled general circulation model for improving climate analysis and predictions.

  14. A review of the coupling software developed and used in the climate modelling community

    Science.gov (United States)

    Valcke, S.

    2009-04-01

    Coupling numerical codes is certainly not a new preoccupation in the climate research community and in other research fields such as electromagnetism or computational fluid dynamics. Ideally, the software interface between the different scientific modules should ensure an efficient realization of the coupled simulation on different types of platforms while allowing testing of different coupling algorithms and an easy replacement of one or more modules for inter comparison exercises. These specifications suggest modularity, portability and efficiency as key concepts onto which to base the design of the software. In the climate modelling community, different approaches exist to answer these specifications. On one hand, some tools ensure a minimal level of interference in the original codes so that they will run in the coupled system with main characteristics unchanged with respect to the uncoupled mode. This approach, while in some cases less efficient than a more integrated approach, is probably the best trade-off that can be chosen when the different component models come from different research groups that also use these components independently in stand-alone mode for other research purposes and that are not likely to follow strict coding rules imposed by external constraints. On the other hand, some tools or frameworks require more modification or adaptation of the original codes and are used to build and control a hierarchical merged application integrating the different elemental pieces of the original codes. This approach ensures efficient coupling exchanges within the merged application but requires a deeper level of interference in the codes and imposes strict coding rules in order to take full advantage of the framework functionalities. This second approach is therefore probably the most recommended one in a controlled top-down development environment. In this talk, we will review the different coupling tools developed and used in the climate modelling

  15. Future Projections for Southern High Plains Agriculture Using Coupled Economic and Hydrologic Models and Climate Variability

    Science.gov (United States)

    Rainwater, K.; Tewari, R.; Willis, D.; Stovall, J.; Hayhoe, K.; Hernandez, A.; Mauget, S. A.; Leiker, G.; Johnson, J.

    2013-12-01

    The objective of the project was to evaluate the hypothesis that predicted climate change will affect the useful life of the Ogallala aquifer in the Southern High Plains (SHP) through its impact on the amount of irrigation withdrawals, and thus affect the yields and economic costs and net income. A ninety-year time frame has been considered, although the research team recognizes that long-term predictions of crop prices and selections are perhaps even more uncertain than long-term weather projections. Previous work by the research team recently demonstrated the development of regionally downscaled climate projections for the SHP. Quantitative projections of precipitation, potential evaporation, and temperature trends for the 90-yr duration were selected from a downscaled set of high-resolution (one-eighth degree) daily climate and hydrological simulations covering the entire Great Plains region, driven by the latest IPCC AR4 climate model outputs. These projections were used as input to the Ogallala Ag Tool software developed by the USDA-ARS to predict daily and seasonal values of those variables, which directly affect irrigation, at different locations in the study area. Results from the Ogallala Ag Tool were then used to drive future projected crop production functions for cotton, corn, wheat, and sorghum using the DSSAT crop model. These production functions were then included in an integrated economic-hydrologic modeling approach that coupled an economic optimization model with a groundwater hydrological model. The groundwater model was based on the Texas Water Development Board's Southern Ogallala Groundwater Availability Model, which has been recalibrated by the research team for previous applications. The coupling of the two models allowed better recognition of spatial heterogeneity across the SHP, such that irrigation water availability was better represented through the spatial variations in pumping demands and saturated thickness. With this hydrologic

  16. A new coupled ice sheet/climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions

    Directory of Open Access Journals (Sweden)

    J. G. Fyke

    2011-03-01

    Full Text Available The need to better understand long-term climate/ice sheet feedback loops is motivating efforts to couple ice sheet models into Earth System models which are capable of long-timescale simulations. In this paper we describe a coupled model that consists of the University of Victoria Earth System Climate Model (UVic ESCM and the Pennsylvania State University Ice model (PSUI. The climate model generates a surface mass balance (SMB field via a sub-gridded surface energy/moisture balance model that resolves narrow ice sheet ablation zones. The ice model returns revised elevation, surface albedo and ice area fields, plus coastal fluxes of heat and moisture. An arbitrary number of ice sheets can be simulated, each on their own high-resolution grid and each capable of synchronous or asynchronous coupling with the overlying climate model. The model is designed to conserve global heat and moisture. In the process of improving model performance we developed a procedure to account for modelled surface air temperature (SAT biases within the energy/moisture balance surface model and improved the UVic ESCM snow surface scheme through addition of variable albedos and refreezing over the ice sheet.

    A number of simulations for late Holocene, Last Glacial Maximum (LGM, and Eemian climate boundary conditions were carried out to explore the sensitivity of the coupled model and identify model configurations that best represented these climate states. The modelled SAT bias was found to play a significant role in long-term ice sheet evolution, as was the effect of refreezing meltwater and surface albedo. The bias-corrected model was able to reasonably capture important aspects of the Antarctic and Greenland ice sheets, including modern SMB and ice distribution. The simulated northern Greenland ice sheet was found to be prone to ice margin retreat at radiative forcings corresponding closely to those of the Eemian or the present-day.

  17. A coupled physical and economic model of the response of coastal real estate to climate risk

    Science.gov (United States)

    McNamara, Dylan E.; Keeler, Andrew

    2013-06-01

    Barring an unprecedented large-scale effort to raise island elevation, barrier-island communities common along the US East Coast are likely to eventually face inundation of the existing built environment on a timescale that depends on uncertain climatic forcing. Between the present and when a combination of sea-level rise and erosion renders these areas uninhabitable, communities must choose levels of defensive expenditures to reduce risks and individual residents must assess whether and when risk levels are unacceptably high to justify investment in housing. We model the dynamics of coastal adaptation as the interplay of underlying climatic risks, collective actions to mitigate those risks, and individual risk assessments based on beliefs in model predictions and processing of past climate events. Efforts linking physical and behavioural models to explore shoreline dynamics have not yet brought together this set of essential factors. We couple a barrier-island model with an agent-based model of real-estate markets to show that, relative to people with low belief in model predictions about climate change, informed property owners invest heavily in defensive expenditures in the near term and then abandon coastal real estate at some critical risk threshold that presages a period of significant price volatility.

  18. Forecasting the dynamics of a coastal fishery species using a coupled climate--population model.

    Science.gov (United States)

    Hare, Jonathan A; Alexander, Michael A; Fogarty, Michael J; Williams, Erik H; Scott, James D

    2010-03-01

    Marine fisheries management strives to maintain sustainable populations while allowing exploitation. However, well-intentioned management plans may not meet this balance as most do not include the effect of climate change. Ocean temperatures are expected to increase through the 21st century, which will have far-reaching and complex impacts on marine fisheries. To begin to quantify these impacts for one coastal fishery along the east coast of the United States, we develop a coupled climate-population model for Atlantic croaker (Micropogonias undulatus). The model is based on a mechanistic hypothesis: recruitment is determined by temperature-driven, overwinter mortality of juveniles in their estuarine habitats. Temperature forecasts were obtained from 14 general circulation models simulating three CO2 emission scenarios. An ensemble-based approach was used in which a multimodel average was calculated for a given CO2 emission scenario to forecast the response of the population. The coupled model indicates that both exploitation and climate change significantly affect abundance and distribution of Atlantic croaker. At current levels of fishing, the average (2010-2100) spawning biomass of the population is forecast to increase by 60-100%. Similarly, the center of the population is forecast to shift 50 100 km northward. A yield analysis, which is used to calculate benchmarks for fishery management, indicates that the maximum sustainable yield will increase by 30 100%. Our results demonstrate that climate effects on fisheries must be identified, understood, and incorporated into the scientific advice provided to managers if sustainable exploitation is to be achieved in a changing climate.

  19. Uncertainties in coupled regional Arctic climate simulations associated with the used land surface model

    Science.gov (United States)

    Matthes, Heidrun; Rinke, Annette; Zhou, Xu; Dethloff, Klaus

    2017-08-01

    Permafrost is one of the most important components of Arctic land. Regional atmosphere-snow-permafrost interactions can be best studied with Regional Climate Models (RCMs) due to their higher horizontal resolution compared to global climate models. The development of Arctic RCMs with sophisticated land models is therefore very important. Comparing RCMs with different land surface model (LSM) components then allows the quantification of the uncertainties associated with the LSM. This study analyzes two simulations of coupled atmosphere-land RCMs over the Arctic, which differ only in their land component, while the atmospheric model component is the same. Specifically, we examine HIRHAM5-CLM4 (HIRHAM5 coupled with the sophisticated land model CLM4) and HIRHAM5 (HIRHAM5 coupled with the simpler land model of ECHAM5). We discuss the two models' abilities to represent observations on permafrost-like permafrost extent, active layer thickness (ALT), and soil temperature profiles, as well as on the representation of the Arctic atmosphere, based on simulations over 1979-2014. In comparison to HIRHAM5, HIRHAM5-CLM4 significantly reduces the simulated bias in ALT and winter soil temperatures. We find that the simulation of soil temperature and subsequently ALT is sensitive to soil thermal and hydraulic parameter representation in the models. The simulation of permafrost extent is sensitive to the initial soil temperature state in the models. Both HIRHAM5 and HIRHAM5-CLM4 do similarly well in modeling the Arctic 2 m air temperature and atmospheric circulation. Changing the land model impacts the 2 m air temperature significantly over land and the atmospheric circulation predominantly over the Arctic Ocean, associated with changes in baroclinic cyclones.

  20. Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2012-03-01

    Full Text Available It is notoriously difficult to couple surface mass balance (SMB results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs. In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS. Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.

  1. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish.

    Directory of Open Access Journals (Sweden)

    Larry R Brown

    Full Text Available Climate change is driving rapid changes in environmental conditions and affecting population and species' persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010-2099 under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century. Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18-85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact

  2. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5

    Directory of Open Access Journals (Sweden)

    F. Zabel

    2013-05-01

    Full Text Available Most land surface hydrological models (LSHMs consider land surface processes (e.g. soil–plant–atmosphere interactions, lateral water flows, snow and ice in a spatially detailed manner. The atmosphere is considered as exogenous driver, neglecting feedbacks between the land surface and the atmosphere. On the other hand, regional climate models (RCMs generally simulate land surface processes through coarse descriptions and spatial scales but include land–atmosphere interactions. What is the impact of the differently applied model physics and spatial resolution of LSHMs on the performance of RCMs? What feedback effects are induced by different land surface models? This study analyses the impact of replacing the land surface module (LSM within an RCM with a high resolution LSHM. A 2-way coupling approach was applied using the LSHM PROMET (1 × 1 km2 and the atmospheric part of the RCM MM5 (45 × 45 km2. The scaling interface SCALMET is used for down- and upscaling the linear and non-linear fluxes between the model scales. The change in the atmospheric response by MM5 using the LSHM is analysed, and its quality is compared to observations of temperature and precipitation for a 4 yr period from 1996 to 1999 for the Upper Danube catchment. By substituting the Noah-LSM with PROMET, simulated non-bias-corrected near-surface air temperature improves for annual, monthly and daily courses when compared to measurements from 277 meteorological weather stations within the Upper Danube catchment. The mean annual bias was improved from −0.85 to −0.13 K. In particular, the improved afternoon heating from May to September is caused by increased sensible heat flux and decreased latent heat flux as well as more incoming solar radiation in the fully coupled PROMET/MM5 in comparison to the NOAH/MM5 simulation. Triggered by the LSM replacement, precipitation overall is reduced; however simulated precipitation amounts are still of high uncertainty, both

  3. Reconstruction of the Eemian climate using a fully coupled Earth system model

    Science.gov (United States)

    Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Huybrechts, Philippe

    2017-04-01

    Climate of the Last Interglacial (LIG) between ca. 130 and 115 kyr BP is thought to be a good analogue for future climate warming. Though the driving mechanisms of the past and current climate evolution differ, analysis of the LIG climate may provide important insights for projections of future environmental changes. We do not know properly what was spatial distribution and magnitude of surface air temperature and precipitation anomalies with respect to present. Sparse proxy data are attributed mostly to the continental margins, internal areas of ice sheets and particular regions of the World Ocean. Combining mathematical modeling and indirect evidence can help to identify driving mechanisms and feed-backs which formed climatic conditions of the LIG. In order to reproduce the LIG climate, we carried out transient numerical experiments using a fully coupled Earth System Model (ESM) consisting of an AO GCM, which includes decription of the biosphere, atmospheric and oceanic chemistry ets. (INMCM), developed in the Institute of Numerical Mathematics (Moscow, Russia) and the models of Greenland and Antarctic ice sheets (GrISM and AISM, Vrije Uninersiteit Brussel, Belgium). Though the newest version of the INMCM has rather high spatial resolution, it canot be used in long transient numerical experimemts because of high computational demand. Coupling of the GrISM and AISM to the low resolution version of the INMCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmosphere and the ocean components of the ESM (spatial resolution 5˚×4˚, 21 vertical layers in the atmospheric block, 2.5°×2°, 6 min. temporal resolution; 33 vertical layers in the oceanic block; 20×20 km, 51 vertical layers and 1 yr temporal resolution in the GrISM and AISM). We apply two different coupling strategies. AISM is incorporated into the ESM via using procedures of resampling and interpolation of the input fields of annually averaged air surface

  4. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel (Germany); Vichi, Marcello; Masina, Simona [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia (INGV), Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2012-10-15

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall {approx}0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  5. Systematic Assessment of Terrestrial Biogeochemistry in Coupled Climate-Carbon Models

    Energy Technology Data Exchange (ETDEWEB)

    Randerson, Jim [University of California, Irvine; Hoffman, Forrest M [ORNL; Thornton, Peter E [ORNL; Mahowald, Natalie [Cornell University; Lindsay, Keith [National Center for Atmospheric Research (NCAR); Lee, Jeff [National Center for Atmospheric Research (NCAR); Nevison, Cynthia [National Center for Atmospheric Research (NCAR); Doney, Scott C. [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Stockli, Reto [Colorado State University, Fort Collins; Covey, Curtis [Lawrence Livermore National Laboratory (LLNL); Running, Steven [University of Montana, Missoula; Fung, Inez [University of California, Berkeley

    2009-01-01

    With representation of the global carbon cycle becoming increasingly complex in climate models, it is important to develop ways to quantitatively evaluate model performance against in situ and remote sensing observations. Here we present a systematic framework, the Carbon-LAnd Model Intercomparison Project (C-LAMP), for assessing terrestrial biogeochemistry models coupled to climate models using observations that span a wide range of temporal and spatial scales. As an example of the value of such comparisons, we used this framework to evaluate two biogeochemistry models that are integrated within the Community Climate System Model (CCSM) - Carnegie-Ames-Stanford Approach (CASA) and carbon-nitrogen (CN). Both models underestimated the magnitude of net carbon uptake during the growing season in temperate and boreal forest ecosystems, based on comparison with atmospheric CO{sub 2} measurements and eddy covariance measurements of net ecosystem exchange. Comparison with MODerate Resolution Imaging Spectroradiometer (MODIS) measurements show that this low bias in model fluxes was caused, at least in part, by 1-3 month delays in the timing of maximum leaf area. In the tropics, the models overestimated carbon storage in woody biomass based on comparison with datasets from the Amazon. Reducing this model bias will probably weaken the sensitivity of terrestrial carbon fluxes to both atmospheric CO{sub 2} and climate. Global carbon sinks during the 1990s differed by a factor of two (2.4 Pg C yr{sup -1} for CASA vs. 1.2 Pg C yr{sup -1} for CN), with fluxes from both models compatible with the atmospheric budget given uncertainties in other terms. The models captured some of the timing of interannual global terrestrial carbon exchange during 1988-2004 based on comparison with atmospheric inversion results from TRANSCOM (r=0.66 for CASA and r=0.73 for CN). Adding (CASA) or improving (CN) the representation of deforestation fires may further increase agreement with the

  6. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions

    KAUST Repository

    Driscoll, Simon

    2012-09-16

    The ability of the climate models submitted to the Coupled Model Intercomparison Project 5 (CMIP5) database to simulate the Northern Hemisphere winter climate following a large tropical volcanic eruption is assessed. When sulfate aerosols are produced by volcanic injections into the tropical stratosphere and spread by the stratospheric circulation, it not only causes globally averaged tropospheric cooling but also a localized heating in the lower stratosphere, which can cause major dynamical feedbacks. Observations show a lower stratospheric and surface response during the following one or two Northern Hemisphere (NH) winters, that resembles the positive phase of the North Atlantic Oscillation (NAO). Simulations from 13 CMIP5 models that represent tropical eruptions in the 19th and 20th century are examined, focusing on the large-scale regional impacts associated with the large-scale circulation during the NH winter season. The models generally fail to capture the NH dynamical response following eruptions. They do not sufficiently simulate the observed post-volcanic strengthened NH polar vortex, positive NAO, or NH Eurasian warming pattern, and they tend to overestimate the cooling in the tropical troposphere. The findings are confirmed by a superposed epoch analysis of the NAO index for each model. The study confirms previous similar evaluations and raises concern for the ability of current climate models to simulate the response of a major mode of global circulation variability to external forcings. This is also of concern for the accuracy of geoengineering modeling studies that assess the atmospheric response to stratosphere-injected particles.

  7. Assessing climate change impacts on the Iberian power system using a coupled water-power model

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2014-01-01

    patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes......Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However......, these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal...

  8. Roles of energy conservation and climate feedback in Bjerknes compensation: a coupled modeling study

    Science.gov (United States)

    Dai, Haijin; Yang, Haijun; Yin, Jie

    2017-09-01

    The roles of energy balance and climate feedback in Bjerknes compensation (BJC) are studied through wind-perturbation experiments in a coupled climate model. Shutting down surface winds over the ocean causes significant reductions in both wind-driven and thermohaline overturning circulations, leading to a remarkable decrease in poleward ocean heat transport (OHT). The sea surface temperature (SST) responds with an increasing meridional gradient, resulting in a stronger Hadley Cell, and thus an enhanced atmosphere heat transport (AHT), compensating the OHT decrease. This is the so-called BJC. Coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy conservation, and local climate feedback determines the degree of BJC, consistent with our previous theoretical results. Negative (positive or zero) local feedback results in AHT change undercompensating (overcompensating or perfectly compensating) OHT change. Using the radiative kernel technique, the general local feedback between the radiative balance at the top of the atmosphere and surface temperature can be partitioned into individual feedbacks that are related to perturbations in temperature, water vapor, surface albedo, and clouds. We find that the overcompensation in the tropics (extratropics) is mainly caused by positive feedbacks related to water vapor and clouds (surface albedo). The longwave feedbacks related to SST and atmospheric temperature are always negative and strong outside the tropics, well offsetting positive feedbacks in most regions and resulting in undercompensation. Different dominant feedbacks give different BJC scenarios at different regions, acting together to maintain the local energy balance.

  9. The application of a dynamic OpenMI coupling between a regional climate model and a distributed surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl

    2014-01-01

    To support climate adaptation measures for water resources, we have developed and evaluated a dynamic coupling between a comprehensive distributed hydrological modelling system, MIKE SHE, and a regional climate modelling system, HIRHAM. The coupled model enables two-way interaction between the at...

  10. Land-atmosphere coupling over North America in the Canadian Regional Climate Model (CRCM5) simulations for current and future climates

    Science.gov (United States)

    Tefera Diro, Gulilat; Sushama, Laxmi

    2014-05-01

    The strength and characteristics of land-atmosphere (L-A) coupling over North America in current and future climates are assessed using the fifth generation of the Canadian Regional Climate Model (CRCM5). The L-A coupling is first assessed, in current climate, by analyzing the coupled (interactive soil moisture) and uncoupled (prescribed soil moisture) CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period. Results indicate strong soil moisture-temperature coupling over the Great Plains, which is in line with previous studies. In addition coupling is also found to significantly modulate extreme temperature conditions such as the percentage of hot days, the frequency and maximum duration of hot spells for this region. The soil moisture-precipitation coupling in CRCM5, on the other hand, is weak compared to the soil-moisture temperature coupling. Coupling is noted mostly over the semi-arid regions of the western US for the case of persistent extreme precipitation events (defined as consecutive days with precipitation greater than the long term 90 percentile), probably due to its more transition zone like conditions, which is favorable for L-A coupling, in these circumstances. To study projected changes to L-A coupling in future climate, coupled and uncoupled CRCM5 simulations, driven by CMIP5 GCMs, were performed, for current (1981-2010) and future (2071-2100) climates. Coupling regions in the GCM-driven current climate CRCM5 simulations are similar to those obtained with ERA-Interim driven CRCM5 simulations discussed above. In future climate, soil-moisture-temperature coupling regions extend beyond the Great Plains, for instance to mid-west and the eastern part of the US, while the regions of soil-moisture-precipitation coupling have a more complex spatial structure.

  11. Ocean-atmosphere coupled climate model development at SAWS: description and diagnosis

    CSIR Research Space (South Africa)

    Beraki, A

    2011-09-01

    Full Text Available stream_source_info Landman6_2011.pdf.txt stream_content_type text/plain stream_size 7732 Content-Encoding ISO-8859-1 stream_name Landman6_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Ocean-Atmosphere Coupled... Climate Model Development at SAWS: Description and Diagnosis Asmerom Beraki1, David DeWitt2, Willem A. Landman3 and Cobus Olivier1 1South African Weather Service Pretoria, South Africa, asmerom.beraki@weahtersa.co.za 2International Research...

  12. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    NARCIS (Netherlands)

    Goelzer, Heiko|info:eu-repo/dai/nl/412549123; Huybrechts, Philippe; Marie-France, Loutre; Fichefet, Thierry

    2016-01-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ∼130 to 115kyrgBP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial

  13. Sulfur cycle and sulfate radiative forcing simulated from a coupled global climate-chemistry model

    Directory of Open Access Journals (Sweden)

    I.-C. Tsai

    2010-04-01

    Full Text Available The sulfur cycle and radiative effects of sulfate aerosol on climate are studied with a Global tropospheric Climate-Chemistry Model in which chemistry, radiation and dynamics are fully coupled. Production and removal mechanisms of sulfate are analyzed for the conditions of natural and anthropogenic sulfur emissions. Results show that the 1985 anthropogenic emission tripled the global SO2 and sulfate loadings from its natural value of 0.16 and 0.10 Tg S, respectively. Under natural conditions, the fraction of sulfate produced in-cloud is 74%; whereas with anthropogenic emissions, the fraction of in-cloud sulfate production slightly increased to 76%. Lifetimes of SO2 and sulfate under polluted conditions are estimated to be 1.7 and 2.0 days, respectively. The tripling of sulfate results in a direct radiative forcing of −0.43 W m−2 (clear-sky or −0.24 W m−2 (all-sky, and a significant first indirect forcing of −1.85 W m−2, leading to a mean global cooling of about 0.1 K. Regional forcing and responses are significantly stronger than the global values. The first indirect forcing is sensitive to the relationship between aerosol concentration and cloud droplet number concentration which requires further investigation. Two aspects of chemistry-climate interaction are addressed. Firstly, the coupling effects lead to a slight decrease of 1% in global sulfate loading for both the cases of natural and anthropogenic added sulfur emissions. Secondly, only the indirect effect of sulfate aerosols yields significantly stronger signals in changes of near surface temperature and sulfate loading than changes due to intrinsic climate variability, while other responses to the indirect effect and all responses to the direct effect are below noise level.

  14. PyMCT: A Very High Level Language Coupling Tool For Climate System Models

    Science.gov (United States)

    Tobis, M.; Pierrehumbert, R. T.; Steder, M.; Jacob, R. L.

    2006-12-01

    At the Climate Systems Center of the University of Chicago, we have been examining strategies for applying agile programming techniques to complex high-performance modeling experiments. While the "agile" development methodology differs from a conventional requirements process and its associated milestones, the process remain a formal one. It is distinguished by continuous improvement in functionality, large numbers of small releases, extensive and ongoing testing strategies, and a strong reliance on very high level languages (VHLL). Here we report on PyMCT, which we intend as a core element in a model ensemble control superstructure. PyMCT is a set of Python bindings for MCT, the Fortran-90 based Model Coupling Toolkit, which forms the infrastructure for the inter-component communication in the Community Climate System Model (CCSM). MCT provides a scalable model communication infrastructure. In order to take maximum advantage of agile software development methodologies, we exposed MCT functionality to Python, a prominent VHLL. We describe how the scalable architecture of MCT allows us to overcome the relatively weak runtime performance of Python, so that the performance of the combined system is not severely impacted. To demonstrate these advantages, we reimplemented the CCSM coupler in Python. While this alone offers no new functionality, it does provide a rigorous test of PyMCT functionality and performance. We reimplemented the CPL6 library, presenting an interesting case study of the comparison between conventional Fortran-90 programming and the higher abstraction level provided by a VHLL. The powerful abstractions provided by Python will allow much more complex experimental paradigms. In particular, we hope to build on the scriptability of our coupling strategy to enable systematic sensitivity tests. Our most ambitious objective is to combine our efforts with Bayesian inverse modeling techniques toward objective tuning at the highest level, across model

  15. A simple regional coupled model experiment for summer-time climate simulation over southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ratnam, J.V.; Behera, S.K. [Research Institute for Global Change, Yokohama, Kanagawa (Japan); Application Laboratory, Yokohama (Japan); Masumoto, Y. [Research Institute for Global Change, Yokohama, Kanagawa (Japan); Takahashi, K. [Application Laboratory, Yokohama (Japan); Earth Simulator Center, Yokohama (Japan); Yamagata, T. [Application Laboratory, Yokohama (Japan); The University of Tokyo, School of Science, Tokyo (Japan)

    2012-11-15

    The main aim of this paper is to evaluate the Advanced Research Weather Research and Forecasting (WRF) regional model in simulating the precipitation over southern Africa during austral summer. The model's ability to reproduce the southern African mean climate and its variability around this mean state was evaluated by using the two-tier approach of specifying sea surface temperature (SST) to WRF and by using the one-tier approach of coupling the WRF with a simple mixed-layer ocean model. The boundary conditions provided by the reanalysis-II data were used for the simulations. Model experiments were conducted for twelve austral summers from DJF1998-99 to DJF2009-10. The experiments using both the two-tier and one-tier approaches simulated the spatial and temporal distributions of the precipitation realistically. However, both experiments simulated negative biases over Mozambique. Furthermore, analysis of the wet and dry spells revealed that the one-tier approach is superior to the two-tier approach. Based on the analysis of the surface temperature and the zonal wind shear it is noted that the simple mixed-layer ocean model coupled to WRF can be effectively used in place of two-tier WRF to simulate the climate of southern Africa. This is an important result because specification of SST at higher temporal resolutions in the subtropics is the most difficult task in the two-tier approach for most regional prediction models. The one-tier approach with the simple mixed-layer model can effectively reduce the complicacy of finding good SST predictions. (orig.)

  16. Modelling the mid-Pliocene Warm Period climate with the IPSL coupled model and its atmospheric component LMDZ5A

    Directory of Open Access Journals (Sweden)

    C. Contoux

    2012-06-01

    Full Text Available This paper describes the experimental design and model results of the climate simulations of the mid-Pliocene Warm Period (mPWP, ca. 3.3–3 Ma using the Institut Pierre Simon Laplace model (IPSLCM5A, in the framework of the Pliocene Model Intercomparison Project (PlioMIP. We use the IPSL atmosphere ocean general circulation model (AOGCM, and its atmospheric component alone (AGCM, to simulate the climate of the mPWP. Boundary conditions such as sea surface temperatures (SSTs, topography, ice-sheet extent and vegetation are derived from the ones imposed by the Pliocene Model Intercomparison Project (PlioMIP, described in Haywood et al. (2010, 2011. We first describe the IPSL model main features, and then give a full description of the boundary conditions used for atmospheric model and coupled model experiments. The climatic outputs of the mPWP simulations are detailed and compared to the corresponding control simulations. The simulated warming relative to the control simulation is 1.94 °C in the atmospheric and 2.07 °C in the coupled model experiments. In both experiments, warming is larger at high latitudes. Mechanisms governing the simulated precipitation patterns are different in the coupled model than in the atmospheric model alone, because of the reduced gradients in imposed SSTs, which impacts the Hadley and Walker circulations. In addition, a sensitivity test to the change of land-sea mask in the atmospheric model, representing a sea-level change from present-day to 25 m higher during the mid-Pliocene, is described. We find that surface temperature differences can be large (several degrees Celsius but are restricted to the areas that were changed from ocean to land or vice versa. In terms of precipitation, impact on polar regions is minor although the change in land-sea mask is significant in these areas.

  17. The South Atlantic Anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models

    Science.gov (United States)

    Cabos, William; Sein, Dmitry V.; Pinto, Joaquim G.; Fink, Andreas H.; Koldunov, Nikolay V.; Alvarez, Francisco; Izquierdo, Alfredo; Keenlyside, Noel; Jacob, Daniela

    2017-06-01

    The key role of the South Atlantic Anticyclone (SAA) on the seasonal cycle of the tropical Atlantic is investigated with a regionally coupled atmosphere-ocean model for two different coupled domains. Both domains include the equatorial Atlantic and a large portion of the northern tropical Atlantic, but one extends southward, and the other northwestward. The SAA is simulated as internal model variability in the former, and is prescribed as external forcing in the latter. In the first case, the model shows significant warm biases in sea surface temperature (SST) in the Angola-Benguela front zone. If the SAA is externally prescribed, these biases are substantially reduced. The biases are both of oceanic and atmospheric origin, and are influenced by ocean-atmosphere interactions in coupled runs. The strong SST austral summer biases are associated with a weaker SAA, which weakens the winds over the southeastern tropical Atlantic, deepens the thermocline and prevents the local coastal upwelling of colder water. The biases in the basins interior in this season could be related to the advection and eddy transport of the coastal warm anomalies. In winter, the deeper thermocline and atmospheric fluxes are probably the main biases sources. Biases in incoming solar radiation and thus cloudiness seem to be a secondary effect only observed in austral winter. We conclude that the external prescription of the SAA south of 20°S improves the simulation of the seasonal cycle over the tropical Atlantic, revealing the fundamental role of this anticyclone in shaping the climate over this region.

  18. Dehydration effects from contrails in a coupled contrail–climate model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2015-10-01

    Full Text Available The uptake of water by contrails in ice-supersaturated air and the release of water after ice particle advection and sedimentation dehydrates the atmosphere at flight levels and redistributes humidity mainly to lower levels. The dehydration is investigated by coupling a plume-scale contrail model with a global aerosol–climate model. The contrail model simulates all the individual contrails forming from global air traffic for meteorological conditions as defined by the climate model. The computed contrail cirrus properties compare reasonably with theoretical concepts and observations. The mass of water in aged contrails may exceed 106 times the mass of water emitted from aircraft. Many of the ice particles sediment and release water in the troposphere, on average 700 m below the mean flight levels. Simulations with and without coupling are compared. The drying at contrail levels causes thinner and longer-lived contrails with about 15 % reduced contrail radiative forcing (RF. The reduced RF from contrails is on the order of 0.06 W m−2, slightly larger than estimated earlier because of higher soot emissions. For normal traffic, the RF from dehydration is small compared to interannual variability. A case with emissions increased by 100 times is used to overcome statistical uncertainty. The contrails impact the entire hydrological cycle in the atmosphere by reducing the total water column and the cover by high- and low-level clouds. For normal traffic, the dehydration changes contrail RF by positive shortwave and negative longwave contributions on the order of 0.04 W m−2, with a small negative net RF. The total net RF from contrails and dehydration remains within the range of previous estimates.

  19. Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model

    Directory of Open Access Journals (Sweden)

    D. M. Roche

    2007-01-01

    Full Text Available The Last Glacial Maximum climate is one of the classical benchmarks used both to test the ability of coupled models to simulate climates different from that of the present-day and to better understand the possible range of mechanisms that could be involved in future climate change. It also bears the advantage of being one of the most well documented periods with respect to palaeoclimatic records, allowing a thorough data-model comparison. We present here an ensemble of Last Glacial Maximum climate simulations obtained with the Earth System model LOVECLIM, including coupled dynamic atmosphere, ocean and vegetation components. The climate obtained using standard parameter values is then compared to available proxy data for the surface ocean, vegetation, oceanic circulation and atmospheric conditions. Interestingly, the oceanic circulation obtained resembles that of the present-day, but with increased overturning rates. As this result is in contradiction with the current palaeoceanographic view, we ran a range of sensitivity experiments to explore the response of the model and the possibilities for other oceanic circulation states. After a critical review of our LGM state with respect to available proxy data, we conclude that the oceanic circulation obtained is not inconsistent with ocean circulation proxy data, although the water characteristics (temperature, salinity are not in full agreement with water mass proxy data. The consistency of the simulated state is further reinforced by the fact that the mean surface climate obtained is shown to be generally in agreement with the most recent reconstructions of vegetation and sea surface temperatures, even at regional scales.

  20. Indian monsoon and the elevated-heat-pump mechanism in a coupled aerosol-climate model

    Science.gov (United States)

    D'Errico, Miriam; Cagnazzo, Chiara; Fogli, Pier Giuseppe; Lau, William K. M.; von Hardenberg, Jost; Fierli, Federico; Cherchi, Annalisa

    2015-09-01

    A coupled aerosol-atmosphere-ocean-sea ice climate model is used to explore the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. Results show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface. In the same period, enhanced surface cooling may also be amplified through solar dimming by more cloudiness and aerosol loading, via increased dust transported by low-level westerly flow. The surface cooling causes subsequent reduction in monsoon rainfall in July-August over India. The time-lagged nature of the reasonably realistic response of the model to aerosol forcing suggests that absorbing aerosols, besides their potential key roles in impacting monsoon water cycle and climate, may influence the seasonal variability of the Indian summer monsoon.

  1. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    Science.gov (United States)

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns

    Directory of Open Access Journals (Sweden)

    B. Ziv

    2013-03-01

    Full Text Available The study aims to evaluate the ability of global, coupled climate models to reproduce the synoptic regime of the Mediterranean Basin. The output of simulations of the 9 models included in the IPCC CMIP3 effort is compared to the NCEP-NCAR reanalyzed data for the period 1961–1990. The study examined the spatial distribution of cyclone occurrence, the mean Mediterranean upper- and lower-level troughs, the inter-annual variation and trend in the occurrence of the Mediterranean cyclones, and the main large-scale circulation patterns, represented by rotated EOFs of 500 hPa and sea level pressure. The models reproduce successfully the two maxima in cyclone density in the Mediterranean and their locations, the location of the average upper- and lower-level troughs, the relative inter-annual variation in cyclone occurrences and the structure of the four leading large scale EOFs. The main discrepancy is the models' underestimation of the cyclone density in the Mediterranean, especially in its western part. The models' skill in reproducing the cyclone distribution is found correlated with their spatial resolution, especially in the vertical. The current improvement in model spatial resolution suggests that their ability to reproduce the Mediterranean cyclones would be improved as well.

  3. Towards the Prediction of Decadal to Centennial Climate Processes in the Coupled Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhengyu [Univ. of Wisconsin, Madison, WI (United States); Kutzbach, J. [Univ. of Wisconsin, Madison, WI (United States); Jacob, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Prentice, C. [Bristol Univ. (United Kingdom)

    2011-12-05

    In this proposal, we have made major advances in the understanding of decadal and long term climate variability. (a) We performed a systematic study of multidecadal climate variability in FOAM-LPJ and CCSM-T31, and are starting exploring decadal variability in the IPCC AR4 models. (b) We develop several novel methods for the assessment of climate feedbacks in the observation. (c) We also developed a new initialization scheme DAI (Dynamical Analogue Initialization) for ensemble decadal prediction. (d) We also studied climate-vegetation feedback in the observation and models. (e) Finally, we started a pilot program using Ensemble Kalman Filter in CGCM for decadal climate prediction.

  4. Uncertainty Analysis of Coupled Socioeconomic-Cropping Models: Building Confidence in Climate Change Decision-Support Tools for Local Stakeholders

    Science.gov (United States)

    Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.

  5. Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model for a Danish catchment

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, J.C.; Drews, Martin

    2014-01-01

    A major challenge in the emerging research field of coupling of existing regional climate models (RCMs) and hydrology/land-surface models is the computational interaction between the models. Here we present results from a full two-way coupling of the HIRHAM RCM over a 4000 km × 2800 km domain at 11...

  6. Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

    2013-01-17

    The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

  7. Coupled socioeconomic-crop modelling for the participatory local analysis of climate change impacts on smallholder farmers in Guatemala

    Science.gov (United States)

    Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.

  8. Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model

    Science.gov (United States)

    Koenigk, Torben; Brodeau, Laurent

    2017-07-01

    Three quasi-equilibrium simulations using constant greenhouse gas forcing corresponding to years 2000, 2015 and 2030 have been performed with the global coupled model EC-Earth in order to analyze the Arctic climate and interactions with lower latitudes under different levels of anthropogenic warming. The model simulations indicate an accelerated warming and ice extent reduction in the Arctic between the year-2030 and year-2015 simulations compared to the change between the year-2015 and year-2000 simulations. Both Arctic warming and sea ice reduction are closely linked to the increase of ocean heat transport into the Arctic, particularly through the Barents Sea Opening. Decadal variations of Arctic sea ice extent and ice volume are of the same order of magnitude as the observed ice extent reductions in the last 30 years and are dominated by the variability of the ocean heat transports through the Barents Sea Opening and the Bering Strait. Despite a general warming of mid and high northern latitudes, a substantial cooling is found in the subpolar gyre of the North Atlantic under year-2015 and year-2030 conditions. This cooling is related to a strong reduction in the AMOC, itself due to reduced deep water formation in the Labrador Sea. The observed trend towards a more negative phase of the North Atlantic Oscillation (NAO) and the observed linkage between autumn Arctic ice variations and NAO are reproduced in our model simulations for selected 30-year periods but are not robust over longer time periods. This indicates that the observed linkages between ice and NAO might not be robust in reality either, and that the observational time period is still too short to reliably separate the trend from the natural variability.

  9. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models

    National Research Council Canada - National Science Library

    David A Keith; H. Resit Akçakaya; Wilfried Thuiller; Guy F Midgley; Richard G Pearson; Steven J Phillips; Helen M Regan; Miguel B Araújo; Tony G Rebelo

    2008-01-01

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics...

  10. Climate responses of black carbon and sulfate aerosols assessed with coupled-ocean general circulation model

    Science.gov (United States)

    Takemura, T.; Suzuki, K.

    2016-12-01

    There are a lot of past studies on estimations of the aerosol radiative forcing, and therefore we can understand its best estimate and range of uncertainty, e.g., as shown in the IPCC assessment reports. Also we have implemented transient simulations from the preindustrial era to the future projection along the certain scenarios (e.g., SRES and RCP). Climate responses due to changes in anthropogenic aerosol emissions, however, have not been fully elucidated. In this study simulations with prescribed sea surface temperature and an ocean general circulation model, respectively, are done changing the ratios (0, 0.1, 0.3, 0.5, 0.8, 1.5, 2, 5, 10 times) of emission fluxes relative to the present for anthropogenic black carbon (BC) and sulfur dioxide (SO2) (parts of these simulations with the 5-times SO2 and 10-times BC emission fluxes are the same as the submitted results to the Precipitation Driver Response Model Intercomparison Project (PDRMIP)). Although the radiative forcing of the aerosol-radiation interaction both at the tropopause and surface has linear trends with the changes in BC and SO2 emissions, the equilibrium experiments with the coupled-ocean general circulation model show no clear correlations between the BC emission and surface air temperature in the realistic emission ratios (0 to 2). The simulated results suggests that the change in the surface air temperature much depends on a change in amount of water vapor, which implies that the variation of vertical profile of heating rate affected by the aerosol-radiation interaction is significant. This means that reducing short-lived climate pollutants (SLCPs) which have the positive radiative forcing at the tropopause does not necessarily result in cooling effect near the surface. Acknowledgements: Simulations in this study were executed with the supercomputer system of the National Institute for Environmental Studies, Japan. This study is partly supported by the Environment Research and Technology

  11. Coupling of the air quality model Lotus-Euros to the climate model Racmo

    NARCIS (Netherlands)

    Manders-Groot, A.M.M.; Schaap, M.; Ulft, B. van; Meijgaard, E. van

    2011-01-01

    Ozone and particulate matter have an adverse impact on the health of humans and other organisms. Their concentrations depend not only on emissions but also on meteorological conditions. In a changing climate, their ambient concentrations are therefore expected to change. However, even the sign of

  12. Validation and quantification of uncertainty in coupled climate models using network analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, Annalisa [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-08-10

    We developed a fast, robust and scalable methodology to examine, quantify, and visualize climate patterns and their relationships. It is based on a set of notions, algorithms and metrics used in the study of graphs, referred to as complex network analysis. This approach can be applied to explain known climate phenomena in terms of an underlying network structure and to uncover regional and global linkages in the climate system, while comparing general circulation models outputs with observations. The proposed method is based on a two-layer network representation, and is substantially new within the available network methodologies developed for climate studies. At the first layer, gridded climate data are used to identify ‘‘areas’’, i.e., geographical regions that are highly homogeneous in terms of the given climate variable. At the second layer, the identified areas are interconnected with links of varying strength, forming a global climate network. The robustness of the method (i.e. the ability to separate between topological distinct fields, while identifying correctly similarities) has been extensively tested. It has been proved that it provides a reliable, fast framework for comparing and ranking the ability of climate models of reproducing observed climate patterns and their connectivity. We further developed the methodology to account for lags in the connectivity between climate patterns and refined our area identification algorithm to account for autocorrelation in the data. The new methodology based on complex network analysis has been applied to state-of-the-art climate model simulations that participated to the last IPCC (International Panel for Climate Change) assessment to verify their performances, quantify uncertainties, and uncover changes in global linkages between past and future projections. Network properties of modeled sea surface temperature and rainfall over 1956–2005 have been constrained towards observations or reanalysis data sets

  13. GEOCLIM reloaded (v 1.0): a new coupled earth system model for past climate change

    NARCIS (Netherlands)

    Arndt, S.; Regnier, P.; Goddéris, Y.; Donnadieu, Y.

    2011-01-01

    We present a new version of the coupled Earth system model GEOCLIM. The new release, GEOCLIM reloaded (v 1.0), links the existing atmosphere and weathering modules to a novel, temporally and spatially resolved model of the global ocean circulation, which provides a physical framework for a

  14. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.

    the effects of climate change on the current Iberian power system. The Iberian power system is a competitive power market where power price is determined by power supply and demand, and which can be simulated by a market equilibrium model considering the power demand function and the installed capacities...... and marginal costs of the power producers. Two effects of climate change on the power system were studied: changes in the hydropower production caused by changes in precipitation and temperature, and changes in the electricity demand over the year caused by temperature changes. A rainfall-runoff model......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...

  15. A Process Oriented Small Lake Dynamical Scheme for Coupled Climate Modeling Applications

    Science.gov (United States)

    MacKay, M. D.

    2011-12-01

    Even though they comprise a relatively small fraction of the terrestrial landscape, there is growing awareness that natural lakes, reservoirs, and impoundments may play a crucial role in the climate system. Not only do they alter local climates through the exchange of heat and moisture with the atmosphere, they also process large amounts of carbon and are thus players in the global greenhouse gas budget. Generally inland water bodies are ignored in climate modelling research as they are too small to be resolved in typical climate simulations, and any role they may have on the climate system currently, and in the future, cannot be evaluated using these tools. Unresolved heterogeneity in land surface properties is frequently handled within the climate modeling community by use of a "mosaic" approach whereby the grid cell is divided into homogeneous "tiles" of similar surface properties (as far as flux exchange with the atmosphere is concerned). The net flux exchange is simply the area-weighted sum of the individual tile fluxes. In order to evaluate the role of inland water in the climate system, we need to represent dozens if not hundreds of small lakes with a few idealized lake tiles. The defining characteristics of these tiles will depend on the application, but it is argued here that one possible set would include surface area, mean depth (or volume), and transparency. In this paper, a one - dimensional dynamic lake model is presented as a candidate for simulating unresolved lakes within the land surface scheme of a regional or global climate model. This model is based largely on well established process algorithms with some exceptions. The complete nonlinear surface energy balance is computed in a skin layer of arbitrary thickness in order to ensure rapid response times with the atmosphere. Turbulent mixing in the epilimnion is achieved through surface stirring and buoyancy production as well as shear production along the diurnal thermocline. The net effect of

  16. Reinitialised versus continuous regional climate simulations using ALARO-0 coupled to the land surface model SURFEXv5

    Science.gov (United States)

    Berckmans, Julie; Giot, Olivier; De Troch, Rozemien; Hamdi, Rafiq; Ceulemans, Reinhart; Termonia, Piet

    2017-01-01

    Dynamical downscaling in a continuous approach using initial and boundary conditions from a reanalysis or a global climate model is a common method for simulating the regional climate. The simulation potential can be improved by applying an alternative approach of reinitialising the atmosphere, combined with either a daily reinitialised or a continuous land surface. We evaluated the dependence of the simulation potential on the running mode of the regional climate model ALARO coupled to the land surface model Météo-France SURFace EXternalisée (SURFEX), and driven by the ERA-Interim reanalysis. Three types of downscaling simulations were carried out for a 10-year period from 1991 to 2000, over a western European domain at 20 km horizontal resolution: (1) a continuous simulation of both the atmosphere and the land surface, (2) a simulation with daily reinitialisations for both the atmosphere and the land surface and (3) a simulation with daily reinitialisations of the atmosphere while the land surface is kept continuous. The results showed that the daily reinitialisation of the atmosphere improved the simulation of the 2 m temperature for all seasons. It revealed a neutral impact on the daily precipitation totals during winter, but the results were improved for the summer when the land surface was kept continuous. The behaviour of the three model configurations varied among different climatic regimes. Their seasonal cycle for the 2 m temperature and daily precipitation totals was very similar for a Mediterranean climate, but more variable for temperate and continental climate regimes. Commonly, the summer climate is characterised by strong interactions between the atmosphere and the land surface. The results for summer demonstrated that the use of a daily reinitialised atmosphere improved the representation of the partitioning of the surface energy fluxes. Therefore, we recommend using the alternative approach of the daily reinitialisation of the atmosphere for

  17. Southern hemisphere climate variability as represented by an ocean-atmosphere coupled model

    CSIR Research Space (South Africa)

    Beraki, A

    2012-09-01

    Full Text Available , 1996: Relationship of air temperature in New Zealand to regional anomalies in sea-surface temperature and atmospheric circulation. Int. J. Climatol., 16, 405?425. Beraki, A., D. DeWitt, W.A. Landman and O. Cobus, 2011: Ocean-Atmosphere Coupled... variability as represented by an ocean-atmosphere coupled model Asmerom Beraki1,2, Willem A. Landman2,3 and David DeWitt4 1South African Weather Service Pretoria, South Africa, asmerom.beraki@weahtersa.co.za 2Departement of Geography...

  18. The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models

    Science.gov (United States)

    Dieppois, Bastien; Rouault, Mathieu; New, Mark

    2015-11-01

    We study the ability of 24 ocean atmosphere global coupled models from the Coupled Model Intercomparison Project 5 (CMIP5) to reproduce the teleconnections between El Niño Southern Oscillation (ENSO) and Southern African rainfall in austral summer using historical forced simulations, with a focus on the atmospheric dynamic associated with El Niño. Overestimations of summer rainfall occur over Southern Africa in all CMIP5 models. Abnormal westward extensions of ENSO patterns are a common feature of all CMIP5 models, while the warming of the Indian Ocean that happens during El Niño is not correctly reproduced. This could impact the teleconnection between ENSO and Southern African rainfall which is represented with mixed success in CMIP5 models. Large-scale anomalies of suppressed deep-convection over the tropical maritime continent and enhanced convection from the central to eastern Pacific are correctly simulated. However, regional biases occur above Africa and the Indian Ocean, particularly in the position of the deep convection anomalies associated with El Niño, which can lead to the wrong sign in rainfall anomalies in the northwest part of South Africa. From the near-surface to mid-troposphere, CMIP5 models underestimate the observed anomalous pattern of pressure occurring over Southern Africa that leads to dry conditions during El Niño years.

  19. Vegetation coupling to global climate: Trajectories of vegetation change and phenology modeling from satellite observations

    Science.gov (United States)

    Fisher, Jeremy Isaac

    ) and 500m Moderate Resolution Imaging Spectrometer (MODIS). A robust logistic-growth model of canopy cover was employed to determine phenological characteristics at each forest stand. The duel analyses revealed important findings: (a) local phenological gradients from microclimatic structures are highly influential in broad-scale phenological observations; (b) satellite observed phenology reflects observations of canopy growth from field studies; (c) phenological anomalies in urban areas which were previously attributed to urban heat may be a function of urban-specific land cover (i.e. green lawns); and (d) patterns of interannual variability in phenology at the regional scale have high spatial coherency and appear to be driven by broad-scale climatic change. Satellite-observed phenology may reflect temperatures during spring and provides a proxy of climate variability.

  20. Coupled modeling of land hydrology–regional climate including human carbon emission and water exploitation

    Directory of Open Access Journals (Sweden)

    Zheng-Hui Xie

    2017-06-01

    Full Text Available Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 °C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region—Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by ∼10 m in 1971–2000 through human groundwater over-exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the groundwater depletion cones observed in the area

  1. Progress Towards Achieving the Challenge of Indian Summer Monsoon Climate Simulation in a Coupled Ocean-Atmosphere Model

    Science.gov (United States)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh Kumar; Pokhrel, Samir; Goswami, B. N.

    2017-10-01

    Simulation of the spatial and temporal structure of the monsoon intraseasonal oscillations (MISOs), which have effects on the seasonal mean and annual cycle of Indian summer monsoon (ISM) rainfall, remains a grand challenge for the state-of-the-art global coupled models. Biases in simulation of the amplitude and northward propagation of MISOs and related dry rainfall bias over ISM region in climate models are limiting the current skill of monsoon prediction. Recent observations indicate that the convective microphysics of clouds may be critical in simulating the observed MISOs. The hypothesis is strongly supported by high fidelity in simulation of the amplitude and space-time spectra of MISO by a coupled climate model, when our physically based modified cloud microphysics scheme is implemented in conjunction with a modified new Simple Arakawa Schubert (nSAS) convective parameterization scheme. Improved simulation of MISOs appears to have been aided by much improved simulation of the observed high cloud fraction and convective to stratiform rain fractions and resulted into a much improved simulation of the ISM rainfall, monsoon onset, and the annual cycle.

  2. Coupled Climate-Economy-Biosphere (CoCEB) model - Part 1: Abatement share and investment in low-carbon technologies

    Science.gov (United States)

    Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.

    2015-04-01

    The Coupled Climate-Economy-Biosphere (CoCEB) model described herein takes an integrated assessment approach to simulating global change. By using an endogenous economic growth module with physical and human capital accumulation, this paper considers the sustainability of economic growth, as economic activity intensifies greenhouse gas emissions that in turn cause economic damage due to climate change. Different types of fossil fuels and different technologies produce different volumes of carbon dioxide in combustion. The shares of different fuels and their future evolution are not known. We assume that the dynamics of hydrocarbon-based energy share and their replacement with renewable energy sources in the global energy balance can be modeled into the 21st century by use of logistic functions. Various climate change mitigation policy measures are considered. While many integrated assessment models treat abatement costs merely as an unproductive loss of income, we consider abatement activities also as an investment in overall energy efficiency of the economy and decrease of overall carbon intensity of the energy system. The paper shows that these efforts help to reduce the volume of industrial carbon dioxide emissions, lower temperature deviations, and lead to positive effects in economic growth.

  3. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    A. Ganopolski

    2010-04-01

    Full Text Available A new version of the Earth system model of intermediate complexity, CLIMBER-2, which includes the three-dimensional polythermal ice-sheet model SICOPOLIS, is used to simulate the last glacial cycle forced by variations of the Earth's orbital parameters and atmospheric concentration of major greenhouse gases. The climate and ice-sheet components of the model are coupled bi-directionally through a physically-based surface energy and mass balance interface. The model accounts for the time-dependent effect of aeolian dust on planetary and snow albedo. The model successfully simulates the temporal and spatial dynamics of the major Northern Hemisphere (NH ice sheets, including rapid glacial inception and strong asymmetry between the ice-sheet growth phase and glacial termination. Spatial extent and elevation of the ice sheets during the last glacial maximum agree reasonably well with palaeoclimate reconstructions. A suite of sensitivity experiments demonstrates that simulated ice-sheet evolution during the last glacial cycle is very sensitive to some parameters of the surface energy and mass-balance interface and dust module. The possibility of a considerable acceleration of the climate ice-sheet model is discussed.

  4. The Med-CORDEX initiative: towards fully coupled Regional Climate System Models to study the Mediterranean climate variability, change and impact

    Science.gov (United States)

    Somot, S.; Ruti, P.

    2012-04-01

    The Mediterranean region is considered as particularly vulnerable to climate variability and change (Giorgi, 2006; IPCC, 2007), in particular, to changes in its regional water cycle. This climate vulnerability is a key issue for the 500 million inhabitants living in the 30 Mediterranean countries. In addition, the Mediterranean basin is a good case study for climate regionalization. It is indeed surrounded by various and complex topography channelling regional winds (Mistral, Tramontane, Bora, Etesian, Sirocco) than defined local climate. Many small-size islands limit the low-level air flow and its coastline is particularly complex. Strong land-sea contrast, land-atmosphere feedback, intense air-sea coupling and aerosol-radiation interaction are also among the regional characteristics to take into account when dealing with the Mediterranean climate modeling. What is true for the Mediterranean climate is also true for the Mediterranean Sea that show complex bathymetry including narrow and shallow straits, a strong eddy activity and various distinct and interacting water masses. For all these reasons, the Mediterranean area has been chosen as a CORDEX sub-domain (MED) leading to the Med-CORDEX initiative endorsed by Med-CLIVAR and HyMeX. In addition to the core CORDEX framework (Atmosphere-RCM, 50 km, ERA-Interim, RCP4.5, RCP8.5), two more tiers have been defined for Med-CORDEX. The first one would like to assess the added-value of higher-resolution RCMs pushing the horizontal resolution up to 10 km. The second one will serve to test new regional climate modeling tools called Regional Climate System Models (RCSM) including a high-resolution and coupled representation of all the physical components of the regional climate system: atmosphere, land surface, vegetation, surface hydrology, rivers and ocean. In addition, the Med-CORDEX initiative is strongly coordinated with the HyMeX program that plans large field campaigns within the area of interest, development of new

  5. Abrupt millennial variability and interdecadal-interstadial oscillations in a global coupled model: sensitivity to the background climate state

    Energy Technology Data Exchange (ETDEWEB)

    Arzel, Olivier [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France); England, Matthew H. [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Verdiere, Alain Colin de; Huck, Thierry [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France)

    2012-07-15

    The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO{sub 2} levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30-40 years time scale associated with the Atlantic multidecadal oscillation. (orig.)

  6. Analysing present, past and future tropical cyclone activity as inferred from an ensemble of Coupled Global Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Caron, Louis-Philippe; Jones, Colin G. (Univ. du Quebec, CRCMD Network, Montreal (Canada)). e-mail: lpcaron@sca.uQ_am.ca

    2008-01-15

    Using the Yearly Genesis Parameter (YGP) and the Convective-YGP (CYGP), the main large-scale climatic fields controlling tropical cyclone (TC) formation are analysed and used to infer the number of TCs in a given basin using ERA40 reanalyses for the period 1983-2002. Both indices show a reasonable global number and spatial distribution of implied TCs compared to observations. Using the same approach, we evaluate TC activity in the last 20-yr period of the 20th century in an ensemble of nine Coupled Global Climate Model simulations submitted to the IPCC AR4. We extend this analysis backwards in time, through the 20th century, and find the ensemble derived CYGP suggests no trend in inferred TC numbers while the YGP, after applying a correction to compensate for its oversensitivity to sea surface temperature, suggests a small upward trend. Both indices give a fair geographical distribution of cyclogenesis. Finally, we assess future TC trends using three emission scenarios. Using the CYGP, which appears the most robust index for application to climate change, a small increase is predicted in the northwestern Pacific in the A1B and A2 scenarios

  7. The role of atmosphere and ocean physical processes in ENSO in a perturbed physics coupled climate model

    Directory of Open Access Journals (Sweden)

    S. Y. Philip

    2010-04-01

    Full Text Available We examine the behaviour of the El Niño – Southern Oscillation (ENSO in an ensemble of global climate model simulations with perturbations to parameters in the atmosphere and ocean components respectively. The influence of the uncertainty in these parametrisations on ENSO are investigated systematically. The ensemble exhibits a range of different ENSO behaviour in terms of the amplitude and spatial structure of the sea surface temperature (SST variability. The nature of the individual feedbacks that operate within the ENSO system are diagnosed using an Intermediate Complexity Model (ICM, which has been used previously to examine the diverse ENSO behaviour of the CMIP3 multi-model ensemble. Unlike in that case, the ENSO in these perturbed physics experiments is not principally controlled by variations in the mean climate state. Rather the parameter perturbations influence the ENSO characteristics by modifying the coupling feedbacks within the cycle. The associated feedbacks that contribute most to the ensemble variations are the response of SST to local wind variability and damping, followed by the response of SST to thermocline anomalies and the response of the zonal wind stress to those SST anomalies. Atmospheric noise amplitudes and oceanic processes play a relatively minor role.

  8. Hemispheric ozone variability indices derived from satellite observations and comparison to a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    T. Erbertseder

    2006-01-01

    Full Text Available Total column ozone is used to trace the dynamics of the lower and middle stratosphere which is governed by planetary waves. In order to analyse the planetary wave activity a Harmonic Analysis is applied to global multi-year total ozone observations from the Total Ozone Monitoring Spectrometer (TOMS. As diagnostic variables we introduce the hemispheric ozone variability indices one and two. They are defined as the hemispheric means of the amplitudes of the zonal waves number one and two, respectively, as traced by the total ozone field. The application of these indices as a simple diagnostic for the evaluation of coupled chemistry-climate models (CCMs is demonstrated by comparing results of the CCM ECHAM4.L39(DLR/CHEM (hereafter: E39/C against satellite observations. It is quantified to what extent a multi-year model simulation of E39/C (representing "2000" climate conditions is able to reproduce the zonal and hemispheric planetary wave activity derived from TOMS data (1996–2004, Version 8. Compared to the reference observations the hemispheric ozone variability indices one and two of E39/C are too high in the Northern Hemisphere and too low in the Southern Hemisphere. In the Northern Hemisphere, where the agreement is generally better, E39/C produces too strong a planetary wave one activity in winter and spring and too high an interannual variability. For the Southern Hemisphere we reveal that the indices from observations and model differ significantly during the ozone hole season. The indices are used to give reasons for the late formation of the Antarctic ozone hole, the insufficient vortex elongation and eventually the delayed final warming in E39/C. In general, the hemispheric ozone variability indices can be regarded as a simple and robust diagnostic to quantify model-observation differences concerning planetary wave activity. It allows a first-guess on how the dynamics is represented in a model simulation before applying costly and more

  9. Toward Development of a Coupled Human-Natural Systems Model to Understand Climate Impacts on the Lake Erie Ecosystem

    Science.gov (United States)

    Gebremariam, S. Y.; Martin, J. F.; Demarchi, C.; Ludsin, S. A.

    2012-12-01

    Owing to the complexity of large-scale stressors that our world's ecosystems are facing, interdisciplinary research approaches offer the best opportunity to protect our ecosystems and sustain the services that they provide both now and into the future. Towards this end, we have been working toward development of an integrative physical, biological, and socioeconomic model that can help management agencies understand their ability to sustain vital ecosystem services in Lake Erie (i.e., clear water, fish production, and safe beaches) under a changing climate. As a preliminary step, we have been evaluating the ability of three common watershed-hydrology models—the Soil and Water Assessment Tool (Agricultural Research Service), Distributed Large Basin Runoff Model (NOAA-GLERL), and MapShed (Pennsylvania State University)—to simulate the volume and quality of water entering the Lake Erie from Maumee River, which drains the largest watershed in the Lake Erie basin. Each model was calibrated and validated for the years 1995-2002 and 2003-2010, respectively. Herein, we report findings from this comparison. In addition to quantifying the ability of each model to simulate river conditions under varying meteorological scenarios, we discuss the strengths and weaknesses of each model for use in coupled human-natural systems research.

  10. Unraveling Tropical Mountain Hydroclimatology by Coupling Autonomous Sensor Observations and Climate Modeling: Llanganuco Valley, Cordillera Blanca, Peru.

    Science.gov (United States)

    Hellstrom, R. A.; Fernandez, A.; Mark, B. G.; Covert, J. M.

    2015-12-01

    Northern Peru will face critical water resource issues in the near future as permanent ice retreats. Much of current global and regional climate research neglects the meteorological forcing of lapse rates and valley wind dynamics on critical components of the Peruvian Andes' water-cycle. In 2004 and 2005 we installed an autonomous sensor network (ASN) within the glacierized Llanganuco Valley, Cordillera Blanca (9°S), consisting of discrete, cost-effective, automatic temperature loggers located along the valley axis and anchored by two automatic weather stations. Comparisons of these embedded atmospheric measurements from the ASN and climate modeling (CM) by dynamical downscaling using the Weather Research and Forecasting (WRF) model elucidate distinct diurnal and seasonal characteristics of the mountain valley winds and lapse rates. Wind, temperature, humidity, and cloud simulations by WRF suggest that thermally driven valley winds converging with easterly flow aloft enhance late afternoon and evening cloud development which helps explain detected nocturnal precipitation maxima measured by the ASN. We attribute sustained evapotranspiration (ET), as estimated by the FAO-56 Penman-Monteith model, to an abundance of glacial melt-water during the dry season and strong pre-noon solar heating during the wet season. Furthermore, the extreme diurnal variability of along-valley-axis lapse rates and valley wind detected from ground observations and confirmed by dynamical downscaling demonstrate the importance of realistic scale parameterizations of the boundary layer to improve regional CM projections in mountainous regions. Our findings portray ET as an integral yet poorly represented process in Andean hydroclimatology. We show that coupling ASN and CM can improve understanding of multi-scale atmospheric and associated hydrological processes in mountain valleys.

  11. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model

    Directory of Open Access Journals (Sweden)

    M. Steinacher

    2009-04-01

    Full Text Available Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm, and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185% (ΔpH=−0.45. Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.

  12. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  13. Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model for a Danish catchment

    Science.gov (United States)

    Larsen, M. A. D.; Refsgaard, J. C.; Drews, M.; Butts, M. B.; Jensen, K. H.; Christensen, J. H.; Christensen, O. B.

    2014-03-01

    In recent years research on the coupling of existing regional climate models and hydrology/land surface models has emerged. A major challenge in this emerging research field is the computational interaction between the models. In this study we present results from a full two-way coupling of the HIRHAM regional climate model over a 4000 km x 2800 km domain in 11 km resolution and the combined MIKE SHE-SWET hydrology and land surface models over the 2500 km2 Skjern river catchment. A total of 26 one-year runs were performed to assess the influence of the data transfer interval (DTI) between the two models and the internal HIRHAM model variability of ten variables. In general, the coupled model simulations exhibit less accurate performance than the uncoupled simulations which is to be expected as both models prior to this study have been individually refined or calibrated to reproduce observations. Four of six output variables from HIRHAM, precipitation, relative humidity, wind speed and air temperature, showed statistically significant improvements in RMSE with a reduced DTI as evaluated in the range of 12-120 min. For these four variables the perturbation induced HIRHAM variability was shown to correspond to 47% of the RMSE improvement when using a DTI of 120 min compared to a DTI of 12 min and the variability resulted in large ranges in simulated precipitation. Also, the DTI was shown to substantially affect computation time. The MIKE SHE energy flux and discharge output variables experienced little impact from the DTI.

  14. A dynamically-coupled groundwater, land surface and regional climate model to predict seasonal watershed flow and groundwater response, FINAL LDRD REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Kollet, S; Chow, F; Granvold, P; Duan, Q

    2007-02-23

    This final report is organized in four sections. Section 1 is the project summary (below), Section 2 is a submitted manuscript that describes the offline, or spinup simulations in detail, Section 3 is also a submitted manuscript that describes the online, or fully-coupled simulations in detail and Section 3, which is report that describes work done via a subcontract with UC Berkeley. The goal of this project was to develop and apply a coupled regional climate, land-surface, groundwater flow model as a means to further understand important mass and energy couplings between regional climate, the land surface, and groundwater. The project involved coupling three distinct submodels that are traditionally used independently with abstracted and potentially oversimplified (inter-model) boundary conditions. This coupled model lead to (1) an improved understanding of the sensitivity and importance of coupled physical processes from the subsurface to the atmosphere; (2) a new tool for predicting hydrologic conditions (rainfall, temperature, snowfall, snowmelt, runoff, infiltration and groundwater flow) at the watershed scale over a range of timeframes; (3) a simulation of hydrologic response of a characteristic watershed that will provide insight into the certainty of hydrologic forecasting, dominance and sensitivity of groundwater dynamics on land-surface fluxes; and (4) a more realistic model representation of weather predictions, precipitation and temperature, at the regional scale. Regional climate models are typically used for the simulation of weather, precipitation and temperature behavior over 10-1000 km domains for weather or climate prediction purposes, and are typically driven by boundary conditions derived from global climate models (GCMs), observations or both. The land or ocean surface typically represents a bottom boundary condition of these models, where important mass (water) and energy fluxes are approximated. The viability and influence of these

  15. Simulation of ENSO Forcings on U.S. Drought by the HadCM3 Coupled Climate Model

    Science.gov (United States)

    Busby, S. J.; Briffa, K.; Osborn, T.

    2007-05-01

    The ability of the HadCM3 coupled ocean - atmosphere general circulation model to represent the mechanisms linking the El Niño Southern Oscillation (ENSO) and drought in the U.S. is investigated. Rotated principal components analyses of a self-calibrating Palmer Drought Severity Index (scPDSI) data are used to identify the dominant modes of summer drought variability in the observed climate record (1901-2002), and in a 250-year period of a HadCM3 control run. A similar mode of drought variability is identified in both data sets that is correlated with ENSO variability: a monopolar pattern across the continental interior, centred in the southern states. HadCM3 successfully reproduces the displacement of the mid-latitude jet streams during ENSO events, a mechanism related to U.S. drought variability, but the model appears to be less realistic in its simulation of the influence of Rossby wave teleconections on drought, possibly due to errors in its simulation of ENSO in the equatorial Pacific. Despite this, we conclude that HadCM3's simulation of the link between ENSO and U.S. drought is sufficiently realistic for it to be used in further studies of U.S. drought variability.

  16. The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model

    Science.gov (United States)

    Ivy, Diane J.; Solomon, Susan; Kinnison, Doug; Mills, Michael J.; Schmidt, Anja; Neely, Ryan R.

    2017-03-01

    Recent research has demonstrated that the concentrations of anthropogenic halocarbons have decreased in response to the worldwide phaseout of ozone depleting substances. Yet in 2015 the Antarctic ozone hole reached a historical record daily average size in October. Model simulations with specified dynamics and temperatures based on a reanalysis suggested that the record size was likely due to the eruption of Calbuco but did not allow for fully coupled dynamical or thermal feedbacks. We present simulations of the impact of the 2015 Calbuco eruption on the stratosphere using the Whole Atmosphere Community Climate Model with interactive dynamics and temperatures. Comparisons of the interactive and specified dynamics simulations indicate that chemical ozone depletion due to volcanic aerosols played a key role in establishing the record-sized ozone hole of October 2015. The analysis of an ensemble of interactive simulations with and without volcanic aerosols suggests that the forced response to the eruption of Calbuco was an increase in the size of the ozone hole by 4.5 × 106 km2.

  17. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models

    Science.gov (United States)

    Holland, Marika M.; Landrum, Laura

    2015-01-01

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318

  18. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Impact of large solar zenith angles on lower stratospheric dynamical and chemical processes in a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    D. Lamago

    2003-01-01

    Full Text Available Actinic fluxes at large solar zenith angles (SZAs are important for atmospheric chemistry, especially under twilight conditions in polar winter and spring. The results of a sensitivity experiment employing the fully coupled 3D chemistry-climate model ECHAM4.L39(DLR/CHEM have been analysed to quantify the impact of SZAs larger than 87.5º on dynamical and chemical processes in the lower stratosphere, in particular their influence on the ozone layer. Although the actinic fluxes at SZAs larger than 87.5º are small, ozone concentrations are significantly affected because daytime photolytic ozone destruction is switched on earlier, especially at the end of polar night the conversion of Cl2 and Cl2O2 into ClO in the lower stratosphere. Comparing climatological mean ozone column values of a simulation considering SZAs up to 93º with those of the sensitivity run with SZAs confined to 87.5º total ozone is reduced by about 20% in the polar Southern Hemisphere, i.e., the ozone hole is "deeper'' if twilight conditions are considered in the model because there is about 4 weeks more time for ozone destruction. This causes an additional cooling of the polar lower stratosphere (50 hPa up to -4 K with obvious consequences for chemical processes. In the Northern Hemisphere the impact of large SZAs cannot be determined on the basis of climatological mean values due to the pronounced dynamic variability of the stratosphere in winter and spring. This study clearly shows the necessity of considering large SZAs for the calculation of photolysis rates in atmospheric models.

  20. Feedbacks between climate, CO2 and N2O quantified by a fully coupled Earth system model

    Science.gov (United States)

    Kracher, D.; Reick, C. H.

    2013-12-01

    Climate change is evoked by an anthropogenic increase of green house gases (GHG) in the atmosphere, induced by direct emissions from industrial processes or indirectly due to human impacts on ecosystems. Those indirect GHG emissions are strongly influenced by climatic conditions implying several feedback loops in the climate - carbon (C) - nitrogen (N) system. In our study we aim at quantifying the climate - nitrous oxide (N2O) feedback strength in comparison to other feedback mechanisms by applying an Earth system model with explicit representation of interactive N2O in the atmosphere-land-ocean system. Beside the feedbacks emerging due to the temperature sensitivity of biogenic CO2 and N2O emissions, another feedback addressed arises from additional inter-linkages between climate and C and N cycles. Future increased atmospheric CO2 leads to enhanced primary productivity ('CO2 fertilization') causing changes in N availability in the different land and ocean ecosystems. As N2O emissions are driven by availability of N, increased atmospheric CO2 concentrations will impact the climate system also via modifications in N2O emissions. Those changes in N2O emissions will feed back to the climate and will hence also modify the natural biogenic release of CO2 into the atmosphere. This and other associated feedbacks are quantified by applying MPI-ESM, the Earth system model of the Max Planck Institute for Meteorology in Hamburg. MPI-ESM is an atmosphere and ocean global circulation model with model components for land and ocean biogeochemistry. For both CO2 and N2O, land-atmosphere and ocean-atmosphere exchange as well as atmospheric transport are simulated explicitly. Hence, different feedback components in the climate-C-N system can be quantified by cutting artificially single feedback pathways in the model.

  1. A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period

    Directory of Open Access Journals (Sweden)

    Florence Sevault

    2014-11-01

    Full Text Available A fully coupled regional climate system model (CNRM-RCSM4 dedicated to the Mediterranean region is described and evaluated using a multidecadal hindcast simulation (1980–2012 driven by global atmosphere and ocean reanalysis. CNRM-RCSM4 includes the regional representation of the atmosphere (ALADIN-Climate model, land surface (ISBA model, rivers (TRIP model and the ocean (NEMOMED8 model, with a daily coupling by the OASIS coupler. This model aims to reproduce the regional climate system with as few constraints as possible: there is no surface salinity, temperature relaxation, or flux correction; the Black Sea budget is parameterised and river runoffs (except for the Nile are fully coupled. The atmospheric component of CNRM-RCSM4 is evaluated in a companion paper; here, we focus on the air–sea fluxes, river discharges, surface ocean characteristics, deep water formation phenomena and the Mediterranean thermohaline circulation. Long-term stability, mean seasonal cycle, interannual variability and decadal trends are evaluated using basin-scale climatologies and in-situ measurements when available. We demonstrate that the simulation shows overall good behaviour in agreement with state-of-the-art Mediterranean RCSMs. An overestimation of the shortwave radiation and latent heat loss as well as a cold Sea Surface Temperature (SST bias and a slight trend in the bottom layers are the primary current deficiencies. Further, CNRM-RCSM4 shows high skill in reproducing the interannual to decadal variability for air–sea fluxes, river runoffs, sea surface temperature and salinity as well as open-sea deep convection, including a realistic simulation of the Eastern Mediterranean Transient. We conclude that CNRM-RCSM4 is a mature modelling tool allowing the climate variability of the Mediterranean regional climate system to be studied and understood. It is used in hindcast and scenario modes in the HyMeX and Med-CORDEX programs.

  2. Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model

    NARCIS (Netherlands)

    Strengers, B.J.; Müller, C.; Schaeffer, M.; Haarsma, R.J.; Severijns, C.; Gerten, D.; Schaphoff, S.; Houdt, Van den R.; Oostenrijk, R.

    2010-01-01

    This study describes the coupling of the dynamic global vegetation model (DGVM), Lund–Potsdam–Jena Model for managed land (LPJmL), with the general circulation model (GCM), Simplified Parameterizations primitivE Equation DYnamics model (SPEEDY), to study the feedbacks between land-use change and

  3. Coupling genetic and species distribution models to examine the response of the Hainan Partridge (Arborophila ardens to late quaternary climate.

    Directory of Open Access Journals (Sweden)

    Jiang Chang

    Full Text Available Understanding the historical dynamics of animal species is critical for accurate prediction of their response to climate changes. During the late Quaternary period, Southeast Asia had a larger land area than today due to lower sea levels, and its terrestrial landscape was covered by extensive forests and savanna. To date, however, the distribution fluctuation of vegetation and its impacts on genetic structure and demographic history of local animals during the Last Glacial Maximum (LGM are still disputed. In addition, the responses of animal species on Hainan Island, located in northern Southeast Asia, to climate changes during the LGM are poorly understood. Here, we combined phylogeographic analysis, paleoclimatic evidence, and species distribution models to examine the response of the flightless Hainan Partridge (Arborophila ardens to climate change. We concluded that A. ardens survived through LGM climate changes, and its current distribution on Hainan Island was its in situ refuge. Range model results indicated that A. ardens once covered a much larger area than its current distribution. Demographic history described a relatively stable pattern during and following the LGM. In addition, weak population genetic structure suggests a role in promoting gene flow between populations with climate-induced elevation shifts. Human activities must be considered in conservation planning due to their impact on fragmented habitats. These first combined data for Hainan Partridge demonstrate the value of paired genetic and SDMs study. More related works that might deepen our understanding of the responses of the species in Southeast Asia to late Quaternary Climate are needed.

  4. Saharan and Asian dust: similarities and differences determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical model

    Directory of Open Access Journals (Sweden)

    L. Su

    2011-04-01

    Full Text Available This study compares the properties of atmospheric dust from the Saharan deserts and the Asian deserts using data from CALIPSO and AERONET during 2006 and 2007 along with simulations using a coupled climate-microphysical sectional model. Saharan deserts are largely south of 30° N, while Asian ones are primarily north of 30° N, hence they experience different meteorological regimes. Saharan dust lifting occurs all year long, primarily due to subtropical weather systems. However, Asian dust is lifted mostly in spring when mid-latitude frontal systems lead to high winds. Rainfall is more abundant over Asia during the dust lifting events, leading to greater local dust removal than over the Sahara. However, most dust removal is due to sedimentation. Despite the different meteorological regimes, the same dust lifting schemes work in models for Asian and Saharan dust. The magnitudes of dust lifted in Africa and Asia differ significantly over the year. In our model the yearly horizontal dust flux just downwind of the African dust source is about 1088 Tg (10° S–40° N, 10° W and from the Asian dust source it is about 355 Tg (25° N–55° N, 105° E in 2007, which is comparable to previous studies. We find the difference in dust flux is mainly due to the larger area over which dust is lifted in Africa than Asia. However, Africa also has stronger winds in some seasons. Once lifted, the Saharan dust layers generally move toward the west and descend in altitude from about 7 km to the surface over several days in the cases studied. Asian dust often has multiple layers (two layers in the cases studied during transport largely to the east. One layer stays well above boundary layer during transport and shows little descent, while the other, lower, layer descends with time. This observation contrasts with studies suggesting the descent of Saharan dust is due to sedimentation of the particles, and suggests instead it is dominated by meteorology. We find the

  5. Inter-comparison of two land-surface models applied at different scales and their feedbacks while coupled with a regional climate model

    Directory of Open Access Journals (Sweden)

    F. Zabel

    2012-03-01

    Full Text Available Downstream models are often used in order to study regional impacts of climate and climate change on the land surface. For this purpose, they are usually driven offline (i.e., 1-way with results from regional climate models (RCMs. However, the offline approach does not allow for feedbacks between these models. Thereby, the land surface of the downstream model is usually completely different to the land surface which is used within the RCM. Thus, this study aims at investigating the inconsistencies that arise when driving a downstream model offline instead of interactively coupled with the RCM, due to different feedbacks from the use of different land surface models (LSM. Therefore, two physically based LSMs which developed from different disciplinary backgrounds are compared in our study: while the NOAH-LSM was developed for the use within RCMs, PROMET was originally developed to answer hydrological questions on the local to regional scale. Thereby, the models use different physical formulations on different spatial scales and different parameterizations of the same land surface processes that lead to inconsistencies when driving PROMET offline with RCM output. Processes that contribute to these inconsistencies are, as described in this study, net radiation due to land use related albedo and emissivity differences, the redistribution of this net radiation over sensible and latent heat, for example, due to different assumptions about land use impermeability or soil hydraulic reasons caused by different plant and soil parameterizations. As a result, simulated evapotranspiration, e.g., shows considerable differences of max. 280 mm yr−1. For a full interactive coupling (i.e., 2-way between PROMET and the atmospheric part of the RCM, PROMET returns the land surface energy fluxes to the RCM and, thus, provides the lower boundary conditions for the RCM subsequently. Accordingly, the RCM responses to the replacement of the LSM with overall

  6. TRACKING CLIMATE MODELS

    Data.gov (United States)

    National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...

  7. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate....... The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model (LSM), which is superior...

  8. Ent: A global dynamic terrestrial ecosystem model for climate interactions at seasonal to century time scales through coupled water, carbon, and nitrogen dynamics

    Science.gov (United States)

    Kiang, N. Y.; Koster, R. D.; Moorcroft, P. R.; Ni-Meister, W.; Rind, D. H.; Aleinov, I.; Kharecha, P.

    2006-12-01

    Ent is a dynamic global terrestrial ecosystem model (DGTEM) under development at the NASA GISS for coupling with atmospheric general circulation models (GCMs). Ent will be capable of predicting the fast time scale fluxes of water, carbon, nitrogen and energy between the land-surface and the atmosphere and the resulting diurnal surface fluxes, seasonal and inter-annual vegetation growth, and decadal to century scale alterations in vegetation structure and soil carbon and nitrogen. Canopy radiative transfer, biophysics, biogeochemistry, and ecological dynamics will be integrated in a consistent, prognostic, process-based manner, in a way that is both biologically realistic and computationally efficient, and suitable for two-way coupling and parallel computing in GCMs. Canopy radiative transfer is derived from the Geometric-Optical Radiative Transfer (GORT) model (Ni, et al., JGR, 102(D24): 9,555-29,566, 1997); biophysics combines the dynamic construction/destruction of the photosynthetic apparatus of Kull and Kruijt (Adv. Water Resources Res, 24:745-762, 1998) with stomatal conductance of Ball and Berry (Plant Phys., 77(Suppl. 4):91, 1985); dynamic allocation of plant carbon and nitrogen; CASA soil biogeochemistry with extended soil depth (Potter, et al., GBC, 7(4):811-841); and community dynamics of Moorcroft, et al. (Ecol. Monographs, 71(4):557-586, 2001). The model can be used for both assimilation of satellite data and with the GISS GCM for long-term climate studies. Ent will be a standalone set of modules that can be used by the climate modeling community to couple with land surface models and atmospheric GCMs for studies on seasonal weather evolution, vegetation phenology, the carbon budget, climate variability, paleoclimate, global change, vegetation-climate feedbacks, and astronomical biosignatures. Ent is envisioned as a tool for understanding the conditions and signatures of habitability of the Earth, ancient, modern, and future.

  9. Predictability of two types of El Niño and their climate impacts in boreal spring to summer in coupled models

    Science.gov (United States)

    Lee, Ray Wai-Ki; Tam, Chi-Yung; Sohn, Soo-Jin; Ahn, Joong-Bae

    2017-12-01

    The predictability of the two El Niño types and their different impacts on the East Asian climate from boreal spring to summer have been studied, based on coupled general circulation models (CGCM) simulations from the APEC Climate Center (APCC) multi-model ensemble (MME) hindcast experiments. It was found that both the spatial pattern and temporal persistence of canonical (eastern Pacific type) El Niño sea surface temperature (SST) are much better simulated than those for El Niño Modoki (central Pacific type). In particular, most models tend to have El Niño Modoki events that decay too quickly, in comparison to those observed. The ability of these models in distinguishing between the two types of ENSO has also been assessed. Based on the MME average, the two ENSO types become less and less differentiated in the model environment as the forecast leadtime increases. Regarding the climate impact of ENSO, in spring during canonical El Niño, coupled models can reasonably capture the anomalous low-level anticyclone over the western north Pacific (WNP)/Philippine Sea area, as well as rainfall over coastal East Asia. However, most models have difficulties in predicting the springtime dry signal over Indochina to South China Sea (SCS) when El Niño Modoki occurs. This is related to the location of the simulated anomalous anticyclone in this region, which is displaced eastward over SCS relative to the observed. In boreal summer, coupled models still exhibit some skills in predicting the East Asian rainfall during canonical El Nino, but not for El Niño Modoki. Overall, models' performance in spring to summer precipitation forecasts is dictated by their ability in capturing the low-level anticyclonic feature over the WNP/SCS area. The latter in turn is likely to be affected by the realism of the time mean monsoon circulation in models.

  10. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    Science.gov (United States)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines

  11. Evaluation of different freshwater forcing scenarios for the 8.2 ka BP event in a coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, A.P.; Renssen, H. [Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, Amsterdam (Netherlands); Goosse, H.; Fichefet, T. [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique George Lemaitre, Louvain-la-Neuve (Belgium)

    2006-12-15

    To improve our understanding of the mechanism causing the 8.2 ka BP event, we investigated the response of ocean circulation in the ECBilt-CLIO-VECODE (Version 3) model to various freshwater fluxes into the Labrador Sea. Starting from an early Holocene climate state we released freshwater pulses varying in volume and duration based on published estimates. In addition we tested the effect of a baseline flow (0.172 Sv) in the Labrador Sea to account for the background-melting of the Laurentide ice-sheet on the early Holocene climate and on the response of the overturning circulation. Our results imply that the amount of freshwater released is the decisive factor in the response of the ocean, while the release duration only plays a minor role, at least when considering the short release durations (1, 2 and 5 years) of the applied freshwater pulses. Furthermore, the experiments with a baseline flow produce a more realistic early Holocene climate state without Labrador Sea Water formation. Meltwater pulses introduced into this climate state produce a prolonged weakening of the overturning circulation compared to an early Holocene climate without baseline flow, and therefore less freshwater is needed to produce an event of similar duration. (orig.)

  12. Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.; Knote, C.; Brunner, D.; Vogel, H.; Allan, J.; Asmi, A.; Aijala, M.; Carbone, S.; Jiminez, J.L.; Kiendler-Scharr, A.; Mohr, C.; Poulain, L.; Prevot, A.S.H.; Swietlicki, E.; Vogel, B.

    2011-01-01

    Abstract. The online-coupled, regional chemistry transport model COSMO-ART is evaluated for periods in all seasons against several measurement datasets to assess its ability to represent gaseous pollutants and ambient aerosol characteristics over the European domain. Measurements used in the

  13. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    Energy Technology Data Exchange (ETDEWEB)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those

  14. Future changes in tropical cyclone genesis in fully dynamic ocean- and mixed layer ocean-coupled climate models: a low-resolution model study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo-Hong; Brown, Simon J.; McDonald, Ruth E. [Met Office Hadley Centre, Exeter (United Kingdom)

    2011-08-15

    The global and regional projected changes in tropical cyclone (TC) genesis due to increased CO{sub 2} concentrations has been investigated through a large-scale TC genesis parameter (convective seasonal genesis parameter, ConvGP) in two perturbed physics ensembles. The ensembles are based on the third generation Hadley Centre atmosphere-ocean general circulation model with the first ensemble using a coupled fully dynamic ocean (HadCM3) and the second coupled to a simplified mixed layer thermodynamic ocean (HadSM3) both consisting of 17 members. In each ensemble, parameters are identically perturbed to provide a wide range of climate sensitivity whilst retaining a credible present-day climate simulation. It is found, by comparing the ConvGP climatology from reanalysis data with the best track genesis, that it is possible to reproduce the observed genesis distribution. Future changes in the spatial ConvGP distribution are explored with respect to each tropical ocean basin. Whilst there is a similarity in the gross pattern of the ensemble-mean projected ConvGP change between HadCM3 and HadSM3, there is a non-trivial difference in the tropical Pacific Ocean, arising from different patterns of tropical Pacific sea surface temperature change. This indicates that ocean representation can be important for regional scale projections. The quantitative contribution of individual constituent parameters (i.e. vorticity parameter, shear parameter and convective potential) to the projected ConvGP change is estimated. It is found that all three large-scale parameters generally contribute constructively, but with different magnitude, in the regions where a large doubled CO{sub 2} response is found. (orig.)

  15. Coupling the Canadian Terrestrial Ecosystem Model (CTEM v. 2.0 to Environment and Climate Change Canada's greenhouse gas forecast model (v.107-glb

    Directory of Open Access Journals (Sweden)

    B. Badawy

    2018-02-01

    Full Text Available The Canadian Land Surface Scheme and the Canadian Terrestrial Ecosystem Model (CLASS-CTEM together form the land surface component in the family of Canadian Earth system models (CanESMs. Here, CLASS-CTEM is coupled to Environment and Climate Change Canada (ECCC's weather and greenhouse gas forecast model (GEM-MACH-GHG to consistently model atmosphere–land exchange of CO2. The coupling between the land and the atmospheric transport model ensures consistency between meteorological forcing of CO2 fluxes and CO2 transport. The procedure used to spin up carbon pools for CLASS-CTEM for multi-decadal simulations needed to be significantly altered to deal with the limited availability of consistent meteorological information from a constantly changing operational environment in the GEM-MACH-GHG model. Despite the limitations in the spin-up procedure, the simulated fluxes obtained by driving the CLASS-CTEM model with meteorological forcing from GEM-MACH-GHG were comparable to those obtained from CLASS-CTEM when it is driven with standard meteorological forcing from the Climate Research Unit (CRU combined with reanalysis fields from the National Centers for Environmental Prediction (NCEP to form CRU-NCEP dataset. This is due to the similarity of the two meteorological datasets in terms of temperature and radiation. However, notable discrepancies in the seasonal variation and spatial patterns of precipitation estimates, especially in the tropics, were reflected in the estimated carbon fluxes, as they significantly affected the magnitude of the vegetation productivity and, to a lesser extent, the seasonal variations in carbon fluxes. Nevertheless, the simulated fluxes based on the meteorological forcing from the GEM-MACH-GHG model are consistent to some extent with other estimates from bottom-up or top-down approaches. Indeed, when simulated fluxes obtained by driving the CLASS-CTEM model with meteorological data from the GEM-MACH-GHG model are used as

  16. A simplified Permafrost-Carbon model for long-term climate studies with the CLIMBER-2 coupled earth system model

    NARCIS (Netherlands)

    Crichton, D.; Roche, D.M.V.A.P.; Krinner, G.; Chappellaz, J.

    2015-01-01

    We present the development and validation of a simplified permafrost-carbon mechanism for use with the land surface scheme operating in the CLIMBER-2 earth system model. The simplified model estimates the permafrost fraction of each grid cell according to the balance between modelled cold (below 0

  17. Coupled atmosphere ocean climate model simulations in the Mediterranean region: effect of a high-resolution marine model on cyclones and precipitation

    Directory of Open Access Journals (Sweden)

    A. Sanna

    2013-06-01

    Full Text Available In this study we investigate the importance of an eddy-permitting Mediterranean Sea circulation model on the simulation of atmospheric cyclones and precipitation in a climate model. This is done by analyzing results of two fully coupled GCM (general circulation models simulations, differing only for the presence/absence of an interactive marine module, at very high-resolution (~ 1/16°, for the simulation of the 3-D circulation of the Mediterranean Sea. Cyclones are tracked by applying an objective Lagrangian algorithm to the MSLP (mean sea level pressure field. On annual basis, we find a statistically significant difference in vast cyclogenesis regions (northern Adriatic, Sirte Gulf, Aegean Sea and southern Turkey and in lifetime, giving evidence of the effect of both land–sea contrast and surface heat flux intensity and spatial distribution on cyclone characteristics. Moreover, annual mean convective precipitation changes significantly in the two model climatologies as a consequence of differences in both air–sea interaction strength and frequency of cyclogenesis in the two analyzed simulations.

  18. Current and future groundwater recharge in West Africa as estimated from a range of coupled climate model outputs

    Science.gov (United States)

    Verhoef, Anne; Cook, Peter; Black, Emily; Macdonald, David; Sorensen, James

    2017-04-01

    This research addresses the terrestrial water balance for West Africa. Emphasis is on the prediction of groundwater recharge and how this may change in the future, which has relevance to the management of surface and groundwater resources. The study was conducted as part of the BRAVE research project, "Building understanding of climate variability into planning of groundwater supplies from low storage aquifers in Africa - Second Phase", funded under the NERC/DFID/ESRC Programme, Unlocking the Potential of Groundwater for the Poor (UPGro). We used model output data of water balance components (precipitation, surface and subsurface run-off, evapotranspiration and soil moisture content) from ERA-Interim/ERA-LAND reanalysis, CMIP5, and high resolution model runs with HadGEM3 (UPSCALE; Mizielinski et al., 2014), for current and future time-periods. Water balance components varied widely between the different models; variation was particularly large for sub-surface runoff (defined as drainage from the bottom-most soil layer of each model). In-situ data for groundwater recharge obtained from the peer-reviewed literature were compared with the model outputs. Separate off-line model sensitivity studies with key land surface models were performed to gain understanding of the reasons behind the model differences. These analyses were centered on vegetation, and soil hydraulic parameters. The modelled current and future recharge time series that had the greatest degree of confidence were used to examine the spatiotemporal variability in groundwater storage. Finally, the implications for water supply planning were assessed. Mizielinski, M.S. et al., 2014. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign. Geoscientific Model Development, 7(4), pp.1629-1640.

  19. Projecting range limits with coupled thermal tolerance - climate change models: an example based on gray snapper (Lutjanus griseus along the U.S. east coast.

    Directory of Open Access Journals (Sweden)

    Jonathan A Hare

    Full Text Available We couple a species range limit hypothesis with the output of an ensemble of general circulation models to project the poleward range limit of gray snapper. Using laboratory-derived thermal limits and statistical downscaling from IPCC AR4 general circulation models, we project that gray snapper will shift northwards; the magnitude of this shift is dependent on the magnitude of climate change. We also evaluate the uncertainty in our projection and find that statistical uncertainty associated with the experimentally-derived thermal limits is the largest contributor (∼ 65% to overall quantified uncertainty. This finding argues for more experimental work aimed at understanding and parameterizing the effects of climate change and variability on marine species.

  20. The impact of ocean-atmosphere interaction and atmospheric model resolution on the Mediterranean climate as simulated by regionally coupled ESM ROM

    Science.gov (United States)

    Sein, Dmitry; Cabos, William; Jacob, Daniela

    2017-04-01

    The Mediterranean Sea and adjacent land is located in a transitional area between tropical and mid-latitudes and presents a complex orography and coastlines where intense local air-sea and land-sea interactions take place. These intense local air-sea interactions together with the inflow of Atlantic water drive the Mediterranean thermohaline circulation. The resolution of global climate models in general is too coarse to correctly describe air-sea fluxes of energy and mass that play a key role in the process of deep water formation in the Mediterranean Sea. From the other hand stand-alone atmospheric models can be inadequate to simulate the air-sea fluxes correctly. For these reasons, the Mediterranean Sea is a region where atmosphere-ocean regional climate models (AORCM) are critical for the study of the processes in the atmosphere and ocean. In this work we use the regionally coupled atmosphere-ocean model ROM and its atmospheric component REMO in standalone configuration in order to assess the role of ocean-atmosphere feedbacks and the ocean and atmosphere models resolution in the simulation of both the ocean and atmospheric features of the Mediterranean hydrological cycle. To this end, a number of coupled and uncoupled simulations forced by ERA-Interim boundary conditions have been carried out. Namely, four different sets of coupled and uncoupled simulations with different atmospheric resolutions (25 and 12.5 km) are used to estimate the impact of resolution and coupling on the mass and heat budget as well as deep water formation in the Mediterranean Sea.

  1. Investigating links between climate and orography in the central Andes: Coupling erosion and precipitation using a physical-statistical model

    Science.gov (United States)

    Lowman, Lauren E. L.; Barros, Ana P.

    2014-06-01

    Prior studies evaluated the interplay between climate and orography by investigating the sensitivity of relief to precipitation using the stream power erosion law (SPEL) for specified erosion rates. Here we address the inverse problem, inferring realistic spatial distributions of erosion rates for present-day topography and contemporaneous climate forcing. In the central Andes, similarities in the altitudinal distribution and density of first-order stream outlets and precipitation suggest a direct link between climate and fluvial erosion. Erosion rates are estimated with a Bayesian physical-statistical model based on the SPEL applied at spatial scales that capture joint hydrogeomorphic and hydrometeorological patterns within five river basins and one intermontane basin in Peru and Bolivia. Topographic slope and area data were generated from a high-resolution (˜90 m) digital elevation map, and mean annual precipitation was derived from 14 years of Tropical Rainfall Measuring Mission 3B42v.7 product and adjusted with rain gauge data. Estimated decadal-scale erosion rates vary between 0.68 and 11.59 mm/yr, with basin averages of 2.1-8.5 mm/yr. Even accounting for uncertainty in precipitation and simplifying assumptions, these values are 1-2 orders of magnitude larger than most millennial and million year timescale estimates in the central Andes, using various geological dating techniques (e.g., thermochronology and cosmogenic nuclides), but they are consistent with other decadal-scale estimates using landslide mapping and sediment flux observations. The results also reveal a pattern of spatially dependent erosion consistent with basin hypsometry. The modeling framework provides a means of remotely estimating erosion rates and associated uncertainties under current climate conditions over large regions. 2014. American Geophysical Union. All Rights Reserved.

  2. The coupling of optimal economic growth and climate dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, O. [GERAD and MQG, HEC, Montreal, Montreal, Quebec, H3T 2A7 (Canada); Drouet, L.; Haurie, A.; Vial, J.P. [LOGILAB-HEC, University of Geneva, 1211 Geneva (Switzerland); Edwards, N.R. [Earth Sciences, CEPSAR, Open University, Milton Keynes, MK7 6AA (United Kingdom); Knutti, R. [National Center for Atmospheric Research, Boulder, CO 80305 (United States); Kypreos, S. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Stocker, T.F. [Climate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern (Switzerland)

    2006-11-15

    In this paper, we study optimal economic growth programs coupled with climate change dynamics. The study is based on models derived from MERGE, a well established integrated assessment model (IAM). We discuss first the introduction in MERGE of a set of 'tolerable window' constraints which limit both the temperature change and the rate of temperature change. These constraints, obtained from ensemble simulations performed with the Bern 2.5-D climate model, allow us to identity a domain intended to preserve the Atlantic thermohaline circulation. Next, we report on experiments where a two-way coupling is realized between the economic module of MERGE and an intermediate complexity '3-D-' climate model (C-GOLDSTEIN) which computes the changes in climate and mean temperature. The coupling is achieved through the implementation of an advanced 'oracle based optimization technique' which permits the integration of information coming from the climate model during the search for the optimal economic growth path. Both cost-effectiveness and cost-benefit analysis modes are explored with this combined 'meta-model' which we refer to as GOLDMERGE. Some perspectives on future implementations of these approaches in the context of 'collaborative' or 'community' integrated assessment modules are derived from the comparison of the different approaches.

  3. North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation

    Directory of Open Access Journals (Sweden)

    I. Medhaug

    2011-06-01

    Full Text Available Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO and the Atlantic Meridional Overturning Circulation (AMOC. The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s and the following colder period (1960s–1980s. This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.

  4. Projecting optimal land-use and -management strategies under population growth and climate change using a coupled ecosystem & land use model framework

    Science.gov (United States)

    Rabin, Sam; Alexander, Peter; Anthoni, Peter; Henry, Roslyn; Huntingford, Chris; Pugh, Thomas; Rounsevell, Mark; Arneth, Almut

    2017-04-01

    A major question facing humanity is how well agricultural production systems will be able to feed the world in a future of rapid climate change, population growth, and demand shifts—all while minimizing our impact on the natural world. Global modeling has frequently been used to investigate certain aspects of this question, but in order to properly address the challenge, no one part of the human-environmental system can be assessed in isolation. It is especially critical that the effect on agricultural yields of changing temperature and precipitation regimes (including seasonal timing and frequency and intensity of extreme events), as well as rising atmospheric carbon dioxide levels, be taken into account when planning for future food security. Coupled modeling efforts, where changes in various parts of the Earth system are allowed to feed back onto one another, represent a powerful strategy in this regard. This presentation describes the structure and initial results of an effort to couple a biologically-representative vegetation and crop production simulator, LPJ-GUESS, with the climate emulator IMOGEN and the land-use model PLUMv2. With IMOGEN providing detailed future weather simulations, LPJ-GUESS simulates natural vegetation as well as cropland and pasture/rangeland; the simulated exchange of greenhouse gases between the land and atmosphere feeds back into IMOGEN's predictions. LPJ-GUESS also produces potential vegetation yields for irrigated vs. rainfed crops under three levels of nitrogen fertilizer addition. PLUMv2 combines these potential yields with endogenous demand and agricultural commodity price to calculate an optimal set of land use distributions and management strategies across the world for the next five years of simulation, based on socio-economic scenario data. These land uses are then fed back into LPJ-GUESS, and the cycle of climate, greenhouse gas emissions, crop yields, and land-use change continues. The globally gridded nature of the

  5. Air-sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components

    Science.gov (United States)

    Tian, Fangxing; von Storch, Jin-Song; Hertwig, Eileen

    2017-05-01

    We analyse the changes in the air-sea fluxes of momentum, heat and fresh water flux caused by increasing the ocean-atmosphere coupling frequency from once per day to once per hour in the Max Planck Institute Earth System Model. We diagnose the relative influences of daily averaging and high-frequency feedbacks on the basic statistics of the air-sea fluxes at grid point level and quantify feedback modes responsible for large scale changes in fluxes over the Southern Ocean and the Equatorial Pacific. Coupling once per hour instead of once per day reduces the mean of the momentum-flux magnitude by up to 7 % in the tropics and increases it by up to 10 % in the Southern Ocean. These changes result solely from feedbacks between atmosphere and ocean occurring on time scales shorter than 1 day . The variance and extremes of all the fluxes are increased in most parts of the oceans. Exceptions are found for the momentum and fresh water fluxes in the tropics. The increases result mainly from the daily averaging, while the decreases in the tropics are caused by the high-frequency feedbacks. The variance increases are substantial, reaching up to 50 % for the momentum flux, 100 % for the fresh water flux, and a factor of 15 for the net heat flux. These diurnal and intra-diurnal variations account for up to 50-90 % of the total variances and exhibit distinct seasonality. The high-frequency coupling can influence the large-scale feedback modes that lead to large-scale changes in the magnitude of wind stress over the Southern Ocean and Equatorial Pacific. In the Southern Ocean, the dependence of the SST-wind-stress feedback on the mean state of SST, which is colder in the experiment with hourly coupling than in the experiment with daily coupling, leads to an increase of westerlies. In the Equatorial Pacific, Bjerknes feedback in the hourly coupled experiment reveals a diurnal cycle during the El Niño events, with the feedback being stronger in the nighttime than in the daytime and

  6. An evaluation of uncertainty in the aerosol optical properties as represented by satellites and an ensemble of chemistry-climate coupled models over Europe

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Jiménez-Guerrero, Pedro

    2016-04-01

    The changes in Earth's climate are produced by forcing agents such as greenhouse gases, clouds and atmospheric aerosols. The latter modify the Earth's radiative budget due to their optical, microphysical and chemical properties, and are considered to be the most uncertain forcing agent. There are two main approaches to the study of aerosols: (1) ground-based and remote sensing observations and (2) atmospheric modelling. With the aim of characterizing the uncertainties associated with these approaches, and estimating the radiative forcing caused by aerosols, the main objective of this work is to assess the representation of aerosol optical properties by different remote sensing sensors and online-coupled chemistry-climate models and to determine whether the inclusion of aerosol radiative feedbacks in this type of models improves the modelling outputs over Europe. Two case studies have been selected under the framework of the EuMetChem COST Action ES1004, when important aerosol episodes during 2010 over Europe took place: a Russian wildfires episode and a Saharan desert dust outbreak covering most of Europe. Model data comes from an ensemble of regional air quality-climate simulations performed by the working group 2 of EuMetChem, that investigates the importance of different processes and feedbacks in on-line coupled chemistry-climate models. These simulations are run for three different configurations for each model, differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The remote sensing data comes from three different sensors, MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone Monitoring Instrument) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor). The evaluation has been performed by using classical statistical metrics, comparing modelled and remotely sensed data versus a ground-based instrument network (AERONET). The evaluated variables are aerosol optical depth (AOD) and the Angström exponent (AE) at

  7. Constraining climatic controls on hillslope dynamics using a coupled model for the transport of soil and tracers: Application to loess-mantled hillslopes, Charwell River, South Island, New Zealand

    Science.gov (United States)

    J.J. Roering; P. Almond; P. Tonkin; J. McKean

    2004-01-01

    Landscapes reflect a legacy of tectonic and climatic forcing as modulated by surface processes. Because the morphologic characteristics of landscapes often do not allow us to uniquely define the relative roles of tectonic deformation and climate, additional constraints are required to interpret and predict landscape dynamics. Here we describe a coupled model for the...

  8. The influence of different amplitudes of Total Solar Irradiance changes on the Medieval climate in coupled model simulations

    Science.gov (United States)

    Wagner, S.; Zorita, E.; Gonzalez-Rouco, F. J.

    2012-12-01

    The climate of Medieval times (950-1250 AD) has been investigated with a set of simulations using the comprehensive ECHO-G AOGCM. To test the influence of changes in external solar forcing two simulations with different amplitudes of the variations in solar activity have been carried out, the first one assuming a 0.35 ‰ difference between the Late Maunder Minimum and present day, and the second one assuming only half of this change. All simulations are forced with changes in orbital and greenhouse gas forcing, but the reference simulation is carried out with constant solar forcing. The evolution of modelled Northern hemispheric summer near-surface temperatures shows a significant (alpha=0.05) anomaly indicating higher temperatures of around +0.2 K (+0.1 K) for the high-amplitude (low amplitude) simulation over the period 1100 -1300 AD compared to the reference simulation. Temperatures on the northern hemispheric scale therefore respond linearly on the amplitude of solar activity changes. The control simulation, forced without any changes in external solar activity, shows no increased temperature levels during the entire medieval period. The spatially resolved temperature anomaly patterns show largest temperature anomalies over continental areas, with maximum values around +0.5 K over the interiors of the Northern hemispheric continents during the entire Medieval period. For smaller spatial scales, for instance Scandinavia, the forced simulations show no such clear-cut positive temperature signals because the ratio between signal and internal variability is reduced. For the North Atlantic region the internal variability is mostly affected by the variability related to the NAO and the North Atlantic drift. Compared to the reference simulation the summer NAO shows in both simulations a negative phase during the entire medieval period, mostly pronounced within the high-amplitude solar forcing simulation. The North Atlantic SST anomaly pattern also shows a response to

  9. Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry

    Directory of Open Access Journals (Sweden)

    P. Huszar

    2013-10-01

    Full Text Available Our work is among the first that use an atmosphere-ocean general circulation model (AOGCM with online chemistry to evaluate the impact of future aviation emissions on temperature. Other particularities of our study include non-scaling to the aviation emissions, and the analysis of models' transient response using ensemble simulations. The model we use is the Météo-France CNRM-CM5.1 earth system model extended with the REPROBUS chemistry scheme. The time horizon of our interest is 1940–2100, assuming the A1B SRES scenario. We investigate the present and future impact of aviation emissions of CO2, NOx and H2O on climate, taking into account changes in greenhouse gases, contrails and contrail-induced cirrus (CIC. As in many transport-related impact studies, we distinguish between the climate impacts of CO2 emissions and those of non-CO2 emissions. Aviation-produced aerosol is not considered in the study. Our modeling system simulated a notable sea-ice bias in the Arctic, and therefore results concerning the surface should be viewed with caution. The global averaged near-surface CO2 impact reaches around 0.1 K by the end of the 21st century, while the non-CO2 impact reaches 0.2 K in the second half of the century. The NOx emissions impact is almost negligible in our simulations, as our aviation-induced ozone production is small. As a consequence, the non-CO2 signal is very similar to the CIC signal. The seasonal analysis shows that the strongest warming due to aviation is modeled for the late summer and early autumn. In the stratosphere, a significant cooling is attributed to aviation CO2 emissions (−0.25 K by 2100. A −0.3 K temperature decrease is modeled when considering all the aviation emissions, but no significant signal appears from the CIC or NOx forcings in the stratosphere.

  10. Climate models and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Fortelius, C.; Holopainen, E.; Kaurola, J.; Ruosteenoja, K.; Raeisaenen, J. [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    In recent years the modelling of interannual climate variability has been studied, the atmospheric energy and water cycles, and climate simulations with the ECHAM3 model. In addition, the climate simulations of several models have been compared with special emphasis in the area of northern Europe

  11. The dependence on atmospheric resolution of ENSO and related East Asian-western North Pacific summer climate variability in a coupled model

    Science.gov (United States)

    Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang

    2017-08-01

    The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).

  12. Decadal to multi-decadal scale variability of Indian summer monsoon rainfall in the coupled ocean-atmosphere-chemistry climate model SOCOL-MPIOM

    Science.gov (United States)

    Malik, Abdul; Brönnimann, Stefan; Stickler, Alexander; Raible, Christoph C.; Muthers, Stefan; Anet, Julien; Rozanov, Eugene; Schmutz, Werner

    2017-01-01

    The present study is an effort to deepen the understanding of Indian summer monsoon rainfall (ISMR) on decadal to multi-decadal timescales. We use ensemble simulations for the period AD 1600-2000 carried out by the coupled Atmosphere-Ocean-Chemistry-Climate Model (AOCCM) SOCOL-MPIOM. Firstly, the SOCOL-MPIOM is evaluated using observational and reanalyses datasets. The model is able to realistically simulate the ISMR as well as relevant patterns of sea surface temperature and atmospheric circulation. Further, the influence of Atlantic Multi-decadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) variability on ISMR is realistically simulated. Secondly, we investigate the impact of internal climate variability and external climate forcings on ISMR on decadal to multi-decadal timescales over the past 400 years. The results show that AMO, PDO, and Total Solar Irradiance (TSI) play a considerable role in controlling the wet and dry decades of ISMR. Resembling observational findings most of the dry decades of ISMR occur during a negative phase of AMO and a simultaneous positive phase of PDO. The observational and simulated datasets reveal that on decadal to multi-decadal timescales the ISMR has consistent negative correlation with PDO whereas its correlation with AMO and TSI is not stationary over time.

  13. Decadal to multi-decadal scale variability of Indian summer monsoon rainfall in the coupled ocean-atmosphere-chemistry climate model SOCOL-MPIOM

    Science.gov (United States)

    Malik, Abdul; Brönnimann, Stefan; Stickler, Alexander; Raible, Christoph C.; Muthers, Stefan; Anet, Julien; Rozanov, Eugene; Schmutz, Werner

    2017-11-01

    The present study is an effort to deepen the understanding of Indian summer monsoon rainfall (ISMR) on decadal to multi-decadal timescales. We use ensemble simulations for the period AD 1600-2000 carried out by the coupled Atmosphere-Ocean-Chemistry-Climate Model (AOCCM) SOCOL-MPIOM. Firstly, the SOCOL-MPIOM is evaluated using observational and reanalyses datasets. The model is able to realistically simulate the ISMR as well as relevant patterns of sea surface temperature and atmospheric circulation. Further, the influence of Atlantic Multi-decadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) variability on ISMR is realistically simulated. Secondly, we investigate the impact of internal climate variability and external climate forcings on ISMR on decadal to multi-decadal timescales over the past 400 years. The results show that AMO, PDO, and Total Solar Irradiance (TSI) play a considerable role in controlling the wet and dry decades of ISMR. Resembling observational findings most of the dry decades of ISMR occur during a negative phase of AMO and a simultaneous positive phase of PDO. The observational and simulated datasets reveal that on decadal to multi-decadal timescales the ISMR has consistent negative correlation with PDO whereas its correlation with AMO and TSI is not stationary over time.

  14. Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere-ocean regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, C.; Somot, S.; Deque, M.; Sevault, F. [CNRM-GAME, Meteo-France, CNRS, Toulouse (France); Calmanti, S.; Carillo, A.; Dell' Aquilla, A.; Sannino, G. [ENEA, Rome (Italy); Elizalde, A.; Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Gualdi, S.; Oddo, P.; Scoccimarro, E. [INGV, Bologna (Italy); L' Heveder, B.; Li, L. [Laboratoire de Meteorologie Dynamique, Paris (France)

    2012-10-15

    Within the CIRCE project ''Climate change and Impact Research: the Mediterranean Environment'', an ensemble of high resolution coupled atmosphere-ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950-2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021-2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961-1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021-2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961-1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing

  15. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Froelicher, Thomas L.; Joos, Fortunat [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); University of Bern, Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2010-12-15

    The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO{sub 2} agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO{sub 2} given the irreversible impacts of anthropogenic carbon emissions. (orig.)

  16. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model

    Science.gov (United States)

    Frölicher, Thomas L.; Joos, Fortunat

    2010-12-01

    The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO2 agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO2 given the irreversible impacts of anthropogenic carbon emissions.

  17. Overview of the Coupled Model Intercomparison Project.

    Science.gov (United States)

    Meehl, Gerald A.; Covey, Curt; McAvaney, Bryant; Latif, Mojib; Stouffer, Ronald J.

    2005-01-01

    The Coupled Model Intercomparison Project (CMIP) involves study and intercomparison of multi-model simulations of present and future climate. The simulations of the future use idealized forcing in increase is compounded which CO2 1% yr-1 until it doubles (near year 70) with global coupled models that contain, typically, components representing atmosphere, ocean, sea ice, and land surface. Results from CMIP diagnostic subprojects were presented at the Second CMIP Workshop held at the Max Planck Institute for Meteorology in Hamburg, Germany, in September 2003. Significant progress in diagnosing and understanding results from global coupled models has been made since the time of the First CMIP Workshop in Melbourne, Australia, in 1998. For example, the issue of flux adjustment is slowly fading as more and more models obtain stable multi-century surface climates without them. El Niño variability, usually about half the observed amplitude in the previous generation of coupled models, is now more accurately simulated in the present generation of global coupled models, though there are still biases in simulating the patterns of maximum variability. Typical resolutions of atmospheric component models contained in coupled models are now usually around 2.5° latitude-longitude, with the ocean components often having about twice the atmospheric model resolution, with even higher resolution in the equatorial Tropics. Some new-generation coupled models have atmospheric resolutions of around 1.5° latitude-longitude. Modeling groups now routinely run the CMIP control and 1% CO2 simulations in addition to twentieth- and twenty-first-century climate simulations with a variety of forcings e.g., volcanoes, solar variability, anthropogenic sulfate aerosols, ozone, and greenhouse gases, with the anthropogenic forcings for future climate as well. However, persistent systematic errors noted in previous generations of global coupled models are still present in the current generation (e

  18. Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects

    Science.gov (United States)

    Hong, Chaopeng; Zhang, Qiang; Zhang, Yang; Tang, Youhua; Tong, Daniel; He, Kebin

    2017-06-01

    In this study, a regional coupled climate-chemistry modeling system using the dynamical downscaling technique was established by linking the global Community Earth System Model (CESM) and the regional two-way coupled Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model for the purpose of comprehensive assessments of regional climate change and air quality and their interactions within one modeling framework. The modeling system was applied over east Asia for a multi-year climatological application during 2006-2010, driven with CESM downscaling data under Representative Concentration Pathways 4.5 (RCP4.5), along with a short-term air quality application in representative months in 2013 that was driven with a reanalysis dataset. A comprehensive model evaluation was conducted against observations from surface networks and satellite observations to assess the model's performance. This study presents the first application and evaluation of the two-way coupled WRF-CMAQ model for climatological simulations using the dynamical downscaling technique. The model was able to satisfactorily predict major meteorological variables. The improved statistical performance for the 2 m temperature (T2) in this study (with a mean bias of -0.6 °C) compared with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-models might be related to the use of the regional model WRF and the bias-correction technique applied for CESM downscaling. The model showed good ability to predict PM2. 5 in winter (with a normalized mean bias (NMB) of 6.4 % in 2013) and O3 in summer (with an NMB of 18.2 % in 2013) in terms of statistical performance and spatial distributions. Compared with global models that tend to underpredict PM2. 5 concentrations in China, WRF-CMAQ was able to capture the high PM2. 5 concentrations in urban areas. In general, the two-way coupled WRF-CMAQ model performed well for both climatological and air quality applications. The coupled

  19. Simulating Baltic Sea climate for the period 1902-1998 with the Rossby Centre coupled ice-ocean model

    Energy Technology Data Exchange (ETDEWEB)

    Meier, H.E. Markus [Swedish Meteorological and Hydrological Inst., Rossby Centre, Norrkoeping (Sweden); Kauker, Frank [Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)

    2002-12-01

    Hindcast simulations for the period 1902-1998 have been performed using a 3D coupled ice-ocean model for the Baltic Sea. Daily sea level observations in Kattegat, monthly basin-wide discharge data, and reconstructed atmospheric surface data have been used to force the Baltic Sea model. The reconstruction utilizes a statistical model to calculate daily sea level pressure and monthly surface air temperature, dew point temperature, precipitation, and cloud cover fields on a 1 deg x 1 deg regular horizontal grid for the Baltic Sea region. An improved turbulence scheme has been implemented into the Baltic Sea model to simulate saltwater inflows realistically. The results are validated against available observational datasets for sea level, salinity, saltwater inflow, volume transport, and sea ice. In addition, a comparison is performed with simulations for the period 1980-1993 using 3-hourly gridded atmospheric observations from synoptic stations. It is shown that the results of the Baltic Sea model forced with the reconstructed data are satisfactory. Sensitivity experiments have been performed to explore the impact of internal mixing, fresh and saltwater inflows, sea ice, and the sea level in Kattegat on the salinity of the Baltic Sea. It is found that the decadal variability of mean salinity is explained partly by decadal volume variations of the accumulated freshwater inflow from river runoff and net precipitation and partly by decadal variations of the large-scale sea level pressure over Scandinavia. During the last century two exceptionally long stagnation periods are found, the 1920s to the 1930s and the 1980s to the mid 1990s. During these periods precipitation, runoff and westerly winds were stronger than normal. Stronger westerly winds caused increased eastward surface-layer transports. Consequently, the mean eastward lower layer transports through the Stolpe Channel is reduced. The response time scale of the Baltic Sea is of the order of 30-40 years. The large

  20. Modelling the long-term morphological evolution of a coupled open coast, inlet and estuary system to explore climate change impacts

    Science.gov (United States)

    van Maanen, Barend; Walkden, Mike; Barnes, John; Nicholls, Robert

    2016-04-01

    Coastal and shoreline management increasingly needs to account for morphological change occurring at decadal to centennial timescales. Critical aspects of geomorphic behaviour at these temporal scales emerge at a system level, such that accounting for the feedbacks between different landform components is of key importance. In this study we develop new methods to simulate the large-scale evolution of a coupled open coast - inlet - estuary system, allowing us to explore the system's response to climate change impacts and management interventions. The system explored here encompasses the Deben estuary (eastern England) and its adjacent shorelines. The estuary itself mainly consists of finer sediments. Sediments throughout the inlet, on the other hand, including the ebb-tidal delta itself, comprise a mixture of gravel and sand. The ebb-tidal shoals and sediment bypassing show broadly cyclic behaviour on a 10 to 30 year timescale. Neighbouring beaches consist of mixed sediment and are partially backed up by sedimentary cliffs, the behaviour of which is potentially influenced by the sediment bypassing at the inlet. In addition, the open coast has undergone major transformations as a result of numerous sea defences which have altered sediment availability and supply. The interlinked behaviour of this system is approached by coupling a new inlet model (MESO_i) with an existing, and recently extended, model for the open coast (SCAPE+). MESOi simulates the evolution at the mouth of the Deben at an aggregated scale, conceptualizing the inlet by different geomorphic features that are characterized mainly by their volume. The behaviour of the inlet shoals is influenced by the estuarine tidal prism, linking estuarine processes with inlet dynamics. SCAPE+ computes the shaping of the shore profile and has proven capable of providing valuable information in terms of decadal evolution and related cliff recession rates. Simulations conducted with this composition of models highlight

  1. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using Coupled Model Intercomparison Project Phase 5 earth system models.

    Science.gov (United States)

    Tompkins, Adrian M; Caporaso, Luca

    2016-03-31

    Using mathematical modelling tools, we assessed the potential for land use change (LUC) associated with the Intergovernmental Panel on Climate Change low- and high-end emission scenarios (RCP2.6 and RCP8.5) to impact malaria transmission in Africa. To drive a spatially explicit, dynamical malaria model, data from the four available earth system models (ESMs) that contributed to the LUC experiment of the Fifth Climate Model Intercomparison Project are used. Despite the limited size of the ESM ensemble, stark differences in the assessment of how LUC can impact climate are revealed. In three out of four ESMs, the impact of LUC on precipitation and temperature over the next century is limited, resulting in no significant change in malaria transmission. However, in one ESM, LUC leads to increases in precipitation under scenario RCP2.6, and increases in temperature in areas of land use conversion to farmland under both scenarios. The result is a more intense transmission and longer transmission seasons in the southeast of the continent, most notably in Mozambique and southern Tanzania. In contrast, warming associated with LUC in the Sahel region reduces risk in this model, as temperatures are already above the 25-30°C threshold at which transmission peaks. The differences between the ESMs emphasise the uncertainty in such assessments. It is also recalled that the modelling framework is unable to adequately represent local-scale changes in climate due to LUC, which some field studies indicate could be significant.

  2. A multilingual programming model for coupled systems.

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E. T.; Larson, J. W.; Norris, B.; Tobis, M.; Steder, M.; Jacob, R. L.; Mathematics and Computer Science; Univ. of Wisconsin; Univ. of Chicago; The Australian National Univ.

    2008-01-01

    Multiphysics and multiscale simulation systems share a common software requirement-infrastructure to implement data exchanges between their constituent parts-often called the coupling problem. On distributed-memory parallel platforms, the coupling problem is complicated by the need to describe, transfer, and transform distributed data, known as the parallel coupling problem. Parallel coupling is emerging as a new grand challenge in computational science as scientists attempt to build multiscale and multiphysics systems on parallel platforms. An additional coupling problem in these systems is language interoperability between their constituent codes. We have created a multilingual parallel coupling programming model based on a successful open-source parallel coupling library, the Model Coupling Toolkit (MCT). This programming model's capabilities reach beyond MCT's native Fortran implementation to include bindings for the C++ and Python programming languages. We describe the method used to generate the interlanguage bindings. This approach enables an object-based programming model for implementing parallel couplings in non-Fortran coupled systems and in systems with language heterogeneity. We describe the C++ and Python versions of the MCT programming model and provide short examples. We report preliminary performance results for the MCT interpolation benchmark. We describe a major Python application that uses the MCT Python bindings, a Python implementation of the control and coupling infrastructure for the community climate system model. We conclude with a discussion of the significance of this work to productivity computing in multidisciplinary computational science.

  3. Skin cancer risks avoided by the Montreal Protocol--worldwide modeling integrating coupled climate-chemistry models with a risk model for UV.

    Science.gov (United States)

    van Dijk, Arjan; Slaper, Harry; den Outer, Peter N; Morgenstern, Olaf; Braesicke, Peter; Pyle, John A; Garny, Hella; Stenke, Andrea; Dameris, Martin; Kazantzidis, Andreas; Tourpali, Kleareti; Bais, Alkiviadis F

    2013-01-01

    The assessment model for ultraviolet radiation and risk "AMOUR" is applied to output from two chemistry-climate models (CCMs). Results from the UK Chemistry and Aerosols CCM are used to quantify the worldwide skin cancer risk avoided by the Montreal Protocol and its amendments: by the year 2030, two million cases of skin cancer have been prevented yearly, which is 14% fewer skin cancer cases per year. In the "World Avoided," excess skin cancer incidence will continue to grow dramatically after 2030. Results from the CCM E39C-A are used to estimate skin cancer risk that had already been inevitably committed once ozone depletion was recognized: excess incidence will peak mid 21st century and then recover or even super-recover at the end of the century. When compared with a "No Depletion" scenario, with ozone undepleted and cloud characteristics as in the 1960s throughout, excess incidence (extra yearly cases skin cancer per million people) of the "Full Compliance with Montreal Protocol" scenario is in the ranges: New Zealand: 100-150, Congo: -10-0, Patagonia: 20-50, Western Europe: 30-40, China: 90-120, South-West USA: 80-110, Mediterranean: 90-100 and North-East Australia: 170-200. This is up to 4% of total local incidence in the Full Compliance scenario in the peak year. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  4. Simulation of medicanes over the Mediterranean Sea in regional climate model ensembles: impact of ocean-atmosphere coupling and increased resolution

    Science.gov (United States)

    Gaertner, Miguel Angel; Jesús González-Alemán, Juan; Romera, Raquel; Domínguez, Marta; Gil, Victoria; Sánchez, Enrique; Gallardo, Clemente

    2017-04-01

    Some cyclones over the Mediterranean Sea occasionally develop a tropical structure. These cyclones, also called medicanes, can produce significant damage due to the combination of intense winds and heavy precipitation. The small size of medicanes and the importance of air-sea interaction in their formation and intensification represents a challenge for RCMs. Large ensembles of high resolution and ocean-atmosphere coupled RCM simulations are now available from MedCORDEX and EURO-CORDEX. We use these ensembles to analyze the ability of RCMs to reproduce the observed characteristics of medicanes, and to assess the impact of increasing resolution and using air-sea coupling on its simulation. As a reference for evaluating the simulations, we take the observational database of Miglietta et al. (2013), based on satellite images combined with very high resolution simulations. The simulated medicanes do not coincide in general on a case-by-case basis with the observed medicanes. This can be expected in climate mode simulations due to the small size of medicanes and the fact that they develop within the RCM domain. Therefore, the evaluation of medicanes in RCM simulations has to be done statistically. The observed spatial distribution of medicanes is well simulated in general. Regarding the monthly distribution, RCMs have difficulties in simulating the first medicanes appearing in September after the summer minimum. The use of higher horizontal resolution clearly increases the simulated frequency of medicanes, resulting in generally better frequency values. But the intensity, which is underestimated in low resolution runs, is not improved by most increased resolution simulations. A few RCMs show a clear intensity increase in the higher resolution runs, suggesting that model formulation is more important in this respect than high resolution alone. Air-sea interaction frequently produces a negative intensity feedback for tropical cyclones, which depends on the oceanic mixed

  5. Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects

    Directory of Open Access Journals (Sweden)

    C. Hong

    2017-06-01

    Full Text Available In this study, a regional coupled climate–chemistry modeling system using the dynamical downscaling technique was established by linking the global Community Earth System Model (CESM and the regional two-way coupled Weather Research and Forecasting – Community Multi-scale Air Quality (WRF-CMAQ model for the purpose of comprehensive assessments of regional climate change and air quality and their interactions within one modeling framework. The modeling system was applied over east Asia for a multi-year climatological application during 2006–2010, driven with CESM downscaling data under Representative Concentration Pathways 4.5 (RCP4.5, along with a short-term air quality application in representative months in 2013 that was driven with a reanalysis dataset. A comprehensive model evaluation was conducted against observations from surface networks and satellite observations to assess the model's performance. This study presents the first application and evaluation of the two-way coupled WRF-CMAQ model for climatological simulations using the dynamical downscaling technique. The model was able to satisfactorily predict major meteorological variables. The improved statistical performance for the 2 m temperature (T2 in this study (with a mean bias of −0.6 °C compared with the Coupled Model Intercomparison Project Phase 5 (CMIP5 multi-models might be related to the use of the regional model WRF and the bias-correction technique applied for CESM downscaling. The model showed good ability to predict PM2. 5 in winter (with a normalized mean bias (NMB of 6.4 % in 2013 and O3 in summer (with an NMB of 18.2 % in 2013 in terms of statistical performance and spatial distributions. Compared with global models that tend to underpredict PM2. 5 concentrations in China, WRF-CMAQ was able to capture the high PM2. 5 concentrations in urban areas. In general, the two-way coupled WRF-CMAQ model performed well for both climatological and air

  6. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-06-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  7. Modelling Interglacial Climate

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Anker

    Past warm climate states could potentially provide information on future global warming. The past warming was driven by changed insolation rather than an increased greenhouse effect, and thus the warm climate states are expected to be different. Nonetheless, the response of the climate system...... involves some of the same mechanisms in the two climate states. This thesis aims to investigate these mechanisms through climate model experiments. This two-part study has a special focus on the Arctic region, and the main paleoclimate experiments are supplemented by idealized experiments detailing...... the impact of a changing sea ice cover. The first part focusses on the last interglacial climate (125,000 years before present) which was characterized by substantial warming at high northern latitudes due to an increased insolation during summer. The simulations reveal that the oceanic changes dominate...

  8. The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980–1999

    Directory of Open Access Journals (Sweden)

    F. Lott

    2008-06-01

    Full Text Available We present a description and evaluation of the Chemistry-Climate Model (CCM LMDz-REPROBUS, which couples interactively the extended version of the Laboratoire de Météorologie Dynamique General Circulation Model (LMDz GCM and the stratospheric chemistry module of the REactive Processes Ruling the Ozone BUdget in the Stratosphere (REPROBUS model. The transient simulation evaluated here covers the period 1980–1999. The introduction of an interactive stratospheric chemistry module improves the model dynamical climatology, with a substantial reduction of the temperature biases in the lower tropical stratosphere. However, at high latitudes in the Southern Hemisphere, a negative temperature bias, that is already present in the GCM version, albeit with a smaller magnitude, leads to an overestimation of the ozone depletion and its vertical extent in the CCM. This in turn contributes to maintain low polar temperatures in the vortex, delay the break-up of the vortex and the recovery of polar ozone. The latitudinal and vertical variation of the mean age of air compares favourable with estimates derived from long-lived species measurements, though the model mean age of air is 1–3 years too young in the middle stratosphere. The model also reproduces the observed "tape recorder" in tropical total hydrogen (=H2O+2×CH4, but its propagation is about 30% too fast and its signal fades away slightly too quickly. The analysis of the global distributions of CH4 and N2O suggests that the subtropical transport barriers are correctly represented in the simulation. LMDz-REPROBUS also reproduces fairly well most of the spatial and seasonal variations of the stratospheric chemical species, in particular ozone. However, because of the Antarctic cold bias, large discrepancies are found for most species at high latitudes in the Southern Hemisphere during the spring and early summer. In the Northern Hemisphere, polar ozone depletion and its variability are underestimated

  9. Modulation of extremes in the Atlantic region by modes of climate variability/change: A mechanistic coupled regional model study

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Ramalingam [Texas A & M Univ., College Station, TX (United States)

    2015-01-09

    During the course of this project, we have accomplished the following: 1) Explored the parameter space of component models to minimize regional model bias 2) Assessed the impact of air-sea interaction on hurricanes, focusing in particular on the role of the oceanic barrier layer 3) Contributed to the activities of the U.S. CLIVAR Hurricane Working Group 4) Assessed the impact of lateral and lower boundary conditions on extreme flooding events in the U.S. Midwest in regional model simulations 5) Analyzed the concurrent impact of El Niño-Southern Oscillation and Atlantic Meridional Mode on Atlantic Hurricane activity using observations and regional model simulations

  10. Coupling between air travel and climate

    Science.gov (United States)

    Karnauskas, Kristopher B.; Donnelly, Jeffrey P.; Barkley, Hannah C.; Martin, Jonathan E.

    2015-12-01

    The airline industry closely monitors the midlatitude jet stream for short-term planning of flight paths and arrival times. In addition to passenger safety and on-time metrics, this is due to the acute sensitivity of airline profits to fuel cost. US carriers spent US$47 billion on jet fuel in 2011, compared with a total industry operating revenue of US$192 billion. Beyond the timescale of synoptic weather, the El Niño/Southern Oscillation (ENSO), Arctic Oscillation (AO) and other modes of variability modulate the strength and position of the Aleutian low and Pacific high on interannual timescales, which influence the tendency of the exit region of the midlatitude Pacific jet stream to extend, retract and meander poleward and equatorward. The impact of global aviation on climate change has been studied for decades owing to the radiative forcing of emitted greenhouse gases, contrails and other effects. The impact of climate variability on air travel, however, has only recently come into focus, primarily in terms of turbulence. Shifting attention to flight durations, here we show that 88% of the interannual variance in domestic flight times between Hawaii and the continental US is explained by a linear combination of ENSO and the AO. Further, we extend our analysis to CMIP5 model projections to explore potential feedbacks between anthropogenic climate change and air travel.

  11. Nitrous Oxide Abatement Coupled with Biopolymer Production As a Model GHG Biorefinery for Cost-Effective Climate Change Mitigation.

    Science.gov (United States)

    Frutos, Osvaldo D; Cortes, Irene; Cantera, Sara; Arnaiz, Esther; Lebrero, Raquel; Muñoz, Raúl

    2017-06-06

    N2O represents ∼6% of the global greenhouse gas emission inventory and the most important O3-depleting substance emitted in this 21st century. Despite its environmental relevance, little attention has been given to cost-effective and environmentally friendly N2O abatement methods. Here we examined, the potential of a bubble column (BCR) and an internal loop airlift (ALR) bioreactors of 2.3 L for the abatement of N2O from a nitric acid plant emission. The process was based on the biological reduction of N2O by Paracoccus denitrificans using methanol as a carbon/electron source. Two nitrogen limiting strategies were also tested for the coproduction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) coupled with N2O reduction. High N2O removal efficiencies (REs) (≈87%) together with a low PHBV cell accumulation were observed in both bioreactors in excess of nitrogen. However, PHBV contents of 38-64% were recorded under N limiting conditions along with N2O-REs of ≈57% and ≈84% in the ALR and BCR, respectively. Fluorescence in situ hybridization analyses showed that P. denitrificans was dominant (>50%) after 6 months of experimentation. The successful abatement of N2O concomitant with PHBV accumulation confirmed the potential of integrating biorefinery concepts into biological gas treatment for a cost-effective GHG mitigation.

  12. Numerical Modelling of Speleothem and Dripwater Chemistry: Interpreting Coupled Trace Element and Isotope Proxies for Climate Reconstructions

    Science.gov (United States)

    Owen, R.; Day, C. C.; Henderson, G. M.

    2016-12-01

    Speleothem palaeoclimate records are widely used but are often difficult to interpret due to the geochemical complexity of the soil-karst-cave system. Commonly analysed proxies (e.g. δ18O, δ13C and Mg/Ca) may be affected by multiple processes along the water flow path from atmospheric moisture source through to the cave drip site. Controls on speleothem chemistry include rainfall and aerosol chemistry, bedrock chemistry, temperature, soil pCO2, the degree of open-system dissolution and prior calcite precipitation. Disentangling the effects of these controls is necessary to fully interpret speleothem palaeoclimate records. To quantify the effects of these processes, we have developed an isotope-enabled numerical model based on the geochemical modelling software PHREEQC. The model calculates dripwater chemistry and isotopes through equilibrium bedrock dissolution and subsequent iterative CO2 degassing and calcite precipitation. This approach allows forward modelling of dripwater and speleothem proxies, both chemical (e.g. Ca concentration, pH, Mg/Ca and Sr/Ca ratios) and isotopic (e.g. δ18O, δ13C, δ44Ca and radiocarbon content), in a unified framework. Potential applications of this model are varied and the model may be readily expanded to include new isotope systems or processes. Here we focus on calculated proxy co-variation due to changes in model parameters. Examples include: - The increase in Ca concentration, decrease in δ13C and increase in radiocarbon content as bedrock dissolution becomes more open-system. - Covariation between δ13C, δ44Ca and trace metal proxies (e.g. Mg/Ca) predicted by changing prior calcite precipitation. - The effect of temperature change on all proxies through the soil-karst-cave system. Separating the impact of soil and karst processes on geochemical proxies allows more quantitative reconstruction of the past environment, and greater understanding in modern cave monitoring studies.

  13. Assessment of 21st century drought conditions at Shasta Dam based on dynamically projected water supply conditions by a regional climate model coupled with a physically-based hydrology model.

    Science.gov (United States)

    Trinh, T; Ishida, K; Kavvas, M L; Ercan, A; Carr, K

    2017-05-15

    Along with socioeconomic developments, and population increase, natural disasters around the world have recently increased the awareness of harmful impacts they cause. Among natural disasters, drought is of great interest to scientists due to the extraordinary diversity of their severity and duration. Motivated by the development of a potential approach to investigate future possible droughts in a probabilistic framework based on climate change projections, a methodology to consider thirteen future climate projections based on four emission scenarios to characterize droughts is presented. The proposed approach uses a regional climate model coupled with a physically-based hydrology model (Watershed Environmental Hydrology Hydro-Climate Model; WEHY-HCM) to generate thirteen equally likely future water supply projections. The water supply projections were compared to the current water demand for the detection of drought events and estimation of drought properties. The procedure was applied to Shasta Dam watershed to analyze drought conditions at the watershed outlet, Shasta Dam. The results suggest an increasing water scarcity at Shasta Dam with more severe and longer future drought events in some future scenarios. An important advantage of the proposed approach to the probabilistic analysis of future droughts is that it provides the drought properties of the 100-year and 200-year return periods without resorting to any extrapolation of the frequency curve. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Modeling Climate Dynamically

    Science.gov (United States)

    Walsh, Jim; McGehee, Richard

    2013-01-01

    A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…

  15. Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM

    Directory of Open Access Journals (Sweden)

    J. R. Alder

    2011-02-01

    Full Text Available We present a new, non-flux corrected AOGCM, GENMOM, that combines the GENESIS version 3 atmospheric GCM (Global Environmental and Ecological Simulation of Interactive Systems and MOM2 (Modular Ocean Model version 2 nominally at T31 resolution. We evaluate GENMOM by comparison with reanalysis products (e.g., NCEP2 and three models used in the IPCC AR4 assessment. GENMOM produces a global temperature bias of 0.6 °C. Atmospheric features such as the jet stream structure and major semi-permanent sea level pressure centers are well simulated as is the mean planetary-scale wind structure that is needed to produce the correct position of stormtracks. Most ocean surface currents are reproduced except where they are not resolvable at T31 resolution. Overall, GENMOM captures reasonably well the observed gradients and spatial distributions of annual surface temperature and precipitation and the simulations are on par with other AOGCMs. Deficiencies in the GENMOM simulations include a warm bias in the surface temperature over the southern oceans, a split in the ITCZ and weaker-than-observed overturning circulation.

  16. Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model

    DEFF Research Database (Denmark)

    Stendel, Martin; Mogensen, Irene A.; Christensen, Jens H.

    2006-01-01

    temperature record. The model is able to simulate individual extreme events such as the "year without a summer" 1816. Warm periods in the early seventeenth century and the second half of eighteenth century occur in periods of increased solar irradiation. Strong warming is simulated after 1850, in particular....... These cooling events are not restricted to Europe and North America, but cover most of the Northern Hemisphere. Colder than average conditions, for example during the late seventeenth and early eighteenth centuries, go along with a decrease in pressure difference between low and high latitudes and a decrease...... of the North Atlantic Oscillation. This favours positive sea ice anomalies east of Greenland and around Iceland, leading to widespread negative temperature anomalies over Europe. We also find characteristic blocking patterns over Western Europe, in particular during autumn, which contribute to the advection...

  17. Coupling Land Use Change Modeling with Climate Projections to Estimate Seasonal Variability in Runoff from an Urbanizing Catchment Near Cincinnati, Ohio

    OpenAIRE

    Mitsova, Diana

    2014-01-01

    This research examines the impact of climate and land use change on watershed hydrology. Seasonal variability in mean streamflow discharge, 100-year flood, and 7Q10 low-flow of the East Fork Little Miami River watershed, Ohio was analyzed using simulated land cover change and climate projections for 2030. Future urban growth in the Greater Cincinnati area, Ohio, by the year 2030 was projected using cellular automata. Projected land cover was incorporated into a calibrated BASINS-HSPF model. ...

  18. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  19. A climate modelling primer

    National Research Council Canada - National Science Library

    McGuffie, K; Henderson-Sellers, A

    2005-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii xv CHAPTER 1 Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 The components of climate...

  20. Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model

    Science.gov (United States)

    Alder, Jay R.; Hostetler, Steven W.

    2015-01-01

    We apply GENMOM, a coupled atmosphere–ocean climate model, to simulate eight equilibrium time slices at 3000-year intervals for the past 21 000 years forced by changes in Earth–Sun geometry, atmospheric greenhouse gases (GHGs), continental ice sheets, and sea level. Simulated global cooling during the Last Glacial Maximum (LGM) is 3.8 ◦C and the rate of post-glacial warming is in overall agreement with recently published temperature reconstructions. The greatest rate of warming occurs between 15 and 12 ka (2.4 ◦C over land, 0.7 ◦C over oceans, and 1.4 ◦C globally) in response to changes in radiative forcing from the diminished extent of the Northern Hemisphere (NH) ice sheets and increases in GHGs and NH summer insolation. The modeled LGM and 6 ka temperature and precipitation climatologies are generally consistent with proxy reconstructions, the PMIP2 and PMIP3 simulations, and other paleoclimate data–model analyses. The model does not capture the mid-Holocene “thermal maximum” and gradual cooling to preindustrial (PI) global temperature found in the data. Simulated monsoonal precipitation in North Africa peaks between 12 and 9 ka at values ∼ 50 % greater than those of the PI, and Indian monsoonal precipitation peaks at 12 and 9 ka at values ∼ 45 % greater than the PI. GENMOM captures the reconstructed LGM extent of NH and Southern Hemisphere (SH) sea ice. The simulated present-day Antarctica Circumpolar Current (ACC) is ∼ 48 % weaker than the observed (62 versus 119 Sv). The simulated present-day Atlantic Meridional Overturning Circulation (AMOC) of 19.3 ± 1.4 Sv on the Bermuda Rise (33◦ N) is comparable with observed value of 18.7 ± 4.8 Sv. AMOC at 33◦ N is reduced by ∼ 15 % during the LGM, and the largest post-glacial increase (∼ 11 %) occurs during the 15 ka time slice.

  1. Coupling Public Health and Climate Resilience.

    Science.gov (United States)

    Comerford, C.; Wolff, M.

    2016-12-01

    Centralized policies and programs are critical to forwarding sustainable practices and improving health. Yet without communication tools and the participation of local residents and policy makers, cities are limited in how much they can achieve. The objective of this presentation is to highlight solutions developed by the San Francisco Department Public Health that intelligently use data-driven planning and on-line communication to engage communities in climate change action and build sustainable and healthy neighborhoods. Climate change is expected to more seriously affect the health and well-being of communities that are least able to prepare for, cope with, and recover from the impacts. By 2100, Extreme heat days in San Francisco are projected to increase by up to 40 days per year and sea levels are expected to rise up to 46 inches by 2100. These climate impacts will have cascading impacts on public health. To address these challenges, the Climate and Health Program is successfully addressing the public health impacts of climate change by leveraging data-driven planning and health indicators to create policies around climate adaptation on a local level by providing data solutions. By centralizing and formalizing the collection of neighborhood-level data, the program provides organizations, city departments, and direct service providers a simple, streamlined way to access information on climate and health. This presentation will provide examples on the innovative use of data and on-line tools that has initiated a public dialogue on the link between climate change and health, and resulted in actions to strengthen community resilience.

  2. Climate variability: Picking apart climate models

    Science.gov (United States)

    Huntingford, Chris

    2017-10-01

    Data and model-based evidence suggests that future weather patterns will be more complex than simply those of the past plus background warming. Now research offers physical explanations of how short-term climate variability might adjust.

  3. Universality of coupled Potts models

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, V.S.; Jacobsen, J.L. E-mail: jacobsen@ipno.in2p3.fr; Nguyen, X.S.; Santachiara, Raoul

    2002-06-10

    We study systems of M Potts models coupled by their local energy density. Each model is taken to have a distinct number of states, and the permutational symmetry S{sub M} present in the case of identical coupled models is thus broken initially. The duality transformations within the space of 2{sup M}-1 multi-energy couplings are shown to have a particularly simple form. The selfdual manifold has dimension D{sub M}=2{sup M-1}-1. Specialising to the case M=3, we identify a unique non-trivial critical point in the three-dimensional selfdual space. We compare its critical exponents as computed from the perturbative renormalisation group with numerical transfer matrix results. Our main objective is to provide evidence that at the critical point of three different coupled models the symmetry S{sub 3} is restored.

  4. Investigation of the temporal development of the stratospheric ozone layer with an interactively coupled chemistry-climate model; Untersuchung der zeitlichen Entwicklung der stratosphaerischen Ozonschicht mit einem interaktiv gekoppelten Klima-Chemie-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Schnadt, C.

    2001-07-01

    The impact of climate change and stratospheric chlorine loading on the stratospheric ozone layer is estimated by evaluating three multi-annual simulations of the interactively coupled global chemistry-climate model ECUAM4.L39 (DLR)/CHEM. Two experiments of the near past were carried out representing the early 1980s and 1990s, respectively. An additional scenario was conducted which is characterised by increased greenhouse gas concentrations and a slightly reduced stratospheric chlorine loading with respect to its value measured in the year 1990, according to current projections. The model is able to describe dynamic and chemical processes of the 1980s and 1990s realistically, and it is capable in reproducing the observed stratospheric temperature, water vapour, and ozone temperature trends of this time period. With increasing greenhouse gas concentrations, the model produces an enhancing stratospheric cooling for the years 1980 to 2015. Despite the reduced stratospheric chlorine loading in 2015, the decreased stratospheric temperatures will cause a continued reduction of stratospheric ozone in the southern hemisphere. In the northern hemisphere, tropospheric warming results in a changed excitation of planetary waves. Their vertical propagation and breaking in the stratosphere causes the polar vortex to become more unstable in 2015. This overcompensates the radiative stratospheric cooling so that stratospheric ozone recovers. (orig.)

  5. Coupling Land Use Change Modeling with Climate Projections to Estimate Seasonal Variability in Runoff from an Urbanizing Catchment Near Cincinnati, Ohio

    Directory of Open Access Journals (Sweden)

    Diana Mitsova

    2014-12-01

    Full Text Available This research examines the impact of climate and land use change on watershed hydrology. Seasonal variability in mean streamflow discharge, 100-year flood, and 7Q10 low-flow of the East Fork Little Miami River watershed, Ohio was analyzed using simulated land cover change and climate projections for 2030. Future urban growth in the Greater Cincinnati area, Ohio, by the year 2030 was projected using cellular automata. Projected land cover was incorporated into a calibrated BASINS-HSPF model. Downscaled climate projections of seven GCMs based on the assumptions of two IPCC greenhouse gas emissions scenarios were integrated through the BASINS Climate Assessment Tool (CAT. The discrete CAT output was used to specify a seed for a Monte Carlo simulation and derive probability density functions of anticipated seasonal hydrologic responses to account for uncertainty. Sensitivity analysis was conducted for a small catchment in the watershed using the Storm Water Management Model (SWMM developed U.S. Environmental Protection Agency. The results indicated higher probability of exceeding the 100-year flood over the fall and winter months, and a likelihood of decreasing summer low flows.

  6. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture

    Science.gov (United States)

    Quiquet, Aurélien; Roche, Didier M.

    2017-04-01

    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.

  7. FOAM: Expanding the horizons of climate modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tobis, M.; Foster, I.T.; Schafer, C.M. [and others

    1997-10-01

    We report here on a project that expands the applicability of dynamic climate modeling to very long time scales. The Fast Ocean Atmosphere Model (FOAM) is a coupled ocean atmosphere model that incorporates physics of interest in understanding decade to century time scale variability. It addresses the high computational cost of this endeavor with a combination of improved ocean model formulation, low atmosphere resolution, and efficient coupling. It also uses message passing parallel processing techniques, allowing for the use of cost effective distributed memory platforms. The resulting model runs over 6000 times faster than real time with good fidelity, and has yielded significant results.

  8. Application of an Online-Coupled Regional Climate Model, WRF-CAM5, over East Asia for Examination of Ice Nucleation Schemes: Part I. Comprehensive Model Evaluation and Trend Analysis for 2006 and 2011

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2015-08-01

    Full Text Available Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5 are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at the surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation. Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing. These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better

  9. Prospects for coupled modelling

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.

    2012-07-01

    Clay-based buffer and tunnel backfill materials are important barriers in the KBS- 3 repository concept for final disposal of spent nuclear fuel in Finland. Significant changes can be expected to occur to the properties and behaviour of buffer and backfill, especially during re-saturation and through the thermal period. Reactions will occur in response to thermal and chemical gradients, induced by the thermal output of the spent fuel and at interfaces between different barrier materials, such as cement/clay, steel/clay etc. Processes of ion exchange, mineral dissolution and precipitation, and swelling can lead to significant re-distribution of mass and evolution of physical properties so that reliable predictive modelling of future behaviour and properties must be made. This report evaluates the current status of modelling of buffer and backfill evolution and tries to assess the potential future capabilities in the short- to medium-term (5-10 years) in a number of technical areas: (1) Non-isothermal (T-H-M-C-B) modelling and the potential for cementation, (2) The consistency of models, (3) Swelling pressure, (4) Cement-bentonite interactions, (5) Iron-bentonite interactions, (6) Mechanical (shear) behavior, and (7) Bentonite erosion.

  10. Bjerknes compensation in the Bergen Climate Model

    Science.gov (United States)

    Outten, Stephen; Esau, Igor

    2017-10-01

    The meridional transport of heat is a critical component of the Earth's climate system. If the total heat transported by the climate system is approximately constant, then the anomalies of heat transported by the atmosphere and ocean should be approximately equal and opposite, a scenario now called Bjerknes compensation. This has previously been found in two coupled climate models, with both showing multi-decadal variability in the heat transports. This work identifies Bjerknes compensation in the Bergen Climate Model, adding to the understanding of the robust features of Bjerknes compensation in coupled climate models. The atmospheric and oceanic heat transports are investigated in the 600-year control run of a fully-coupled global climate model. The presence of Bjerknes compensation is confirmed by the strong anti-correlation and equal magnitude of the anomalies of these heat transports. The heat transport anomalies contain a signal of multi-decadal variability. Since natural variability in global heat transport could mask anthropogenic climate change signals, understanding Bjerknes compensation is of socio-economic importance. Using regression analysis the atmospheric and oceanic responses to the multi-decadal variability of the Bjerknes compensation signal are investigated. This highlights the importance of the marginal ice zones of the Greenland and Barents Seas as the critical location for coupling the atmosphere and ocean. During periods of increased heat transport in the ocean, these regions show decreased sea-ice, leading to increased fluxes and local temperatures, and giving rise to a thermal low-pressure center and a non-local high-pressure centre, thus changing the atmospheric flow on multi-decadal timescales.

  11. Impacts of weighting climate models for hydro-meteorological climate change studies

    Science.gov (United States)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel

    2017-06-01

    Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.

  12. Coupled Climate-Economy-Biosphere (CoCEB) model - Part 2: Deforestation control and investment in carbon capture and storage technologies

    Science.gov (United States)

    Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.

    2015-04-01

    This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.

  13. Physically Consistent Eddy-resolving State Estimation and Prediction of the Coupled Pan-Arctic Climate System at Daily to Interannual Time Scales Using the Regional Arctic Climate Model (RACM)

    Science.gov (United States)

    2014-09-30

    qualitatively suggests that the anisotropic rheology may improve central arctic thickness evolution , a comparison of modeled and satellite-derived sea...constrain RASM’s climate and sea ice evolution . In addition, the tendency for the circulation biases in WRF to be largest at model top is consistent...Greenland Ice Sheet, ice caps, mountain glaciers and dynamic land vegetation and (ii) investigation of the role of mesoscale eddies and tides on ocean

  14. A global hybrid coupled model based on Atmosphere-SST feedbacks

    CERN Document Server

    Cimatoribus, Andrea A; Dijkstra, Henk A

    2011-01-01

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than ten times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulati...

  15. The international coordination of climate model validation and intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Gates, W.L. [Lawrence Livermore National Lab. Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison

    1995-12-31

    Climate modeling, whereby basic physical laws are used to integrate the physics and dynamics of climate into a consistent system, plays a key role in climate research and is the medium through. Depending upon the portion(s) of the climate system being considered, climate models range from those concerned only with the equilibrium globally-averaged surface temperature to those depicting the 3-dimensional time-dependent evolution of the coupled atmosphere, ocean, sea ice and land surface. Here only the latter class of models are considered, which are commonly known as general circulation models (or GCMs). (author)

  16. Stochastic Climate Theory and Modelling

    CERN Document Server

    Franzke, Christian L E; Berner, Judith; Williams, Paul D; Lucarini, Valerio

    2014-01-01

    Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations as well as for model error representation, uncertainty quantification, data assimilation and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochast...

  17. Coupling constant in dispersive model

    Indian Academy of Sciences (India)

    Abstract. The average of the moments for event shapes in e+e− → hadrons within the con- text of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied. Moments used in this article are 〈1 − T〉, 〈ρ〉, 〈BT〉 and 〈BW〉. We extract αs, the coupling con- stant in perturbative theory and α0 in the ...

  18. High resolution experiments with the ALADIN-Climate regional climate model

    Science.gov (United States)

    Csima, G.

    2009-09-01

    The global climate models are able to describe the climate of the Earth at a rather coarse resolution providing realistic projections only for the synoptic scale characteristics of the climate. For this reason, they are insufficient for detailed regional or local scale estimations. However, impact studies and policy makers need simulations including all the effects caused by local features. Consequently, techniques for downscaling global climate model simulations - such as regional climate modelling - are essential. The ALADIN-Climate regional climate model (developed by Météo France on the basis of the internationally developed ALADIN modelling system) was adapted at the Hungarian Meteorological Service a few years ago. In the framework of the CECILIA project (www.cecilia-eu.org), the ALADIN-Climate regional climate model runs at high (10 km) horizontal resolution. Therefore, it is anticipated to give more realistic climate estimation for this century than either the global models or the lower resolution regional climate models. The ALADIN-Climate model was coupled to both ERA-40 re-analysis data and the ARPEGE/OPA global atmosphere-ocean general circulation model for the past - 1961-1990 - as the reference period. For the future time slices of 2021-2050 and 2071-2100, the lateral boundary conditions were provided by the same global model with the use of A1B SRES scenario. The results have been validated against different observational datasets for the past, and have been compared to the results of the ARPEGE-Climat global model in order to expose the added value of the regional climate model. The ALADIN-Climate model has also been evaluated for the future to give an estimation of climate change in the Carpathian Basin.

  19. The Challenges to Coupling Dynamic Geospatial Models

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.

  20. A comparison of observed extreme water levels at the German Bight elaborated through an extreme value analysis (EVA) with extremes derived from a regionally coupled ocean-atmospheric climate model (MPI-OM)

    Science.gov (United States)

    Möller, Jens; Heinrich, Hartmut

    2017-04-01

    As a consequence of climate change atmospheric and oceanographic extremes and their potential impacts on coastal regions are of growing concern for governmental authorities responsible for the transportation infrastructure. Highest risks for shipping as well as for rail and road traffic originate from combined effects of extremes of storm surges and heavy rainfall which sometimes lead to insufficient dewatering of inland waterways. The German Ministry of Transport and digital Infrastructure therefore has tasked its Network of Experts to investigate the possible evolutions of extreme threats for low lands and especially for Kiel Canal, which is an important shortcut for shipping between the North and Baltic Seas. In this study we present results of a comparison of an Extreme Value Analysis (EVA) carried out on gauge observations and values derived from a coupled Regional Ocean-Atmosphere Climate Model (MPI-OM). High water levels at the coasts of the North and Baltic Seas are one of the most important hazards which increase the risk of flooding of the low-lying land and prevents such areas from an adequate dewatering. In this study changes in the intensity (magnitude of the extremes) and duration of extreme water levels (above a selected threshold) are investigated for several gauge stations with data partly reaching back to 1843. Different methods are used for the extreme value statistics, (1) a stationary general Pareto distribution (GPD) model as well as (2) an instationary statistical model for better reproduction of the impact of climate change. Most gauge stations show an increase of the mean water level of about 1-2 mm/year, with a stronger increase of the highest water levels and a decrease (or lower increase) of the lowest water levels. Also, the duration of possible dewatering time intervals for the Kiel-Canal was analysed. The results for the historical gauge station observations are compared to the statistics of modelled water levels from the coupled

  1. A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—part II. Validation with one dimension off-line simulations

    Science.gov (United States)

    Salamanca, Francisco; Martilli, Alberto

    2009-05-01

    Recent studies show that the fluxes exchanged between buildings and the atmosphere play an important role in the urban climate. These fluxes are taken into account in mesoscale models considering new and more complex Urban Canopy Parameterizations (UCP). A standard methodology to test an UCP is to use one-dimensional (1D) off-line simulations. In this contribution, an UCP with and without a Building Energy Model (BEM) is run 1D off-line and the results are compared against the experimental data obtained in the BUBBLE measuring campaign over Basel (Switzerland) in 2002. The advantage of BEM is that it computes the evolution of the indoor building temperature as a function of energy production and consumption in the building, the radiation coming through the windows, and the fluxes of heat exchanged through the walls and roofs as well as the impact of the air conditioning system. This evaluation exercise is particularly significant since, for the period simulated, indoor temperatures were recorded. Different statistical parameters have been calculated over the entire simulated episode in order to compare the two versions of the UCP against measurements. In conclusion, with this work, we want to study the effect of BEM on the different turbulent fluxes and exploit the new possibilities that the UCP-BEM offers us, like the impact of the air conditioning systems and the evaluation of their energy consumption.

  2. Climate Change, Hydrology and Landscapes of America's Heartland: A Coupled Natural-Human System

    Science.gov (United States)

    Lant, C.; Misgna, G.; Secchi, S.; Schoof, J. T.

    2012-12-01

    This paper will present a methodological overview of an NSF-funded project under the Coupled Natural and Human System program. Climate change, coupled with variations and changes in economic and policy environments and agricultural techniques, will alter the landscape of the U.S. Midwest. Assessing the effects of these changes on watersheds, and thus on water quantity, water quality, and agricultural production, entails modeling a coupled natural-human system capable of answering research questions such as: (1) How will the climate of the U.S. Midwest change through the remainder of the 21st Century? (2) How will climate change, together with changing markets and policies, affect land use patterns at various scales, from the U.S. Midwest, to agricultural regions, to watersheds, to farms and fields? (3) Under what policies and prices does landscape change induced by climate change generate a positive or a negative feedback through changes in carbon storage, evapotranspiration, and albedo? (4) Will climate change expand or diminish the agricultural production and ecosystem service generation capacities of specific watersheds? Such research can facilitate early adaptation and make a timely contribution to the successful integration of agricultural, environmental, and trade policy. Rural landscapes behave as a system through a number of feedback mechanisms: climatic, agro-technology, market, and policy. Methods, including agent-based modeling, SWAT modeling, map algebra using logistic regression, and genetic algorithms for analyzing each of these feedback mechanisms will be described. Selected early results that link sub-system models and incorporate critical feedbacks will also be presented.igure 1. Overall Modeling framework for Climate Change, Hydrology and Landscapes of America's Heartland.

  3. Dynamics of the larch taiga-permafrost coupled system in Siberia under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ningning [Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Yasunari, Tetsuzo [Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya 464-8601 (Japan); Ohta, Takeshi, E-mail: zhangningning@lasg.iap.ac.cn [Study Consortium for Earth-Life Interactive Systems (SELIS) of Nagoya University, Nagoya (Japan)

    2011-04-15

    Larch taiga, also known as Siberian boreal forest, plays an important role in global and regional water-energy-carbon (WEC) cycles and in the climate system. Recent in situ observations have suggested that larch-dominated taiga and permafrost behave as a coupled eco-climate system across a broad boreal zone of Siberia. However, neither field-based observations nor modeling experiments have clarified the synthesized dynamics of this system. Here, using a new dynamic vegetation model coupled with a permafrost model, we reveal the processes of interaction between the taiga and permafrost. The model demonstrates that under the present climate conditions in eastern Siberia, larch trees maintain permafrost by controlling the seasonal thawing of permafrost, which in turn maintains the taiga by providing sufficient water to the larch trees. The experiment without permafrost processes showed that larch would decrease in biomass and be replaced by a dominance of pine and other species that suffer drier hydroclimatic conditions. In the coupled system, fire not only plays a destructive role in the forest, but also, in some cases, preserves larch domination in forests. Climate warming sensitivity experiments show that this coupled system cannot be maintained under warming of about 2 deg. C or more. Under such conditions, a forest with typical boreal tree species (dark conifer and deciduous species) would become dominant, decoupled from the permafrost processes. This study thus suggests that future global warming could drastically alter the larch-dominated taiga-permafrost coupled system in Siberia, with associated changes of WEC processes and feedback to climate.

  4. Which climatic modeling to assess climate change impacts on vineyards?

    OpenAIRE

    Quenol, Herve; Garcia De Cortazar Atauri, Inaki; Bois, Benjamin; Sturman, Andrew; Bonnardot, Valerie; Le Roux, Renan

    2017-01-01

    The impact of climatic change on viticulture is significant: main phenological stages appear earlier, wine characteristics are changing, ... This clearly illustrates the point that the adaptation of viticulture to climate change is crucial and should be based on simulations of future climate. Several types of models exist and are used to represent viticultural climates at various scales. In this paper, we propose a review of different types of climate models (methodology and uncertainties) an...

  5. Modeling Earth's Climate

    Science.gov (United States)

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  6. Couplings between changes in the climate system and biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M.; Dickinson, Robert E.; Hauglustaine, Didier; Heinze, Christoph; Holland, Elisabeth; Jacob , Daniel; Lohmann, Ulrike; Ramachandran, Srikanthan; Leite da Silva Dias, Pedro; Wofsy, Steven C.; Zhang, Xiaoye

    2007-10-01

    particles. It also presents the current state of knowledge on budgets of important trace gases. Large uncertainties remain in many issues discussed in this chapter, so that quantitative estimates of the importance of the coupling mechanisms discussed in the following sections are not always available. In addition, regional differences in the role of some cycles and the complex interactions between them limit our present ability to provide a simple quantitative description of the interactions between biogeochemical processes and climate change.

  7. Feasibility of coupled empirical and dynamic modeling to assess climate change and air pollution impacts on temperate forest vegetation of the eastern United States

    NARCIS (Netherlands)

    McDonnell, T.C.; Reinds, G.J.; Sullivan, T.J.; Clark, C.M.; Bonten, L.T.C.; Mol-Dijkstra, J.P.; Wamelink, G.W.W.; Dovciak, M.

    2018-01-01

    Changes in climate and atmospheric nitrogen (N) deposition caused pronounced changes in soil conditions and habitat suitability for many plant species over the latter half of the previous century. Such changes are expected to continue in the future with anticipated further changing air temperature

  8. Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling

    Science.gov (United States)

    Woollings, T.; Gregory, J. M.; Pinto, J. G.; Reyers, M.; Brayshaw, D. J.

    2012-05-01

    A poleward shift of the mid-latitude storm tracks in response to anthropogenic greenhouse-gas forcing has been diagnosed in climate model simulations. Explanations of this effect have focused on atmospheric dynamics. However, in contrast to storm tracks in other regions, the North Atlantic storm track responds by strengthening and extending farther east, in particular on its southern flank. These adjustments are associated with an intensification and extension of the eddy-driven jet towards western Europe and are expected to have considerable societal impacts related to a rise in storminess in Europe. Here, we apply a regression analysis to an ensemble of coupled climate model simulations to show that the coupling between ocean and atmosphere shapes the distinct storm-track response to greenhouse-gas forcing in the North Atlantic region. In the ensemble of simulations we analyse, at least half of the differences between the storm-track responses of different models are associated with uncertainties in ocean circulation changes. We compare the fully coupled simulations with both the associated slab model simulations and an ocean-forced experiment with one climate model to establish causality. We conclude that uncertainties in the response of the North Atlantic storm track to anthropogenic emissions could be reduced through tighter constraints on the future ocean circulation.

  9. Couples' cultural values, shared parenting, and family emotional climate within Mexican American families.

    Science.gov (United States)

    Sotomayor-Peterson, Marcela; Figueredo, Aurelio J; Christensen, Donna H; Taylor, Angela R

    2012-06-01

    This study tested a model of shared parenting as its centerpiece that incorporates cultural values as predictors and family emotional climate as the outcome variable of interest. We aimed to assess the predictive power of the Mexican cultural values of familismo and simpatia over couples' shared parenting practices. We anticipated that higher levels of shared parenting would predict family emotional climate. The participants were 61 Mexican American, low income couples, with at least one child between 3 and 4 years of age, recruited from a home-based Head Start program. The predictive model demonstrated excellent goodness of fit, supporting the hypothesis that a positive emotional climate within the family is fostered when Mexican American couples practice a sufficient level of shared parenting. Empirical evidence was previously scarce on this proposition. The findings also provide evidence for the role of cultural values, highlighting the importance of family solidarity and avoidance of confrontation as a pathway to shared parenting within Mexican American couples. © FPI, Inc.

  10. A Practical Philosophy of Complex Climate Modelling

    Science.gov (United States)

    Schmidt, Gavin A.; Sherwood, Steven

    2014-01-01

    We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP).We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work.

  11. Intercomparison of present and future climates simulated by coupled ocean-atmosphere GCMs

    Energy Technology Data Exchange (ETDEWEB)

    Covey, C; AchutaRao, K M; Lambert, S J

    2000-09-06

    We present an overview of results from the most recent phase of the Coupled Model Intercomparison Project (CMIP). This phase of CMIP has archived output from both unforced (''control run'') and perturbed (1% per year increasing atmospheric carbon dioxide) simulations by 15 modern coupled ocean-atmosphere general circulation models. The models are about equally divided between those employing and those not employing ad hoc flux corrections at the ocean-atmosphere interface. The new generation of non-flux-connected control runs are nearly as stable and agree with observations nearly as well as the flux-corrected models. This development represents significant progress in the state of the art of climate modeling since the Second (1995) Scientific Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; see Gates et al. 1996). From the increasing-CO{sub 2} runs, we find that differences between different models, while substantial, are not as great as would be expected from earlier assessments that relied on equilibrium climate sensitivity.

  12. Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains

    Science.gov (United States)

    Williams, I. N.; Lu, Y.; Kueppers, L. M.; Riley, W. J.; Biraud, S.; Bagley, J. E.; Torn, M. S.

    2016-12-01

    Biases in land-atmosphere coupling in climate models can contribute to climate prediction biases, but land models are rarely evaluated in the context of this coupling. We tested land-atmosphere coupling and explored effects of land surface parameterizations on climate prediction in a single-column version of the NCAR Community Earth System Model (CESM1.2.2) and an offline Community Land Model (CLM4.5). The correlation between leaf area index (LAI) and surface evaporative fraction (ratio of latent to total turbulent heat flux) was substantially underpredicted compared to observations in the U.S. Southern Great Plains, while the correlation between soil moisture and evaporative fraction was overpredicted by CLM4.5. These correlations were improved by prescribing observed LAI, increasing soil resistance to evaporation, increasing minimum stomatal conductance, and increasing leaf reflectance. The modifications reduced the root mean squared error (RMSE) in daytime 2 m air temperature from 3.6 C to 2 C in summer (JJA), and reduced RMSE in total JJA precipitation from 133 to 84 mm. The modifications had the largest effect on prediction of summer drought in 2006, when a warm bias in daytime 2 m air temperature was reduced from +6 C to a smaller cold bias of -1.3 C, and a corresponding dry bias in total JJA precipitation was reduced from -111 mm to -23 mm. Thus, the role of vegetation in droughts and heat waves is likely underpredicted in CESM1.2.2, and improvements in land surface models can improve prediction of climate extremes.

  13. Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales

    Energy Technology Data Exchange (ETDEWEB)

    McClean, Julie L. [Univ. of California, San Diego, CA (United States). Scripps Institution of Oceanography

    2013-11-14

    The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea ice and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.

  14. Intervention model in organizational climate

    OpenAIRE

    Cárdenas Niño, Lucila; Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ciencias de la Salud, Escuela de Psicología, Hospital Antiguo, Carrera 10 No 16ª05; Arciniegas Rodríguez, Yuly Cristina; Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ciencias de la Salud, Escuela de Psicología, Hospital Antiguo, Carrera 10 No 16ª05; Barrera Cárdenas, Mónica; Universidad Pedagógica y Tecnológica de Colombia, Facultad de Ciencias de la Salud, Escuela de Psicología, Hospital Antiguo, Carrera 10 No 16ª05

    2015-01-01

    The aim of this study was to assess whether the intervention model in organizational climate PMCO, was effective in the Hospital of Yopal, Colombia. The following five phases, proposed by the model, were implemented: 1) problem analysis, 2) awareness, 3) strategies design and planning, at the individual, intergroup, and organizational levels, 4) implementation of the strategy, and 5) process evaluation. A design composed of two groups, experimental and control, was chosen, analyzing whether t...

  15. Generalized coupling in the Kuramoto model

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2007-01-01

    We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....

  16. Future Evolution of Marine Heat Waves in the Mediterranean: Coupled Regional Climate Projections

    Science.gov (United States)

    Darmaraki, Sofia; Somot, Samuel; Sevault, Florence; Nabat, Pierre; Cavicchia, Leone; Djurdjevic, Vladimir; Cabos, William; Sein, Dmitry

    2017-04-01

    FUTURE EVOLUTION OF MARINE HEAT WAVES IN THE MEDITERRANEAN : COUPLED REGIONAL CLIMATE PROJECTIONS The Mediterranean area is identified as a « Hot Spot » region, vulnerable to future climate change with potentially strong impacts over the sea. By 2100, climate models predict increased warming over the sea surface, with possible implications on the Mediterranean thermohaline and surface circulation,associated also with severe impacts on the ecosystems (e.g. fish habitat loss, species extinction and migration, invasive species). However, a robust assesment of the future evolution of the extreme marine temperatures remains still an open issue of primary importance, under the anthropogenic pressure. In this context, we study here the probability and characteristics of marine heat wave (MHW) occurrence in the Mediterranean Sea in future climate projections. To this end, we use an ensemble of fully coupled regional climate system models (RCSM) from the Med- CORDEX initiative. This multi-model approach includes a high-resolution representation of the atmospheric, land and ocean component, with a free air-sea interface.Specifically, dedicated simulations for the 20th and the 21st century are carried out with respect to the different IPCC-AR5 socioeconomic scenarios (1950-2100, RCP8.5, RCP4.5, RCP2.6). Model evaluation for the historical period is performed using satellite and in situ data. Then, the variety of factors that can cause the MHW (e.g. direct radiative forcing, ocean advection, stratification change) are examined to disentangle the dominant driving force. Finally, the spatial variability and temporal evolution of MHW are analyzed on an annual basis, along with additional integrated indicators, useful for marine ecosystems.

  17. Towards coupling of regional atmosphere models to ice sheet models by mass balance gradients - application to the Greenland Ice Sheet

    NARCIS (Netherlands)

    Helsen, M.M.|info:eu-repo/dai/nl/325802459; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Oerlemans, J.|info:eu-repo/dai/nl/06833656X

    2012-01-01

    It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature,

  18. Towards coupling of regional atmosphere models to ice sheet models by mass balance gradients - application to the Greenland Ice Sheet

    NARCIS (Netherlands)

    Helsen, M.M.; van de Wal, R.S.W.; van den Broeke, M.R.; van de Berg, W.J.; Oerlemans, J.

    2011-01-01

    It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation fields from a climate model, and deriving SMB by parameterizing 5 the run-off as a function of

  19. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected...... global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  20. Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven

    2013-01-01

    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion

  1. The Monash University Interactive Simple Climate Model

    Science.gov (United States)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  2. Downscaling GISS ModelE Boreal Summer Climate over Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2015-01-01

    The study examines the perceived added value of downscaling atmosphere-ocean global climate model simulations over Africa and adjacent oceans by a nested regional climate model. NASA/Goddard Institute for Space Studies (GISS) coupled ModelE simulations for June- September 1998-2002 are used to form lateral boundary conditions for synchronous simulations by the GISS RM3 regional climate model. The ModelE computational grid spacing is 2deg latitude by 2.5deg longitude and the RM3 grid spacing is 0.44deg. ModelE precipitation climatology for June-September 1998-2002 is shown to be a good proxy for 30-year means so results based on the 5-year sample are presumed to be generally representative. Comparison with observational evidence shows several discrepancies in ModelE configuration of the boreal summer inter-tropical convergence zone (ITCZ). One glaring shortcoming is that ModelE simulations do not advance the West African rain band northward during the summer to represent monsoon precipitation onset over the Sahel. Results for 1998-2002 show that onset simulation is an important added value produced by downscaling with RM3. ModelE Eastern South Atlantic Ocean computed sea-surface temperatures (SST) are some 4 K warmer than reanalysis, contributing to large positive biases in overlying surface air temperatures (Tsfc). ModelE Tsfc are also too warm over most of Africa. RM3 downscaling somewhat mitigates the magnitude of Tsfc biases over the African continent, it eliminates the ModelE double ITCZ over the Atlantic and it produces more realistic orographic precipitation maxima. Parallel ModelE and RM3 simulations with observed SST forcing (in place of the predicted ocean) lower Tsfc errors but have mixed impacts on circulation and precipitation biases. Downscaling improvements of the meridional movement of the rain band over West Africa and the configuration of orographic precipitation maxima are realized irrespective of the SST biases.

  3. Climate Ocean Modeling on Parallel Computers

    Science.gov (United States)

    Wang, P.; Cheng, B. N.; Chao, Y.

    1998-01-01

    Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.

  4. A Multimodel Assessment of Future Projections of North Atlantic and European Extratropical Cyclones in the CMIP5 Climate Models

    National Research Council Canada - National Science Library

    Giuseppe Zappa; Len C Shaffrey; Kevin I Hodges; Phil G Sansom; David B Stephenson

    2013-01-01

      The response of North Atlantic and European extra tropical cyclones to climate change is investigated in the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5...

  5. Spatiotemporal Exploration of Impacts of Coupled Climate and Socioeconomic Changes on Grassland Ecosystems (Invited)

    Science.gov (United States)

    Xie, Y.

    2013-12-01

    Although the coupled impacts of climate change and human adaptation on land cover change has been a prime research topic in recent years, a majority of reported efforts are examining the coupled effects of climate and socioeconomic factors qualitatively. Even though some are applying statistical methods, they often look into the impacts of coupled climate variations and socioeconomic transformations on land cover changes in a detached or sequential manner, or they handle socioeconomic influences indirectly through land use changes. Very few of them deal with the coupled effects concurrently through times and cross regions. We assimilate a big dataset of climate change, plant community growth condition, and socioeconomic transformation in Inner Mongolia of China. The study area consists of twelve types of plant communities, reflecting an east-to-west water-temperature gradient from moist meadow-type, to typical steppe-type and then to arid desert-type communities. The enhanced vegetation index (EVI), derived from MODIS at a 250 m resolution and 16-day intervals from May 8 to September 28 during 2000-2010, is adopted as a proxy for vegetation growth. The inter-annual and intra-annual changes of seven climate factors (barometric pressure, humidity, precipitation, sunlight hours, temperature, vapor pressure and wind speed) during the same period are synchronized with the EVI observations. Ten socioeconomic variables (urban population, urban GDP, rural GDP, grain output, livestock, fixed assets investment, local government revenue, per capita net income of farmers and pastoralists, the total length of highways, and rural population) are collected over 34 counties in the study area and during the same period. The GIS-based spatial database approach is adopted to integrate all of the above data into a big spatiotemporal dataset. We develop a multi-controlled panel-data regression model to investigate spatiotemporal changes of vegetation growth and their underlying causes

  6. Climate Models have Accurately Predicted Global Warming

    Science.gov (United States)

    Nuccitelli, D. A.

    2016-12-01

    Climate model projections of global temperature changes over the past five decades have proven remarkably accurate, and yet the myth that climate models are inaccurate or unreliable has formed the basis of many arguments denying anthropogenic global warming and the risks it poses to the climate system. Here we compare average global temperature predictions made by both mainstream climate scientists using climate models, and by contrarians using less physically-based methods. We also explore the basis of the myth by examining specific arguments against climate model accuracy and their common characteristics of science denial.

  7. Production and use of regional climate model projections - A Swedish perspective on building climate services.

    Science.gov (United States)

    Kjellström, Erik; Bärring, Lars; Nikulin, Grigory; Nilsson, Carin; Persson, Gunn; Strandberg, Gustav

    2016-09-01

    We describe the process of building a climate service centred on regional climate model results from the Rossby Centre regional climate model RCA4. The climate service has as its central facility a web service provided by the Swedish Meteorological and Hydrological Institute where users can get an idea of various aspects of climate change from a suite of maps, diagrams, explaining texts and user guides. Here we present the contents of the web service and how this has been designed and developed in collaboration with users of the service in a dialogue reaching over more than a decade. We also present the ensemble of climate projections with RCA4 that provides the fundamental climate information presented at the web service. In this context, RCA4 has been used to downscale nine different coupled atmosphere-ocean general circulation models (AOGCMs) from the 5th Coupled Model Intercomparison Project (CMIP5) to 0.44° (c. 50 km) horizontal resolution over Europe. Further, we investigate how this ensemble relates to the CMIP5 ensemble. We find that the iterative approach involving the users of the climate service has been successful as the service is widely used and is an important source of information for work on climate adaptation in Sweden. The RCA4 ensemble samples a large degree of the spread in the CMIP5 ensemble implying that it can be used to illustrate uncertainties and robustness in future climate change in Sweden. The results also show that RCA4 changes results compared to the underlying AOGCMs, sometimes in a systematic way.

  8. Climate Model Predictions and Climate Observations: Where are we going?

    Science.gov (United States)

    Wielicki, B. A.

    2011-12-01

    Climate Model Predictions and Climate Observations: Where are we going? A climate model is the explicit expression of a scientific hypothesis on how the Earth's climate works. We test these models against a wide variety of climate observations: climatological mean global maps of many climate variables, seasonal cycles, inter-annual variability, decadal change, and even glacial/interglacial cycles. The most direct method of testing the accuracy of climate model decadal change predictions is to use decades of highly accurate data for radiative forcing and climate response. Relevant data for these tests include all of the key climate variables known to play a role in climate change. There are two primary advantages of this approach: a) it uses the most complete set of climate variables, and b) its directly tests decadal prediction against decadal observations. There are two disadvantages, however, of this direct approach: a) it takes decades to collect enough data to overcome natural variability, and b) the accuracy required for small decadal change signals is very high: much higher than typical weather or research observations. As a result, like paleo data, data accuracy becomes a critical issue. Despite the critical need for climate models to be tested against decadal change observations, we currently have no international designed and implemented climate observing system. There are no international commitments to create one (accuracy) or to maintain one (decades of observations). What is called the Global Climate Observing System is instead a set of documents about how weather and research observing systems might be improved to better provide a climate observing system. Given the importance of this challenge, this seems a strange condition. How did we get here? Is a rigorous climate observing system so expensive as to be unaffordable? Has the science community failed to clearly prioritize and define the requirements of such a system? Is the technology to create

  9. Coupled Climate Variability and Megadrought Over the Common Era and Implications For the 21st Century

    Science.gov (United States)

    Stevenson, S.; Otto-Bliesner, B. L.; Fasullo, J.; Parsons, L. A.; Loope, G. R.

    2016-12-01

    Sustained megadrought events in arid regions pose significant risk to water resources, yet the mechanisms for generating these events remain unclear. A critical question is the degree to which coupled climate models can correctly represent the risk of megadrought; to date, this has been difficult to answer owing to the long timescales of internal variability and the relative rarity of long model simulations. Here, the CESM Last Millennium Ensemble is used to assess the effect of the El Nino/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) on megadrought occurrence frequency, intensity, and duration. Megadrought persistence is strongly affected by ENSO amplitude in teleconnected regions such as western North America, southeast Asia, and Australia, via preferential initiation/termination of drought events by strong El Nino/La Nina events. Influences from other modes are less clear although sometimes becoming significant; this implies that correctly representing the relative strength of climate variability could greatly improve model-based megadrought risk estimates. Finally, the effects of climate change-induced shifts in the amplitude of ENSO and other climate modes on future megadrought properties are analyzed using the CESM Large Ensemble.

  10. Linking models of human behaviour and climate alters projected climate change

    Science.gov (United States)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  11. Evaluating climate models: Should we use weather or climate observations?

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Robert J [ORNL; Erickson III, David J [ORNL

    2009-12-01

    Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their ability to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.

  12. Climate Modeling: Ocean Cavities below Ice Shelves

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Mark Roger [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-09-12

    The Accelerated Climate Model for Energy (ACME), a new initiative by the U.S. Department of Energy, includes unstructured-mesh ocean, land-ice, and sea-ice components using the Model for Prediction Across Scales (MPAS) framework. The ability to run coupled high-resolution global simulations efficiently on large, high-performance computers is a priority for ACME. Sub-ice shelf ocean cavities are a significant new capability in ACME, and will be used to better understand how changing ocean temperature and currents influence glacial melting and retreat. These simulations take advantage of the horizontal variable-resolution mesh and adaptive vertical coordinate in MPAS-Ocean, in order to place high resolution below ice shelves and near grounding lines.

  13. Shifts in the climate space of temperate cyprinid fishes due to climate change are coupled with altered body sizes and growth rates.

    Science.gov (United States)

    Ruiz-Navarro, Ana; Gillingham, Phillipa K; Britton, J Robert

    2016-09-01

    Predictions of species responses to climate change often focus on distribution shifts, although responses can also include shifts in body sizes and population demographics. Here, shifts in the distributional ranges ('climate space'), body sizes (as maximum theoretical body sizes, L∞) and growth rates (as rate at which L∞ is reached, K) were predicted for five fishes of the Cyprinidae family in a temperate region over eight climate change projections. Great Britain was the model area, and the model species were Rutilus rutilus, Leuciscus leuciscus, Squalius cephalus, Gobio gobio and Abramis brama. Ensemble models predicted that the species' climate spaces would shift in all modelled projections, with the most drastic changes occurring under high emissions; all range centroids shifted in a north-westerly direction. Predicted climate space expanded for R. rutilus and A. brama, contracted for S. cephalus, and for L. leuciscus and G. gobio, expanded under low-emission scenarios but contracted under high emissions, suggesting the presence of some climate-distribution thresholds. For R. rutilus, A. brama, S. cephalus and G. gobio, shifts in their climate space were coupled with predicted shifts to significantly smaller maximum body sizes and/or faster growth rates, aligning strongly to aspects of temperature-body size theory. These predicted shifts in L∞ and K had considerable consequences for size-at-age per species, suggesting substantial alterations in population age structures and abundances. Thus, when predicting climate change outcomes for species, outputs that couple shifts in climate space with altered body sizes and growth rates provide considerable insights into the population and community consequences, especially for species that cannot easily track their thermal niches. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. An energy balance model of carbon's effect on climate change

    CERN Document Server

    Benney, Lucas

    2015-01-01

    Due to climate change, the interest of studying our climatic system using mathematical modeling has become tremendous in recent years. One well-known model is Budyko's system, which represents the coupled evolution of two variables, the ice-line and the average earth surface temperature. The system depends on natural parameters, such as the earth albedo, and the amount A of carbon in the atmosphere. We introduce a 3-dimensional extension of this model in which we regard A as the third coupled variable of the system. We analyze the phase space and dependence on parameters, looking for Hopf bifurcations and the birth of cycling behavior. We interpret the cycles as climatic oscillations triggered by the sensitivity in our regulation of carbon emissions at extreme temperatures.

  15. Coupled finite element modeling of piezothermoelastic materials

    Science.gov (United States)

    Senousy, M. S.; Rajapakse, R. K. N. D.; Gadala, M.

    2007-04-01

    The governing equations of piezo-thermoelastic materials show full coupling between mechanical, electric, and temperature fields. It is often assumed in the literature that in high-frequency oscillations, the coupling between the temperature and mechanical displacement and electric field is small and, therefore, can be neglected. A solution for the temperature field is then determined from an uncoupled equation. A finite element (FE) model that accounts for full coupling between the mechanical, electric, and thermal fields, nonlinear constitutive behavior and heat generation resulting from dielectric losses under alternating driving fields is under development. This paper presents a linear fully coupled model as an early development of the fully coupled nonlinear FE model. In the linear model, a solution for all field variables is obtained simultaneously and compared with the uncoupled solution. The finite element model is based on the weighted-residual principle and uses 2-D four-node isoparametric finite elements with four degrees of freedom per node. A thin piezoelectric square disk is modeled to obtain some preliminary understanding of the coupled fields in a piezoelectric stack actuator.

  16. Climate Change Hotspots Identification in China through the CMIP5 Global Climate Model Ensemble

    Directory of Open Access Journals (Sweden)

    Huanghe Gu

    2014-01-01

    Full Text Available China is one of the countries vulnerable to adverse climate changes. The potential climate change hotspots in China throughout the 21st century are identified in this study by using a multimodel, multiscenario climate model ensemble that includes Phase Five of the Coupled Model Intercomparison Project (CMIP5 atmosphere-ocean general circulation models. Both high (RCP8.5 and low (RCP4.5 greenhouse gas emission trajectories are tested, and both the mean and extreme seasonal temperature and precipitation are considered in identifying regional climate change hotspots. Tarim basin and Tibetan Plateau in West China are identified as persistent regional climate change hotspots in both the RCP4.5 and RCP8.5 scenarios. The aggregate impacts of climate change increase throughout the 21st century and are more significant in RCP8.5 than in RCP4.5. Extreme hot event and mean temperature are two climate variables that greatly contribute to the hotspots calculation in all regions. The contribution of other climate variables exhibits a notable subregional variability. South China is identified as another hotspot based on the change of extreme dry event, especially in SON and DJF, which indicates that such event will frequently occur in the future. Our results can contribute to the designing of national and cross-national adaptation and mitigation policies.

  17. Evaluating the Carbon Cycle of a Coupled Atmosphere-Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Delire, C; Foley, J A; Thompson, S

    2002-08-21

    We investigate how well a coupled biosphere-atmosphere model, CCM3-IBIS, can simulate the functioning of the terrestrial biosphere and the carbon cycling through it. The simulated climate is compared to observations, while the vegetation cover and the carbon cycle are compared to an offline version of the biosphere model IBIS forced with observed climatic variables. The simulated climate presents some local biases that strongly affect the vegetation (e.g., a misrepresentation of the African monsoon). Compared to the offline model, the coupled model simulates well the globally averaged carbon fluxes and vegetation pools. The zonal mean carbon fluxes and the zonal mean seasonal cycle are also well represented except between 0{sup o} and 20{sup o}N due to the misrepresentation of the African monsoon. These results suggest that, despite regional biases in climate and ecosystem simulations, this coupled atmosphere-biosphere model can be used to explore geographic and temporal variations in the global carbon cycle.

  18. Holocene glacier variability: three case studies using an intermediate-complexity climate model

    NARCIS (Netherlands)

    Weber, S.L.; Oerlemans, J.

    2003-01-01

    Synthetic glacier length records are generated for the Holocene epoch using a process-based glacier model coupled to the intermediate-complexity climate model ECBilt. The glacier model consists of a massbalance component and an ice-flow component. The climate model is forced by the insolation change

  19. Coupling constant in dispersive model

    Indian Academy of Sciences (India)

    perturbative theory using the dispersive model. By fitting the experimental data, the values of ( M Z ° ) = 0.1171 ± 0.00229 and 0 ( I = 2 GeV ) = 0.5068 ± 0.0440 are found. Our results are consistent with the above model. Our results are also ...

  20. Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation

    NARCIS (Netherlands)

    Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Déry, S. J.; van Meijgaard, E.; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Palm, S.P.; Sanz Rodrigo, J.

    2012-01-01

    To simulate the impact of drifting snow on the lower atmosphere, surface characteristics and surface mass balance (SMB) of the Antarctic ice sheet regional atmospheric climate model (RACMO2.1/ANT) with horizontal resolution of 27 km is coupled to a drifting snow routine and forced by ERA-Interim

  1. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    Science.gov (United States)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European

  2. Towards Systematic Benchmarking of Climate Model Performance

    Science.gov (United States)

    Gleckler, P. J.

    2014-12-01

    The process by which climate models are evaluated has evolved substantially over the past decade, with the Coupled Model Intercomparison Project (CMIP) serving as a centralizing activity for coordinating model experimentation and enabling research. Scientists with a broad spectrum of expertise have contributed to the CMIP model evaluation process, resulting in many hundreds of publications that have served as a key resource for the IPCC process. For several reasons, efforts are now underway to further systematize some aspects of the model evaluation process. First, some model evaluation can now be considered routine and should not require "re-inventing the wheel" or a journal publication simply to update results with newer models. Second, the benefit of CMIP research to model development has not been optimal because the publication of results generally takes several years and is usually not reproducible for benchmarking newer model versions. And third, there are now hundreds of model versions and many thousands of simulations, but there is no community-based mechanism for routinely monitoring model performance changes. An important change in the design of CMIP6 can help address these limitations. CMIP6 will include a small set standardized experiments as an ongoing exercise (CMIP "DECK": ongoing Diagnostic, Evaluation and Characterization of Klima), so that modeling groups can submit them at any time and not be overly constrained by deadlines. In this presentation, efforts to establish routine benchmarking of existing and future CMIP simulations will be described. To date, some benchmarking tools have been made available to all CMIP modeling groups to enable them to readily compare with CMIP5 simulations during the model development process. A natural extension of this effort is to make results from all CMIP simulations widely available, including the results from newer models as soon as the simulations become available for research. Making the results from routine

  3. Anthropocene changes in desert area: Sensitivity to climate model predictions

    Science.gov (United States)

    Mahowald, N.

    2007-12-01

    Changes in desert area due to humans have important implications from a local, regional to global level. Here we focus on the latter in order to better understand estimated changes in desert dust aerosols and the associated iron deposition into oceans. Using 17 model simulations from the World Climate Research Programme's Coupled Model Intercomparison Project phase 3 multi-model dataset and the BIOME4 equilibrium vegetation model we estimate changes in desert dust source areas due to climate change and carbon dioxide fertilization. If we assume no carbon dioxide fertilization, the mean of the model predictions is that desert areas expand from the 1880s to the 2080s, due to increased aridity. If we allow for carbon dioxide fertilization, the desert areas become smaller. Thus better understanding carbon dioxide fertilization is important for predicting desert response to climate. There is substantial spread in the model simulation predictions for regional and global averages.

  4. Mediterranean climate modelling: variability and climate change scenarios; Modelisation climatique du Bassin mediterraneen: variabilite et scenarios de changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Somot, S

    2005-12-15

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  5. ARM-Led Improvements Aerosols in Climate and Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, Steven J.; Penner, Joyce E.

    2016-07-25

    The DOE ARM program has played a foundational role in efforts to quantify aerosol effects on climate, beginning with the early back-of-the-envelope estimates of direct radiative forcing by anthropogenic sulfate and biomass burning aerosol (Penner et al., 1994). In this chapter we review the role that ARM has played in subsequent detailed estimates based on physically-based representations of aerosols in climate models. The focus is on quantifying the direct and indirect effects of anthropogenic aerosol on the planetary energy balance. Only recently have other DOE programs applied the aerosol modeling capability to simulate the climate response to the radiative forcing.

  6. Constructing a framework for risk analyses of climate change effects on the water budget of differently sloped vineyards with a numeric simulation using the Monte Carlo method coupled to a water balance model

    Directory of Open Access Journals (Sweden)

    Marco eHofmann

    2014-12-01

    Full Text Available Grapes for wine production are a highly climate sensitive crop and vineyard water budget is a decisive factor in quality formation. In order to conduct risk assessments for climate change effects in viticulture models are needed which can be applied to complete growing regions. We first modified an existing simplified geometric vineyard model of radiation interception and resulting water use to incorporate numerical Monte Carlo simulations and the physical aspects of radiation interactions between canopy and vineyard slope and azimuth. We then used four regional climate models to assess for possible effects on the water budget of selected vineyard sites up 2100. The model was developed to describe the partitioning of short-wave radiation between grapevine canopy and soil surface, respectively green cover, necessary to calculate vineyard evapotranspiration. Soil water storage was allocated to two sub reservoirs. The model was adopted for steep slope vineyards based on coordinate transformation and validated against measurements of grapevine sap flow and soil water content determined down to 1.6 m depth at three different sites over two years. The results showed good agreement of modelled and observed soil water dynamics of vineyards with large variations in site specific soil water holding capacity and viticultural management. Simulated sap flow was in overall good agreement with measured sap flow but site-specific responses of sap flow to potential evapotranspiration were observed. The analyses of climate change impacts on vineyard water budget demonstrated the importance of site-specific assessment due to natural variations in soil water holding capacity. The improved model was capable of describing seasonal and site-specific dynamics in soil water content and could be used in an amended version to estimate changes in the water budget of entire grape growing areas due to evolving climatic changes.

  7. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  8. Fractional dynamical model for neurovascular coupling

    KAUST Repository

    Belkhatir, Zehor

    2014-08-01

    The neurovascular coupling is a key mechanism linking the neural activity to the hemodynamic behavior. Modeling of this coupling is very important to understand the brain function but it is at the same time very complex due to the complexity of the involved phenomena. Many studies have reported a time delay between the neural activity and the cerebral blood flow, which has been described by adding a delay parameter in some of the existing models. An alternative approach is proposed in this paper, where a fractional system is used to model the neurovascular coupling. Thanks to its nonlocal property, a fractional derivative is suitable for modeling the phenomena with delay. The proposed model is coupled with the first version of the well-known balloon model, which relates the cerebral blood flow to the Blood Oxygen Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). Through some numerical simulations, the properties of the fractional model are explained and some preliminary comparisons to a real BOLD data set are provided. © 2014 IEEE.

  9. A coupled human-natural systems analysis of irrigated agriculture under changing climate

    Science.gov (United States)

    Giuliani, M.; Li, Y.; Castelletti, A.; Gandolfi, C.

    2016-09-01

    Exponentially growing water demands and increasingly uncertain hydrologic regimes due to changes in climate and land use are challenging the sustainability of agricultural water systems. Farmers must adapt their management strategies in order to secure food production and avoid crop failures. Investigating the potential for adaptation policies in agricultural systems requires accounting for their natural and human components, along with their reciprocal interactions. Yet this feedback is generally overlooked in the water resources systems literature. In this work, we contribute a novel modeling approach to study the coevolution of irrigated agriculture under changing climate, advancing the representation of the human component within agricultural systems by using normative meta-models to describe the behaviors of groups of farmers or institutional decisions. These behavioral models, validated against observational data, are then integrated into a coupled human-natural system simulation model to better represent both systems and their coevolution under future changing climate conditions, assuming the adoption of different policy adaptation options, such as cultivating less water demanding crops. The application to the pilot study of the Adda River basin in northern Italy shows that the dynamic coadaptation of water supply and demand allows farmers to avoid estimated potential losses of more than 10 M€/yr under projected climate changes, while unilateral adaptation of either the water supply or the demand are both demonstrated to be less effective. Results also show that the impact of the different policy options varies as function of drought intensity, with water demand adaptation outperforming water supply adaptation when drought conditions become more severe.

  10. A community diagnostic tool for chemistry climate model validation

    Directory of Open Access Journals (Sweden)

    A. Gettelman

    2012-09-01

    Full Text Available This technical note presents an overview of the Chemistry-Climate Model Validation Diagnostic (CCMVal-Diag tool for model evaluation. The CCMVal-Diag tool is a flexible and extensible open source package that facilitates the complex evaluation of global models. Models can be compared to other models, ensemble members (simulations with the same model, and/or many types of observations. The initial construction and application is to coupled chemistry-climate models (CCMs participating in CCMVal, but the evaluation of climate models that submitted output to the Coupled Model Intercomparison Project (CMIP is also possible. The package has been used to assist with analysis of simulations for the 2010 WMO/UNEP Scientific Ozone Assessment and the SPARC Report on the Evaluation of CCMs. The CCMVal-Diag tool is described and examples of how it functions are presented, along with links to detailed descriptions, instructions and source code. The CCMVal-Diag tool supports model development as well as quantifies model changes, both for different versions of individual models and for different generations of community-wide collections of models used in international assessments. The code allows further extensions by different users for different applications and types, e.g. to other components of the Earth system. User modifications are encouraged and easy to perform with minimum coding.

  11. Coupled Ethical-Epistemic Analysis of Climate Change

    Science.gov (United States)

    Vezer, M.

    2015-12-01

    Are there inherent limitations to what we can know about how the climate will change in the years ahead? How can we use what is known about the future climate in a way that promotes ethical decision-making? These questions call for urgent attention because important policy decisions need to be made in order to prepare for climate change in North America and around the world. While the science of climate change is central to this line of inquiry, the fields of epistemology, moral, political and environmental philosophy may provide insights on how these issues should be addressed. Detailing the relationship between evidential and ethical dimensions of climate change, this research aims to improve our understanding of the interconnections among several lines of inquiry and to develop solutions to problems of decision-making under conditions of scientific uncertainty.

  12. A Regional Climate Model Evaluation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a packaged data management infrastructure for the comparison of generated climate model output to existing observational datasets that includes capabilities...

  13. Selecting global climate models for regional climate change studies.

    Science.gov (United States)

    Pierce, David W; Barnett, Tim P; Santer, Benjamin D; Gleckler, Peter J

    2009-05-26

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures.

  14. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.|info:eu-repo/dai/nl/290472113

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  15. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  16. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Science.gov (United States)

    Lu Hao; Cen Pan; Peilong Liu; Decheng Zhou; Liangxia Zhang; Zhe Xiong; Yongqiang Liu; Ge Sun

    2016-01-01

    Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past...

  17. Modeling erosion under future climates with the WEPP model

    Science.gov (United States)

    Timothy Bayley; William Elliot; Mark A. Nearing; D. Phillp Guertin; Thomas Johnson; David Goodrich; Dennis Flanagan

    2010-01-01

    The Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT) was developed to be an easy-to-use, web-based erosion model that allows users to adjust climate inputs for user-specified climate scenarios. WEPPCAT allows the user to modify monthly mean climate parameters, including maximum and minimum temperatures, number of wet days, precipitation, and...

  18. FOREST-SAGE, a new deforestation model for climate models and an example deforestation climate impact experiment in the Congo.

    Science.gov (United States)

    Tompkins, A. M.; Bell, J.-P.; Caporaso, L.

    2012-04-01

    The impact of deforestation on climate is often studied using highly idealized "instant deforestation" experiments due to the lack of generalized deforestation scenario generators coupled to climate model land-surface schemes. A new deforestation scenario generator has been therefore developed to fulfill this role known as the deFORESTation ScenArio GEnerator, or FOREST-SAGE. The model produces distributed maps of deforestation rates that account for local factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. The integrated deforestation risk is scaled to give the deforestation rate as specified by macro-region scenarios such as "business as usual" or "increased protection legislation" which are a function of future time. FOREST-SAGE is based on the framework of the widely used Community Land Model (CLM), which is the land model for the Community Earth System Model (CESM), the Community Atmosphere Model (CAM) and the 4th generation ICTP regional climate model REGCM4. Example potential future deforestation scenarios for central Africa are shown, along with the resulting climate impact as modelled by REGCM coupled to CLM.

  19. Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research Facility Field Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, CR [University at Albany-SUNY; Santanello, JA [NASA - Goddard Space Flight Center; Gentine, P [Columbia University

    2015-11-01

    Matching observed diurnal cycles is a fundamental yet extremely complex test for models. High temporal resolution measurements of surface turbulent heat fluxes and boundary layer properties are required to evaluate the daytime evolution of the boundary layer and its sensitivity to land-atmosphere coupling. To address this need, (12) one-day intensive observing periods (IOP) with enhanced radiosonding will be carried out at the ARM Southern Great Plains (SGP) Central Facility (CF) during summer 2015. Each IOP will comprise a single launch to correspond with the nighttime overpass of the A-Train of satellites (~0830 UTC) and hourly launches during daytime beginning from 1130 UTC and ending at 2130 UTC. At 3-hourly intervals (i.e., 1140 UTC, 1440 UTC, 1740 UTC, and 2040 UTC) a duplicate second radiosonde will be launched 10 minutes subsequent to launch of the on-hour radiosonde for the purpose of assessing horizontal atmospheric variability. In summary, each IOP will have a 14-sounding supplement to the 6-hourly operational sounding schedule at the ARM-SGP CF. The IOP days will be decided before sunset on the preceding day, according to the judgment of the PI’s and taking into consideration daily weather forecasts and the operability of complimentary ARM-SGP CF instrumentation. An overarching goal of the project is to address how ARM could better observe land-atmosphere coupling to support the evaluation and refinement of coupled weather and climate models.

  20. Coupled impacts of climate and land use change across a river-lake continuum: insights from an integrated assessment model of Lake Champlain’s Missisquoi Basin, 2000-2040

    Science.gov (United States)

    Zia, Asim; Bomblies, Arne; Schroth, Andrew W.; Koliba, Christopher; Isles, Peter D. F.; Tsai, Yushiou; Mohammed, Ibrahim N.; Bucini, Gabriela; Clemins, Patrick J.; Turnbull, Scott; Rodgers, Morgan; Hamed, Ahmed; Beckage, Brian; Winter, Jonathan; Adair, Carol; Galford, Gillian L.; Rizzo, Donna; Van Houten, Judith

    2016-11-01

    Global climate change (GCC) is projected to bring higher-intensity precipitation and higher-variability temperature regimes to the Northeastern United States. The interactive effects of GCC with anthropogenic land use and land cover changes (LULCCs) are unknown for watershed level hydrological dynamics and nutrient fluxes to freshwater lakes. Increased nutrient fluxes can promote harmful algal blooms, also exacerbated by warmer water temperatures due to GCC. To address the complex interactions of climate, land and humans, we developed a cascading integrated assessment model to test the impacts of GCC and LULCC on the hydrological regime, water temperature, water quality, bloom duration and severity through 2040 in transnational Lake Champlain’s Missisquoi Bay. Temperature and precipitation inputs were statistically downscaled from four global circulation models (GCMs) for three Representative Concentration Pathways. An agent-based model was used to generate four LULCC scenarios. Combined climate and LULCC scenarios drove a distributed hydrological model to estimate river discharge and nutrient input to the lake. Lake nutrient dynamics were simulated with a 3D hydrodynamic-biogeochemical model. We find accelerated GCC could drastically limit land management options to maintain water quality, but the nature and severity of this impact varies dramatically by GCM and GCC scenario.

  1. Assessing the 20th century performance of global climate models and application to climate change adaptation planning

    Science.gov (United States)

    Geil, Kerrie

    Rapid environmental changes linked to human-induced increases in atmospheric greenhouse gas concentrations have been observed on a global scale over recent decades. Given the relative certainty of continued change across many earth systems, the information output from climate models is an essential resource for adaptation planning. But in the face of many known modeling deficiencies, how confident can we be in model projections of future climate? It stands to reason that a realistic simulation of the present climate is at least a necessary (but likely not sufficient) requirement for a model's ability to realistically simulate the climate of the future. Here, I present the results of three studies that evaluate the 20th century performance of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). (Abstract shortened by ProQuest.).

  2. Reliability of regional climate model trends

    OpenAIRE

    G. J. van Oldenborgh; Doblas Reyes, F. J.; Drijfhout, S.S.; Hawkins, Ed

    2013-01-01

    A necessary condition for a good probabilistic forecast is that the forecast system is shown to be reliable: forecast probabilities should equal observed probabilities verified over a large number of cases. As climate change trends are now emerging from the natural variability, we can apply this concept to climate predictions and compute the reliability of simulated local and regional temperature and precipitation trends (1950–2011) in a recent multi-model ensemble of climate model simulation...

  3. Probabilistic evaluation of competing climate models

    Science.gov (United States)

    Braverman, Amy; Chatterjee, Snigdhansu; Heyman, Megan; Cressie, Noel

    2017-10-01

    Climate models produce output over decades or longer at high spatial and temporal resolution. Starting values, boundary conditions, greenhouse gas emissions, and so forth make the climate model an uncertain representation of the climate system. A standard paradigm for assessing the quality of climate model simulations is to compare what these models produce for past and present time periods, to observations of the past and present. Many of these comparisons are based on simple summary statistics called metrics. In this article, we propose an alternative: evaluation of competing climate models through probabilities derived from tests of the hypothesis that climate-model-simulated and observed time sequences share common climate-scale signals. The probabilities are based on the behavior of summary statistics of climate model output and observational data over ensembles of pseudo-realizations. These are obtained by partitioning the original time sequences into signal and noise components, and using a parametric bootstrap to create pseudo-realizations of the noise sequences. The statistics we choose come from working in the space of decorrelated and dimension-reduced wavelet coefficients. Here, we compare monthly sequences of CMIP5 model output of average global near-surface temperature anomalies to similar sequences obtained from the well-known HadCRUT4 data set as an illustration.

  4. Intercomparison of the capabilities of simplified climate models to project the effects of aviation CO2 on climate

    Science.gov (United States)

    Khodayari, Arezoo; Wuebbles, Donald J.; Olsen, Seth C.; Fuglestvedt, Jan S.; Berntsen, Terje; Lund, Marianne T.; Waitz, Ian; Wolfe, Philip; Forster, Piers M.; Meinshausen, Malte; Lee, David S.; Lim, Ling L.

    2013-08-01

    This study evaluates the capabilities of the carbon cycle and energy balance treatments relative to the effect of aviation CO2 emissions on climate in several existing simplified climate models (SCMs) that are either being used or could be used for evaluating the effects of aviation on climate. Since these models are used in policy-related analyses, it is important that the capabilities of such models represent the state of understanding of the science. We compare the Aviation Environmental Portfolio Management Tool (APMT) Impacts climate model, two models used at the Center for International Climate and Environmental Research-Oslo (CICERO-1 and CICERO-2), the Integrated Science Assessment Model (ISAM) model as described in Jain et al. (1994), the simple Linear Climate response model (LinClim) and the Model for the Assessment of Greenhouse-gas Induced Climate Change version 6 (MAGICC6). In this paper we select scenarios to illustrate the behavior of the carbon cycle and energy balance models in these SCMs. This study is not intended to determine the absolute and likely range of the expected climate response in these models but to highlight specific features in model representations of the carbon cycle and energy balance models that need to be carefully considered in studies of aviation effects on climate. These results suggest that carbon cycle models that use linear impulse-response-functions (IRF) in combination with separate equations describing air-sea and air-biosphere exchange of CO2 can account for the dominant nonlinearities in the climate system that would otherwise not have been captured with an IRF alone, and hence, produce a close representation of more complex carbon cycle models. Moreover, results suggest that an energy balance model with a 2-box ocean sub-model and IRF tuned to reproduce the response of coupled Earth system models produces a close representation of the globally-averaged temperature response of more complex energy balance models.

  5. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  6. Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates

    DEFF Research Database (Denmark)

    Thum, T.; Raisanen, P.; Sevanto, S.

    2011-01-01

    The response of soil organic carbon to climate change might lead to significant feedbacks affecting global warming. This response can be studied by coupled climate-carbon cycle models but so far the description of soil organic carbon cycle in these models has been quite simple. In this work we used...... the coupled climate-carbon cycle model ECHAM5/JSBACH (European Center/Hamburg Model 5/Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) with two different soil carbon modules, namely (1) the original soil carbon model of JSBACH called CBALANCE and (2) a new soil carbon model Yasso07, to study...... the interaction between climate variability and soil organic carbon. Equivalent ECHAM5/JSBACH simulations were conducted using both soil carbon models, with freely varying atmospheric CO2 for the last 30 years (1977-2006). In this study, anthropogenic CO2 emissions and ocean carbon cycle were excluded. The new...

  7. Dynamics of the Coupled Human-climate System Resulting from Closed-loop Control of Solar Geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    MacMartin, Douglas; Kravitz, Benjamin S.; Keith, David; Jarvis, Andrew

    2014-07-08

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM, in order to compensate for uncertainty in either the forcing or the climate response; this would also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. This feedback creates an emergent coupled human-climate system, with entirely new dynamics. In addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a simple box-diffusion dynamic model to understand how changing feedback-control parameters and time delay affect the behavior of this coupled natural-human system, and verify these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain), but a delayed response needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification, results in a limit on how rapidly SRM could respond to uncertain changes.

  8. CLIMBER-2: a climate system model of intermediate complexity. Pt. 1. Model description and performance for present climate

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, V.; Ganopolski, A.; Brovkin, V.; Claussen, M.; Eliseev, A.; Kubatzki, C.; Rahmstorf, S.

    1998-02-01

    A 2.5-dimensional climate system model of intermediate complexity CLIMBER-2 and its performance for present climate conditions are presented. The model consists of modules describing atmosphere, ocean, sea ice, land surface processes, terrestrial vegetation cover, and global carbon cycle. The modules interact (on-line) through the fluxes of momentum, energy, water and carbon. The model has a coarse spatial resolution, allowing nevertheless to capture the major features of the Earth`s geography. The model describes temporal variability of the system on seasonal and longer time scales. Due to the fact that the model does not employ any type of flux adjustment and has fast turnaround time, it can be used for study of climates significantly different from the present one and allows to perform long-term (multimillennia) simulations. The constraints for coupling the atmosphere and ocean without flux adjustment are discussed. The results of a model validation against present climate data show that the model successfully describes the seasonal variability of a large set of characteristics of the climate system, including radiative balance, temperature, precipitation, ocean circulation and cryosphere. (orig.) 62 refs.

  9. Assessing Statistical Model Assumptions under Climate Change

    Science.gov (United States)

    Varotsos, Konstantinos V.; Giannakopoulos, Christos; Tombrou, Maria

    2016-04-01

    The majority of the studies assesses climate change impacts on air-quality using chemical transport models coupled to climate ones in an off-line mode, for various horizontal resolutions and different present and future time slices. A complementary approach is based on present-day empirical relations between air-pollutants and various meteorological variables which are then extrapolated to the future. However, the extrapolation relies on various assumptions such as that these relationships will retain their main characteristics in the future. In this study we focus on the ozone-temperature relationship. It is well known that among a number of meteorological variables, temperature is found to exhibit the highest correlation with ozone concentrations. This has led, in the past years, to the development and application of statistical models with which the potential impact of increasing future temperatures on various ozone statistical targets was examined. To examine whether the ozone-temperature relationship retains its main characteristics under warmer temperatures we analyze the relationship during the heatwaves events of 2003 and 2006 in Europe. More specifically, we use available gridded daily maximum temperatures (E-OBS) and hourly ozone observations from different non-urban stations (EMEP) within the areas that were impacted from the two heatwave events. In addition, we compare the temperature distributions of the two events with temperatures from two different future time periods 2021-2050 and 2071-2100 from a number of regional climate models developed under the framework of the Cordex initiative (http://www.cordex.org) with a horizontal resolution of 12 x 12km, based on different IPCC RCPs emissions scenarios. A statistical analysis is performed on the ozone-temperature relationship for each station and for the two aforementioned years which are then compared against the ozone-temperature relationships obtained from the rest of the available dataseries. The

  10. Integrated Research Plan on the Tibetan Plateau Land-Air Coupled System and Its Impact on Global Climate Change

    Science.gov (United States)

    Wu, G. X.; Zhou, X.; Cai, Y.; Liu, Y.; Zhang, C.

    2016-12-01

    The Tibetan Plateau (TP) accounts for nearly one-quarter of the total land area of China and is known as the highest plateau in the world with an average elevation of four kilometers. The mechanical and thermal effects of the giant plateau, together with the in situ land-air coupled system, plays an important role in the formation of the general circulation pattern, the regional weather and climate regimes, the multi-scale variability of the Asian summer monsoon, and even the global atmospheric energy and water cycle. However, due to the lack of observational data, the defects in the existing land and atmosphere models, and the poor knowledge of interactions between land surface and atmosphere over the TP, our understanding on the complicated energy and water cycles over the TP and their effects on regional and global weather and climate is limited, the prediction skill of high-impact weather over the plateau and its surrounding regions is still unsatisfactory, and the Asian monsoon area suffers from the largest climate prediction errors. In 2012, the Chinese Meteorological Administration (CMA) launched an ambitious 10-year program aiming at improving the meteorological observation systems over the TP and its surrounding provinces. Accordingly, a 10-year national research program beginning from 2013 and entitled "Land-Air coupled System over the Tibetan Plateau and its Impacts on global Climate (LASTPIC)" has been launched by the National Natural Science Foundation of China (NSFC). The overall scientific goals of this program includes: to further understand the land-air coupling processes; to develop a land-air data assimilation system in the TP domain and establish the corresponding data bank; to improve the regional and global climate models; and to explore the mechanism of the TP weather and climate impacts. The introduction of this NSFC program will be presented.

  11. Impact of in-consistency between the climate model and its initial conditions on climate prediction

    Science.gov (United States)

    Liu, Xueyuan; Köhl, Armin; Stammer, Detlef; Masuda, Shuhei; Ishikawa, Yoichi; Mochizuki, Takashi

    2017-08-01

    We investigated the influence of dynamical in-consistency of initial conditions on the predictive skill of decadal climate predictions. The investigation builds on the fully coupled global model "Coupled GCM for Earth Simulator" (CFES). In two separate experiments, the ocean component of the coupled model is full-field initialized with two different initial fields from either the same coupled model CFES or the GECCO2 Ocean Synthesis while the atmosphere is initialized from CFES in both cases. Differences between both experiments show that higher SST forecast skill is obtained when initializing with coupled data assimilation initial conditions (CIH) instead of those from GECCO2 (GIH), with the most significant difference in skill obtained over the tropical Pacific at lead year one. High predictive skill of SST over the tropical Pacific seen in CIH reflects the good reproduction of El Niño events at lead year one. In contrast, GIH produces additional erroneous El Niño events. The tropical Pacific skill differences between both runs can be rationalized in terms of the zonal momentum balance between the wind stress and pressure gradient force, which characterizes the upper equatorial Pacific. In GIH, the differences between the oceanic and atmospheric state at initial time leads to imbalance between the zonal wind stress and pressure gradient force over the equatorial Pacific, which leads to the additional pseudo El Niño events and explains reduced predictive skill. The balance can be reestablished if anomaly initialization strategy is applied with GECCO2 initial conditions and improved predictive skill in the tropical Pacific is observed at lead year one. However, initializing the coupled model with self-consistent initial conditions leads to the highest skill of climate prediction in the tropical Pacific by preserving the momentum balance between zonal wind stress and pressure gradient force along the equatorial Pacific.

  12. Coupled Model Development and Multi-Model Ensemble Prediction Research and Transition Activities in the NOAA MAPP Program

    Science.gov (United States)

    Archambault, H. M.; Mariotti, A.; Barrie, D.; Huang, J.

    2016-12-01

    The Climate Program Office's (CPO's) Modeling, Analysis, Predictions, and Projections (MAPP) Program is a competitive grants research program that supports research and transition work to advance NOAA's subseasonal to decadal prediction; climate and Earth system modeling; drought, extremes, and other applications; climate reanalysis techniques; and analysis of climate projections. MAPP works with national partners including through ESPC, USGCRP, and CLIVAR, and also through international WCRP, to strategically engage and organize the science community around these priorities. This presentation will complement an overview presentation by CPO Director Wayne Higgins on CPO's National ESPC contributions by presenting MAPP Program efforts in two specific ESPC-relevant areas: (1) developing a NOAA Unified Global Coupled System, including physical process modeling and software infrastructure work on the Earth System Modeling Framework and the NOAA Environmental Modeling System (NEMS), as part of the MAPP Climate Model Task Force; and (2) testing and transition of real-time ensemble prediction systems for operationational prediction from weeks to seasons.

  13. Wind climate from the regional climate model REMO

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Berg, Jacob

    2010-01-01

    Selected outputs from simulations with the regional climate model REMO from the Max Planck Institute, Hamburg, Germany were studied in connection with wind energy resource assessment. It was found that the mean wind characteristics based on observations from six mid-latitude stations are well...

  14. Coupled wave model for large magnet coils

    Science.gov (United States)

    Gabriel, G. J.

    1980-01-01

    A wave coupled model based on field theory is evolved for analysis of fast electromagnetic transients on superconducting coils. It is expected to play a useful role in the design of protection methods against damage due to high voltages or any adverse effects that might arise from unintentional transients. The significant parameters of the coil are identified to be the turn to turn wave coupling coefficients and the travel time of an electromagnetic disturbance around a single turn. Unlike circuit theoretic inductor, the coil response evolves in discrete steps having durations equal to this travel time. It is during such intervals that high voltages are likely to occur. The model also bridges the gap between the low and high ends of the frequency spectrum.

  15. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  16. Modeling and assessing international climate financing

    Science.gov (United States)

    Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng

    2016-06-01

    Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.

  17. Exploitation of Parallelism in Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Baer, F.; Tribbia, J.J.; Williamson, D.L.

    1999-03-01

    The US Department of Energy (DOE), through its CHAMMP initiative, hopes to develop the capability to make meaningful regional climate forecasts on time scales exceeding a decade, such capability to be based on numerical prediction type models. We propose research to contribute to each of the specific items enumerated in the CHAMMP announcement (Notice 91-3); i.e., to consider theoretical limits to prediction of climate and climate change on appropriate time scales, to develop new mathematical techniques to utilize massively parallel processors (MPP), to actually utilize MPPs as a research tool, and to develop improved representations of some processes essential to climate prediction. In particular, our goals are to: (1) Reconfigure the prediction equations such that the time iteration process can be compressed by use of MMP architecture, and to develop appropriate algorithms. (2) Develop local subgrid scale models which can provide time and space dependent parameterization for a state- of-the-art climate model to minimize the scale resolution necessary for a climate model, and to utilize MPP capability to simultaneously integrate those subgrid models and their statistics. (3) Capitalize on the MPP architecture to study the inherent ensemble nature of the climate problem. By careful choice of initial states, many realizations of the climate system can be determined concurrently and more realistic assessments of the climate prediction can be made in a realistic time frame. To explore these initiatives, we will exploit all available computing technology, and in particular MPP machines. We anticipate that significant improvements in modeling of climate on the decadal and longer time scales for regional space scales will result from our efforts.

  18. Climate Extremes: Observations, Modeling, and Impacts

    Science.gov (United States)

    Easterling, David R.; Meehl, Gerald A.; Parmesan, Camille; Changnon, Stanley A.; Karl, Thomas R.; Mearns, Linda O.

    2000-09-01

    One of the major concerns with a potential change in climate is that an increase in extreme events will occur. Results of observational studies suggest that in many areas that have been analyzed, changes in total precipitation are amplified at the tails, and changes in some temperature extremes have been observed. Model output has been analyzed that shows changes in extreme events for future climates, such as increases in extreme high temperatures, decreases in extreme low temperatures, and increases in intense precipitation events. In addition, the societal infrastructure is becoming more sensitive to weather and climate extremes, which would be exacerbated by climate change. In wild plants and animals, climate-induced extinctions, distributional and phenological changes, and species' range shifts are being documented at an increasing rate. Several apparently gradual biological changes are linked to responses to extreme weather and climate events.

  19. Coupled hydrologic and hydraulic modeling of Upper Niger River Basin

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir

    2017-04-01

    The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river

  20. On the comparison between seasonal predictive skill of global circulation models: Coupled versus uncoupled

    CSIR Research Space (South Africa)

    Beraki, AF

    2015-11-01

    Full Text Available The study compares one- and two-tiered forecasting systems as represented by the South African Weather Service Coupled Model and its atmosphere-only version. In this comparative framework, the main difference between these global climate models...

  1. Modeling of Coupled Nano-Cavity Lasers

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr

    Modeling of nanocavity light emitting semiconductor devices is done using the semiconductor laser rate equations with spontaneous and stimulated emission terms modified for Purcell enhanced recombination. The modified terms include details about the optical and electronic density-of-states and it......Modeling of nanocavity light emitting semiconductor devices is done using the semiconductor laser rate equations with spontaneous and stimulated emission terms modified for Purcell enhanced recombination. The modified terms include details about the optical and electronic density......-of-states relative to the optical density-of-states. The low effective Purcell eect for quantum well devices limits the highest possible modulation bandwidth to a few tens of gigahertz, which is comparable to the performance of conventional diode lasers. Compared to quantum well devices, quantum dot devices have...... is useful for design of coupled systems. A tight-binding description for coupled nanocavity lasers is developed and employed to investigate the phase-locking behavior for the system of two coupled cavities. Phase-locking is found to be critically dependent on exact parameter values and to be dicult...

  2. Reconstructing the climate states of the Late Pleistocene with the MIROC climate model

    Science.gov (United States)

    Chan, Wing-Le; Abe-Ouchi, Ayako; O'ishi, Ryouta; Takahashi, Kunio

    2014-05-01

    The Late Pleistocene was a period which lasted from the Eemian interglacial period to the start of the warm Holocene and was characterized mostly by widespread glacial ice. It was also a period which saw modern humans spread throughout the world and other species of the same genus, like the Neanderthals, become extinct. Various hypotheses have been put forward to explain the extinction of Neanderthals, about 30,000 years ago. Among these is one which involves changes in past climate and the inability of Neanderthals to adapt to such changes. The last traces of Neanderthals coincide with the end of Marine Isotope Stage 3 (MIS3) which was marked by large fluctuations in temperature and so-called Heinrich events, as suggested by geochemical records from ice cores. It is thought that melting sea ice or icebergs originating from the Laurentide ice sheet led to a large discharge of freshwater into the North Atlantic Ocean during the Heinrich events and severely weakened the Atlantic meridional overturning circulation, with important environmental ramifications across parts of Europe such as sharp decreases in temperature and reduction in forest cover. In order to assess the effects of past climate change on past hominin migration and on the extinction of certain species, it is first important to have a good understanding of the past climate itself. In this study, we have used three variants of MIROC (The Model for Interdisciplinary Research on Climate), a global climate model, for a time slice experiment within the Late Pleistocene: two mid-resolution models (an atmosphere model and a coupled atmosphere-ocean model) and a high-resolution atmosphere model. To obtain a fuller picture, we also look at a cool stadial state as obtained from a 'freshwater hosing' coupled-model experiment, designed to mimic the effects of freshwater discharge in the North Atlantic. We next use the sea surface temperature response from this experiment to drive the atmosphere models. We discuss

  3. Modeling Past Abrupt Climate Changes

    DEFF Research Database (Denmark)

    Marchionne, Arianna

    According to Milankovitch theory of ice ages, glacial cycles are driven by variations in the insolation, i.e. the amount of the incoming solar radiation reaching the Earth. These variations are associated with variations of the Earth's orbit. Many attempts have been made to identify the in uence...... of the orbital variations on Earth's climate; however, the knowledge and tools needed to complete a unied theory for ice ages have not been developed yet. Here, we focus on the climatic variations that have occurred over the last few million years. Paleoclimatic records show that the glacial cycles are linked...... to the orbitally driven variations in insolation. However, the relationship is far from linear, and insolation alone can not explain the climatic variability seen in the records. In the rst part of this thesis, we discuss the possible dynamical mechanisms for linking the frequencies observed in the records...

  4. Climate Modeling with a Million CPUs

    Science.gov (United States)

    Tobis, M.; Jackson, C. S.

    2010-12-01

    manage our ensembles. Component computations involve tens to hundreds of CPUs and tens to hundreds of hours. The results of these moderately large parallel jobs influence the scheduling of subsequent jobs, and complex algorithms may be easily contemplated for this. The operating system concept of a "thread" re-emerges at a very coarse level, where each thread manages atomic computations of thousands of CPU-hours. That is, rather than multiple threads operating on a processor, at this level, multiple processors operate within a single thread. In collaboration with the Texas Advanced Computing Center, we are developing a software library at the system level, which should facilitate the development of computations involving complex strategies which invoke large numbers of moderately large multi-processor jobs. While this may have applications in other sciences, our key intent is to better characterize the coupled behavior of a very large set of climate model configurations.

  5. Agent Model Development for Assessing Climate-Induced Geopolitical Instability.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B.; Backus, George A.

    2005-12-01

    We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such models do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3

  6. Hospitable archean climates simulated by a general circulation model.

    Science.gov (United States)

    Wolf, E T; Toon, O B

    2013-07-01

    Evidence from ancient sediments indicates that liquid water and primitive life were present during the Archean despite the faint young Sun. To date, studies of Archean climate typically utilize simplified one-dimensional models that ignore clouds and ice. Here, we use an atmospheric general circulation model coupled to a mixed-layer ocean model to simulate the climate circa 2.8 billion years ago when the Sun was 20% dimmer than it is today. Surface properties are assumed to be equal to those of the present day, while ocean heat transport varies as a function of sea ice extent. Present climate is duplicated with 0.06 bar of CO2 or alternatively with 0.02 bar of CO2 and 0.001 bar of CH4. Hot Archean climates, as implied by some isotopic reconstructions of ancient marine cherts, are unattainable even in our warmest simulation having 0.2 bar of CO2 and 0.001 bar of CH4. However, cooler climates with significant polar ice, but still dominated by open ocean, can be maintained with modest greenhouse gas amounts, posing no contradiction with CO2 constraints deduced from paleosols or with practical limitations on CH4 due to the formation of optically thick organic hazes. Our results indicate that a weak version of the faint young Sun paradox, requiring only that some portion of the planet's surface maintain liquid water, may be resolved with moderate greenhouse gas inventories. Thus, hospitable late Archean climates are easily obtained in our climate model.

  7. Representing glaciers in a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Kotlarski, Sven [Max Planck Institute for Meteorology, Hamburg (Germany); ETH Zurich, Institute for Atmospheric and Climate Science, Zurich (Switzerland); Jacob, Daniela; Podzun, Ralf [Max Planck Institute for Meteorology, Hamburg (Germany); Paul, Frank [University of Zurich, Department of Geography, Zurich (Switzerland)

    2010-01-15

    A glacier parameterization scheme has been developed and implemented into the regional climate model REMO. The new scheme interactively simulates the mass balance as well as changes of the areal extent of glaciers on a subgrid scale. The temporal evolution and the general magnitude of the simulated glacier mass balance in the European Alps are in good accordance with observations for the period 1958-1980, but the strong mass loss towards the end of the twentieth century is systematically underestimated. The simulated decrease of glacier area in the Alps between 1958 and 2003 ranges from -17.1 to -23.6%. The results indicate that observed glacier mass balances can be approximately reproduced within a regional climate model based on simplified concepts of glacier-climate interaction. However, realistic results can only be achieved by explicitly accounting for the subgrid variability of atmospheric parameters within a climate model grid box. (orig.)

  8. Ocean-Atmosphere Coupled Model Simulations of Precipitation in the Central Andes

    Science.gov (United States)

    Nicholls, Stephen D.; Mohr, Karen I.

    2015-01-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. In addition, South American meteorology and climate are also made further complicated by ENSO, a powerful coupled ocean-atmosphere phenomenon. Modelling studies in this region have typically resorted to either atmospheric mesoscale or atmosphere-ocean coupled global climate models. The latter offers full physics and high spatial resolution, but it is computationally inefficient typically lack an interactive ocean, whereas the former offers high computational efficiency and ocean-atmosphere coupling, but it lacks adequate spatial and temporal resolution to adequate resolve the complex orography and explicitly simulate precipitation. Explicit simulation of precipitation is vital in the Central Andes where rainfall rates are light (0.5-5 mm hr-1), there is strong seasonality, and most precipitation is associated with weak mesoscale-organized convection. Recent increases in both computational power and model development have led to the advent of coupled ocean-atmosphere mesoscale models for both weather and climate study applications. These modelling systems, while computationally expensive, include two-way ocean-atmosphere coupling, high resolution, and explicit simulation of precipitation. In this study, we use the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), a fully-coupled mesoscale atmosphere-ocean modeling system. Previous work has shown COAWST to reasonably simulate the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data when ECMWF interim analysis data were used for boundary conditions on a 27-9-km grid configuration (Outer grid extent: 60.4S to 17.7N and 118.6W to 17.4W).

  9. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    Journal Article 3. DATES COVERED (From - To) 12 May 2015 – 06 Oct 2015 4. TITLE AND SUBTITLE A Tightly Coupled Non-Equilibrium Magneto- Hydrodynamic ...development a tightly coupled magneto- hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE... hydrodynamic model for Inductively Coupled RF Plasmas A. Munafò,1, a) S. A. Alfuhaid,1, b) J.-L. Cambier,2, c) and M. Panesi1, d) 1)Department of

  10. Regional Climate Modeling : Progress, Challenges, and Prospects(Regional Climate Modeling for Monsoon System)

    OpenAIRE

    Yuqing, WANG; L. Ruby, LEUNG; John L., McGREGOR; Dong-Kyou, LEE; Wei-Chyung, WANG; Yihui, DING; Fujio, KIMURA; International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa; Pacific Northwest National Laboratory; CSIRO Atmospheric Research Division, PB1 Aspendale; Atmospheric Sciences Program, School of Earth and Environmental Sciences, Seoul National University; Atmospheric Sciences Research Center, State University of New York at Albany; National Climate Center, China Meteorological Administration; Terrestrial Environmental Research Center, University of Tsukuba:Frontier Research System for Global Change

    2004-01-01

    Regional climate modeling using regional climate models (RCMs) has matured over the past decade to enable meaningful utilization in a broad spectrum of applications. In this paper, the latest progress in regional climate modeling studies is reviewed, including RCM development, applications of RCMs to dynamical downscaling for climate change assessment and seasonal climate predictions, climate process studies, and the study of regional climate predictability. Challenges and potential direction...

  11. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    Science.gov (United States)

    Kaneko, D.

    2016-12-01

    through seasonal advection thermal effects on potential evaporation by winds blowing eastward over California, the Grand Canyon, Monument Valley, and into the Great Plains. These coupled SST photosynthesis models constitute an advanced approach for crop modeling in the era of recent new climate.

  12. Issues in Modelling Agriculture Response to Climate Change

    OpenAIRE

    Singh, Amarendra Pratap; Narayanan, Krishnan

    2013-01-01

    Agriculture stands as most sensitive economic activity to climate variations. Modelling climate-agriculture relationship is one of the most researched issues in recent times. This paper reviews some of the issues regarding modelling agriculture response to climate change.

  13. Impacts of Irrigation on Daily Extremes in the Coupled Climate System

    Science.gov (United States)

    Puma, Michael J.; Cook, Benjamin I.; Krakauer, Nir; Gentine, Pierre; Nazarenka, Larissa; Kelly, Maxwell; Wada, Yoshihide

    2014-01-01

    Widespread irrigation alters regional climate through changes to the energy and water budgets of the land surface. Within general circulation models, simulation studies have revealed significant changes in temperature, precipitation, and other climate variables. Here we investigate the feedbacks of irrigation with a focus on daily extremes at the global scale. We simulate global climate for the year 2000 with and without irrigation to understand irrigation-induced changes. Our simulations reveal shifts in key climate-extreme metrics. These findings indicate that land cover and land use change may be an important contributor to climate extremes both locally and in remote regions including the low-latitudes.

  14. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Directory of Open Access Journals (Sweden)

    Lu Hao

    2016-12-01

    Full Text Available Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past three decades in the Upper Heihe River Basin (UHRB, a complex multiple use watershed in arid northwestern China. We apply empirical orthogonal function (EOF and singular value decomposition (SVD analysis to isolate and identify the spatial patterns of satellite-derived leaf area index (LAI and their close relationship with the variability of an aridity index (AI = Precipitation/Potential Evapotranspiration. Results show that UHRB has become increasingly warm and wet during the past three decades. In general, the rise of air temperature and precipitation had a positive impact on mean LAI at the annual scale. At the monthly scale, LAI variations had a lagged response to climate. Two major coupled spatial change patterns explained 29% and 41% of the LAI dynamics during 1983–2000 and 2001–2010, respectively. The strongest connections between climate and LAI were found in the southwest part of the basin prior to 2000, but they shifted towards the north central area afterwards, suggesting that the sensitivity of LAI to climate varied over time, and that human disturbances might play an important role in altering LAI patterns. At the basin level, the positive effects of regional climate warming and precipitation increase as well as local ecological restoration efforts overwhelmed the negative effects of overgrazing. The study results offer insights about the coupled effects of climatic variability and grazing on ecosystem structure and functions at a watershed scale. Findings from this study are useful for land managers and policy makers to make better decisions in response to climate

  15. A Stochastic Diffusion Model of Climate Change

    CERN Document Server

    Pelletier, J D

    1995-01-01

    We present a model for variations in atmospheric temperature from time scales of one day to one million years based on a stochastic diffusion (random walk) model of the turbulent transport of heat energy vertically in a coupled atmosphere-ocean model. The predictions of the model are supported by station records and paleoclimatic proxy data of temperature variations.

  16. Hydroclimatology of the Nile: results from a regional climate model

    Directory of Open Access Journals (Sweden)

    Y. A. Mohamed

    2005-01-01

    Full Text Available This paper presents the result of the regional coupled climatic and hydrologic model of the Nile Basin. For the first time the interaction between the climatic processes and the hydrological processes on the land surface have been fully coupled. The hydrological model is driven by the rainfall and the energy available for evaporation generated in the climate model, and the runoff generated in the catchment is again routed over the wetlands of the Nile to supply moisture for atmospheric feedback. The results obtained are quite satisfactory given the extremely low runoff coefficients in the catchment. The paper presents the validation results over the sub-basins: Blue Nile, White Nile, Atbara river, the Sudd swamps, and the Main Nile for the period 1995 to 2000. Observational datasets were used to evaluate the model results including radiation, precipitation, runoff and evaporation data. The evaporation data were derived from satellite images over a major part of the Upper Nile. Limitations in both the observational data and the model are discussed. It is concluded that the model provides a sound representation of the regional water cycle over the Nile. The sources of atmospheric moisture to the basin, and location of convergence/divergence fields could be accurately illustrated. The model is used to describe the regional water cycle in the Nile basin in terms of atmospheric fluxes, land surface fluxes and land surface-climate feedbacks. The monthly moisture recycling ratio (i.e. locally generated/total precipitation over the Nile varies between 8 and 14%, with an annual mean of 11%, which implies that 89% of the Nile water resources originates from outside the basin physical boundaries. The monthly precipitation efficiency varies between 12 and 53%, and the annual mean is 28%. The mean annual result of the Nile regional water cycle is compared to that of the Amazon and the Mississippi basins.

  17. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...

  18. Extreme climate projections over the transboundary Koshi River Basin using a high resolution regional climate model

    Directory of Open Access Journals (Sweden)

    Rupak Rajbhandari

    2017-09-01

    Full Text Available The high-resolution climate model Providing REgional Climates for Impacts Studies (PRECIS was used to project the changes in future extreme precipitation and temperature over the Koshi River Basin for use in impact assessments. Three outputs of the Quantifying Uncertainties in Model Prediction (QUMP simulations using the Hadley Centre Couple Model (HadCM3 based on the IPCC SRES A1B emission scenario were used to project the future climate. The projections were analysed for three time slices, 2011–2040 (near future, 2041–2070 (mid-century, and 2071–2098 (distant future. The results show an increase in the future frequency and intensity of climate extremes events such as dry days, consecutive dry days, and very wet days (95th percentile, with greater increases over the southern plains than in the mountainous area to the north. A significant decrease in moderate rainfall days (75th percentile is projected over the middle (high mountain and trans-Himalaya areas. Increases are projected in both the extreme maximum and extreme minimum temperature, with a slightly higher rate in minimum temperature. The number of warm days is projected to increase throughout the basin, with more rapid rates in the trans-Himalayan and middle mountain areas than in the plains. Warm nights are also projected to increase, especially in the southern plains. A decrease is projected in cold days and cold nights indicating overall warming throughout the basin.

  19. Modeling Uncertainty in Climate Change: A Multi-Model Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth; Nordhaus, William; Anthoff, David; Blanford, Geoffrey J.; Bosetti, Valentina; Christensen, Peter; McJeon, Haewon C.; Reilly, J. M.; Sztorc, Paul

    2015-10-01

    The economics of climate change involves a vast array of uncertainties, complicating both the analysis and development of climate policy. This study presents the results of the first comprehensive study of uncertainty in climate change using multiple integrated assessment models. The study looks at model and parametric uncertainties for population, total factor productivity, and climate sensitivity and estimates the pdfs of key output variables, including CO2 concentrations, temperature, damages, and the social cost of carbon (SCC). One key finding is that parametric uncertainty is more important than uncertainty in model structure. Our resulting pdfs also provide insight on tail events.

  20. Coupling Nile Basin 2050 scenarios with the IPCC 2100 projections for climate-induced risk reduction

    NARCIS (Netherlands)

    Onencan, A.M.; Enserink, B.; van de Walle, B.A.; Chelang'a, J.

    2016-01-01

    Scenarios are valuable tools that could support decision making under deep uncertainty, nevertheless, their potential remains untapped. The paper explores whether participatory scenario construction in the form of stories coupled with the Intergovernmental Panel on Climate Change (IPCC) 2100

  1. A Coupled Surface Nudging Scheme for use in Retrospective Weather and Climate Simulations for Environmental Applications

    Science.gov (United States)

    A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem mo...

  2. Role of the seasonal cycle in coupling climate and carbon cycling in subanartic zone

    CSIR Research Space (South Africa)

    Monteiro, PMS

    2010-08-01

    Full Text Available There is increasing evidence in the Southern Ocean that mesoscales and seasonal scales play an important role in the coupling of ocean carbon cycling and climate. The seasonal cycle is one of the strongest modes of variability in different...

  3. Northern Winter Climate Change: Assessment of Uncertainty in CMIP5 Projections Related to Stratosphere-Troposphere Coupling

    Science.gov (United States)

    Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; hide

    2014-01-01

    Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.

  4. The standard model coupled to quantum gravitodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Aldabe, Fermin

    2017-01-15

    We show that the renormalizable SO(4) x U(1) x SU(2) x SU(3) Yang-Mills coupled to matter and the Higgs field fits all the experimentally observed differential cross sections known in nature. This extended Standard Model reproduces the experimental gravitational differential cross sections without resorting to the graviton field and instead by exchanging SO(4) gauge fields. By construction, each SO(4) generator in quantum gravitodynamics does not commute with the Dirac gamma matrices. This produces additional interactions absent to non-Abelian gauge fields in the Standard Model. The contributions from these new terms yield differential cross sections consistent with the Newtonian and post-Newtonian interactions derived from General Relativity. Dimensional analysis of the Lagrangian shows that all its terms have total dimensionality four or less and therefore that all physical quantities in the theory renormalize by finite amounts. These properties make QGD the only renormalizable four-dimensional theory describing gravitational interactions. (orig.)

  5. The Madden-Julian Oscillation in NCEP Coupled Model Simulation

    Directory of Open Access Journals (Sweden)

    Wanqiu Wang Kyong-Hwan Seo

    2009-01-01

    Full Text Available This study documents a detailed analysis on the Madden-Julian Oscillation (MJO simulated by the National Centers for Environmental Prediction (NCEP using the Global Forecast System (GFS model version 2003 coupled with the Climate Forecast System model (CFS consisting of the 2003 version of GFS and the Geophysical Fluid Dynamics Laboratory (GFDL Modular Ocean Model V.3 (MOM3. The analyses are based upon a 21-year simulation of AMIP-type with GFS and CMIP-type with CFS. It is found that air-sea coupling in CFS is shown to improve the coherence between convection and large-scale circulation associated with the MJO. The too fast propagation of convection from the Indian Ocean to the maritime continents and the western Pacific in GFS is improved (slowed down in CFS. Both GFS and CFS produce too strong intraseasonal convective heating and circulation anomalies in the central-eastern Pacific; further, the air-sea coupling in CFS enhances this unrealistic feature. The simulated mean slow phase speed of east ward propagating low-wavenumber components shown in the wavenumber-frequency spectra is due to the slow propagation in the central-eastern Pacific in both GFS and CFS. Errors in model climatology may have some effect upon the simulated MJO and two possible influences are: (i CFS fails to simulate the westerlies over maritime continents and western Pacific areas, resulting in an unrealistic representation of surface latent heat flux associated with the MJO; and (ii vertical easterly wind shear from the Indian Ocean to the western Pacific in CFS is much weaker than that in the observation and in GFS, which may adversely affect the eastward propagation of the simulated MJO.

  6. Global precipitation measurements for validating climate models

    Science.gov (United States)

    Tapiador, F. J.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G. J.; Kidd, C.; Kucera, P. A.; Kummerow, C. D.; Masunaga, H.; Petersen, W. A.; Roca, R.; Sánchez, J.-L.; Tao, W.-K.; Turk, F. J.

    2017-11-01

    The advent of global precipitation data sets with increasing temporal span has made it possible to use them for validating climate models. In order to fulfill the requirement of global coverage, existing products integrate satellite-derived retrievals from many sensors with direct ground observations (gauges, disdrometers, radars), which are used as reference for the satellites. While the resulting product can be deemed as the best-available source of quality validation data, awareness of the limitations of such data sets is important to avoid extracting wrong or unsubstantiated conclusions when assessing climate model abilities. This paper provides guidance on the use of precipitation data sets for climate research, including model validation and verification for improving physical parameterizations. The strengths and limitations of the data sets for climate modeling applications are presented, and a protocol for quality assurance of both observational databases and models is discussed. The paper helps elaborating the recent IPCC AR5 acknowledgment of large observational uncertainties in precipitation observations for climate model validation.

  7. Modelling climate change and malaria transmission.

    Science.gov (United States)

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here

  8. Exploitation of parallelism in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Baer, F.; Tribbia, J.J.; Williamson, D.L.

    1992-01-01

    The US Department of Energy (DOE) through its CHAMMP initiative, hopes to develop the capability to make meaningful regional climate forecasts on time scales exceeding a decade, such capability to be based on numerical prediction type models. We propose research to contribute to each of the specific items enumerated in the CHAMMP announcement (Notice 9103); i.e., to consider theoretical limits to prediction of climate and climate change on appropriate time scales, to develop new mathematical techniques to utilize massively parallel processors (MPP), to actually utilize MPP's as a research tool, and to develop improved representations of some processes essential to climate prediction. To explore these initiatives, we will exploit all available computing technology, and in particular MPP machines. We anticipate that significant improvements in modeling of climate on the decadal and longer time scales for regional space scales will result from our efforts. This report summarizes the activities of our group during a part of the first year's effort to meet the objectives stated in our proposal. We will comment on three research foci, time compression studies, subgrid scale model studies, and distributed climate ensemble studies and additional significant technical matters.

  9. Normal Forms for Reduced Stochastic Climate Models

    Science.gov (United States)

    Franzke, C.; Majda, A.; Crommelin, D.

    2009-04-01

    The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high-dimensional climate models is an important topic for low-frequency variability, climate sensitivity, and improved extended range forecasting. Here techniques from applied mathematics are utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. The use of a few Empirical Orthogonal Functions (EOF) depending on observational data to span the low-frequency subspace requires the assessment of dyad interactions besides the more familiar triads in the interaction between the low- and high-frequency subspaces of the dynamics. It will be shown that the dyad and multiplicative triad interactions combine with the climatological linear operator interactions to simultaneously produce both strong nonlinear dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. For a single low-frequency variable the dyad interactions and climatological linear operator alone produce a normal form with CAM noise from advection of the large-scales by the small scales and simultaneously strong cubic damping. This normal form should prove useful for developing systematic regression fitting strategies for stochastic models of climate data. The validity of the one and two dimensional normal forms will be presented. Also the analytical PDF form for one-dimensional reduced models will be derived. This PDF can exhibit power-law decay only over a limited range and its ultimate decay is determined by the cubic damping. This cubic damping produces a Gaussian tail.

  10. Climate models produce skillful predictions of Indian summer monsoon rainfall

    Science.gov (United States)

    DelSole, Timothy; Shukla, Jagadish

    2012-05-01

    After more than one hundred years of statistical forecasting and fifty years of climate model development, this paper shows that the skill of predicting Indian monsoon rainfall with coupled atmosphere-ocean models initialized in May is statistically significant, and much higher than can be predicted empirically from May sea surface temperatures (SSTs). The superior skill of dynamical models is attributed to the fact that slowly evolving sea surface temperatures are the primary source of predictability, and to the fact that climate models produce more skillful predictions of June-September sea surface temperatures. The recent apparent breakdown in SST-monsoon relation can be simulated in coupled models, even though the relation is significant and relatively constant on an ensemble mean basis, suggesting that the observed breakdown could be due, in large part, to sampling variability. Despite the observed breakdown, skillful predictions of monsoon rainfall can be constructed using sea surface temperatures predicted by dynamical models. This fact opens the possibility of using readily available seasonal predictions of sea surface temperatures to make real-time skillful predictions of Indian summer monsoon rainfall. In addition, predictors based on tendency of SST during spring information show skill during both the recent and historical periods and hence may provide more skillful predictions of monsoon rainfall than predictors based on a single month.

  11. Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*

    KAUST Repository

    Castruccio, Stefano

    2014-03-01

    The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as pattern scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. It may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.

  12. Climate model parameter sensitivity and selection for incorporating uncertainty in regional climate modeling

    Science.gov (United States)

    Li, S.; Mote, P.; Rupp, D. E.; McNeall, D. J.; Sarah, S.; Hawkins, L.

    2016-12-01

    Many processes - especially those involving clouds - that control climate responses to external forcings are still poorly understood, poorly modeled, and/or difficult to observe in nature. As such, model parameterizations representing these processes have large uncertainties. Therefore, even a Global Climate Model (GCM)'s `standard' configuration, which has been tuned to reproduce observed climate well, is subject to large uncertainty. To explore the influence of different parameter selections on regional climate, a large global/regional atmospheric perturbed physics ensemble was run using the volunteer computing network weather@home with the goal of finding model variants that have small top-of-atmosphere flux imbalance. This configuration reasonably reproduces the observed climates across the western US, while retaining the possibility of a range regional climate sensitivities. After this screening step, a subset of these parameter perturbations are used when downscaling the global model simulations with an embedded regional climate model. This work aims to identify model parameters that influence the quality of regional simulations, improve global and regional model performance through improved model parameterizations, and quantify uncertainty in downscaled simulations stemming from error in model parameterizations.

  13. Coupled wake boundary layer model of wind-farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2015-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. This model couples the traditional, industry-standard wake model approach with a “top-down” model for the overall wind-farm boundary layer structure. The wake model

  14. A Data Driven Framework for Integrating Regional Climate Models

    Science.gov (United States)

    Lansing, C.; Kleese van Dam, K.; Liu, Y.; Elsethagen, T.; Guillen, Z.; Stephan, E.; Critchlow, T.; Gorton, I.

    2012-12-01

    There are increasing needs for research addressing complex climate sensitive issues of concern to decision-makers and policy planners at a regional level. Decisions about allocating scarce water across competing municipal, agricultural, and ecosystem demands is just one of the challenges ahead, along with decisions regarding competing land use priorities such as biofuels, food, and species habitat. Being able to predict the extent of future climate change in the context of introducing alternative energy production strategies requires a new generation of modeling capabilities. We will also need more complete representations of human systems at regional scales, incorporating the influences of population centers, land use, agriculture and existing and planned electrical demand and generation infrastructure. At PNNL we are working towards creating a first-of-a-kind capability known as the Integrated Regional Earth System Model (iRESM). The fundamental goal of the iRESM initiative is the critical analyses of the tradeoffs and consequences of decision and policy making for integrated human and environmental systems. This necessarily combines different scientific processes, bridging different temporal and geographic scales and resolving the semantic differences between them. To achieve this goal, iRESM is developing a modeling framework and supporting infrastructure that enable the scientific team to evaluate different scenarios in light of specific stakeholder questions such as "How do regional changes in mean climate states and climate extremes affect water storage and energy consumption and how do such decisions influence possible mitigation and carbon management schemes?" The resulting capability will give analysts a toolset to gain insights into how regional economies can respond to climate change mitigation policies and accelerated deployment of alternative energy technologies. The iRESM framework consists of a collection of coupled models working with high

  15. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    Science.gov (United States)

    Romanach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  16. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States). Dept. of Oceanography; Cassano, John J. [Univ. of Colorado, Boulder, CO (United States); Gutowski, Jr., William J. [Iowa State Univ., Ames, IA (United States); Lipscomb, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nijssen, Bart [Univ. of Washington, Seattle, WA (United States); Roberts, Andrew [Naval Postgraduate School, Monterey, CA (United States). Dept. of Oceanography; Robertson, William [Univ. of Texas, El Paso, TX (United States); Tulaczyk, Slawek [Univ. of California, Santa Cruz, CA (United States); Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States)

    2011-05-15

    The primary outcome of the project was the development of the Regional Arctic System Model (RASM) and evaluation of its individual model components, coupling among them and fully coupled model results. Overall, we have demonstrated that RASM produces realistic mean and seasonal surface climate as well as its interannual and decadal variability and trends.

  17. Modelling climate impacts on the aviation sector

    Science.gov (United States)

    Williams, Paul

    2017-04-01

    The climate is changing, not just where we live at ground level, but also where we fly at 35,000 feet. We have long known that air travel contributes to climate change through its emissions. However, we have only recently become aware that climate change could have significant consequences for air travel. This presentation will give an overview of the possible impacts of climate change on the aviation sector. The presentation will describe how the impacts are modelled and how their social and economic costs are estimated. The impacts are discussed in the International Civil Aviation Organization's (ICAO's) latest Environmental Report (Puempel and Williams 2016). Some of the possible impacts are as follows. Rising sea levels and storm surges threaten coastal airports, such as La Guardia in New York, which was flooded by the remnants of Hurricane Sandy in 2012. Warmer air at ground level reduces the lift force and makes it more difficult for planes to take-off (Coffel and Horton 2015). More extreme weather may cause flight disruptions and delays. Clear-air turbulence is expected to become up to 40% stronger and twice as common (Williams and Joshi 2013). Transatlantic flights may collectively be airborne for an extra 2,000 hours each year because of changes to the jet stream, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide (Williams 2016). These modelled impacts provide further evidence of the two-way interaction between aviation and climate change. References Coffel E and Horton R (2015) Climate change and the impact of extreme temperatures on aviation. Weather, Climate, and Society, 7, 94-102. http://dx.doi.org/10.1175/WCAS-D-14-00026.1 Puempel H and Williams PD (2016) The impacts of climate change on aviation: Scientific challenges and adaptation pathways. ICAO Environmental Report 2016: On Board A Sustainable Future, pp 205-207. http

  18. Global climate model performance over Alaska and Greenland

    DEFF Research Database (Denmark)

    Walsh, John E.; Chapman, William L.; Romanovsky, Vladimir

    2008-01-01

    The performance of a set of 15 global climate models used in the Coupled Model Intercomparison Project is evaluated for Alaska and Greenland, and compared with the performance over broader pan-Arctic and Northern Hemisphere extratropical domains. Root-mean-square errors relative to the 1958......-2000 climatology of the 40-yr ECMWF Re-Analysis (ERA-40) are summed over the seasonal cycles of three variables: surface air temperature, precipitation, and sea level pressure. The specific models that perform best over the larger domains tend to be the ones that perform best over Alaska and Greenland...... precipitation and decreases of Arctic sea level pressure, when greenhouse gas concentrations are increased. Because several models have substantially smaller systematic errors than the other models, the differences in greenhouse projections imply that the choice of a subset of models may offer a viable approach...

  19. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  20. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  1. Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics

    Directory of Open Access Journals (Sweden)

    S. Sippel

    2017-05-01

    Full Text Available The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T and evapotranspiration (ET benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5 archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand

  2. Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics

    Science.gov (United States)

    Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.

    2017-05-01

    The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected

  3. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; Di Vittorio, Alan V.; Bond-Lamberty, Ben; Chini, Louise; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, Jae; Thomson, Allison; Truesdale, John; Craig, Anthony; Branstetter, Marcia L.; Hurtt, George

    2017-06-12

    Fossil fuel combustion and land-use change are the first and second largest contributors to industrial-era increases in atmospheric carbon dioxide concentration, which is itself the largest driver of present-day climate change1. Projections of fossil fuel consumption and land-use change are thus fundamental inputs for coupled Earth system models (ESM) used to estimate the physical and biological consequences of future climate system forcing2,3. While empirical datasets are available to inform historical analyses4,5, assessments of future climate change have relied on projections of energy and land use based on energy economic models, constrained using historical and present-day data and forced with assumptions about future policy, land-use patterns, and socio-economic development trajectories6. Here we show that the influence of biospheric change – the integrated effect of climatic, ecological, and geochemical processes – on land ecosystems has a significant impact on energy, agriculture, and land-use projections for the 21st century. Such feedbacks have been ignored in previous ESM studies of future climate. We find that synchronous exposure of land ecosystem productivity in the economic system to biospheric change as it develops in an ESM results in a 10% reduction of land area used for crop cultivation; increased managed forest area and land carbon; a 15-20% decrease in global crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing scenario7. These simulation results demonstrate that biospheric change can significantly alter primary human system forcings to the climate system. This synchronous two-way coupling approach removes inconsistencies in description of climate change between human and biosphere components of the coupled model, mitigating a major source of uncertainty identified in assessments of future climate projections8-10.

  4. Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model.

    Science.gov (United States)

    Ammann, Caspar M; Joos, Fortunat; Schimel, David S; Otto-Bliesner, Bette L; Tomas, Robert A

    2007-03-06

    The potential role of solar variations in modulating recent climate has been debated for many decades and recent papers suggest that solar forcing may be less than previously believed. Because solar variability before the satellite period must be scaled from proxy data, large uncertainty exists about phase and magnitude of the forcing. We used a coupled climate system model to determine whether proxy-based irradiance series are capable of inducing climatic variations that resemble variations found in climate reconstructions, and if part of the previously estimated large range of past solar irradiance changes could be excluded. Transient simulations, covering the published range of solar irradiance estimates, were integrated from 850 AD to the present. Solar forcing as well as volcanic and anthropogenic forcing are detectable in the model results despite internal variability. The resulting climates are generally consistent with temperature reconstructions. Smaller, rather than larger, long-term trends in solar irradiance appear more plausible and produced modeled climates in better agreement with the range of Northern Hemisphere temperature proxy records both with respect to phase and magnitude. Despite the direct response of the model to solar forcing, even large solar irradiance change combined with realistic volcanic forcing over past centuries could not explain the late 20th century warming without inclusion of greenhouse gas forcing. Although solar and volcanic effects appear to dominate most of the slow climate variations within the past thousand years, the impacts of greenhouse gases have dominated since the second half of the last century.

  5. Cpl6: The New Extensible, High-Performance Parallel Coupler forthe Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anthony P.; Jacob, Robert L.; Kauffman, Brain; Bettge,Tom; Larson, Jay; Ong, Everest; Ding, Chris; He, Yun

    2005-03-24

    Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-art climate model that has released several versions to the climate community over the past ten years. Like many climate models, CCSM employs a coupler, a functional unit that coordinates the exchange of data between parts of climate system such as the atmosphere and ocean. This paper describes the new coupler, cpl6, contained in the latest version of CCSM,CCSM3. Cpl6 introduces distributed-memory parallelism to the coupler, a class library for important coupler functions, and a standardized interface for component models. Cpl6 is implemented entirely in Fortran90 and uses Model Coupling Toolkit as the base for most of its classes. Cpl6 gives improved performance over previous versions and scales well on multiple platforms.

  6. Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model

    NARCIS (Netherlands)

    van Pelt, W.J.J.|info:eu-repo/dai/nl/326056645; Oerlemans, J.|info:eu-repo/dai/nl/06833656X; Reijmer, C.H.|info:eu-repo/dai/nl/229345956; Pohjola, V.A.; Pettersson, R.; van Angelen, J.H.

    2012-01-01

    A distributed energy balance model is coupled to a multi-layer snow model in order to study the mass balance evolution and the impact of refreezing on the mass budget of Nordenski¨oldbreen, Svalbard. The model is forced with output from the regional climate model RACMO and meteorological data from

  7. Improving Climate Projections Through the Assessment of Model Uncertainty and Bias in the Global Water Cycle

    Science.gov (United States)

    Baker, Noel C.

    The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an alternative approach for constructing climate projections that incorporates knowledge of model bias. This approach is demonstrated to be a viable alternative which can be easily implemented by water resource managers for potentially more accurate projections. Tests of the new approach are provided on a global scale with an emphasis on semiarid regional studies for their particular vulnerability to water resource changes, using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model archives. This investigation is accompanied by a detailed analysis of the dynamical processes and water budget to understand the behaviors and sources of model biases. Sensitivity studies of selected CMIP5 models are also performed with an atmospheric component model by testing the relationship between climate change forcings and model simulated response. The information derived from each study is used to determine the progressive quality of coupled climate models in simulating the global water cycle by rigorously investigating sources of model bias related to the moisture budget. As such, the conclusions of this project are highly relevant to model development and potentially may be used to further improve climate projections.

  8. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    Science.gov (United States)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; di Vittorio, Alan V.; Bond-Lamberty, Ben; Chini, Louise; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, Jae; Thomson, Allison; Truesdale, John; Craig, Anthony; Branstetter, Marcia L.; Hurtt, George

    2017-07-01

    Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical data sets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy-economic models, constrained by assumptions about future policy, land-use patterns and socio-economic development trajectories. Here we show that the climatic impacts on land ecosystems drive significant feedbacks in energy, agriculture, land use and carbon cycle projections for the twenty-first century. We find that exposure of human-appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid-range forcing scenario. The feedbacks between climate-induced biospheric change and human system forcings to the climate system--demonstrated here--are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy-economic models to ESMs used to date.

  9. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Deal, Clara [Univ. of Alaska, Fairbanks, AL (United States); Jin, Meibing [Univ. of Alaska, Fairbanks, AL (United States)

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  10. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  11. Climate impact of transportation A model comparison

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Grahn, M.; Kitous, A.; Kim, S.H.; Kyle, P.

    2013-01-01

    Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global

  12. Global comparison of three greenhouse climate models

    NARCIS (Netherlands)

    Bavel, van C.H.M.; Takakura, T.; Bot, G.P.A.

    1985-01-01

    Three dynamic simulation models for calculating the greenhouse climate and its energy requirements for both heating and cooling were compared by making detailed computations for each of seven sets of data. The data sets ranged from a cold winter day, requiring heating, to a hot summer day, requiring

  13. Modelling the wind climate of Ireland

    DEFF Research Database (Denmark)

    Frank, H.P.; Landberg, L.

    1997-01-01

    The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM. The climatology is represented by 65 frequency classes of geostrophic wind that were selected as equiangular direction sectors and speed intervals with equal frequency in a sector. The results...

  14. Agents, Bayes, and Climatic Risks - a modular modelling approach

    Directory of Open Access Journals (Sweden)

    A. Haas

    2005-01-01

    Full Text Available When insurance firms, energy companies, governments, NGOs, and other agents strive to manage climatic risks, it is by no way clear what the aggregate outcome should and will be. As a framework for investigating this subject, we present the LAGOM model family. It is based on modules depicting learning social agents. For managing climate risks, our agents use second order probabilities and update them by means of a Bayesian mechanism while differing in priors and risk aversion. The interactions between these modules and the aggregate outcomes of their actions are implemented using further modules. The software system is implemented as a series of parallel processes using the CIAMn approach. It is possible to couple modules irrespective of the language they are written in, the operating system under which they are run, and the physical location of the machine.

  15. Agents, Bayes, and Climatic Risks - a modular modelling approach

    Science.gov (United States)

    Haas, A.; Jaeger, C.

    2005-08-01

    When insurance firms, energy companies, governments, NGOs, and other agents strive to manage climatic risks, it is by no way clear what the aggregate outcome should and will be. As a framework for investigating this subject, we present the LAGOM model family. It is based on modules depicting learning social agents. For managing climate risks, our agents use second order probabilities and update them by means of a Bayesian mechanism while differing in priors and risk aversion. The interactions between these modules and the aggregate outcomes of their actions are implemented using further modules. The software system is implemented as a series of parallel processes using the CIAMn approach. It is possible to couple modules irrespective of the language they are written in, the operating system under which they are run, and the physical location of the machine.

  16. Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment

    Science.gov (United States)

    Diallo, Ismaïla; Giorgi, Filippo; Stordal, Frode

    2017-07-01

    We evaluate the performance of the regional climate model (RCM) RegCM4 coupled to a one dimensional lake model for Lake Malawi (also known as Lake Nyasa in Tanzania and Lago Niassa in Mozambique) in simulating the main characteristics of rainfall and near surface air temperature patterns over the region. We further investigate the impact of the lake on the simulated regional climate. Two RCM simulations, one with and one without Lake Malawi, are performed for the period 1992-2008 at a grid spacing of 10 km by nesting the model within a corresponding 25 km resolution run ("mother domain") encompassing all Southern Africa. The performance of the model in simulating the mean seasonal patterns of near surface air temperature and precipitation is good compared with previous applications of this model. The temperature biases are generally less than 2.5 °C, while the seasonal cycle of precipitation over the region matches observations well. Moreover, the one-dimensional lake model reproduces fairly well the geographical pattern of observed (from satellite measurements) lake surface temperature as well as its mean month-to-month evolution. The Malawi Lake-effects on the moisture and atmospheric circulation of the surrounding region result in an increase of water vapor mixing ratio due to increased evaporation in the presence of the lake, which combines with enhanced rising motions and low-level moisture convergence to yield a significant precipitation increase over the lake and neighboring areas during the whole austral summer rainy season.

  17. Modeling the Martian Atmosphere with the LMD Global Climate Model

    Science.gov (United States)

    Forget, F.; Millour, E.; Gonzalez-Galindo, F.; Lebonnois, S.; Madeleine, J.-B.; Meslin, P.-Y.; Montabone, L.; Spiga, A.; Hourdin, F.; Lefevre, F.; Montmessin, F.; Lewis, S. R.; Read, P.; Lopez-Valverde, M. A.; Gilli, G.

    2008-11-01

    The Global Climate Model developed at LMD (Paris) in collaboration with IAA (Spain), AOPP and the OU (UK) has been improved. It is used for many applications (water, dust, CO2, radon cycles, photochemistry, thermosphere, ionosphere, etc.).

  18. Snow cover response to temperature in observational and climate model ensembles

    Science.gov (United States)

    Mudryk, L. R.; Kushner, P. J.; Derksen, C.; Thackeray, C.

    2017-01-01

    The relationship between land surface temperature and snow cover extent trends is examined in three distinct types of ensembles over the 1981-2010 period: an observation-based ensemble, a representative selection of CMIP5 coupled climate model output, and two large initial condition coupled climate model ensembles. Observation-based estimates of snow cover sensitivity are stronger than simulated over midlatitude and alpine regions. Observed sensitivity estimates over Arctic regions are consistent with simulated values. Anomalous snow cover extend trends present in one data set, the NOAA climate record, obscure the relationship to surface temperature seen in the rest of the analyzed data. The spread in modeled snow cover trends reflects roughly equal contributions from intermodel variability and from natural variability. Together, the anomalous relationship between surface temperature and snow cover expressed in the NOAA climate record and the large influence of natural variability present in the simulations highlight the importance of ensemble-based approaches.

  19. Coupling integrated assessment and earth system models: concepts and an application to land use change

    Science.gov (United States)

    O'Neill, B. C.; Lawrence, P.; Ren, X.

    2016-12-01

    Collaboration between the integrated assessment modeling (IAM) and earth system modeling (ESM) communities is increasing, driven by a growing interest in research questions that require analysis integrating both social and natural science components. This collaboration often takes the form of integrating their respective models. There are a number of approaches available to implement this integration, ranging from one-way linkages to full two-way coupling, as well as approaches that retain a single modeling framework but improve the representation of processes from the other framework. We discuss the pros and cons of these different approaches and the conditions under which a two-way coupling of IAMs and ESMs would be favored over a one-way linkage. We propose a criterion that is necessary and sufficient to motivate two-way coupling: A human process must have an effect on an earth system process that is large enough to cause a change in the original human process that is substantial compared to other uncertainties in the problem being investigated. We then illustrate a test of this criterion for land use-climate interactions based on work using the Community Earth System Model (CESM) and land use scenarios from the Representative Concentration Pathways (RCPs), in which we find that the land use effect on regional climate is unlikely to meet the criterion. We then show an example of implementing a one-way linkage of land use and agriculture between an IAM, the integrated Population-Economy-Technology-Science (iPETS) model, and CESM that produces fully consistent outcomes between iPETS and the CESM land surface model. We use the linked system to model the influence of climate change on crop yields, agricultural land use, crop prices and food consumption under two alternative future climate scenarios. This application demonstrates the ability to link an IAM to a global land surface and climate model in a computationally efficient manner.

  20. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  1. Climate Model Ensemble Methodology: Rationale and Challenges

    Science.gov (United States)

    Vezer, M. A.; Myrvold, W.

    2012-12-01

    A tractable model of the Earth's atmosphere, or, indeed, any large, complex system, is inevitably unrealistic in a variety of ways. This will have an effect on the model's output. Nonetheless, we want to be able to rely on certain features of the model's output in studies aiming to detect, attribute, and project climate change. For this, we need assurance that these features reflect the target system, and are not artifacts of the unrealistic assumptions that go into the model. One technique for overcoming these limitations is to study ensembles of models which employ different simplifying assumptions and different methods of modelling. One then either takes as reliable certain outputs on which models in the ensemble agree, or takes the average of these outputs as the best estimate. Since the Intergovernmental Panel on Climate Change's Fourth Assessment Report (IPCC AR4) modellers have aimed to improve ensemble analysis by developing techniques to account for dependencies among models, and to ascribe unequal weights to models according to their performance. The goal of this paper is to present as clearly and cogently as possible the rationale for climate model ensemble methodology, the motivation of modellers to account for model dependencies, and their efforts to ascribe unequal weights to models. The method of our analysis is as follows. We will consider a simpler, well-understood case of taking the mean of a number of measurements of some quantity. Contrary to what is sometimes said, it is not a requirement of this practice that the errors of the component measurements be independent; one must, however, compensate for any lack of independence. We will also extend the usual accounts to include cases of unknown systematic error. We draw parallels between this simpler illustration and the more complex example of climate model ensembles, detailing how ensembles can provide more useful information than any of their constituent models. This account emphasizes the

  2. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    ), none of the models leads to gauge coupling unification. Regarding the scale of unification, we find values between 1014 GeV and 1016 GeV for models belonging to class (I) without dark matter, whereas models in class (I) with dark matter as well as models of class (II) prefer values in the range 5......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively...... masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III...

  3. Uncertainties in modelling the climate impact of irrigation

    Science.gov (United States)

    de Vrese, Philipp; Hagemann, Stefan

    2017-11-01

    Irrigation-based agriculture constitutes an essential factor for food security as well as fresh water resources and has a distinct impact on regional and global climate. Many issues related to irrigation's climate impact are addressed in studies that apply a wide range of models. These involve substantial uncertainties related to differences in the model's structure and its parametrizations on the one hand and the need for simplifying assumptions for the representation of irrigation on the other hand. To address these uncertainties, we used the Max Planck Institute for Meteorology's Earth System model into which a simple irrigation scheme was implemented. In order to estimate possible uncertainties with regard to the model's more general structure, we compared the climate impact of irrigation between three simulations that use different schemes for the land-surface-atmosphere coupling. Here, it can be shown that the choice of coupling scheme does not only affect the magnitude of possible impacts but even their direction. For example, when using a scheme that does not explicitly resolve spatial subgrid scale heterogeneity at the surface, irrigation reduces the atmospheric water content, even in heavily irrigated regions. Contrarily, in simulations that use a coupling scheme that resolves heterogeneity at the surface or even within the lowest layers of the atmosphere, irrigation increases the average atmospheric specific humidity. A second experiment targeted possible uncertainties related to the representation of irrigation characteristics. Here, in four simulations the irrigation effectiveness (controlled by the target soil moisture and the non-vegetated fraction of the grid box that receives irrigation) and the timing of delivery were varied. The second experiment shows that uncertainties related to the modelled irrigation characteristics, especially the irrigation effectiveness, are also substantial. In general the impact of irrigation on the state of the land

  4. Description and evaluation of the Earth System Regional Climate Model (RegCM-ES)

    Science.gov (United States)

    Farneti, Riccardo; Sitz, Lina; Di Sante, Fabio; Fuentes-Franco, Ramon; Coppola, Erika; Mariotti, Laura; Reale, Marco; Sannino, Gianmaria; Barreiro, Marcelo; Nogherotto, Rita; Giuliani, Graziano; Graffino, Giorgio; Solidoro, Cosimo; Giorgi, Filippo

    2017-04-01

    The increasing availability of satellite remote sensing data, of high temporal frequency and spatial resolution, has provided a new and enhanced view of the global ocean and atmosphere, revealing strong air-sea coupling processes throughout the ocean basins. In order to obtain an accurate representation and better understanding of the climate system, its variability and change, the inclusion of all mechanisms of interaction among the different sub-components, at high temporal and spatial resolution, becomes ever more desirable. Recently, global coupled models have been able to progressively refine their horizontal resolution to attempt to resolve smaller-scale processes. However, regional coupled ocean-atmosphere models can achieve even finer resolutions and provide additional information on the mechanisms of air-sea interactions and feedbacks. Here we describe a new, state-of-the-art, Earth System Regional Climate Model (RegCM-ES). RegCM-ES presently includes the coupling between atmosphere, ocean, land surface and sea-ice components, as well as an hydrological and ocean biogeochemistry model. The regional coupled model has been implemented and tested over some of the COordinated Regional climate Downscaling Experiment (CORDEX) domains. RegCM-ES has shown improvements in the representation of precipitation and SST fields over the tested domains, as well as realistic representations of coupled air-sea processes and interactions. The RegCM-ES model, which can be easily implemented over any regional domain of interest, is open source making it suitable for usage by the large scientific community.

  5. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, John [Principal Investigator

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  6. An end-to-end coupled model ROMS-N 2 P 2 Z 2 D 2 -OSMOSE of ...

    African Journals Online (AJOL)

    In order to better understand ecosystem functioning under simultaneous pressures (e.g. both climate change and fishing pressures), integrated modelling approaches are advocated. We developed an end-to-end model of the southern Benguela ecosystem by coupling the high trophic level model OSMOSE with a ...

  7. Recovering lateral variationin lithospheric strength from bedrock motion data using a coupled ice sheet-lithosphere model

    NARCIS (Netherlands)

    van de Berg, W.J.|info:eu-repo/dai/nl/304831611; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Oerlemans, J.|info:eu-repo/dai/nl/06833656X

    2006-01-01

    A vertically integrated two-dimensional ice flow model was coupled to an elastic lithosphere-Earth model to study the effects of lateral variations in lithospheric strength on local bedrock adjustment. We used a synthetic bedrock profile and a synthetic climate to model a characteristic ice sheet

  8. Recovering lateral variations in lithospheric strength from bedrock motion data using a coupled ice sheet-lithosphere model

    NARCIS (Netherlands)

    Berg, J. van den; Wal, R.S.W. van de; Oerlemans, J.

    2006-01-01

    A vertically integrated two-dimensional ice flow model was coupled to an elastic lithosphere-Earth model to study the effects of lateral variations in lithospheric strength on local bedrock adjustment. We used a synthetic bedrock profile and a synthetic climate to model a characteristic ice sheet

  9. Climate models with delay differential equations

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M.

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  10. Climate models with delay differential equations.

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  11. Spatial-Temporal Assessment of Climate Model Drifts

    Science.gov (United States)

    Zanchettin, D.; Arisido, M.; Gaetan, C.; Rubino, A.

    2016-12-01

    Decadal climate forecasts with full-field initialized coupled climate models are affected by a growing error signal that develops due to the adjustment of the simulations from the assimilated state consistent with observations to the state consistent with the biased model's climatology. Sea-surface temperature (SST) drifts and biases are a major concern due to the central role of SST properties for the dynamical coupling between the atmosphere and the ocean, and for the associated variability. We propose a dynamic linear model based on a state-space approach and developed within a Bayesian hierarchical framework for probabilistic assessment of spatial and temporal characteristics of SST drifts in ensemble climate simulations. The state-space approach uses unobservable state variables to directly model the processes generating the observed variability. The statistical model is based on a sequential definition of the process having a conditional dependency only on the previous time step, which therefore corresponds to the Kalman filter formulas. In our formulation, the statistical model distinguishes between seasonal and longer-term drift components, and between large-scale and local drifts. We apply the Bayesian method to make inferences on the variance components of the Gaussian errors in both the observation and system equations of the state-space model. To this purpose, we draw samples from their posterior distributions using a Monte Carlo Markov Chain simulation technique with a slice sampler. In this contribution we will present results from an application of the statistical model on an ensemble of hindcasts with the MiKlip prototype system for decadal climate predictions, focused on the tropical Atlantic Ocean. We will demonstrate how our approach allows for a more reliable identification of sources of heterogeneity, non-stationarities and propagation pathways of SST errors. In particular, we will highlight the highly dynamical character of local seasonal

  12. Development and evaluation of a new regional coupled atmosphere–ocean model in the North Sea and Baltic Sea

    Directory of Open Access Journals (Sweden)

    Shiyu Wang

    2015-03-01

    Full Text Available A new regional coupled model system for the North Sea and the Baltic Sea is developed, which is composed of the regional setup of ocean model NEMO, the Rossby Centre regional climate model RCA4, the sea ice model LIM3 and the river routing model CaMa-Flood. The performance of this coupled model system is assessed using a simulation forced with ERA-Interim reanalysis data at the lateral boundaries during the period 1979–2010. Compared to observations, this coupled model system can realistically simulate the present climate. Since the active coupling area covers the North Sea and Baltic Sea only, the impact of the ocean on the atmosphere over Europe is small. However, we found some local, statistically significant impacts on surface parameters like 2 m air temperature and sea surface temperature (SST. A precipitation-SST correlation analysis indicates that both coupled and uncoupled models can reproduce the air–sea relationship reasonably well. However, the coupled simulation gives slightly better correlations even when all seasons are taken into account. The seasonal correlation analysis shows that the air–sea interaction has a strong seasonal dependence. Strongest discrepancies between the coupled and the uncoupled simulations occur during summer. Due to lack of air–sea interaction, in the Baltic Sea in the uncoupled atmosphere-standalone run the correlation between precipitation and SST is too small compared to observations, whereas the coupled run is more realistic. Further, the correlation analysis between heat flux components and SST tendency suggests that the coupled model has a stronger correlation. Our analyses show that this coupled model system is stable and suitable for different climate change studies.

  13. Natural climate variability as indicated by glaciers and implications for climate change: a modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, B.K. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Earth Observatory; Bengtsson, L. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Oerlemans, J. [Rijksuniversiteit Utrecht (Netherlands). Inst. for Marine and Atmospheric Research

    2001-08-01

    Glacier fluctuations exclusively due to internal variations in the climate system are simulated using downscaled integrations of the ECHAM4/OPYC coupled general circulation model (GCM). A process-based modeling approach using a mass balance model of intermediate complexity and a dynamic ice flow model considering simple shearing flow and sliding are applied. Multi-millennia records of glacier length fluctuations for Nigardsbreen (Norway) and Rhonegletscher (Switzerland) are simulated using auto-regressive processes determined by statistically downscaled GCM experiments. Return periods and probabilities of specific glacier length changes using GCM integrations excluding external forcings such as solar irradiation changes, volcanic or anthropogenic effects are analyzed and compared to historical glacier length records. Preindustrial fluctuations of the glaciers as far as observed or reconstructed, including their advance during the ''Little Ice Age'', can be explained by internal variability in the climate system as represented by a GCM. However, fluctuations comparable to the present-day glacier retreat do not occur in the GCM control experiments and must be caused by external forcing, with anthropogenic forcing being a likely candidate. (orig.)

  14. Supercomputing for weather and climate modelling: convenience or necessity

    CSIR Research Space (South Africa)

    Landman, WA

    2009-12-01

    Full Text Available Weather and climate modelling require dedicated computer infrastructure in order to generate high-resolution, large ensemble, various models with different configurations, etc. in order to optimise operational forecasts and climate projections. High...

  15. Climate Interactive: The C-Roads Climate Policy Model

    OpenAIRE

    Sterman, John; Fiddaman, Thomas; Franck, Travis Read; Jones, Andrew; McCauley, Stephanie; Rice, Philip; Sawin, Elizabeth; Siegel, Lori

    2012-01-01

    In 1992 the nations of the world created the United Nations Framework Convention on Climate Change (UNFCCC) to negotiate binding agreements to address the risks of climate change. Nearly every nation on Earth committed to limiting global greenhouse gas (GHG) emissions to prevent “dangerous anthropogenic interference in the climate system,” [superscript 1] which is generally accepted to mean limiting the increase in mean global surface temperature to 2 degrees C above pre-indust...

  16. Daily precipitation statistics in regional climate models

    DEFF Research Database (Denmark)

    Frei, Christoph; Christensen, Jens Hesselbjerg; Déqué, Michel

    2003-01-01

    for other statistics. In summer, all models underestimate precipitation intensity (by 16-42%) and there is a too low frequency of heavy events. This bias reflects too dry summer mean conditions in three of the models, while it is partly compensated by too many low-intensity events in the other two models......An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km....... The 15-year integrations were forced from reanalyses and observed sea surface temperature and sea ice (global model from sea surface only). The observational reference is based on 6400 rain gauge records (10-50 stations per grid box). Evaluation statistics encompass mean precipitation, wet-day frequency...

  17. Precalibrating an intermediate complexity climate model

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Neil R. [The Open University, Earth and Environmental Sciences, Milton Keynes (United Kingdom); Cameron, David [Centre for Ecology and Hydrology, Edinburgh (United Kingdom); Rougier, Jonathan [University of Bristol, Department of Mathematics, Bristol (United Kingdom)

    2011-10-15

    Credible climate predictions require a rational quantification of uncertainty, but full Bayesian calibration requires detailed estimates of prior probability distributions and covariances, which are difficult to obtain in practice. We describe a simplified procedure, termed precalibration, which provides an approximate quantification of uncertainty in climate prediction, and requires only that uncontroversially implausible values of certain inputs and outputs are identified. The method is applied to intermediate-complexity model simulations of the Atlantic meridional overturning circulation (AMOC) and confirms the existence of a cliff-edge catastrophe in freshwater-forcing input space. When uncertainty in 14 further parameters is taken into account, an implausible, AMOC-off, region remains as a robust feature of the model dynamics, but its location is found to depend strongly on values of the other parameters. (orig.)

  18. Hurricane Footprints in Global Climate Models

    Directory of Open Access Journals (Sweden)

    Francisco J. Tapiador

    2008-11-01

    Full Text Available This paper addresses the identification of hurricanes in low-resolution global climate models (GCM. As hurricanes are not fully resolvable at the coarse resolution of the GCMs (typically 2.5 × 2.5 deg, indirect methods such as analyzing the environmental conditions favoring hurricane formation have to be sought. Nonetheless, the dynamical cores of the models have limitations in simulating hurricane formation, which is a far from fully understood process. Here, it is shown that variations in the specific entropy rather than in dynamical variables can be used as a proxy of the hurricane intensity as estimated by the Accumulated Cyclone Energy (ACE. The main application of this research is to ascertain the changes in the hurricane frequency and intensity in future climates.

  19. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  20. Uncertainty in runoff based on Global Climate Model precipitation and temperature data - Part 1: Assessment of Global Climate Models

    Science.gov (United States)

    McMahon, T. A.; Peel, M. C.; Karoly, D. J.

    2014-05-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between Global Climate Models (GCMs) and within a GCM. Uncertainty between GCM projections of future climate can be assessed through analysis of runs of a given scenario from a wide range of GCMs. Within GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The objective of this, the first of two complementary papers, is to reduce between-GCM uncertainty by identifying and removing poorly performing GCMs prior to the analysis presented in the second paper. Here we assess how well 46 runs from 22 Coupled Model Intercomparison Project phase 3 (CMIP3) GCMs are able to reproduce observed precipitation and temperature climatological statistics. The performance of each GCM in reproducing these statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the CRU 3.10 gridded dataset and re-sampled to the resolution of each GCM for comparison. Observed and GCM based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen climate type were compared. The main metrics for assessing GCM performance were the Nash-Sutcliffe efficiency index and RMSE between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following five models as the better performing models for the next phase of our analysis in assessing the uncertainty in runoff estimated from GCM projections of precipitation and temperature: HadCM3 (Hadley Centre for Climate Prediction and Research), MIROCM (Center for Climate System Research (The University of Tokyo), National Institute for

  1. Image-model coupling: a simple information theoretic perspective for image sequences

    Directory of Open Access Journals (Sweden)

    N. D. Smith

    2009-03-01

    Full Text Available Images are widely used to visualise physical processes. Models may be developed which attempt to replicate those processes and their effects. The technique of coupling model output to images, which is here called "image-model coupling", may be used to help understand the underlying physical processes, and better understand the limitations of the models. An information theoretic framework is presented for image-model coupling in the context of communication along a discrete channel. The physical process may be regarded as a transmitter of images and the model as part of a receiver which decodes or recognises those images. Image-model coupling may therefore be interpreted as image recognition. Of interest are physical processes which exhibit "memory". The response of such a system is not only dependent on the current values of driver variables, but also on the recent history of drivers and/or system description. Examples of such systems in geophysics include the ionosphere and Earth's climate. The discrete channel model is used to help derive expressions for matching images and model output, and help analyse the coupling.

  2. Image-model coupling: a simple information theoretic perspective for image sequences

    Science.gov (United States)

    Smith, N. D.; Mitchell, C. N.; Budd, C. J.

    2009-03-01

    Images are widely used to visualise physical processes. Models may be developed which attempt to replicate those processes and their effects. The technique of coupling model output to images, which is here called "image-model coupling", may be used to help understand the underlying physical processes, and better understand the limitations of the models. An information theoretic framework is presented for image-model coupling in the context of communication along a discrete channel. The physical process may be regarded as a transmitter of images and the model as part of a receiver which decodes or recognises those images. Image-model coupling may therefore be interpreted as image recognition. Of interest are physical processes which exhibit "memory". The response of such a system is not only dependent on the current values of driver variables, but also on the recent history of drivers and/or system description. Examples of such systems in geophysics include the ionosphere and Earth's climate. The discrete channel model is used to help derive expressions for matching images and model output, and help analyse the coupling.

  3. Regional climate model performance and prediction of seasonal ...

    African Journals Online (AJOL)

    Knowledge about future climate provides valuable insights into how the challenges posed by climate change and variability can be addressed. This study assessed the skill of the United Kingdom (UK) Regional Climate Model (RCM) PRECIS (Providing REgional Climates for Impacts Studies) in simulating rainfall and ...

  4. Sustainable Management of Coastal Environments Through Coupled Terrestrial-Coastal Ocean Models

    Science.gov (United States)

    Lohrenz, S. E.; Cai, W.; Tian, H.; He, R.; Xue, Z.; Fennel, K.; Hopkinson, C.; Howden, S. D.

    2012-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. The large spatial extent of such systems necessitates a combination of satellite observations and model-based approaches coupled with targeted ground-based site studies to adequately characterize relationships among climate forcing (e.g., wind, precipitation, temperature, solar radiation, humidity, extreme weather), land use practice/land cover change, and transport of materials through watersheds and, ultimately, to coastal regions. Here, we describe a NASA Interdisciplinary Science project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The objectives of this effort are to 1) assemble and evaluate long term datasets for the assessment of impacts of climate variability, extreme weather events, and land use practices on transport of water, carbon and nitrogen within terrestrial systems and the delivery of materials to waterways and rivers; 2) using the Mississippi River as a testbed, develop and evaluate an integrated suite of models to describe linkages between terrestrial and riverine systems, transport of carbon and nutrients in the Mississippi river and its tributaries, and associated cycling of carbon and nutrients in coastal ocean waters; and 3) evaluate uncertainty in model products and parameters and identify areas where improved model performance is needed through model refinement and data assimilation. The effort employs the Dynamic Land

  5. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  6. Comparison of two soya bean simulation models under climate change : II Application of climate change scenarios

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for 2050 compared to ambient climate) and change in climatic variability on soya bean growth and production at 3 sites in the EU have been calculated. These calculations have been done with both a simple growth model, SOYBEANW, and a comprehensive model, CROPGRO.

  7. Comparison of two potato simulation models under climate change. II Application of climate change scenarios.

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for the year 2050 compared to ambient climate) and change in climatic variability on potato growth and production at 6 sites in Europe were calculated. These calculations were done with both a simple growth model, POTATOS, and a comprehensive model, NPOTATO. Comparison

  8. Evaluating the suitability of coupled biophysical models for fishery management

    NARCIS (Netherlands)

    Hinrichsen, H.H.; Dickey-Collas, M.; Huret, M.; Peck, M.A.

    2011-01-01

    The potential role of coupled biophysical models in enhancing the conservation, management, and recovery of fish stocks is assessed, with emphasis on anchovy, cod, herring, and sprat in European waters. The assessment indicates that coupled biophysical models are currently capable of simulating

  9. Perspective for nested climate modelling over southern Africa

    Directory of Open Access Journals (Sweden)

    F. A. Engelbrecht

    2000-07-01

    Full Text Available The climate of southern Africa is fundamentally affected by mesoscale circulation patterns that are not adequately simulated by global atmospheric general circulation models (AGCMs. The technique of nested climate modelling (NCM utilises high-resolution limited area models (LAMs to obtain climate simulations of the mesoscale from essentially synoptical scale AGCM results.

  10. Design of Soil Salinity Policies with Tinamit, a Flexible and Rapid Tool to Couple Stakeholder-Built System Dynamics Models with Physically-Based Models

    Science.gov (United States)

    Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with

  11. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.

  12. Practice and philosophy of climate model tuning across six US modeling centers

    Science.gov (United States)

    Schmidt, Gavin A.; Bader, David; Donner, Leo J.; Elsaesser, Gregory S.; Golaz, Jean-Christophe; Hannay, Cecile; Molod, Andrea; Neale, Richard B.; Saha, Suranjana

    2017-09-01

    Model calibration (or tuning) is a necessary part of developing and testing coupled ocean-atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major US climate modeling centers. While details differ among groups in terms of scientific missions, tuning targets, and tunable parameters, there is a core commonality of approaches. However, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present-day radiative imbalance vs. the implied balance in the preindustrial era as a target.

  13. Practice and philosophy of climate model tuning across six US modeling centers

    Directory of Open Access Journals (Sweden)

    G. A. Schmidt

    2017-09-01

    Full Text Available Model calibration (or tuning is a necessary part of developing and testing coupled ocean–atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major US climate modeling centers. While details differ among groups in terms of scientific missions, tuning targets, and tunable parameters, there is a core commonality of approaches. However, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present-day radiative imbalance vs. the implied balance in the preindustrial era as a target.

  14. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  15. Tinamit: Making coupled system dynamics models accessible to stakeholders

    Science.gov (United States)

    Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo

    2017-04-01

    Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model

  16. Projecting Wind Energy Potential Under Climate Change with Ensemble of Climate Model Simulations

    Science.gov (United States)

    Jain, A.; Shashikanth, K.; Ghosh, S.; Mukherjee, P. P.

    2013-12-01

    Recent years have witnessed an increasing global concern over energy sustainability and security, triggered by a number of issues, such as (though not limited to): fossil fuel depletion, energy resource geopolitics, economic efficiency versus population growth debate, environmental concerns and climate change. Wind energy is a renewable and sustainable form of energy in which wind turbines convert the kinetic energy of wind into electrical energy. Global warming and differential surface heating may significantly impact the wind velocity and hence the wind energy potential. Sustainable design of wind mills requires understanding the impacts of climate change on wind energy potential, which we evaluate here with multiple General Circulation Models (GCMs). GCMs simulate the climate variables globally considering the greenhouse emission scenarios provided as Representation Concentration path ways (RCPs). Here we use new generation climate model outputs obtained from Coupled model Intercomparison Project 5(CMIP5). We first compute the wind energy potential with reanalysis data (NCEP/ NCAR), at a spatial resolution of 2.50, where the gridded data is fitted to Weibull distribution and with the Weibull parameters, the wind energy densities are computed at different grids. The same methodology is then used, to CMIP5 outputs (resultant of U-wind and V-wind) of MRI, CMCC, BCC, CanESM, and INMCM4 for historical runs. This is performed separately for four seasons globally, MAM, JJA, SON and DJF. We observe the muti-model average of wind energy density for historic period has significant bias with respect to that of reanalysis product. Here we develop a quantile based superensemble approach where GCM quantiles corresponding to selected CDF values are regressed to reanalysis data. It is observed that this regression approach takes care of both, bias in GCMs and combination of GCMs. With superensemble, we observe that the historical wind energy density resembles quite well with

  17. Quantifying Greenland freshwater flux underestimates in climate models

    Science.gov (United States)

    Little, Christopher M.; Piecuch, Christopher G.; Chaudhuri, Ayan H.

    2016-05-01

    Key processes regulating the mass balance of the Greenland Ice Sheet (GIS) are not represented in current-generation climate models. Here using output from 19 different climate models forced with a high-end business-as-usual emissions pathway, we compare modeled freshwater fluxes (FWF) to a parameterization based on midtropospheric temperature. By the mid 21st century, parameterized GIS FWF is 478 ± 215 km3 yr-1 larger than modeled—over 3 times the 1992-2011 rate of GIS mass loss. By the late 21st century, ensemble mean parameterized GIS FWF anomalies are comparable to FWF anomalies over the northern North Atlantic Ocean, equivalent to approximately 11 cm of global mean sea level rise. The magnitude and spread of these underestimates underscores the need for assessments of the coupled response of the ocean to increased FWF that recognize: (1) the widely varying freshwater budgets of each model and (2) uncertainty in the relationship between GIS FWF and atmospheric temperature.

  18. Climate model uncertainty in impact assessments for agriculture: A multi-ensemble case study on maize in sub-Saharan Africa

    OpenAIRE

    Dale, Amy L.; Fant, Charles W; Strzepek, Kenneth; Lickley, Megan Jeramaz; Solomon, Susan

    2017-01-01

    We present maize production in sub-Saharan Africa as a case study in the exploration of how uncertainties in global climate change, as reflected in projections from a range of climate model ensembles, influence climate impact assessments for agriculture. The crop model AquaCrop-OS (Food and Agriculture Organization of the United Nations) was modified to run on a 2° × 2° grid and coupled to 122 climate model projections from multi-model ensembles for three emission scenarios (Coupled Model Int...

  19. Defining the Sudden Stratospheric Warming in Climate Models

    Science.gov (United States)

    Kim, J.; Son, S. W.; Gerber, E. P.; Park, H. S.

    2016-12-01

    A sudden stratospheric warming (SSW) is defined by the World Meteorological Organization (WMO) as zonal-mean zonal wind reversal at 10 hPa and 60°N, associated with a reversal of the climatological temperature gradient at this elevation. This wind criterion in particular has been applied to reanalysis data and climate model output during the last few decades. In the present study, it is shown that the application of this definition to models can be affected by model mean biases; i.e., more frequent SSW appears to occur in models with a weaker climatological polar vortex. In order to overcome this deficiency, a tendency-based definition, which is not sensitive to the model mean bias, is proposed and applied to the multi-model data sets archived for the Coupled Model Intercomparison Projection phase 5 (CMIP5). In this definition, SSW-like events are defined by sufficiently strong vortex deceleration. This approach removes a linear relationship between the SSW frequency and intensity of climatological polar vortex for both the low-top and high-top CMIP5 models. Instead, the resulting SSW frequency is strongly correlated with wave activity at 100 hPa. The two definitions detect quantitatively different SSW in terms of lower stratospheric wave activity and downward propagation of stratospheric anomalies to the troposphere. However, in both definitions, the high-top models generally exhibit more frequent SSW than the low-top models. Moreover, a hint of more frequent SSW in a warm climate is commonly found.

  20. How the International Research Institute for Climate and Society has contributed towards seasonal climate forecast modelling and operations in South Africa

    CSIR Research Space (South Africa)

    Landman, WA

    2014-06-01

    Full Text Available -model ensembles, ocean-atmosphere coupled model development, and applications of forecasts. The International Research Institute for Climate and Society has made telling contributions to this evolution over the past 20 years and these will be highlighted here....

  1. Coupling groundwater, vegetation and atmosphere processes: a comparison of two integrated models

    Science.gov (United States)

    Sulis, M.; Williams, J. L.; Shrestha, P.; Maxwell, R. M.; Masbou, M.; Simmer, C.

    2012-12-01

    The correct modelling of the mutual response to and feedback between atmospheric, hydrological, and ecological processes is an important prerequisite for accurate climate/meteorological projection, environmental protection, and water management. As such, numerical models based on a detailed representation of both groundwater and atmospheric dynamics have gained increasing attention within the scientific community. In this study, we compare two integrated systems that dynamically simulate soil-vegetation-atmosphere interactions. One system is the combination of the Weather Research and Forecasting (WRF) atmospheric model coupled with the three-dimensional variably saturated subsurface ParFlow model. Both sub-models are internally coupled in an explicit, operator-splitting manner via the Noah land surface scheme. The second system consists of the regional climate and weather forecast model COSMO coupled also with ParFlow but via the Community Land Model (CLM). In this second system the external OASIS coupler is used to pass relevant fluxes and state variables between these three components via the MPI parallel communications protocol. The comparison on how interactions are simulated and how different processes are integrated/coupled is carried out by selecting a set of test cases. These tests involve a flat domain with idealized initial and boundary conditions, as well as simulations over the Rur catchment in Germany based upon equilibrium initial conditions for the subsurface and realistic atmospheric conditions at the boundaries. We explore and explain the differences in model response, and we discuss the pros and cons of the two approaches by emphasizing the role played by factors such as temporal subcycling and coupling frequency between model components.

  2. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    Science.gov (United States)

    2015-09-30

    New Zealand phone: +64 (3) 479-8303 email: vernon.squire@otago.ac.nz Award Number: N00014-131-0279 http://www.maths.otago.ac.nz/∼vsquire LONG...Symposium on Ice, Singapore, August 2014. Squire, V. A. Perspectives of ocean wave / sea ice connectivity relating to climate change and modelling...contemporary Arctic climate models. OBJECTIVES To make progress with our long-term goals, over the lifetime of the project we will – further our

  3. Abilities and limitations in the use of regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Koeltzov, Morten Andreas Oedegaard

    2012-11-01

    In order to say something about the effect of climate change at the regional level, one takes in use regional climate models. In these models the thesis introduce regional features, which are not included in the global climate models (which are basically in climate research). Regional models can provide good and useful climate projections that add more value than the global climate models, but also introduces an uncertainty in the calculations. How should this uncertainty affect the use of regional climate models?The most common methodology for calculating potential future climate developments are based on different scenarios of possible emissions of greenhouse gases. These scenarios operates as global climate models using physical laws and calculate possible future developments. This is considered mathematical complexed and processes with limited supercomputing capacity calculates the global models for the larger scale of the climate system. To study the effects of climate change are regional details required and the regional models used therefore in a limited area of the climate system. These regional models are driven by data from the global models and refines and improves these data. Impact studies can then use the data from the regional models or data which are further processed to provide more local details using geo-statistical methods. In the preparation of the climate projections is there a minimum of 4 sources of uncertainty. This uncertainty is related to the provision of emission scenarios of greenhouse gases, uncertainties related to the use of global climate models, uncertainty related to the use of regional climate models and the uncertainty of internal variability in the climate system. This thesis discusses the use of regional climate models, and illustrates how the regional climate model adds value to climate projections, and at the same time introduce uncertainty in the calculations. It discusses in particular the importance of the choice of

  4. Coupling of the Models of Human Physiology and Thermal Comfort

    Science.gov (United States)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  5. Coupling of the Models of Human Physiology and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus–FE [1]. In the paper validation of the model for very light physical activities (1 met indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  6. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

    2014-05-16

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However

  7. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    Science.gov (United States)

    Liu, M.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J.; Nergui, T.; Guenther, A.; Miller, C.; Reyes, J.; Tague, C.; Choate, J.; Salathé, E. P.; Stöckle, C. O.; Adam, J. C.

    2014-05-01

    Regional climate change impact (CCI) studies have widely involved downscaling and bias correcting (BC) global climate model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables (evapotranspiration (ET), runoff, snow water equivalent (SWE), and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ-Andrews). Simulation results from the coupled ECHAM5-MPI-OM model with A1B emission scenario were first dynamically downscaled to 12 km resolution with the WRF model. Then a quantile-mapping-based statistical downscaling model was used to downscale them into 1/16° resolution daily climate data over historical and future periods. Two climate data series were generated, with bias correction (BC) and without bias correction (NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological data sets. These impact models include a macroscale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrological model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant differences rise from projected SWE, crop yield

  8. Interpolation of climate variables and temperature modeling

    Science.gov (United States)

    Samanta, Sailesh; Pal, Dilip Kumar; Lohar, Debasish; Pal, Babita

    2012-01-01

    Geographic Information Systems (GIS) and modeling are becoming powerful tools in agricultural research and natural resource management. This study proposes an empirical methodology for modeling and mapping of the monthly and annual air temperature using remote sensing and GIS techniques. The study area is Gangetic West Bengal and its neighborhood in the eastern India, where a number of weather systems occur throughout the year. Gangetic West Bengal is a region of strong heterogeneous surface with several weather disturbances. This paper also examines statistical approaches for interpolating climatic data over large regions, providing different interpolation techniques for climate variables' use in agricultural research. Three interpolation approaches, like inverse distance weighted averaging, thin-plate smoothing splines, and co-kriging are evaluated for 4° × 4° area, covering the eastern part of India. The land use/land cover, soil texture, and digital elevation model are used as the independent variables for temperature modeling. Multiple regression analysis with standard method is used to add dependent variables into regression equation. Prediction of mean temperature for monsoon season is better than winter season. Finally standard deviation errors are evaluated after comparing the predicted temperature and observed temperature of the area. For better improvement, distance from the coastline and seasonal wind pattern are stressed to be included as independent variables.

  9. Validation of the Regional Climate Model ALARO with different dynamical downscaling approaches and different horizontal resolutions

    Science.gov (United States)

    Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier

    2015-04-01

    At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.

  10. The coupling of Poisson sigma models to topological backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Dario [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)

    2016-12-13

    We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.

  11. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    Science.gov (United States)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  12. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  13. Climate and climate change sensitivity to model configuration in the Canadian RCM over North America

    Energy Technology Data Exchange (ETDEWEB)

    De Elia, Ramon [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada); Centre ESCER, Univ. du Quebec a Montreal (Canada); Cote, Helene [Ouranos Consortium on Regional Climate and Adaptation to Climate Change, Montreal (Canada)

    2010-06-15

    Climate simulations performed with Regional Climate Models (RCMs) have been found to show sensitivity to parameter settings. The origin, consequences and interpretations of this sensitivity are varied, but it is generally accepted that sensitivity studies are very important for a better understanding and a more cautious manipulation of RCM results. In this work we present sensitivity experiments performed on the simulated climate produced by the Canadian Regional Climate Model (CRCM). In addition to climate sensitivity to parameter variation, we analyse the impact of the sensitivity on the climate change signal simulated by the CRCM. These studies are performed on 30-year long simulated present and future seasonal climates, and we have analysed the effect of seven kinds of configuration modifications: CRCM initial conditions, lateral boundary condition (LBC), nesting update interval, driving Global Climate Model (GCM), driving GCM member, large-scale spectral nudging, CRCM version, and domain size. Results show that large changes in both the driving model and the CRCM physics seem to be the main sources of sensitivity for the simulated climate and the climate change. Their effects dominate those of configuration issues, such as the use or not of large-scale nudging, domain size, or LBC update interval. Results suggest that in most cases, differences between simulated climates for different CRCM configurations are not transferred to the estimated climate change signal: in general, these tend to cancel each other out. (orig.)

  14. Current climate and climate change over India as simulated by the Canadian Regional Climate Model

    Science.gov (United States)

    Alexandru, Adelina; Sushama, Laxmi

    2015-08-01

    The performance of the fifth generation of the Canadian Regional Climate Model (CRCM5) in reproducing the main climatic characteristics over India during the southwest (SW)-, post- and pre-monsoon seasons are presented in this article. To assess the performance of CRCM5, European Centre for Medium- Range Weather Forecasts (ECMWF) Re- Analysis (ERA- 40) and Interim re-analysis (ERA-Interim) driven CRCM5 simulation is compared against independent observations and reanalysis data for the 1971-2000 period. Projected changes for two future periods, 2041-2070 and 2071-2100, with respect to the 1971-2000 current period are assessed based on two transient climate change simulations of CRCM5 spanning the 1950-2100 period. These two simulations are driven by the Canadian Earth System Model version 2 (CanESM2) and the Max Planck Institute for Meteorology's Earth System Low Resolution Model (MPI-ESM-LR), respectively. The boundary forcing errors associated with errors in the driving global climate models are also studied by comparing the 1971-2000 period of the CanESM2 and MPI-ESM-LR driven simulations with that of the CRCM5 simulation driven by ERA-40/ERA-Interim. Results show that CRCM5 driven by ERA-40/ERA-Interim is in general able to capture well the temporal and spatial patterns of 2 m-temperature, precipitation, wind, sea level pressure, total runoff and soil moisture over India in comparison with available reanalysis and observations. However, some noticeable differences between the model and observational data were found during the SW-monsoon season within the domain of integration. CRCM5 driven by ERA-40/ERA-Interim is 1-2 °C colder than CRU observations and generates more precipitation over the Western Ghats and central regions of India, and not enough in the northern and north-eastern parts of India and along the Konkan west coast in comparison with the observed precipitation. The monsoon onset seems to be relatively well captured over the southwestern coast of

  15. Affine group formulation of the Standard Model coupled to gravity

    CERN Document Server

    Chou, Ching-Yi; Soo, Chopin

    2013-01-01

    Using the affine group formalism, we perform a nonperturbative quantization leading to the construction of elements of a physical Hilbert space for full, Lorentzian quantum gravity coupled to the Standard Model in four spacetime dimensions. This paper constitutes a first step toward understanding the phenomenology of quantum gravitational effects stemming from a consistent treatment of minimal couplings to matter.

  16. Finite difference methods for coupled flow interaction transport models

    Directory of Open Access Journals (Sweden)

    Shelly McGee

    2009-04-01

    Full Text Available Understanding chemical transport in blood flow involves coupling the chemical transport process with flow equations describing the blood and plasma in the membrane wall. In this work, we consider a coupled two-dimensional model with transient Navier-Stokes equation to model the blood flow in the vessel and Darcy's flow to model the plasma flow through the vessel wall. The advection-diffusion equation is coupled with the velocities from the flows in the vessel and wall, respectively to model the transport of the chemical. The coupled chemical transport equations are discretized by the finite difference method and the resulting system is solved using the additive Schwarz method. Development of the model and related analytical and numerical results are presented in this work.

  17. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  18. Plasma edge modelling with ICRF coupling

    Science.gov (United States)

    Zhang, Wei; Coster, David; Feng, Yuhe; Lunt, Tilmann; Aguiam, Diogo; Bilato, Roberto; Bobkov, Volodymyr; Jacquot, Jonathan; Jacquet, Philippe; Lerche, Ernesto; Noterdaeme, Jean-Marie; Tierens, Wouter

    2017-10-01

    The physics of Radio-Frequency (RF) wave heating in the Ion Cyclotron Range of Frequencies (ICRF) in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL) remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  19. Coupling a Basin Modeling and a Seismic Code using MOAB

    KAUST Repository

    Yan, Mi

    2012-06-02

    We report on a demonstration of loose multiphysics coupling between a basin modeling code and a seismic code running on a large parallel machine. Multiphysics coupling, which is one critical capability for a high performance computing (HPC) framework, was implemented using the MOAB open-source mesh and field database. MOAB provides for code coupling by storing mesh data and input and output field data for the coupled analysis codes and interpolating the field values between different meshes used by the coupled codes. We found it straightforward to use MOAB to couple the PBSM basin modeling code and the FWI3D seismic code on an IBM Blue Gene/P system. We describe how the coupling was implemented and present benchmarking results for up to 8 racks of Blue Gene/P with 8192 nodes and MPI processes. The coupling code is fast compared to the analysis codes and it scales well up to at least 8192 nodes, indicating that a mesh and field database is an efficient way to implement loose multiphysics coupling for large parallel machines.

  20. Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism

    Science.gov (United States)

    Zhong, Y.; Miller, G. H.; Otto-Bliesner, B. L.; Holland, M. M.; Bailey, D. A.; Schneider, D. P.; Geirsdottir, A.

    2011-12-01

    Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for > 100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater

  1. Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y. [University of Colorado, INSTAAR, Boulder, CO (United States); Miller, G.H. [University of Colorado, INSTAAR, Boulder, CO (United States); University of Colorado, Department of Geological Sciences, Boulder, CO (United States); Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A. [NCAR, Boulder, CO (United States); Schneider, D.P. [NCAR, Boulder, CO (United States); University of Colorado, CIRES, Boulder, CO (United States); Geirsdottir, A. [University of Iceland, Department of Earth Sciences and Institute of Earth Sciences, Reykjavik (Iceland)

    2011-12-15

    Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for > 100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater

  2. Borehole climatology: a discussion based on contributions from climate modeling

    Directory of Open Access Journals (Sweden)

    J. F. González-Rouco

    2009-03-01

    Full Text Available Progress in understanding climate variability through the last millennium leans on simulation and reconstruction efforts. Exercises blending both approaches present a great potential for answering questions relevant both for the simulation and reconstruction of past climate, and depend on the specific peculiarities of proxies and methods involved in climate reconstructions, as well as on the realism and limitations of model simulations. This paper explores research specifically related to paleoclimate modeling and borehole climatology as a branch of climate reconstruction that has contributed significantly to our knowledge of the low frequency climate evolution during the last five centuries.

    The text flows around three main issues that group most of the interaction between model and geothermal efforts: the use of models as a validation tool for borehole climate reconstructions; comparison of geothermal information and model simulations as a means of either model validation or inference about past climate; and implications of the degree of realism on simulating subsurface climate on estimations of future climate change.

    The use of multi-centennial simulations as a surrogate reality for past climate suggests that within the simplified reality of climate models, methods and assumptions in borehole reconstructions deliver a consistent picture of past climate evolution at long time scales. Comparison of model simulations and borehole profiles indicate that borehole temperatures are responding to past external forcing and that more realism in the development of the soil model components in climate models is desirable. Such an improved degree of realism is important for the simulation of subsurface climate and air-ground interaction; results indicate it could also be crucial for simulating the adequate energy balance within climate change scenario experiments.

  3. Integrated hydrological SVAT model for climate change studies in Denmark

    Science.gov (United States)

    Mollerup, M.; Refsgaard, J.; Sonnenborg, T. O.

    2010-12-01

    In a major Danish funded research project (www.hyacints.dk) a coupling is being established between the HIRHAM regional climate model code from Danish Meteorological Institute and the MIKE SHE distributed hydrological model code from DHI. The linkage between those two codes is a soil vegetation atmosphere transfer scheme, which is a module of MIKE SHE. The coupled model will be established for the entire country of Denmark (43,000 km2 land area) where a MIKE SHE based hydrological model already exists (Henriksen et al., 2003, 2008). The present paper presents the MIKE SHE SVAT module and the methodology used for parameterising and calibrating the MIKE SHE SVAT module for use throughout the country. As SVAT models previously typically have been tested for research field sites with comprehensive data on energy fluxes, soil and vegetation data, the major challenge lies in parameterisation of the model when only ordinary data exist. For this purpose annual variations of vegetation characteristics (Leaf Area Index (LAI), Crop height, Root depth and the surface albedo) for different combinations of soil profiles and vegetation types have been simulated by use of the soil plant atmosphere model Daisy (Hansen et al., 1990; Abrahamsen and Hansen, 2000) has been applied. The MIKE SHE SVAT using Daisy generated surface/soil properties model has been calibrated against existing data on groundwater heads and river discharges. Simulation results in form of evapotranspiration and percolation are compared to the existing MIKE SHE model and to observations. To analyse the use of the SVAT model in climate change impact assessments data from the ENSEMBLES project (http://ensembles-eu.metoffice.com/) have been analysed to assess the impacts on reference evapotranspiration (calculated by the Makkink and the Penmann-Monteith equations) as well as on the individual elements in the Penmann-Monteith equation (radiation, wind speed, humidity and temperature). The differences on the

  4. Application of an economy-climate model to assess the impact of climate change

    Science.gov (United States)

    Chou, Jieming; Dong, Wenjie; Feng, Guolin

    2010-07-01

    An interdisciplinary investigation was conducted to assess the impact of climate change on grain yields using an economy-climate model (C-D-C). The model was formulated by incorporating climate factors into the classic Cobb-Douglas (C-D) economic production function model. The economic meanings of the model output elasticities are described and elucidated. The C-D-C model was applied to the assessment of the impact of climate change on grain yields in China during the past 20 years, from 1983 through 2002. In the study, the land of China was divided into eight regions, and both the C-D-C and C-D models were applied to each individual region. The results suggest that the C-D-C model is superior to the classic C-D model, indicating the importance of climate factors. Prospective applications of the C-D-C model are discussed.

  5. Deficiencies and possibilities for long-lead coupled climate prediction of the Western North Pacific-East Asian summer monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Seon; Ha, Kyung-Ja [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of); Lee, June-Yi; Wang, Bin [University of Hawaii, Department of Meteorology and International Pacific Research Center, Honolulu, HI (United States); Schemm, Jae Kyung E. [Climate Prediction Center/NCEP, Camp Springs, MD (United States)

    2011-03-15

    Long-lead prediction of waxing and waning of the Western North Pacific (WNP)-East Asian (EA) summer monsoon (WNP-EASM) precipitation is a major challenge in seasonal time-scale climate prediction. In this study, deficiencies and potential for predicting the WNP-EASM precipitation and circulation one or two seasons ahead were examined using retrospective forecast data for the 26-year period of 1981-2006 from two operational couple models which are the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) and the Bureau of Meteorology Research Center (BMRC) Predictive Ocean-Atmosphere Model for Australia (POAMA). While both coupled models have difficulty in predicting summer mean precipitation anomalies over the region of interest, even for a 0-month lead forecast, they are capable of predicting zonal wind anomalies at 850 hPa several months ahead and, consequently, satisfactorily predict summer monsoon circulation indices for the EA region (EASMI) and for the WNP region (WNPSMI). It should be noted that the two models' multi-model ensemble (MME) reaches 0.40 of the correlation skill for the EASMI with a January initial condition and 0.75 for the WNPSMI with a February initial condition. Further analysis indicates that prediction reliability of the EASMI is related not only to the preceding El Nino and Southern Oscillation (ENSO) but also to simultaneous local SST variability. On other hand, better prediction of the WNPSMI is accompanied by a more realistic simulation of lead-lag relationship between the index and ENSO. It should also be noted that current coupled models have difficulty in capturing the interannual variability component of the WNP-EASM system which is not correlated with typical ENSO variability. To improve the long-lead seasonal prediction of the WNP-EASM precipitation, a statistical postprocessing was developed based on the multiple linear regression method. The method utilizes the MME prediction of the EASMI and

  6. The Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Boville, B. A.; Garcia, R. R.; Sassi, F.; Kinnison, D.; Roble, R. G.

    The Whole Atmosphere Community Climate Model (WACCM) is an upward exten- sion of the National Center for Atmospheric Research Community Climate System Model. WACCM simulates the atmosphere from the surface to the lower thermosphere (140 km) and includes both dynamical and chemical components. The salient points of the model formulation will be summarized and several aspects of its performance will be discussed. Comparison with observations indicates that WACCM produces re- alistic temperature and zonal wind distributions. Both the mean state and interannual variability will be summarized. Temperature inversions in the midlatitude mesosphere have been reported by several authors and are also found in WACCM. These inver- sions are formed primarily by planetary wave forcing, but the background state on which they form also requires gravity wave forcing. The response to sea surface temperature (SST) anomalies will be examined by com- paring simulations with observed SSTs for 1950-1998 to a simulation with clima- tological annual cycle of SSTs. The response to ENSO events is found to extend though the winter stratosphere and mesosphere and a signal is also found at the sum- mer mesopause. The experimental framework allows the ENSO signal to be isolated, because no other forcings are included (e.g. solar variability and volcanic eruptions) which complicate the observational record. The temperature and wind variations asso- ciated with ENSO are large enough to generate significant perturbations in the chem- ical composition of the middle atmosphere, which will also be discussed.

  7. Model of coupling discharges into spacecraft structures

    Science.gov (United States)

    Woods, A. J.; Treadway, M. J.; Grismore, R.; Leadon, R. E.; Flanagan, T.; Wenaas, E. P.

    1980-01-01

    The calculated results of a semiempirical model for electron-caused electromagnetic pulse (ECEMP) are compared to the experimental data for three spacecraft geometries. The appropriateness of certain model assumptions which have been employed in the absence of a microscopic theory for dielectric breakdown and associated electron blowoff is discussed. Results are limited to the exterior response of spacecraft structures, although neither the model nor the experiments were limited to the outside problem. Rationales for model assumptions are provided.

  8. Coupling the land surface model NOAHMP with the generic crop growth model GECROS: Model calibration and validation

    Science.gov (United States)

    Ingwersen, Joachim; Högy, Petra; Wizemann, Hans-Dieter; Streck, Thilo

    2017-04-01

    Weather and climate simulations depend on an accurate description of the exchange of water, energy and momentum between land surface and atmosphere. In state-of-the-art land surface models the vegetation dynamics is "frozen" that means prescribed in lookup tables. As a consequence growth and development of a crop is independent from the prevailing weather conditions, and an important feedback between atmosphere and land surface is not captured. In the present study we coupled the land surface model NOAHMP with the mechanistic generic crop growth model GECROS. On the basis of a comprehensive 5-year dataset on eddy covariance energy- and water fluxes and soil water and crop data from two different climate regions of Southwest Germany, we adapted the crop growth model GECROS, integrated it with NOAHMP, calibrated the coupled model for winter wheat and silage maize and tested its robustness in multiple-year validation runs against independent measurements. For winter wheat the model performed well both for the calibration and validation phase. Inter-annual and regional differences in crop development due to temperature anomalies were well reproduced by the model. Also the decline of evapotranspiration over the maturing phase was properly simulated. In case of maize the model performed not as good as for winter wheat. We attribute this somewhat lower model performance to the pronounced differences among maize cultivars, the high sensitivity of maize development to drill and emergence date, and its higher susceptibility to early summer droughts. Moreover, the model systematically overestimated evapotranspiration during long lasting droughts like in June 2014 indicating that in the current state NOAHMP-GECROS has some limitations in simulating water stress. We attribute this weakness to the uniform root distribution and the hydraulic functions (Clapp-Hornberger) that are implemented in NOAHMP which result in a uniform depletion of the soil water profile. The novel model

  9. VEMAP 2: U.S. Annual Climate Change Scenarios

    Data.gov (United States)

    National Aeronautics and Space Administration — Data sets of transient climate change scenarios based on coupled atmosphere-ocean general circulation model (AOGCM) transient climate experiments with transient...

  10. Modeling Pancake Formation with a Coupled Wave-Ice Model

    Science.gov (United States)

    Veeramony, J.; Orzech, M.; Shi, F.; Bateman, S. P.; Calantoni, J.

    2016-12-01

    Recent results from the ONR-sponsored Arctic Sea State DRI cruise (Thomson et al., 2016, EOS, in press) suggest that small-scale pancake ice formation is an important process in the initial recovery and refreezing of the Arctic pack ice each autumn. Ocean surface waves and ambient temperature play significant roles in shaping and/or limiting the pancake growth patterns, which may either facilitate or delay the recovery of the ice pack. Here we apply a phase-resolving, coupled wave-ice system, consisting of a CFD wave model (NHWAVE) and a discrete-element ice model (LIGGGHTS), to investigate the formation processes of pancake ice under different conditions. A series of simulations is run, each beginning with a layer of disconnected ice particles floating on the ocean surface. Wave conditions and ice bonding properties are varied to examine the effects of mild versus stormy conditions, wind waves versus swell, and warmer versus colder temperatures. Model runs are limited to domains of O(1 sq km). Initial tests have shown some success in replicating qualitative results from the Sea State cruise, including the formation of irregularly shaped pancakes from the "frazil" ice layer, changes in formation processes caused by varying ambient temperature (represented through variations in ice bonding strength), occasional rafting of one pancake on top of another, and increased wave attenuation as pancakes grow larger.

  11. Abrupt cooling over the North Atlantic in modern climate models.

    Science.gov (United States)

    Sgubin, Giovanni; Swingedouw, Didier; Drijfhout, Sybren; Mary, Yannick; Bennabi, Amine

    2017-02-15

    Observations over the 20th century evidence no long-term warming in the subpolar North Atlantic (SPG). This region even experienced a rapid cooling around 1970, raising a debate over its potential reoccurrence. Here we assess the risk of future abrupt SPG cooling in 40 climate models from the fifth Coupled Model Intercomparison Project (CMIP5). Contrary to the long-term SPG warming trend evidenced by most of the models, 17.5% of the models (7/40) project a rapid SPG cooling, consistent with a collapse of the local deep-ocean convection. Uncertainty in projections is associated with the models' varying capability in simulating the present-day SPG stratification, whose realistic reproduction appears a necessary condition for the onset of a convection collapse. This event occurs in 45.5% of the 11 models best able to simulate the observed SPG stratification. Thus, due to systematic model biases, the CMIP5 ensemble as a whole underestimates the chance of future abrupt SPG cooling, entailing crucial implications for observation and adaptation policy.

  12. A Coupled Snow Operations-Skier Demand Model for the Ontario (Canada) Ski Region

    Science.gov (United States)

    Pons, Marc; Scott, Daniel; Steiger, Robert; Rutty, Michelle; Johnson, Peter; Vilella, Marc

    2016-04-01

    The multi-billion dollar global ski industry is one of the tourism subsectors most directly impacted by climate variability and change. In the decades ahead, the scholarly literature consistently projects decreased reliability of natural snow cover, shortened and more variable ski seasons, as well as increased reliance on snowmaking with associated increases in operational costs. In order to develop the coupled snow, ski operations and demand model for the Ontario ski region (which represents approximately 18% of Canada's ski market), the research utilized multiple methods, including: a in situ survey of over 2400 skiers, daily operations data from ski resorts over the last 10 years, climate station data (1981-2013), climate change scenario ensemble (AR5 - RCP 8.5), an updated SkiSim model (building on Scott et al. 2003; Steiger 2010), and an agent-based model (building on Pons et al. 2014). Daily snow and ski operations for all ski areas in southern Ontario were modeled with the updated SkiSim model, which utilized current differential snowmaking capacity of individual resorts, as determined from daily ski area operations data. Snowmaking capacities and decision rules were informed by interviews with ski area managers and daily operations data. Model outputs were validated with local climate station and ski operations data. The coupled SkiSim-ABM model was run with historical weather data for seasons representative of an average winter for the 1981-2010 period, as well as an anomalously cold winter (2012-13) and the record warm winter in the region (2011-12). The impact on total skier visits and revenues, and the geographic and temporal distribution of skier visits were compared. The implications of further climate adaptation (i.e., improving the snowmaking capacity of all ski areas to the level of leading resorts in the region) were also explored. This research advances system modelling, especially improving the integration of snow and ski operations models with

  13. Light weakly coupled axial forces: models, constraints, and projections

    Science.gov (United States)

    Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth; Tait, Tim M. P.

    2017-05-01

    We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in π0 and 8Be∗ decay.

  14. A 1000-year simulation with the IPSL ocean-atmosphere coupled model

    Directory of Open Access Journals (Sweden)

    S. Conil

    2003-06-01

    Full Text Available A 1000-year climate simulation is run with the ocean-atmosphere coupled model developed at the Institute Pierre- Simon Laplace (IPSL, Paris. No flux adjustment is used. The drift of the model is analyzed in terms of the seasurface temperature and deep ocean temperature. When the model's own equilibrium is reached, it is found that the Antarctic bottom water production experiences large-amplitude variation, oscillating between strong and weak episodes. This can yield oceanic temperature variation in the Southern Hemisphere and for the global mean.

  15. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  16. On the construction of a regional atmospheric climate model

    DEFF Research Database (Denmark)

    Christensen, J. H.; Van Meijgaard, E.

    1992-01-01

    A Regional Atmospheric Climate Model which combines the physical parameterization package of the General Circulation or Climate Model (ECHAM) used at the Max Planck Institute for Meteorology in Hamburg, and the dynamics package of the Nordic - Dutch - Irish Limited Area Model (HIRLAM), has been...... developed. The necessary changes applied to both model packages in order to obtain a working code are described. -from Authors...

  17. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  18. Solutions of several coupled discrete models in terms of Lamé ...

    Indian Academy of Sciences (India)

    coupled Salerno model, (iii) coupled saturated discrete nonlinear Schrödinger equation. (DNLSE), (iv) coupled φ6 model and (v) coupled φ4 model. We also show that unlike the continuum field theory models, many of the discrete coupled field theory models possess an even broader class of exact solutions. Moreover, we ...

  19. Solutions of several coupled discrete models in terms of Lamé ...

    Indian Academy of Sciences (India)

    Coupled discrete models are ubiquitous in a variety of physical contexts. We provide an extensive set of exact quasiperiodic solutions of a number of coupled discrete models in terms of Lamé polynomials of arbitrary order. The models discussed are: coupled Salerno model,; coupled Ablowitz–Ladik model,; coupled 4 ...

  20. Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.

    Directory of Open Access Journals (Sweden)

    Valentina Lauria

    Full Text Available Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO, the decadal mean Sea Surface Temperature (SST in the Celtic Sea increased by 0.66 ± 0.02 °C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group and spring SST (0-group: p = 0.02, slope = -0.305 ± 0.125; 1-group: p = 0.04, slope = -0.410 ± 0.193. Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 ± 0.014 as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 ± 0.05. Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea, emphasizing the need for more research at regional scales.

  1. Grassland/atmosphere response to changing climate: Coupling regional and local scales. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coughenour, M.B.; Kittel, T.G.F.; Pielke, R.A.; Eastman, J.

    1993-10-01

    The objectives of the study were: to evaluate the response of grassland ecosystems to atmospheric change at regional and site scales, and to develop multiscaled modeling systems to relate ecological and atmospheric models with different spatial and temporal resolutions. A menu-driven shell was developed to facilitate use of models at different temporal scales and to facilitate exchange information between models at different temporal scales. A detailed ecosystem model predicted that C{sub 3} temperate grasslands wig respond more strongly to elevated CO{sub 2} than temperate C{sub 4} grasslands in the short-term while a large positive N-PP response was predicted for a C{sub 4} Kenyan grassland. Long-term climate change scenarios produced either decreases or increases in Colorado plant productivity (NPP) depending on rainfall, but uniform increases in N-PP were predicted in Kenya. Elevated CO{sub 2} is likely to have little effect on ecosystem carbon storage in Colorado while it will increase carbon storage in Kenya. A synoptic climate classification processor (SCP) was developed to evaluate results of GCM climate sensitivity experiments. Roughly 80% agreement was achieved with manual classifications. Comparison of lx and 2xCO{sub 2} GCM Simulations revealed relatively small differences.

  2. Carbon-climate-human interactions in an integrated human-Earth system model

    Science.gov (United States)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.

    2016-12-01

    The C4MIP and CMIP5 results highlighted large uncertainties in climate projections, driven to a large extent by limited understanding of the interactions between terrestrial carbon-cycle and climate feedbacks, and their associated uncertainties. These feedbacks are dominated by uncertainties in soil processes, disturbance dynamics, ecosystem response to climate change, and agricultural productivity, and land-use change. This research addresses three questions: (1) how do terrestrial feedbacks vary across different levels of climate change, (2) what is the relative contribution of CO2 fertilization and climate change, and (3) how robust are the results across different models and methods? We used a coupled modeling framework that integrates an Integrated Assessment Model (modeling economic and energy activity) with an Earth System Model (modeling the natural earth system) to examine how business-as-usual (RCP 8.5) climate change will affect ecosystem productivity, cropland extent, and other aspects of the human-Earth system. We find that higher levels of radiative forcing result in higher productivity growth, that increases in CO2 concentrations are the dominant contributors to that growth, and that our productivity increases fall in the middle of the range when compared to other CMIP5 models and the AgMIP models. These results emphasize the importance of examining both the anthropogenic and natural components of the earth system, and their long-term interactive feedbacks.

  3. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Auffhammer, M.; Hsiang, S. M.; Schlenker, W.; Sobel, A.

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

  4. Coupling climate conditions, sediment sources and sediment transport in an alpine basin

    Science.gov (United States)

    Rainato, Riccardo; Picco, Lorenzo; Cavalli, Marco; Mao, Luca; Neverman, Andrew J.; Tarolli, Paolo

    2017-04-01

    -2006 period. In this sense, the sediment availability resulting from armour layer and bedform removal appears crucial to describing the sediment fluxes during this period, stressing the key role of the in-channel sediment supply. In the recent period 2007-2015 a marked climate warming accompanied by increased precipitation was observed. This climate forcing did not affect the landscape evolution, with sediment source extent remaining substantially in line between 2006 and 2016. The absence of a significant landscape response and the restoration of the channel armour layer can describe the limited sediment fluxes observed during the last decade. In particular, the increased temperature and precipitation were not accompanied by an increase in flood occurrence and magnitude, stressing the evident absence of hillslope-channel network coupling. This research was funded by the University of Padova Research Projects 'Sediment transfer processes in an Alpine basin: sediment cascades from hillslopes to the channel network-BIRD167919'.

  5. Drought Duration Biases in Current Global Climate Models

    Science.gov (United States)

    Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia

    2016-04-01

    Several droughts in the recent past are characterized by their increased duration and intensity. In particular, substantially prolonged droughts have brought major societal and economic losses in certain regions, yet climate change projections of such droughts in terms of duration is subject to large uncertainties. This study analyzes the biases of drought duration in state-of-the-art global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5). Drought durations are defined as negative precipitation anomalies and evaluated with three observation-based datasets in the period of 1901-2010. Large spread in biases of GCMs is commonly found in all regions, with particular strong biases in North East Brazil, Africa, Northern Australia, Central America, Central and Northern Europe, Sahel and Asia. Also in most regions, the interquartile range of bias lies below 0, meaning that the GCMs tend to underestimate drought durations. Meanwhile in some regions such as Western South America, the Amazon, Sahel, West and South Africa, and Asia, considerable inconsistency among the three observation-based datasets were found. These results indicate substantial uncertainties and errors in current GCMs for simulating drought durations as well as a large spread in observation-based datasets, both of which are found to be particularly strong in those regions that are often considered to be hot spots of projected future drying. The underlying sources of these uncertainties need to be identified in further study and will be applied to constrain GCM-based drought projections under climate change.

  6. Modeling the Earth: Climate on an Icosphere

    Science.gov (United States)

    Fouts, Stephanie; Cook, L. Jonathan

    The totally asymmetric simple exclusion process with Langmuir kinetics is a one-dimensional transport model used to study the motion of particles through a lattice. Its applications include systems in the fields of biology, climatology, mathematics, civil engineering, and physics. In our research, we examine the temporal dynamics through the power spectra, as well as the time-averaged particle distribution on the lattice via Monte Carlo simulations. We have applied our particle transport model to an icosahedron in an attempt to model Earth's changing climate. In our research, we examine the temporal dynamics of the particle distribution on the lattice, as they correspond to seasonal heat fluctuations in the polar and equatorial regions of the globe. Using Monte Carlos simulations, we alter the input parameters of the system to explore the resultant actions of the Earth-system model. Our findings include seasonal oscillations consistent with those seen in reality. We also built a mathematical framework for our model which, when solved numerically, matches the oscillations seen in our physical system.

  7. Predicting Future Seed Sourcing of Platycladus orientalis (L. for Future Climates Using Climate Niche Models

    Directory of Open Access Journals (Sweden)

    Xian-Ge Hu

    2017-12-01

    Full Text Available Climate niche modeling has been widely used to assess the impact of climate change on forest trees at the species level. However, geographically divergent tree populations are expected to respond differently to climate change. Considering intraspecific local adaptation in modeling species responses to climate change will thus improve the credibility and usefulness of climate niche models, particularly for genetic resources management. In this study, we used five Platycladus orientalis (L. seed zones (Northwestern; Northern; Central; Southern; and Subtropical covering the entire species range in China. A climate niche model was developed and used to project the suitable climatic conditions for each of the five seed zones for current and various future climate scenarios (Representative Concentration Pathways: RCP2.6, RCP4.5, RCP6.0, and RCP8.5. Our results indicated that the Subtropical seed zone would show consistent reduction for all climate change scenarios. The remaining seed zones, however, would experience various degrees of expansion in suitable habitat relative to their current geographic distributions. Most of the seed zones would gain suitable habitats at their northern distribution margins and higher latitudes. Thus, we recommend adjusting the current forest management strategies to mitigate the negative impacts of climate change.

  8. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    Science.gov (United States)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  9. Statistical surrogate models for prediction of high-consequence climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Constantine, Paul; Field, Richard V., Jr.; Boslough, Mark Bruce Elrick

    2011-09-01

    In safety engineering, performance metrics are defined using probabilistic risk assessments focused on the low-probability, high-consequence tail of the distribution of possible events, as opposed to best estimates based on central tendencies. We frame the climate change problem and its associated risks in a similar manner. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We therefore propose the use of specialized statistical surrogate models (SSMs) for the purpose of exploring the probability law of various climate variables of interest. A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field. The SSM can be calibrated to available spatial and temporal data from existing climate databases, e.g., the Program for Climate Model Diagnosis and Intercomparison (PCMDI), or to a collection of outputs from a General Circulation Model (GCM), e.g., the Community Earth System Model (CESM) and its predecessors. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework is developed to provide quantitative measures of confidence, via Bayesian credible intervals, in the use of the proposed approach to assess these risks.

  10. Implementing Numerical Experiments Based on the Coupled Model of Atmospheric General Circulation and Thermohaline Ocean One

    Directory of Open Access Journals (Sweden)

    V. P. Parhomenko

    2015-01-01

    Full Text Available The paper presents a realized hydrodynamic three-dimensional global climatic model, which comprises the model blocks of atmospheric general circulation, thermohaline large-scale circulation of the ocean, and sea ice evolution. Before rather strongly aggregated heat-moisturebalance model of the atmosphere for temperature and humidity of a surface layer was used as a model of the atmosphere. The atmospheric general circulation model is significantly more complicated and allows us to describe processes in the atmosphere more adequately. Functioning of a coupled climatic model is considered in conditions of the seasonal cycle of solar radiation.The paper considers a procedure for coupled calculation of the ocean model and atmospheric general circulation model. Synchronization of a number of parameters in both models is necessary for their joint action. In this regard a procedure of two-dimensional interpolation of data defined on the grids of the ocean model and atmosphere model and back is developed. A feature of this task is discrepancy of grid nodes and continental configurations in models. Coupled model-based long-term calculations for more than 400 years have shown its stable work. Calculation results and comparison with observation data are under discussion.The paper shows distribution of mean global atmosphere temperature versus time in stable conditions to demonstrate that there is inter-annual variability of atmosphere temperature at the steady state of a climate system. It presents distribution of temperature difference of the ocean surface from the observations and from the model of the ocean thermohaline circulation for January. Noticeable deviations of temperature are observed near Antarctica. Apparently, it is because of inaccurate calculation of the sea ice distribution in model. The geographical distribution of the ocean surface temperature for January with coupled calculation shows, in general, a zonal uniform structure of isolines

  11. The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations

    Science.gov (United States)

    Alexander, K.; Easterbrook, S. M.

    2015-04-01

    We analyze the source code of eight coupled climate models, selected from those that participated in the CMIP5 (Taylor et al., 2012) or EMICAR5 (Eby et al., 2013; Zickfeld et al., 2013) intercomparison projects. For each model, we sort the preprocessed code into components and subcomponents based on dependency structure. We then create software architecture diagrams that show the relative sizes of these components/subcomponents and the flow of data between them. The diagrams also illustrate several major classes of climate model design; the distribution of complexity between components, which depends on historical development paths as well as the conscious goals of each institution; and the sharing of components between different modeling groups. These diagrams offer insights into the similarities and differences in structure between climate models, and have the potential to be useful tools for communication between scientists, scientific institutions, and the public.

  12. Evaluating the performance and utility of regional climate models

    DEFF Research Database (Denmark)

    Christensen, Jens H.; Carter, Timothy R.; Rummukainen, Markku

    2007-01-01

    This special issue of Climatic Change contains a series of research articles documenting co-ordinated work carried out within a 3-year European Union project 'Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects' (PRUDENCE). The main objective...... of the PRUDENCE project was to provide high resolution climate change scenarios for Europe at the end of the twenty-first century by means of dynamical downscaling (regional climate modelling) of global climate simulations. The first part of the issue comprises seven overarching PRUDENCE papers on: (1) the design...... of the model simulations and analyses of climate model performance, (2 and 3) evaluation and intercomparison of simulated climate changes, (4 and 5) specialised analyses of impacts on water resources and on other sectors including agriculture, ecosystems, energy, and transport, (6) investigation of extreme...

  13. The cascade of uncertainty in modeling the impacts of climate change on Europe's forests

    Science.gov (United States)

    Reyer, Christopher; Lasch-Born, Petra; Suckow, Felicitas; Gutsch, Martin

    2015-04-01

    decreasing trends are mostly found in already warm and dry regions despite large differences in model structure, model parameters and climate change scenarios that induce considerable uncertainty into future projections. We also show that there are data assimilation techniques available to assess some types of uncertainties but also that many climate change impact assessment in forest ecosystems (including those presented here as well as observational and experimental studies) have focused to a large extent on testing the response of plants to changes in mean climate rather than climatic extremes. The latter may however ultimately shape the responses to a driving variable in reality. Finally, we highlight how these uncertainties culminate in increasingly complex management of natural resources in coupled social-ecological systems.

  14. The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuying [Lawrence Livermore National Laboratory, Livermore, California; Xie, Shaocheng [Lawrence Livermore National Laboratory, Livermore, California; Klein, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California; Marchand, Roger [University of Washington, Seattle, Washington; Kollias, Pavlos [Stony Brook University, Stony Brook, New York; Clothiaux, Eugene E. [The Pennsylvania State University, University Park, Pennsylvania; Lin, Wuyin [Brookhaven National Laboratory, Upton, New York; Johnson, Karen [Brookhaven National Laboratory, Upton, New York; Swales, Dustin [CIRES and NOAA/Earth System Research Laboratory, Boulder, Colorado; Bodas-Salcedo, Alejandro [Met Office Hadley Centre, Exeter, United Kingdom; Tang, Shuaiqi [Lawrence Livermore National Laboratory, Livermore, California; Haynes, John M. [Cooperative Institute for Research in the Atmosphere/Colorado State University, Fort Collins, Colorado; Collis, Scott [Argonne National Laboratory, Argonne, Illinois; Jensen, Michael [Brookhaven National Laboratory, Upton, New York; Bharadwaj, Nitin [Pacific Northwest National Laboratory, Richland, Washington; Hardin, Joseph [Pacific Northwest National Laboratory, Richland, Washington; Isom, Bradley [Pacific Northwest National Laboratory, Richland, Washington

    2018-01-01

    Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have had difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the concept of instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to improve and to facilitate the comparison of modeled clouds with observations. Many simulators have (and continue to be developed) for a variety of instruments and purposes. A community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Klein et al. 2013; Zhang et al. 2010). This article introduces a ground-based cloud radar simulator developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for comparing climate model clouds with ARM observations from its vertically pointing 35-GHz radars. As compared to CloudSat radar observations, ARM radar measurements occur with higher temporal resolution and finer vertical resolution. This enables users to investigate more fully the detailed vertical structures within clouds, resolve thin clouds, and quantify the diurnal variability of clouds. Particularly, ARM radars are sensitive to low-level clouds, which are

  15. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

    2014-05-01

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  16. Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleoecological approaches

    Science.gov (United States)

    Saros, Jasmine E.; Stone, Jeffery R.; Pederson, Gregory T.; Slemmons, Krista; Spanbauer, Trisha; Schliep, Anna; Cahl, Douglas; Williamson, Craig E.; Engstrom, Daniel R.

    2015-01-01

    Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.

  17. Modelling mid-Pliocene climate with COSMOS

    Directory of Open Access Journals (Sweden)

    C. Stepanek

    2012-10-01

    Full Text Available In this manuscript we describe the experimental procedure employed at the Alfred Wegener Institute in Germany in the preparation of the simulations for the Pliocene Model Intercomparison Project (PlioMIP. We present a description of the utilized Community Earth System Models (COSMOS, version: COSMOS-landveg r2413, 2009 and document the procedures that we applied to transfer the Pliocene Research, Interpretation and Synoptic Mapping (PRISM Project mid-Pliocene reconstruction into model forcing fields. The model setup and spin-up procedure are described for both the paleo- and preindustrial (PI time slices of PlioMIP experiments 1 and 2, and general results that depict the performance of our model setup for mid-Pliocene conditions are presented. The mid-Pliocene, as simulated with our COSMOS setup and PRISM boundary conditions, is both warmer and wetter in the global mean than the PI. The globally averaged annual mean surface air temperature in the mid-Pliocene standalone atmosphere (fully coupled atmosphere-ocean simulation is 17.35 °C (17.82 °C, which implies a warming of 2.23 °C (3.40 °C relative to the respective PI control simulation.

  18. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  19. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian

    2016-01-01

    to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice......Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land...

  20. Climate of the greenland ice sheet using a high - resolution climate model - part 1 : evaluation

    National Research Council Canada - National Science Library

    Ettema, J; van den Broeke, M.R; van Meijgaard, E; van den Berg, W.J; Box, J.E; Steffen, K

    2010-01-01

    ... into the surface part of the climate model. The temporal evolution and climatology of the model is evaluated with in situ coastal and ice sheet atmospheric measurements of near-surface variables and surface energy balance components...

  1. Quantifying Hydro-biogeochemical Model Sensitivity in Assessment of Climate Change Effect on Hyporheic Zone Processes

    Science.gov (United States)

    Song, X.; Chen, X.; Dai, H.; Hammond, G. E.; Song, H. S.; Stegen, J.

    2016-12-01

    The hyporheic zone is an active region for biogeochemical processes such as carbon and nitrogen cycling, where the groundwater and surface water mix and interact with each other with distinct biogeochemical and thermal properties. The biogeochemical dynamics within the hyporheic zone are driven by both river water and groundwater hydraulic dynamics, which are directly affected by climate change scenarios. Besides that, the hydraulic and thermal properties of local sediments and microbial and chemical processes also play important roles in biogeochemical dynamics. Thus for a comprehensive understanding of the biogeochemical processes in the hyporheic zone, a coupled thermo-hydro-biogeochemical model is needed. As multiple uncertainty sources are involved in the integrated model, it is important to identify its key modules/parameters through sensitivity analysis. In this study, we develop a 2D cross-section model in the hyporheic zone at the DOE Hanford site adjacent to Columbia River and use this model to quantify module and parametric sensitivity on assessment of climate change. To achieve this purpose, We 1) develop a facies-based groundwater flow and heat transfer model that incorporates facies geometry and heterogeneity characterized from a field data set, 2) derive multiple reaction networks/pathways from batch experiments with in-situ samples and integrate temperate dependent reactive transport modules to the flow model, 3) assign multiple climate change scenarios to the coupled model by analyzing historical river stage data, 4) apply a variance-based global sensitivity analysis to quantify scenario/module/parameter uncertainty in hierarchy level. The objectives of the research include: 1) identifing the key control factors of the coupled thermo-hydro-biogeochemical model in the assessment of climate change, and 2) quantify the carbon consumption in different climate change scenarios in the hyporheic zone.

  2. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    Science.gov (United States)

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  3. The Future of Planetary Climate Modeling and Weather Prediction

    Science.gov (United States)

    Del Genio, A. D.; Domagal-Goldman, S. D.; Kiang, N. Y.; Kopparapu, R. K.; Schmidt, G. A.; Sohl, L. E.

    2017-01-01

    Modeling of planetary climate and weather has followed the development of tools for studying Earth, with lags of a few years. Early Earth climate studies were performed with 1-dimensionalradiative-convective models, which were soon fol-lowed by similar models for the climates of Mars and Venus and eventually by similar models for exoplan-ets. 3-dimensional general circulation models (GCMs) became common in Earth science soon after and within several years were applied to the meteorology of Mars, but it was several decades before a GCM was used to simulate extrasolar planets. Recent trends in Earth weather and and climate modeling serve as a useful guide to how modeling of Solar System and exoplanet weather and climate will evolve in the coming decade.

  4. A Coupled Atmosphere-Ocean-Wave Modeling System

    Science.gov (United States)

    Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.

    2012-12-01

    A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.

  5. Energy demand analytics using coupled technological and economic models

    Science.gov (United States)

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  6. On the coupling of benthic and pelagic biogeochemical models

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Middelburg, J.J.; Herman, P.M.J.; Buis, K.

    2000-01-01

    Mutual interaction of water column and sediment processes is either neglected or only crudely approximated in many biogeochemical models. We have reviewed the approaches to couple benthic and pelagic biogeochemical models. It is concluded that they can be classified into a hierarchical set

  7. Concepts and models of coupled systems

    Science.gov (United States)

    Ertsen, Maurits

    2017-04-01

    In this paper, I will especially focus on the question of the position of human agency, social networks and complex co-evolutionary interactions in socio-hydrological models. The long term perspective of complex systems' modeling typically focuses on regional or global spatial scales and century/millennium time scales. It is still a challenge to relate correlations in outcomes defined at those longer and larger scales to the causalities at the shorter and smaller scales. How do we move today to the next 1000 years in the same way that our ancestors did move from their today to our present, in the small steps that produce reality? Please note, I am not arguing long term work is not interesting or the like. I just pose the question how to deal with the problem that we employ relations with hindsight that matter to us, but not necessarily to the agents that produced the relations we think we have observed. I would like to push the socio-hydrological community a little into rethinking how to deal with complexity, with the aim to bring together the timescales of humans and complexity. I will provide one or two examples of how larger-scale and longer-term observations on water flows and environmental loads can be broken down into smaller-scale and shorter-term production processes of these same loads.

  8. [Lake eutrophication modeling in considering climatic factors change: a review].

    Science.gov (United States)

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  9. Service-Oriented Approach to Coupling Earth System Models and Modeling Frameworks

    Science.gov (United States)

    Goodall, J. L.; Saint, K. D.; Ercan, M. B.; Briley, L. J.; Murphy, S.; You, H.; DeLuca, C.; Rood, R. B.

    2012-12-01

    Modeling water systems often requires coupling models across traditional Earth science disciplinary boundaries. While there has been significant effort within various Earth science disciplines (e.g., atmospheric science, hydrology, and Earth surface dynamics) to create models and, more recently, modeling frameworks, there has been less work on methods for coupling across disciplinary-specific models and modeling frameworks. We present work investigating one possible method for coupling across disciplinary-specific Earth system models and modeling frameworks: service-oriented architectures. In a service-oriented architecture, models act as distinct units or components within a system and are designed to pass well defined messages to consumers of the service. While the approach offers the potential to couple heterogeneous computational models by allowing a high degree of autonomy across models of the Earth system, there are significant scientific and technical challenges to be addressed when coupling models designed for different communities and built for different modeling frameworks. We have addressed some of these challenges through a case study where we coupled a hydrologic model compliant with the OpenMI standard with an atmospheric model compliant with the EMSF standard. In this case study, the two models were coupled through data exchanges of boundary conditions enabled by exposing the atmospheric model as a web service. A discussion of the technical and scientific challenges, some that we have addressed and others that remain open, will be presented including differences in computer architectures, data semantics, and spatial scales between the coupled models.

  10. Making objective summaries of climate model behavior more accessible

    Science.gov (United States)

    Gleckler, P. J.

    2016-12-01

    For multiple reasons, a more efficient and systematic evaluation of publically available climate model simulations is urgently needed. The IPCC, national assessments, and an assortment of other public and policy-driven needs place taxing demands on researchers. While cutting edge research is essential to meeting these needs, so too are results from well-established analysis, and these should be more efficiently produced, widely accessible, and be highly traceable. Furthermore, the number of simulations used by the research community is already large and expected to dramatically increase with the 6th phase of the Coupled Model Intercomparison Project (CMIP6). To help meet the demands on the research community and synthesize results from the rapidly expanding number and complexity of model simulations, well-established characteristics from all CMIP DECK (Diagnosis, Evaluation and Characterization of Klima) experiments will be routinely produced and made accessible. This presentation highlights the PCMDI Metrics Package (PMP), a capability that is designed to provide a diverse suite of objective summary statistics across spatial and temporal scales, gauging the agreement between models and observations. In addition to the PMP, ESMValTool is being developed to broadly diagnose CMIP simulations, and a variety of other packages target specialized sets of analysis. The challenges and opportunities of working towards coordinating these community-based capabilities will be discussed.

  11. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  12. Fluid coupling in a discrete model of cochlear mechanics.

    Science.gov (United States)

    Elliott, Stephen J; Lineton, Ben; Ni, Guangjian

    2011-09-01

    A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea. © 2011 Acoustical Society of America

  13. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    Science.gov (United States)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  14. Climate change impact of wind energy availability in the Eastern Mediterranean using the regional climate model PRECIS

    Directory of Open Access Journals (Sweden)

    A. Bloom

    2008-11-01

    Full Text Available Global near-surface wind fields are projected to change as a result of climate change. An enhanced knowledge of the changes in wind energy availability in the twenty-first century is essential for improving the development of wind energy production. We use the PRECIS regional model over the East Mediterranean to dynamically downscale the results of the Had3CM Atmosphere-Ocean coupled Global Circulation Model. Wind field changes during the 21st century are determined by comparing the current climate simulation (1961–1990 with the IPCC A2 emissions scenario simulation (2071–2100. The consistency of the current climate simulation of wind speeds is assessed by comparing its results to the ERA40 re-analysis data. The comparison of the wind field from ERA40 re-analysis to that from the PRECIS current climate simulation shows relatively large mean differences that could partly be attributed to the difference in the spatial resolution of the two sources of data. Wind speeds in 2071–2100 exhibit a general increase over land and a decrease over the sea, with the exception of a noticeable increase over the Aegean Sea.

  15. On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H. -Y.; Xie, S.; Klein, S. A.; Williams, K. D.; Boyle, J. S.; Bony, S.; Douville, H.; Fermepin, S.; Medeiros, B.; Tyteca, S.; Watanabe, M.; Williamson, D.

    2014-02-01

    The present study examines the correspondence between short- and long-term systematic errors in five atmospheric models by comparing the 16 five-day hindcast ensembles from the Transpose Atmospheric Model Intercomparison Project II (Transpose-AMIP II) for July–August 2009 (short term) to the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and AMIP for the June–August mean conditions of the years of 1979–2008 (long term). Because the short-term hindcasts were conducted with identical climate models used in the CMIP5/AMIP simulations, one can diagnose over what time scale systematic errors in these climate simulations develop, thus yielding insights into their origin through a seamless modeling approach. The analysis suggests that most systematic errors of precipitation, clouds, and radiation processes in the long-term climate runs are present by day 5 in ensemble average hindcasts in all models. Errors typically saturate after few days of hindcasts with amplitudes comparable to the climate errors, and the impacts of initial conditions on the simulated ensemble mean errors are relatively small. This robust bias correspondence suggests that these systematic errors across different models likely are initiated by model parameterizations since the atmospheric large-scale states remain close to observations in the first 2–3 days. However, biases associated with model physics can have impacts on the large-scale states by day 5, such as zonal winds, 2-m temperature, and sea level pressure, and the analysis further indicates a good correspondence between short- and long-term biases for these large-scale states. Therefore, improving individual model parameterizations in the hindcast mode could lead to the improvement of most climate models in simulating their climate mean state and potentially their future projections.

  16. Usage of web-GIS platform Climate to prepare specialists in climate changes modeling and analysis

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A web-GIS based platform "Climate" developed in our institute (http://climate.scert.ru/) has a set of tools and data bases to perform climate changes analysis on the selected territory. The platform is functioning and open for registration and all these tools are available. Besides that the platform has a potential to be used in education. It contains several educational courses followed by tests and trainings which are performed within the platform "Climate" using its web-gis tools. The main purpose of a new "Climatic and environmental modeling" module course is to enable students and graduates meteorological departments to improve their knowledge and skills in modern climatology. Although the emphasis is on climate science, the course is directly related to the part of the ecological science, which refers to the environment. This is due to the fact that the current global climate models have become models of the Earth system and include models of environment as well. The module includes a main course of lectures devoted to basic aspects of modern climatology , including analysis of the current climate change and its possible consequences , a special course on geophysical hydrodynamics, several on-line computing labs dedicated to specific monitoring and modeling of climate and climate change , as well as information kit , which not only includes the usual list of recommended reading, but also contains the files of many publications , the distribution of which is not limited by copyright law. Laboratory exercises are designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate". The resu