2D-DOA and Mutual Coupling Estimation in Vehicle Communication System via Conformal Array
Directory of Open Access Journals (Sweden)
Yan Zou
2015-01-01
Full Text Available Many direction-of-arrival (DOA estimation algorithms have been proposed recently. However, the effect of mutual coupling among antenna elements has not been taken into consideration. In this paper, a novel DOA and mutual coupling coefficient estimation algorithm is proposed in intelligent transportation systems (ITS via conformal array. By constructing the spectial mutual coupling matrix (MCM, the effect of mutual coupling can be eliminated via instrumental element method. Then the DOA of incident signals can be estimated based on parallel factor (PARAFAC theory. The PARAFAC model is constructed in cumulant domain using covariance matrices. The mutual coupling coefficients are estimated based on the former DOA estimation and the matrix transformation between MCM and the steering vector. Finally, due to the drawback of the parameter pairing method in Wan et al., 2014, a novel method is given to improve the performance of parameter pairing. The computer simulation verifies the effectiveness of the proposed algorithm.
Quasiparticle interference in unconventional 2D systems.
Chen, Lan; Cheng, Peng; Wu, Kehui
2017-03-15
At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe 2 ), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.
Energy Technology Data Exchange (ETDEWEB)
Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)
1995-09-01
Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.
The Ising model coupled to 2d orders
Glaser, Lisa
2018-04-01
In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.
International Nuclear Information System (INIS)
Krishtopenko, S. S.
2015-01-01
The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system
Energy Technology Data Exchange (ETDEWEB)
Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)
2015-02-15
The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.
International Nuclear Information System (INIS)
Bouis, F.
1999-01-01
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
Theory of Magnetoelectric Properties of 2D Systems
Chen, S. C.; Wu, J. Y.; Lin, C. Y.; Lin, M. F.
2017-12-01
This book addresses important advances in diverse quantization phenomena. 'Theory of Magnetoelectric Properties of 2D Systems' develops the generalized tight-binding model in order to comprehend the rich quantization phenomena in 2D materials. The unusual effects, taken into consideration simultaneously, mainly come from the multi-orbital hybridization, the spin-orbital coupling, the intralayer and interlayer atomic interactions, the layer number, the stacking configuration, the site-energy difference, the magnetic field, and the electric field. The origins of the phenomena are discussed in depth, particularly focusing on graphene, tinene, phosphorene and MoS2, with a broader model also drawn. This model could be further used to investigate electronic properties of 1D and 3D condensed-matter systems, and this book will prove to be a valuable resource to researchers and graduate students working in 2D materials science.
Persistent spin helices in 2D electron systems
Kozulin, A. S.; Malyshev, A. I.; Konakov, A. A.
2017-03-01
We present a theoretical investigation of persistent spin helices in two-dimensional electron systems with spin-orbit coupling. For this purpose, we consider a single-particle effective mass Hamiltonian with a generalized linear-in- k spin-orbit coupling term corresponding to a quantum well grown in an arbitrary crystallographic direction, and derive the general condition for the formation of the persistent spin helix. This condition applied for the Hamiltonians describing quantum wells with different growth directions indicates the possibility of existence of the persistent spin helix in a wide class of 2D systems apart from the [001] model with equal Rashba and Dresselhaus spin-orbit coupling strengths and the [110] Dresselhaus model.
Study on 2D arbitrary geometry coupling resonance method
International Nuclear Information System (INIS)
He Lei; Wu Hongchun; Cao Liangzhi
2014-01-01
The paper firstly proposes a coupling resonance method in which subgroup method is employed in the serried peak energy region, and wavelet expansion method is employed in single peak energy region. The original subgroup model and wavelet expansion model are improved and coupled through the calculation of scattering source from subgroup to wavelet expansion, so that the self-shielding cross section in the whole energy region can be calculated accurately. To verify these theories and to prove the improvements, a PWR cell benchmark problem is calculated. It is demonstrated that, compared with other traditional multi-group resonance methods and continuous energy resonance method, this coupling resonance method has the ability to accurately calculate the whole energy region's self-shielding cross section while Keeping enough efficiency and finally has an ability to offer the accurate self-shielding parameters for latter transport, calculation. (authors)
Numerical experiments on 2D strongly coupled complex plasmas
International Nuclear Information System (INIS)
Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E
2010-01-01
The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.
CPDES2, Coupled 2-D Partial Differential Equation Solution
International Nuclear Information System (INIS)
Anderson, D.V.; Koniges, A.E.; Shumaker, D.E.
1992-01-01
1 - Description of program or function: CPDES2 solves the linear asymmetric equations arising from coupled partial differential equations in two dimensions. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximation employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils, permits general coupling between all of the component PDE's, and automatically generates the matrix structures needed to perform the algorithm. 2 - Method of solution: The resulting sparse matrix equation with a complicated sub-band structure and generally asymmetric is solved by either the preconditioned conjugate gradient (CG) method or the preconditioned bi-conjugate gradient (BCG) algorithm. BCG enjoys faster convergence in most cases but in rare instances diverges. Then, CG iterations must be used. 3 - Restrictions on the complexity of the problem: The discretization of the coupled two-dimensional PDE's and their boundary conditions must result in an operator stencil which fits in the Cray2 memory. In addition, the matrix must possess a reasonable amount of diagonal dominance for the preconditioning technique to be effective
Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi
2017-09-01
Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.
Coupling heat conduction and radiation in complex 2D and 3D geometries
International Nuclear Information System (INIS)
Peniguel, C.
1997-01-01
Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author)
Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S.
2016-01-01
Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected ...
2D electron systems viewed through an RF spectrometer
International Nuclear Information System (INIS)
Andrei, E.Y.
1994-01-01
Electrons trapped at the liquid helium-vacuum interface are an almost ideal realization of a 2D electron system. I will describe experiments probing the in-plane as well as the out-of-plane motion of the electrons. The former have emphasized the dynamics and thermodynamics of the electronic motion within the plane to understand the nature of the liquid-solid transition and to outline its phase boundary. The latter have studied the escape out of the electron layer and provided an opportunity to observe tunneling in a clean and well-characterized system as well as to measure the effects of correlations on the tunneling process. More recently experiments in the presence of a magnetic field transverse to the direction of tunneling have revealed several novel phenomena associated with the magnetic coupling between the in-plane and the out-of-plane electronic motions. Together, these experiments helped uncover the multi-faceted physics that can be found in this system. (orig.)
Coupling heat conduction and radiation in complex 2D and 3D geometries
Energy Technology Data Exchange (ETDEWEB)
Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I [SIMULOG, 78 - Guyancourt (France)
1998-12-31
Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author) 6 refs.
Ghostine, Rabih; Hoteit, Ibrahim; Vazquez, Jose; Terfous, Abdelali; Ghenaim, Abdellah; Mose, Robert
2014-01-01
In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D
Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction
Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi
2013-10-01
A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.
Couple stress theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models
Directory of Open Access Journals (Sweden)
Zozulya V.V.
2017-01-01
Full Text Available New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.
Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment
Energy Technology Data Exchange (ETDEWEB)
Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.
2008-04-01
Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution
Chiral 2d theories from N=4 SYM with varying coupling
Energy Technology Data Exchange (ETDEWEB)
Lawrie, Craig [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany); Schäfer-Nameki, Sakura [Mathematical Institute, University of Oxford,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)
2017-04-19
We study 2d chiral theories arising from 4d N=4 Super-Yang Mills (SYM) with varying coupling τ. The 2d theory is obtained by dimensional reduction of N=4 SYM on a complex curve with a partial topological twist that accounts for the non-constant τ. The resulting 2d theories can preserve (0,n) with n=2,4,6,8 chiral supersymmetry, and have a natural realization in terms of strings from wrapped D3-branes in F-theory. We determine the twisted dimensional reduction, as well as the spectrum and anomaly polynomials of the resulting strings in various dimensions. We complement this by considering the dual M-theory configurations, which can either be realized in terms of M5-branes wrapped on complex surfaces, or M2-branes on curves that result in 1d supersymmetric quantum mechanics.
Weak coupling theory of the ripplon limited mobility of a 2-D electron lattice
International Nuclear Information System (INIS)
Dahm, A.J.; Mehrotra, R.
1981-01-01
The one ripplon-n phonon scattering contribution to the mobility of a 2D electron lattice supported by a liquid helium substrate is calculated in first order perturbation theory to all orders of n in the weak coupling limit. The Debye Waller factor is shown to limit the momentum transfer at large ripplon wave-vectors and high temperatures causing a minimum in the mobility as a function of temperature. (orig.)
Magnetometry and transport studies of 2D systems
Energy Technology Data Exchange (ETDEWEB)
Watts, J.P
1999-06-01
This thesis presents measurements of the magnetisation and magnetotransport of two-dimensional electron and hole systems, at low temperatures and high magnetic fields. When the magnetic field is swept through a resistivity minimum associated with the quantum Hall effect, circulating 'eddy' currents are induced in the 2D electron system. These currents may be large enough to cause breakdown of the quantum Hall effect. Breakdown has been examined in high-mobility electron and hole samples, by recording the magnetic moments associated with these eddy currents, and the results have been compared to breakdown models. Eddy currents observed at fractional quantum Hall effect (FQHE) filling factors have been used to determine the FQHE gap energy. The measured value is far closer to theoretical predictions than the results of conventional measurements: this is thought to be because breakdown arises through inter-Landau-level tunnelling, which is local on the scale of the disorder. A series of quantum Hall effect measurements have been performed on a low density sample. Depopulating the Landau levels by applying an increasing gate voltage allowed the numbers of localised and extended states to be counted at each magnetic field. The number of extended states may the be plotted as a function of reducing magnetic field. In certain circumstances, the number of extended states drops to zero before the magnetic field is zero: the system is entirely localised for a range of small fields, consistent with the theories of levitation of extended states. The idea that each Landau level contains only one extended state is also challenged. Measurements of the equilibrium magnetisation of a 2DES may be used to give insight into the shape of the electron density of states. Results are presented of the de Haas - van Alphen oscillations of a very high mobility, low density sample, in which magnetisation oscillations are observed at odd as well as even integer filling factors. The
Conformal internal symmetry of 2d σ-models coupled to gravity and a dilaton
International Nuclear Information System (INIS)
Julia, B.
1996-01-01
General relativity reduced to two dimensions possesses a large group of symmetries that exchange classical solutions. The associated Lie algebra is known to contain the affine Kac-Moody algebra A 1 (1) and half of a real Witt algebra. In this paper we exhibit the full symmetry under the semi-direct product of Lie(A 1 (1) ) by the Witt algebra Lie(W). Furthermore we exhibit the corresponding hidden gauge symmetries. We show that the theory can be understood in terms of an infinite dimensional potential space involving all degrees of freedom: the dilaton as well as matter and gravitation. In the dilaton sector the linear system that extends the previously known Lax pair has the form of a twisted self-duality constraint that is the analog of the self-duality constraint arising in extended supergravities in higher space-time dimensions. Our results furnish a group theoretical explanation for the simultaneous occurrence of two spectral parameters, a constant one (=y) and a variable one (=t). They hold for all 2d non-linear σ-models that are obtained by dimensional reduction of G/H models in three dimensions coupled to pure gravity. (orig./WL) (orig.)
Conformal internal symmetry of 2d σ-models coupled to gravity and a dilaton
International Nuclear Information System (INIS)
Julia, B.; Nicolai, H.
1996-08-01
General relativity reduced to two dimensions possesses a large group of symmetries that exchange classical solutions. The associated Lie algebra is known to contain the affine Kac-Moody algebra A 1 (1) and half of a real Witt algebra. In this paper we exhibit the full symmetry under the semi-direct product of Lie(A 1 (1) ) by the Witt algebra Lie(W). Furthermore we exhibit the corresponding hidden gauge symmetries. We show that the theory can be understood in terms of an infinite dimensional potential space involving all degrees of freedom: The dilaton as well as matter and gravitation. In the dilaton sector the linear system that extends the previously known Lax pair has the form of a twisted self-duality constraint that is the analog of the self-duality constraint arising in extended supergravities in higher spacetime dimensions. Our results furnish a group theoretical explanation for the simultaneous occurrence of two spectral parameters, a constant one (=y) and a variable one (=t). They hold for all 2d non-linear σ-models that are obtained by dimensional reduction of G/H models in three dimensions coupled to pure gravity. In that case the Lie algebra is Lie(W∝G (1) ); this symmetry acts on a set of off shell fields (in a fixed gauge) and preserves the equations of motion. (orig.)
Computationally Efficient 2D DOA Estimation for L-Shaped Array with Unknown Mutual Coupling
Directory of Open Access Journals (Sweden)
Yang-Yang Dong
2018-01-01
Full Text Available Although L-shaped array can provide good angle estimation performance and is easy to implement, its two-dimensional (2D direction-of-arrival (DOA performance degrades greatly in the presence of mutual coupling. To deal with the mutual coupling effect, a novel 2D DOA estimation method for L-shaped array with low computational complexity is developed in this paper. First, we generalize the conventional mutual coupling model for L-shaped array and compensate the mutual coupling blindly via sacrificing a few sensors as auxiliary elements. Then we apply the propagator method twice to mitigate the effect of strong source signal correlation effect. Finally, the estimations of azimuth and elevation angles are achieved simultaneously without pair matching via the complex eigenvalue technique. Compared with the existing methods, the proposed method is computationally efficient without spectrum search or polynomial rooting and also has fine angle estimation performance for highly correlated source signals. Theoretical analysis and simulation results have demonstrated the effectiveness of the proposed method.
Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters
Directory of Open Access Journals (Sweden)
Adeniyi Ganiyu Adeogun
2015-10-01
Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain. Keywords: Inundation, DEM, Sensitivity analysis, Model coupling, Flooding
A new 2-d approach to iterative , learning control system
International Nuclear Information System (INIS)
Ashraf, S.; Muhammad, E.; Tasleem, M.
2004-01-01
The well known two-dimensional system theory is used to analyze and develop a class of learning control system. In this paper we first explore and test a method given by ZHENG and JAMSHIDI. In that paper all the input samples are treated at once. In comparison our paper presents a scheme in which one sample at a time is treated. The 2- D state-space model of proposed learning control scheme is given. An important consequence of the proposed scheme is that given the right choice of gain matrix and sampling time the system's output can be made to converge to any degree of accuracy. (author)
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
Two-particle microrheology of quasi-2D viscous systems.
Prasad, V; Koehler, S A; Weeks, Eric R
2006-10-27
We study the spatially correlated motions of colloidal particles in a quasi-2D system (human serum albumin protein molecules at an air-water interface) for different surface viscosities eta s. We observe a transition in the behavior of the correlated motion, from 2D interface dominated at high eta s to bulk fluid dependent at low eta s. The correlated motions can be scaled onto a master curve which captures the features of this transition. This master curve also characterizes the spatial dependence of the flow field of a viscous interface in response to a force. The scale factors used for the master curve allow for the calculation of the surface viscosity eta s that can be compared to one-particle measurements.
Electrical spin injection into high mobility 2D systems.
Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D
2014-12-05
We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.
Directory of Open Access Journals (Sweden)
Pramod Kumar Singh
2016-01-01
Full Text Available Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE across a broad range 3.0–10.0 immobilized pH gradient (IPG strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana.
Thermodynamics of the localized D2-D6 system
International Nuclear Information System (INIS)
Gomez-Reino, Marta; Naculich, Stephen G.; Schnitzer, Howard J.
2005-01-01
An exact fully-localized extremal supergravity solution for N 2 D2-branes and N 6 D6-branes, which is dual to 3-dimensional supersymmetric SU(N 2 ) gauge theory with N 6 fundamentals, was found by Cherkis and Hashimoto. In order to consider the thermal properties of the gauge theory we present the non-extremal extension of this solution to first order in an expansion near the core of the D6-branes. We compute the Hawking temperature and the black-brane horizon area/entropy. The leading-order entropy, which is proportional to N 2 3/2 N 6 1/2 T H 2 , is not corrected to first order in the expansion. This result is consistent with the analogous weak-coupling result at the correspondence point N 2 similar to N 6
2-D linear motion system. Innovative technology summary report
International Nuclear Information System (INIS)
1998-11-01
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m 2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However
High performance CCD camera system for digitalisation of 2D DIGE gels.
Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf
2016-07-01
An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.
Energy Technology Data Exchange (ETDEWEB)
Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-08-01
Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.
The supersymmetric configurations of N=2, d=4 supergravity coupled to vector supermultiplets
Meessen, P
2006-01-01
We classify all the supersymmetric configurations of ungauged N=2,d=4 supergravity coupled to n vector multiplets and determine under which conditions they are also classical solutions of the equations of motion. The supersymmetric configurations fall into two classes, depending on the timelike or null nature of the Killing vector constructed from Killing spinor bilinears. The timelike class configurations are essentially the ones found by Behrndt, Luest and Sabra, which exhaust this class and are the ones that include supersymmetric black holes. The null class configurations include pp-waves and cosmic strings.
Ghostine, Rabih
2014-12-01
In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.
Symmetries of the 2D magnetic particle imaging system matrix
International Nuclear Information System (INIS)
Weber, A; Knopp, T
2015-01-01
In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. (paper)
Integer channels in nonuniform non-equilibrium 2D systems
Shikin, V.
2018-01-01
We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yuxian [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Sun, Hongqi [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xiao, Jiadong; Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shaobin, E-mail: shaobin.wang@curtin.edu.au [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)
2016-01-15
Highlights: • 2D γ-MnO{sub 2}/2D rGO hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route were prepared. • MnO{sub 2}/rGO exhibits high activity in catalytic ozonation of 4-nitrophenol. • ·O{sub 2}{sup ̄} and {sup 1}O{sub 2} are the major radicals for 4-nitrophenol degradation and mineralization. • A synergistic effect of ozonation and peroxymonosulfate oxidation was evaluated. - Abstract: Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO{sub 2}/2D rGO nano-hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO{sub 2}/rGO was much higher than either MnO{sub 2} or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O{sub 2}{sup ̄} and {sup 1}O{sub 2}, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed.
2D acoustic-elastic coupled waveform inversion in the Laplace domain
Bae, Hoseuk
2010-04-01
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth\\'s structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non-linear objective function and the unreliable low-frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace-domain waveform inversion has been proposed. The Laplace-domain waveform inversion has been known to provide a long-wavelength velocity model even for field data, which may be because it employs the zero-frequency component of the damped wavefield and a well-behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media.We extend the Laplace-domain waveform inversion algorithm to a 2D acoustic-elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic-elastic coupled media, the Laplace-domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic-elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid-solid interfaces.Our Laplace-domain waveform inversion algorithm is also based on the finite-element method and logarithmic wavefields. To compute gradient direction, we apply the back-propagation technique. Under the assumption that density is fixed, P- and S-wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace-domain waveform inversion
Quality control in PET systems employing 2-D modular detectors
International Nuclear Information System (INIS)
Daghighian, F.; Hoffman, E.J.; Huang, S.C.
1989-01-01
Many new PET scanner designs employ 2-D detector modules to cost effectively achieve higher image and axial resolution. These systems are potentially less stable than older designs and the loss of a single photomultiplier can disable a large section of a multislice PET system. Because of these factors, it is now necessary to develop more sophisticated quality control procedures that are designed to detect problems as early as possible. The authors have developed and put into operation three automated quality control procedure that are designed to detect problems quickly with a minimum effort on the part of the user. These tests check: (1) stability of the detector modules in terms of efficiency, (2) resolution and its uniformity, (3) the reproducibility of the data
Thermodynamics of the localized D2-D6 system
Energy Technology Data Exchange (ETDEWEB)
Gomez-Reino, Marta [Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 (United States)]. E-mail: marta@brandeis.edu; Naculich, Stephen G. [Department of Physics, Bowdoin College, Brunswick, ME 04011 (United States)]. E-mail: naculich@bowdoin.edu; Schnitzer, Howard J. [Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 (United States)]. E-mail: schnitzer@brandeis.edu
2005-05-02
An exact fully-localized extremal supergravity solution for N{sub 2} D2-branes and N{sub 6} D6-branes, which is dual to 3-dimensional supersymmetric SU(N{sub 2}) gauge theory with N{sub 6} fundamentals, was found by Cherkis and Hashimoto. In order to consider the thermal properties of the gauge theory we present the non-extremal extension of this solution to first order in an expansion near the core of the D6-branes. We compute the Hawking temperature and the black-brane horizon area/entropy. The leading-order entropy, which is proportional to N{sub 2}{sup 3/2}N{sub 6}{sup 1/2}T{sub H}{sup 2}, is not corrected to first order in the expansion. This result is consistent with the analogous weak-coupling result at the correspondence point N{sub 2} similar to N{sub 6}.
Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling
Tian, Chang-Hai; Zhang, Xi-Yun; Wang, Zhen-Hua; Liu, Zong-Hua
2017-06-01
Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.
A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods
Energy Technology Data Exchange (ETDEWEB)
Zhang, H.; Zheng, Y.; Wu, H.; Cao, L. [School of Nuclear Science and Technology, Xi' an Jiaotong University, No. 28, Xianning West Road, Xi' an, Shaanxi 710049 (China)
2013-07-01
A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)
A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods
International Nuclear Information System (INIS)
Zhang, H.; Zheng, Y.; Wu, H.; Cao, L.
2013-01-01
A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)
2D MoS2 Neuromorphic Devices for Brain-Like Computational Systems.
Jiang, Jie; Guo, Junjie; Wan, Xiang; Yang, Yi; Xie, Haipeng; Niu, Dongmei; Yang, Junliang; He, Jun; Gao, Yongli; Wan, Qing
2017-08-01
Hardware implementation of artificial synapses/neurons with 2D solid-state devices is of great significance for nanoscale brain-like computational systems. Here, 2D MoS 2 synaptic/neuronal transistors are fabricated by using poly(vinyl alcohol) as the laterally coupled, proton-conducting electrolytes. Fundamental synaptic functions, such as an excitatory postsynaptic current, paired-pulse facilitation, and a dynamic filter for information transmission of biological synapse, are successfully emulated. Most importantly, with multiple input gates and one modulatory gate, spiking-dependent logic operation/modulation, multiplicative neural coding, and neuronal gain modulation are also experimentally demonstrated. The results indicate that the intriguing 2D MoS 2 transistors are also very promising for the next-generation of nanoscale neuromorphic device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI
DEFF Research Database (Denmark)
Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian
2013-01-01
This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3...... dopamine receptor antagonist [(11)C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels...... caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular...
The Role of screening in the strongly correlated 2D systems
Hwang, E H
2003-01-01
We investigate recently observed experiments in the strongly correlated 2D systems (r sub s >> 1) (low-density 2D plasmons, metallic behaviour of 2D systems and frictional drag resistivity between two 2D hole layers). We compare them with our theoretical results calculated within a conventional Fermi liquid theory with RPA screening.
Aespoe Pillar Stability Experiment. Final 2D coupled thermo-mechanical modelling
Energy Technology Data Exchange (ETDEWEB)
Fredriksson, Anders; Staub, Isabelle; Outters, Nils [Golder Associates AB, Uppsala (Sweden)
2004-02-01
A site scale Pillar Stability Experiment is planned in the Aespoe Hard Rock Laboratory. One of the experiment's aims is to demonstrate the possibilities of predicting spalling in the fractured rock mass. In order to investigate the probability and conditions for spalling in the pillar 'prior to experiment' numerical simulations have been undertaken. This report presents the results obtained from 2D coupled thermo-mechanical numerical simulations that have been done with the Finite Element based programme JobFem. The 2D numerical simulations were conducted at two different depth levels, 0.5 and 1.5 m below tunnel floor. The in situ stresses have been confirmed with convergence measurements during the excavation of the tunnel. After updating the mechanical and thermal properties of the rock mass the final simulations have been undertaken. According to the modelling results the temperature in the pillar will increase from the initial 15.2 deg up to 58 deg after 120 days of heating. Based on these numerical simulations and on the thermal induced stresses the total stresses are expected to exceed 210 MPa at the border of the pillar for the level at 0.5 m below tunnel floor and might reach 180-182 MPa for the level at 1.5 m below tunnel floor. The stresses are slightly higher at the border of the confined hole. Upon these results and according to the rock mechanical properties the Crack Initiation Stress is exceeded at the border of the pillar already after the excavation phase. These results also illustrate that the Crack Damage Stress is exceeded only for the level at 0.5 m below tunnel floor and after at least 80 days of heating. The interpretation of the results shows that the required level of stress for spalling can be reached in the pillar.
Melting of 2D monatomic solids: Lennard-Jones system
International Nuclear Information System (INIS)
Yi, Y.M.; Guo, Z.C.
1987-09-01
The Lennard-Jones interaction has been introduced into the Collins mix lattice of 2D liquids. By means of rigorous calculation of the total potential and the free area, the Gibbs functions for 2D liquid and solid have been derived. The melting line obtained from the phase transition equation agrees quite well with the result of recent computer simulation experiments. The obtained reduced temperature of the triple point T* t =0.438 agrees with the data measured in experiments of some inert gas monolayers adsorbed on graphite as well as in computer simulation experiments. (author). 11 refs, 7 figs, 3 tabs
2D atom localization in a four-level tripod system in laser fields
Ivanov, Vladimir; Rozhdestvensky, Yuri
2012-01-01
We propose a scheme for two-dimensional (2D) atom localization in a four-level tripod system under an influence of two orthogonal standing-wave fields. Position information of the atom is retained in the atomic internal states by an additional probe field either of a standing or of a running wave. It is shown that the localization factors depend crucially on the atom-field coupling that results in such spatial structures of populations as spikes, craters and waves. We demonstrate a high-preci...
Filik, Tansu; Tuncer, T. Engin
2010-06-01
A new technique is proposed for the solution of pairing problem which is observed when fast algorithms are used for two-dimensional (2-D) direction-of-arrival (DOA) estimation. Proposed method is integrated with array interpolation for efficient use of antenna elements. Two virtual arrays are generated which are positioned accordingly with respect to the real array. ESPRIT algorithm is used by employing both the real and virtual arrays. The eigenvalues of the rotational transformation matrix have the angle information at both magnitude and phase which allows the estimation of azimuth and elevation angles by using closed-form expressions. This idea is used to obtain the paired interpolated ESPRIT algorithm which can be applied for arbitrary arrays when there is no mutual coupling. When there is mutual coupling, two approaches are proposed in order to obtain 2-D paired DOA estimates. These blind methods can be applied for the array geometries which have mutual coupling matrices with a Toeplitz structure. The first approach finds the 2-D paired DOA angles without estimating the mutual coupling coefficients. The second approach estimates the coupling coefficients and iteratively improves both the coupling coefficients and the DOA estimates. It is shown that the proposed techniques solve the pairing problem for uniform circular arrays and effectively estimate the DOA angles in case of unknown mutual coupling.
An end-to-end coupled model ROMS-N 2 P 2 Z 2 D 2 -OSMOSE of ...
African Journals Online (AJOL)
An end-to-end coupled model ROMS-N 2 P 2 Z 2 D 2 -OSMOSE of the southern Benguela foodweb: parameterisation, calibration and pattern-oriented validation. ... We also highlight the capacity of this model for tracking indicators at various hierarchical levels. Keywords: individual-based model, model validation, ...
DNN-state identification of 2D distributed parameter systems
Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.
2012-02-01
There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.
Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system
Azura, M. S. A.; Rashidi, C. B. M.; Aljunid, S. A.; Endut, R.; Ali, N.
2017-11-01
This paper presents a realization of Wavelength/Time (W/T) Two-Dimensional Modified Double Weight (2-D MDW) code for Optical Code Division Multiple Access (OCDMA) system based on Spectral Amplitude Coding (SAC) approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN) and minimizing the Multiple Access Interference (MAI) noises. At the permissible BER 10-9, the 2-D MDW (APD) had shown minimum effective received power (Psr) = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN) only received -61 dBm. The results show that 2-D MDW (APD) has better performance in achieving same BER with longer optical fiber length and with less received power (Psr). Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.
Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system
Directory of Open Access Journals (Sweden)
Azura M. S. A.
2017-01-01
Full Text Available This paper presents a realization of Wavelength/Time (W/T Two-Dimensional Modified Double Weight (2-D MDW code for Optical Code Division Multiple Access (OCDMA system based on Spectral Amplitude Coding (SAC approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN and minimizing the Multiple Access Interference (MAI noises. At the permissible BER 10-9, the 2-D MDW (APD had shown minimum effective received power (Psr = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN only received -61 dBm. The results show that 2-D MDW (APD has better performance in achieving same BER with longer optical fiber length and with less received power (Psr. Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.
Fano-type coupling of a bound paramagnetic state with 2D continuum
International Nuclear Information System (INIS)
Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.
2013-01-01
We analyze an effect of a bound impurity state located at a tunnel distance from a quantum well (QW). The study is focused on the resonance case when the bound state energy lies within the continuum of the QW states. Using the developed theory we calculate spin polarization of 2D holes induced by paramagnetic (Mn) delta-layer in the vicinity of the QW and indirect exchange interaction between two impurities located at a tunnel distance from electron gas
On stabilisability of 2-D MIMO shift-invariant systems
Czech Academy of Sciences Publication Activity Database
Augusta, Petr; Augustová, Petra
2013-01-01
Roč. 350, č. 10 (2013), s. 2949-2966 ISSN 0016-0032 R&D Projects: GA ČR GPP103/12/P494 Institutional support: RVO:67985556 Keywords : spatially invariant system * stabilisation * multiple-input-multiple-output system, * positive polynomial Subject RIV: BC - Control Systems Theory Impact factor: 2.260, year: 2013 http://library.utia.cas.cz/separaty/2013/TR/augusta-0398772.pdf
Examples of Complete Solvability of 2D Classical Superintegrable Systems
Chen, Yuxuan; Kalnins, Ernie G.; Li, Qiushi; Miller, Willard, Jr.
2015-11-01
Classical (maximal) superintegrable systems in n dimensions are Hamiltonian systems with 2n-1 independent constants of the motion, globally defined, the maximum number possible. They are very special because they can be solved algebraically. In this paper we show explicitly, mostly through examples of 2nd order superintegrable systems in 2 dimensions, how the trajectories can be determined in detail using rather elementary algebraic, geometric and analytic methods applied to the closed quadratic algebra of symmetries of the system, without resorting to separation of variables techniques or trying to integrate Hamilton's equations. We treat a family of 2nd order degenerate systems: oscillator analogies on Darboux, nonzero constant curvature, and flat spaces, related to one another via contractions, and obeying Kepler's laws. Then we treat two 2nd order nondegenerate systems, an analogy of a caged Coulomb problem on the 2-sphere and its contraction to a Euclidean space caged Coulomb problem. In all cases the symmetry algebra structure provides detailed information about the trajectories, some of which are rather complicated. An interesting example is the occurrence of ''metronome orbits'', trajectories confined to an arc rather than a loop, which are indicated clearly from the structure equations but might be overlooked using more traditional methods. We also treat the Post-Winternitz system, an example of a classical 4th order superintegrable system that cannot be solved using separation of variables. Finally we treat a superintegrable system, related to the addition theorem for elliptic functions, whose constants of the motion are only rational in the momenta. It is a system of special interest because its constants of the motion generate a closed polynomial algebra. This paper contains many new results but we have tried to present most of the materials in a fashion that is easily accessible to nonexperts, in order to provide entrée to superintegrablity theory.
An analytic approach to 2D electronic PE spectra of molecular systems
International Nuclear Information System (INIS)
Szoecs, V.
2011-01-01
Graphical abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems using direct calculation from electronic Hamiltonians allows peak classification from 3P-PE spectra dynamics. Display Omitted Highlights: → RWA approach to electronic photon echo. → A straightforward calculation of 2D electronic spectrograms in finite molecular systems. → Importance of population time dynamics in relation to inter-site coherent coupling. - Abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems and simplified line broadening models is presented. The Fourier picture of a heterodyne detected three-pulse rephasing PE signal in the δ-pulse limit of the external field is derived in analytic form. The method includes contributions of one and two-excitonic states and allows direct calculation of Fourier PE spectrogram from corresponding Hamiltonian. As an illustration, the proposed treatment is applied to simple systems, e.g. 2-site two-level system (TLS) and n-site TLS model of photosynthetic unit. The importance of relation between Fourier picture of 3P-PE dynamics (corresponding to nonzero population time, T) and coherent inter-state coupling is emphasized.
Solving the strongly coupled 2D gravity III. String suspectibility and topological N-point functions
International Nuclear Information System (INIS)
Gervais, J.-L.; Roussel, J.-F.
1996-01-01
For pt.II see ibid., vol 426, p.140-86, 1994. We spell out the derivation of novel features, put forward earlier in a letter, of two-dimensional gravity in the strong coupling regime, at C L =7, 13, 19. Within the operator approach previously developed, they neatly follow from the appearance of a new cosmological term/marginal operator, different from the standard weak-coupling one, that determines the world-sheet interaction. The corresponding string susceptibility is obtained and found real contrary to the continuation of the KPZ formula. Strongly coupled (topological like) models - only involving zero-mode degrees of freedom - are solved up to sixth order, using the Ward identities which follow from the dependence upon the new cosmological constant. They are technically similar to the weakly coupled ones, which reproduce the matrix model results, but gravity and matter quantum numbers are entangled differently. (orig.)
Electron phonon couplings in 2D perovskite probed by ultrafast photoinduced absorption spectroscopy
Huynh, Uyen; Ni, Limeng; Rao, Akshay
We use the time-resolved photoinduced absorption (PIA) spectroscopy with 20fs time resolution to investigate the electron phonon coupling in the self-assembled hybrid organic layered perovskite, the hexyl ammonium lead iodide compound (C6H13NH3)2 (PbI4) . The coupling results in the broadening and asymmetry of its temperature-dependence photoluminescence spectra. The exact time scale of this coupling, however, wasn't reported experimentally. Here we show that using an ultrashort excitation pulse allows us to resolve from PIA kinetics the oscillation of coherent longitudinal optical phonons that relaxes and self-traps electrons to lower energy states within 200 fs. The 200fs relaxation time is equivalent to a coupling strength of 40meV. Two coupled phonon modes are also identified as about 100 cm-1 and 300 cm-1 from the FFT spectrum of the PIA kinetics. The lower energy mode is consistent with previous reports and Raman spectrum but the higher energy one hasn't been observed before.
A 1D-2D coupled SPH-SWE model applied to open channel flow simulations in complicated geometries
Chang, Kao-Hua; Sheu, Tony Wen-Hann; Chang, Tsang-Jung
2018-05-01
In this study, a one- and two-dimensional (1D-2D) coupled model is developed to solve the shallow water equations (SWEs). The solutions are obtained using a Lagrangian meshless method called smoothed particle hydrodynamics (SPH) to simulate shallow water flows in converging, diverging and curved channels. A buffer zone is introduced to exchange information between the 1D and 2D SPH-SWE models. Interpolated water discharge values and water surface levels at the internal boundaries are prescribed as the inflow/outflow boundary conditions in the two SPH-SWE models. In addition, instead of using the SPH summation operator, we directly solve the continuity equation by introducing a diffusive term to suppress oscillations in the predicted water depth. The performance of the two approaches in calculating the water depth is comprehensively compared through a case study of a straight channel. Additionally, three benchmark cases involving converging, diverging and curved channels are adopted to demonstrate the ability of the proposed 1D and 2D coupled SPH-SWE model through comparisons with measured data and predicted mesh-based numerical results. The proposed model provides satisfactory accuracy and guaranteed convergence.
Noise suppression system of OCDMA with spectral/spatial 2D hybrid code
Matem, Rima; Aljunid, S. A.; Junita, M. N.; Rashidi, C. B. M.; Shihab Aqrab, Israa
2017-11-01
In this paper, we propose a novel 2D spectral/spatial hybrid code based on 1D ZCC and 1D MD where the both present a zero cross correlation property analyzed and the influence of the noise of optical as Phase Induced Intensity Noise (PIIN), shot and thermal noise. This new code is shown effectively to mitigate the PIIN and suppresses MAI. Using 2D ZCC/MD code the performance of the system can be improved in term of as well as to support more simultaneous users compared of the 2D FCC/MDW and 2D DPDC codes.
Noise suppression system of OCDMA with spectral/spatial 2D hybrid code
Directory of Open Access Journals (Sweden)
Matem Rima
2017-01-01
Full Text Available In this paper, we propose a novel 2D spectral/spatial hybrid code based on 1D ZCC and 1D MD where the both present a zero cross correlation property analyzed and the influence of the noise of optical as Phase Induced Intensity Noise (PIIN, shot and thermal noise. This new code is shown effectively to mitigate the PIIN and suppresses MAI. Using 2D ZCC/MD code the performance of the system can be improved in term of as well as to support more simultaneous users compared of the 2D FCC/MDW and 2D DPDC codes.
An Improved Calibration Method for a Rotating 2D LIDAR System
Directory of Open Access Journals (Sweden)
Yadan Zeng
2018-02-01
Full Text Available This paper presents an improved calibration method of a rotating two-dimensional light detection and ranging (R2D-LIDAR system, which can obtain the 3D scanning map of the surroundings. The proposed R2D-LIDAR system, composed of a 2D LIDAR and a rotating unit, is pervasively used in the field of robotics owing to its low cost and dense scanning data. Nevertheless, the R2D-LIDAR system must be calibrated before building the geometric model because there are assembled deviation and abrasion between the 2D LIDAR and the rotating unit. Hence, the calibration procedures should contain both the adjustment between the two devices and the bias of 2D LIDAR itself. The main purpose of this work is to resolve the 2D LIDAR bias issue with a flat plane based on the Levenberg–Marquardt (LM algorithm. Experimental results for the calibration of the R2D-LIDAR system prove the reliability of this strategy to accurately estimate sensor offsets with the error range from −15 mm to 15 mm for the performance of capturing scans.
An Improved Calibration Method for a Rotating 2D LIDAR System.
Zeng, Yadan; Yu, Heng; Dai, Houde; Song, Shuang; Lin, Mingqiang; Sun, Bo; Jiang, Wei; Meng, Max Q-H
2018-02-07
This paper presents an improved calibration method of a rotating two-dimensional light detection and ranging (R2D-LIDAR) system, which can obtain the 3D scanning map of the surroundings. The proposed R2D-LIDAR system, composed of a 2D LIDAR and a rotating unit, is pervasively used in the field of robotics owing to its low cost and dense scanning data. Nevertheless, the R2D-LIDAR system must be calibrated before building the geometric model because there are assembled deviation and abrasion between the 2D LIDAR and the rotating unit. Hence, the calibration procedures should contain both the adjustment between the two devices and the bias of 2D LIDAR itself. The main purpose of this work is to resolve the 2D LIDAR bias issue with a flat plane based on the Levenberg-Marquardt (LM) algorithm. Experimental results for the calibration of the R2D-LIDAR system prove the reliability of this strategy to accurately estimate sensor offsets with the error range from -15 mm to 15 mm for the performance of capturing scans.
The ring structure of chiral operators for minimal models coupled to 2D gravity
International Nuclear Information System (INIS)
Sarmadi, M.H.
1992-09-01
The BRST cohomology ring for (p,q) models coupled to gravity is discussed. In addition to the generators of the ghost number zero ring, the existence of a generator of ghost number - 1 and its inverse is proved and used to construct the entire ring. Some comments are made regarding the algebra of the vector fields on the ring and the supersymmetric extension. (author). 13 refs
BRST cohomology ring in 2D gravity coupled to minimal models
International Nuclear Information System (INIS)
Kanno, H.; Sarmadi, M.H.
1992-08-01
The ring structure of Lian-Zuckerman states for (q,p) minimal models coupled to gravity is shown to be R=R 0 xC[w,w -1 ] where R 0 is the ring of ghost number zero operators generated by two elements and w is an operator of ghost number -1. Some examples are discussed in detail. For these models the currents are also discussed and their algebra is shown to contain the Virasoro algebra. (author). 21 refs
On the twisted N=2 superconformal structure in 2d gravity coupled to matter
International Nuclear Information System (INIS)
Panda, S.; Roy, S.
1993-05-01
It is shown that the two dimensional gravity, described either in the conformal gauge (Liouville theory) or in the light cone gauge, when coupled to matter processes an infinite number of twisted N=2 superconformal symmetries. The central charges of the N=2 algebra for the two gauge choices are in general different. Further, it is argued that the physical states in the light cone gauge theory can be obtained from the Liouville theory by a field redefinition. (author). 18 refs
2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids.
Xu, Jixian; Voznyy, Oleksandr; Liu, Mengxia; Kirmani, Ahmad R; Walters, Grant; Munir, Rahim; Abdelsamie, Maged; Proppe, Andrew H; Sarkar, Amrita; García de Arquer, F Pelayo; Wei, Mingyang; Sun, Bin; Liu, Min; Ouellette, Olivier; Quintero-Bermudez, Rafael; Li, Jie; Fan, James; Quan, Lina; Todorovic, Petar; Tan, Hairen; Hoogland, Sjoerd; Kelley, Shana O; Stefik, Morgan; Amassian, Aram; Sargent, Edward H
2018-04-23
Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size 1,2 . Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation 2,4-7 , combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (J SC ) and open-circuit voltage (V OC ), as seen in previous reports 3,9-11 . Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of J SC (32 mA cm -2 ) are fabricated. The V OC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.
2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
Xu, Jixian; Voznyy, Oleksandr; Liu, Mengxia; Kirmani, Ahmad R.; Walters, Grant; Munir, Rahim; Abdelsamie, Maged; Proppe, Andrew H.; Sarkar, Amrita; Garcí a de Arquer, F. Pelayo; Wei, Mingyang; Sun, Bin; Liu, Min; Ouellette, Olivier; Quintero-Bermudez, Rafael; Li, Jie; Fan, James; Quan, Li Na; Todorovic, Petar; Tan, Hairen; Hoogland, Sjoerd; Kelley, Shana O.; Stefik, Morgan; Amassian, Aram; Sargent, Edward H.
2018-01-01
Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size1,2. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation2,4-7, combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (JSC) and open-circuit voltage (VOC), as seen in previous reports3,9-11. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of JSC (32 mA cm-2) are fabricated. The VOC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.
2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
Xu, Jixian
2018-04-20
Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size1,2. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon 3 . Advances in surface passivation2,4-7, combined with advances in device structures 8 , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 9 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (JSC) and open-circuit voltage (VOC), as seen in previous reports3,9-11. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of JSC (32 mA cm-2) are fabricated. The VOC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.
2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
Xu, Jixian; Voznyy, Oleksandr; Liu, Mengxia; Kirmani, Ahmad R.; Walters, Grant; Munir, Rahim; Abdelsamie, Maged; Proppe, Andrew H.; Sarkar, Amrita; García de Arquer, F. Pelayo; Wei, Mingyang; Sun, Bin; Liu, Min; Ouellette, Olivier; Quintero-Bermudez, Rafael; Li, Jie; Fan, James; Quan, Lina; Todorovic, Petar; Tan, Hairen; Hoogland, Sjoerd; Kelley, Shana O.; Stefik, Morgan; Amassian, Aram; Sargent, Edward H.
2018-06-01
Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size1,2. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon3. Advances in surface passivation2,4-7, combined with advances in device structures8, have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 20169. Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to 300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (JSC) and open-circuit voltage (VOC), as seen in previous reports3,9-11. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses ( 600 nm) and record values of JSC (32 mA cm-2) are fabricated. The VOC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.
Coupling conduction radiation and convection phenomena in complex 2D and 3D geometries
International Nuclear Information System (INIS)
Rupp, I.; Peniguel, C.
1997-01-01
In many industrial applications, convection radiation and conduction participate simultaneously to the heat transfers. A numerical approach able to cope with such problems has been developed. The code SYRTHES is tackling conduction and radiation (limited to non participating medium) while the fluid part is solved by CFD codes like ESTET (Finite volumes) or N3S (Finite elements). SYRTHES relies on an explicit numerical scheme to couple all phenomena. No stability problems has been encountered. To provide further flexibility, the three phenomena are solved on independent grids. All data transfers being automatically taken care of by SYRTHES. Extending the development to multi-physics or multi-code problems it is fairly straightforward thanks to the explicit approach. Illustrating applications show how SYRTHES is managing problems for which several CFD codes are needed simultaneously with message passing tools like PVM and CALCIUM. (author)
Coupling conduction radiation and convection phenomena in complex 2D and 3D geometries
Energy Technology Data Exchange (ETDEWEB)
Rupp, I [SIMULOG, Guyancourt Cedex, (France); Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches
1998-12-31
In many industrial applications, convection radiation and conduction participate simultaneously to the heat transfers. A numerical approach able to cope with such problems has been developed. The code SYRTHES is tackling conduction and radiation (limited to non participating medium) while the fluid part is solved by CFD codes like ESTET (Finite volumes) or N3S (Finite elements). SYRTHES relies on an explicit numerical scheme to couple all phenomena. No stability problems has been encountered. To provide further flexibility, the three phenomena are solved on independent grids. All data transfers being automatically taken care of by SYRTHES. Extending the development to multi-physics or multi-code problems it is fairly straightforward thanks to the explicit approach. Illustrating applications show how SYRTHES is managing problems for which several CFD codes are needed simultaneously with message passing tools like PVM and CALCIUM. (author) 9 refs.
Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System.
Oh, Seung Mi; Patil, Sharad B; Jin, Xiaoyan; Hwang, Seong-Ju
2018-04-03
Among many types of nanostructured inorganic materials, highly anisotropic 2D nanosheets provide unique advantages in designing and synthesizing efficient electrode and electrocatalyst materials for novel energy storage technologies. 2D inorganic nanosheets boast lots of unique characteristics such as high surface area, short ion diffusion path, tailorable compositions, and tunable electronic structures. These merits of 2D inorganic nanosheets render them promising candidate materials as electrodes for diverse secondary batteries and supercapacitors, and electrocatalysts. A wide spectrum of examples is presented for inorganic nanosheet-based electrodes and electrocatalysts. Future perspectives in research about 2D nanosheet-based functional materials are discussed to provide insight for the development of next-generation energy storage systems using 2D nanostructured materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prospects for high thermoelectric figures of merit in 2D systems
Energy Technology Data Exchange (ETDEWEB)
Dresselhaus, M S; Sun, X; Cronin, S B; Koga, T; Dresselhaus, G; Wang, K L
1997-07-01
Enhanced ZT has been predicted theoretically and observed experimentally in 2D quantum wells, with good agreement between theory and experiment. Advantages of low dimensional systems for thermoelectric applications are described and prospects for further enhancement of ZT are discussed.
A matrix structured LED backlight system with 2D-DHT local dimming method
Liu, Jia; Li, Yang; Du, Sidan
To reduce the number of the drivers in the conventional local dimming method for LCDs, a novel LED backlight local dimming system is proposed in this paper. The backlight of this system is generated by 2D discrete Hadamard transform and its matrix structured LED modules. Compared with the conventional 2D local dimming method, the proposed method costs much fewer drivers but with little degradation.
Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra
2018-01-01
Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.
Crossover from BCS to composite boson (local pair) superconductivity in quasi-2D systems
International Nuclear Information System (INIS)
Gorbar, E.V.; Loktev, V.M.; Sharapov, S.G.
1995-01-01
The crossover from cooperative Cooper pairing to independent bound state (composite bosons) formation and condensation in quasi-2 D systems is studied. It is shown that at low carrier density the critical superconducting temperature is equal to the temperature of Bose-condensation of ideal quasi-2 D Bose-gas with heavy dynamical mass, meanwhile at high densities the BCS result remains valid. 15 refs
Hassani Gangaraj, Seyyed Ali
At the interface of two different media such as metal and vacuum, light can couple to the electrons of the metal to form a wave that is bound to the interface. This wave is called a surface plasmon-plariton (SPP), generally characterized by intense fields that decay quickly away from the interface. Due to their unique properties, SPPs have found a broad range of applications in various areas of science, including light harvesting, medical science, energy transfer and imaging. In addition to the widely studied classical plasmonics, quantum plasmonics is also attracting considerable interest in the electromagnetics and quantum optics communities. In this thesis several new areas of investigation into quantum plasmonics is presented, focusing on entanglement mediated by SPPs in several different environments: 3D waveguides, 2D surfaces and on photonic topological insulators. Entanglement is an experimentally verified property of nature where pairs of quantum systems are connected in some manner such that the quantum state of each system cannot be described independently. Generating, preserving, and controlling entanglement is necessary for many quantum computer implementations. It is highly desirable to control entanglement between two multi-level emitters such as quantum dots via a macroscopic, easily-adjusted external parameter. SPPs guided by the medium, as a coupling agent between quantum dots, are highly tunable and offer a promising way to achieve having control over a SPP mediated entanglement. We first consider two quantum dots placed above 3D finite length waveguides. We have restricted our consideration to two waveguides types, i.e. a metal nanowire and a groove waveguide. Our main results in this work are to show that realistic finite-length nanowire and groove waveguides, with their associated discontinuities, play a crucial role in the engineering of highly entangled states. It is demonstrated that proper positioning of the emitters with respect to the
Energy Technology Data Exchange (ETDEWEB)
Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)
2015-08-14
Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.
DEFF Research Database (Denmark)
Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.
2013-01-01
, 171–186] is extended to include the second-order dispersive correction. The new formulation is presented in a unified form that includes both progressive and evanescent modes and covers wavemaker configurations of the piston- and flap-type. The second order paddle stroke correction allows for improved...... nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment...... that the new second-order coupling theory provides an improvement in the quality of nonlinear wave generation when compared to existing techniques....
Pfleger, Brian; Mendez-Perez, Daniel
2013-11-05
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems
Hou, Fen-fei; Yang, Ming
2012-12-01
A novel fiber Bragg grating (FBG)-based en/decoder for the two-dimensional (2-D) time-spreading and polarization multiplexer optical coding is proposed. Compared with other 2-D en/decoders, the proposed en/decoding for an optical code-division multiple-access (OCDMA) system uses a single phase-encoded FBG and coherent en/decoding. Furthermore, combined with reconstruction-equivalent-chirp technology, such en/decoders can be realized with a conventional simple fabrication setup. Experimental results of such en/decoders and the corresponding system test at a data rate of 5 Gbit/s demonstrate that this kind of 2-D FBG-based en/decoders could improve the performances of OCDMA systems.
Towards Malaysian LADM Country Profile for 2D and 3D Cadastral Registration System
Zulkifli, N.A.; Abdul Rahman, A.; Jamil, H.; Teng, C.H.; Tan, L.C.; Looi, K.S.; Chan, K.L.; Van Oosterom, P.J.M.
2014-01-01
This paper proposes a comprehensive Land Administration Domain Model (LADM, ISO 2012) country profile for 2D and 3D cadastral registration system for Malaysia. The proposed Malaysian country profile is partly based on the existing spatial (including survey) and administrative registration systems,
Blockchain-Empowered Fair Computational Resource Sharing System in the D2D Network
Directory of Open Access Journals (Sweden)
Zhen Hong
2017-11-01
Full Text Available Device-to-device (D2D communication is becoming an increasingly important technology in future networks with the climbing demand for local services. For instance, resource sharing in the D2D network features ubiquitous availability, flexibility, low latency and low cost. However, these features also bring along challenges when building a satisfactory resource sharing system in the D2D network. Specifically, user mobility is one of the top concerns for designing a cooperative D2D computational resource sharing system since mutual communication may not be stably available due to user mobility. A previous endeavour has demonstrated and proven how connectivity can be incorporated into cooperative task scheduling among users in the D2D network to effectively lower average task execution time. There are doubts about whether this type of task scheduling scheme, though effective, presents fairness among users. In other words, it can be unfair for users who contribute many computational resources while receiving little when in need. In this paper, we propose a novel blockchain-based credit system that can be incorporated into the connectivity-aware task scheduling scheme to enforce fairness among users in the D2D network. Users’ computational task cooperation will be recorded on the public blockchain ledger in the system as transactions, and each user’s credit balance can be easily accessible from the ledger. A supernode at the base station is responsible for scheduling cooperative computational tasks based on user mobility and user credit balance. We investigated the performance of the credit system, and simulation results showed that with a minor sacrifice of average task execution time, the level of fairness can obtain a major enhancement.
Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.
Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J
2018-01-01
Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.
Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems
International Nuclear Information System (INIS)
Li Yin; Chen Yong; Li Biao
2009-01-01
This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
Developing 2D and 3D cadastral registration system based on LADM : Illustrated with Malaysian cases
Amalina Zulkifli, N.; Abdul Rahman, A.; Van Oosterom, P.J.M.
2013-01-01
This paper investigates several aspects of the Land Administration Domain Model (LADM, ISO 2012) associated to 2D and 3D cadastral situations within Malaysian cadastral registration system. Literature review shows that many countries propose their own profile based on the LADM such as The
Kronecker-ARX models in identifying (2D) spatial-temporal systems
Sinquin, B.; Verhaegen, M.H.G.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri
2017-01-01
In this paper we address the identification of (2D) spatial-temporal dynamical systems governed by the Vector Auto-Regressive (VAR) form. The coefficient-matrices of the VAR model are parametrized as sums of Kronecker products. When the number of terms in the sum is small compared to the size of
A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS
International Nuclear Information System (INIS)
Lemerle, Alexandre; Charbonneau, Paul
2017-01-01
In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.
A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS
Energy Technology Data Exchange (ETDEWEB)
Lemerle, Alexandre; Charbonneau, Paul, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de physique, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC, H3T 1J4 (Canada)
2017-01-10
In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.
Design of data acquisition system for 2D-ARRAY ionization chamber detector
International Nuclear Information System (INIS)
He Chaohui; Xing Guilai; Wu Zhifang; Wang Zhentao
2012-01-01
The introduction is given on the design and development of data acquisition system for 2D-ARRAY ionization chamber detector, which is used for dose verification of tumor radiotherapy. The paper describes the structure and the principle of the 2D-ARRAY ionization chamber detector system in detail, and focuses on the discussion on the design process of the detector's data acquisition system and the development of data acquisition system which is constituted by preamplifier, preamplifier control board and data acquisition board. The client can setup the parameters of the detector system via TCP/IP and do data processing such as high speed data collection and acquisition, further operation and so on. (authors)
Towards Malaysian LADM Country Profile for 2D and 3D Cadastral Registration System
Zulkifli, N.A.; Abdul Rahman, A.; Jamil, H.; Teng, C.H.; Tan, L.C.; Looi, K.S.; Chan, K.L.; Van Oosterom, P.J.M.
2014-01-01
This paper proposes a comprehensive Land Administration Domain Model (LADM, ISO 2012) country profile for 2D and 3D cadastral registration system for Malaysia. The proposed Malaysian country profile is partly based on the existing spatial (including survey) and administrative registration systems, and partly based on new developments inspired by the LADM standard. Within the country profile, an attempt is made to cover all Malaysian land administration related information, which are maintaine...
Energy Technology Data Exchange (ETDEWEB)
Bouis, F
1999-10-14
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard
2016-04-01
Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.
Directory of Open Access Journals (Sweden)
Scholes Gregory D.
2013-03-01
Full Text Available The study of LH2 protein of purple bacteria by broadband 2D electronic spectroscopy is presented. The dark 1Bu- carotenoid state is directly observed in 2D spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.
Energy Technology Data Exchange (ETDEWEB)
Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others
2014-10-01
A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.
Developing 2D and 3D cadastral registration system based on LADM: Illustrated with Malaysian cases
Amalina Zulkifli, N.; Abdul Rahman, A.; Van Oosterom, P.J.M.
2013-01-01
This paper investigates several aspects of the Land Administration Domain Model (LADM, ISO 2012) associated to 2D and 3D cadastral situations within Malaysian cadastral registration system. Literature review shows that many countries propose their own profile based on the LADM such as The Netherlands, Portugal, Indonesia, Korea, Japan, Australia/ Queensland, Cyprus and others. Malaysia is one of the potential candidates towards LADMbased country profile, as proposed in this paper. Several asp...
Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system
Chen, Shuxing; Li, Dening
2014-09-01
We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is established.
2-D Reflectometer Modeling for Optimizing the ITER Low-field Side Reflectometer System
International Nuclear Information System (INIS)
Kramer, G.J.; Nazikian, R.; Valeo, E.J.; Budny, R.V.; Kessel, C.; Johnson, D.
2005-01-01
The response of a low-field side reflectometer system for ITER is simulated with a 2?D reflectometer code using a realistic plasma equilibrium. It is found that the reflected beam will often miss its launch point by as much as 40 cm and that a vertical array of receiving antennas is essential in order to observe a reflection on the low-field side of ITER
IGUANA: a high-performance 2D and 3D visualisation system
Energy Technology Data Exchange (ETDEWEB)
Alverson, G. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Eulisse, G. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Muzaffar, S. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Osborne, I. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Taylor, L. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)]. E-mail: lucas.taylor@cern.ch; Tuura, L.A. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2004-11-21
The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user.
IGUANA A high-performance 2D and 3D visualisation system
Alverson, G; Muzaffar, S; Osborne, I; Taylor, L; Tuura, L A
2004-01-01
The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high- performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, sl...
IGUANA: a high-performance 2D and 3D visualisation system
International Nuclear Information System (INIS)
Alverson, G.; Eulisse, G.; Muzaffar, S.; Osborne, I.; Taylor, L.; Tuura, L.A.
2004-01-01
The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user
Zhang, Kelly; Li, Yi; Tsang, Midco; Chetwyn, Nik P
2013-09-01
To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi-heartcutting 2D HPLC system with hyphenated UV-charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi-heartcutting of peaks of interest in the first dimension and also allow "peak parking." The hyphenated UV-charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co-eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability-indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low-level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems
Directory of Open Access Journals (Sweden)
Kaczorek Tadeusz
2014-09-01
Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.
The research of atmospheric 2D optical PPM CDMA system with turbo coding
Zhou, Xiuli; Li, Zaoxia
2007-11-01
The atmospheric two-dimensional optical code-division multiple-access (CDMA) systems using pulse-position modulation (PPM) and Turbo-coded were presented. We analyzed the bit-error rate (BER) of the proposed system using pulse-position modulation (PPM) with considering the effects of the scintillation, avalanche photodiode noise, thermal noise, and multi-user interference. We showed that the atmospheric two dimensional (2D) optical PPM CDMA systems can realize high-speed communications when the logarithm variance of the scintillation is less than 0.1, and the turbo-coded atmospheric optical CDMA system has better bit error rate(BER) performance than the atmospheric optical PPM CDMA systems without turbo-coded. We also showed that the turbo-coded system has better performance than the multi-user detection system.
Interactions in 2D electron and hole systems in the intermediate and ballistic regimes
International Nuclear Information System (INIS)
Proskuryakov, Y Y; Savchenko, A K; Safonov, S S; Li, L; Pepper, M; Simmons, M Y; Ritchie, D A; Linfield, E H; Kvon, Z D
2003-01-01
In different 2D semiconductor systems we study the interaction correction to the Drude conductivity in the intermediate and ballistic regimes, where the parameter k B Tτ/ h-bar changes from 0.1 to 10 (τ is momentum relaxation time). The temperature dependence of the resistance and magnetoresistance in parallel and perpendicular magnetic fields is analysed in terms of the recent theories of electron-electron interactions in systems with different degree of disorder and different character of the fluctuation potential. Generally, good agreement is found between the experiments and the theories
Christopher, Jason; Vutukuru, Mounika; Kohler, Travis; Bishop, David; Swan, Anna; Goldberg, Bennett
2D materials can withstand an order of magnitude more strain than their bulk counterparts which can be used to dramatically change electrical, thermal and optical properties or even cause unconventional behavior such as generating pseudo-magnetic fields. Here we present micro-electromechanical systems (MEMS) as a platform for straining 2D materials to make such novel phenomena accessible. Unlike other strain techniques, MEMS are capable of precisely controlling the magnitude and orientation of the strain field and are readily integrated with current technology facilitating a path from lab bench to application. In this study, we use graphene as our prototypical 2D material, and determine strain via micro-Raman spectroscopy making extensive use of graphene's well-characterized phonon strain response. We report on the strength of various techniques for affixing graphene to MEMS, and investigate the role of surface morphology and chemistry in creating a high friction interface capable of inducing large strain. This work is supported by NSF DMR Grant 1411008, and author J. Christopher thanks the NDSEG program for its support.
3D vs 2D laparoscopic systems: Development of a performance quantitative validation model.
Ghedi, Andrea; Donarini, Erica; Lamera, Roberta; Sgroi, Giovanni; Turati, Luca; Ercole, Cesare
2015-01-01
The new technology ensures 3D laparoscopic vision by adding depth to the traditional two dimensions. This realistic vision gives the surgeon the feeling of operating in real space. Hospital of Treviglio-Caravaggio isn't an university or scientific institution; in 2014 a new 3D laparoscopic technology was acquired therefore it led to evaluation of the of the appropriateness in term of patient outcome and safety. The project aims at achieving the development of a quantitative validation model that would ensure low cost and a reliable measure of the performance of 3D technology versus 2D mode. In addition, it aims at demonstrating how new technologies, such as open source hardware and software and 3D printing, could help research with no significant cost increase. For these reasons, in order to define criteria of appropriateness in the use of 3D technologies, it was decided to perform a study to technically validate the use of the best technology in terms of effectiveness, efficiency and safety in the use of a system between laparoscopic vision in 3D and the traditional 2D. 30 surgeons were enrolled in order to perform an exercise through the use of laparoscopic forceps inside a trainer. The exercise consisted of having surgeons with different level of seniority, grouped by type of specialization (eg. surgery, urology, gynecology), exercising videolaparoscopy with two technologies (2D and 3D) through the use of a anthropometric phantom. The target assigned to the surgeon was that to pass "needle and thread" without touching the metal part in the shortest time possible. The rings selected for the exercise had each a coefficient of difficulty determined by depth, diameter, angle from the positioning and from the point of view. The analysis of the data collected from the above exercise has mathematically confirmed that the 3D technique ensures a learning curve lower in novice and greater accuracy in the performance of the task with respect to 2D.
A 2D eye gaze estimation system with low-resolution webcam images
Directory of Open Access Journals (Sweden)
Kim Jin
2011-01-01
Full Text Available Abstract In this article, a low-cost system for 2D eye gaze estimation with low-resolution webcam images is presented. Two algorithms are proposed for this purpose, one for the eye-ball detection with stable approximate pupil-center and the other one for the eye movements' direction detection. Eyeball is detected using deformable angular integral search by minimum intensity (DAISMI algorithm. Deformable template-based 2D gaze estimation (DTBGE algorithm is employed as a noise filter for deciding the stable movement decisions. While DTBGE employs binary images, DAISMI employs gray-scale images. Right and left eye estimates are evaluated separately. DAISMI finds the stable approximate pupil-center location by calculating the mass-center of eyeball border vertices to be employed for initial deformable template alignment. DTBGE starts running with initial alignment and updates the template alignment with resulting eye movements and eyeball size frame by frame. The horizontal and vertical deviation of eye movements through eyeball size is considered as if it is directly proportional with the deviation of cursor movements in a certain screen size and resolution. The core advantage of the system is that it does not employ the real pupil-center as a reference point for gaze estimation which is more reliable against corneal reflection. Visual angle accuracy is used for the evaluation and benchmarking of the system. Effectiveness of the proposed system is presented and experimental results are shown.
Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures
International Nuclear Information System (INIS)
Semenov, Serguei; Nair, Bindu; Kellam, James; Williams, Thomas; Quinn, Michael; Sizov, Yuri; Nazarov, Alexei; Pavlovsky, Andrey; Posukh, Vitaly
2011-01-01
Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)-the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper.
Theory of a four-electron 2-D system in a strong magnetic field
International Nuclear Information System (INIS)
Yuandong Dai; Bingjian Ni; Fusui Liu.
1985-10-01
An orthogonal and complete set for relative motion of four-electron 2-D system in strong magnetic field is given, the energy of ground state of relative motion is calculated. This paper also calculates the energy of ground state whose maximum of single electron angular momentum is limited by the degeneracy under a given magnetic field, obtains the energy minimums corresponding to a fractional quantized Hall effect of 2/5, 2/7, and from it the physical meaning of 'magic number' is interpreted. (author)
Robust ∞ Filtering of 2D Roesser Discrete Systems: A Polynomial Approach
Directory of Open Access Journals (Sweden)
Chakir El-Kasri
2012-01-01
procedure for generating conditions for the existence of a 2D discrete filter such that, for all admissible uncertainties, the error system is asymptotically stable, and the ∞ norm of the transfer function from the noise signal to the estimation error is below a prespecified level. These conditions are expressed as parameter-dependent linear matrix inequalities. Using homogeneous polynomially parameter-dependent filters of arbitrary degree on the uncertain parameters, the proposed method extends previous results in the quadratic framework and the linearly parameter-dependent framework, thus reducing its conservatism. Performance of the proposed method, in comparison with that of existing methods, is illustrated by two examples.
Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing
Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong
2016-08-01
Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.
Development of 2D laser-induced fluorescence (LIF) system in high-density helicon plasma
International Nuclear Information System (INIS)
Teshigahara, Naoto; Shinohara, Shunjiro; Kuwahara, Daisuke; Watanabe, Masaki; Yamagata, Yukihiko
2014-01-01
Lifetimes of most electric propulsion devices are limited owing to electrode erosion and contamination by plasmas. To overcome this problem, a Helicon Electrodeless Advanced Thruster (HEAT) was proposed by our research team. This scheme employs a high-density (∼10 13 cm -3 ) helicon plasma accelerated by the Lorentz force, which is produced by various acceleration methods. For feasibility of this method, a Laser-Induced Fluorescence (LIF) system was developed. The LIF is a powerful tool for plasma diagnostics because it is a non-invasive method that allows high spatial resolution. Using the LIF, it is possible to deduce velocity distribution functions of different particles (ions, atoms, and molecules). In this paper, we report the details of our novel 2D LIF system as well as some preliminary experimental results. Argon ion velocity distributions at different axial and radial locations were obtained using the novel 2D system. Ion velocity was greatest (∼ 2.8 km/s) at z = -24 cm among all the points measured along the z-axis. Velocity values were approximately 2.7 and 3.2 km/s for radial positions of r = 0 and 3 cm, respectively. Ion temperature values were approximately 0.56 and 0.61 eV at r = 0 and 3 cm, respectively. (author)
A new 2D integrable system with a quartic second invariant
International Nuclear Information System (INIS)
Yehia, Hamad M
2012-01-01
The construction of all 2D Lagrangian systems which admit besides the energy another integral of motion that is quartic in velocities was reduced in our previous article (Yehia 2006 J. Phys. A: Math. Gen. 39 5807–24) to a single nonlinear PDE. In this paper, we introduce a new solution of this equation, leading to a new integrable system with a quartic integral, which involves 16 free parameters. A special case of the new system admits interpretation in a problem of rigid body dynamics. It gives a new integrable variation of the cases due to Kowalevski (1889 Acta Math. 12 177–232), Chaplygin (1903 Tr. Otdel. Phys. Nauk Obsh. Liub. Estest. 11 7–10), Goriatchev (1916 Varshav. Univ. Izv. 1–13) and Yehia (2006 J. Phys. A: Math. Gen. 39 5807–24). (paper)
FWM behavior in 2-D time-spreading wavelength-hopping OCDMA systems
Bazan, Taher M.
2017-03-01
A new formula for the signal-to-four-wave mixing (FWM) crosstalk in 2-D time-spreading wavelength-hopping (TW) optical code division multiple access (OCDMA) systems is derived. The influence of several system parameters on the signal-to-FWM crosstalk ratio (SXR) is analyzed, including transmitted power per chip, code length, the number of active users, code weight, wavelength spacing, and transmission distance. Furthermore, for the first time, a closed-form expression for the total number of possible FWM products employing symmetric TW codes with equal wavelength spacing is investigated. The results show that SXR is sensitive to minor variations in system parameters, especially the launched power level and the code length while the wavelength spacing has a less impact on the level of the generated FWM power.
Phase modulated 2D HSQC-TOCSY for unambiguous assignment of overlapping spin systems
Singh, Amrinder; Dubey, Abhinav; Adiga, Satish K.; Atreya, Hanudatta S.
2018-01-01
We present a new method that allows one to unambiguously resolve overlapping spin systems often encountered in biomolecular systems such as peptides and proteins or in samples containing a mixture of different molecules such as in metabolomics. We address this problem using the recently proposed phase modulation approach. By evolving the 1H chemical shifts in a conventional two dimensional (2D) HSQC-TOCSY experiment for a fixed delay period, the phase/intensity of set of cross peaks belonging to one spin system are modulated differentially relative to those of its overlapping counterpart, resulting in their discrimination and recognition. The method thus accelerates the process of identification and resonance assignment of individual compounds in complex mixtures. This approach facilitated the assignment of molecules in the embryo culture medium used in human assisted reproductive technology.
A 2-D simulation of hydrocephalus in the Foramens of Monro of the human ventricular system
Energy Technology Data Exchange (ETDEWEB)
Ammourah, S.; Aroussi, A. [Univ. of Nottingham, School of Mechanical, Materials, Manufacturing and Management, University Park, Nottingham (United Kingdom)]. E-mail: eaxsaka@nottingham.ac.uk; Vloeberghs, M. [Queen' s Medical Centre, Dept. of Child Health, Nottingham (United Kingdom)
2004-07-01
This study investigates the Cerebrospinal fluid (CSF) flow behavior in a two-dimensional plane (2-D) of the human ventricular system when the hydrocephalus in the Foramens of Monro (F.O.M) occurs. In order to understand the CSF behaviour when the hydrocephalus occurs, it is essential to comprehend its normal flow dynamics i.e. the healthy case with no hydrocephalus. This had been done numerically by reconstructing the ventricular system geometry from the MRI scans and then made a 15{sup o} degree cut in the surgical line to obtain the outlines of the 2-D plane. The healthy cases were solved for the CSF actual flow rate, which is between 100-500 ml/day in 100 incremental steps. The unhealthy cases were studied for the average flow rate, which is 300 ml/day but for blockage ratios of the Foramen diameter of 20%, 50% and 75%. These obstructions are designed to simulate the hydrocephalus. The results show that as the flow rate increases the pressure and the velocity values increases, but no changes in the flow pattern occurs. The maximum pressure on the normal cases occurred in the lateral ventricles and the maximum velocity occurred in the aqueduct neck. The results of the hydrocephalus cases show that as the obstruction degree increases the pressure in the lateral ventricle increases accompanied with a velocity increase in the obstructed Foramen, which may cause unwanted stress on the neighboring tissues. (author)
A 2-D simulation of hydrocephalus in the Foramens of Monro of the human ventricular system
International Nuclear Information System (INIS)
Ammourah, S.; Aroussi, A.; Vloeberghs, M.
2004-01-01
This study investigates the Cerebrospinal fluid (CSF) flow behavior in a two-dimensional plane (2-D) of the human ventricular system when the hydrocephalus in the Foramens of Monro (F.O.M) occurs. In order to understand the CSF behaviour when the hydrocephalus occurs, it is essential to comprehend its normal flow dynamics i.e. the healthy case with no hydrocephalus. This had been done numerically by reconstructing the ventricular system geometry from the MRI scans and then made a 15 o degree cut in the surgical line to obtain the outlines of the 2-D plane. The healthy cases were solved for the CSF actual flow rate, which is between 100-500 ml/day in 100 incremental steps. The unhealthy cases were studied for the average flow rate, which is 300 ml/day but for blockage ratios of the Foramen diameter of 20%, 50% and 75%. These obstructions are designed to simulate the hydrocephalus. The results show that as the flow rate increases the pressure and the velocity values increases, but no changes in the flow pattern occurs. The maximum pressure on the normal cases occurred in the lateral ventricles and the maximum velocity occurred in the aqueduct neck. The results of the hydrocephalus cases show that as the obstruction degree increases the pressure in the lateral ventricle increases accompanied with a velocity increase in the obstructed Foramen, which may cause unwanted stress on the neighboring tissues. (author)
Increasing the automation of a 2D-3D registration system.
Varnavas, Andreas; Carrell, Tom; Penney, Graeme
2013-02-01
Routine clinical use of 2D-3D registration algorithms for Image Guided Surgery remains limited. A key aspect for routine clinical use of this technology is its degree of automation, i.e., the amount of necessary knowledgeable interaction between the clinicians and the registration system. Current image-based registration approaches usually require knowledgeable manual interaction during two stages: for initial pose estimation and for verification of produced results. We propose four novel techniques, particularly suited to vertebra-based registration systems, which can significantly automate both of the above stages. Two of these techniques are based upon the intraoperative "insertion" of a virtual fiducial marker into the preoperative data. The remaining two techniques use the final registration similarity value between multiple CT vertebrae and a single fluoroscopy vertebra. The proposed methods were evaluated with data from 31 operations (31 CT scans, 419 fluoroscopy images). Results show these methods can remove the need for manual vertebra identification during initial pose estimation, and were also very effective for result verification, producing a combined true positive rate of 100% and false positive rate equal to zero. This large decrease in required knowledgeable interaction is an important contribution aiming to enable more widespread use of 2D-3D registration technology.
Automated 2D peptide separation on a 1D nano-LC-MS system
DEFF Research Database (Denmark)
Taylor, Paul; Nielsen, Peter A; Trelle, Morten Beck
2009-01-01
the on-line separation of highly complex peptide mixtures directly coupled with mass spectrometry-based identification. Here, we present a variation of the traditional MudPIT protocol, combining highly sensitive chromatography using a nanoflow liquid chromatography system (nano-LC) with a two...
Directory of Open Access Journals (Sweden)
Trang Nguyen
2016-06-01
Full Text Available The IEEE 802.15.7r1 Optical Wireless Communications Task Group (TG7r1, also known as the revision of the IEEE 802.15.7 Visible Light Communication standard targeting the commercial usage of visible light communication systems, is of interest in this paper. The paper is mainly concerned with Image Sensor Communications (ISC of TG7r1; however, the major challenge facing ISC, as addressed in the Technical Consideration Document (TCD of TG7r1, is Image Sensor Compatibility among the variety of different commercial cameras on the market. One of the most challenging but interesting compatibility requirements is the need to support the verified presence of frame rate variation. This paper proposes a novel design for 2D-sequential color code. Compared to a QR-code-based sequential transmission, the proposed design of 2D-sequential code can overcome the above challenge that it is compatible with different frame rate variations and different shutter operations, and has the ability to mitigate the rolling effect as well as the rotating effect while effectively minimizing transmission overhead. Practical implementations are demonstrated and a performance comparison is presented.
Hugdal, Henning G.; Sudbø, Asle
2018-01-01
We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.
Design and Performance Analysis of 2D OCDMA System with Polarization States
Bharti, Manisha; Sharma, Ajay K.; Kumar, Manoj
2016-12-01
This paper focuses on increasing the number of subscribers in optical code-division multiple access (OCDMA) system by using one of the features of light signal that it can be propagated in two polarization states. The performance of two-dimensional (2D) OCDMA system based on wavelength-time coding scheme by adding polarization state is investigated at varying data rates from 1 GHz to 6 GHz and for various modulation formats. It is reported that with increase in data rate of system, the performance of the system deteriorates due to polarization mode dispersion. Non-return to-zero (RZ), return to-zero (RZ), carrier suppressed return-to-zero (CSRZ) and differential phase shift keying (DPSK) modulation formats are simulated for a single user system with polarization. Investigations reveal that differential phase shift keying (DPSK) modulation format suits best to the proposed system and exhibit the potential to improve the flexibility of system for more number of users. The investigations are reported in terms of Q-factor, BER, received optical power (ROP) and eye diagrams.
Analysis of the tight-binding description of the structure of metallic 2D systems
International Nuclear Information System (INIS)
Baquero, R.
1990-12-01
Bidimensional metallic systems as interfaces, quantum wells and superlattices with sharp interfaces became recently available and their properties can now be experimentally studied in detail. To calculate the Local Density of States (LDOS) for surfaces, interfaces, quantum wells and superlattices we use empirical tight-binding Hamiltonians together with the Green function matching method (GFM). In this paper we show some examples of our results employing the method just outlined to describe metallic 2D systems. In particular, we refer briefly to the effect on the LDOS of the very recently established contraction of the first interatomic layer distance in the Ta(001) surface. We then discuss the Nb-V ideal (100) interface and conclude that under certain conditions the V-side of an interface can show magnetism as the V(001) surface does. As a last example, we present a calculation that relates the changes with gold coverage of the reaction rate of the catalytic reaction of cyclohexene into benzene on a Pt(001) surface to the changes on the LDOS of the outermost Pt atomic layer. We show that the behavior of the LDOS around the Fermi level is an important factor to the explanation of the behavior of this catalytic reaction. We conclude by stating that the empirical tight-binding method is a very simple and useful tool for the description of 2D metallic systems. The advantage is that the computational demands are low and all the ingredients to take full profit of this method are available (reliable tight-binding parameters and suitable methods for the calculation of the Green function). (author). 14 refs, 3 figs
Modeling of a new 2D Acceleration Sensor Array using SystemC-AMS
International Nuclear Information System (INIS)
Markert, Erik; Dienel, Marco; Herrmann, Goeran; Mueller, Dietmar; Heinkel, Ulrich
2006-01-01
This paper presents an approach for modeling and simulation of a new 2D acceleration sensor array using SystemC-AMS. The sensor array consists of six single acceleration sensors with different detection axes. These single sensors comprise of four capacitive segments and one mass segment, aligned in a semicircle. The redundant sensor information is used for offset correction. Modeling of the single sensors is achieved using sensor structure simplification into 11 points and analytic equations for capacity changes, currents and torques. This model was expanded by a PWM feedback circuit to keep the sensor displacement in a linear region. In this paper the single sensor model is duplicated considering different positions of the seismic mass resulting in different detection axes for the single sensors. The measured accelerations of the sensors are merged with different weights depending on the orientation. This also reduces calculation effort
International Nuclear Information System (INIS)
Faudot, E.; Heuraux, S.; Colas, L.
2004-01-01
Sheaths are space charge regions at the plasma-wall. They are induced by the differential inertia between ions and electrons, and without external perturbation, they create a floating potential between the neutral plasma and the walls. In Tokamaks, these sheaths are locally enhanced by the RF (radiofrequency) electric field generated by the ICRF (ion cyclotron resonance frequency) antennas used to heat magnetic fusion plasmas at very high temperature. RF sheaths are located at the connection points of magnetic field lines to the wall, or to the bumpers which protect the antenna or to any part of the antenna structure. The asymmetric behaviour of these oscillating sheaths rectifies RF potentials in the plasma in front of antenna, to finally create nonlinearly a DC potential which can be much higher than the floating potential. We study specifically how the space-time distribution of these RF and DC rectified potentials is modified when nearby flux tubes are allowed to exchange perpendicular polarization current. To simulate that, a 2-dimensional (2D) fluid code has been implemented to compute the 2D RF potential map in a plane perpendicular to magnetic lines, and within the flute approximation the whole 3-dimensional potential map is deduced. In simulation, we consider a homogeneous transverse conductivity and use a 'test' potential map having, in absence of transverse currents, a Gaussian shape characterized by its width r 0 and its amplitude φ 0 . As a function of these 2 parameters (normalized respectively to a characteristic length for transverse transport and to the local temperature), we can estimate the peaking and the smoothing of the potential structure in the presence of polarization current. So, we are able to determine, for typical plasmas, the amplitude of DC potential peaks, particularly on antenna's corners, where hot spots appear during a shot. In Tore-supra conditions near antenna corners, potential structures that are shorter than 1 centimeter are
International Nuclear Information System (INIS)
Faudot, E.; Heuraux, S.; Colas, L.
2004-01-01
Sheaths are space charge regions at the plasma-wall. They are induced by the differential inertia between ions and electrons, and without external perturbation, they create a floating potential between the neutral plasma and the walls. In tokamaks, these sheaths are locally enhanced by the RF (radiofrequency) electric field generated by the ICRF (ion cyclotron resonance frequency) antennas used to heat magnetic fusion plasmas at very high temperature. RF sheaths are located at the connection points of magnetic field lines to the wall, or to the bumpers which protect the antenna or to any part of the antenna structure. The asymmetric behaviour of these oscillating sheaths rectifies RF potentials in the plasma in front of antenna, to finally create nonlinearly a DC potential which can be much higher than the floating potential. We study specifically how the space-time distribution of these RF and DC rectified potentials is modified when nearby flux tubes are allowed to exchange perpendicular polarization current. To simulate that, a 2D (2-dimensional) fluid code has been implemented to compute the 2D RF potential map in a plane perpendicular to magnetic lines, and within the flute approximation the whole 3-dimensional potential map is deduced. In simulation, we consider a homogeneous transverse conductivity and use a 'test' potential map having, in absence of transverse currents, a Gaussian shape characterized by its width r0 and its amplitude φ 0 . As a function of these 2 parameters (normalized respectively to a characteristic length for transverse transport and to the local temperature), we can estimate the peaking and the smoothing of the potential structure in the presence of polarization current. So, we are able to determine, for typical plasmas, the amplitude of DC potential peaks, particularly on antenna's corners, where hot spots appear during a shot. In typical Tore Supra conditions near antenna corners potential structures less than centimetric are
Ng, Z. F.; Gisen, J. I.; Akbari, A.
2018-03-01
Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.
Caracterisation pratique des systemes quantiques et memoires quantiques auto-correctrices 2D
Landon-Cardinal, Olivier
approche, dite de tomographie variationnelle, propose de reconstruire l'etat en restreignant l'espace de recherche a une classe variationnelle plutot qu'a l'immense espace des etats possibles. Un etat variationnel etant decrit par un petit nombre de parametres, un petit nombre d'experiences peut suffire a identifier les parametres variationnels de l'etat experimental. Nous montrons que c'est le cas pour deux classes variationnelles tres utilisees, les etats a produits matriciels (MPS) et l'ansatz pour intrication multi-echelle (MERA). Memoires quantiques auto-correctrices 2D. Une memoire quantique auto-correctrice est un systeme physique preservant de l'information quantique durant une duree de temps macroscopique. Il serait done l'equivalent quantique d'un disque dur ou d'une memoire flash equipant les ordinateurs actuels. Disposer d'un tel dispositif serait d'un grand interet pour l'informatique quantique. Une memoire quantique auto-correctrice est initialisee en preparant un etat fondamental, c'est-a-dire un etat stationnaire de plus basse energie. Afin de stocker de l'information quantique, il faut plusieurs etats fondamentaux distincts, chacun correspondant a une valeur differente de la memoire. Plus precisement, l'espace fondamental doit etre degenere. Dans cette these, on s'interesse a des systemes de particules disposees sur un reseau bidimensionnel (2D), telles les pieces sur un echiquier, qui sont plus faciles a realiser que les systemes 3D. Nous identifions deux criteres pour l'auto-correction: - La memoire quantique doit etre stable face aux perturbations provenant de l'environnement, par exemple l'application d'un champ magnetique externe. Ceci nous amene a considerer les systemes topologiques 2D dont les degres de liberte sont intrinsequement robustes aux perturbations locales de l'environnement. - La memoire quantique doit etre robuste face a un environnement thermique. Il faut s'assurer que les excitations thermiques n'amenent pas deux etats fondamentaux
ESPC Coupled Global Prediction System
2015-09-30
through an improvement to the sea ice albedo . Fig. 3: 2-m Temperature bias (deg C) of 120-h forecasts for the month of May 2014 for the Arctic...forecast system (NAVGEM) and ocean- sea ice forecast system (HYCOM/CICE) have never been coupled at high resolution. The coupled processes will be...winds and currents across the interface. The sea - ice component of this project requires modification of CICE versions 4 and 5 to run in the coupled
A self contained Linux based data acquisition system for 2D detectors with delay line readout
International Nuclear Information System (INIS)
Beltran, D.; Toledo, J.; Klora, A.C.; Ramos-Lerate, I.; Martinez, J.C.
2007-01-01
This article describes a fast and self-contained data acquisition system for 2D gas-filled detectors with delay line readout. It allows the realization of time resolved experiments in the millisecond scale. The acquisition system comprises of an industrial PC running Linux, a commercial time-to-digital converter and an in-house developed histogramming PCI card. The PC provides a mass storage for images and a graphical user interface for system monitoring and control. The histogramming card builds images with a maximum count rate of 5 MHz limited by the time-to-digital converter. Histograms are transferred to the PC at 85 MB/s. This card also includes a time frame generator, a calibration channel unit and eight digital outputs for experiment control. The control software was developed for easy integration into a beamline, including scans. The system is fully operational at the Spanish beamline BM16 at the ESRF in France, the neutron beamlines Adam and Eva at the ILL in France, the Max Plank Institute in Stuttgart in Germany, the University of Copenhagen in Denmark and at the future ALBA synchrotron in Spain. Some representative collected images from synchrotron and neutron beamlines are presented
Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems
Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.
2013-01-01
NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing
Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T
2012-11-21
Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent
Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi
2015-12-24
Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.
A radiographic imaging system based upon a 2-D silicon microstrip sensor
Papanestis, A; Corrin, E; Raymond, M; Hall, G; Triantis, F A; Manthos, N; Evagelou, I; Van den Stelt, P; Tarrant, T; Speller, R D; Royle, G F
2000-01-01
A high resolution, direct-digital detector system based upon a 2-D silicon microstrip sensor has been designed, built and is undergoing evaluation for applications in dentistry and mammography. The sensor parameters and image requirements were selected using Monte Carlo simulations. Sensors selected for evaluation have a strip pitch of 50mum on the p-side and 80mum on the n-side. Front-end electronics and data acquisition are based on the APV6 chip and were adapted from systems used at CERN for high-energy physics experiments. The APV6 chip is not self-triggering so data acquisition is done at a fixed trigger rate. This paper describes the mammographic evaluation of the double sided microstrip sensor. Raw data correction procedures were implemented to remove the effects of dead strips and non-uniform response. Standard test objects (TORMAX) were used to determine limiting spatial resolution and detectability. MTFs were determined using the edge response. The results indicate that the spatial resolution of the...
Variable-range hopping in 2D quasi-1D electronic systems
International Nuclear Information System (INIS)
Teber, S.
2005-12-01
A semi-phenomenological theory of variable-range hopping (VRH) is developed for two-dimensional (2D) quasi-one-dimensional (quasi-1D) systems such as arrays of quantum wires in the Wigner crystal regime. The theory follows the phenomenology of Efros, Mott and Shklovskii allied with microscopic arguments. We first derive the Coulomb gap in the single-particle density of states, g(ε), where ε is the energy of the charge excitation. We then derive the main exponential dependence of the electron conductivity in the linear (L), i.e. σ(T) ∼ exp [-(T L /T) γL ], and current in the non-linear (NL), i.e. j(E) ∼ [-(E NL /E) γNL ], response regimes (E is the applied electric field). Due to the strong anisotropy of the system and its peculiar dielectric properties we show that unusual, with respect to known results, Coulomb gaps open followed by unusual VRH laws, i.e. with respect to the disorder-dependence of T L and E NL and the values of γ L and γ NL . (author)
D2-D8 system with massive strings and the Lifshitz spacetimes
Energy Technology Data Exchange (ETDEWEB)
Singh, Harvendra [Theory Division, Saha Institute of Nuclear Physics,1/AF, Bidhannagar, Kolkata 700064 (India); Homi Bhabha National Institute,Anushakti Nagar, Mumbai 400094 (India)
2017-04-04
The Romans’ type IIA supergravity allows fundamental strings to have explicit mass term at the tree level. We show that there exists a (F1,D2,D8) brane configuration which gives rise to Lif{sub 4}{sup (2)}×R{sup 1}×S{sup 5} vacua supported by the massive strings. The presence of D8-branes naturally excites massive fundamental strings. A compactification on circle relates these Lifshitz massive type-IIA background with the axion-flux Lif{sub 4}{sup (2)}×S{sup 1}×S{sup 5} vacua in ordinary type-IIB theory. The massive T-duality in eight dimensions further relates them to yet another (Lif)-tilde {sub 4}{sup (2)}×S{sup 1}×S{sup 5} vacua constituted by (F1,D0,D6) system in ordinary type IIA theory. The latter vacua after compactification to four dimensions generate two ‘distinct’ electric charges and a constant magnetic field, all living over 2-dimensional plane. This somewhat reminds us of a similar set up in quantum Hall systems.
Electronic transport properties of 1D-defects in graphene and other 2D-systems
Energy Technology Data Exchange (ETDEWEB)
Willke, P.; Wenderoth, M. [IV. Physical Institute, Solids and Nanostructures, Georg-August-University Goettingen (Germany); Schneider, M.A. [Lehrstuhl fuer Festkoerperphysik, Universitaet Erlangen-Nuernberg, Erlangen (Germany)
2017-11-15
The continuous progress in device miniaturization demands a thorough understanding of the electron transport processes involved. The influence of defects - discontinuities in the perfect and translational invariant crystal lattice - plays a crucial role here. For graphene in particular, they limit the carrier mobility often demanded for applications by contributing additional sources of scattering to the sample. Due to its two-dimensional nature graphene serves as an ideal system to study electron transport in the presence of defects, because one-dimensional defects like steps, grain boundaries and interfaces are easy to characterize and have profound effects on the transport properties. While their contribution to the resistance of a sample can be extracted by carefully conducted transport experiments, scanning probe methods are excellent tools to study the influence of defects locally. In this letter, the authors review the results of scattering at local defects in graphene and other 2D systems by scanning tunneling potentiometry, 4-point-probe microscopy, Kelvin probe force microscopy and conventional transport measurements. Besides the comparison of the different defect resistances important for device fabrication, the underlying scattering mechanisms are discussed giving insight into the general physics of electron scattering at defects. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
On physical states in 2d (topological) gravity
International Nuclear Information System (INIS)
Bouwknegt, P.; McCarthy, J.; Pilch, K.
1993-01-01
We review the BRST computation of physical states in various 2d gravity theories. First we discuss the cohomology relevant for 2d gravity coupled to c ≤ 1 conformal matter. We then use these results to compute the cohomology of a c=26 βγ-system, i.e. restricted 2d topological gravity. We also comment on the cohomology for the complete 2d topological gravity. (author). 39 refs
Yuan, Sheng; Linas, Sébastien; Journet, Catherine; Steyer, Philippe; Garnier, Vincent; Bonnefont, Guillaume; Brioude, Arnaud; Toury, Bérangère
2016-02-01
Within the context of emergent researches linked to graphene, it is well known that h-BN nanosheets (BNNSs), also referred as 2D BN, are considered as the best candidate for replacing SiO2 as dielectric support or capping layers for graphene. As a consequence, the development of a novel alternative source for highly crystallized h-BN crystals, suitable for a further exfoliation, is a prime scientific issue. This paper proposes a promising approach to synthesize pure and well-crystallized h-BN flakes, which can be easily exfoliated into BNNSs. This new accessible production process represents a relevant alternative source of supply in response to the increasing need of high quality BNNSs. The synthesis strategy to prepare pure h-BN is based on a unique combination of the Polymer Derived Ceramics (PDCs) route with the Spark Plasma Sintering (SPS) process. Through a multi-scale chemical and structural investigation, it is clearly shown that obtained flakes are large (up to 30 μm), defect-free and well crystallized, which are key-characteristics for a subsequent exfoliation into relevant BNNSs.
Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.
1999-01-01
A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.
International Nuclear Information System (INIS)
Awada, M.A.
1990-01-01
We further study the universal equations of the supersymmetric modified KdV (MKdV) hierarchy in its generalized form. We show that these equations describe the dynamical quantum equations of the odd series of N = 1 minimal (p,q) superconformal field theory coupled to N = 1 supergravity in particular those unitary series with p = 2k + 3, and q = 2k = 1. The string susceptibility of these models is γ sstr. (0) = -2/2k + 1. We demonstrate explicitly the cases k = 2; and k = 3. 10 refs
Experimental investigation on the high chip rate of 2D incoherent optical CDMA system
Su, Guorui; Wang, Rong; Pu, Tao; Fang, Tao; Zheng, Jilin; Zhu, Huatao; Wu, Weijiang
2015-08-01
An innovative approach to realise high chip rate in OCDMA transmission system is proposed and experimentally investigation, the high chip rate is achieved through a 2-D wavelength-hopping time-spreading en/decoder based on the supercontinuum light source. The source used in the experiment is generated by high nonlinear optical fiber (HNLF), Erbium-doped fiber amplifier (EDFA) which output power is 26 dBm, and distributed feed-back laser diode which works in the gain switch state. The span and the flatness of the light source are 20 nm and 3 dB, respectively, after equalization of wavelength selective switch (WSS). The wavelength-hopping time-spreading coder can be changed 20 nm in the wavelength and 400 ps in the time, is consist of WSS and delay lines. Therefore, the experimental results show that the chip rate can achieve 500 Gchip/s, in the case of 2.5 Gbit/s, while keeping a bit error rate below forward error correction limit after 40 km transmission.
Performance of the 2-D asynchronous OCDMA system with ASE light sources
Ni, Bin; Lehnert, James S.
2005-09-01
The wavelength-hopping/time-spreading scheme for optical code-division multiple-access (OCDMA), also known as the 2-D scheme, has been studied by many researchers for more than a decade. In all of previous analyses, the light sources were modeled as perfectly incoherent, which requires infinite bandwidth, and chip-synchrony was assumed for mathematical simplicity. Therefore, it is important to study how the system actually performs with true asynchrony and practical light sources. The amplified spontaneous emission (ASE) source is a desirable source for the incoherent OCDMA system because of its broad bandwidth, large power, and low cost. In this paper, each chip generated by the transmitter is a rectangular ASE pulse with a Gaussian-distributed electrical field. The coherence time is much smaller than the chip duration, but non-zero. Because of this partial coherence of the light source, beat noise will occur when multiple pulses are combined. In addition, interfering pulses may only partially overlap with the pulses from the desired user due to the asynchrony, which introduces more randomness into the decision statistic. Both factors are taken into account when the distribution of the decision statistic is derived mathematically. Simulations of the bit-error rate (BER) are performed, and the results show that the coherence time may be the major limiting factor on the system performance. For example, when the coherence time is only 1/100 of the chip duration, the BER is 1-4 orders of magnitude worse than that of the ideal case.
Coupling component systems towards systems of systems
Autran , Frédéric; Auzelle , Jean-Philippe; Cattan , Denise; Garnier , Jean-Luc; Luzeaux , Dominique; Mayer , Frédérique; Peyrichon , Marc; Ruault , Jean-René
2008-01-01
International audience; Systems of systems (SoS) are a hot topic in our "fully connected global world". Our aim is not to provide another definition of what SoS are, but rather to focus on the adequacy of reusing standard system architecting techniques within this approach in order to improve performance, fault detection and safety issues in large-scale coupled systems that definitely qualify as SoS, whatever the definition is. A key issue will be to secure the availability of the services pr...
Zhu, Chengzhang; Gong, Tingting; Xian, Qiming; Xie, Jimin
2018-06-01
Novel well-dispersed tiny Bi2S3 nanoparticles (NPs) with an average sizes of approximately 16.2 nm were used to decorate layered g-C3N4 nanosheets (NSs), with the purpose of constructing highly efficient 0D/2D heterojunction photocatalyst by a simple hydrothermal method in one step. The fabricated Bi2S3/g-C3N4 heterostructures exhibited superior visible-light-driven photocatalytic activity toward methyl orange (MO) degradation in contrast to that of individual Bi2S3 and g-C3N4, which could be mainly ascribed to the synergistic effect of the tiny size effect of 0D Bi2S3 NPs and 2D g-C3N4 NSs, the matched energy level positions, and the abundant coupling heterointerfaces between two moieties. More importantly, the photodegradation of methylene blue (MB), rhodamine B (RhB) and colorless tetracycline (TC), ciprofloxacin (CIP) further revealed the broad-spectrum photodegradation capacities of the heterojunction materials. The possible photoinduced charge transfer and pollutant degradation process over Bi2S3/g-C3N4 heterojunctions under visible-light irradiation were proposed. This work may provide a platform for constructing new visible light 0D/2D intimate contact heterostructures with stable and efficient photocatalytic performance.
International Nuclear Information System (INIS)
Enderle, G.
1979-01-01
The computer-code FLUST-2D is able to calculate the two-dimensional flow of a compressible fluid in arbitrary coupled rectangular areas. In a finite-difference scheme the program computes pressure, density, internal energy and velocity. Starting with a basic set of equations, the difference equations in a rectangular grid are developed. The computational cycle for coupled fluid areas is described. Results of test calculations are compared to analytical solutions and the influence of time step and mesh size are investigated. The program was used to precalculate the blowdown experiments of the HDR experimental program. Downcomer, plena, internal vessel region, blowdown pipe and a containment area have been modelled two-dimensionally. The major results of the precalculations are presented. This report also contains a description of the code structure and user information. (orig.) [de
Boundary control of nonlinear coupled heat systems using backstepping
Bendevis, Paul
2016-10-20
A state feedback boundary controller is designed for a 2D coupled PDE system modelling heat transfer in a membrane distillation system for water desalination. Fluid is separated into two compartments with nonlinear coupling at a membrane boundary. The controller sets the temperature on one boundary in order to track a temperature difference across the membrane boundary. The control objective is achieved by an extension of backstepping methods to these coupled equations. Stability of the target system via Lyapunov like methods, and the invertibility of the integral transformation are used to show the stability of the tracking error.
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália
2018-05-01
An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.
2D turbulence structure observed by a fast framing camera system in linear magnetized device PANTA
International Nuclear Information System (INIS)
Ohdachi, Satoshi; Inagaki, S.; Kobayashi, T.; Goto, M.
2015-01-01
Mesoscale structure, such as the zonal flow and the streamer plays important role in the drift-wave turbulence. The interaction of the mesoscale structure and the turbulence is not only interesting phenomena but also a key to understand the turbulence driven transport in the magnetically confined plasmas. In the cylindrical magnetized device, PANTA, the interaction of the streamer and the drift wave has been found by the bi-spectrum analysis of the turbulence. In order to study the mesoscale physics directly, the 2D turbulence is studied by a fast-framing visible camera system view from a window located at the end plate of the device. The parameters of the plasma is the following; Te∼3eV, n ∼ 1x10 19 m -3 , Ti∼0.3eV, B=900G, Neutral pressure P n =0.8 mTorr, a∼ 6cm, L=4m, Helicon source (7MHz, 3kW). Fluctuating component of the visible image is decomposed by the Fourier-Bessel expansion method. Several rotating mode is observed simultaneously. From the images, m = 1 (f∼0.7 kHz) and m = 2, 3 (f∼-3.4 kHz) components which rotate in the opposite direction can be easily distinguished. Though the modes rotate constantly in most time, there appear periods where the radially complicated node structure is formed (for example, m=3 component, t = 142.5∼6 in the figure) and coherent mode structures are disturbed. Then, a new rotating period is started again with different phase of the initial rotation until the next event happens. The typical time interval of the event is 0.5 to 1.0 times of the one rotation of the slow m = 1 mode. The wave-wave interaction might be interrupted occasionally. Detailed analysis of the turbulence using imaging technique will be discussed. (author)
Determining ice water content from 2D crystal images in convective cloud systems
Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter
2016-04-01
Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values
10Gbps 2D MGC OCDMA Code over FSO Communication System
Professor Urmila Bhanja, Associate, Dr.; Khuntia, Arpita; Alamasety Swati, (Student
2017-08-01
Currently, wide bandwidth signal dissemination along with low latency is a leading requisite in various applications. Free space optical wireless communication has introduced as a realistic technology for bridging the gap in present high data transmission fiber connectivity and as a provisional backbone for rapidly deployable wireless communication infrastructure. The manuscript highlights on the implementation of 10Gbps SAC-OCDMA FSO communications using modified two dimensional Golomb code (2D MGC) that possesses better auto correlation, minimum cross correlation and high cardinality. A comparison based on pseudo orthogonal (PSO) matrix code and modified two dimensional Golomb code (2D MGC) is developed in the proposed SAC OCDMA-FSO communication module taking different parameters into account. The simulative outcome signifies that the communication radius is bounded by the multiple access interference (MAI). In this work, a comparison is made in terms of bit error rate (BER), and quality factor (Q) based on modified two dimensional Golomb code (2D MGC) and PSO matrix code. It is observed that the 2D MGC yields better results compared to the PSO matrix code. The simulation results are validated using optisystem version 14.
Strobel, Klaus; Rüdy, Matthias; Treyer, Valerie; Veit-Haibach, Patrick; Burger, Cyrill; Hany, Thomas F
2007-07-01
The relative advantage of fully 3-D versus 2-D mode for whole-body imaging is currently the focus of considerable expert debate. The nature of 3-D PET acquisition for FDG PET/CT theoretically allows a shorter scan time and improved efficiency of FDG use than in the standard 2-D acquisition. We therefore objectively and subjectively compared standard 2-D and fully 3-D reconstructed data for FDG PET/CT on a research PET/CT system. In a total of 36 patients (mean 58.9 years, range 17.3-78.9 years; 21 male, 15 female) referred for known or suspected malignancy, FDG PET/CT was performed using a research PET/CT system with advanced detector technology with improved sensitivity and spatial resolution. After 45 min uptake, a low-dose CT (40 mAs) from head to thigh was performed followed by 2-D PET (emission 3 min per field) and 3-D PET (emission 1.5 min per field) with both seven slices overlap to cover the identical anatomical region. Acquisition time was therefore 50% less (seven fields; 21 min vs. 10.5 min). PET data was acquired in a randomized fashion, so in 50% of the cases 2-D data was acquired first. CT data was used for attenuation correction. 2-D (OSEM) and 3-D PET images were iteratively reconstructed. Subjective analysis of 2-D and 3-D images was performed by two readers in a blinded, randomized fashion evaluating the following criteria: sharpness of organs (liver, chest wall/lung), overall image quality and detectability and dignity of each identified lesion. Objective analysis of PET data was investigated measuring maximum standard uptake value with lean body mass (SUV(max,LBM)) of identified lesions. On average, per patient, the SUV(max) was 7.86 (SD 7.79) for 2-D and 6.96 (SD 5.19) for 3-D. On a lesion basis, the average SUV(max) was 7.65 (SD 7.79) for 2-D and 6.75 (SD 5.89) for 3-D. The absolute difference on a paired t-test of SUV 3-D-2-D based on each measured lesion was significant with an average of -0.956 (P=0.002) and an average of -0.884 on a
A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging
Yang, Yunjie; Jia, Jiabin
2017-08-01
This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.
Pfeifer, Philippe; Tüscher, Oliver; Buchholz, Hans Georg; Gründer, Gerhard; Vernaleken, Ingo; Paulzen, Michael; Zimmermann, Ulrich S; Maus, Stephan; Lieb, Klaus; Eggermann, Thomas; Fehr, Christoph; Schreckenberger, Mathias
2017-09-01
Investigations on the acute effects of alcohol in the human mesolimbic dopamine D 2 /D 3 receptor system have yielded conflicting results. With respect to the effects of alcohol on extrastriatal D 2 /D 3 dopamine receptors no investigations have been reported yet. Therefore we applied PET imaging using the postsynaptic dopamine D 2 /D 3 receptor ligand [ 18 F]fallypride addressing the question, whether intravenously applied alcohol stimulates the extrastriatal and striatal dopamine system. We measured subjective effects of alcohol and made correlation analyses with the striatal and extrastriatal D 2 /D 3 binding potential. Twenty-four healthy male μ-opioid receptor (OPRM1)118G allele carriers underwent a standardized intravenous and placebo alcohol administration. The subjective effects of alcohol were measured with a visual analogue scale. For the evaluation of the dopamine response we calculated the binding potential (BP ND ) by using the simplified reference tissue model (SRTM). In addition, we calculated distribution volumes (target and reference regions) in 10 subjects for which metabolite corrected arterial samples were available. In the alcohol condition no significant dopamine response in terms of a reduction of BP ND was observed in striatal and extrastriatal brain regions. We found a positive correlation for 'liking' alcohol and the BP ND in extrastriatal brain regions (Inferior frontal cortex (IFC) (r = 0.533, p = 0.007), orbitofrontal cortex (OFC) (r = 0.416, p = 0.043) and prefrontal cortex (PFC) (r = 0.625, p = 0.001)). The acute alcohol effects on the D 2 /D 3 dopamine receptor binding potential of the striatal and extrastriatal system in our experiment were insignificant. A positive correlation of the subjective effect of 'liking' alcohol with cortical D 2 /D 3 receptors may hint at an addiction relevant trait. © 2016 Society for the Study of Addiction.
A type of 2D magnetic equivalent circuit framework of permanent magnet for magnetic system in AEMR
Directory of Open Access Journals (Sweden)
Huimin Liang
2015-02-01
Full Text Available Modeling of permanent magnet (PM is very important in the process of electromagnetic system calculation of aerospace electromagnetic relay (AEMR. In traditional analytical calculation, PM is often equivalent to a lumped parameter model of one magnetic resistance and one magnetic potential, but great error is often caused for the inner differences of PM; based on the conception of flux tube, a type of 2D magnetic equivalent circuit framework of permanent magnet model (2D MECF is established; the element is defined, the relationship between elements is deduced, and solution procedure as well as verification condition of this model is given; by a case study of the electromagnetic system of a certain type of AEMR, the electromagnetic system calculation model is established based on 2D MECF and the attractive force at different rotation angles is calculated; the proposed method is compared with the traditional lumped parameter model and finite element method (FEM; for some types of electromagnetic systems with symmetrical structure, 2D MECF proves to be of acceptable accuracy and high calculation speed which fit the requirement of robust design for AEMR.
A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.
Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M
2011-01-20
A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical
Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.
2015-12-01
Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple
Feedback coupling in dynamical systems
Trimper, Steffen; Zabrocki, Knud
2003-05-01
Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.
Hu, Anzhong; Lv, Tiejun; Gao, Hui; Zhang, Zhang; Yang, Shaoshi
2014-10-01
In this paper, an approach of estimating signal parameters via rotational invariance technique (ESPRIT) is proposed for two-dimensional (2-D) localization of incoherently distributed (ID) sources in large-scale/massive multiple-input multiple-output (MIMO) systems. The traditional ESPRIT-based methods are valid only for one-dimensional (1-D) localization of the ID sources. By contrast, in the proposed approach the signal subspace is constructed for estimating the nominal azimuth and elevation direction-of-arrivals and the angular spreads. The proposed estimator enjoys closed-form expressions and hence it bypasses the searching over the entire feasible field. Therefore, it imposes significantly lower computational complexity than the conventional 2-D estimation approaches. Our analysis shows that the estimation performance of the proposed approach improves when the large-scale/massive MIMO systems are employed. The approximate Cram\\'{e}r-Rao bound of the proposed estimator for the 2-D localization is also derived. Numerical results demonstrate that albeit the proposed estimation method is comparable with the traditional 2-D estimators in terms of performance, it benefits from a remarkably lower computational complexity.
The Vlasov-Navier-Stokes System in a 2D Pipe: Existence and Stability of Regular Equilibria
Glass, Olivier; Han-Kwan, Daniel; Moussa, Ayman
2018-05-01
In this paper, we study the Vlasov-Navier-Stokes system in a 2D pipe with partially absorbing boundary conditions. We show the existence of stationary states for this system near small Poiseuille flows for the fluid phase, for which the kinetic phase is not trivial. We prove the asymptotic stability of these states with respect to appropriately compactly supported perturbations. The analysis relies on geometric control conditions which help to avoid any concentration phenomenon for the kinetic phase.
Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D
Kinoshita, Shinya
2016-01-01
This paper is concerned with the Cauchy problem of $2$D Klein-Gordon-Zakharov system with very low regularity initial data. We prove the bilinear estimates which are crucial to get the local in time well-posedness. The estimates are established by the Fourier restriction norm method. We utilize the bilinear Strichartz estimates and the nonlinear version of the classical Loomis-Whitney inequality which was applied to Zakharov system.
International Nuclear Information System (INIS)
Lanty, Gaetan
2011-01-01
The research work which is reported in this manuscript focuses on 2D perovskites and their use to obtain micro-cavities working in the strong coupling regime. Perovskite structure forms a multi-quantum wells in which the excitonic states have a high oscillator strength and a large binding energy (a few 100 MeV) due to quantum and dielectric confinement effects. A first axis of this work was to collect information on the excitonic properties of these materials. On a particular perovskite (PEPI), we performed photoluminescence and pump-probe measurements, which seem to suggest the existence, under high excitation density, a process of Auger recombination of excitons. A second research axis was to put in cavity thin layers of some perovskites. With PEPI and PEPC perovskites, we have shown that the realization of micro-cavities with a quality factor of the order of ten is sufficient to obtain at room temperature, the strong coupling regime in absorption and emission with Rabi splitting up to 220 MeV. A bottleneck effect has been clearly demonstrated for the PEPI microcavity. We have also shown that perovskites could be associated with inorganic semiconductors in 'hybrid' micro-cavities. According Agranovich et al., these micro-cavities could present polariton lasing with lower quality factors. To this end, the ZnO/MFMPB association seems particularly promising. (author)
Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.
2017-12-01
Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.
Li, Yaofa; Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth; Kenneth Christensen, Notre Dame Team
2017-11-01
Multiphase flow in porous media is relevant to a range of applications in the energy and environmental sectors. Recently, the interest has been renewed by geological storage of CO2 within saline aquifers. Central to this goal is predicting the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local pressure buildup may cause micro-seismic events, which could prove disastrous, and possibly compromise seal integrity. Evidence shows that the large-scale events are coupled with pore-scale phenomena, necessitating the understanding of pore-scale stress, strain, and flow processes and their representation in large-scale modeling. To this end, the pore-scale flow of water and supercritical CO2 is investigated under reservoir-relevant conditions over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions. This work was supported as part of the GSCO2, an EFRC funded by the US DOE, Office of Science, and partially supported by WPI-I2CNER.
Systemic couple therapy for dysthymia.
Montesano, Adrián; Feixas, Guillem; Muñoz, Dámaris; Compañ, Victoria
2014-03-01
We examined the effect of Systemic Couple Therapy on a patient diagnosed with dysthymic disorder and her partner. Marge and Peter, a middle-aged married couple, showed significant and meaningful changes in their pattern of interaction over the course of the therapy and, by the end of it, Marge no longer met the diagnostic criteria for dysthymic disorder. Her scores on the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and Beck Depression Inventory, Second Edition (BDI-II) were in the clinical range before treatment and in the nonclinical one at the end of therapy. Although scores on Dyadic Adjustment Scale showed different patterns, both members reported significant improvement. The analysis of change in the alliance-related behaviors throughout the process concurred with change in couple's pattern of interaction. Treatment effects were maintained at 12-month follow-up. Highlights in the therapy process showed the importance of relational mechanisms of change, such as broadening the therapeutic focus into the couple's pattern of interaction, reducing expressed emotion and resentment, as well as increasing positive exchanges. The results of this evidence-based case study should prompt further investigation of couple therapy for dysthymia disorder. Randomized clinical trial design is needed to reach an evidence-based treatment status. (c) 2014 APA, all rights reserved.
Using the Model Coupling Toolkit to couple earth system models
Warner, J.C.; Perlin, N.; Skyllingstad, E.D.
2008-01-01
Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
I. Topalova
2005-03-01
Full Text Available This is a presentation of a new system for invariant recognition of 2D objects with overlapping classes, that can not be effectively recognized with the traditional methods. The translation, scale and partial rotation invariant contour object description is transformed in a DCT spectrum space. The obtained frequency spectrums are decomposed into frequency bands in order to feed different BPG neural nets (NNs. The NNs are structured in three stages - filtering and full rotation invariance; partial recognition; general classification. The designed multi-stage BPG Neural Structure shows very good accuracy and flexibility when tested with 2D objects used in the discontinuous production. The reached speed and the opportunuty for an easy restructuring and reprogramming of the system makes it suitable for application in different applied systems for real time work.
Directory of Open Access Journals (Sweden)
I. Topalova
2008-11-01
Full Text Available This is a presentation of a new system for invariant recognition of 2D objects with overlapping classes, that can not be effectively recognized with the traditional methods. The translation, scale and partial rotation invariant contour object description is transformed in a DCT spectrum space. The obtained frequency spectrums are decomposed into frequency bands in order to feed different BPG neural nets (NNs. The NNs are structured in three stages - filtering and full rotation invariance; partial recognition; general classification. The designed multi-stage BPG Neural Structure shows very good accuracy and flexibility when tested with 2D objects used in the discontinuous production. The reached speed and the opportunuty for an easy restructuring and reprogramming of the system makes it suitable for application in different applied systems for real time work.
Chintalapudi, Sumana R; Maria, Doaa; Di Wang, Xiang; Bailey, Jessica N Cooke; Hysi, Pirro G; Wiggs, Janey L; Williams, Robert W; Jablonski, Monica M
2017-11-24
Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with known sequence variants, we are able to determine that the intraocular pressure-lowering effect of pregabalin is dependent on the Cacna2d1 haplotype. Using human genome-wide association study (GWAS) data, evidence for association of a CACNA2D1 single-nucleotide polymorphism and primary open angle glaucoma is found. Importantly, these results demonstrate that our systems genetics approach represents an efficient method to identify genetic variation that can guide the selection of therapeutic targets.
Directory of Open Access Journals (Sweden)
Toda Tosifusa
2006-10-01
Full Text Available Abstract Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved.
Karavitis, G.A.
1984-01-01
The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)
Directory of Open Access Journals (Sweden)
Brohi Ali Anwar
2017-01-01
Full Text Available The entropy production in 2-D heat transfer system has been analyzed systematically by using the finite volume method, to develop new criteria for the numerical simulation in case of multidimensional systems, with the aid of the CFD codes. The steady-state heat conduction problem has been investigated for entropy production, and the entropy production profile has been calculated based upon the current approach. From results for 2-D heat conduction, it can be found that the stability of entropy production profile exhibits a better agreement with the exact solution accordingly, and the current approach is effective for measuring the accuracy and stability of numerical simulations for heat transfer problems.
Lee, Ji Yeon; Vinayagamoorthy, Nadimuthu; Han, Kyungdo; Kwok, Seung Ki; Ju, Ji Hyeon; Park, Kyung Su; Jung, Seung-Hyun; Park, Sung-Won; Chung, Yeun-Jun; Park, Sung-Hwan
2016-01-01
To evaluate associations of genetic polymorphisms in cytochrome P450 (CYP) isoforms 2D6, 3A5, and 3A4 with blood concentrations of hydroxychloroquine (HCQ) and its metabolite, N-desethyl HCQ (DHCQ), in patients with systemic lupus erythematosus (SLE). SLE patients taking HCQ for >3 months were recruited and were genotyped for 4 single-nucleotide polymorphisms in CYP2D6*10, CYP3A5*3, and CYP3A4*18B. Blood HCQ and DHCQ concentrations ([HCQ] and [DHCQ]) were measured and their association with corresponding genotypes was investigated. A total of 194 patients were included in the analysis. CYP2D6*10 polymorphisms (rs1065852 and rs1135840) were significantly associated with the [DHCQ]:[HCQ] ratio after adjustment for age, sex, dose per weight per day, and SLE Disease Activity Index score (P = 0.03 and P < 0.01, respectively). In adjusted models, the [DHCQ]:[HCQ] ratio was highest in patients with the G/G genotype of the CYP2D6*10 (rs1065852) polymorphism and lowest in those with the A/A genotype (P = 0.03). Similarly, the [DHCQ]:[HCQ] ratio was highest in patients with the C/C genotype of the CYP2D6*10 (rs1135840) polymorphism and lowest in those with the G/G genotype (P < 0.01). The CYP2D6*10 (rs1065852) polymorphism was significantly related to the [DHCQ] (P = 0.01). However, the polymorphisms of CYP3A5*3 and CYP3A4*18B did not show any significant association with the [HCQ], [DHCQ], or [DHCQ]:[HCQ] ratio. Our study showed that the [DHCQ]:[HCQ] ratio was related to CYP2D6 polymorphisms in Korean lupus patients taking oral HCQ. CYP polymorphisms may explain why there is wide variation in blood HCQ concentrations. The role of an individual's CYP polymorphisms should be considered when prescribing oral HCQ. © 2016, American College of Rheumatology.
Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems.
Badalyan, S M; Shylau, A A; Jauho, A P
2017-09-22
We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q. Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.
Patel, Dhruvesh; Ramirez, Jorge; Srivastava, Prashant; Bray, Michaela; Han, Dawei
2017-04-01
Surat, known as the diamond city of Gujart is situated 100 km downstream of Ukai dam and near the mouth of river Tapi and affected by the flood at every alternate year. The city experienced catastrophic floods in 1933, 1959, 1968, 1970, 1994, 1998 and 2006. It is estimated that a single flood event during August 6-12, 2006 in Surat and Hazira twin-city, caused heavy damages, resulted in the death of 300 people and property damage worth € 289 million. The peak discharge of 25768 m3 s-1 release from Ukai dam was responsible for the disastrous flood in Surat city. To identifylow lying areas prone to inundation and reduce the uncertainty in flood mitigation measures, HEC-RAS based 1D/2D Couple hydrodynamic modeling is carried out for Surat city. Release from the Ukai dam and tidal level of the sea are considered for upstream and downstream boundary condition. 299 surveyed cross-sections have been considered for 1D modeling, whereas a topographic map at 0.5 m contour interval was used to produce a 5 m grid and SRTM (30 & 90 m) grid has been considered for Suart and Lower Tapi Basin (LTB). Flow is simulated under unsteady conditions, calibrated for the year 1998 and validated for the year 2006. The simulated result shows that the 9th August 18.00 hr was the worst day for Surat city and maximum 75-77 % area was under inundation. Most of the flooded area experienced 0.25 m/s water velocity with the duration of 90 hr. Due to low velocity and high duration of the flood, a low lying area within the west zone and south-west zone of the city was badly affected by the flood, whereas the south zone and south-east zone was least. Simulated results show good correlation when compared with an observed flood level map. The simulated results will be helpful to improve the flood resilience strategy at Surat city and reduce the uncertainty for flood inundation mapping for future dam releases. The present case study shows the applicability of 1D/2D coupled hydrodynamic modeling for
2d index and surface operators
International Nuclear Information System (INIS)
Gadde, Abhijit; Gukov, Sergei
2014-01-01
In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role
Singh, Simranjit; Kaur, Ramandeep; Singh, Amanvir; Kaler, R. S.
2015-03-01
In this paper, security of the spectrally encoded-optical code division multiplexed access (OCDMA) system is enhanced by using 2-D (orthogonal) modulation technique. This is an effective approach for simultaneous improvement of the system capacity and security. Also, the results show that the hybrid modulation technique proved to be a better option to enhance the data confidentiality at higher data rates using minimum utilization of bandwidth in a multiuser environment. Further, the proposed system performance is compared with the current state-of-the-art OCDMA schemes.
Dang, Ngoc T.; Pham, Anh T.; Cheng, Zixue
We analyze the beat noise cancellation in two-dimensional optical code-division multiple-access (2-D OCDMA) systems using an optical hard-limiter (OHL) array. The Gaussian shape of optical pulse is assumed and the impact of pulse propagation is considered. We also take into account the receiver noise and multiple access interference (MAI) in the analysis. The numerical results show that, when OHL array is employed, the system performance is greatly improved compared with the cases without OHL array. Also, parameters needed for practical system design are comprehensively analyzed.
A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene
International Nuclear Information System (INIS)
Brinkman, D.; Heitzinger, C.; Markowich, P.A.
2014-01-01
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses
A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene
Brinkman, Daniel; Heitzinger, Clemens Heitzinger; Markowich, Peter A.
2014-01-01
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac-Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac-Poisson system where potentials act as beam splitters or Veselago lenses. © 2013 Elsevier Inc.
International Nuclear Information System (INIS)
Yehia, Hamad M
2013-01-01
In this study we have formulated a theorem that generates deformations of the natural integrable conservative systems in the plane into integrable systems on Riemannian and other manifolds by introducing additional parameters into their structures. The relation of explicit solutions of the new and the original dynamics to the corresponding Jacobi (Maupertuis) geodesic flow is clarified. For illustration, we apply the result to three concrete examples of the many available integrable systems in the literature. Complementary integrals in those systems are polynomial in velocity with degrees 3, 4 and 6, respectively. As a special case of the first deformed system, a new several-parameter family of integrable mechanical systems (and geodesic flows) on S 2 is constructed. (paper)
Sensitivity enhancement of 13C nuclei in 2D J-resolved NMR spectroscopy using a recycled-flow system
International Nuclear Information System (INIS)
Ha, S.T.K.; Lee, R.W.K.; Wilkins, C.L.
1987-01-01
Recycled-flow nuclear magnetic resonance for sensitivity enhancement in 1/2 spin nuclei has been reported previously, achieving several-fold signal enhancement. The success of the method depends upon premagnetization of nuclei prior to flowing into the detector region, obviating the need for delays following data acquisition to allow spin-lattice relaxation and reduce experiment time. The actual gains of sensitivity enhancement for 13 C- 1 H 2D J-resolved NMR using a recycled-flow method are evaluated. Possible enhancements for two types of J-resolved measurements, namely, one-bond 13 C- 1 H and long range J-resolved spectroscopy, are estimated using a simple Carr-Purcell spin-echo approach to quantify the 13 C signals. The pulse sequence is simply 90 0 -t /sub 1/2/-180 0 -t/sub 1/2/-AT-t/sub d/, where t/sub 1/2/ is half the evolution time, AT is the acquisition time, and t/sub d/ the experiment repetition time. In a static 2D NMR experiment, t/sub d/ usually must be the same order of the longest spin-lattice relaxation time (T 1 ) of nuclei. Quantitative measurements using a recycled-flow system indicate t/dub d/ can be reduced to a fraction of T 1 ; hence significant time savings can be achieved. Time-savings of between 2 and 25 can be anticipated for 2D spectroscopy under flow measurement conditions used in the present study. Other types of 2D NMR spectroscopy (autocorrelation and double quantum NMR) are discussed
A low-cost 2D fluorescence detection system for mm sized beads on-chip
Segerink, Loes Irene; Koster, Maarten J.; Sprenkels, A.J.; van den Berg, Albert
2012-01-01
In this paper we describe a compact fluorescence detection system for on-chip analysis of beads, comprising a low-cost optical HD-DVD pickup. The complete system consists of a fluorescence detection unit, a control unit and a microfluidic chip containing microchannels and optical markers. With these
EPR of exchange coupled systems
Bencini, Alessandro
2012-01-01
From chemistry to solid state physics to biology, the applications of Electron Paramagnetic Resonance (EPR) are relevant to many areas. This unified treatment is based on the spin Hamiltonian approach and makes extensive use of irreducible tensor techniques to analyze systems in which two or more spins are magnetically coupled. This edition contains a new Introduction by coauthor Dante Gatteschi, a pioneer and scholar of molecular magnetism.The first two chapters review the foundations of exchange interactions, followed by examinations of the spectra of pairs and clusters, relaxation in oligon
Low energy positron beam system for the investigation of 2D and porous materials
International Nuclear Information System (INIS)
Chrysler, M D; Chirayath, V A; Mcdonald, A D; Gladen, R W; Fairchild, A J; Koymen, A R; Weiss, A H
2017-01-01
An advanced variable energy positron beam (∼2 eV to 20 keV) has been designed, tested and utilized for coincidence Doppler broadening (CDB) measurements at the University of Texas at Arlington (UTA). A high efficiency solidified rare gas (Neon) moderator was used for the generation of a slow positron beam. The gamma rays produced as a result of the annihilation of positrons with the sample electrons are measured using a high purity Germanium (HPGe) detector in coincidence with a NaI(Tl) detector. Modifications to the system, currently underway, permits simultaneous measurements utilizing Positron annihilation induced Auger Electron Spectroscopy (PAES) and CDB. The tendency of positrons to become trapped in an image potential well at the surface will allow the new system to be used in measurements of the chemical structure of surfaces, internal or external and interfaces. The system will utilize a time of flight (TOF) technique for electron energy measurements. A 3m flight path from the sample to a micro-channel plate (MCP) in the new system will give it superior energy resolution at higher electron energies as compared to previous TOF systems utilizing shorter flight paths. (paper)
A neuromorphic VLSI device for implementing 2-D selective attention systems.
Indiveri, G
2001-01-01
Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. It is found in many biological systems and can be a useful engineering tool for developing artificial systems that need to process in real-time sensory data. In this paper we present a neuromorphic hardware model of a selective attention mechanism implemented on a very large scale integration (VLSI) chip, using analog circuits. The chip makes use of a spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors and actuators, for implementing multichip selective attention systems. We describe the characteristics of the circuits used in the architecture and present experimental data measured from the system.
Energy Technology Data Exchange (ETDEWEB)
Kim, Young-Keun, E-mail: ykkim@handong.edu [Department of Mechanical and Control Engineering, Handong Global University, Pohang (Korea, Republic of); Kim, Kyung-Soo [Department of Mechanical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)
2014-10-15
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
Selective Population of Edge States in a 2D Topological Band System.
Galilo, Bogdan; Lee, Derek K K; Barnett, Ryan
2015-12-11
We consider a system of interacting spin-one atoms in a hexagonal lattice under the presence of a synthetic gauge field. Quenching the quadratic Zeeman field is shown to lead to a dynamical instability of the edge modes. This, in turn, leads to a spin current along the boundary of the system which grows exponentially fast in time following the quench. Tuning the magnitude of the quench can be used to selectively populate edge modes of different momenta. Implications of the intrinsic symmetries of the Hamiltonian on the dynamics are discussed. The results hold for atoms with both antiferromagnetic and ferromagnetic interactions.
Bernardini, C.; Stoyanov, S.D.; Arnaudov, L.N.; Cohen Stuart, M.A.
2013-01-01
In 1861 Thomas Graham gave birth to a new field of science, today known as colloid science. Nowadays, the notion “colloid” is often used referring to systems consisting of two immiscible phases, one of which is finely dispersed into the other. Research on colloids deals mostly with sols (solids
Gragg, E.; Van Wijk, J. W.; Balch, R. S.
2016-12-01
A 40 mile long 2D petroleum system model has been constructed and simulated along a 2D reflection seismic line in the western Anadarko Basin. Petroleum system models are useful for predicting carbon storage capacity, characterizing regional CO2 plume migration risks, predicting how future fields may respond to CO2-EOR via hydrocarbon compositional estimations and characterizing the petroleum system that make sites attractive for storage. This work is part of the Southwest Regional Partnership on Carbon Sequestration Phase III large scale injection operation at Farnsworth Unit Ochiltree Co., Texas. Farnsworth Unit is a mature oil field producing from Morrowan Sandstone incised valley deposits. The project goal is to evaluate the injection and storage of 1 million metric tons of man-made CO2. Geologic carbon storage and utilization via CO2-enhanced oil recovery operations is a method under active research which aims to mitigate climate change via emission reductions while meeting current energy demands. The 2D model was constructed using 2D regional reflection seismic data, geophysical logs and core data. Simulations are forward modeled over 542 Ma of the Anadarko Basins geologic history. The research illustrates (1) in the unlikely case of CO2 leakage out of the reservoir, buoyancy driven regional migration risk is to the northwest-northeast (2) Morrowan play hydrocarbons in the Northeast Texas Panhandle dominantly migrated from the Thirteen Finger Limestone further basinward (3) the regions tectonic evolution has played an important role on the pressure and hydraulic history of reservoirs. Farnsworth's reservoir was discovered as under-pressured, the exact process(s) giving rise to this condition are not well-understood and need further investigation. Moreover, the heat flow model used in this study will aid understanding of the diagenetic evolution of the reservoir and caprocks better. The petroleum system modeling conducted here has accurately predicted 1st order
Influence of Code Size Variation on the Performance of 2D Hybrid ZCC/MD in OCDMA System
Directory of Open Access Journals (Sweden)
Matem Rima.
2018-01-01
Full Text Available Several two dimensional OCDMA have been developed in order to overcome many problems in optical network, enhancing cardinality, suppress Multiple Access Interference (MAI and mitigate Phase Induced Intensity Noise (PIIN. This paper propose a new 2D hybrid ZCC/MD code combining between 1D ZCC spectral encoding where M is its code length and 1D MD spatial spreading where N is its code length. The spatial spreading (N code length offers a good cardinality so it represents the main effect to enhance the performance of the system compared to the spectral (M code length according to the numerical results.
An exact solution to the extended Hubbard model in 2D for finite size system
Harir, S.; Bennai, M.; Boughaleb, Y.
2008-08-01
An exact analytical diagonalization is used to solve the two-dimensional extended Hubbard model (EHM) for a system with finite size. We have considered an EHM including on-site and off-site interactions with interaction energies U and V, respectively, for a square lattice containing 4×4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs and Gulacsi (2006 Phil. Mag. 86 2073). Taking into account the symmetric properties of this square lattice and using a translation linear operator, we have constructed a r-space basis only with 85 state-vectors which describe all possible distributions for four electrons in the 4×4 square lattice. The diagonalization of the 85×85 matrix energy allows us to study the local properties of the above system as a function of the on-site and off-site interactions energies, where we have shown that the off-site interaction encourages the existence of the double occupancies at the first excited state and induces a supplementary conductivity of the system.
Evaluating the Cognitive Aspects of User Interaction with 2D Visual Tagging Systems
Directory of Open Access Journals (Sweden)
Samuel Olugbenga King
2008-04-01
Full Text Available There has been significant interest in thedevelopment and deployment of visual taggingapplications in recent times. But user perceptions aboutthe purpose and function of visual tagging systems havenot received much attention. This paper presents a userexperience study that investigates the cognitive modelsthat novice users have about interacting with visualtagging applications. The results of the study show thatalthough most users are unfamiliar with visual taggingtechnologies, they could accurately predict the purposeand mode of retrieval of data stored in visual tags. Thestudy concludes with suggestions on how to improve therecognition, ease of recall and design of visual tags.
Pairing and low temperature properties of 2 D Fermi-systems with attraction between particles
International Nuclear Information System (INIS)
Gorbar, E.V.; Gusynin, V.P.; Loktev, V.M.
1992-01-01
Proceeding from microscopic model Hamiltonian for the system of Fermi-particles with attraction the effective Lagrangian, admitting the analysis of its superconducting properties at arbitrary fermion concentration, is obtained.Exact solution for gap and chemical potential makes it possible to trace from local pair situation to Cooper pairing. The crucial parameter discriminating between the regions of exotic and normal superconducting behaviour is show to be that of the energy of the bound fermion state, which, however, rapidly disappears with fermion density increasing. The solutions of the equations for the case of finite temperatures are analysed. (author). 42 refs
Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.
Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M
2008-01-25
An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field.
Optimal Cross-Layer Design for Energy Efficient D2D Sharing Systems
Alabbasi, Abdulrahman
2016-11-23
In this paper, we propose a cross-layer design, which optimizes the energy efficiency of a potential future 5G spectrum-sharing environment, in two sharing scenarios. In the first scenario, underlying sharing is considered. We propose and minimize a modified energy per good bit (MEPG) metric, with respect to the spectrum sharing user’s transmission power and media access frame length. The cellular users, legacy users, are protected by an outage probability constraint. To optimize the non-convex targeted problem, we utilize the generalized convexity theory and verify the problem’s strictly pseudoconvex structure. We also derive analytical expressions of the optimal resources. In the second scenario, we minimize a generalized MEPG function while considering a probabilistic activity of cellular users and its impact on the MEPG performance of the spectrum sharing users. Finally, we derive the associated optimal resource allocation of this problem. Selected numerical results show the improvement of the proposed system compared with other systems.
International Nuclear Information System (INIS)
Vandenberghe, Stefaan; Staelens, Steven; Byrne, Charles L; Soares, Edward J; Lemahieu, Ignace; Glick, Stephen J
2006-01-01
In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast
Location detection and tracking of moving targets by a 2D IR-UWB radar system.
Nguyen, Van-Han; Pyun, Jae-Young
2015-03-19
In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.
Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System
Directory of Open Access Journals (Sweden)
Van-Han Nguyen
2015-03-01
Full Text Available In indoor environments, the Global Positioning System (GPS and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.
Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.
Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir
2012-01-01
Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.
Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu
2013-09-01
Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.
Zhang, L; Court, L; Balter, P; Dong, L
2012-06-01
The use of structure overlay on setup DRRs can aid the image alignment procedure for daily image-guided setup procedures. However, the accuracy of a 3D region-of-interest (ROI) projected on a 2D digitally reconstructed radiograph (DRR) has rarely been evaluated quantitatively. The goal of this study is to test the accuracy of two commercial treatment planning systems (TPS) in producing overlay structures on setup DRRs. We designed a novel method to identify landmarks which were on the boundary of the projected ROI on a DRR. The 3D ROIvolume is composed of a stack of 2D curves. We first mathematically project each 2D curve onto a beams-eye-view (BEV) plane. Next, we detectthe boundary points of the projected curves. Those boundary points serve aslandmarks. Finally, we project the binary mask of the 3D ROI volume using ray tracing method onto the BEV plane. This projected binary mask is used to exclude the false landmarks. Once those landmarks are detected, wecompute the distance between the landmarks and ROI outlines from the TPS. We applied our validation method to 13 ROIs from a lung patient and 4 simulated ROIs on 2 BEV DRRs for two different TPS (Eclipse and Pinnacle). Average distance between the landmarks and ROIoutlines was 0.5mm for both Eclipse and Pinnacle approaches, which is close to the pixel resolution of the DRR. The maximum distance andaverage maximum distance was 2mm and 1 mm, respectively, for both TPS.The maximum distance occurred at points where the ROI curve has a sharpchange between slices. The accuracy of Eclipse and Pinnacle ROI projection method seems to be acceptable to within 1mm althoughprojection error can be as large as 2mm when structure shape has a sharp variation from one slice to the next. © 2012 American Association of Physicists in Medicine.
Activated sludge model No. 2d, ASM2d
DEFF Research Database (Denmark)
Henze, M.
1999-01-01
The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....
Meijer, Marrigje F.; Velleman, Ton; Boerboom, Alexander L.; Bulstra, Sjoerd K.; Otten, Egbert; Stevens, Martin; Reininga, Inge H. F.
2016-01-01
Introduction The EOS stereoradiography system has shown to provide reliable varus/valgus (VV) measurements of the lower limb in 2D (VV2D) and 3D (VV3D) after total knee arthroplasty (TKA). Validity of these measurements has not been investigated yet, therefore the purpose of this study was to
Resonant activation in 2D and 3D systems driven by multi-variate Lévy noise
International Nuclear Information System (INIS)
Szczepaniec, Krzysztof; Dybiec, Bartłomiej
2014-01-01
Resonant activation is one of the classical effects demonstrating the constructive role of noise. In resonant activation, the cooperative action of a barrier modulation process and noise lead to the optimal escape kinetics as measured by the mean first passage time. Resonant activation has been observed in versatile systems for various types of barrier modulation process and noise type. Here, we show that resonant activation is also observed in 2D and 3D systems driven by bi-variate and tri-variate α-stable noise. The strength of resonant activation is sensitive to the exact value of the noise parameters. In particular, the decrease in the stability index α results in the disappearance of the resonant activation. (paper)
A novel beat-noise-reducing en/decoding technology for a coherent 2-D OCDMA system.
Zheng, Jilin; Wang, Rong; Pu, Tao; Lu, Lin; Fang, Tao; Cheng, Yun; Chen, Xiangfei
2009-10-12
A novel fiber Bragg grating (FBG)-based en/decoder for a coherent two-dimensional (2-D) wavelength-time (WT) optical code-division multiple-access (OCDMA) system is proposed to suppress the beat noise (BN). The feasibility of en/decoding function and the effectiveness of BN suppression are demonstrated by the simulation comparison between the conventional and proposed scheme, which are also further validated by en/decoding experiments with two users at a data rate of 2.5, 5 and 10 Gb/s respectively. The further numerical performance analysis of the proposed en/decoding method reveals the BER improvement compared with the conventional system.
Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2010-03-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.
International Nuclear Information System (INIS)
Hill, E.J.; Woehrling, E.K.; Prince, M.; Coleman, M.D.
2008-01-01
Developmental neurotoxicity is a major issue in human health and may have lasting neurological implications. In this preliminary study we exposed differentiating Ntera2/clone D1 (NT2/D1) cell neurospheres to known human teratogens classed as non-embryotoxic (acrylamide), weakly embryotoxic (lithium, valproic acid) and strongly embryotoxic (hydroxyurea) as listed by European Centre for the Validation of Alternative Methods (ECVAM) and examined endpoints of cell viability and neuronal protein marker expression specific to the central nervous system, to identify developmental neurotoxins. Following induction of neuronal differentiation, valproic acid had the most significant effect on neurogenesis, in terms of reduced viability and decreased neuronal markers. Lithium had least effect on viability and did not significantly alter the expression of neuronal markers. Hydroxyurea significantly reduced cell viability but did not affect neuronal protein marker expression. Acrylamide reduced neurosphere viability but did not affect neuronal protein marker expression. Overall, this NT2/D1-based neurosphere model of neurogenesis, may provide the basis for a model of developmental neurotoxicity in vitro
Directory of Open Access Journals (Sweden)
Shugo Tohyama
2017-11-01
Full Text Available Cardiac regenerative therapies utilizing human induced pluripotent stem cells (hiPSCs are hampered by ineffective large-scale culture. hiPSCs were cultured in multilayer culture plates (CPs with active gas ventilation (AGV, resulting in stable proliferation and pluripotency. Seeding of 1 × 106 hiPSCs per layer yielded 7.2 × 108 hiPSCs in 4-layer CPs and 1.7 × 109 hiPSCs in 10-layer CPs with pluripotency. hiPSCs were sequentially differentiated into cardiomyocytes (CMs in a two-dimensional (2D differentiation protocol. The efficiency of cardiac differentiation using 10-layer CPs with AGV was 66%–87%. Approximately 6.2–7.0 × 108 cells (4-layer and 1.5–2.8 × 109 cells (10-layer were obtained with AGV. After metabolic purification with glucose- and glutamine-depleted and lactate-supplemented media, a massive amount of purified CMs was prepared. Here, we present a scalable 2D culture system using multilayer CPs with AGV for hiPSC-derived CMs, which will facilitate clinical applications for severe heart failure in the near future.
International Nuclear Information System (INIS)
Wang Zongsen; Shen Xiong; Xu Yuanhui; Bi Shuxun
1987-12-01
An experimental study of the heat exchanger which would be used in a nuclear reactor for low temperature heat-supplying is presented. A 2-D Laser Doppler Velocimeter was used as a unique technique to measure the mean velocity and turbulence intensity distributions in different sections of the model. The relationship between the resistance coefficient and Reynolds number also obtained in terms of the total pressure rakes covered by the casings and the wall static pressure pick-up holes. The flow visualization has realized by using a piece of light source with an Argon-Ion laser. It is apparent that the polystyrene particles seeded in the flow can trace the mean flow. The results showed that the self-similar phenomenon exists in the tube bundle flow system. There are some secondary vortices in the cross sections between two passages of the model
Wang, Zhuo; Samaraweera, R L; Reichl, C; Wegscheider, W; Mani, R G
2016-12-07
Electron-heating induced by a tunable, supplementary dc-current (I dc ) helps to vary the observed magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system. The magnetoresistance at B = 0.3 T is shown to progressively change from positive to negative with increasing I dc , yielding negative giant-magnetoresistance at the lowest temperature and highest I dc . A two-term Drude model successfully fits the data at all I dc and T. The results indicate that carrier heating modifies a conductivity correction σ 1 , which undergoes sign reversal from positive to negative with increasing I dc , and this is responsible for the observed crossover from positive- to negative- magnetoresistance, respectively, at the highest B.
International Nuclear Information System (INIS)
Jeong, Hee Jeong; Choi, Yonghee; Kim, Sungmin; Lee, Kyunghoon
2017-01-01
To verify and validate the DeCART2D/MASTER4.0 design system, core follow calculations of Palo Verde Unit 1(PV-1) in cycles 1 through 4 are performed. The calculation results are compared with the measured data and will be used in the generation of bias and uncertainty factors in the DeCART2D/MASTER4.0 design system. The DeCART2D/MASTER codes system has been developed in KAERI for the PWR (Pressurized water reactors) core design including SMRs (Small Modular Reactors). Core follow calculations of Pale Verde Unit 1 in Cycles 1 through 4 have been performed. Reactivities, assembly powers and startup parameters such as EPC, RW, ITC and IBW are compared with the measured data. This work will be used in the generation of bias and uncertainty factors in DeCART2D/MASTER4.0 design system.
International Nuclear Information System (INIS)
Yaksh, M.; Wang, C.
2004-01-01
In the US, the number of nuclear plants expected to implement on-site dry storage is increasing each year. As reactors burn advanced fuel assemblies to higher burnups, the dry storage systems will be required to accommodate higher heat loads. This is due to the increasing capacity of the systems and the need to store higher burnup fuel with reasonable cooling periods (i.e., five to six years). As the storage systems heat rejection design must be passive, natural convection is an efficient means for rejection of heat from the spent fuel to the surface of the canister boundary. The design presented in this paper is a canistered system that employs conduction, radiation and convection to reject heat from the canister, which is stored in a vertical concrete cask. The canister containing the spent fuel in this design is a right circular stainless steel vessel capable of storing 37 PWR fuel assemblies with a total canister heat load of 40 kW. Accompanying any design effort is the use of a numerical methodology that can accurately predict the peak-clad temperatures of the fuel and the structural components of the system. The main challenge to any analysis employing internal natural convection may be perceived as a practical limitation due to the size of the model. Since canisters are typically cylindrical, a two-dimensional model can be used to represent the canister. The fuel basket structure, which maintains the configuration of the spent fuel, is an array of square tubes, and is non-axisymmetric. Flow up through the fuel region in the basket encounters a complex cross section due to the fuel assembly rod array (up to 17 x 17). The flow region of the heated gas down the outside of the basket in the annulus between the canister shell and the basket assembly (downcomer) is also an irregular shaped area. To confirm that a two-dimensional (2D) modelling methodology is appropriate, a benchmark using results from a thermal test is required. The thermal test focuses on the
Analysis of Synchronization for Coupled Hybrid Systems
DEFF Research Database (Denmark)
Li, Zheng; Wisniewski, Rafal
2006-01-01
In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...
Meijer, Marrigje F.; Velleman, Ton; Boerboom, Alexander L.; Bulstra, Sjoerd K.; Otten, Egbert; Stevens, Martin; Reininga, Inge H. F.
2016-01-01
Introduction The EOS stereoradiography system has shown to provide reliable varus/valgus (VV) measurements of the lower limb in 2D (VV2D) and 3D (VV3D) after total knee arthroplasty (TKA). Validity of these measurements has not been investigated yet, therefore the purpose of this study was to determine validity of EOS VV2D and VV3D. Methods EOS images were made of a lower limb phantom containing a knee prosthesis, while varying VV angle from 15 degrees varus to 15 degrees valgus and flexion a...
Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej
2017-08-01
In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.
DEFF Research Database (Denmark)
Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.
2014-01-01
In this series of two papers, we report on the irregular wave extension of the second-order coupling theory of numerical and physical wave model described in [Z. Yang, S. Liu, H.B. Bingham and J. Li. Second-order theory for coupling numerical and physical wave tanks: Derivation, evaluation...
Vilaça, Jaime; Pinto, José Pedro; Fernandes, Sandra; Costa, Patrício; Pinto, Jorge Correia; Leão, Pedro
2017-12-01
Usually laparoscopy is performed by means of a 2-dimensional (2D) image system and multiport approach. To overcome the lack of depth perception, new 3-dimensional (3D) systems are arising with the added advantage of providing stereoscopic vision. To further reduce surgery-related trauma, there are new minimally invasive surgical techniques being developed, such as LESS (laparoendoscopic single-site) surgery. The aim of this study was to compare 2D and 3D laparoscopic systems in LESS surgical procedures. All participants were selected from different levels of experience in laparoscopic surgery-10 novices, 7 intermediates, and 10 experts were included. None of the participants had had previous experience in LESS surgery. Participants were chosen randomly to begin their experience with either the 2D or 3D laparoscopic system. The exercise consisted of performing an ex vivo pork cholecystectomy through a SILS port with the assistance of a fixed distance laparoscope. Errors, time, and participants' preference were recorded. Statistical analysis of time and errors between groups was conducted with a Student's t test (using independent samples) and the Mann-Whitney test. In all 3 groups, the average time with the 2D system was significantly reduced after having used the 3D system ( P 3D system. This study suggests that the 3D system may improve the learning curve and that learning from the 3D system is transferable to the 2D environment. Additionally, the majority of participants prefer 3D equipment.
Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J
1998-06-01
Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.
International Nuclear Information System (INIS)
Avishai, Y.
1985-01-01
We consider tunneling through a potential barrier V(x) in the presence of a coupling term W(x,y). Let H(y) be the internal Hamiltonian associated with the coordinate y and let E 0 (x) be the ground state energy of the operator H(x;y) = H(y) + W(x,y) in which x is a parameter. Our result for the tunneling probability (in the WKB approximation) is P = exp(2i ∫ k 0 (x)dx) where, at energy E, k 0 (x) = [E-E 0 (x)-V(x)]sup(1/2)/(h/2π) is the local wave number in the presence of coupling. (orig.)
Measuring Relative Coupling Strength in Circadian Systems.
Schmal, Christoph; Herzog, Erik D; Herzel, Hanspeter
2018-02-01
Modern imaging techniques allow the monitoring of circadian rhythms of single cells. Coupling between these single cellular circadian oscillators can generate coherent periodic signals on the tissue level that subsequently orchestrate physiological outputs. The strength of coupling in such systems of oscillators is often unclear. In particular, effects on coupling strength by varying cell densities, by knockouts, and by inhibitor applications are debated. In this study, we suggest to quantify the relative coupling strength via analyzing period, phase, and amplitude distributions in ensembles of individual circadian oscillators. Simulations of different oscillator networks show that period and phase distributions become narrower with increasing coupling strength. Moreover, amplitudes can increase due to resonance effects. Variances of periods and phases decay monotonically with coupling strength, and can serve therefore as measures of relative coupling strength. Our theoretical predictions are confirmed by studying recently published experimental data from PERIOD2 expression in slices of the suprachiasmatic nucleus during and after the application of tetrodotoxin (TTX). On analyzing the corresponding period, phase, and amplitude distributions, we can show that treatment with TTX can be associated with a reduced coupling strength in the system of coupled oscillators. Analysis of an oscillator network derived directly from the data confirms our conclusions. We suggest that our approach is also applicable to quantify coupling in fibroblast cultures and hepatocyte networks, and for social synchronization of circadian rhythmicity in rodents, flies, and bees.
Zhang, Chendong; Chuu, Chih-Piao; Ren, Xibiao; Li, Ming-yang; Li, Lain-Jong; Jin, Chuanhong; Chou, Mei-Yin; Shih, Chih-Kang
2017-01-01
der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function
2D quantum gravity from quantum entanglement.
Gliozzi, F
2011-01-21
In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.
Identical synchronization of coupled Rossler systems
DEFF Research Database (Denmark)
Yanchuk, S.; Maistrenko, Y.; Mosekilde, Erik
1999-01-01
Analyzing the transverse stability of low periodic orbits embedded in the synchronized chaotic state for a system of two coupled Rössler oscillators, we obtain the conditions for synchronization and determine the coupling parameters for which riddled basins of attraction may arise. It is shown how...
Linear dynamic coupling in geared rotor systems
David, J. W.; Mitchell, L. D.
1986-01-01
The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.
Vehicle systems: coupled and interactive dynamics analysis
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
International Nuclear Information System (INIS)
Das, Ranjan; Mishra, Subhash C.; Ajith, M.; Uppaluri, R.
2008-01-01
This article deals with the simultaneous estimation of parameters in a 2-D transient conduction-radiation heat transfer problem. The homogeneous medium is assumed to be absorbing, emitting and scattering. The boundaries of the enclosure are diffuse gray. Three parameters, viz. the scattering albedo, the conduction-radiation parameter and the boundary emissivity, are simultaneously estimated by the inverse method involving the lattice Boltzmann method (LBM) and the finite volume method (FVM) in conjunction with the genetic algorithm (GA). In the direct method, the FVM is used for computing the radiative information while the LBM is used to solve the energy equation. The temperature field obtained in the direct method is used in the inverse method for simultaneous estimation of unknown parameters using the LBM-FVM and the GA. The LBM-FVM-GA combination has been found to accurately predict the unknown parameters
Cresson, T; Chav, R; Branchaud, D; Humbert, L; Godbout, B; Aubert, B; Skalli, W; De Guise, J A
2009-01-01
3D reconstructions of the spine from a frontal and sagittal radiographs is extremely challenging. The overlying features of soft tissues and air cavities interfere with image processing. It is also difficult to obtain information that is accurate enough to reconstruct complete 3D models. To overcome these problems, the proposed method efficiently combines the partial information contained in two images from a patient with a statistical 3D spine model generated from a database of scoliotic patients. The algorithm operates through two simultaneous iterating processes. The first one generates a personalized vertebra model using a 2D/3D registration process with bone boundaries extracted from radiographs, while the other one infers the position and the shape of other vertebrae from the current estimation of the registration process using a statistical 3D model. Experimental evaluations have shown good performances of the proposed approach in terms of accuracy and robustness when compared to CT-scan.
Directory of Open Access Journals (Sweden)
Marrigje F Meijer
Full Text Available The EOS stereoradiography system has shown to provide reliable varus/valgus (VV measurements of the lower limb in 2D (VV2D and 3D (VV3D after total knee arthroplasty (TKA. Validity of these measurements has not been investigated yet, therefore the purpose of this study was to determine validity of EOS VV2D and VV3D.EOS images were made of a lower limb phantom containing a knee prosthesis, while varying VV angle from 15° varus to 15° valgus and flexion angle from 0° to 20°, and changing rotation from 20° internal to 20° external rotation. Differences between the actual VV position of the lower limb phantom and its position as measured on EOS 2D and 3D images were investigated.Rotation, flexion or VV angle alone had no major impact on VV2D or VV3D. Combination of VV angle and rotation with full extension did not show major differences in VV2D measurements either. Combination of flexion and rotation with a neutral VV angle showed variation of up to 7.4° for VV2D; maximum variation for VV3D was only 1.5°. A combination of the three variables showed an even greater distortion of VV2D, while VV3D stayed relatively constant. Maximum measurement difference between preset VV angle and VV2D was 9.8°, while the difference with VV3D was only 1.9°. The largest differences between the preset VV angle and VV2D were found when installing the leg in extreme angles, for example 15° valgus, 20° flexion and 20° internal rotation.After TKA, EOS VV3D were more valid than VV2D, indicating that 3D measurements compensate for malpositioning during acquisition. Caution is warranted when measuring VV angle on a conventional radiograph of a knee with a flexion contracture, varus or valgus angle and/or rotation of the knee joint during acquisition.
Meijer, Marrigje F; Velleman, Ton; Boerboom, Alexander L; Bulstra, Sjoerd K; Otten, Egbert; Stevens, Martin; Reininga, Inge H F
2016-01-01
The EOS stereoradiography system has shown to provide reliable varus/valgus (VV) measurements of the lower limb in 2D (VV2D) and 3D (VV3D) after total knee arthroplasty (TKA). Validity of these measurements has not been investigated yet, therefore the purpose of this study was to determine validity of EOS VV2D and VV3D. EOS images were made of a lower limb phantom containing a knee prosthesis, while varying VV angle from 15° varus to 15° valgus and flexion angle from 0° to 20°, and changing rotation from 20° internal to 20° external rotation. Differences between the actual VV position of the lower limb phantom and its position as measured on EOS 2D and 3D images were investigated. Rotation, flexion or VV angle alone had no major impact on VV2D or VV3D. Combination of VV angle and rotation with full extension did not show major differences in VV2D measurements either. Combination of flexion and rotation with a neutral VV angle showed variation of up to 7.4° for VV2D; maximum variation for VV3D was only 1.5°. A combination of the three variables showed an even greater distortion of VV2D, while VV3D stayed relatively constant. Maximum measurement difference between preset VV angle and VV2D was 9.8°, while the difference with VV3D was only 1.9°. The largest differences between the preset VV angle and VV2D were found when installing the leg in extreme angles, for example 15° valgus, 20° flexion and 20° internal rotation. After TKA, EOS VV3D were more valid than VV2D, indicating that 3D measurements compensate for malpositioning during acquisition. Caution is warranted when measuring VV angle on a conventional radiograph of a knee with a flexion contracture, varus or valgus angle and/or rotation of the knee joint during acquisition.
Physics of Coupled CME and Flare Systems
2016-12-21
AFRL-RV-PS- AFRL-RV-PS- TR-2016-0162 TR-2016-0162 PHYSICS OF COUPLED CME AND FLARE SYSTEMS K. S. Balasubramaniam, et al. 21 December 2016 Final...30 Sep 2016 4. TITLE AND SUBTITLE Physics of Coupled CME and Flare Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F...objectives for this task were: (i) derive measureable physical properties and discernible structural circumstances in solar active regions that
Dietrich, Scott
Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these materials. The quantum scattering rate, 1tau/q, is an important parameter in these systems, defining the width of the quantized energy levels. Traditional methods of extracting 1tau/q involve studying the amplitude of Shubnikov-de Haas oscillations. We analyze the quantum positive magnetoresistance due to the cyclotron motion of electrons in a magnetic field. This method gives 1tau/q and has the additional benefit of providing access to the strength of electron-electron interactions, which is not possible by conventional techniques. The temperature dependence of the quantum scattering rate is found to be proportional to the square of the temperature and is in very good agreement with theory that considers electron-electron interactions in 2D systems. In quantum wells with a small scattering rate - which corresponds to well-defined Landau levels - quantum oscillations of nonlinear resistance that are independent of magnetic field strength have been observed. These oscillations are periodic in applied bias current and are connected to quantum oscillations of resistance at zero bias: either Shubnikov-de Haas oscillations for single subband systems or magnetointersubband oscillations for two subband systems. The bias-induced oscillations can be explained by a spatial variation of electron
Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.
Owerre, S A
2017-07-31
In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM magnon edge modes.
Chintalapudi, Sumana R.; Maria, Doaa; Di Wang, Xiang; Bailey, Jessica N. Cooke; Hysi, Pirro G.; Wiggs, Janey L.; Williams, Robert W.; Jablonski, Monica M.
2017-01-01
textabstractGlaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, ...
Schoenthaler, Martin; Schnell, Daniel; Wilhelm, Konrad; Schlager, Daniel; Adams, Fabian; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz
2016-04-01
To compare task performances of novices and experts using advanced high-definition 3D versus 2D optical systems in a surgical simulator model. Fifty medical students (novices in laparoscopy) were randomly assigned to perform five standardized tasks adopted from the Fundamentals of Laparoscopic Surgery (FLS) curriculum in either a 2D or 3D laparoscopy simulator system. In addition, eight experts performed the same tasks. Task performances were evaluated using a validated scoring system of the SAGES/FLS program. Participants were asked to rate 16 items in a questionnaire. Overall task performance of novices was significantly better using stereoscopic visualization. Superiority of performances in 3D reached a level of significance for tasks peg transfer and precision cutting. No significant differences were noted in performances of experts when using either 2D or 3D. Overall performances of experts compared to novices were better in both 2D and 3D. Scorings in the questionnaires showed a tendency toward lower scores in the group of novices using 3D. Stereoscopic imaging significantly improves performance of laparoscopic phantom tasks of novices. The current study confirms earlier data based on a large number of participants and a standardized task and scoring system. Participants felt more confident and comfortable when using a 3D laparoscopic system. However, the question remains open whether these findings translate into faster and safer operations in a clinical setting.
Yoo, Byungjin; Hirata, Katsuhiro; Oonishi, Atsurou
In this study, a coupled analysis method for flat panel speakers driven by giant magnetostrictive material (GMM) based actuator was developed. The sound field produced by a flat panel speaker that is driven by a GMM actuator depends on the vibration of the flat panel, this vibration is a result of magnetostriction property of the GMM. In this case, to predict the sound pressure level (SPL) in the audio-frequency range, it is necessary to take into account not only the magnetostriction property of the GMM but also the effect of eddy current and the vibration characteristics of the actuator and the flat panel. In this paper, a coupled electromagnetic-structural-acoustic analysis method is presented; this method was developed by using the finite element method (FEM). This analysis method is used to predict the performance of a flat panel speaker in the audio-frequency range. The validity of the analysis method is verified by comparing with the measurement results of a prototype speaker.
Zhang, Chendong
2017-01-07
By using direct growth, we create a rotationally aligned MoS2/WSe2 hetero-bilayer as a designer van der Waals heterostructure. With rotational alignment, the lattice mismatch leads to a periodic variation of atomic registry between individual van der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function of atomic registry. We quantitatively determine the influence of interlayer coupling on the electronic structure of the hetero-bilayer at different critical points. We show that the direct gap semiconductor concept is retained in the bilayer although the valence and conduction band edges are located at different layers. We further show that the local bandgap is periodically modulated in the X-Y direction with an amplitude of ~0.15 eV, leading to the formation of a two-dimensional electronic superlattice.
Synchronization coupled systems to complex networks
Boccaletti, Stefano; del Genio, Charo I; Amann, Andreas
2018-01-01
A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate s...
Chaos desynchronization in strongly coupled systems
International Nuclear Information System (INIS)
Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng
2007-01-01
The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed
Energy Technology Data Exchange (ETDEWEB)
Debeljak, Marta [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia); Elteren, Johannes T. van, E-mail: elteren@ki.si [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia)
2013-07-17
Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg{sup 2+} does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm{sup −2}; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg{sup −1} DW HgCl{sub 2}. It was
International Nuclear Information System (INIS)
Debeljak, Marta; Elteren, Johannes T. van; Vogel-Mikuš, Katarina
2013-01-01
Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg 2+ does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm −2 ; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg −1 DW HgCl 2 . It was found that at given
Energy Technology Data Exchange (ETDEWEB)
Ko, Jae Hyung [Regenerative Medicine Research Center, Dalim Tissen Co., LTD., 383-93, Yonnam-Dong, Mapo-gu, Seoul (Korea, Republic of); Kim, Yang Hee [Regenerative Medicine Research Center, Dalim Tissen Co., LTD., 383-93, Yonnam-Dong, Mapo-gu, Seoul (Korea, Republic of); Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of); Jeong, Seong Hee; Lee, Song [Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of); Park, Si-Nae [Regenerative Medicine Research Center, Dalim Tissen Co., LTD., 383-93, Yonnam-Dong, Mapo-gu, Seoul (Korea, Republic of); Shim, In Kyong, E-mail: shimiink@gmail.com [Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of); Kim, Song Cheol, E-mail: drksc@amc.seoul.kr [Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of); Department of Surgery, University of Ulsan College of Medicine & Asan Medical Center, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul (Korea, Republic of)
2015-08-07
Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.
International Nuclear Information System (INIS)
Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol
2015-01-01
Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release
Composite systems of dilute and dense couplings
International Nuclear Information System (INIS)
Raymond, J R; Saad, D
2008-01-01
Composite systems, where couplings are of two types, a combination of strong dilute and weak dense couplings of Ising spins, are examined through the replica method. The dilute and dense parts are considered to have independent canonical disordered or uniform bond distributions; mixing the models by variation of a parameter γ alongside inverse temperature β we analyse the respective thermodynamic solutions. We describe the variation in high temperature transitions as mixing occurs; in the vicinity of these transitions we exactly analyse the competing effects of the dense and sparse models. By using the replica symmetric ansatz and population dynamics we described the low temperature behaviour of mixed systems
Coherence protection in coupled quantum systems
Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.
2018-02-01
The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.
Computational 2D Materials Database
DEFF Research Database (Denmark)
Rasmussen, Filip Anselm; Thygesen, Kristian Sommer
2015-01-01
We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database......., and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...
Ortiz Boyer, F; Fernández Romero, J M; Luque de Castro, M D; Quesada, J M
1999-03-01
A semi-automatic procedure for the continuous clean-up and concentration of several fat-soluble vitamins prior to their separation by HPLC and UV detection is reported. The procedure is based on the use of a minicolumn packed with aminopropylsilica as sorbent located prior to the chromatographic detection system. The overall process was developed and applied to the main liposoluble vitamins (A, D2, D3, E, K1, K3) and several hydroxy metabolites of vitamin D3 [25-(OH)-D3,24,25-(OH)2-D3 and 1,25-(OH)2-D3]. All the analytes were monitored at a compromise wavelength of 270 nm. Calibration graphs were constructed between 0.01 and 100 ng ml-1 for vitamin D2 and D3 and their hydroxy metabolites, between 0.1 and 100 ng ml-1 for vitamin A, K1 and K3 and between 1 and 100 ng ml-1 for vitamin E, with excellent regression coefficients (> or = 0.9901) in all cases. The precision was established at two concentration levels with acceptable RSDs in all instances (between 3.6 and 8.7%). The method was appropriate for the determination of vitamin D2, D3, K1 and K3 and the 24,25-dihydroxy and 25-hydroxy metabolites of vitamin D3 in human plasma. The method was applied to plasma samples spiked with the target analytes and the recoveries ranged between 78 and 109%.
Development of intraarterial contrast-enhanced 2D MRDSA with a 0.3 tesla open MRI system
International Nuclear Information System (INIS)
Masumoto, Tomohiko; Hayashi, Naoto; Mori, Harushi; Aoki, Shigeki; Abe, Osamu; Ohtomo, Kuni
2003-01-01
The purpose of this study was to develop a new technique for a high temporal resolution two-dimensional MR digital subtraction angiography (2D MRDSA) sequence under intraarterial injection of contrast material to permit the visualization of vascular anatomy and hemodynamics. 2D MRDSA was imaged on a 0.3T open MR scanner with a T 1 -weighted fast gradient echo sequence. The phantom study examined vials containing gadolinium (Gd) solutions ranging in concentration from 0.5 mmol/L to 100 mmol/L. Repetition time and echo time were fixed at minimal values in order to achieve high temporal resolution, and only the flip angle was changed in 10-degree increments between 10 and 90 degrees. The in vivo study examined a brachial artery of a human volunteer. MRDSA images were acquired continuously during intraarterial injections of Gd solutions ranging in concentration from 0.5 mmol/L to 100 mmol/L. The subtracted images were displayed on the monitor in real time at a frame rate of one frame per second and evaluated to determine the optimal concentration of contrast material. In the phantom study, a 10-mmol/L Gd concentration with a flip angle of 50 deg-90 deg and a 25-mmol/L Gd concentration with a flip angle of 60 deg-90 deg showed high signal-to-noise ratios. In the human brachial artery experiment, the forearm arteries were well visualized when solutions of 5-50 mmol/L Gd concentration were used. The 10- and 25-mmol/L Gd concentrations were considered optimal. The palmar digital arteries were also visualized. Higher Gd concentrations showed a paradoxical signal increase when diluted by blood. We successfully developed an intraarterial contrast-enhanced 2D MRDSA sequence. With appropriate settings of imaging parameters and Gd concentrations, we obtained acceptable vessel visualization in the human study. The low Gd concentration for optimal visualization permits repeated intraarterial injections. This technique can be a useful tool for investigating the vascular anatomy and
Coherent regimes of globally coupled dynamical systems
DEFF Research Database (Denmark)
de Monte, Silvia; D'ovidio, Francesco; Mosekilde, Erik
2003-01-01
This Letter presents a method by which the mean field dynamics of a population of dynamical systems with parameter diversity and global coupling can be described in terms of a few macroscopic degrees of freedom. The method applies to populations of any size and functional form in the region...
Desynchronization in coupled systems with quasiperiodic driving
DEFF Research Database (Denmark)
Vadivasova; Sosnovtseva, Olga; Balanov
2000-01-01
We describe the development of coexisting attractors in coupled quasiperiodically forced maps. The process of loss of complete synchronization in the systems, which individually demonstrates strange nonchaotic behavior, is studied. With this process, the complex structure of the basin of attraction...
Synchronization of coupled nonidentical multidelay feedback systems
International Nuclear Information System (INIS)
Hoang, Thang Manh; Nakagawa, Masahiro
2007-01-01
We present the lag synchronization of coupled nonidentical multidelay feedback systems, in which the synchronization signal is the sum of nonlinearly transformed components of delayed state variable. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed model
International Nuclear Information System (INIS)
Sugimura, Naoki; Mori, Masaaki; Hijiya, Masayuki; Ushio, Tadashi; Arakawa, Yasushi
2004-01-01
This paper presents the Hybrid Core Calculation System which is a very rigorous but a practical calculation system applicable to best estimate core design calculations taking advantage of the recent remarkable progress of computers. The basic idea of this system is to generate the correction factors for assembly homogenized cross sections, discontinuity factors, etc. by comparing the CASMO-4 and SIMULATE-3 2-D core calculation results under the consistent calculation condition and then apply them for SIMULATE-3 3-D calculation. The CASMO-4 2-D heterogeneous core calculation is performed for each depletion step with the core conditions previously determined by ordinary SIMULATE-3 core calculation to avoid time consuming iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. The final SIMULATE-3 3-D calculation using the correction factors is performed with iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. (author)
Chaos synchronization of coupled hyperchaotic system
International Nuclear Information System (INIS)
Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng
2009-01-01
Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.
Synchronization of hypernetworks of coupled dynamical systems
International Nuclear Information System (INIS)
Sorrentino, Francesco
2012-01-01
We consider the synchronization of coupled dynamical systems when different types of interactions are simultaneously present. We assume that a set of dynamical systems is coupled through the connections of two or more distinct networks (each of which corresponds to a distinct type of interaction), and we refer to such a system as a dynamical hypernetwork. Applications include neural networks made up of both electrical gap junctions and chemical synapses, the coordinated motion of shoals of fish communicating through both vision and flow sensing, and hypernetworks of coupled chaotic oscillators. We first analyze the case of a hypernetwork made up of m = 2 networks. We look for the necessary and sufficient conditions for synchronization. We attempt to reduce the linear stability problem to a master stability function (MSF) form, i.e. decoupling the effects of the coupling functions from the structure of the networks. Unfortunately, we are unable to obtain a reduction in an MSF form for the general case. However, we show that such a reduction is possible in three cases of interest: (i) the Laplacian matrices associated with the two networks commute; (ii) one of the two networks is unweighted and fully connected; and (iii) one of the two networks is such that the coupling strength from node i to node j is a function of j but not of i. Furthermore, we define a class of networks such that if either one of the two coupling networks belongs to this class, the reduction can be obtained independently of the other network. As an example of interest, we study synchronization of a neural hypernetwork for which the connections can be either chemical synapses or electrical gap junctions. We propose a generalization of our stability results to the case of hypernetworks formed of m ⩾ 2 networks. (paper)
Sustained currents in coupled diffusive systems
International Nuclear Information System (INIS)
Larralde, Hernán; Sanders, David P
2014-01-01
Coupling two diffusive systems may give rise to a nonequilibrium stationary state (NESS) with a non-trivial persistent, circulating current. We study a simple example that is exactly soluble, consisting of random walkers with different biases towards a reflecting boundary, modelling, for example, Brownian particles with different charge states in an electric field. We obtain analytical expressions for the concentrations and currents in the NESS for this model, and exhibit the main features of the system by numerical simulation. (paper)
International Nuclear Information System (INIS)
Morel, Christophe
2001-01-01
Scope of the lecture was the modelling of severe reactor accidents. The PERICLES 2D experiment was compared to CATHARE 3D simulation results considering progression of a quench front inside the reactor core, steam flow rates, heat conduction, cladding temperature. (uke)
International Nuclear Information System (INIS)
Georgi, Howard; Kats, Yevgeny
2008-01-01
We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles
Dynamics of vehicle-road coupled system
Yang, Shaopu; Li, Shaohua
2015-01-01
Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...
8th Workshop on Coupled Descriptor Systems
Bartel, Andreas; Günther, Michael; Maten, E; Müller, Peter
2014-01-01
This book contains the proceedings of the 8th Workshop on Coupled Descriptor Systems held March 2013 in the Castle of Eringerfeld, Geseke in the neighborhood of Paderborn, Germany. It examines the wide range of current research topics in descriptor systems, including mathematical modeling, index analysis, wellposedness of problems, stiffness and different time-scales, cosimulation and splitting methods and convergence analysis. In addition, the book also presents applications from the automotive and circuit industries that show that descriptor systems provide challenging problems from the point of view of both theory and practice. The book contains nine papers and is organized into three parts: control, simulation, and model order reduction. It will serve as an ideal resource for applied mathematicians and engineers, in particular those from mechanics and electromagnetics, who work with coupled differential equations.
International Nuclear Information System (INIS)
Gunawardana, Binuka; Liu, Han-Chun; Samaraweera, Rasanga L.; Mani, R.G.; Reichl, C.; Wegscheider, W
2017-01-01
Microwave radiation-induced magneto-resistance oscillations are examined under bichromatic excitation for various frequency combinations in order to obtain a better understanding of the lineshape observed in the dual excitation experiment of the high mobility GaAs/AlGaAs 2D electron system. Here, we examine superposition- or lack thereof- in the lineshape observed in the bichromatic experiment, and report a trend observed between the monochromatic and bichromatic responses of the oscillatory diagonal resistance. (paper)
Flampouris, S.; Alves, H.; Pondeca, M.
2016-02-01
The US National Centers for Environmental Prediction (NCEP) provides wave guidance to the National Weather Service (NWS) via a suite of operational wave models, which include three global-scale systems. An approach is being developed to include data assimilation into the global wave models using a 2D version of NCEP's grid-point statistical interpolation (2D-GSI), as described in Derber & Rosatti (1989), and Pondeca et al (2011). As a first step to the global implementation of a wave DA system, a prototype is being developed that will consist of adding wave heights as an analysis variable to the operational Real-Time Mesoscale Analysis (RTMA), which provides hourly analyses of several near sea-surface meteorological parameters, and supports a variety of applications within the NWS. The core of the RTMA is a 2D version of the GSI, which is a variational data assimilation system, and the first guess for the wave-height analysis is provided by NCEP's global wave models. For the new application, the RTMA will be modified to reflect background error covariances consistent with wave-height fields for regional and nearshore applications. In addition, quality control modules for in situ and altimeter significant wave height have been developed and integrated into the system. The strengths and the performance of the 2D-GSI are illustrated with both in situ and satellite measurements of significant wave height in the NW Atlantic and the Gulf of Mexico. The validation of follows the typical cross-validation procedure of RTMA products, based on 10% of the observations, for a period of 15 days. The error statistics (mean, root-mean-square) of the wave-height analysis shows significant improvement, relative to the first guess.
Ti{sub 3}CrCu{sub 4}: A possible 2-D ferromagnetic spin fluctuating system
Energy Technology Data Exchange (ETDEWEB)
Dhar, S. K.; Kulkarni, R.; Goyal, Neeraj [Department of Condensed Matter Physics & Materials Science, T.I.F.R., Homi Bhabha Road, Colaba, Mumbai, 400005 (India); Provino, A.; Manfrinetti, P. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Paudyal, D. [The Ames Laboratory, US Department of Energy, Iowa State University, Ames, IA 50011-3020 (United States)
2016-05-15
Ti{sub 3}CrCu{sub 4} is a new ternary compound which crystallizes in the tetragonal Ti{sub 3}Pd{sub 5} structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μ{sub eff} = 1.1 μ{sub B}, a low paramagnetic Curie temperature θ{sub P} (below 7 K) and a temperature independent χ{sub 0} = 6.7 x 10{sup −4} emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μ{sub B}/f.u. The zero field heat capacity C/T shows an upturn below 7 K (∼190 mJ/mol K{sup 2} at ∼0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti{sub 3}CrCu{sub 4}, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti{sub 3}CrCu{sub 4} to become magnetic.
Oliveira-Santos, Thiago; Baumberger, Christian; Constantinescu, Mihai; Olariu, Radu; Nolte, Lutz-Peter; Alaraibi, Salman; Reyes, Mauricio
2013-05-01
The human face is a vital component of our identity and many people undergo medical aesthetics procedures in order to achieve an ideal or desired look. However, communication between physician and patient is fundamental to understand the patient's wishes and to achieve the desired results. To date, most plastic surgeons rely on either "free hand" 2D drawings on picture printouts or computerized picture morphing. Alternatively, hardware dependent solutions allow facial shapes to be created and planned in 3D, but they are usually expensive or complex to handle. To offer a simple and hardware independent solution, we propose a web-based application that uses 3 standard 2D pictures to create a 3D representation of the patient's face on which facial aesthetic procedures such as filling, skin clearing or rejuvenation, and rhinoplasty are planned in 3D. The proposed application couples a set of well-established methods together in a novel manner to optimize 3D reconstructions for clinical use. Face reconstructions performed with the application were evaluated by two plastic surgeons and also compared to ground truth data. Results showed the application can provide accurate 3D face representations to be used in clinics (within an average of 2 mm error) in less than 5 min.
A nearly orthogonal 2D grid system in solving the shallow water equations in the head bay of Bengal
International Nuclear Information System (INIS)
Roy, G.D. . E.mail: roy_gd@hotmail.com; Hussain, Farzana . E.mail: farzana@sust.edu
2001-11-01
A typical nearly orthogonal grid system is considered to solve the shallow water equations along the head bay of Bengal. A pencil of straight lines at uniform angular distance through a suitable origin, O at the mean sea level (MSL), are considered as a system of grid lines. A system of concentric and uniformly distributed ellipses with center at O is considered as the other system of grid lines. In order to solve the shallow water equations numerically, a system of transformations is applied so that the grid system in the transformed domain becomes a rectangular one. Shallow water equations are solved using appropriate initial and boundary conditions to estimate the water level due to tide and surge. The typical grid system is found to be suitable in incorporating the bending of the coastline and the island boundaries accurately in the numerical scheme along the coast of Bangladesh. (author)
International Nuclear Information System (INIS)
Milewski, Matthew D.; Smitaman, Edward; Moukaddam, Hicham; Katz, Lee D.; Essig, David A.; Medvecky, Michael J.; Haims, Andrew H.
2012-01-01
Highlights: ► Compared 3D to 2D MR sequences for articular cartilage in the knee. ► 3D imaging acquired in a single plane, 2D acquired in 3 separate planes. ► No significant difference in accuracy between 3D and 2D sequences. - Abstract: Purpose: We sought to retrospectively compare the accuracy of a three-dimensional fat-suppressed, fast spin-echo sequences acquired in the sagittal plane, with multiplanar reconstructions to that of two-dimensional fat-suppressed, fast spin echo sequences acquired in three planes on a 3 T MR system for the evaluation of articular cartilage in the knee. Materials and methods: Our study group consisted of all patients (N = 34) that underwent 3 T MR imaging of the knee at our institution with subsequent arthroscopy over an 18-month period. There were 21 males and 13 females with an average age of 36 years. MR images were reviewed by 3 musculoskeletal radiologists, blinded to operative results. 3D and 2D sequences were reviewed at different sittings separated by 4 weeks to prevent bias. Six cartilage surfaces were evaluated both with MR imaging and arthroscopically with a modified Noyes scoring system and arthroscopic results were used as the gold standard. Sensitivity, specificity, and accuracy were calculated for each reader along with Fleiss Kappa assessment agreement between the readers. Accuracies for each articular surface were compared using a difference in proportions test with a 95% confidence interval and statistical significance was calculated using a Fisher's Exact Test. Results: Two hundred and four articular surfaces were evaluated and 49 articular cartilage lesions were present at arthroscopy. For the patellofemoral surfaces, the sensitivity, specificity, and accuracy were 76.5%, 83%, and 78.2% for the 3D sequences and were 82.3%, 76%, and 82% respectively for the 2D sequences. For the medial compartment surfaces, the sensitivity, specificity, and accuracy were 81.1%, 65.1%, and 78.5% for the 3D sequences and were
Directory of Open Access Journals (Sweden)
Chih-Ju Chang
2015-01-01
Full Text Available C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell’s method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds.
Dynamics of coupled electron-nuclei-systems in laser fields
International Nuclear Information System (INIS)
Falge, Mirjam
2012-01-01
This work aimed at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. In the first part of this thesis, the isotope effect and influence of vibrational excitation on high harmonic generation were investigated for the isotope pairs H 2 O/D 2 O and H 2 /D 2 . It was shown that on the one hand high harmonic intensities strongly depend on the vibrational quantum number of the initial state of the water molecule and on the other hand the spectra of H 2 O and D 2 O exhibit a clear isotope effect for certain vibrationally excited states. Also it was shown that high harmonics of vibrationally excited states show an even more pronounced isotope effect than the ground state. The second and third part of this work treats the influence of coupled electron and nuclear dynamics on photoelectron spectra. In order to facilitate a numerically exact description of this dynamics, a simple one-dimensional model system (Shin-Metiu model) was used. It consists of only a single electronic and nuclear degree-of-freedom and allows for a switching between adiabatic and strongly non-adiabatic dynamics by its parameterization. This model served for the analysis of the dynamics of three different cases ranging from weak over intermediate to strong electron-nuclear coupling. To investigate the influence of non-adiabatic effects on photoelectron spectra, time-resolved photoelectron spectra were calculated applying two methods: a numerically exact treatment and an adiabatic approach neglecting the electron-nuclear coupling. Subsequently, the dependence of the efficiency of a non-adiabatic transition on the nuclear mass was analysed. To this end, the population dynamics and photoelectron spectra were calculated numerically exactly for a strong electron and nuclear coupling. Thereafter the asymmetry in forward and backward direction of time-resolved photoelectron spectra and the
Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai
2009-01-01
Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.
CFD Application and OpenFOAM on the 2-D Model for the Moderator System of Heavy-Water Reactors
International Nuclear Information System (INIS)
Chang, Se Myong; Park, A. Y.; Kim, Hyoung Tae
2011-01-01
The flow in the complex pipeline system in a calandria tank of CANDU reactor is transported through the distribution of heat sources, which also exerts the pressure drop to the coolant flow. So the phenomena should be considered as multi-physics both in the viewpoints of heat transfer and fluid dynamics. In this study, we have modeled the calandria tank system as two-dimensional simplified one preliminarily that is yet far from the real objects, but to see the essential physics and to test the possibility of the present CFD(computational fluid dynamics) methods for the thermo-hydraulic problem in the moderator system of heavy-water reactors
International Nuclear Information System (INIS)
Garcia, Juan Matias
2005-01-01
Perturbation Methods represent a powerful tool to do sensitivity analysis, and they found many aplications in nuclear engineering.As an introduction to this kind of analysis, we develope a program that apply the Generalized Perturbation Theory or GPT Method to bidimensional system of rectangular geometry.We first consider an homogeneous system of non-multiplying material and then an heterogeneous system with region of multiplying material, with the intention of make concret aplications of perturbation method to nuclear engineering problems.The program, that we called Pert, determines neutron fluxes and importance functions applying the Multigroup Diffusion Theory; and also solves the integrals required to calculate sensitivity coefficients.Using this perturbation methods we could verify the low computational cost required to make this kind of analysis and the simplicity of the equations systems involved, allowing us to make elaborates sensitivity analysis for the responses of our interest
Directory of Open Access Journals (Sweden)
Ernest G. Kalnins
2013-10-01
Full Text Available We show explicitly that all 2nd order superintegrable systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing. We extend the Wigner-Inönü method of Lie algebra contractions to contractions of quadratic algebras and show that all of the quadratic symmetry algebras of these systems are contractions of that of S9. Amazingly, all of the relevant contractions of these superintegrable systems on flat space and the sphere are uniquely induced by the well known Lie algebra contractions of e(2 and so(3. By contracting function space realizations of irreducible representations of the S9 algebra (which give the structure equations for Racah/Wilson polynomials to the other superintegrable systems, and using Wigner's idea of ''saving'' a representation, we obtain the full Askey scheme of hypergeometric orthogonal polynomials. This relationship directly ties the polynomials and their structure equations to physical phenomena. It is more general because it applies to all special functions that arise from these systems via separation of variables, not just those of hypergeometric type, and it extends to higher dimensions.
Lauzurica, Sara; Márquez, Andrés.; Molpeceres, Carlos; Notario, Laura; Gómez-Fontela, Miguel; Lauzurica, Pilar
2017-02-01
The immune system is a very complex system that comprises a network of genetic and signaling pathways subtending a network of interacting cells. The location of the cells in a network, along with the gene products they interact with, rules the behavior of the immune system. Therefore, there is a great interest in understanding properly the role of a cell in such networks to increase our knowledge of the immune system response. In order to acquire a better understanding of these processes, cell printing with high spatial resolution emerges as one of the promising approaches to organize cells in two and three-dimensional patterns to enable the study the geometry influence in these interactions. In particular, laser assisted bio-printing techniques using sub-nanosecond laser sources have better characteristics for application in this field, mainly due to its higher spatial resolution, cell viability percentage and process automation. This work presents laser assisted bio-printing of antigen-presenting cells (APCs) in two-dimensional geometries, placing cellular components on a matrix previously generated on demand, permitting to test the molecular interactions between APCs and lymphocytes; as well as the generation of two-dimensional structures designed ad hoc in order to study the mechanisms of mobilization of immune system cells. The use of laser assisted bio-printing, along with APCs and lymphocytes emulate the structure of different niches of the immune system so that we can analyse functional requirement of these interaction.
Relaxation of coupled nuclear spin systems
International Nuclear Information System (INIS)
Koenigsberger, E.
1985-05-01
The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)
Energy Technology Data Exchange (ETDEWEB)
Hernandez Reyes, B; Rodriguez Perez, E; Sosa Aquino, M [Universidad de Guanajuato, Leon, Guanajuato (Mexico)
2016-06-15
Purpose: To implement a back-projection algorithm for 2D dose reconstructions for in vivo dosimetry in radiation therapy using an Electronic Portal Imaging Device (EPID) based on amorphous silicon. Methods: An EPID system was used to calculate dose-response function, pixel sensitivity map, exponential scatter kernels and beam hardenig correction for the back-projection algorithm. All measurements were done with a 6 MV beam. A 2D dose reconstruction for an irradiated water phantom (30×30×30 cm{sup 3}) was done to verify the algorithm implementation. Gamma index evaluation between the 2D reconstructed dose and the calculated with a treatment planning system (TPS) was done. Results: A linear fit was found for the dose-response function. The pixel sensitivity map has a radial symmetry and was calculated with a profile of the pixel sensitivity variation. The parameters for the scatter kernels were determined only for a 6 MV beam. The primary dose was estimated applying the scatter kernel within EPID and scatter kernel within the patient. The beam hardening coefficient is σBH= 3.788×10{sup −4} cm{sup 2} and the effective linear attenuation coefficient is µAC= 0.06084 cm{sup −1}. The 95% of points evaluated had γ values not longer than the unity, with gamma criteria of ΔD = 3% and Δd = 3 mm, and within the 50% isodose surface. Conclusion: The use of EPID systems proved to be a fast tool for in vivo dosimetry, but the implementation is more complex that the elaborated for pre-treatment dose verification, therefore, a simplest method must be investigated. The accuracy of this method should be improved modifying the algorithm in order to compare lower isodose curves.
3-D and quasi-2-D discrete element modeling of grain commingling in a bucket elevator boot system
Unwanted grain commingling impedes new quality-based grain handling systems and has proven to be an expensive and time consuming issue to study experimentally. Experimentally validated models may reduce the time and expense of studying grain commingling while providing additional insight into detail...
Galilo, Bogdan; Lee, Derek K K; Barnett, Ryan
2017-11-17
In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.
Galilo, Bogdan; Lee, Derek K. K.; Barnett, Ryan
2017-11-01
In this Letter, it is shown that interactions can facilitate the emergence of topological edge states of quantum-degenerate bosonic systems in the presence of a harmonic potential. This effect is demonstrated with the concrete model of a hexagonal lattice populated by spin-one bosons under a synthetic gauge field. In fermionic or noninteracting systems, the presence of a harmonic trap can obscure the observation of edge states. For our system with weakly interacting bosons in the Thomas-Fermi regime, we can clearly see a topological band structure with a band gap traversed by edge states. We also find that the number of edge states crossing the gap is increased in the presence of a harmonic trap, and the edge modes experience an energy shift while traversing the first Brillouin zone which is related to the topological properties of the system. We find an analytical expression for the edge-state energies and our comparison with numerical computation shows excellent agreement.
Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems
International Nuclear Information System (INIS)
Zhou Jin; Lu Junan; Wu Xiaoqun
2007-01-01
To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems
International Nuclear Information System (INIS)
Gorshkov, Aleksei V
2012-01-01
The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of 1/t k . On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds. Bibliography: 21 titles.
Energy Technology Data Exchange (ETDEWEB)
Okunishi, Takuma; Clark, Richard; Takeda, Kyozaburo [Waseda University, Tokyo 169-8555 (Japan); Kusakabe, Kouichi [Osaka University, Osaka 560-8531 (Japan); Tomita, Norikazu [Yamagata University, Yamagata 960-8560 (Japan)
2013-12-04
We extend the static multi-reference description (resonant UHF) to the dynamic system in order to include the correlation effect over time, and simplify the TD Schrödinger equation (TD-CI) into a time-developed rate equation where the TD external field Ĥ′(t) is then incorporated directly in the Hamiltonian without any approximations. We apply this TD-CI method to the two-electron ground state of a 2D quantum dot (QD) under photon injection and study the resulting two-electron Rabi oscillation.
Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.
2017-06-01
In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.
International Nuclear Information System (INIS)
Dinten, J.M.
2004-01-01
The objective of the project is to explore the complementary diagnosis elements of the fracture risk that could give simultaneously on a same system the measure of the bone mineral density and an image with a radiological quality. This project has explored two improvement ways of the fracture risk diagnosis: the vertebral and femoral morphometry, the characterization of the bone micro-architecture from projected radiographs. (N.C.)
Czech Academy of Sciences Publication Activity Database
Agrawal, K.; Das, V.; Otmar, Miroslav; Krečmerová, Marcela; Džubák, P.; Hajdúch, M.
2015-01-01
Roč. 14, Suppl 2 (2015), B72 ISSN 1535-7163. [AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics. 05.11.2015-09.11.2015, Boston] R&D Projects: GA MPO(CZ) FR-TI4/625; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : demethylation * epigenetic drugs * fluorescence detection system Subject RIV: CC - Organic Chemistry
Czech Academy of Sciences Publication Activity Database
Agrawal, K.; Das, V.; Otmar, Miroslav; Krečmerová, Marcela; Džubák, P.; Hajdúch, M.
91A, č. 2 (2017), s. 133-143 ISSN 1552-4922 R&D Projects: GA MZd(CZ) NV15-31984A; GA MŠk(CZ) LO1304; GA MŠk(CZ) LM2015064; GA TA ČR(CZ) TE01020028 Institutional support: RVO:61388963 Keywords : DNA methylation * DNA methylation inhibitors * demethylation detection system * epigenetic drugs * high content screening Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.222, year: 2016
Feng, Yongqiang; Max, Ludo
2014-01-01
Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484
FEM-2D - Input description and performance
International Nuclear Information System (INIS)
Schmidt, F.A.R.
1975-03-01
FEM-2D solves the 2d diffusion equation by the Finite Element Method. This version of the code was written for x-y geometry, triangular elements with first and second order flux approximations, and has a solution routine which is based on a modified Cholesky procedure. FEM-2D is fully integrated into the modular system RSYST. However, we have developed a simulation program RSIMK which simulates some of the functions of RSYST and allows to run FEM-2D independently. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Kim, Han Sol; Lee, Jae Young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong Jin; Kim, Jong Rok [KAERI, Daejeon (Korea, Republic of)
2016-05-15
The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness. In this study, the average flow information of the downcomer was analyzed through the information about the thickness, speed, droplet size and speed of highly precise liquid film flow in the structure that occurs in a 2-dimensional liquid film flow, rather than film flow, onset of entrainment, droplet velocity, and size which have been studied in 1-dimension of the existing annular flow. The multi-dimensional flow characteristic information of downcomer can be utilized as the basic data for nuclear safety analysis in the future.
Pales, A. R.; Li, B.; Clifford, H.; Edayilam, N.; Montgomery, D.; Dogan, M.; Tharayil, N.; Martinez, N. E.; Moysey, S. M.; Darnault, C. J. G.
2016-12-01
This research aims to build upon past two-dimension (2D) tank light transmission methods to quantify real-time flow in unsaturated porous media (ASTM silica sand; US Silica, Ottawa, IL, USA) and how exudates effect unstable flow patterns. A 2D tank light transmission method was created using a transparent flow through tank coupled with a random rainfall simulator; a commercial LED light and a complementary metal oxide semiconductor digital single lens reflex (CMOS DSLR) Nikon D5500 camera were used to capture the real-time flow images. The images were broken down from red-green-blue (RGB) into hue-saturation-intensity (HVI) and analyzed in Matlab to produce quantifiable data about finger formation and water saturation distribution. Contact angle and surface tension of the chemical plant exudate solutions was measured using a Kruss EasyDrop FM40Mk2 (Kruss GmbH Germany). The exudates (oxalate, citrate, tannic acid, and Suwannee River Natural Organic Matter) had an increased wettability effect compared to control rain water (0.01M NaCl). This resulted in variable finger formation and speed of finger propagation; dependent on exudate type and concentration. Water saturation along the vertical and horizontal profile (Matlab) was used to quantify the finger more objectively than by eye assessment alone. The changes in finger formation and speed of propagation between the control rain water (0.01M NaCl) and the solutions containing plant exudates illustrates that the plant exudates increased the wettability (mobility) of water moving through unsaturated porous media. This understanding of plant exudates effect on unsaturated flow is important for future works in this study to analyze how plants, their roots and exudates, may affect the mobility of radionuclides in unsaturated porous media.
Directory of Open Access Journals (Sweden)
Fernando das Graças Braga da Silva
2010-06-01
Full Text Available Os modelos hidrossedimentológicos têm enorme potencial no Brasil para ser a melhor ferramenta de estimativa de perda de solo, devido principalmente a sua complexidade na descrição dos processos e sua robustez que os fundamenta. Entretanto, devido à necessidade de uma quantidade muito grande de informações requerida, aliada a dificuldades de adaptações desses modelos internacionais e necessidade de tempo e estrutura para criação de modelos nacionais, a Equação Universal de Perda de Solo (EUPS e suas variações ainda são uma referência no Brasil para determinação de perda de solo. Neste trabalho, utilizou-se um atual modelo de cálculo do fator LS, o Software USLE 2D, em conjunto com o IDRISI. A aplicação foi feita na Fazenda Canchim da Embrapa Pecuária Sudeste; consistindo o primeiro trabalho desta natureza realizado nessa área com tais ferramentas. Os resultados obtidos mostraram-se coerentes com os tipos de solo, as declividades e a cobertura vegetal da área de estudo.The hydrosedimentological models have an enormous potential in Brazil to be the best tool for the estimative of soil lost principally due to their complexity on description of the processes and the robustness that validate them. However, due to a need of a very big volume of required information in connection with the difficulties to adapt the international models and the need of time and structure to create national models, the Universal Soil Lost Equation (USLE and its variations still are a reference in Brazil to soil lost determination. In this article, a new model to calculate the SL factor, the USLE 2D Software combined with the IDRISI were used. The inedited application was done in Southeast Cattle Breeding Embrapa's Canchim Farm, consisting on the first work of this nature done in this area with such tools. The results obtained were coherent to types of soil, slopes and vegetal cover in the area of study.
International Nuclear Information System (INIS)
Kanatani, Mamoru; Tochigi, Hitoshi; Kawai, Tadashi
1999-01-01
In the development of the man-made island siting technology of nuclear power plants, assessing the stability of the seawall against large ocean waves and earthquakes is indispensable. Concerning with the seismic stability of the seawall, prediction of the deformation like sliding and settlement of the seawall during earthquake including the armour units in front of the caisson becomes important factor. For this purpose, the authors have developed the two-dimensional DEM-FEM coupled analysis method (SEAWALL-2D) to predict the deformation of the seawall covered with the armour units during earthquake. In this method, movements of the armour units are calculated in DEM analysis part and deformation of the caisson, rubble moundsand seabed and back fill are calculated in FEM analysis part taking the nonlinearity of the soil materials based on the effective stress into account. Numerical simulations of dynamic centrifuge model tests of the seawall are conducted to verify the applicability of this method. Results of the simulation analyses have successfully reproduced the movements of the armour units and the residual deformation of the caisson, sand seabed and back fill compared with the test results. (author)
Mandatori, Domitilla; Penolazzi, Letizia; Pipino, Caterina; Di Tomo, Pamela; Di Silvestre, Sara; Di Pietro, Natalia; Trevisani, Sara; Angelozzi, Marco; Ucci, Mariangela; Piva, Roberta; Pandolfi, Assunta
2018-02-01
Menaquinones, also known as Vitamin K2 family, regulate calcium homeostasis in a 'bone-vascular cross-talk' and recently received particular attention for their positive effect on bone formation. Given that the correlation between menaquinones and bone metabolism to date is still unclear, the objective of our study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of the menaquinones family, in the modulation of osteogenesis. For this reason, we used a model of human amniotic fluid mesenchymal stem cells (hAFMSCs) cultured both in two-dimensional (2D) and three-dimensional (3D; RCCS™bioreactor) in vitro culture systems. Furthermore, to mimic the 'bone remodelling unit' in vitro, hAFMSCs were co-cultured in the 3D system with human monocyte cells (hMCs) as osteoclast precursors. The results showed that in a conventional 2D culture system, hAFMSCs were responsive to the MK-4, which significantly improved the osteogenic process through γ-glutamyl carboxylase-dependent pathway. The same results were obtained in the 3D dynamic system where MK-4 treatment supported the osteoblast-like formation promoting the extracellular bone matrix deposition and the expression of the osteogenic-related proteins (alkaline phosphatase, osteopontin, collagen type-1 and osteocalcin). Notably, when the hAFMSCs were co-cultured in a 3D dynamic system with the hMCs, the presence of MK-4 supported the cellular aggregate formation as well as the osteogenic function of hAFMSCs, but negatively affected the osteoclastogenic process. Taken together, our results demonstrate that MK-4 supported the aggregate formation of hAFMSCs and increased the osteogenic functions. Specifically, our data could help to optimize bone regenerative medicine combining cell-based approaches with MK-4 treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Double Dirac point semimetal in 2D material: Ta2Se3
Ma, Yandong; Jing, Yu; Heine, Thomas
2017-06-01
Here, we report by first-principles calculations one new stable 2D Dirac material, Ta2Se3 monolayer. For this system, stable layered bulk phase exists, and exfoliation should be possible. Ta2Se3 monolayer is demonstrated to support two Dirac points close to the Fermi level, achieving the exotic 2D double Dirac semimetal. And like 2D single Dirac and 2D node-line semimetals, spin-orbit coupling could introduce an insulating state in this new class of 2D Dirac semimetals. Moreover, the Dirac feature in this system is layer-dependent and a metal-to-insulator transition is identified in Ta2Se3 when reducing the layer-thickness from bilayer to monolayer. These findings are of fundamental interests and of great importance for nanoscale device applications.
Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu
2017-07-01
2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.
Baker, Joseph; Kungl, Ann-Marie; Pabst, Jan; Strauß, Bernd; Büsch, Dirk; Schorer, Jörg
2013-01-01
Over the past decade a small evidence base has highlighted the potential importance of seemingly innocuous variables related to one's hands, such as hand dominance and the relative length of the second and fourth digits (2D:4D ratio), to success in sport. This study compared 2D:4D digit ratio and handedness among handball players selected to advance in a national talent development system with those not selected. Participants included 480 youth handball players (240 females and 240 males) being considered as part of the talent selection programme for the German Youth National team. Hand dominance and digit ratio were compared to age-matched control data using standard t-tests. There was a greater proportion of left-handers compared to the normal population in males but not in females. There was also a lower digit ratio in both females and males. However, there were no differences between those selected for the next stage of talent development and those not selected on either handedness or digit ratio. These results add support for general effects for both digit ratio and handedness in elite handball; however, these factors seem inadequate to explain talent selection decisions at this level.
Self-similar solutions of certain coupled integrable systems
Chakravarty, S; Kent, S L
2003-01-01
Similarity reductions of the coupled nonlinear Schroedinger equation and an integrable version of the coupled Maxwell-Bloch system are obtained by applying non-translational symmetries. The reduced system of coupled ordinary differential equations are solved in terms of Painleve transcendents, leading to new exact self-similar solutions for these integrable equations.
Self-similar solutions of certain coupled integrable systems
International Nuclear Information System (INIS)
Chakravarty, S; Halburd, R G; Kent, S L
2003-01-01
Similarity reductions of the coupled nonlinear Schroedinger equation and an integrable version of the coupled Maxwell-Bloch system are obtained by applying non-translational symmetries. The reduced system of coupled ordinary differential equations are solved in terms of Painleve transcendents, leading to new exact self-similar solutions for these integrable equations
Energy Technology Data Exchange (ETDEWEB)
Jentzen, Walter; Freudenberg, Lutz; Brandau, Wolfgang; Bockisch, Andreas [Universitaet Duisburg-Essen, Klinik fuer Nuklearmedizin, Essen (Germany); Weise, Reiner; Burchert, Wolfgang [Institut fuer Radiologie, Nuklearmedizin und Molekulare Bildgebung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen (Germany); Kupferschlaeger, Juergen; Bares, Ronald [Universitaet Tuebingen, Klinik fuer Nuklearmedizin, Tuebingen (Germany)
2008-03-15
This study evaluated the absolute quantification of iodine-124 ({sup 124}I) activity concentration with respect to the use of this isotope for dosimetry before therapies with {sup 131}I or {sup 131}I-labeled radiotherapeuticals. The recovery coefficients of positron emission tomography(/computed tomography) PET(/CT) systems using {sup 124}I were determined using phantoms and then validated under typical conditions observed in differentiated thyroid cancer (DTC) patients. Transversal spatial resolution and recovery measurements with {sup 124}I and with fluorine-18 ({sup 18}F) as the reference were performed using isotope-containing line sources embedded in water and six isotope-containing spheres 9.7 to 37.0 mm in diameter placed in water-containing body and cylinder phantoms. The cylinder phantom spheres were filled with {sup 18}F only. Measurements in two-dimensional (2D) and three-dimensional (3D) modes were performed using both stand-alone PET (EXACT HR{sup +}) and combined PET/CT (BIOGRAPH EMOTION DUO) systems. Recovery comparison measurements were additionally performed on a GE ADVANCE PET system using the cylinder phantom. The recovery coefficients were directly determined using the activity concentration of circular regions of interest divided by the prepared activity concentration determined by the dose calibrator. The recovery correction method was validated using three consecutive scans of the body phantom under our {sup 124}I PET(/CT) protocol for DTC patients. Compared with that of {sup 18}F, transversal spatial resolution of {sup 124}I was slightly, but statistically significantly degraded (7.4 mm vs. 8.3 mm, P<0.002). Using the body phantom, recovery was lower for {sup 124}I than for {sup 18}F in both 2D and 3D modes. The {sup 124}I recovery coefficient of the largest sphere was significantly higher in 2D than in 3D mode (81% vs. 75%, P=0.03). Remarkably, the {sup 18}F recovery coefficient for the largest sphere significantly deviated from unity
Barros-Gomes, Sergio; Williams, Brittney; Nhola, Lara F; Grogan, Martha; Maalouf, Joseph F; Dispenzieri, Angela; Pellikka, Patricia A; Villarraga, Hector R
2017-04-01
This study evaluated whether 2-dimensional speckle-tracking echocardiography (2D-STE) has incremental value for prognosis over traditional clinical, echocardiographic, and serological markers-with main focus on the current prognostic staging system-in light-chain (AL) amyloidosis patients with preserved left ventricular ejection fraction. Cardiac amyloidosis (CA) is the major determinant of outcome in AL amyloidosis. The current prognostic staging system is based primarily on serum levels of cardiac troponin T (cTnT), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and free light chain differential (FLC-diff). Consecutive patients with biopsy-proven AL amyloidosis and left ventricular ejection fraction ≥55% were divided into group 1 with CA (n = 63) and group 2 without CA (n = 87). Global longitudinal strain (GLS) by 2D-STE was performed with Vivid E9 (GE Healthcare Co., Milwaukee, Wisconsin) and syngo Velocity Vector Imaging (VVI) software (Siemens Medical Solutions USA, Inc., Malvern, Pennsylvania) (GLS GE and GLS VVI , respectively). Thirty-two deaths (51%) occurred in group 1 and 13 (15%) in group 2 (p ≤ 0.001). Group 1 had thicker walls, lower early diastolic tissue Doppler velocity at septal mitral annulus, and greater left ventricular mass, left atrial volume, glomerular filtration rate, FLC-diff, cTnT, and NT-proBNP (p value over cTnT, NT-proBNP, and FLC-diff. For survival analysis limited to group 2 (non-CA), GLS GE and GLS VVI both predicted all-cause mortality (GLS GE HR: 1.23; 95% CI: 1.03 to 1.47 [p = 0.02]; GLS VVI HR: 1.22; 95% CI: 1.01 to 1.49 [p = 0.04], respectively). 2D-STE predicted outcome and provided incremental prognostic information over the current prognostic staging system, especially in the group without CA. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Dynamic optical coupled system employing Dammann gratings
Di, Caihui; Zhou, Changhe; Ru, Huayi
2004-10-01
With the increasing of the number of users in optical fiber communications, fiber-to-home project has a larger market value. Then the need of dynamic optical couplers, especially of N broad-band couplers, becomes greater. Though some advanced fiber fusion techniques have been developed, they still have many shortcomings. In this paper we propose a dynamic optical coupled system employing even-numbered Dammann gratings, which have the characteristic that the phase distribution in the first half-period accurately equals to that in the second-period with π phase inversion. In our experiment, we divide a conventional even-numbered Dammann grating into two identical gratings. The system can achieve the beam splitter and combiner as the switch between them according to the relative shift between two complementary gratings. When there is no shift between the gratings, the demonstrated 1×8 dynamic optical coupler achieves good uniformity of 0.06 and insertion loss of around 10.8 dB for each channel as a splitter. When the two gratings have an accurate shift of a half-period between them, our system has a low insertion loss of 0.46 dB as a combiner at a wavelength of 1550 nm.
From 2D to 3D turbulence through 2D3C configurations
Buzzicotti, Michele; Biferale, Luca; Linkmann, Moritz
2017-11-01
We study analytically and numerically the geometry of the nonlinear interactions and the resulting energy transfer directions of 2D3C flows. Through a set of suitably designed Direct Numerical Simulations we also study the coupling between several 2D3C flows, where we explore the transition between 2D and fully 3D turbulence. In particular, we find that the coupling of three 2D3C flows on mutually orthogonal planes subject to small-scale forcing leads to a stationary 3D out-of-equilibrium dynamics at the energy containing scales where the inverse cascade is directly balanced by a forward cascade carried by a different subsets of interactions. ERC AdG Grant No 339032 NewTURB.
Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network
International Nuclear Information System (INIS)
Wei Duqu; Luo Xiaoshu; Zou Yanli
2008-01-01
We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network
Coupled vibrations in horizontal and vertical rotor-bearing systems
Luneno, Jean-Claude
2011-01-01
For dynamical systems having several degrees of freedom, motion in one direction can induce motion in the other. This means that there is a certain coupling between these two motions. Coupling can in some cases be a source of instability that causes self-excited vibrations in rotating machinery. In classical modeling of rotor systems, couplings other than those that are the result of gyroscopic effect are normally not considered. This is due to thecomplexity of the reasons for coupling which ...
International Nuclear Information System (INIS)
Korevaar, Erik W.; Wauben, David J.L.; Hulst, Peter C. van der; Langendijk, Johannes A.; Veld, Aart A. van't
2011-01-01
Background and purpose: IMRT QA is commonly performed in a phantom geometry but the clinical interpretation of the results in a 2D phantom plane is difficult. The main objective of our work is to move from film measurement based QA to 3D dose reconstruction in a patient CT scan. In principle, this could be achieved using a dose reconstruction method from 2D detector array measurements as available in the COMPASS system (IBA Dosimetry). The first step in the clinical introduction of this system instead of the currently used film QA procedures is to test the reliability of the dose reconstruction. In this paper we investigated the validation of the method in a homogeneous phantom with the film QA procedure as a reference. We tested whether COMPASS QA results correctly identified treatment plans that did or did not fulfil QA requirements in head and neck (H and N) IMRT. Materials and methods: A total number of 24 treatments were selected from an existing database with more than 100 film based H and N IMRT QA results. The QA results were classified as either good, just acceptable or clinically rejected (mean gamma index 0.5, respectively with 3%/3 mm criteria). Film QA was repeated and compared to COMPASS QA with a MatriXX detector measurement performed on the same day. Results: Good agreement was found between COMPASS reconstructed dose and film measured dose in a phantom (mean gamma 0.83 ± 0.09, 1SD with 1%/1 mm criteria, 0.33 ± 0.04 with 3%/3 mm criteria). COMPASS QA results correlated well with film QA, identifying the same patients with less good QA results. Repeated measurements with film and COMPASS showed changes in delivery after a modified MLC calibration, also visible in a standard MLC check in COMPASS. The time required for QA reduced by half by using COMPASS instead of film. Conclusions: Agreement of COMPASS QA results with film based QA supports its clinical introduction for a phantom geometry. A standard MLC calibration check is sensitive to <1 mm
Directory of Open Access Journals (Sweden)
Luis Carlos Ruiloba
2018-03-01
Full Text Available This paper aims to show how numerical modelling based on 2D SWE can be used to analyze the cleaning effectiveness of flushing waves in storm tanks. The case study under consideration is an existing storm tank located in Badalona, a municipality of Barcelona, Spain. Storm tank cleaning systems are critical features that must be carefully addressed. If not appropriately addressed, operation and maintenance work costs can drastically increase. There are numerous currently available technologies for cleaning storage tanks. However, no specific guide on this field has been identified. References are provided by the manufacturers through their commercial catalogues. Generally, this information is not based on experimental or numerical experiences or results have not been published in the literature of scientific papers. In this study, a public domain software (IBER was used to develop 2D hydraulic analysis of the selected tank. The results obtained show how the phenomenon of recirculation is acting in some areas of the lane. This implies a dissipation of energy, thus causing difficulties in terms of cleaning procedures. Furthermore, two new scenarios have been tested to determine how a different lane width might affect hydrodynamic behavior. A newly suggested geometry for the existing lane of the tank is proposed by using the numerical modeling software. The proposed geometry in the current pilot tank achieves higher velocities and avoids recirculation areas. The results demonstrate that numerical modelling of these types of processes is possible with the computer models available (commercial codes and can be used to optimize cleaning system design.
A companion matrix for 2-D polynomials
International Nuclear Information System (INIS)
Boudellioua, M.S.
1995-08-01
In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs
International Nuclear Information System (INIS)
Tanaka, Hiroki; Yamagishi, Hideshi; Nakamura, Tatsuya; Soyama, Kazuhiko; Aizawa, Kazuya
2005-04-01
We have been developing the 2-d position-sensitive neutron detector with individual readout as next-generation-type detector system for neutron scattering experiments using intense pulsed neutron source. The detection system is designed to fulfill the specifications required for each neutron spectrometer, such as a count rate, efficiency, neutron/gamma-ray ratio, a spatial resolution and a size, by using suitable detector heads. The fundamental and imaging performances of the developed system assembled with a Multi-wire proportional counter head were evaluated using a collimated neutron beam. The system worked stably for long hours at the 4 He gas pressure of 5 atm with a mixture of 30% C 2 H 6 (0.26 atom 3 He) at gas gain of 450. The spatial resolutions were 1.4, 1.6 mm (FWHM) for a cathode- and a back strip- direction, respectively, considering a beam size. It was also confirmed that the spatial uniformity of the detection efficiency over the whole sensitive detection area was rather good, ±8% deviation from the average with the optimum discrimination level. (author)
Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems
International Nuclear Information System (INIS)
Li, Yanheng; Ji, Wei
2013-01-01
Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is
Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems
Energy Technology Data Exchange (ETDEWEB)
Li, Yanheng, E-mail: liy19@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Ji, Wei, E-mail: jiw2@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)
2013-05-15
Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is
Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime
Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying
2018-03-01
Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.
Double-well chimeras in 2D lattice of chaotic bistable elements
Shepelev, I. A.; Bukh, A. V.; Vadivasova, T. E.; Anishchenko, V. S.; Zakharova, A.
2018-01-01
We investigate spatio-temporal dynamics of a 2D ensemble of nonlocally coupled chaotic cubic maps in a bistability regime. In particular, we perform a detailed study on the transition ;coherence - incoherence; for varying coupling strength for a fixed interaction radius. For the 2D ensemble we show the appearance of amplitude and phase chimera states previously reported for 1D ensembles of nonlocally coupled chaotic systems. Moreover, we uncover a novel type of chimera state, double-well chimera, which occurs due to the interplay of the bistability of the local dynamics and the 2D ensemble structure. Additionally, we find double-well chimera behavior for steady states which we call double-well chimera death. A distinguishing feature of chimera patterns observed in the lattice is that they mainly combine clusters of different chimera types: phase, amplitude and double-well chimeras.
Kinetic theory for strongly coupled Coulomb systems
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Effects of two-scale transverse crack systems on the non-linear behaviour of a 2D SiC-SiC composite
Energy Technology Data Exchange (ETDEWEB)
Morvan, J.-M.; Baste, S. [Bordeaux-1 Univ., 33 - Talence (France). Lab. de Mecanique Physique
1998-07-31
By using both an ultrasonic device and an extensometer, it is possible to know which stiffness coefficients change during the damage process of a material and which part of the global strain is either elastic or inelastic. The influence of the two damage mechanisms is described for a woven 2D SiC-SiC composite. It appears that the two scales of this composite have a great influence on its behaviour. Two elementary mechanisms occur at both scales of the material: at the mesostructure level consisting of the bundles as well as of the inter-bundle matrix and at the microstructure level made from both the fibres and the intra-bundle matrix. The inelastic strains are sensitive to this two-scale effect: an increment of strain at constant stress that comes to saturation corresponding to the inter-bundle damage process and a strain which needs an increase in stress as cracking occurs at the fibres scale. With the help of a model that predicts the compliance changes caused by a crack system in a solid, it is possible to predict the crack density variation at both scales as well as the geometry of the various crack systems during monotonous loading. Furthermore, when the crack opening is taken into account, it appears that the inelastic strain is governed by the transverse crack density. (orig.) 12 refs.
International Nuclear Information System (INIS)
Zhao, J; Hu, W; Xing, Y; Wu, X; Li, Y
2016-01-01
Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, position and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.
Tzou, J. C.; Ward, M. J.
2018-06-01
Spot patterns, whereby the activator field becomes spatially localized near certain dynamically-evolving discrete spatial locations in a bounded multi-dimensional domain, is a common occurrence for two-component reaction-diffusion (RD) systems in the singular limit of a large diffusivity ratio. In previous studies of 2-D localized spot patterns for various specific well-known RD systems, the domain boundary was assumed to be impermeable to both the activator and inhibitor, and the reaction-kinetics were assumed to be spatially uniform. As an extension of this previous theory, we use formal asymptotic methods to study the existence, stability, and slow dynamics of localized spot patterns for the singularly perturbed 2-D Brusselator RD model when the domain boundary is only partially impermeable, as modeled by an inhomogeneous Robin boundary condition, or when there is an influx of inhibitor across the domain boundary. In our analysis, we will also allow for the effect of a spatially variable bulk feed term in the reaction kinetics. By applying our extended theory to the special case of one-spot patterns and ring patterns of spots inside the unit disk, we provide a detailed analysis of the effect on spot patterns of these three different sources of heterogeneity. In particular, when there is an influx of inhibitor across the boundary of the unit disk, a ring pattern of spots can become pinned to a ring-radius closer to the domain boundary. Under a Robin condition, a quasi-equilibrium ring pattern of spots is shown to exhibit a novel saddle-node bifurcation behavior in terms of either the inhibitor diffusivity, the Robin constant, or the ambient background concentration. A spatially variable bulk feed term, with a concentrated source of "fuel" inside the domain, is shown to yield a saddle-node bifurcation structure of spot equilibria, which leads to qualitatively new spot-pinning behavior. Results from our asymptotic theory are validated from full numerical
Energy Technology Data Exchange (ETDEWEB)
Zhao, J; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China); Xing, Y [Fudan univercity shanghai proton and heavy ion center, Shanghai (China); Wu, X [Fudan university shanghai proton and heavy ion center, Shanghai, shagnhai (China); Li, Y [Department of Medical physics at Shanghai Proton and Heavy Ion Center, Shanghai, Shanghai (China)
2016-06-15
Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, position and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.
Multi-disciplinary coupling for integrated design of propulsion systems
Chamis, C. C.; Singhal, S. N.
1993-01-01
Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.
Lacava, C.; Carrol, L.; Bozzola, A.; Marchetti, R.; Minzioni, P.; Cristiani, I.; Fournier, M.; Bernabe, S.; Gerace, D.; Andreani, L. C.
2016-03-01
We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever reported for a fully CMOS compatible 2D-GC. It is worth noting that both the obtained values are in good agreement with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions.
Schmitter, Daniel; Wachowicz, Paulina; Sage, Daniel; Chasapi, Anastasia; Xenarios, Ioannis; Simanis; Unser, Michael
2013-01-01
The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and
Dynamic Coupling Between Respiratory and Cardiovascular System
Censi, Federica; Calcagnini, Giovanni; Cerutti, Sergio
The analysis of non-linear dynamics of the coupling among interacting quantities can be very useful for understanding the cardiorespiratory and cardiovascular control mechanisms. In this chapter RP is used to detect and quantify the degree of non-linear coupling between respiration and spontaneous rhythms of both heart rate and blood pressure variability signals. RQA turned out to be suitable for a quantitative evaluation of the observed coupling patterns among rhythms, both in simulated and real data, providing different degrees of coupling. The results from the simulated data showed that the increased degree of coupling between the signals was marked by the increase of PR and PD, and by the decrease of ER. When the RQA was applied to experimental data, PD and ER turned out to be the most significant variables, compared to PR. A remarkable finding is the detection of transient 1:2 PL episodes between respiration and cardiovascular variability signals. This phenomenon can be associated to a sub-harmonic synchronization between the two main rhythms of HR and BP variability series.
Symmetric coupling of four spin-1/2 systems
Suzuki, Jun; Englert, Berthold-Georg
2012-06-01
We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.
Thermal coupling system analysis of a nuclear desalination plant
International Nuclear Information System (INIS)
Adak, A.K.; Srivastava, V.K.; Tewari, P.K.
2010-01-01
When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)
Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems.
Bai, Lihui; Harder, M; Chen, Y P; Fan, X; Xiao, J Q; Hu, C-M
2015-06-05
We use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling.
International Nuclear Information System (INIS)
Mora Melendez, R.; Seguro Fernandez, A.; Iborra Oquendo, M.; Urena Llinares, A.
2013-01-01
The main objective of our study is to find correction factors dependent on the 2D array incidence angles, and to give account of the phenomenon, allowing the Planner to faithfully reproduce data and curves measured experimentally. (Author)
Bamatraf, Saeed; Hussain, Muhammad; Aboalsamh, Hatim; Qazi, Emad-Ul-Haq; Malik, Amir Saeed; Amin, Hafeez Ullah; Mathkour, Hassan; Muhammad, Ghulam; Imran, Hafiz Muhammad
2016-01-01
We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM.
Bunched soliton states in weakly coupled sine-Gordon systems
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....
Surprises of the Transformer as a Coupled Oscillator System
Silva, J. P.; Silvestre, A. J.
2008-01-01
We study a system of two RLC oscillators coupled through a variable mutual inductance. The system is interesting because it exhibits some peculiar features of coupled oscillators: (i) there are two natural frequencies; (ii) in general, the resonant frequencies do not coincide with the natural frequencies; (iii) the resonant frequencies of both…
Energy Technology Data Exchange (ETDEWEB)
Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar [Government Engineering College Ajmer, Rajasthan (India); Rajasthan Technical University, Kota, Rajasthan (India)
2016-05-06
In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.
Directory of Open Access Journals (Sweden)
U. von Toussaint
2017-08-01
Full Text Available The effect of different sample structures of an iron-tungsten model system (as a surrogate for reduced activation ferritic martensitic steels like EUROFER on the development of surface morphologies, tungsten surface enrichment and sputter yields under low-energy monoenergetic perpendicular 200 eV deuterium bombardment has been studied with SDTrimSP-2d simulations. Previous modeling studies considering diffusive effects also could reasonably reproduce and explain the experimental results for a large set of experimental parameters like temperature, flux and sample concentration. However, for settings with negligible Fe-W-interdiffusion the fluence needed for steady-state conditions differed between the experiments and the simulations. Thus, the main focus of the present study is directed towards the elucidation of this fluence mismatch. Comparison of one and two-dimensional simulation results reveal a strong dependency of the tungsten enrichment on the sample homogeneity and a significantly delayed reduction of the erosion yield due to a pronounced formation of surface structures from initially flat sample surfaces.
Pressure effects on the 2D electron system in LaAlO{sub 3}/SrTiO{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Borisov, Vladislav; Jeschke, Harald O.; Valenti, Roser [Institute of Theoretical Physics, Goethe University, D-60438 Frankfurt am Main (Germany); Zabaleta, Jone [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Kopp, Thilo [Center for Electronic Correlations and Magnetism, Experimental Physics VI, Institute of Physics, University of Augsburg, D-86135 Augsburg (Germany)
2016-07-01
We present a theoretical study of pressure effects on the electronic properties of the LaAlO{sub 3}/SrTiO{sub 3} (001) interface. Lattice relaxation plays a crucial role for the formation of the 2D electron system (2DES), in agreement with previous reports. We observe that the carrier density of the 2DES at zero pressure is much lower than the ''polar catastrophe'' estimate of 0.5 e{sup -} per two-dimensional unit cell, which agrees with most experimental works. Under hydrostatic pressure, structural distortions in LaAlO{sub 3} (LAO) are largely suppressed, whereas they increase in SrTiO{sub 3} (STO), and the carrier density of the 2DES is enhanced by almost 45% using a moderate pressure of 4.1 GPa. The origin of this behavior as well as the explanation for the low carrier density at the interface at ambient pressure are discussed in terms of the lattice polarization and electronic Berry phase in the LAO oxide. Reduction of the calculated static dielectric constants of LAO and STO under pressure might account for the recent experimental findings regarding the carrier mobility.
International Nuclear Information System (INIS)
Zhou Huaichun; Ai Yuhua
2006-01-01
Both light and heat are produced during a chemical reaction in a combustion process, but traditionally all the energy released is taken as to be transformed into the internal energy of the combustion medium. So the temperature of the medium increases, and then the thermal radiation emitted from it increases too. Chemiluminescence is generated during a chemical reaction and independent of the temperature, and has been used widely for combustion diagnostics. It was assumed in this paper that the total energy released in a combustion reaction is divided into two parts, one part is a self-absorbed heat, and the other is a directly emitted heat. The former is absorbed immediately by the products, becomes the internal energy and then increases the temperature of the products as treated in the traditional way. The latter is emitted directly as radiation into the combustion domain and should be included in the radiation transfer equation (RTE) as a part of radiation source. For a simple, 2-D, gray, emitting-absorbing, rectangular system, the numerical study showed that the temperatures in reaction zones depended on the fraction of the directly emitted energy, and the smaller the gas absorption coefficient was, the more strong the dependence appeared. Because the effect of the fraction of the directly emitted heat on the temperature distribution in the reacting zones for gas combustion is significant, it is required to conduct experimental measurements to determine the fraction of self-absorbed heat for different combustion processes
Achieving Synchronization in Arrays of Coupled Differential Systems with Time-Varying Couplings
Directory of Open Access Journals (Sweden)
Xinlei Yi
2013-01-01
Full Text Available We study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation systems (LCODEs. Here, the coupling is timevarying in both network structure and reaction dynamics. Inspired by our previous paper (Lu et al. (2007-2008, the extended Hajnal diameter is introduced and used to measure the synchronization in a general differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with identity inner coupling matrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach consensus. Example with numerical simulation is provided to show the effectiveness of the theoretical results.
Jentzen, Walter; Weise, Reiner; Kupferschläger, Jürgen; Freudenberg, Lutz; Brandau, Wolfgang; Bares, Ronald; Burchert, Wolfgang; Bockisch, Andreas
2008-03-01
This study evaluated the absolute quantification of iodine-124 ((124)I) activity concentration with respect to the use of this isotope for dosimetry before therapies with (131)I or (131)I-labeled radiotherapeuticals. The recovery coefficients of positron emission tomography(/computed tomography) PET(/CT) systems using (124)I were determined using phantoms and then validated under typical conditions observed in differentiated thyroid cancer (DTC) patients. Transversal spatial resolution and recovery measurements with (124)I and with fluorine-18 ((18)F) as the reference were performed using isotope-containing line sources embedded in water and six isotope-containing spheres 9.7 to 37.0 mm in diameter placed in water-containing body and cylinder phantoms. The cylinder phantom spheres were filled with (18)F only. Measurements in two-dimensional (2D) and three-dimensional (3D) modes were performed using both stand-alone PET (EXACT HR(+)) and combined PET/CT (BIOGRAPH EMOTION DUO) systems. Recovery comparison measurements were additionally performed on a GE ADVANCE PET system using the cylinder phantom. The recovery coefficients were directly determined using the activity concentration of circular regions of interest divided by the prepared activity concentration determined by the dose calibrator. The recovery correction method was validated using three consecutive scans of the body phantom under our (124)I PET(/CT) protocol for DTC patients. Compared with that of (18)F, transversal spatial resolution of (124)I was slightly, but statistically significantly degraded (7.4 mm vs. 8.3 mm, P or =12.6 mm in diameter. Recovery correction is mandatory for (124)I PET quantification, even for large structures. To ensure accurate dosimetry, thorough absolute recovery measurements must be individually established for the particular PET scanner and radionuclide to be used.
Lectures on 2D gravity and 2D string theory
International Nuclear Information System (INIS)
Ginsparg, P.; Moore, G.
1992-01-01
This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions
Strong-coupling diffusion in relativistic systems
Indian Academy of Sciences (India)
hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.
Coupled dynamic systems and Le Chatelier's principle in noise control
Maidanik, G.; Becker, K. J.
2004-05-01
Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0
Coupled Human-Atmosphere-System Thinking
Schmale, Julia; Chabay, Ilan
2014-05-01
minimize atmospheric release, but rather only complies with either climate or air quality requirements. Nor do current narratives promote behavioral change for the overall reduction of emissions (e.g., you can drive your diesel SUV as long as it has a low fuel consumption). This divide and thinking has not only been manifested in policy and regulations and hence media coverage, but has also shaped the public's general perception of this issue. There is no public conceptual understanding regarding humanity's modification of the atmosphere through the continuously and simultaneously released substances by almost any kind of activity and resulting impacts. Here, we propose a conceptual framework that provides a new perspective on the coupled human-atmosphere-system. It makes tangible the inherent linkages between the socio-economic system, the atmospheric physico-chemical changes and impacts, and legal frameworks for sustainable transformations at all levels. To implement HAS-thinking in decision and policy making, both salient disciplinary and interdisciplinary research and comprehensive science-society interactions in the form of transdisciplinary research are necessary. Societal transformations for the sake of a healthy human-atmosphere relationship are highly context dependent and require discussions of normative and value-related issues, which can only be solved through co-designed solutions. We demonstrate the importance of HAS-thinking by examples of sustainable development in the Arctic and Himalayan countries.
Mazzini, A.; Husein, A.; Mauri, G.; Lupi, M.; Hadi, S.; Kemna, A.
2015-12-01
The Lusi mud eruption is located in the Sidoarjo area, Indonesia and is continuously erupting hot mud since its birth in May 2006. A comprehensive combined electrical resistivity and self-potential (SP) survey was performed in the 7 km2 area inside the Lusi embankment that had been built to contain the erupted mud and to prevent flooding of the surrounding roads and settlements. The goal of the geophysical survey is to map the near-surface occurrence of the Watukosek fault system, upon which LUSI resides, delineate its spatial pattern and monitor its development. We completed six lines of measurements combining resistivity measurement using Wenner configuration and SP measurements using roll-along technique. Three subparallel lines were located either to the north and to the south of the main crater. Each line was approximately W-E oriented extending for ~1.26 km. The surveyed regions consist of dried mud breccia (containing clayey-silty-sandy admixture with clast up to ~ 10 cm in size). The thickness of the dry walkable mud is approximately 2-3 m and the deeper layer consist of water saturated mud that could be vulnerable to a liquefaction scenario in case of significant seismic activity in the region. The resistivity data were inverted into 2-D resistivity images with a maximum exploration depth of almost 200 m. The resistivity images consistently reveal a region of about 300 m in width (between 30-90 m depth) characterized by anomalous resistivities, which are lower than the value observed in the surounding area. The position of these anomalies is also supported by the SP data, which suggests that their origin is related to fluid flow path in the subsurface. Thus the combined resistivity and SP results allow inference of an improved model of the Watukosek fault system.
Energy Technology Data Exchange (ETDEWEB)
Dilts, R.P.; Kalivas, P.W. (Washington State Univ., Pullman (USA))
1990-01-01
The enkephalin analog (2-D-penicillamine, 5-D-penicillamine)enkephalin was radioiodinated (125I-DPDPE) and shown to retain a pharmacological selectivity characteristic of the delta opioid receptor in in vitro binding studies. The distributions of 125I-DPDPE binding, using in vitro autoradiographic techniques, were similar to those previously reported for the delta opioid receptor. The nucleus accumbens, striatum, and medial prefrontal cortex contain dense gradients of 125I-DPDPE binding in regions known to receive dopaminergic afferents emanating from the mesencephalic tegmentum. Selective chemical lesions of the ventral tegmental area and substantia nigra were employed to deduce the location of the 125I-DPDPE binding within particular regions of the mesocorticolimbic dopamine system. Unilateral lesions of dopamine perikarya (A9 and A10) within the ventral tegmental area and substantia nigra produced by mesencephalic injection of 6-hydroxydopamine resulted in significant (20-30%) increases in 125I-DPDPE binding contralateral to the lesion within the striatum and nucleus accumbens. Lesions of the perikarya (dopaminergic and nondopaminergic) of the ventral tegmental area, induced by quinolinic acid injections, caused increases of less magnitude within these same nuclei. No significant alterations in 125I-DPDPE binding were observed within the mesencephalon as a result of either treatment. The specificity of the lesions was confirmed by immunocytochemistry for tyrosine hydroxylase. These results suggest that the enkephalins and opioid agonists acting through delta opioid receptors do not directly modulate dopaminergic afferents but do regulate postsynaptic targets of the mesocorticolimbic dopamine system.
2D gravity, random surfaces and all that
International Nuclear Information System (INIS)
Ambjoern, J.
1990-11-01
I review the recent progress in 2d gravity and discuss the new numerical simulations for 2d gravity and for random surfaces in d>2. The random surface theories of interest in d>2 have extrinsic curvature terms, and for a finite value of the extrinsic curvature coupling there seems to be a second order phase transition where the string tension scales. (orig.)
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Energy Technology Data Exchange (ETDEWEB)
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Synchronizing spiral waves in a coupled Rössler system
International Nuclear Information System (INIS)
Gao Jia-Zhen; Yang Shu-Xin; Xie Ling-Ling; Gao Ji-Hua
2011-01-01
The synchronisation of spiral patterns in a drive-response Rössler system is studied. The existence of three types of synchronisation is revealed by inspecting the coupling parameter space. Two transient stages of phase synchronisation and partial synchronisation are observed in a comparatively weak feedback coupling parameter regime, whilst complete synchronisation of spirals is found with strong negative couplings. Detailed observations of the synchronous process, such as oscillatory frequencies, parameters mismatches and amplitude variations, etc, are investigated via numerical simulations. (general)
2D-hahmoanimaation toteuttamistekniikat
Smolander, Aku
2009-01-01
Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...
2D non-separable linear canonical transform (2D-NS-LCT) based cryptography
Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.
2017-05-01
The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.
International Nuclear Information System (INIS)
Wu, C.W.
2003-01-01
In a recent paper, wavelet analysis is used to perturb the coupling matrix in an array of identical chaotic systems in order to improve its synchronization. When the coupling matrix is symmetric, the synchronization criterion is determined by the second smallest eigenvalue λ 2 of the coupling matrix and the problem is reduced to studying how λ 2 of the coupling matrix changes with perturbation. In the aforementioned paper, a small percentage of the wavelet coefficients are modified. However, this results in a perturbed matrix where every element is modified and nonzero. The purpose of this Letter is to present some results on the change of λ 2 due to perturbation. In particular, we show that as the number of systems n→∞, perturbations which only add local coupling will not change λ 2 . On the other hand, we show that there exists perturbations which modify an arbitrarily small percentage of matrix elements, each of which is changed by an arbitrarily small amount and yet can make λ 2 arbitrarily large. These results give conditions on what the perturbation should be in order to improve the synchronizability in an array of coupled chaotic systems. This analysis allows us to justify and explain some of the synchronization phenomena observed in a recently studied network where random coupling is added to a locally connected array. We propose to classify various classes of coupling matrices such as small world networks and scale free networks according to their synchronizability in the limit. Finally, we briefly discuss the case of time-varying coupling
International Nuclear Information System (INIS)
Faria, Rita; McKenna, Claire; Wade, Ros; Yang, Huiqin; Woolacott, Nerys; Sculpher, Mark
2013-01-01
Objectives: To evaluate the cost-effectiveness of the EOS ® 2D/3D X-ray imaging system compared with standard X-ray for the diagnosis and monitoring of orthopaedic conditions. Materials and methods: A decision analytic model was developed to quantify the long-term costs and health outcomes, expressed as quality-adjusted life years (QALYs) from the UK health service perspective. Input parameters were obtained from medical literature, previously developed cancer models and expert advice. Threshold analysis was used to quantify the additional health benefits required, over and above those associated with radiation-induced cancers, for EOS ® to be considered cost-effective. Results: Standard X-ray is associated with a maximum health loss of 0.001 QALYs, approximately 0.4 of a day in full health, while the loss with EOS ® is a maximum of 0.00015 QALYs, or 0.05 of a day in full health. On a per patient basis, EOS ® is more expensive than standard X-ray by between £10.66 and £224.74 depending on the assumptions employed. The results suggest that EOS ® is not cost-effective for any indication. Health benefits over and above those obtained from lower radiation would need to double for EOS to be considered cost-effective. Conclusion: No evidence currently exists on whether there are health benefits associated with imaging improvements from the use of EOS ® . The health benefits from radiation dose reductions are very small. Unless EOS ® can generate additional health benefits as a consequence of the nature and quality of the image, comparative patient throughput with X-ray will be the major determinant of cost-effectiveness
Energy Technology Data Exchange (ETDEWEB)
Faria, Rita, E-mail: rita.nevesdefaria@york.ac.uk [Centre for Health Economics, University of York, York (United Kingdom); McKenna, Claire [Centre for Health Economics, University of York, York (United Kingdom); Wade, Ros; Yang, Huiqin; Woolacott, Nerys [Centre for Reviews and Dissemination, University of York, York (United Kingdom); Sculpher, Mark [Centre for Health Economics, University of York, York (United Kingdom)
2013-08-15
Objectives: To evaluate the cost-effectiveness of the EOS{sup ®} 2D/3D X-ray imaging system compared with standard X-ray for the diagnosis and monitoring of orthopaedic conditions. Materials and methods: A decision analytic model was developed to quantify the long-term costs and health outcomes, expressed as quality-adjusted life years (QALYs) from the UK health service perspective. Input parameters were obtained from medical literature, previously developed cancer models and expert advice. Threshold analysis was used to quantify the additional health benefits required, over and above those associated with radiation-induced cancers, for EOS{sup ®} to be considered cost-effective. Results: Standard X-ray is associated with a maximum health loss of 0.001 QALYs, approximately 0.4 of a day in full health, while the loss with EOS{sup ®} is a maximum of 0.00015 QALYs, or 0.05 of a day in full health. On a per patient basis, EOS{sup ®} is more expensive than standard X-ray by between £10.66 and £224.74 depending on the assumptions employed. The results suggest that EOS{sup ®} is not cost-effective for any indication. Health benefits over and above those obtained from lower radiation would need to double for EOS to be considered cost-effective. Conclusion: No evidence currently exists on whether there are health benefits associated with imaging improvements from the use of EOS{sup ®}. The health benefits from radiation dose reductions are very small. Unless EOS{sup ®} can generate additional health benefits as a consequence of the nature and quality of the image, comparative patient throughput with X-ray will be the major determinant of cost-effectiveness.
Dynamical properties of weakly coupled Josephson systems
International Nuclear Information System (INIS)
Lee, K.H.; Xia, T.K.; Stroud, D.
1990-01-01
This paper reviews recent work on the dynamical behavior of coupled resistively-shunted Josephson junctions, with emphasis on our own calculations. The authors present a model which allows for the inclusion of finite temperature, disorder, d.c. and a.c. applied currents, and applied magnetic fields. The authors discuss applications to calculations of critical currents and IV characteristics; harmonic generation and microwave absorption by finite clusters of Josephson junctions; critical energies for vortex depinning; and quantized voltage plateaus in arrays subjected to combined d.c. and a.c. currents. Possible connections to the behavior of granular high-temperature superconductors are briefly discussed
Partial synchronization in a system of coupled logistic maps
DEFF Research Database (Denmark)
Taborov, A.V.; Maistrenko, Y.L; Mosekilde, Erik
1999-01-01
The phenomenon of clustering (or partial synchronization) in a system of globqally coupled chaotic oscillators is studied by means of a model of three coupled logistic maps. We determine the regions in parameter space where total and partial synchronization take place, examine the bifurcations...
Integrable coupling system of fractional soliton equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-10-05
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.
Coupled vibrations in horizontal and vertical rotor-bearings systems
Luneno, Jean-Claude
2010-01-01
For dynamical systems having several degrees of freedom, motion in one direction can induce motion in the other and/or vice versa. This means that there is a certain coupling between these two motions. Coupling can in some cases be a source of instability that causes self-excited vibrations in rotating machinery. In modeling hydropower rotors, couplings other than those that are the result of gyroscopic effect are normally not considered. This is due to the complexity of the reasons for coupl...
Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators
Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander
2018-03-01
We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices. The model system under study represents two oscillators based on thermally coupled VO2 switches. Numerical simulation shows that the effective action radius RTC of coupling depends both on the total energy released during switching and on the average power. It is experimentally and numerically proved that the temperature change ΔT commences almost synchronously with the released power peak and T-coupling reveals itself up to a frequency of about 10 kHz. For the studied switching structure configuration, the RTC value varies over a wide range from 4 to 45 μm, depending on the external circuit capacitance C and resistance Ri, but the variation of Ri is more promising from the practical viewpoint. In the case of a "weak" coupling, synchronization is accompanied by attraction effect and decrease of the main spectra harmonics width. In the case of a "strong" coupling, the number of effects increases, synchronization can occur on subharmonics resulting in multilevel stable synchronization of two oscillators. An advanced algorithm for synchronization efficiency and subharmonic ratio calculation is proposed. It is shown that of the two oscillators the leading one is that with a higher main frequency, and, in addition, the frequency stabilization effect is observed. Also, in the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by ∼10%. The obtained results have a universal character and open up a new kind of coupling in ONNs, namely, T-coupling, which allows for easy transition from 2D to 3D integration. The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.
Energy Technology Data Exchange (ETDEWEB)
Sundgren, P.C.; Jennings, J.; Gebarski, S.; Pang, Y.; Maly, P. [University of Michigan Health Systems, Department of Radiology, Ann Arbor, MI (United States); Attwood, J.T.; McCune, W.J. [University of Michigan Health Systems, Department of and Rheumatology, Ann Arbor, MI (United States); Nan, B. [University of Michigan Health Systems, School of Public Health, Ann Arbor, MI (United States)
2005-08-01
MRI and 2D-CSI spectroscopy were performed in eight patients with systemic lupus erythematosus who presented with acute onset of neuropsychiatric lupus (NP-SLE), and in seven normal controls to evaluate for differences in metabolic peaks and metabolic ratios between the two groups. Also, the interval change of the metabolic peaks and their ratios during treatment in the NP-SLE patient group was evaluated. Metabolic peaks for N-acetyl-aspartate (NAA), choline (Cho), creatine (Cr), and lactate/lipids (LL) and their ratios (NAA/Cr, NAA/Cho, Cho/Cr, LL/Cr) were determined at initial presentation and 3 and 6 months later. In the eight lupus patients compared to the seven normal controls, NAA/Cho ratios were lower at presentation (1.05 vs 1.25; p = 0.004) and decreased even further at the three month follow-up (0.92 vs 1.05; p = 0.008). In contrast, both Cho/Cr (1.42 vs 1.26; p = 0.026) and LL/Cr ratios (0.26 vs 0.19; p = 0.002) were higher in the lupus patients at presentation compared to the controls and did not significantly change at three and six months follow-up. The NAA/Cr ratios were lower in the lupus patients compared to the controls at presentation but the difference was not statistically significant. However, the mean NAA/Cr significantly decreased from the initial examination to the three month follow-up (1.42 vs 1.32; p = 0.049) but did not significantly change from the three to the six month follow-up examinations. The NAA/Cr, Cho/Cr, and NAA/Cho ratios varied significantly (p < 0.05, p < 0.05, p < 0.05, respectively) between the 17 different locations measured in the brain in all eight patients and seven controls. Both the NAA/Cr ratios and the Cho/Cr ratios were also significantly lower in the gray matter than in the white matter (p < 0.0001) in both patients and controls, whereas the LL/Cr and NAA/Cho ratios were not significantly different. In conclusion, 2D-CSI MR spectroscopy may be useful in the early detection of metabolic CNS changes in NP
Directory of Open Access Journals (Sweden)
Matheus Malta de Sá
2010-12-01
Full Text Available Drugs acting on the central nervous system (CNS have to cross the blood-brain barrier (BBB in order to perform their pharmacological actions. Passive BBB diffusion can be partially expressed by the blood/brain partition coefficient (logBB. As the experimental evaluation of logBB is time and cost consuming, theoretical methods such as quantitative structure-property relationships (QSPR can be useful to predict logBB values. In this study, a 2D-QSPR approach was applied to a set of 28 drugs acting on the CNS, using the logBB property as biological data. The best QSPR model [n = 21, r = 0.94 (r² = 0.88, s = 0.28, and Q² = 0.82] presented three molecular descriptors: calculated n-octanol/water partition coefficient (ClogP, polar surface area (PSA, and polarizability (α. Six out of the seven compounds from the test set were well predicted, which corresponds to good external predictability (85.7%. These findings can be helpful to guide future approaches regarding those molecular descriptors which must be considered for estimating the logBB property, and also for predicting the BBB crossing ability for molecules structurally related to the investigated set.Fármacos que atuam no sistema nervoso central (SNC devem atravessar a barreira hematoencefálica (BHE para exercerem suas ações farmacológicas. A difusão passiva através da BHE pode ser parcialmente expressa pelo coeficiente de partição entre os compartimentos encefálico e sanguíneo (logBB, brain/blood partition coefficient. Considerando-se que a avaliação experimental de logBB é dispendiosa e demorada, métodos teóricos como estudos das relações entre estrutura química e propriedade (QSPR, Quantitative Structure-Property Relationships podem ser utilizados na previsão dos valores de logBB. Neste estudo, uma abordagem de QSPR-2D foi aplicada a um conjunto de 28 moléculas com ação central, usando logBB como propriedade biológica. O melhor modelo de QSPR [n = 21, r = 0,94 (r
International Nuclear Information System (INIS)
Sundgren, P.C.; Jennings, J.; Gebarski, S.; Pang, Y.; Maly, P.; Attwood, J.T.; McCune, W.J.; Nan, B.
2005-01-01
MRI and 2D-CSI spectroscopy were performed in eight patients with systemic lupus erythematosus who presented with acute onset of neuropsychiatric lupus (NP-SLE), and in seven normal controls to evaluate for differences in metabolic peaks and metabolic ratios between the two groups. Also, the interval change of the metabolic peaks and their ratios during treatment in the NP-SLE patient group was evaluated. Metabolic peaks for N-acetyl-aspartate (NAA), choline (Cho), creatine (Cr), and lactate/lipids (LL) and their ratios (NAA/Cr, NAA/Cho, Cho/Cr, LL/Cr) were determined at initial presentation and 3 and 6 months later. In the eight lupus patients compared to the seven normal controls, NAA/Cho ratios were lower at presentation (1.05 vs 1.25; p = 0.004) and decreased even further at the three month follow-up (0.92 vs 1.05; p = 0.008). In contrast, both Cho/Cr (1.42 vs 1.26; p = 0.026) and LL/Cr ratios (0.26 vs 0.19; p = 0.002) were higher in the lupus patients at presentation compared to the controls and did not significantly change at three and six months follow-up. The NAA/Cr ratios were lower in the lupus patients compared to the controls at presentation but the difference was not statistically significant. However, the mean NAA/Cr significantly decreased from the initial examination to the three month follow-up (1.42 vs 1.32; p = 0.049) but did not significantly change from the three to the six month follow-up examinations. The NAA/Cr, Cho/Cr, and NAA/Cho ratios varied significantly (p < 0.05, p < 0.05, p < 0.05, respectively) between the 17 different locations measured in the brain in all eight patients and seven controls. Both the NAA/Cr ratios and the Cho/Cr ratios were also significantly lower in the gray matter than in the white matter (p < 0.0001) in both patients and controls, whereas the LL/Cr and NAA/Cho ratios were not significantly different. In conclusion, 2D-CSI MR spectroscopy may be useful in the early detection of metabolic CNS changes in NP
GMD Coupling to Power Systems and Disturbance Mitigation
Energy Technology Data Exchange (ETDEWEB)
Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bent, Russell Whitford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-24
Presentation includes slides on Geomagnetic Disturbance: Ground Fields; Geomagnetic Disturbance: Coupling to Bulk Electric System; Geomagnetic Disturbance: Transformers; GMD Assessment Workflow (TPL-007-1); FERC order 830; Goals; SuperMag (1 min data) Nov. 20-21, 2003 Storm (DST = -422); Spherical Harmonics; Spherical Harmonics Nov. 20-21, 2003 Storm (DST = -422); DST vs HN0,0; Fluctuations vs. DST; Fluctuations; Conclusions and Next Steps; GMD Assessment Workflow (TPL-007-1); EMP E3 Coupling to Texas 2000 Bus Model; E3 Coupling Comparison (total GIC) Varying Ground Zero; E3 Coupling Comparison (total MVAR) Varying Ground Zero; E3 Coupling Comparison (GIC) at Peak Ground Zero; E3 Coupling Comparison (GIC) at Peak Ground Zero; and Conclusion.
DEFF Research Database (Denmark)
Nikolov, Ivan Adriyanov; Madsen, Claus B.
2017-01-01
for on-site outdoor localization and mapping in low feature environment using the inexpensive RPLIDAR and an 9-DOF IMU. Our algorithm geometrically simplifies the wind turbine blade 2D cross-section to an elliptical model and uses it for distance and shape correction. We show that the proposed algorithm...
Korevaar, Erik W.; Wauben, David J. L.; van der Hulst, Peter C.; Langendijk, Johannes A.; van t Veld, Aart
Background and purpose: IMRT QA is commonly performed in a phantom geometry but the clinical interpretation of the results in a 2D phantom plane is difficult. The main objective of our work is to move from film measurement based QA to 3D dose reconstruction in a patient CT scan. In principle, this
HypGrid2D. A 2-d mesh generator
Energy Technology Data Exchange (ETDEWEB)
Soerensen, N N
1998-03-01
The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)
Synchronization of Coupled Nonidentical Fractional-Order Hyperchaotic Systems
Directory of Open Access Journals (Sweden)
Zhouchao Wei
2011-01-01
Full Text Available Synchronization of coupled nonidentical fractional-order hyperchaotic systems is addressed by the active sliding mode method. By designing an active sliding mode controller and choosing proper control parameters, the master and slave systems are synchronized. Furthermore, synchronizing fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system is performed to show the effectiveness of the proposed controller.
Superlinearly scalable noise robustness of redundant coupled dynamical systems.
Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L
2016-03-01
We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.
Bunched soliton states in weakly coupled sine-Gordon systems
International Nuclear Information System (INIS)
Gronbech-Jensen, N.; Samuelsen, M.R.; Lomdahl, P.S.; Blackburn, J.A.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results
Bifurcation of transition paths induced by coupled bistable systems.
Tian, Chengzhe; Mitarai, Namiko
2016-06-07
We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier.
The nonlinear dynamics of a coupled fission system
International Nuclear Information System (INIS)
Bilanovic, Z.; Harms, A.A.
1993-01-01
The dynamic properties of a nonlinear and in situ vibrationally perturbed nuclear-to-thermal coupled neutron multiplying medium are examined. Some unique self-organizational temporal patterns appear in such fission systems and suggest a complex underlying dynamic. (Author)
The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)
National Research Council Canada - National Science Library
Hodur, Richard M; Hong, Xiaodong; Doyle, James D; Pullen, Julie; Cummings, James; Martin, Paul; Rennick, Mary Alice
2002-01-01
... of the Couple Ocean/Atmosphere Mesoscale Prediction System (COAMPS). The goal of this modeling project is to gain predictive skill in simulating the ocean and atmosphere at high resolution on time-scales of hours to several days...
Directory of Open Access Journals (Sweden)
Alireza Karimpour Vazifehkhorani
2017-10-01
Full Text Available Background and Objectives: This study aimed to compare Gary Behavioral Systems (behavioral activation system and behavioral inhibition system in normal couples and those engaged in marital infidelity. Material and Methods: The research was descriptive and causal-comparative. Study population consisted of normal couples and couples who were betrayed in the cities of Tehran, Karaj and Tabriz that were referred to counseling clinics. Study sample consisted of 100 clients; 50 normal couples and 50 couples who were involved in marital infidelity. Sampling was targeted. To collect data, Grey-Wilson's and wife infidelity questionnaires were used. Results: Inhibition of behavior in normal couples was higher than couples involved in marital infidelity which was significant at P Conclusion: Couples who have activation system of high sensitivity are more involved in the phenomenon of marital infidelity compared to the couples who are at high behavioral inhibition system.
The synchronization of asymmetric-structured electric coupling neuronal system
Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei
2018-02-01
Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.
Ultrafast quantum computation in ultrastrongly coupled circuit QED systems
Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng
2017-01-01
The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654
Surprises of the transformer as a coupled oscillator system
International Nuclear Information System (INIS)
Silva, J P; Silvestre, A J
2008-01-01
We study a system of two RLC oscillators coupled through a variable mutual inductance. The system is interesting because it exhibits some peculiar features of coupled oscillators: (i) there are two natural frequencies; (ii) in general, the resonant frequencies do not coincide with the natural frequencies; (iii) the resonant frequencies of both oscillators differ; (iv) for certain choices of parameters, there is only one resonant frequency, instead of the two expected
Surprises of the transformer as a coupled oscillator system
Energy Technology Data Exchange (ETDEWEB)
Silva, J P; Silvestre, A J [Instituto Superior de Engenharia de Lisboa, Rua Conselheiro EmIdio Navarro, 1950-062 Lisboa (Portugal)], E-mail: jpsilva@deea.isel.ipl.pt, E-mail: asilvestre@deq.isel.ipl.pt
2008-05-15
We study a system of two RLC oscillators coupled through a variable mutual inductance. The system is interesting because it exhibits some peculiar features of coupled oscillators: (i) there are two natural frequencies; (ii) in general, the resonant frequencies do not coincide with the natural frequencies; (iii) the resonant frequencies of both oscillators differ; (iv) for certain choices of parameters, there is only one resonant frequency, instead of the two expected.
Normal-Mode Splitting in a Weakly Coupled Optomechanical System
Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David
2018-02-01
Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.
Optically coupled CAMAC analog input output system
International Nuclear Information System (INIS)
Horie, Katsuzo; Kanazawa, Shuhei; Minehara, Eisuke; Hanashima, Susumu
1985-08-01
In an accelerator system, especially in ion sources, signals are exchanged between devices at different potentials. We have four ion sources in the negative ion injector for the JAERI tandem accelerator. Voltage to frequency conversion technic and optical fiber were used in the previous system. When we intended to extend the injector, we decided to revise the system to improve accuracy and reliability. For the purpose, we developed a new CAMAC module. It is an interface device between CAMAC dataway and optical fiber. The module has frequency synthesizers, frequency counters, optical transmitters and optical receivers in it. Accuracy, reliability and maintenability of the system were greatly improved by the module. (author)
2D PIM Simulation Based on COMSOL
DEFF Research Database (Denmark)
Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu
2011-01-01
Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...
Wang, Nan; Xu, Qun; Xu, Shanshan; Qi, Yuhang; Chen, Meng; Li, Hongxiang; Han, Buxing
2015-11-01
Layered materials present attractive and important properties due to their two-dimensional (2D) structure, allowing potential applications including electronics, optoelectronics, and catalysis. However, fully exploiting the outstanding properties will require a method for their efficient exfoliation. Here we present that a series of layered materials can be successfully exfoliated into single- and few-layer nanosheets using the driving forces coming from the phase inversion, i.e., from micelles to reverse micelles in the emulsion microenvironment built by supercritical carbon dioxide (SC CO2). The effect of variable experimental parameters including CO2 pressure, ethanol/water ratio, and initial concentration of bulk materials on the exfoliation yield have been investigated. Moreover, we demonstrate that the exfoliated 2D nanosheets have their worthwhile applications, for example, graphene can be used to prepare conductive paper, MoS2 can be used as fluorescent label to perform cellular labelling, and BN can effectively reinforce polymers leading to the promising mechanical properties.
International Nuclear Information System (INIS)
Schmid, G.; Willms, G.; Huh, Y.; Gibhardt, M.
1988-12-01
SSI 2D/3D is a computer programm to calculate dynamic stiffness matrices for soil-structure-interaction problems in frequency domain. It is applicable to two- or three-dimensional situations. The present report is a detailed manual for the use of the computer code written in FORTRAN 77. In addition it gives a survey of the possibilities of the Boundary Element Method applied to dynamic problems in infinite domains. (orig.) [de
Czech Academy of Sciences Publication Activity Database
Skalníková, Helena; Řehulka, Pavel; Chmelík, Josef; Martinková, Jiřina; Zilvarová, Michaela; Gadher, S. J.; Kovářová, Hana
2007-01-01
Roč. 389, č. 5 (2007), s. 1639-1645 ISSN 1618-2642 R&D Projects: GA ČR GA301/05/0418; GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z40310501 Keywords : 2D liquid chromatography * human T-lymphoblastic leukemia cell proteins * iTRAQ Subject RIV: CE - Biochemistry Impact factor: 2.867, year: 2007
Modelling of complex heat transfer systems by the coupling method
Energy Technology Data Exchange (ETDEWEB)
Bacot, P.; Bonfils, R.; Neveu, A.; Ribuot, J. (Centre d' Energetique de l' Ecole des Mines de Paris, 75 (France))
1985-04-01
The coupling method proposed here is designed to reduce the size of matrices which appear in the modelling of heat transfer systems. It consists in isolating the elements that can be modelled separately, and among the input variables of a component, identifying those which will couple it to another component. By grouping these types of variable, one can thus identify a so-called coupling matrix of reduced size, and relate it to the overall system. This matrix allows the calculation of the coupling temperatures as a function of external stresses, and of the state of the overall system at the previous instant. The internal temperatures of the components are determined from for previous ones. Two examples of applications are presented, one concerning a dwelling unit, and the second a solar water heater.
2D gravity and random matrices
International Nuclear Information System (INIS)
Zinn-Justin, J.
1990-01-01
Recent progress in 2D gravity coupled to d ≤ 1 matter, based on a representation of discrete gravity in terms of random matrices, is reported. The matrix problem can be solved in many cases by the introduction of suitable orthogonal polynomials. Alternatively in the continuum limit the orthogonal polynomial method can be shown to be equivalent to the construction of representation of the canonical commutation relations in terms of differential operators. In the case of pure gravity or discrete Ising-like matter the sum over topologies is reduced to the solution of non-linear differential equations. The d = 1 problem can be solved by semiclassical methods
International Nuclear Information System (INIS)
Riley, D; Dodson, K
2001-01-01
The Lawrence Livermore National Laboratory (LLNL) Plutonium Packaging System (PuPS) prepares packages to meet the DOE Standard 3013 (Reference 1). The PuPS equipment was supplied by the British Nuclear Fuels Limited (BNFL). The DOE Standard 3013 requires that the welding of the Outer Can meets ASME Section VIII Division 1 (Reference 2). ASME Section VIII references to ASME Section IX (Reference 3) for most of the welding requirements, but UW-13.2 (d) of Section VIII requires a certain depth and width of the weld. In this document the UW-13.2(d) requirement is described as the (a+b)/2t s ratio. This ratio has to be greater than or equal to one to meet the requirements of UW-13.2(d). The Outer Can welds had not been meeting this requirement. Three methods are being followed to resolve this issue: (1) Modify the welding parameters to achieve the requirement, (2) Submit a weld case to ASME that changes the UW-13.2(d) requirement for their review and approval, and (3) Change the requirements in the DOE-STD-3013. Each of these methods are being pursued. This report addresses how the first method was addressed for the LLNL PuPS. The experimental work involved adjusting the Outer Can rotational speed and the power applied to the can. These adjustments resulted in being able to achieve the ASME VIII, UW-13.2(d) requirement
Tinamit: Making coupled system dynamics models accessible to stakeholders
Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo
2017-04-01
Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model
Fiber coupled optical spark delivery system
Yalin, Azer; Willson, Bryan; Defoort, Morgan
2008-08-12
A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.
A micro-coupling for micro mechanical systems
Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya
2016-05-01
The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and
Khalid, A.M.; Baltus, P.G.M.; Dommele, A.R.; Mekonnen, K.A.; Cao, Z.; Oh, C.W.; Matters, M.K.; Koonen, A.M.J.
2017-01-01
We present a full-duplex dynamic indoor optical wireless system using 2D passive optical beam steering for downlink and 60-GHz communication for upstream transmission. We demonstrate 35-Gb/s NRZ-OOK downstream multicasting and 5-Gb/s NRZ-ASK upstream communication.
International Nuclear Information System (INIS)
Johnson, J.D.; Lyon, S.P.
1982-04-01
SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run
Energy Technology Data Exchange (ETDEWEB)
Stratmann, V.; Berglar, K.; Lutz, R.; Schloemer, S. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Djajadihardja, Y.S. [Agency for the Assessment and Application of Technology, Jakarta (Indonesia)
2008-10-23
In the forearc basin of Sumatra, individual industrial drillings indicated the existence of hydrocarbons. The authors of the contribution under consideration report on an investigation of the hydrocarbon system within this forearc basin by means of a two-dimensional modelling of this basin. The structural development of the basins in the forearc area proceeded differently. Therefore, geophysical data for the investigation of the geological structures as well as geological/geochemical data were raised. The preliminary results of the two-dimensional modelling of the Simeulue basin northwest from Sumatra are presented.
Coupling-induced oscillations in nonhomogeneous, overdamped, bistable systems
International Nuclear Information System (INIS)
Hernandez, Mayra; In, Visarath; Longhini, Patrick; Palacios, Antonio; Bulsara, Adi; Kho, Andy
2008-01-01
Coupling-induced oscillations in a homogeneous network of overdamped bistable systems have been previously studied both theoretically and experimentally for a system of N (odd) elements, unidirectionally coupled in a ring topology. In this work, we extend the analysis of this system to include a network of nonhomogeneous elements with respect to the parameter that controls the topology of the potential function and the bistability of each element. In particular, we quantify the effects of the nonhomogeneity on the onset of oscillations and the response of the network to external (assumed to be constant and very small) perturbations, using our (recently developed) coupled core fluxgate magnetometer as a representative system. The potential applications of this work include signal detection and characterization for a large class of sensor systems
Coupling-induced oscillations in nonhomogeneous, overdamped, bistable systems
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Mayra [Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182 (United States)], E-mail: mayra.alina@yahoo.com; In, Visarath [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: visarath.in@navy.mil; Longhini, Patrick [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: longhini@navy.mil; Palacios, Antonio [Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182 (United States)], E-mail: palacios@euler.sdsu.edu; Bulsara, Adi [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: bulsara@spawar.navy.mil; Kho, Andy [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: kho@spawar.navy.mil
2008-06-09
Coupling-induced oscillations in a homogeneous network of overdamped bistable systems have been previously studied both theoretically and experimentally for a system of N (odd) elements, unidirectionally coupled in a ring topology. In this work, we extend the analysis of this system to include a network of nonhomogeneous elements with respect to the parameter that controls the topology of the potential function and the bistability of each element. In particular, we quantify the effects of the nonhomogeneity on the onset of oscillations and the response of the network to external (assumed to be constant and very small) perturbations, using our (recently developed) coupled core fluxgate magnetometer as a representative system. The potential applications of this work include signal detection and characterization for a large class of sensor systems.
Predictive modeling of coupled multi-physics systems: I. Theory
International Nuclear Information System (INIS)
Cacuci, Dan Gabriel
2014-01-01
Highlights: • We developed “predictive modeling of coupled multi-physics systems (PMCMPS)”. • PMCMPS reduces predicted uncertainties in predicted model responses and parameters. • PMCMPS treats efficiently very large coupled systems. - Abstract: This work presents an innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS).” This methodology takes into account fully the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PMCMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This “maximum entropy”-approximate a priori distribution is combined, using Bayes’ theorem, with the “likelihood” provided by the multi-physics simulation models. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PMCMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially
Stochastic Resonance in a System of Coupled Chaotic Oscillators
International Nuclear Information System (INIS)
Krawiecki, A.
1999-01-01
Noise-free stochastic resonance is investigated numerically in a system of two coupled chaotic Roessler oscillators. Periodic signal is applied either additively or multiplicatively to the coupling term. When the coupling constant is varied the oscillators lose synchronization via attractor bubbling or on-off intermittency. Properly chosen signals are analyzed which reflect the sequence of synchronized (laminar) phases and non-synchronized bursts in the time evolution of the oscillators. Maximum of the signal-to-noise ratio as a function of the coupling constant is observed. Dependence of the signal-to-noise ratio on the frequency of the periodic signal and parameter mismatch between the oscillators is investigated. Possible applications of stochastic resonance in the recovery of signals in secure communication systems based on chaotic synchronization are briefly discussed. (author)
Performance of a directly-coupled PV water pumping system
International Nuclear Information System (INIS)
Mokeddem, Abdelmalek; Midoun, Abdelhamid; Kadri, D.; Hiadsi, Said; Raja, Iftikhar A.
2011-01-01
Highlights: → Directly coupled PV water pumping system installed and performance studied. → Configured for two static heads, operate without electronic control and auxiliary power. → The system attains steady state soon after any abrupt change. → Cost effective and useful for low head communicating wells system. - Abstract: This paper describes the experimental study carried out to investigate the performance of a simple, directly coupled dc photovoltaic (PV) powered water pumping system. The system comprises of a 1.5 kWp PV array, dc motor and a centrifugal pump. The experiment was conducted over a period of 4 months and the system performance was monitored under different climatic conditions and varying solar irradiance with two static head configurations. Although the motor-pump efficiency did not exceed 30%, which is typical for directly-coupled photovoltaic pumping systems, such a system is clearly suitable for low head irrigation in the remote areas, not connected to the national grid and where access to water comes as first priority issue than access to technology. The system operates without battery and complex electronic control, therefore not only the initial cost is low but also maintenance, repairing and replacement cost can be saved. The study showed that directly coupled system attains steady state soon after any abrupt change.
Titan 2D: Understanding Titan’s Seasonal Atmospheric Cycles
Wong, Michael; Zhang, X.; Li, C.; Hu, R.; Shia, R.; Newman, C.; Müller-Wodarg, I.; Yung, Y.
2013-10-01
In this study, we present results from a novel two-dimensional (2D) model that simulates the physics and chemistry of Titan’s atmosphere. Despite being an icy moon of Saturn, Titan is the only Solar System object aside from Earth that is sheathed by a thick nitrogen-dominated atmosphere. This vulnerable gaseous envelope—an embodiment of a delicate coupling between photochemistry, radiation, and dynamics—is Nature’s laboratory for the synthesis of complex organic molecules. Titan’s large obliquity generates pronounced seasonal cycles in its atmosphere, and the Cassini spacecraft has been observing these variations since 2004. In particular, Cassini measurements show that the latitudinal distribution of Titan’s rich mélange of hydrocarbon species follows seasonal patterns. The mixing ratios of hydrocarbons increase with latitude towards the winter pole, suggesting a pole-to-pole circulation that reverses after equinox. Using a one-dimensional photochemical model of Titan’s atmosphere, we show that photochemistry alone cannot produce the observed meridional hydrocarbon distribution. This necessitates the employment of a 2D chemistry-transport model that includes meridional circulation as well as diffusive processes and photochemistry. Of additional concern, no previous 2D model of Titan extends beyond 500 km altitude—a critical limitation since the peak of methane photolysis is at 800 km. Our 2D model is the first to include Titan’s stratosphere, mesosphere, and thermosphere. The meridional circulation in our 2D model is derived from the outputs of two general circulation models (GCMs): the TitanWRF GCM (Newman et al. 2011) covering the troposphere, stratosphere, and lower mesosphere, and a thermosphere general circulation model (TGCM) covering the remainder of the atmosphere through the thermosphere (Müller-Wodarg et al. 2003; 2008). This presentation will focus on the utilization of these advances applied to the 2D Caltech/JPL KINETICS model to
Coupled diffusion systems with localized nonlinear reactions
DEFF Research Database (Denmark)
Pedersen, M.; Lin, Zhigui
2001-01-01
This paper deals with the blowup rate and profile near the blowup time for the system of diffusion equations uit - Î´ui = ui+1Pi(x0, t), (i = 1,...,k, uk+1 := uu) in Î© Ã— (0, T) with boundary conditions ui = 0 on âˆ‚Î© Ã— [0, T). We show that the solution has a global blowup. The exact rate...
DEFF Research Database (Denmark)
Shahbazi, Mohammad-Ali; Kant, Krishna; Kaplinsky, Joseph John
2017-01-01
A combined 2D microfluidic-microarray high throughput approach is reported to identify universal bacterial capturing ligands that can be tethered on the surface of 3D sponges fabricated by different methods for concentrating of bacterial targets in diagnosis devices. The developed platform allows...... between the solid surface and ligands. 3D sponges and micropillars are modified with the most potent capturing molecule to assess their bacterial capturing in real blood samples. Next, the 3D structures are placed into a chip with an immense potential to recognize bacteria through imaging and fluorescence...
Extended Cognition: Feedback Loops and Coupled Systems
Directory of Open Access Journals (Sweden)
Olga Markic
2017-12-01
Full Text Available The article explores two waves of active externalism. I first introduce the distinction between passive and active externalism and analyse a proposal of active externalism based on the principle of parity proposed by Clark and Chalmers. There are two main obstacles, causal-constitution fallacy and cognitive bloat, that threaten the extended cognition hypothesis. The second wave of discussions based on the complementarity principle deals with cognitive systems with feedback loops between internal and external elements and is a more radical departure from functionalism and traditional thinking about cognition. I conclude with some remarks on potential ethical considerations of extended cognition.
Order and disorder in coupled metronome systems
Boda, Sz.; Davidova, L.; Néda, Z.
2014-04-01
Metronomes placed on a smoothly rotating disk are used for exemplifying order-disorder type phase-transitions. The ordered phase corresponds to spontaneously synchronized beats, while the disordered state is when the metronomes swing in unsynchronized manner. Using a given metronome ensemble, we propose several methods for switching between ordered and disordered states. The system is studied by controlled experiments and a realistic model. The model reproduces the experimental results, and allows to study large ensembles with good statistics. Finite-size effects and the increased fluctuation in the vicinity of the phase-transition point are also successfully reproduced.
Modelling Nephron Autoregulation and Synchronization in Coupled Nephron Systems
DEFF Research Database (Denmark)
Laugesen, Jakob Lund
between oscillating period-doubling systems is the topic of the larger part of the study. Since synchronization is a fundamental phenomenon in all sciences, it is treated from a general viewpoint by analyzing one of the most simple dynamical systems, the R¨ossler system, both in an externally forced...... version and in the form of two mutually coupled oscillators. The bifurcational mechanism to resonant dynamics and chaotic phase synchronization is described in detail. The transition from synchronized to non-synchronized dynamics is known to take place at a dense set of saddlenode bifurcations that run...... to exist in an externally forced nephron model and in a model of two vascular coupled nephrons, underlining that the discussed phenomena are of a common nature to forced and coupled period-doubling systems....
Thermodynamics of 2D string theory
International Nuclear Information System (INIS)
Alexandrov, Sergei Yu.; V.A. Fock Department of Theoretical Physics, St. Petersburg University
2003-01-01
We calculate the free energy, energy and entropy in the matrix quantum mechanical formulation of 2D string theory in a background strongly perturbed by tachyons with the imaginary minkowskian momentum ±i/R ('Sine-Liouville' theory). The system shows a thermodynamical behaviour corresponding to the temperature T={1/(2π R)}. We show that the microscopically calculated energy of the system satisfies the usual thermodynamical relations and leads to a non-zero entropy. (author)
Directory of Open Access Journals (Sweden)
Imran Talib
2015-12-01
Full Text Available In this article, study the existence of solutions for the second-order nonlinear coupled system of ordinary differential equations $$\\displaylines{ u''(t=f(t,v(t,\\quad t\\in [0,1],\\cr v''(t=g(t,u(t,\\quad t\\in [0,1], }$$ with nonlinear coupled boundary conditions $$\\displaylines{ \\phi(u(0,v(0,u(1,v(1,u'(0,v'(0=(0,0, \\cr \\psi(u(0,v(0,u(1,v(1,u'(1,v'(1=(0,0, }$$ where $f,g:[0,1]\\times \\mathbb{R}\\to \\mathbb{R}$ and $\\phi,\\psi:\\mathbb{R}^6\\to \\mathbb{R}^2$ are continuous functions. Our main tools are coupled lower and upper solutions, Arzela-Ascoli theorem, and Schauder's fixed point theorem.
Tracing control of chaos for the coupled dynamos dynamical system
International Nuclear Information System (INIS)
Wang Xuedi; Tian Lixin
2004-01-01
This paper introduces a new method for the coupled dynamos dynamical system, which can be applied to the decision of the chaotic behavior of the system. And research the tracing control of the chaos for the coupled dynamos dynamical system by gradually changing the driving parameter for the chaos. With the different design of controllers, the numerical simulation results show the relation between the chaotic behavior and the changes of the parameter value. Furthermore, the result shows the difference of the controllers. In the mean time, it reveals the process of the orbit's gradual changing with the parameter value
Instabilities and nonstatistical behavior in globally coupled systems
International Nuclear Information System (INIS)
Perez, G.; Cerdeira, H.A.
1992-08-01
The mean field in a globally coupled system of chaotic logistic maps does not obey the standard rules of statistics, even for systems of very large sizes. This indicates the existence of intrinsic instabilities in its evolution. Here these instabilities are related to the very non-smooth behavior of mean values in a single logistic map, as a function of its parameter. Problems of this kind do not affect a similar system of coupled tent maps, where good statistical behavior has been found. We also explore the transition between these two regimes. (author). 15 refs, 9 figs
Instabilities and nonstatistical behavior in globally coupled systems
International Nuclear Information System (INIS)
Perez, G.; Cerdeira, H.A.
1992-01-01
The mean field in a globally coupled system of chaotic logistic maps does not obey the standard rules of statistics, even for systems of very large sizes. This indicates the existence of intrinsic instabilities in its evolution. Here these instabilities are related to the very nonsmooth behavior of mean values in a single logistic map, as a function of its parameter. Problems of this kind do not affect a similar system of coupled tent maps, where good statistical behavior has been found. We also explore the transition between these two regimes
Microcomputer based test system for charge coupled devices
International Nuclear Information System (INIS)
Sidman, S.
1981-02-01
A microcomputer based system for testing analog charge coupled integrated circuits has been developed. It measures device performance for three parameters: dynamic range, baseline shift due to leakage current, and transfer efficiency. A companion board tester has also been developed. The software consists of a collection of BASIC and assembly language routines developed on the test system microcomputer
International Nuclear Information System (INIS)
Kwon, Kyung Tae; Kim, Jung Soo; Sim, Hyun Sun; Min, Jung Whan; Son, Soon Yong; Han, Dong Kyoon
2016-01-01
Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by 10° in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by 10° in the clockwise direction and compared with the baseline at the reference 0°. The reference amplitude was 1.173 to 1.165, the couch angle at 20° was 1.132, and the couch angle at 1.0° was 1.083. At 350° counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at 340° was 1.124, and the couch angle at 330° was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change
Energy Technology Data Exchange (ETDEWEB)
Kwon, Kyung Tae; Kim, Jung Soo [Dongnam Health University, Suwon (Korea, Republic of); Sim, Hyun Sun [College of Health Sciences, Korea University, Seoul (Korea, Republic of); Min, Jung Whan [Shingu University College, Sungnam (Korea, Republic of); Son, Soon Yong [Wonkwang Health Science University, Iksan (Korea, Republic of); Han, Dong Kyoon [College of Health Sciences, EulJi University, Daejeon (Korea, Republic of)
2016-12-15
Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by 10° in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by 10° in the clockwise direction and compared with the baseline at the reference 0°. The reference amplitude was 1.173 to 1.165, the couch angle at 20° was 1.132, and the couch angle at 1.0° was 1.083. At 350° counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at 340° was 1.124, and the couch angle at 330° was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change.
Design And Construction Of Wireless Charging System Using Inductive Coupling
Directory of Open Access Journals (Sweden)
Do Lam Mung
2015-06-01
Full Text Available Abstract Wireless charging system described by using the method of inductive coupling. In this project oscillation circuit converts DC energy to AC energytransmitter coil to transmit magnetic field by passing frequency and then induce the receiver coil. The properties of Induction coupling are wavemagnetic field-wideband rangevery shortcm efficiencyhight and operation frequencyLF-bandseveral handred kHz.The project shows as a small charging for 5V battery of phone in this method. The system bases on coupling magnetic field then designed and constructed as two parts. There are transmitter part and receiver part. The transmitter coil transmitter part transmits coupling magnetic field to receiver coil receiver part by passing frequency at about 1.67MHz. The Amperes law Biot-Savart law and Faraday law are used to calculate the inductive coupling between the transmitter coil and the receiver coil. The calculation of this law shows how many power transfer in receiver part when how many distance between the transmitter coil and the receiver coil. The system is safe for users and neighbouring electronic devices. To get more accurate wireless charging system it needs to change the design of the following keywords.
Energy Technology Data Exchange (ETDEWEB)
Xu, H [Wayne State University, Detroit, MI (United States); Song, K; Chetty, I; Kim, J [Henry Ford Health System, Detroit, MI (United States); Wen, N [Henry Ford Health System, West Bloomfield, MI (United States)
2015-06-15
Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was also evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF
International Nuclear Information System (INIS)
Xu, H; Song, K; Chetty, I; Kim, J; Wen, N
2015-01-01
Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was also evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF
The UKC2 regional coupled environmental prediction system
Lewis, Huw W.; Castillo Sanchez, Juan Manuel; Graham, Jennifer; Saulter, Andrew; Bornemann, Jorge; Arnold, Alex; Fallmann, Joachim; Harris, Chris; Pearson, David; Ramsdale, Steven; Martínez-de la Torre, Alberto; Bricheno, Lucy; Blyth, Eleanor; Bell, Victoria A.; Davies, Helen; Marthews, Toby R.; O'Neill, Clare; Rumbold, Heather; O'Dea, Enda; Brereton, Ashley; Guihou, Karen; Hines, Adrian; Butenschon, Momme; Dadson, Simon J.; Palmer, Tamzin; Holt, Jason; Reynard, Nick; Best, Martin; Edwards, John; Siddorn, John
2018-01-01
It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere-land-ocean-wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential
The UKC2 regional coupled environmental prediction system
Directory of Open Access Journals (Sweden)
H. W. Lewis
2018-01-01
Full Text Available It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere–land–ocean–wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model, land surface with river routing (JULES, shelf-sea ocean (NEMO and ocean waves (WAVEWATCH III. These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period
Xiong, Wei; Laaser, Jennifer E; Mehlenbacher, Randy D; Zanni, Martin T
2011-12-27
In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple "atop" configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces.
Improving emotion recognition systems by embedding cardiorespiratory coupling
International Nuclear Information System (INIS)
Valenza, Gaetano; Lanatá, Antonio; Scilingo, Enzo Pasquale
2013-01-01
This work aims at showing improved performances of an emotion recognition system embedding information gathered from cardiorespiratory (CR) coupling. Here, we propose a novel methodology able to robustly identify up to 25 regions of a two-dimensional space model, namely the well-known circumplex model of affect (CMA). The novelty of embedding CR coupling information in an autonomic nervous system-based feature space better reveals the sympathetic activations upon emotional stimuli. A CR synchrogram analysis was used to quantify such a coupling in terms of number of heartbeats per respiratory period. Physiological data were gathered from 35 healthy subjects emotionally elicited by means of affective pictures of the international affective picture system database. In this study, we finely detected five levels of arousal and five levels of valence as well as the neutral state, whose combinations were used for identifying 25 different affective states in the CMA plane. We show that the inclusion of the bivariate CR measures in a previously developed system based only on monovariate measures of heart rate variability, respiration dynamics and electrodermal response dramatically increases the recognition accuracy of a quadratic discriminant classifier, obtaining more than 90% of correct classification per class. Finally, we propose a comprehensive description of the CR coupling during sympathetic elicitation adapting an existing theoretical nonlinear model with external driving. The theoretical idea behind this model is that the CR system is comprised of weakly coupled self-sustained oscillators that, when exposed to an external perturbation (i.e. sympathetic activity), becomes synchronized and less sensible to input variations. Given the demonstrated role of the CR coupling, this model can constitute a general tool which is easily embedded in other model-based emotion recognition systems. (paper)
Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier
2017-04-01
The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations
International Nuclear Information System (INIS)
Chen Jinbing; Qiao Zhijun
2011-01-01
A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebro-geometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.
VERTICAL ACTIVITY ESTIMATION USING 2D RADAR
African Journals Online (AJOL)
hennie
estimates on aircraft vertical behaviour from a single 2D radar track. ... Fortunately, the problem of detecting relative vertical motion using a single 2D ..... awareness tools in scenarios where aerial activity sensing is typically limited to 2D.
Complex network synchronization of chaotic systems with delay coupling
International Nuclear Information System (INIS)
Theesar, S. Jeeva Sathya; Ratnavelu, K.
2014-01-01
The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology
Existence of a coupled system of fractional differential equations
International Nuclear Information System (INIS)
Ibrahim, Rabha W.; Siri, Zailan
2015-01-01
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator
A burn-up module coupling to an AMPX system
International Nuclear Information System (INIS)
Salvatore Duque, M.; Gomez, S.E.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.
1990-01-01
The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author) [es
Existence of a coupled system of fractional differential equations
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, Rabha W. [Multimedia unit, Department of Computer System and Technology Faculty of Computer Science & IT, University of Malaya, 50603 Kuala Lumpur (Malaysia); Siri, Zailan [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
Air driven fiber optic coupled pulser system for ZT-40
International Nuclear Information System (INIS)
Nunnally, W.C.; Brousseau, A.T.
1977-01-01
The design, construction, and operation of an air powered fiber optic coupled pulser system for initiating various high-voltage systems in the ZT-40 experiment is displayed. The air fiber optic system provides complete electrical isolation of the experimental high-voltage circuits from the digital timing and control circuits. In addition, this pulser system prevents cross talk between individual output channels and eliminates trigger system ground loops. The system uses an additional fiber optic bundle to confirm pulser output in the screen room
Overview of coupled bunch active damper systems at FNAL
International Nuclear Information System (INIS)
Steimel, J.; Crisp, J.; Ma, Hengjie; Marriner, J.; McGinnis, D.
1996-05-01
Beam intensities in all of the accelerators at Fermilab will increase significantly when the Main Injector becomes operational and will cause unstable oscillations in transverse position and energy. Places where the coupled bunch oscillations could dilute emittances include the Booster, Main Injector, and Tevatron. This paper provides an overview of the active feedback system upgrades which will be used to counteract the problem. It will explain the similarities between all the systems and will also explain design differences between longitudinal and transverse systems, fast sweeping systems, and systems for partially filled machines. Results from operational systems will also be shown. 7 refs., 4 figs., 1 tab
Density matrix of strongly coupled quantum dot - microcavity system
International Nuclear Information System (INIS)
Nguyen Van Hop
2009-01-01
Any two-level quantum system can be used as a quantum bit (qubit) - the basic element of all devices and systems for quantum information and quantum computation. Recently it was proposed to study the strongly coupled system consisting of a two-level quantum dot and a monoenergetic photon gas in a microcavity-the strongly coupled quantum dot-microcavity (QD-MC) system for short, with the Jaynes-Cumming total Hamiltonian, for the application in the quantum information processing. Different approximations were applied in the theoretical study of this system. In this work, on the basis of the exact solution of the Schrodinger equation for this system without dissipation we derive the exact formulae for its density matrix. The realization of a qubit in this system is discussed. The solution of the system of rate equation for the strongly coupled QD-MC system in the presence of the interaction with the environment was also established in the first order approximation with respect to this interaction.
Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J
2013-01-01
The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein.
Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system
International Nuclear Information System (INIS)
Bu, K.M.; Kwon, H.Y.; Oh, S.W.; Won, C.
2012-01-01
Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes. - Highlights: ► Exchange bias phenomena are found in perpendicularly coupled F/F systems. ► Exchange bias exhibits nonlinear behaviors, including sign reversal and singularities. ► These complicated behaviors were caused by two distinct magnetization processes. ► Exchange bias reached a maximum at the transition between the two magnetization processes. ► We established an equation to maximize the exchange bias in perpendicularly coupled F/F system.
The coupled nonlinear dynamics of a lift system
Energy Technology Data Exchange (ETDEWEB)
Crespo, Rafael Sánchez, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Picton, Phil, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk [The University of Northampton, School of Science and Technology, Avenue Campus, St George' s Avenue, Northampton (United Kingdom)
2014-12-10
Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.
Goel, Meenakshi; Larson, Eli; Venkatramani, C J; Al-Sayah, Mohammad A
2018-05-01
Enantioselective analysis is an essential requirement during the pharmaceutical development of chiral drug molecules. In pre-clinical and clinical studies, the Food and Drug Administration (FDA) mandates the assessment of "in vivo" inter-conversion of chiral drugs to determine their physiological effects. In-vivo analysis of the active pharmaceutical ingredient (API) and its potential metabolites could be quite challenging due to their low abundance (ng/mL levels) and matrix interferences. Therefore, highly selective and sensitive analytical techniques are required to separate the API and its metabolites from the matrix components and one another. Additionally, for chiral APIs, further analytical separation is required to resolve the API and its potential metabolites from their corresponding enantiomers. In this work, we demonstrate the optimization of our previously designed two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFC -MS) system to achieve 10 ng/mL detection limit [1]. The first LC dimension, used as a desalting step, could efficiently separate the API from its potential metabolites and matrix components. The API and its metabolites were then trapped/focused on small trapping columns and transferred onto the second SFC dimension for chiral separation. Detection can be achieved by ultra-violet (UV) or MS detection. Different system parameters such as column dimensions, transfer volumes, trapping column stationary phase, system tubing internal diameter (i.d.), and detection techniques, were optimized to enhance the sensitivity of the 2D-LC-SFC-MS system. The limit of detection was determined to be 10 ng/mL. An application is described where a mouse hepatocyte treated sample was analyzed using the optimized 2D-LC-SFC-MS system with successful assessment of the ratio of API to its metabolite (1D-LC), as well as the corresponding enantiomeric excess values (% e.e.) of each (2D-SFC). Copyright © 2018
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites
Yin, Jun
2017-01-20
We theoretically characterize the unusual white-light emission properties of two-dimensional (2D) hybrid organic inorganic perovskites with an APbX(4) structure (where A is a bidentate organic cation and X = Cl, Br). In addition to band structure calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level. Upon adding or removing an electron from the neutral systems, we find that strongly localized small polarons form in the 2D clusters. The polaron charge density is distributed over just lattice sites, which is consistent with the calculated large polaron binding energies, on the order of similar to 0.4-1.2 eV.
Monotone difference schemes for weakly coupled elliptic and parabolic systems
P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)
2017-01-01
textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is
Biocomplexity in coupled natural–human systems: a multidimensional framework
S.T.A. Pickett; M.L. Cadenasso; J.M. Grove
2005-01-01
As defined by Ascher, biocomplexity results from a "multiplicity of interconnected relationships and levels. "However, no integrative framework yet exists to facilitate the application of this concept to coupled human-natural systems. Indeed, the term "biocomplexity" is still used primarily as a creative and provocative metaphor. To help advance its...
Multiscality in the Dynamics of Coupled Chaotic Systems
DEFF Research Database (Denmark)
Pavlov, A.N.; Sosnovtseva, Olga; Ziganshin, A.R.
2002-01-01
We investigate the scaling features of complex motions in systems of two coupled chaotic oscillators by means of the wavelet-transform modulus maxima method and the detrended fluctuation analysis. We show that the transition from asynchronous to synchronous dynamics typically reduces the degree...
Partial synchronization and spontaneous spatial ordering in coupled chaotic systems
International Nuclear Information System (INIS)
Ying Zhang; Gang Hu; Cerdeira, Hilda A.; Shigang Chen; Braun, Thomas; Yugui Yao
2000-11-01
A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchronizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotemporal structures and some novel dynamical behaviors of these states are discussed both numerically and analytically. (author)
Global attractors for the coupled suspension bridge system with temperature
Czech Academy of Sciences Publication Activity Database
Dell'Oro, Filippo; Giorgi, C.
2016-01-01
Roč. 39, č. 4 (2016), s. 864-875 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : absorbing set * coupled bridge system * global attractor Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/mma.3526/abstract
On Coupled System of Navier-Stokes Equations and Temperature
African Journals Online (AJOL)
Dr. Anthony Peter
ABSTRACT. This paper deals with the coupled system of Navier-Stokes equations and temperature (Thermohydraulics) in a strip in the class of spatially non-decaying (infinite-energy) solutions belonging to the properly chosen uniformly local Sobolev spaces. The global well-posedness and dissipativity of the Navier- ...
Stošić, Dušan; Auroux, Aline
Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.
Directory of Open Access Journals (Sweden)
Hongmei Li
2015-06-01
Full Text Available Aims: Previous studies have revealed that the increased shedding of syncytiotrophoblast extracellular vesicles (STBM may lead to preeclampsia (PE. We aimed to identify the proteins carried by STBM and their potential pathological roles in early-onset severe PE. Methods: In this study, we performed a differential proteomic analysis of STBM from early-onset severe PE patients, using iTRAQ isobaric tags and 2D nano LC-MS/MS. STBM were generated by the in vitro explant culture method, and then verified by electron microscopy and western blot analysis. Results: A total of 18 533 unique peptides and 3 317 proteins were identified, 3 292 proteins were quantified. We identified 194 differentially expressed proteins in STBM from early-onset severe PE patients, 122 proteins were up-regulated and 72 proteins were down-regulated. Further bioinformatics analysis revealed that mitochondrion, transmembrane transport and transmembrane transporter activity were the most abundant categories in gene ontology (GO annotation. Glycolysis/ gluconeogenesis, citrate cycle, fatty acid elongation, steroid hormone biosynthesis and oxidative phosphorylation were the five significantly represented pathways. Four differentially expressed proteins (siglec-6, calnexin, CD63 and S100-A8 related to inflammation, coagulation or immunoregulation were independently verified using western blot. Conclusions: The identification of key proteins carried by STBM may serve not only as a basis for better understanding and further exploring the etiology and pathogenesis of PE, but also as potential biomarkers and in providing targets for future therapy in PE, especially in early-onset severe PE(sPE.
Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J.
2013-01-01
The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein. PMID:24278278
Directory of Open Access Journals (Sweden)
Takahiro Ogura
Full Text Available The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein.
Sustainability Indicators for Coupled Human-Earth Systems
Motesharrei, S.; Rivas, J. R.; Kalnay, E.
2014-12-01
Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.
Multi-wing hyperchaotic attractors from coupled Lorenz systems
International Nuclear Information System (INIS)
Grassi, Giuseppe; Severance, Frank L.; Miller, Damon A.
2009-01-01
This paper illustrates an approach to generate multi-wing attractors in coupled Lorenz systems. In particular, novel four-wing (eight-wing) hyperchaotic attractors are generated by coupling two (three) identical Lorenz systems. The paper shows that the equilibria of the proposed systems have certain symmetries with respect to specific coordinate planes and the eigenvalues of the associated Jacobian matrices exhibit the property of similarity. In analogy with the original Lorenz system, where the two-wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four-wings (eight-wings) of these attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.
The exact wavefunction factorization of a vibronic coupling system
International Nuclear Information System (INIS)
Chiang, Ying-Chih; Klaiman, Shachar; Otto, Frank; Cederbaum, Lorenz S.
2014-01-01
We investigate the exact wavefunction as a single product of electronic and nuclear wavefunction for a model conical intersection system. Exact factorized spiky potentials and nodeless nuclear wavefunctions are found. The exact factorized potential preserves the symmetry breaking effect when the coupling mode is present. Additionally nodeless wavefunctions are found to be closely related to the adiabatic nuclear eigenfunctions. This phenomenon holds even for the regime where the non-adiabatic coupling is relevant, and sheds light on the relation between the exact wavefunction factorization and the adiabatic approximation
Non-statistical behavior of coupled optical systems
International Nuclear Information System (INIS)
Perez, G.; Pando Lambruschini, C.; Sinha, S.; Cerdeira, H.A.
1991-10-01
We study globally coupled chaotic maps modeling an optical system, and find clear evidence of non-statistical behavior: the mean square deviation (MSD) of the mean field saturates with respect to increase in the number of elements coupled, after a critical value, and its distribution is clearly non-Gaussian. We also find that the power spectrum of the mean field displays well defined peaks, indicating a subtle coherence among different elements, even in the ''turbulent'' phase. This system is a physically realistic model that may be experimentally realizable. It is also a higher dimensional example (as each individual element is given by a complex map). Its study confirms that the phenomena observed in a wide class of coupled one-dimensional maps are present here as well. This gives more evidence to believe that such non-statistical behavior is probably generic in globally coupled systems. We also investigate the influence of parametric fluctuations on the MSD. (author). 10 refs, 7 figs, 1 tab
Smith, Greg; Lankshear, Allan
1998-07-01
2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.
Realistic and efficient 2D crack simulation
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
Practical integrated simulation systems for coupled numerical simulations in parallel
Energy Technology Data Exchange (ETDEWEB)
Osamu, Hazama; Zhihong, Guo [Japan Atomic Energy Research Inst., Centre for Promotion of Computational Science and Engineering, Tokyo (Japan)
2003-07-01
In order for the numerical simulations to reflect 'real-world' phenomena and occurrences, incorporation of multidisciplinary and multi-physics simulations considering various physical models and factors are becoming essential. However, there still exist many obstacles which inhibit such numerical simulations. For example, it is still difficult in many instances to develop satisfactory software packages which allow for such coupled simulations and such simulations will require more computational resources. A precise multi-physics simulation today will require parallel processing which again makes it a complicated process. Under the international cooperative efforts between CCSE/JAERI and Fraunhofer SCAI, a German institute, a library called the MpCCI, or Mesh-based Parallel Code Coupling Interface, has been implemented together with a library called STAMPI to couple two existing codes to develop an 'integrated numerical simulation system' intended for meta-computing environments. (authors)
Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments
Iwasaki, Yoshiki; Morinari, Takao
2018-03-01
We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.
Synchronization and Control of Linearly Coupled Singular Systems
Directory of Open Access Journals (Sweden)
Fang Qingxiang
2013-01-01
Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.
Study on hybrid ground-coupled heat pump systems
Energy Technology Data Exchange (ETDEWEB)
Yi, Man; Hongxing, Yang [Renewable Energy Research Group, The Hong Kong Polytechnic University, Hong Kong (China); Zhaohong, Fang [School of Thermal Energy Engineering, Shandong Architecture University, Jinan (China)
2008-07-01
Although ground-coupled heat pump (GCHP) systems are becoming attractive air-conditioning systems in some regions, the significant drawback for their wider application is the high initial cost. Besides, more energy is rejected into ground by the GCHP system installed in cooling-dominated buildings than the energy extracted from ground on an annual basis and this imbalance can result in the degradation of system performance. One of the available options that can resolve these problems is to apply the hybrid ground-coupled heat pump (HGCHP) systems, with supplemental heat rejecters for rejecting extra thermal energy when they are installed in cooling-dominated buildings. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer of its main components. The computer program developed on this hourly simulation model can be used to calculate the operating data of the HGCHP system according to the building load. The design methods and running control strategies of the HGCHP system for a sample building are investigated. The simulation results show that proper HGCHP system can effectively reduce both the initial cost and the operating cost of an air-conditioning system compared with the traditional GCHP system used in cooling-dominated buildings. (author)
Electromagnetic Coupling of Ocean Flow with the Earth System
Directory of Open Access Journals (Sweden)
Robert Tyler
2015-01-01
Full Text Available The ocean is electromagnetically coupled with the Earth System. This results in momentum transfer, as well as a participation by the ocean in the _ observable electric and magnetic fields. The coupling is typically quite weak and quantitative analyses indicate that many of these connections may be discounted when considering the transfer of momentum. But because of systematic effects there are also cases where an immediate discount is not justified and electromagnetic transfer of ocean momentum should remain within the realm of consideration. For practical considerations, even if the coupling is weak these effects are phenomenologically important because the electric and magnetic fields associated with this coupling offer an observational means for inferring the ocean flow. While in situ measurements of the electric field have long been used to measure ocean transport, new opportunities for remote sensing ocean flow through ground and space magnetic observatories are now being considered. In this article a brief update of the status of these observational methods is given. Extending beyond these established elements of the _ electromagnetic involvement, an attempt is made to provide a quantitative discussion of lesser considered elements of the _ electromagnetic coupling with the mantle and fluid core.
Coupled catastrophes: sudden shifts cascade and hop among interdependent systems
Barnett, George; D'Souza, Raissa M.
2015-01-01
An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast–slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to ‘hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets. PMID:26559684
Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint
Energy Technology Data Exchange (ETDEWEB)
Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.
2006-03-01
This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of
Directory of Open Access Journals (Sweden)
PU SU ZHAO
2010-04-01
Full Text Available p-Hydroxybenzoic acid (p-HOBA was selected as the building block for self-assembly with five bases, i.e., diethylamine, tert-butylamine, cyclohexylamine, imidazole and piperazine, and generation of the corresponding acid–base complexes 1–5. Crystal structure analyses suggest that proton-transfer from the carboxyl hydrogen to the nitrogen atom of the bases can be observed in 1–4, while only in 5 does a solvent water molecule co-exist with p--HOBA and piperazine. With the presence of O–H···O hydrogen bonds in 1–4, the deprotonated p-hydroxybenzoate anions (p-HOBAA– are simply connected each other in a head-to-tail motif to form one-dimensional (1D arrays, which are further extended to distinct two-dimensional (2D (for 1 and 4 and three-dimensional (3D (for 2 and 3 networks via N–H···O interactions. While in 5, neutral acid and base are combined pair-wise by O–H···N and N–H···O bonds to form a 1D tape and then the 1D tapes are sequentially combined by water molecules to create a 3D network. Some interlayer or intralayer C–H···O, C–H···p and p×××p interactions help to stabilize the supramolecular buildings. Melting point determination analyses indicate that the five acid–base complexes are not the ordinary superposition of the reactants and they are more stable than the original reactants.
International Nuclear Information System (INIS)
Brekke, L.; Imbo, T.D.
1992-01-01
The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions
Waldin, Nicholas
2016-06-24
2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.
Coupling vibration research on Vehicle-bridge system
Zhou, Jiguo; Wang, Guihua
2018-01-01
The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.
DEFF Research Database (Denmark)
Vadstrup, Kasper; Bendtsen, Flemming
2017-01-01
with a wide range of cell types and proteins involved. Natural Killer Group 2D (NKG2D) is an activating receptor constitutively expressed on human Natural Killer (NK), γδ T, mucosal-associated invariant T (MAIT), CD56⁺ T, and CD8⁺ T cells. Activation of NKG2D triggers cellular proliferation, cytokine...... production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly...... expressed during intestinal inflammation and the following receptor activation may contribute to tissue degeneration. A recent phase II clinical trial showed that an antibody against NKG2D induced clinical remission of CD in some patients, suggesting NKG2D and its ligands to be of importance...
Full counting statistics in a serially coupled double quantum dot system with spin-orbit coupling
Wang, Qiang; Xue, Hai-Bin; Xie, Hai-Qing
2018-04-01
We study the full counting statistics of electron transport through a serially coupled double quantum dot (QD) system with spin-orbit coupling (SOC) weakly coupled to two electrodes. We demonstrate that the spin polarizations of the source and drain electrodes determine whether the shot noise maintains super-Poissonian distribution, and whether the sign transitions of the skewness from positive to negative values and of the kurtosis from negative to positive values take place. In particular, the interplay between the spin polarizations of the source and drain electrodes and the magnitude of the external magnetic field, can give rise to a gate-voltage-tunable strong negative differential conductance (NDC) and the shot noise in this NDC region is significantly enhanced. Importantly, for a given SOC parameter, the obvious variation of the high-order current cumulants as a function of the energy-level detuning in a certain range, especially the dip position of the Fano factor of the skewness can be used to qualitatively extract the information about the magnitude of the SOC.
International Nuclear Information System (INIS)
Bilenko, V.A.; Davydov, N.I.
1979-01-01
Studied is the problem of autonomy in multicircuit systems of modern power plant automatic control systems; each part of the system has been carried out using the double-circuit scheme. Presented are the problems of neutralization of coupling between separate channels of power plant automatic control system. The conditions of autonomy in coupled double-circuit systems are obtained. The transfer functions of compensation devices are obtained and the variants of their connecting schemes are presented. Analyzed are possible variants of simplification of the coupled system adjustment process by its reduction to the series of consequent steps without using iteration procedures
Coupled fermion-kink system in Jackiw-Rebbi model
International Nuclear Information System (INIS)
Amado, A.; Mohammadi, A.
2017-01-01
In this paper, we study Jackiw-Rebbi model, in which a massless fermion is coupled to the kink of λφ"4 theory through a Yukawa interaction. In the original Jackiw-Rebbi model, the soliton is prescribed. However, we are interested in the back-reaction of the fermion on the soliton besides the effect of the soliton on the fermion. Also, as a particular example, we consider a minimal supersymmetric kink model in (1 + 1) dimensions. In this case, the bosonic self-coupling, λ, and the Yukawa coupling between fermion and soliton, g, have a specific relation, g = √(λ/2). As the set of coupled equations of motion of the system is not analytically solvable, we use a numerical method to solve it self-consistently. We obtain the bound energy spectrum, bound states of the system and the corresponding shape of the soliton using a relaxation method, except for the zero mode fermionic state and threshold energies which are analytically solvable. With the aid of these results, we are able to show how the soliton is affected in general and supersymmetric cases. The results we obtain are consistent with the ones in the literature, considering the soliton as background. (orig.)
International Nuclear Information System (INIS)
Liu Ping; Jia Man; Lou Senyue
2007-01-01
A modified Korteweg-de Vries (mKdV) lattice is also found to be a discrete Korteweg-de Vries (KdV) equation in this paper. The Lax pair for the discrete equation is found with the help of the Lax pair for a similar discrete equation. A Lax-integrable coupled extension of the lattice is posed, which is a common discrete version of both the coupled KdV and coupled mKdV systems. Some rational expansions of the Jacobian elliptic, trigonometric and hyperbolic functions are used to construct cnoidal waves, negaton and positon solutions of the discrete coupled system
Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems
Hu, Hao
Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and
From globally coupled maps to complex-systems biology
Energy Technology Data Exchange (ETDEWEB)
Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2015-09-15
Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.
Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems
DEFF Research Database (Denmark)
Bayat, M.; Shahidi, M.; Barari, Amin
2011-01-01
approximations to the achieved nonlinear differential oscillation equations where the displacement of the two-mass system can be obtained directly from the linear second-order differential equation using the first order of the current approach. Compared with exact solutions, just one iteration leads us to high......We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...
Design of the ALS transverse coupled-bunch feedback system
International Nuclear Information System (INIS)
Barry, W.; Byrd, J.M.; Corlett, J.N.; Hinkson, J.; Johnson, J.; Lambertson, G.R.; Fox, J.D.
1993-05-01
Calculations of transverse coupled bunch growth rates in the Advanced Light Source (ALS), a 1.5 GeV electron storage ring for producing synchrotron radiation, indicate the need for damping via a transverse feedback (TFB) system. We present the design of such a system. The maximum bunch frequency is 500 MHz, requiring that the FB system have a broadband response of at least 250 MHz. We described, in detail, the choice of broadband components such as kickers, pickups, power amplifiers, and electronics
Dissipation Assisted Quantum Memory with Coupled Spin Systems
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
Excitons in atomically thin 2D semiconductors and their applications
Xiao, Jun; Zhao, Mervin; Wang, Yuan; Zhang, Xiang
2017-06-01
The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.
1978-05-01
The purpose of this study is to provide an independent identification, classification, and analysis of significant freight car coupling systems concepts offering potential for improved safety and operating costs over the present system. The basic met...
A Coupled Atmospheric and Wave Modeling System for Storm Simulations
DEFF Research Database (Denmark)
Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.
2015-01-01
to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than......This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... resolution ranging from 25km to 2km. Meanwhile, the atmospheric forcing data of dierent spatial resolution, with one about 100km (FNL) and the other about 38km (CFSR) are both used. In addition, bathymatry data of diferent resolutions (1arc-minute and 30arc-seconds) are used. We used three approaches...
Analytical treatment of Coriolis coupling for three-body systems
Energy Technology Data Exchange (ETDEWEB)
Poirier, Bill
2005-01-31
In a previous article [J. Chem. Phys. 108 (1998) 5216], an efficient method was presented for performing 'exact' quantum calculations for the three-body rovibrational Hamiltonian, within the helicity-conserving approximation. This approach makes use of a certain three-body ''effective potential,'' enabling the same bend angle basis set to be employed for all values of the rotational quantum numbers, J, K and M. In the present work, the method is extended to incorporate Coriolis coupling, for which the relevant matrix elements are derived exactly. These can be used to solve the full three-body rovibrational problem, in the standard Jacobi coordinate vector embedding. Generalization of the method for coupled kinetic energy operators arising from other coordinate systems, embeddings, and/or system sizes, is also discussed.
Mediterranea Forecasting System: a focus on wave-current coupling
Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina
2016-04-01
The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully
Cooperative heat transfer and ground coupled storage system
Metz, P.D.
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Algebraic structure of a generalized coupled dispersionless system
International Nuclear Information System (INIS)
Victor, Kuetche Kamgang; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2006-01-01
We study a physical model of the O(3)-invariant coupled integrable dispersionless equations that describes the dynamic of a focused system within the background of a plane gravitational field. The investigation is carried out both numerically and analytically, and realized beneath some assumptions superseding the structure constant with the structure function implemented in Lie algebra and quasigroup theory, respectively. The energy density and topological structures such as loop soliton are examined
Coupled fast-thermal system at the 'RB' nuclear reactor
International Nuclear Information System (INIS)
Pesic, M.
1987-04-01
The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)
The toroidal Hausdorff dimension of 2d Euclidean quantum gravity
DEFF Research Database (Denmark)
Ambjorn, Jan; Budd, Timothy George
2013-01-01
The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...
International Nuclear Information System (INIS)
Miller, Willard Jr
2014-01-01
We describe a contraction theory for 2nd order superintegrable systems, showing that all such systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing. Analogously, all of the quadratic symmetry algebras of these systems can be obtained by a sequence of contractions starting from S9. By contracting function space realizations of irreducible representations of the S9 algebra (which give the structure equations for Racah/Wilson polynomials) to the other superintegrable systems one obtains the full Askey scheme of orthogonal hypergeometric polynomials.This relates the scheme directly to explicitly solvable quantum mechanical systems. Amazingly, all of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2, C). The present paper concentrates on describing this intimate link between Lie algebra and superintegrable system contractions, with the detailed calculations presented elsewhere. Joint work with E. Kalnins, S. Post, E. Subag and R. Heinonen.
Transient and fuel performance analysis with VTT's coupled code system
International Nuclear Information System (INIS)
Daavittila, A.; Hamalainen, A.; Raty, H.
2005-01-01
VTT (technical research center of Finland) maintains and further develops a comprehensive safety analysis code system ranging from the basic neutronic libraries to 3-dimensional transient analysis and fuel behaviour analysis codes. The code system is based on various types of couplings between the relevant physical phenomena. The main tools for analyses of reactor transients are presently the 3-dimensional reactor dynamics code HEXTRAN for cores with a hexagonal fuel assembly geometry and TRAB-3D for cores with a quadratic fuel assembly geometry. HEXTRAN has been applied to safety analyses of VVER type reactors since early 1990's. TRAB-3D is the latest addition to the code system, and has been applied to BWR and PWR analyses in recent years. In this paper it is shown that TRAB-3D has calculated accurately the power distribution during the Olkiluoto-1 load rejection test. The results from the 3-dimensional analysis can be used as boundary conditions for more detailed fuel rod analysis. For this purpose a general flow model GENFLO, developed at VTT, has been coupled with USNRC's FRAPTRAN fuel accident behaviour model. The example case for FRAPTRAN-GENFLO is for an ATWS at a BWR plant. The basis for the analysis is an oscillation incident in the Olkiluoto-1 BWR during reactor startup on February 22, 1987. It is shown that the new coupled code FRAPTRAN/GENFLO is quite a promising tool that can handle flow situations and give a detailed analysis of reactor transients
Central- and autonomic nervous system coupling in schizophrenia
Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen
2016-01-01
The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986
“Coupled processes” as dynamic capabilities in systems integration
Directory of Open Access Journals (Sweden)
Milton de Freitas Chagas Jr.
2017-05-01
Full Text Available The dynamics of innovation in complex systems industries is becoming an independent research stream. Apart from conventional uncertainties related to commerce and technology, complex-system industries must cope with systemic uncertainty. This paper’s objective is to analyze evolving technological paths from one product generation to the next through two case studies in the Brazilian aerospace industry, considering systems integration as an empirical instantiation of dynamic capabilities. A proposed “coupled processes” model intertwines two organizational processes regarded as two levels of dynamic capabilities: new product and technological developments. The model addresses the role of emergent properties in shaping a firm’s technological base. Moreover, it uses a technology readiness level to unveil systems integration business tricks and as a decision-making yardstick. The “coupled processes” model is revealed as a set of dynamic capabilities presenting ambidexterity in complex systems industries, a finding that may be relevant for newly industrialized economies.
Energy Technology Data Exchange (ETDEWEB)
Mora Melendez, R.; Seguro Fernandez, A.; Iborra Oquendo, M.; Urena Llinares, A.
2013-07-01
The main objective of our study is to find correction factors dependent on the 2D array incidence angles, and to give account of the phenomenon, allowing the Planner to faithfully reproduce data and curves measured experimentally. (Author)
Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.
2017-12-01
NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.
Superconducting fluctuations in systems with Rashba-spin-orbit coupling
Energy Technology Data Exchange (ETDEWEB)
Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)
2015-07-01
We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.
Head-coupled remote stereoscopic camera system for telepresence applications
Bolas, Mark T.; Fisher, Scott S.
1990-09-01
The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.
A new coupled system for BWR nuclear fuel management
International Nuclear Information System (INIS)
Castillo, A.; Ortiz-Servin, J.J.; Montes-Tadeo, J.L.; Perusquia, R.; Rizos, R.L.M.
2015-01-01
In this work, a system to solve four stages of the fuel management problem is showed.The system uses different heuristic techniques to solve each stage of that area, and this problem is solved in a coupled way. Considered problems correspond to the following designs: fuel lattice, fuel assembly, fuel reload and control rod patterns. Even though, each stage of the problem can have its own objective function, the complete problem was solved using a multi-objective function. The solution strategy is to solve each stage of design in an iterative process, taking into account previous results for the next stage, until to achieve a complete solution. The solution strategy to solve the coupled problem is the following: the first solved stage is the fuel lattice design, the second one is fuel assembly design, finally an internal loop between both fuel reload design and control rod pattern design is carried out.For this internal loop, a seed reload using Haling principle is generated. The obtained results showed the advantage to solve the whole problem in a coupled way. (author)
Marino, Fabio; Cristobal, Alba; Binai, Nadine A; Bache, Nicolai; Heck, Albert J R; Mohammed, Shabaz
2014-01-01
Ultra-high pressure liquid chromatography (UHPLC) systems combined with state-of-the-art mass spectrometers have pushed the limit of deep proteome sequencing to new heights making it possible to identify thousands of proteins in a single LC-MS experiment within a few hours. The recently released
Directory of Open Access Journals (Sweden)
Chubin Wan
2017-02-01
MgCo2 is a new example of the hydrogen storage alloy, in which a successful HDDR processing results in the reversible formation of the initial intermetallic at much lower temperatures than in the equilibrium phase diagram of the Mg-Co system.
Learn Unity for 2D game development
Thorn, Alan
2013-01-01
The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity
DEFF Research Database (Denmark)
Wu, Kehuai; Madsen, Jan
2007-01-01
and resource management, and iii) present a SystemC based framework to model and simulate coprocessor-coupled reconfigurable systems. We illustrate how COSMOS may be used to capture the dynamic behavior of such systems and emphasize the need for capturing the system aspects of such systems in order to deal...
Study of magnetization switching in coupled magnetic nanostructured systems
Radu, Cosmin
A study of magnetization dynamics experiments in nanostructured materials using the rf susceptibility tunnel diode oscillator (TDO) method is presented along with a extensive theoretical analysis. An original, computer controlled experimental setup that measures the change in susceptibility with the variation in external magnetic field and sample temperature was constructed. The TDO-based experiment design and construction is explained in detail, showing all the elements of originality. This experimental technique has proven reliable for characterizing samples with uncoupled magnetic structure and various magnetic anisotropies like: CrO2, FeCo/IrMn and Co/SiO2 thin films. The TDO was subsequently used to explore the magnetization switching in coupled magnetic systems, like synthetic antiferromagnet (SAF) structures. Magnetoresistive random access memory (MRAM) is an important example of devices where the use of SAF structure is essential. To support the understanding of the SAF magnetic behavior, its configuration and application are reviewed and more details are provided in an appendix. Current problems in increasing the scalability and decreasing the error rate of MRAM devices are closely connected to the switching properties of the SAF structures. Several theoretical studies that were devoted to the understanding of the concepts of SAF critical curve are reviewed. As one can notice, there was no experimental determination of SAF critical curve, due to the difficulties in characterizing a magnetic coupled structure. Depending of the coupling strength between the two ferromagnetic layers, on the SAF critical curve one distinguishes several new features, inexistent in the case of uncoupled systems. Knowing the configuration of the SAF critical curve is of great importance in order to control its switching characteristics. For the first time a method of experimentally recording the critical curve for SAF is proposed in this work. In order to overcome technological
Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G
2018-05-18
We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.
Ahmad, Saunia; Reid, David W
2016-10-01
The effectiveness of systemic-constructivist couple therapy (SCCT) in improving the relationship adjustment of South Asian Canadian couples in ways that attend to their culture was evaluated. The SCCT interventions engage partners in reflexive processing of both their own and their partner's ways of construing, and the reciprocity between these two. A core change mechanism of SCCT, couple identity ("we-ness"), that connotes the ability for thinking and experiencing relationally, was coded from verbatim transcripts of partners' within-session dialogue. As predicted, South Asian partners' relationship adjustment improved significantly from the first to final session of SCCT, and concurrent increases in each partner's couple identity mediated such improvements. The implications for considering culture and couple identity in couple therapy are discussed. Video Abstract is found in the online version of the article. © 2016 American Association for Marriage and Family Therapy.
FTTA System Demo Using Optical Fiber-Coupled Active Antennas
Directory of Open Access Journals (Sweden)
Niels Neumann
2014-08-01
Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.
Incoherent control and entanglement for two-dimensional coupled systems
International Nuclear Information System (INIS)
Romano, Raffaele; D'Alessandro, Domenico
2006-01-01
We investigate accessibility and controllability of a quantum system S coupled to a quantum probe P, both described by two-dimensional Hilbert spaces, under the hypothesis that the external control affects only P. In this context accessibility and controllability properties describe to what extent it is possible to drive the state of the system S by acting on P and using the interaction between the two systems. We give necessary and sufficient conditions for these properties and we discuss the relation with the entangling capability of the interaction between S and P. In particular, we show that controllability can be expressed in terms of the SWAP and √(SWAP) operators acting on the composite system
Liu, Lingfeng; Miao, Suoxia; Cheng, Mengfan; Gao, Xiaojing
2016-02-01
A coupled system with varying parameters is proposed to improve the security of optoelectronic delayed feedback system. This system is coupled by two parameter-varied optoelectronic delayed feedback systems with chaotic modulation. Dynamics performance results show that this system has a higher complexity compared to the original one. Furthermore, this system can conceal the time delay effectively against the autocorrelation function and delayed mutual information method and can increase the dimension space of secure parameters to resist brute-force attack by introducing the digital chaotic systems.