WorldWideScience

Sample records for county radiological emergency-response

  1. Indian Point Nuclear Power Station: verification analysis of County Radiological Emergency-Response Plans

    International Nuclear Information System (INIS)

    Nagle, J.; Whitfield, R.

    1983-05-01

    This report was developed as a management tool for use by the Federal Emergency Management Agency (FEMA) Region II staff. The analysis summarized in this report was undertaken to verify the extent to which procedures, training programs, and resources set forth in the County Radiological Emergency Response Plans (CRERPs) for Orange, Putnam, and Westchester counties in New York had been realized prior to the March 9, 1983, exercise of the Indian Point Nuclear Power Station near Buchanan, New York. To this end, a telephone survey of county emergency response organizations was conducted between January 19 and February 22, 1983. This report presents the results of responses obtained from this survey of county emergency response organizations

  2. Radiological Emergency Response Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Quality Data Asset includes all current and historical emergency radiological response event and incident of national significance data and surveillance, monitoring,...

  3. Short radiological emergency response training program

    International Nuclear Information System (INIS)

    Williams, R.D.; Greenhouse, N.A.

    1977-01-01

    This paper presents an outline of a radiological emergency response training program conducted at Brookhaven National Laboratory by the health physics and safety training staff. This course is given to groups from local, county, state, and federal agencies and industrial organizations. It is normally three days in length, although the structure is flexible to accommodate individual needs and prior training. An important feature of the course is an emergency exercise utilizing a short lived radionuclide to better simulate real accident conditions. Groups are encouraged to use their own instruments to gain better familiarity with their operating characteristics under field conditions. Immediately following the exercise, a critical review of the students' performance is conducted

  4. Radiological emergency response - a functional approach

    International Nuclear Information System (INIS)

    Chowdhury, P.

    1998-01-01

    The state of Louisiana's radiological emergency response programme is based on the federal guidance 'Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants' (NUREG-0654, FEMA-REP-1 Rev. 1). Over the past 14 years, the planning and implementation of response capabilities became more organized and efficient; the training programme has strengthened considerably; co-ordination with all participating agencies has assumed a more co-operative role, and as a result, a fairly well integrated response planning has evolved. Recently, a more 'functional' approach is being adopted to maximize the programme's efficiency not only for nuclear power plant emergency response, but radiological emergency response as a whole. First, several broad-based 'components' are identified; clusters of 'nodes' are generated for each component; these 'nodes' may be divided into 'sub-nodes' which will contain some 'attributes'; 'relational bonds' among the 'attributes' will exist. When executed, the process begins and continues with the 'nodes' assuming a functional and dynamic role based on the nature and characteristics of the 'attributes'. The typical response based on stand-alone elements is thus eliminated, the overlapping of functions is avoided, and a well structured and efficient organization is produced, that is essential for today's complex nature of emergency response. (author)

  5. Radiological emergency response - a functional approach

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Prosanta [Louisiana Radiation Protection Div., Baton Rouge, LA (United States)

    1997-12-31

    The radiological emergency response program in the State of Louisiana is discussed. The improved approach intends to maximize the efficiency for both nuclear power plant and radiological emergency response as a whole. Several broad-based components are identified: cluster of `nodes` are generated for each component; these `nodes` may be divided into `sub-nodes` which will contain some `attributes`; `relational bonds` among the `attributes` will exist. When executed, the process begins and continues with the `nodes` assuming a functional and dynamic role based on the nature and characteristics of the `attributes`. The typical response based on stand-alone elements is eliminated; overlapping of functions is avoided, and is produced a well-structure and efficient organization 1 ref., 6 figs.; e-mail: prosanta at deq.state.la.us

  6. Radiological emergency response - a functional approach

    International Nuclear Information System (INIS)

    Chowdhury, Prosanta

    1997-01-01

    The radiological emergency response program in the State of Louisiana is discussed. The improved approach intends to maximize the efficiency for both nuclear power plant and radiological emergency response as a whole. Several broad-based components are identified: cluster of 'nodes' are generated for each component; these 'nodes' may be divided into 'sub-nodes' which will contain some 'attributes'; 'relational bonds' among the 'attributes' will exist. When executed, the process begins and continues with the 'nodes' assuming a functional and dynamic role based on the nature and characteristics of the 'attributes'. The typical response based on stand-alone elements is eliminated; overlapping of functions is avoided, and is produced a well-structure and efficient organization

  7. Exercising the federal radiological emergency response plan

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.; Wolff, W.F.

    1986-01-01

    Multiagency exercises were an important part of the development of the Federal Radiological Emergency Response Plan. This paper concentrates on two of these exercises, the Federal Field Exercise in March 1984 and the Relocation Tabletop Exercise in December 1985. The Federal Field Exercise demonstrated the viability and usefulness of the draft plan; lessons learned from the exercise were incorporated into the published plan. The Relocation Tabletop Exercise examined the federal response in the postemergency phase. This exercise highlighted the change over time in the roles of some agencies and suggested response procedures that should be developed or revised. 8 refs

  8. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1989-02-01

    The radiological emergency response laws and regulations of the Southern States Energy Compact member states are in some cases disparate. Several states have very specific laws on radiological emergency response while in others, the statutory law mentions only emergency response to ''natural disasters.'' Some states have adopted extensive regulations on the topic; others have none. For this reason, any general overview must necessarily discuss laws and regulations in general terms

  9. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1990-06-01

    The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary. The radiological emergency response laws and regulations of the Southern States Energy Compact member states are in some cases disparate. Several states have very specific laws on radiological emergency response while in others, the statutory law mentions only emergency response to ''natural disasters.'' Some states have adopted extensive regulations on the topic, others have none. For this reason, any general overview must necessarily discuss laws and regulations in general terms. State-by-state breakdowns are given for specific states

  10. A model national emergency response plan for radiological accidents

    International Nuclear Information System (INIS)

    1993-09-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a results, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request. 2 tabs

  11. Radiological Emergency Response Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    D. R. Bowman

    2001-05-01

    This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

  12. Evaluation criteria for emergency response plans in radiological transportation

    International Nuclear Information System (INIS)

    Lindell, M.K.; Perry, R.W.

    1980-01-01

    This paper identifies a set of general criteria which can be used as guides for evaluating emergency response plans prepared in connection with the transportation of radiological materials. The development of criteria takes the form of examining the meaning and role of emergency plans in general, reviewing the process as it is used in connection with natural disasters and other nonnuclear disasters, and explicitly considering unique aspects of the radiological transportation setting. Eight areas of critical importance for such response plans are isolated: notification procedures; accident assessment; public information; protection of the public at risk; other protective responses; radiological exposure control; responsibility for planning and operations; and emergency response training and exercises. (Auth.)

  13. Radiological emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Henderson, O.K.

    1981-01-01

    The most important aspect of emergency preparedness is to recognize and accept the fact that there exists a potential for a problem or a condition and that it requires some attention. Emergency plans should be sufficiently flexible so as to accommodate the emergency situation as it unfolds. Of the several emergency responses that may be taken following a nuclear power plant accident evacuation evokes the greatest attention and discussion as to whether it is truly a feasible option. Movements of people confined to mass care facilities or on life support systems involve special requirements. The Three Mile Island accident has been the most studied nuclear incident in the history of the nuclear power reactor industry. The findings of these reports will have a major influence on nuclear power issues as they are addressed in the future. The question remains as to whether the political leadership will be willing to provide the resources required by the emergency plan. Future safety and emergency response to nuclear accidents depend upon Government and industry acting responsibly and not merely responding to regulations. The Three Mile Island accident has had some beneficial side effects for the emergency management community. It has: increased the level of awareness and importance of emergency planning; served as a catalyst for the sharing of experiences and information; encouraged standardization of procedures; and emphasized the need for identifying and assigning responsibilities. The Emergency Management Organization in responding to a disaster situation does not enjoy the luxury of time. It needs to act decisively and correctly. It does not often get a second chance. Governments, at all levels, and the nuclear power industry have been put on notice as a result of Three Mile Island. The future of nuclear energy may well hang in the balance, based upon the public's perception of the adequacy of preparedness and safety measures being taken. (author)

  14. Application of geographic information system for radiologic emergency response

    International Nuclear Information System (INIS)

    Best, R.G.; Doyle, J.F.; Mueller, P.G.

    1998-01-01

    Comprehensive and timely radiological, cultural, and environmental data are required in order to make informed decisions during a radiological emergency. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. The most recent addition to this essential function has been the development of the Field Analysis System for Emergency Response (FASER). It is an integrated system with compatible digital image processing and Geographic Information System (GIS) capabilities. FASER is configured with commercially available off-the-shelf hardware and software components. To demonstrate the potential of the FASER system for radiological emergency response, the system has been utilized in interagency FRMAC exercises to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. (R.P.)

  15. Exercises for radiological and nuclear emergency response. Planing - performance - evaluation

    International Nuclear Information System (INIS)

    Bayer, A.; Faleschini, J.; Goelling, K.; Stapel, R.; Strobl, C.

    2010-01-01

    The report of the study group emergency response seminar covers the following topics: (A) purpose of exercises and exercise culture: fundamentals and appliances for planning, performance and evaluation; (B) exercises in nuclear facilities; (C) exercises of national authorities and aid organizations on nuclear scenarios; exercises of national authorities and aid organizations on other radiological scenarios; (D) exercises in industrial plants, universities, medical facilities and medical services, and research institutes; (E) transnational exercises, international exercises; (F): exercises on public information.

  16. Emergency response during the radiological control of scraps in Cuba

    International Nuclear Information System (INIS)

    Ramos Viltre, Enma O.; Cardenas Herrera, Juan; Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Fernandez Gomez, Isis M.; Caveda Ramos, Celia; Carrazana, Jorge; Barroso Perez, Idelisa

    2008-01-01

    In the last few years, in the international scene, incidents have been reported due to the presence of radioactive materials in the scrap. This reality has motivated the adoption of measures of radiological security, due to the implications that these incidents have for the public and the environment, as well as for the international trade. Among theses actions is the implementation of the radiological control of scrap, with the additional requirement that this control has to be implemented in the framework of a Quality Management Program.Taking into account the international experience, our institution designed and organized in 2002 a national service for the radiological monitoring of scrap, being the clients the main exporting and trading enterprises of this material in the country. During these years, several contaminated materials have been detected, causing incidents that activated the radiological emergency response system. In this sense, since some years ago, our country has been working in the implementation of a national and ministerial system for facing and mitigating the consequences of accidental radiological situations, conjugating efforts and wills from different national institutions with the leadership of the Center of Radiation Protection and Hygiene (CPHR) and the Center of Nuclear Security (CNSN) in correspondence with the social responsibility assigned to the them. These incidents propitiate to have not only a system of capacity and quick response oriented to limit the exposure of people, to control the sources, to mitigate the consequences of the accident and to reestablish the conditions of normality, but also a previous adequate planning that guarantees the speed and effectiveness of it. In these work the experiences reached by the specialists of the CPHR from Cuba during the occurrence of an incident in the execution of the service of radiological monitoring of scraps are exposed. (author)

  17. Current trends in gamma radiation detection for radiological emergency response

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  18. Application of a geographic information system for radiologic emergency response

    International Nuclear Information System (INIS)

    Best, R.G.; Doyle, J.F.

    1995-01-01

    A geographic information system (GIS) is a multifunctional analytical tool that can be used to compile available data and derive information. A GIS is a computerized database management system for the capture, storage, retrieval, analysis, and display of spatial data. Maps are the most common type of spatial data, but any type of data that can be referenced by an x-y location or geographic coordinate can be used in a GIS. In a radiological emergency, it is critical that data of all types be rapidly compiled into a common format in order to make accurate observations and informed decisions. Developing a baseline GIS for nuclear facilities would offer a significant incentive for all organizations to contribute to and utilize this powerful data management tool. The system being developed could integrate all elements of emergency planning, from the initial protective actions based on models through the emergency monitoring phase, and finally ending with the complex reentry and recovery phase. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. To demonstrate the potential of GIS for emergency response, the system has been utilized in interagency FRMAC exercises. An interactive GIS system has been deployed and used to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. For this application, both hardcopy and real-time spatial displays were generated with the GIS. Composite maps with different sizes, scales, and themes were produced to support the exercises

  19. Southern states radiological emergency response laws and regulations

    International Nuclear Information System (INIS)

    1989-07-01

    The purpose of this report is to provide a summary of the emergency response laws and regulations in place in the various states within the southern region for use by legislators, emergency response planners, the general public and all persons concerned about the existing legal framework for emergency response. SSEB expects to periodically update the report as necessary. Radiation protection regulations without emergency response provisions are not included in the summary

  20. Radiological emergency response in a medical waste treatment unit

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fabio F.; Boni-Mitake, Malvina; Vianna, Estanislau B.; Nicolau, Jose R.A.; Rodrigues, Demerval L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    Radioactive materials are largely used in medicine, research and industry. The amount of radioactive material employed in each application varies from negligible to large and it can be in sealed or non-sealed form. A medical waste treatment unit that deals only with A-type medical waste (ABNT-NBR 12808), which does not include radioactive waste, detected abnormal radiation levels in a collecting truck and the IPEN-CNEN/SP Nuclear and Radiological Emergency Response Team was called. The presence of radioactive material inside the truck was confirmed; however, its origin and nature were not possible to be determined because the truck had collected medical waste in several facilities. So, an operation in order to segregate and identify that material was carried out. During the operation, a second collecting truck presenting abnormal radiation levels arrived to the unit and the same procedure was carried out on that truck. In both situations, the contaminated objects found were infantile diapers. The radioactive waste was transported to IPEN-CNEN/SP to be managed. Samples of the radioactive materials were submitted to gamma spectrometry and the radionuclide was identified as Iodine-131. Since that attendance, similar occurrences have been frequent. These events suggest that it is necessary a better control of the radioactive waste at the generating facilities and there should be basic radioprotection orientations to the discharging patients that were submitted to nuclear medicine procedures. (author)

  1. Radiological emergency response in a medical waste treatment unit

    International Nuclear Information System (INIS)

    Suzuki, Fabio F.; Boni-Mitake, Malvina; Vianna, Estanislau B.; Nicolau, Jose R.A.; Rodrigues, Demerval L.

    2000-01-01

    Radioactive materials are largely used in medicine, research and industry. The amount of radioactive material employed in each application varies from negligible to large and it can be in sealed or non-sealed form. A medical waste treatment unit that deals only with A-type medical waste (ABNT-NBR 12808), which does not include radioactive waste, detected abnormal radiation levels in a collecting truck and the IPEN-CNEN/SP Nuclear and Radiological Emergency Response Team was called. The presence of radioactive material inside the truck was confirmed; however, its origin and nature were not possible to be determined because the truck had collected medical waste in several facilities. So, an operation in order to segregate and identify that material was carried out. During the operation, a second collecting truck presenting abnormal radiation levels arrived to the unit and the same procedure was carried out on that truck. In both situations, the contaminated objects found were infantile diapers. The radioactive waste was transported to IPEN-CNEN/SP to be managed. Samples of the radioactive materials were submitted to gamma spectrometry and the radionuclide was identified as Iodine-131. Since that attendance, similar occurrences have been frequent. These events suggest that it is necessary a better control of the radioactive waste at the generating facilities and there should be basic radioprotection orientations to the discharging patients that were submitted to nuclear medicine procedures. (author)

  2. Southern State Radiological Transportation Emergency Response Training Course Summary

    International Nuclear Information System (INIS)

    1990-09-01

    The Southern States Energy Board (SSEB) is an interstate compact organization that serves 16 states and the commonwealth of Puerto Rico with information and analysis in energy and environmental matters. Nuclear waste management is a topic that has garnered considerable attention in the SSEB region in the last several years. Since 1985, SSEB has received support from the US Department of Energy for the regional analysis of high-level radioactive waste transportation issues. In the performance of its work in this area, SSEB formed the Advisory Committee on High-Level Radioactive Materials Transportation, which comprises representatives from impacted states and tribes. SSEB meets with the committee semi-annually to provide issue updates to members and to solicit their views on activities impacting their respective states. Among the waste transportation issues considered by SSEB and the committee are shipment routing, the impacts of monitored retrievable storage, state liability in the event of an accident and emergency preparedness and response. This document addresses the latter by describing the radiological emergency response training courses and programs of the southern states, as well as federal courses available outside the southern region

  3. Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, Eva E.; Strom, Daniel J.

    2005-08-01

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

  4. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    2000-03-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability

  5. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    1998-04-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability

  6. United States Department of Energy radiological emergency response programme - a national capability

    International Nuclear Information System (INIS)

    Gordon-Hagerty, L.E.

    1993-01-01

    In order to respond to a radiological emergency, the United States Department of Energy (USDOE) maintains seven emergency response assets and capabilities in support of a radiological emergency of any proportion within the continental United States and abroad. The seven emergency response assets and capabilities include: Accident Response Group; Aerial Measuring Systems; Atmospheric Release Advisory Capability; Federal Radiological Monitoring and Assessment Center; Nuclear Emergency Search Team; Radiation Emergency Assistance Center/Training Site; and Radiological Assistance Program. Presently, USDOE maintains the most comprehensive national radiological emergency response assets in the United States, capable of dealing with any type of emergency involving nuclear materials. In all, the Department's assets are available to support any type of accident/incident involving radioactive materials in coordination with other United States Federal agencies, as well as state and local governments, as required. (author)

  7. NNSA/NV Consequence Management Capabilities for Radiological Emergency Response

    International Nuclear Information System (INIS)

    Bowman, D. R.

    2002-01-01

    The U.S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) provides an integrated Consequence Management (CM) response capability for the (NNSA) in the event of a radiological emergency. This encompasses planning, technical operations, and home team support. As the lead organization for CM planning and operations, NNSA/NV coordinates the response of the following assets during the planning and operational phases of a radiological accident or incident: (1) Predictive dispersion modeling through the Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) and the High Consequence Assessment Group at Sandia National Laboratories (SNL); (2) Regional radiological emergency assistance through the eight Radiological Assistance Program (RAP) regional response centers; (3) Medical advice and assistance through the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge, Tennessee; (4) Aerial radiological mapping using the fixed-wing and rotor-wing aircraft of the Aerial Measuring System (AMS); (5) Consequence Management Planning Teams (CMPT) and Consequence Management Response Teams (CMRT) to provide CM field operations and command and control. Descriptions of the technical capabilities employed during planning and operations are given below for each of the elements comprising the integrated CM capability

  8. WS-011: EPR-First Responders: Demonstration of a radiological emergency response

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this working session is that the participant can apply their knowledge in a radiological emergency response as well as how to prevent potential contamination damage. The participants have to know how to respond in a radiological criminal scenario, the personal protection and the risks

  9. A special purpose vehicle for radiological emergency response

    International Nuclear Information System (INIS)

    Braeck, K.

    1995-01-01

    The scope of this paper encompasses the design and application of a Contamination Control Station (CCS) Response Vehicle. The vehicle is part of emergency response assets at the Department of Energy Pantex Plant, the nation's final assembly and disassembly point for nuclear weapons. The CCS Response Vehicle was designed to satisfy the need for a rapid deployment of equipment for the setup of a Contamination Control Station. This deployment may be either on the Pantex Plant site, or, if directed by the DOE Albuquerque Operations Office, to any location in the US or worldwide to a site having radioactive contamination and needing response assets of this type. Based on the specialized nature of the vehicle and its mission, certain design criteria must be considered. The vehicle must be air transportable. This criteria alone poses size, weight, and material restrictions due to the transporting aircraft and temperature/pressure variations. This paper first focuses on the overall mission of the vehicle, then highlights some of the design considerations

  10. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    1997-07-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability. 14 refs, 4 figs, 4 tabs

  11. Lessons learned from the second Federal Radiology Emergency Response Plan Field Exercise (FFE-2)

    International Nuclear Information System (INIS)

    Adler, M.V.; Gant, K.S.; Weiss, B.H.; Wolff, W.F.; Adler, V.

    1988-01-01

    The FFE-2, held in 1987 at the Zion Nuclear Power Station, provided a large-scale, multiagency, field test of the Federal Radiological Emergency Response Plan (FRERP). The FRERP provided workable guidance for coordinating the federal response efforts and effectively supplementing the states' resources. Needs for more training for responders and clarification in portions of the response were identified

  12. The development and revision of the Federal Radiological Emergency Response Plan

    International Nuclear Information System (INIS)

    Gant, K.S.; Adler, M.V.; Wolff, W.F.

    1989-01-01

    Since 1985, federal agencies have been using the Federal Radiological Emergency Response Plan (FRERP) in exercises and real events. This experience and the development of other emergency response guidance (e.g., National System for Emergency Coordination) are fueling current efforts to review and revise the FRERP to reflect what the agencies have learned since the FRERP was published. Revision efforts are concentrating on clarifying the plan and addressing deficiencies. No major changes are expected in the general structure of the federal response nor should states need to revise their plans because of these modifications. 5 refs

  13. Radiological emergency response planning: Handbook for Federal Assistance to State and Local Governments

    International Nuclear Information System (INIS)

    1978-12-01

    The handbook is directed toward those federal agencies involved in providing direct field assistance to state and local governments in radiological emergency response planning. Its principal purpose is to optimize the effectiveness of this effort by specifying the functions of the following federal agencies: Nuclear Regulatory Commission, Environmental Protection Agency, Department of Energy, Department of Health, Education, and Welfare, Department of Transportation, Defense Civil Preparedness Agency, Federal Disaster Assistance Administration, and Federal Preparedness Agency

  14. Radiological emergency response for community agencies with cognitive task analysis, risk analysis, and decision support framework.

    Science.gov (United States)

    Meyer, Travis S; Muething, Joseph Z; Lima, Gustavo Amoras Souza; Torres, Breno Raemy Rangel; del Rosario, Trystyn Keia; Gomes, José Orlando; Lambert, James H

    2012-01-01

    Radiological nuclear emergency responders must be able to coordinate evacuation and relief efforts following the release of radioactive material into populated areas. In order to respond quickly and effectively to a nuclear emergency, high-level coordination is needed between a number of large, independent organizations, including police, military, hazmat, and transportation authorities. Given the complexity, scale, time-pressure, and potential negative consequences inherent in radiological emergency responses, tracking and communicating information that will assist decision makers during a crisis is crucial. The emergency response team at the Angra dos Reis nuclear power facility, located outside of Rio de Janeiro, Brazil, presently conducts emergency response simulations once every two years to prepare organizational leaders for real-life emergency situations. However, current exercises are conducted without the aid of electronic or software tools, resulting in possible cognitive overload and delays in decision-making. This paper describes the development of a decision support system employing systems methodologies, including cognitive task analysis and human-machine interface design. The decision support system can aid the coordination team by automating cognitive functions and improving information sharing. A prototype of the design will be evaluated by plant officials in Brazil and incorporated to a future trial run of a response simulation.

  15. Environmental and emergency response capabilities of Los Alamos Scientific Laboratory's radiological air sampling program

    International Nuclear Information System (INIS)

    Gunderson, T.C.

    1980-05-01

    Environmental and emergency response radiological air sampling capabilities of the Environmental Surveillance Group at Los Alamos Scientific Laboratory are described. The air sampling program provides a supplementary check on the adequacy of containment and effluent controls, determines compliance with applicable protection guides and standards, and assesses potential environmental impacts on site environs. It also allows evaluation of potential individual and total population doses from airborne radionuclides that may be inhaled or serve as a source of external radiation. The environmental program is sufficient in scope to detect fluctuations and long-term trends in atmospheric levels of radioactivity originating onsite. The emergency response capabilities are designed to respond to both onsite unplanned releases and atmospheric nuclear tests

  16. An emergency response centre (ERC) for the preparedness and response to nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.; Sharma, D.N.; Abani, M.C.

    2001-01-01

    This paper discusses the requirement for a state of the art Emergency Response Centre (ERC) to be developed and kept in readiness for the quick response to any nuclear or radiological emergencies. For an effective response to any major nuclear emergency an ERC having the facilities of i) environmental dose rate monitoring network established using both mobile and fixed units ii) on-line meteorological data collection and information station iii) on-line computation and prediction of isodose curves in real time and iv) properly developed and tested monitoring methodologies are essential. Vehicles with on-line data transfer facility to the ERC and equipped with different type of monitoring systems can function as Mobile Monitoring Laboratories (MMLs) and can help in quick decision making even during a radiological emergency far away from the ERC. (author)

  17. Emergency response to radiological occurrences in the centre of isotopes in Cuba

    International Nuclear Information System (INIS)

    Amador, Zayda H.; Perez, Saul; Torres, Mirta B.; Ayra, Fernando E.

    2008-01-01

    It is internationally recognized that establishment and implementation emergency provisions are key issues for an effective response. This paper aims to summarize the experiences in responding to radiological events in the Centre of Isotopes (CENTIS), the biggest radioactive facility in Cuba. Specific potential accident scenarios are assessed by identifying maximum radioactive inventories, operational procedures, room dimensions and ventilation system parameters. Additionally, transport accidents are analyzed since CENTIS is also the main carrier of radioactive materials in Cuba. A range of events is considered from highly improbable events of larger consequence to more frequent events of small radiological impact. The maximum radionuclide release events are identified. A review of the radiological occurrences from 1997 to 2007 is conducted, using the Cuban's regulatory classification system. The details of these occurrences have been entered into the Radiological Event Database (RED). Spills of 131 I in controlled zone are mainly registered. It has been not reported any incident in about two thousand road shipments carried out. Results show a good agreement between hypothesized occurrences and those registered. There were obtained the maximum values of exposures for workers and first responders as follows: 2.23mSv (effective dose (E)), 0.7mSv (committed effective dose) and 50.49mSv (equivalent dose to hands). The biggest contribution to E took place during opening a radioactive package with 14.8GBq of 90 Sr in controlled zone. Suitable sets of individual protective means and monitoring equipment have been guaranteed. The programmes of training and full-scale exercises are fulfilled. Finally, it is concluded that findings from operational experience and preparedness infrastructure have contributed to CENTIS' emergency response capabilities. (author)

  18. National radiological emergency response to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2011-01-01

    The Fukushima nuclear power plant accident occurred on March 11, 2011, when two natural disasters of unprecedented strengths, an earthquake with magnitude 9 followed one hour later by a powerful tsunami struck northeastern Japan and felled the external power supply and the emergency diesel generators of the Fukushima Daiichi nuclear power station, resulting in a loss of coolant accident. There were core meltdowns in three nuclear reactors with the release of radioactivity estimated to be 1/10 of what was released to the environment during the Chernobyl nuclear power plant accident in April 1986. The Fukushima nuclear accident tested the capability of the Philippine Nuclear Research Institute (PNRI) and the National Disaster Risk Reduction and Management Council (NDRRMC) in responding to such radiological emergency as a nuclear power plant accident. The PNRI and NDRRMC activated the RADPLAN for possible radiological emergency. The emergency response was calibrated to the status of the nuclear reactors on site and the environmental monitoring undertaken around the site and off-site, including the marine environment. This orchestrated effort enabled the PNRI and the national agencies concerned to reassure the public that the nuclear accident does not have a significant impact on the Philippines, both on the health and safety of the people and on the safety of the environment. National actions taken during the accident will be presented. The role played by the International Atomic Energy Agency as the central UN agency for nuclear matters will be discussed. (author)

  19. NERIS: European platform on preparedness for nuclear and radiological emergency response and recovery

    International Nuclear Information System (INIS)

    Duranova, T.; Bohunova, J.; Schneider, T.; Biduener, S.; Badelay, J.; Gallego, E.; Gering, F.; Hrdeman, F.; Dubreuil, G.; Murith, Ch.; Oughton, D.; Raskob, W.

    2014-01-01

    The NERIS platform was established in June 2010 to encourage European, national, regional and local authorities, technical support organisation, operators, professional organisations, research institutes, universities, and non-governmental organisations to cooperate and to facilitate access expertise and technology in maintaining competence in the field of nuclear emergency management and recovery for the benefit of European countries and citizens. 49 organisations are members of the NERIS Platform from 24 countries and 20 members are supporting organisations. The NERIS Association has been registered in August 2012 as a legal European Association under the French Law. It is operated by a management board of 10 members and the NERIS R and D Committee elaborates its strategic orientation. The NERIS Platform is linked to research projects, managed by KIT: - NERIS TP 'Towards a self sustaining European Technology Platform on Preparedness for Nuclear and Radiological Emergency Response and Recovery'. - PREPARE project on innovative integrative tools and platforms to be prepared for radiological emergencies and post-accident response in Europe. To set up a common reflection, cooperation have been established with European and international organisations: HERCA, ALLIANCE, CRPPH, ICRP and AIEA. To share issues on lessons learnt from the Fukushima accident, cooperation have been initiated with IGES (Institute for Global Environment Strategies) and with the Fukushima University. The NERIS Platform is also involved in the steering committee of the EC Project OPERRA, aiming at structuring the research in the field of radiation protection at the Horizon 2020. This paper will present the key components of the NERIS Platform and its objectives. (authors)

  20. NERIS: The European platform on preparedness for nuclear and radiological emergency response and recovery

    International Nuclear Information System (INIS)

    Duranova, T.; Bohunova, J.; Schneider, T.; Biduener, S.; Badelay, J.; Gallego, E.; Gering, F.; Hrdeman, F.; Dubreuil, G.; Murith, Ch.; Oughton, D.; Raskob, W.

    2014-01-01

    The NERIS platform was established in June 2010 to encourage European, national, regional and local authorities, technical support organisation, operators, professional organisations, research institutes, universities, and non-governmental organisations to cooperate and to facilitate access expertise and technology in maintaining competence in the field of nuclear emergency management and recovery for the benefit of European countries and citizens. 49 organisations are members of the NERIS Platform from 24 countries and 20 members are supporting organisations. The NERIS Association has been registered in August 2012 as a legal European Association under the French Law. It is operated by a management board of 10 members and the NERIS R and D Committee elaborates its strategic orientation. The NERIS Platform is linked to research projects, managed by KIT: - NERIS TP 'Towards a self sustaining European Technology Platform on Preparedness for Nuclear and Radiological Emergency Response and Recovery'. - PREPARE project on innovative integrative tools and platforms to be prepared for radiological emergencies and post-accident response in Europe. To set up a common reflection, cooperations have been established with European and international organisations: HERCA, ALLIANCE, CRPPH, ICRP and AIEA. To share issues on lessons learnt from the Fukushima accident, cooperation have been initiated with IGES (Institute for Global Environment Strategies) and with the Fukushima University. The NERIS Platform is also involved in the steering committee of the EC Project OPERRA, aiming at structuring the research in the field of radiation protection at the Horizon 2020. This paper will present the key components of the NERIS Platform and its objectives. (authors)

  1. Development of emergency response tools for accidental radiological contamination of French coastal areas

    International Nuclear Information System (INIS)

    Duffa, Céline; Bailly du Bois, Pascal; Caillaud, Matthieu; Charmasson, Sabine; Couvez, Céline; Didier, Damien; Dumas, Franck; Fievet, Bruno; Morillon, Mehdi; Renaud, Philippe

    2016-01-01

    The Fukushima nuclear accident resulted in the largest ever accidental release of artificial radionuclides in coastal waters. This accident has shown the importance of marine assessment capabilities for emergency response and the need to develop tools for adequately predicting the evolution and potential impact of radioactive releases to the marine environment. The French Institute for Radiological Protection and Nuclear Safety (IRSN) equips its emergency response centre with operational tools to assist experts and decision makers in the event of accidental atmospheric releases and contamination of the terrestrial environment. The on-going project aims to develop tools for the management of marine contamination events in French coastal areas. This should allow us to evaluate and anticipate post-accident conditions, including potential contamination sites, contamination levels and potential consequences. In order to achieve this goal, two complementary tools are developed: site-specific marine data sheets and a dedicated simulation tool (STERNE, Simulation du Transport et du transfert d’Eléments Radioactifs dans l'environNEment marin). Marine data sheets are used to summarize the marine environment characteristics of the various sites considered, and to identify vulnerable areas requiring implementation of population protection measures, such as aquaculture areas, beaches or industrial water intakes, as well as areas of major ecological interest. Local climatological data (dominant sea currents as a function of meteorological or tidal conditions) serving as the basis for an initial environmental sampling strategy is provided whenever possible, along with a list of possible local contacts for operational management purposes. The STERNE simulation tool is designed to predict radionuclide dispersion and contamination in seawater and marine species by incorporating spatio-temporal data. 3D hydrodynamic forecasts are used as input data. Direct discharge points or

  2. Criteria for preparation and evaluation of radiological emergency response plans and preparedness in support of nuclear power plants. Interim report

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this document is to provide a common reference and interim guidance source for: state and local governments and nuclear facility operators in the development of radiological emergency response plans and preparedness in support of nuclear power plants; and Nuclear Regulatory Commission (NRC), Federal Emergency Management Agency (FEMA) and other Federal agency personnel engaged in the review of state, local government, and licensee plans and preparedness

  3. Development of a Real-Time Radiological Area Monitoring Network for Emergency Response at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Bertoldo, N; Hunter, S; Fertig, R; Laguna, G; MacQueen, D

    2004-01-01

    A real-time radiological sensor network for emergency response was developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the LLNL Livermore site perimeter to continuously monitor for a radiological condition resulting from a terrorist threat to site security and the health and safety of LLNL personnel. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These loW--power sensors are supported by a central command center (CCC) and transmit measurement data back to the CCC computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio and computer based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. The RTRAM network has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions

  4. Survey of state and tribal emergency response capabilities for radiological transportation incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vilardo, F J; Mitter, E L; Palmer, J A; Briggs, H C; Fesenmaier, J [Indiana Univ., Bloomington, IN (USA). School of Public and Environmental Affairs

    1990-05-01

    This publication is the final report of a project to survey the fifty states, the District of Columbia, Puerto Rico, and selected Indian Tribal jurisdictions to ascertain their emergency-preparedness planning and capabilities for responding to transportation incidents involving radioactive materials. The survey was conducted to provide the Nuclear Regulatory Commission and other federal agencies with information concerning the current level of emergency-response preparedness of the states and selected tribes and an assessment of the changes that have occurred since 1980. There have been no major changes in the states' emergency-response planning strategies and field tactics. The changes noted included an increased availability of dedicated emergency-response vehicles, wider availability of specialized radiation-detection instruments, and higher proportions of police and fire personnel with training in the handling of suspected radiation threats. Most Indian tribes have no capability to evaluate suspected radiation threats and have no formal relations with emergency-response personnel in adjacent states. For the nation as a whole, the incidence of suspected radiation threats declined substantially from 1980 to 1988. 58 tabs.

  5. Resolution no. 18/2012 Guide for the preparation and emergency response radiological

    International Nuclear Information System (INIS)

    2012-01-01

    This guide aims to establish requirements to ensure an adequate level of entities, for the preparation and response to radiological emergencies and to prepare the Radiation Emergency Plan (PER), asset out in the Basic Safety Standards radiological and authorizations Regulations in force. This guide applies to organizations providing employment practices associated with sources of ionizing radiation, hereinafter sources.

  6. Method for the development of emergency response preparedness for nuclear or radiological accidents; Metodo para el desarrollo de la preparacion de la respuesta a emergencias nucleares o radiologicas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability.

  7. Implementation of the Service for Radiological Emergency Response of CRCN-NE/CNEN-PE, Recife, PE, Brazil

    International Nuclear Information System (INIS)

    Menezes, Claudio J.M.

    2005-01-01

    In 1998, it was created in the Centro Regional de Ciencias Nucleares (CRCN-NE) - the Brazilian regional center of nuclear sciences -, Recife, PE, Brazil, the Service for Radiological Emergency Response with the objective of providing the population of Pernambuco and neighboring States a team of professionals specialized in emergency situations and radiological protection. This action has the purpose of decentralization of actions of the Brazilian National Nuclear Energy Commission (CNEN), an agency responsible for licensing and safety of radioactive sources in Brazil. With this study we can conclude that the settlement of SAER/CRCN came to meet initial expectations, having in the last years provided assistance in situations with suspected radioactive material and participated actively: with radioactive load simulation; of the Exercicio de Emergencia Aeronautica Completo (EXEAC) - an emergency simulated training in airports- from the Guararapes-Gilberto Freire Airport; trained, every two years, the services of emergency for accidents and participated in events of the area

  8. Results of the radiologic emergencies response in the state of Sao Paulo during the last five years

    International Nuclear Information System (INIS)

    Boni-Mitake, Malvina; Suzuki, Fabio F.; Nicolau, Jose R.A.; Rodrigues, Demerval L.

    2001-01-01

    Radiation is often associated with bombs, diseases, and destruction rather than with the many benefits of nuclear technology that are present in the daily life. The radiation risk symbol still frightens the population. In addition, small risks related to nuclear area are overestimated. So, when there is a radiological accident, a prompt response is necessary because some of its major deleterious impacts are not quantified just in terms of radiation dose, but they are related to the risk perceived, and in many cases, wrong information or just lack of information induces fear or anxiety. In case of unusual situations involving radiation sources in Sao Paulo State, the people can contact IPEN-CNEN/SP Nuclear and Radiological Emergency Response Team by telephone. The objective of this paper is to show the results obtained in the last five years. In this period, there were 89 calls. About half of those calls were performed by intervening organizations, as Fire Department or Civil Defense. Most of the situations presented low potential risks and some did not involve radiation sources. The results indicate that arrangements should be made for training the intervening organization personnel, which usually are the first ones that arrive at the emergency scene, in fundamentals of radiological protection, including both theoretical and practical aspects. Moreover, major efforts should be intended to divulge and clarify the public about the peaceful uses of nuclear technology, focusing the safety requirements and the regulatory control over the radiation sources. (author)

  9. Radiological transportation emergency response training course funding and timing in the southern states

    International Nuclear Information System (INIS)

    1991-10-01

    The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under section 180(c) of the Nuclear Waste Policy Amendments Act. Under section 180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs

  10. Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)

    Energy Technology Data Exchange (ETDEWEB)

    David P. Colton

    2007-02-28

    The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.

  11. Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II) user's manual

    International Nuclear Information System (INIS)

    David P. Colton

    2007-01-01

    The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time

  12. Optimization aspects of the ARAC real-time radiological emergency response system

    International Nuclear Information System (INIS)

    Taylor, S.S.; Sullivan, T.J.

    1985-07-01

    The Atmospheric Release Advisory Capability (ARAC) project at the Lawrence Livermore National Laboratory responds to radiological emergencies throughout the Continental United States. Using complex three-dimensional dispersion models to account for the effects of complex meteorology and regional terrain, ARAC simulates the release of radioactive materials and provides dispersion, deposition, and dose calculations that are displayed over local geographic features for use by authorities at the accident/release site. ARAC's response is ensured by a software system that (1) makes optimal use of dispersion models, (2) minimizes the time required to provide projections, and (3) maximizes the fault-tolerance of the system. In this paper we describe ARAC's goals and functionality and the costs associated with its development and use. Specifically, we address optimizations in ARAC notifications, meteorological data collection, the determination of site- and problem-specific parameters, the generation of site-specific topography and geography, the running of models, and the distribution of ARAC products. We also discuss the backup features employed to ensure ARAC's ability to respond

  13. InteractInteraction mechanism of emergency response in geological hazard perception and risk management: a case study in Zhouqu county

    Science.gov (United States)

    Qi, Yuan; Zhao, Hongtao

    2017-04-01

    China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency

  14. Beyond defense-in-depth: cost and funding of state and local government radiological emergency response plans and preparedness in support of commercial nuclear power stations

    International Nuclear Information System (INIS)

    Salomon, S.N.

    1979-10-01

    Inadequate, sporadic, uncertain and frustrating are words local, state and Federal officials use to describe the current hodgepodge funding approach to State and local government radiological emergency response plans and preparedeness in support of commercial nuclear power stations. The creation of a Radiological Emergency Response Plans and Preparedness Fund for State and Local Government is offered as a preferred solution. Monies for the Fund could be derived from a one time Fee of $1 million levied on the operator of each nuclear power station. Every five years, adjustments could be made in the Fee to assure full recovery of costs because of inflation, revised criteria and other cost related factors. Any surplus would be refunded to the utilities. Any state that has obtained NRC concurrence or is in the process could be reimbursed for previous expenditures up to two years prior to NRC concurrence. Concurrence in all state and local government plans is the objective of the funding program. The Fund should be administered by the Nuclear Regulatory Commission. The report also discusses actions by Federal and state agencies and points to long range considerations, such as a training institute, including transportation and non-commercial and other fixed nuclear facilities, where preparedness could be enhanced by a coherent funding mechanism. All recommendations are based on an inquiry by the Office of state Programs, NRC, into the historical and future costs and funding of radiological emergency response plans and preparedness at the state and local government levels and are derived from discussions with many local, State and Federal officials

  15. Criteria for preparation and evaluation of radiological emergency response plans and preparedness in support of nuclear power plants: Criteria for utility offsite planning and preparedness: Final report

    International Nuclear Information System (INIS)

    Podolak, E.M. Jr.; Sanders, M.E.; Wingert, V.L.; Donovan, R.W.

    1988-09-01

    The Nuclear Regulatory Commission (NRC) and the Federal Emergency Management Agency (FEMA) have added a supplement to NUREG-0654/FEMA-REP-1, Rev. 1 that provides guidance for the development, review, and evaluation of utility offsite radiological emergency response planning and preparedness for those situations in which state and/or local governments decline to participate in emergency planning. While this guidance primarily applies to plants that do not have full-power operating licenses, it does have relevance to operating nuclear power plants

  16. Emergency response guidance for the first 48 hours after the outdoors detonation of an explosive radiological dispersal device

    International Nuclear Information System (INIS)

    Harper, Frederick Taylor; Musolino, Stephen V.

    2006-01-01

    Strategies and decisions to protect emergency responders, the public, and critical infrastructure against the effects of a radiological dispersal device detonated outdoors must be made in the planning stage, not in the early period just after an attack. This contrasts with planning for small-scale types of radiological or nuclear emergencies, or for a large-scale nuclear-power-type accident that evolves over many hours or days before radioactivity is released to the environment, such that its effects can be prospectively modeled and analyzed. By the time it is known an attack has occurred, most likely there will have been casualties, all the radioactive material will have been released, plume growth will be progressing, and there will be no time left for evaluating possible countermeasures. This paper offers guidance to planners, first responders, and senior decision makers to assist them in developing strategies for protective actions and operational procedures for the first 48 hours after an explosive radiological dispersal device has been detonated

  17. Evidence of children's vulnerability to radiation in the context of radiological/nuclear events and considerations for emergency response.

    Science.gov (United States)

    Lane, Rachel; Reinhardt, Pascale; Thompson, Patsy

    2010-11-01

    International organisations, such as International Atomic Energy Agency, United Nations Scientific Committee on the Effects of Atomic Radiation and World Health Organisation, together with committees of experts such as Biological Effects of Ionising Radiation and Committee on Medical Aspects of Radiation in the Environment, have assessed the effects of radiation on large exposed populations (Chernobyl accident, and Hiroshima/Nagasaki atomic bombings) and on nuclear energy workers and people living near nuclear facilities. Childhood and in utero exposure to moderate and high levels of ionizing radiation, such as those experienced during the atomic bombings of Japan, or from radiotherapy, is an established cause of leukaemia and solid cancer. There is no evidence of increase in solid cancers (excluding thyroid cancer) or leukaemia in the children from Chernobyl, and no evident link between worker's exposure to radiation and leukaemia in their offspring or with the presence of leukaemia clusters around nuclear power plants. It has also not been possible to demonstrate the evidence of radiation hereditary effects in human populations. In accordance with international guidance, Canadian Nuclear Safety Commission recommends optimisation of protection strategies to reduce doses to children. The development of credible radiological/nuclear event scenarios would assist in identifying probable sources of radioactivity and pathways of exposure for children. Such scenarios should then be used to identify protection strategies appropriate for children.

  18. Emergency response strategies

    International Nuclear Information System (INIS)

    Carrilo, D.; Dias de la Cruz, F.

    1984-01-01

    In the present study is estimated, on the basis of a release category (PWR4) and several accident scenarios previously set up, the emergency response efficacy obtained in the application of different response strategies on each of the above mentioned scenarios. The studied strategies contemplate the following protective measures: evacuation, shelter and relocation. The radiological response has been obtained by means of CRAC2 (Calculation of Reactor Accident Consequences) code, and calculated in terms of absorbed dose equivalent (Whole body and thyroid), as well as early and latent biological effects. (author)

  19. The development of Operational Intervention Levels (OILs) for Soils - A decision support tool in nuclear and radiological emergency response

    Science.gov (United States)

    Lee Zhi Yi, Amelia; Dercon, Gerd; Blackburn, Carl; Kheng, Heng Lee

    2017-04-01

    decision making in agricultural sites: (2) creating a system that is adaptable to different countries, and; (3) developing a framework to calculate default values of OILs for Soils for application during an emergency. The OILs for Soils reference levels are calculated using a mathematical model. Empirical equations, paired with radionuclide data (e.g. Cs-134, Cs-137 and I-131) from the ICRU 53 report, are utilized to determine soil contamination from aerial monitoring air dose rate data. Modelling allows soil contamination values to be readily approximated and this is used to prioritize soil and food sampling sites. Reference levels are based on a model that considers radionuclide transfer factors for up-take into plants, soil density, and soil sampling depth. Decision actions for determined reference levels are suggested for processed foods, animal products, animal feed and crop products (including plants at the growing stage, mature stage, fallow farmland, and forestry products). With these steps, OILs for Soils provide practical guidance that will equip authorities to respond efficiently and help maintain the safety of the food supply during large-scale nuclear or radiological emergency situations.

  20. Radiological Risk Assessment for King County Wastewater Treatment Division

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2005-08-05

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or

  1. Radiological Instrumentation Assessment for King County Wastewater Treatment Division

    International Nuclear Information System (INIS)

    Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

    2005-01-01

    The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include 'dirty bombs' that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides (1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; (2) monitoring at strategic locations within the plant, including (2a) the pipe beyond the hydraulic ram in the bar screen room; (2b) above the collection funnels in the fine grit facility; (2c) in the sampling tank in the raw sewage pump room; and (2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios

  2. Evaluation of the nuclear and radiological emergency response system in Brazil; Visao critica do sistema de atendimento a emergencia radiologica e nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Julio J.S.; Azevedo, Eduardo M.; Knoefel, Tom M.J. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1997-12-31

    Brazilian Nuclear Energy Commission (CNEN) has made outstanding efforts to improve its nuclear and radiological accident response system since the tragic accident in Goiania, Brazil. Most of these efforts are related to nuclear emergency although radiological accidents are also considered. Several topics are discussed involving those related to planning and preparedness. Some deficiencies that need to be corrected or improved are pointed out 8 refs.

  3. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 4. Radiological emergency response planning for nuclear power plants in California

    International Nuclear Information System (INIS)

    Yen, W.W.S.

    1977-01-01

    This report reviews the state of emergency response planning for nuclear power plants in California. Attention is given to the role of Federal agencies, particularly the Nuclear Regulatory Commission, in planning for both on and off site emergency measures and to the role of State and local agencies for off site planning. The relationship between these various authorities is considered. Existing emergency plans for nuclear power plants operating or being constructed in California are summarized. The developing role of the California Energy Resources Conservation and Development Commission is examined

  4. Emergency response workers workshop

    International Nuclear Information System (INIS)

    Agapeev, S.A.; Glukhikh, E.N.; Tyurin, R.L.

    2012-01-01

    A training workshop entitled Current issues and potential improvements in Rosatom Corporation emergency prevention and response system was held in May-June, 2012. The workshop combined theoretical training with full-scale practical exercise that demonstrated the existing innovative capabilities for radiation reconnaissance, diving equipment and robotics, aircraft, emergency response and rescue hardware and machinery. This paper describes the activities carried out during the workshop [ru

  5. Dangerous goods emergency response

    International Nuclear Information System (INIS)

    Price, K.

    1991-01-01

    This paper reports on a general overview of the State of Western Australia including: the legal framework of the Dangerous Goods and Emergency response management scenarios (which consist mainly of fuel products such as LP gas); particular problems unique to the Western Australian environment; what has been done to overcome those problems. Western Australia has an area of about two and a half million square kilometers. The demography of the State is such that the population is concentrated in the south-west corner of the State with isolated pockets, mainly associated with mineral development but also associated with agriculture, scattered throughout the State

  6. Wind emergency response system

    International Nuclear Information System (INIS)

    Garrett, A.J.; Buckner, M.R.; Mueller, R.A.

    1981-01-01

    The WIND system is an automated emergency response system for real-time predictions of the consequences of liquid and airborne releases from SRP. The system consists of a minicomputer and associated peripherals necessary for acquisition and handling of large amounts of meteorological data from a local tower network and the National Weather Service. The minicomputer uses these data and several predictive models to assess the impact of accidental releases. The system is fast and easy to use, and output is displayed both in tabular form and as trajectory map plots for quick interpretation. The rapid response capabilities of the WIND system have been demonstrated in support of SRP operations

  7. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  8. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  9. Emergency response planning in Pennsylvania

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1988-01-01

    In the decade since the accident at Three Mile Island, emergency planning for response to these events has undergone a significant change in Pennsylvania, as elsewhere. Changes respond to federal guidance and to state agency initiatives. The most singular change is the practice of implementing a protective action throughout the entire emergency planning zone (EPZ). Due to Pennsylvania agency experiences during the accident, the decision was made soon after to develop a staff of nuclear engineers, each giving special day-to-day attention to a specific nuclear power station in the state. Changes in communications capabilities are significant, these being dedicated phone lines between the Commonwealth and each power station, and the reorientation of the Department of Environmental Resources radio network to accommodate direction of field monitoring teams from Harrisburg. Changes that are being or will be implemented in the near future include assessing the emergency response data system for electronic delivery of plant parameter data form facilities during accidents, increased participation in exercises, emergency medical planning, and training, the inclusion of all 67 counties in Pennsylvania in an ingestion EPZ, and the gradual severance of dependence on land-line emergency communication systems

  10. Emergency Response Guideline Development

    International Nuclear Information System (INIS)

    Gary D Storrick

    2007-01-01

    Task 5 of the collaborative effort between ORNL, Brazil, and Westinghouse for the International Nuclear Energy Research Initiative entitled 'Development of Advanced Instrumentation and Control for an Integrated Primary System Reactor' focuses on operator control and protection system interaction, with particular emphasis on developing emergency response guidelines (ERGs). As in the earlier tasks, we will use the IRIS plant as a specific example of an integrated primary system reactor (IPSR) design. The present state of the IRIS plant design--specifically, the lack of a detailed secondary system design--precludes establishing detailed emergency procedures at this time. However, we can create a structure for their eventual development. This report summarizes our progress to date. Section 1.2 describes the scope of this effort. Section 2 compares IPSR ERG development to the recent AP1000 effort, and identifies three key plant differences that affect the ERGs and control room designs. The next three sections investigate these differences in more detail. Section 3 reviews the IRIS Safety-by-Design philosophy and its impact on the ERGs. Section 4 looks at differences between the IRIS and traditional loop PWR I and C Systems, and considers their implications for both control room design and ERG development. Section 5 examines the implications of having one operating staff control multiple reactor units. Section 6 provides sample IRIS emergency operating procedures (EOPs). Section 7 summarizes our conclusions

  11. Technical information management in an emergency response

    International Nuclear Information System (INIS)

    Berry, H.A.; Greve, C.; Best, R.G.; Phillipson, D.S.

    1991-01-01

    Through many experiences in responding to real radiation accidents and emergency response exercises, the Department of Energy (DOE) has developed a technical information management system that will be used in the Federal Radiological Monitoring and Assessment Center (FRMAC) in the event of a major radiological accident. The core of the system is the Data Center in the FRMAC, utilizing a computerized database of all off-site environmental radiological data. The information contained and managed by the Data Center will be comprehensive, accountable, and traceable, providing information to the assessors for immediate health and safety needs as well as for long-term documentation requirements. A DOE task force has been formed to develop compatibility guidelines for video, automated data processing, and communication systems. An electronic mail, information status, and bulletin board system is also being developed to assist in the dissemination of information. Geographic Information Systems (GIS) offer a giant step forward in displaying and analyzing information in a geographically referenced system

  12. Transport accident emergency response plan

    International Nuclear Information System (INIS)

    Vallette-Fontaine, M.; Frantz, P.

    1998-01-01

    To comply with the IAEA recommendations for the implementation of an Emergency Response Plan as described in Safety Series 87, Transnucleaire, a company deeply involved in the road and rail transports of the fuel cycle, masters means of Emergency Response in the event of a transport accident. This paper aims at analyzing the solutions adopted for the implementation of an Emergency Response Plan and the development of a technical support and adapted means for the recovery of heavy packagings. (authors)

  13. Radiology

    International Nuclear Information System (INIS)

    Bigot, J.M.; Moreau, J.F.; Nahum, H.; Bellet, M.

    1990-01-01

    The 17th International Congress of Radiology was conducted in two separate scientific sessions, one for radiodiagnosis and one for radiation oncology. Topics covered are: Radiobiology -radioprotection; imaging and data processing; contrast media; MRI; nuclear medicine; radiology and disasters; radiology of tropical diseases; cardiovascular radiology; interventional radiology; imaging of trauma; imaging of chest, gastro-intestinal tract, breast and genito-urinary tract; imaging in gynecology;imaging in oncology; bone and joint radiology; head and neck-radiology; neuro-radiology. (H.W.). refs.; fig.; tabs

  14. Radiological survey of the inactive uranium-mill tailings at the Spook site, Converse County, Wyoming

    International Nuclear Information System (INIS)

    Haywood, F.F.; Christian, D.J.; Chou, K.D.; Ellis, B.S.; Lorenzo, D.; Shinpaugh, W.H.

    1980-05-01

    Results of a radiological survey performed at the Spook site in Converse County, Wyoming, in June 1976, are presented. The mill at this site was located a short distance from the open-pit mine where the ore was obtained and where part of the tailings was dumped into the mine. Several piles of overburden or low-grade ore in the vicinity were included in the measurements of above-ground gamma exposure rate. The average exposure rate over these piles varied from 14 μR/hr, the average background exposure rate for the area, to 140 μR/hr. The average exposure rate for the tailings and former mill area was 220 μR/hr. Movement of tailings particles down dry washes was evident. The calculated concentration of 226 Ra in ten holes as a function of depth is presented graphically

  15. Hazardous Materials Management and Emergency Response (HAMMER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Federal Training Center is a safety and emergency response training center that offers...

  16. SICOEM: emergency response data system

    International Nuclear Information System (INIS)

    Martin, A.; Villota, C.; Francia, L.

    1993-01-01

    The main characteristics of the SICOEM emergency response system are: -direct electronic redundant transmission of certain operational parameters and plant status informations from the plant process computer to a computer at the Regulatory Body site, - the system will be used in emergency situations, -SICOEM is not considered as a safety class system. 1 fig

  17. SICOEM: emergency response data system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Villota, C.; Francia, L. (UNESA, Madrid (Spain))

    1993-01-01

    The main characteristics of the SICOEM emergency response system are: -direct electronic redundant transmission of certain operational parameters and plant status informations from the plant process computer to a computer at the Regulatory Body site, - the system will be used in emergency situations, -SICOEM is not considered as a safety class system. 1 fig.

  18. Radiology

    International Nuclear Information System (INIS)

    Edholm, P.R.

    1990-01-01

    This is a report describing diagnostic techniques used in radiology. It describes the equipment necessary for, and the operation of a radiological department. Also is described the standard methods used in radiodiagnosis. (K.A.E.)

  19. An aerial radiological survey of the Salmon Site and surrounding area, Lamar County, Mississippi

    International Nuclear Information System (INIS)

    Kernan, W.J.

    1994-05-01

    An aerial radiological survey was conducted over the former Atomic Energy Commission Test Site at the Salmon Site and surrounding area between April 20 and May 1, 1992. The Salmon Site is located in Lamar County, Mississippi, approximately 20 miles southwest of Hattiesburg, Mississippi. The purpose of the survey was to measure and document the gamma-ray environment of the Salmon Site and adjacent lands. A contour map showing gamma radiation exposure rates at 1 meter above ground level was constructed from the aerial data and overlaid on a rectified aerial photograph of the area. The exposure rates within the area are between 5 and 8 μR/h. The reported exposure rates include a cosmic-ray contribution estimated to be 3.7 μR/h. Radionuclide assays of soil samples and in situ measurements, taken with a pressurized ion chamber and a high-purity germanium detector, were obtained at 4 locations within the survey boundaries. These measurements were taken in support of and are in agreement with the aerial data

  20. SRNL EMERGENCY RESPONSE CAPABILITY FOR ATMOSPHERIC CONTAMINANT RELEASES

    International Nuclear Information System (INIS)

    Koffman, L; Chuck Hunter, C; Robert Buckley, R; Robert Addis, R

    2006-01-01

    Emergency response to an atmospheric release of chemical or radiological contamination is enhanced when plume predictions, field measurements, and real-time weather information are integrated into a geospatial framework. The Weather Information and Display (WIND) System at Savannah River National Laboratory (SRNL) utilizes such an integrated framework. The rapid availability of predictions from a suite of atmospheric transport models within this geospatial framework has proven to be of great value to decision makers during an emergency involving an atmospheric contaminant release

  1. Combining internet technology and mobile phones for emergency response management

    International Nuclear Information System (INIS)

    Palsson, S.E.

    2002-12-01

    The report is intended for persons involved in radiological emergency response management. An introduction is given to the technical basis of the mobile Internet and ongoing development summarised. Examples are given describing how mobile Internet technology has been used to improve monitoring media coverage of incidents and events, and a test is described where web based information was selectively processed and made available to WAP enabled mobile phones. The report concludes with recommendations stressing the need for following mobile Internet developments and taking them into account when designing web applications for radiological response management. Doing so can make web based material accessible to mobile devices at minimal additional cost. (au)

  2. Radiology

    International Nuclear Information System (INIS)

    Sykora, A.

    2006-01-01

    In this text-book basic knowledge about radiology, biomedical diagnostic methods (radiography, computer tomography), nuclear medicine and safety and radiation protection of personnel on the radiodiagnostic place of work are presented

  3. Towards accurate emergency response behavior

    International Nuclear Information System (INIS)

    Sargent, T.O.

    1981-01-01

    Nuclear reactor operator emergency response behavior has persisted as a training problem through lack of information. The industry needs an accurate definition of operator behavior in adverse stress conditions, and training methods which will produce the desired behavior. Newly assembled information from fifty years of research into human behavior in both high and low stress provides a more accurate definition of appropriate operator response, and supports training methods which will produce the needed control room behavior. The research indicates that operator response in emergencies is divided into two modes, conditioned behavior and knowledge based behavior. Methods which assure accurate conditioned behavior, and provide for the recovery of knowledge based behavior, are described in detail

  4. Preparing a laboratory for radioanalytical emergency response

    International Nuclear Information System (INIS)

    Bennett, J.; Webb, C.J.; Isch, S.

    2011-01-01

    As the state of the nation's ability to respond to a radiological event is examined, it has become apparent that both capacity and capability are lacking. Department of Homeland Security National Planning Scenario 11 is designed to address the planning activities for the response to an attack using radiological dispersal devices. The scenario details show that the cleanup activity will take several years, and that there will be between 360 000 and 1 000 000 environmental samples in the first year. Based on existing capacity and capabilities it would take four to six years to analyze the samples generated at the lower end of the sample range. The Environmental Protection Agency (EPA) has been given responsibility for the remediation activities following a radiological event, and has awarded cooperative agreements to several laboratories to start the process of developing capacity and capabilities. The Connecticut Department of Public Health Laboratory (DPHL) was awarded one of the cooperative agreements. The DPHL has started activities to further those goals by investigating and implementing procedures to ensure that samples with activity higher than normal background can be processed safely, as well as implementing more rapid methods for radiochemical analysis. The DPHL already served as the primacy radiochemistry laboratory for several New England states and thus had a solid foundation to build upon. The DPHL has taken a process flow approach in preparing for radiological emergency response and recommends that radioanalytical laboratories that are reviewing their roles in such a response: - Ensure that their Nuclear Regulatory Commission licenses allow for appropriate radioisotope types and activities; - Develop procedures and processes to ensure that samples with higher activities can be processed safely, with due regard for sample screening and aliquanting samples; - Provide for enhanced radioanalytical contamination control, with careful consideration of sample

  5. The Brazilian emergency response system

    International Nuclear Information System (INIS)

    Santos, Raul dos

    1997-01-01

    With the objective of improving the response actions to potential or real emergency situations generated by radiological or nuclear accidents, the Brazilian National Nuclear Energy Commission (CNEN) installed an integrated response system on a 24 hours basis. All the natiowide notifications on events that may start an emergency situation are converged to this system. Established since July 1990, this system has received around 300 notifications in which 5% were classified as potential emergency situation. (author)

  6. Radiology

    International Nuclear Information System (INIS)

    Meyers, M.A.

    1989-01-01

    This paper reports on disease processes originating within the alimentary tract, may extend through the extraperitoneal spaces, and abnormalities primarily arising within other extraperitoneal sites may significantly affect the bowel. Symptoms and signs may be obscure, delayed, or nonspecific, and the area is generally not accessible to auscultation, palpation, or percussion. Radiologic evaluation thus plays a critical role

  7. Emergency response planning in hospitals, United States: 2003-2004.

    Science.gov (United States)

    Niska, Richard W; Burt, Catharine W

    2007-08-20

    This study presents baseline data to determine which hospital characteristics are associated with preparedness for terrorism and natural disaster in the areas of emergency response planning and availability of equipment and specialized care units. Information from the Bioterrorism and Mass Casualty Preparedness Supplements to the 2003 and 2004 National Hospital Ambulatory Medical Care Surveys was used to provide national estimates of variations in hospital emergency response plans and resources by residency and medical school affiliation, hospital size, ownership, metropolitan statistical area status, and Joint Commission accreditation. Of 874 sampled hospitals with emergency or outpatient departments, 739 responded for an 84.6 percent response rate. Estimates are presented with 95 percent confidence intervals. About 92 percent of hospitals had revised their emergency response plans since September 11, 2001, but only about 63 percent had addressed natural disasters and biological, chemical, radiological, and explosive terrorism in those plans. Only about 9 percent of hospitals had provided for all 10 of the response plan components studied. Hospitals had a mean of about 14 personal protective suits, 21 critical care beds, 12 mechanical ventilators, 7 negative pressure isolation rooms, and 2 decontamination showers each. Hospital bed capacity was the factor most consistently associated with emergency response planning and availability of resources.

  8. Elements of a national emergency response system for nuclear accidents

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1987-01-01

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises

  9. Ontario Power Generation Fukushima emergency response drill strengthens and lessons learned - Ontario Power Generation Fukushima Emergency Response Drill Highlights

    International Nuclear Information System (INIS)

    Miller, David W.

    2014-01-01

    Japan's Fukushima Daiichi severe nuclear accident in March 2011 has resulted in a reassessment of nuclear emergency response and preparedness in Canada. On May 26, 27 and 28, 2014 Ontario Power Generation (OPG) conducted the first North American full scale nuclear emergency response exercise designed to include regional, provincial and federal bodies as well as the utility. This paper describes the radiological aspects of the OPG Exercise Unified Response (ExUR) with emphasis on deployment of new Fukushima equipment on the Darlington site, management of emergency workers deplored in the vicinity of Darlington to collect environmental samples and radiation measurements, performance of dose calculations, communication of dose projections and protective actions to local, provincial and federal agencies and conduct of vehicle, truck and personnel monitoring and decontamination facilities. The ExUR involved more than 1000 personnel from local, provincial and federal bodies. Also, 200 OPG employees participated in the off-site emergency response duties. The objective of the ExUR was to test and enhance the preparedness of the utility (OPG), government and non-government agencies and communities to respond to a nuclear emergency. The types of radiological instrumentation and mobile facilities employed are highlighted in the presentation. The establishment of temporary emergency rooms with 8 beds and treatment facilities to manage potentially contaminated injuries from the nuclear emergency is also described. (author)

  10. Adaptive workflow simulation of emergency response

    NARCIS (Netherlands)

    Bruinsma, Guido Wybe Jan

    2010-01-01

    Recent incidents and major training exercises in and outside the Netherlands have persistently shown that not having or not sharing information during emergency response are major sources of emergency response inefficiency and error, and affect incident mitigation outcomes through workflow planning

  11. An expert system for improving nuclear emergency response

    International Nuclear Information System (INIS)

    Salame-Alfie, A.; Goldbogen, G.C.; Ryan, R.M.; Wallace, W.A.; Yeater, M.L.

    1987-01-01

    The accidents at TMI-2 and Chernobyl have produced initiatives aimed at improving nuclear plant emergency response capabilities. Among them are the development of emergency response facilities with capabilities for the acquisition, processing, and diagnosis of data which are needed to help coordinate plant operations, engineering support and management under emergency conditions. An effort in this direction prompted the development of an expert system. EP (EMERGENCY PLANNER) is a prototype expert system that is intended to help coordinate the overall management during emergency conditions. The EP system was built using the GEN-X expert system shell. GEN-X has a variety of knowledge representation mechanisms including AND/OR trees, Decision trees, and IF/THEN tables, and runs on an IBM PC-XT or AT computer or compatible. Among the main features, EP is portable, modular, user friendly, can interact with external programs and interrogate data bases. The knowledge base is made of New York State (NYS) Procedures for Emergency Classification, NYS Radiological Emergency Preparedness Plan (REPP) and knowledge from experts of the NYS Radiological Emergency Preparedness Group and the Office of Radiological Health and Chemistry of the New York Power Authority (NYPA)

  12. Radiology

    International Nuclear Information System (INIS)

    Lissner, J.

    1985-01-01

    Diagnostic radiology is still the foremost of all innovative medical disciplines. This has many advantages but also some handicaps, e.g. the siting problem of medical equipment whose clinical potential is not fully known. This applies in particular to nuclear spin tomography, where the Laender governments and the Scientific Council seen to agree that all universities should have the appropriate equipment as soon as possible in order to intensify interdisciplinary research. Formerly, in the case of computerized tomography, there was less readiness. As a result, the siting of CT equipment is less organically structured. A special handicap of innovative fields is the problem of training and advanced training. The Chamber of Medicine and the Association of Doctors Participating in the Health Insurance Plan have issued regulations aimed at a better standardisation in this field. (orig.) [de

  13. Land Transport Emergency Response Technology Report

    International Nuclear Information System (INIS)

    DOTSON, LORI J.; PIERCE, JIM D.

    2003-01-01

    Sandia National Laboratories was tasked by the Japan Nuclear Cycle Development Institute (JNC) to provide assistance in developing an emergency response plan for radioactive material transportation activities. Those tasks included compiling radioactive materials (RAM) transportation accident data FR-om the open literature and databases, investigating emergency response plans for radioactive materials transport in the United States, and developing specific recommendations for the JNC' nuclear material transport emergency response plan, based on information gathered during the first two tasks. These recommendations include developing a RAM database, a public transparency Internet website, an emergency response inFR-astructure designed specifically for transportation needs, and a clear set of directives to provide authority in the case of transportation accidents or incidents involving RAM

  14. Hazardous materials transportation and emergency response programs

    International Nuclear Information System (INIS)

    Joy, D.S.; Fore, C.S.

    1983-01-01

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY)

  15. A Tactical Emergency Response Management System (Terms ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... information is a result of collaboration between accident response personnel. ... Tactical Emergency Response Management System (TERMS) which unifies all these different ... purpose of handling crisis and emergency.

  16. Establishing a mobile automatic monitoring station for emergency response

    International Nuclear Information System (INIS)

    Fang, Hsin-Fa

    2008-01-01

    Full text: A radiological/nuclear emergency event may cause environmental contamination. The emergency response works always need to plan an environmental survey programme incorporating the assessment results to see what is happening. The places where are assessed to have the highest radioactive contamination/radiation dose will catch more concern and need continuous monitoring. It will cause unnecessary dangers and dose to command that personnel conduct surveying in such places when the radiological/nuclear accident become more severe. A mobile automatic monitoring station has been established for emergency response by INER (Institute of Nuclear Energy Research) to solve the problem practically. The monitoring station involves a HPIC to monitor radiation dose, an anemometer to monitor wind speed and direction, a GPS to get position data, a GPRS/3G communication module to send monitoring and positioning data to the monitoring centre where can show the monitoring result directly on a map shown on the computer. These instruments are integrated in a trailer easy to be towed to the place need to be monitored. The electric power of the station is supplied by s a solar power energy system. It can supply the station working at least 10 days without extra electric power supply designed based on the expected time length of a nuclear power plant event. The HPIC is very sensitive and stable that can discriminate a 10 nSv/hr increasing of dose rate with the monitoring time period every ten seconds. Where the radiological dispersion device events happened is not predictable, it is difficult to get suitable wind monitoring data to assess the result of radiological dispersion device events. The anemometer added on the station can provide the real time wind monitoring data to help assessment works. (author)

  17. Report to Congress on status of emergency response planning for nuclear power plants

    International Nuclear Information System (INIS)

    1981-03-01

    This report responds to a request (Public Law 96-295, Section 109) for the Nuclear Regulatory Commission (NRC) to report to Congress on the status of emergency response planning in support of nuclear power reactors. The report includes information on the status of this planning as well as on the Commission actions relating to emergency preparedness. These actions include a summary of the new regulatory requirements and the preliminary results of two comprehensive Evacuation Time Estimate studies; one requested by the NRC including 50 nuclear power plant sites and one conducted by the Federal Emergency Management Agency (FEMA) for 12 high population density sites. FEMA provided the information in this report on the status of State and local planning, including projected schedules for joint State/county/licensee emergency preparedness exercises. Included as Appendicies are the NRC Emergency Planning Final Regulations, 10 CFR Part 50 (45 FR 55402), the FEMA Proposed Rule, 'Review and Approval of State and Local Radiological Emergency Plans and Preparedness', 44 CFR Part 350 (45 FR 42341) and the NRC/FEMA Memorandums of Understanding

  18. Epidemiological and radiological study of skeletal fluorosis of Minzhu Town, Longli County, Guizhou Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.S.; Duan, R.X.; Wang, S.Q.; He, G.Y.; Li, P.; Nie, Z.X.; Wen, T.G. [Guizhou Province Health and Antiepidemiology Station, Guiyang (China)

    1999-05-01

    A study was carried out on an area of endemic fluorosis based on the relation between detection rate or incidence, classification and severity of skeletal fluorosis, and sex-age distribution. The results show that Minzhu Town of Longli County is a moderate and typical epidemic area of endemic fluorosis resulting from coal-burning pollution in Guizhou Province, China. Five features characterize the skeletal fluorosis of the residents: Osteosclerosis is significantly more prevalent than osteoporosis; no mixed type of skeletal fluorosis and no osteomalacia were found in the subjects examined; no cases with moderate or severe osteoporosis were found; the severity of osteosclerosis in females was significantly milder than in males; and the rate of osteoporosis caused by fluoride in females showed no difference from that in males. These observations provide new parameters for assessing collective conditions of epidemic regions of endemic fluorosis resulting from coal-burning pollution.

  19. Using risk based tools in emergency response

    International Nuclear Information System (INIS)

    Dixon, B.W.; Ferns, K.G.

    1987-01-01

    Probabilistic Risk Assessment (PRA) techniques are used by the nuclear industry to model the potential response of a reactor subjected to unusual conditions. The knowledge contained in these models can aid in emergency response decision making. This paper presents requirements for a PRA based emergency response support system to date. A brief discussion of published work provides background for a detailed description of recent developments. A rapid deep assessment capability for specific portions of full plant models is presented. The program uses a screening rule base to control search space expansion in a combinational algorithm

  20. Aerial radiological survey of the La Salle County Station and surrounding area, Seneca, Illinois. Date of survey: July 1981

    International Nuclear Information System (INIS)

    Hobaugh, J.L.

    1982-06-01

    An aerial radiological survey was performed from 14 to 31 July 1981 over a 270-square-kilometer area centered on the La Salle County Station near Seneca, Illinois. The survey was conducted by EG and G for the US Nuclear Regulatory Commission. All gamma ray data were collected by flying lines spaced 152 meters (500 ft) apart at an altitude of 91 meters (300 ft) above ground level. Processed data showed that all gamma rays detected within the survey area were those expected from naturally occurring background emitters. Count rates obtained from the aerial platform were converted to exposure rates at 1 meter above the ground and are presented in the form of an isoradiation contour map. The observed exposure rates for the survey area were between 5 and 14 microroentgens per hour (μR/h), with most of the area ranging from 8 to 14 μR/h. The exposure rate obtained from soil samples taken from within the survey site displayed positive agreement with the aerial data

  1. Summary of data concerning radiological contamination at well PM-2, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Russell, G.M.; Locke, G.L.

    1997-01-01

    Analysis of water from well Pahute Mesa No. 2 (PM-2), on Pahute Mesa in the extreme northwestern part of the Nevada Test Site, indicated tritium concentrations above background levels in August 1993. A coordinated investigation of the tritium occurrence in well PM-2 was undertaken by the Hydrologic Resources Management Program of the US Department of Energy. Geologic and hydrologic properties of the hydrogeologic units were characterized using existing information. Soil around the well and water quality in the well were characterized during the investigation. The purpose of this report is to present existing information and results from a coordinated investigation of tritium occurrence. The objectives of the overall investigation include: (1) determination of the type and concentration of contamination; (2) identification of the source and mechanism of contamination; (3) estimation of the extent of radiological contamination; (4) initiation of appropriate monitoring of the contamination; and (5) reporting of investigation results. Compiled and tabulated data of the area are presented. The report also includes characterization of geology, soil, hydrology, and water quality data

  2. Collaborative situational mapping during emergency response

    NARCIS (Netherlands)

    Gunawan, L.T.; Oomes, A.H.J.; Neerincx, M.; Brinkman, W.-P.; Alers, H.

    2009-01-01

    During emergency response, individuals observe only part of the picture, sharing of information is needed to get the required complete picture. The aim of our study is to get insight in the collaborative mapping process in order to derive requirements for a map-sharing tool. First, we analyzed the

  3. Development of supporting system for emergency response to maritime transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    Odano, N.; Matsuoka, T.; Suzuki, H.

    2004-01-01

    National Maritime Research Institute has developed a supporting system for emergency response of competent authority to maritime transport accidents involving radioactive material. The supporting system for emergency response has functions of radiation shielding calculation, marine diffusion simulation, air diffusion simulation and radiological impact evaluation to grasp potential hazard of radiation. Loss of shielding performance accident and loss of sealing ability accident were postulated and impact of the accidents was evaluated based on the postulated accident scenario. Procedures for responding to emergency were examined by the present simulation results

  4. Emergency Response to Radioactive Material Transport Accidents

    International Nuclear Information System (INIS)

    EL-shinawy, R.M.K.

    2009-01-01

    Although transport regulations issued by IAEA is providing a high degree of safety during transport opertions,transport accidents involving packages containing radioactive material have occurred and will occur at any time. Whenever a transport accident involving radioactive material accurs, and many will pose no radiation safety problems, emergency respnose actioms are meeded to ensure that radiation safety is maintained. In case of transport accident that result in a significant relesae of radioactive material , loss of shielding or loss of criticality control , that consequences should be controlled or mitigated by proper emergency response actions safety guide, Emergency Response Plamming and Prepardness for transport accidents involving radioactive material, was published by IAEA. This guide reflected all requirememts of IAEA, regulations for safe transport of radioactive material this guide provide guidance to the publicauthorites and other interested organziation who are responsible for establishing such emergency arrangements

  5. An emergency response plan for transportation

    International Nuclear Information System (INIS)

    Fontaine, M.V.; Guerel, E.

    2000-01-01

    Transnucleaire is involved in road and rail transport of nuclear fuel cycle materials. To comply with IAEA recommendations, Transnucleaire has to master methods of emergency response in the event of a transport accident. Considering the utmost severe situations, Transnucleaire has studied several cases and focused especially on an accident involving a heavy cask. In France, the sub-prefect of each department is in charge of the organisation of the emergency teams. The sub-prefect may request Transnucleaire to supply experts, organisation, equipment and technical support. The Transnucleaire Emergency Response Plan covers all possible scenarios of land transport accidents and relies on: (i) an organisation ready for emergency situations, (ii) equipment dedicated to intervention, and (iii) training of its own experts and specialised companies. (author)

  6. PHMC post-NPH emergency response training

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1997-01-01

    This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site

  7. CLASSIFICATION OF THE MGR EMERGENCY RESPONSE SYSTEM

    International Nuclear Information System (INIS)

    Zeigler, J.A.

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) emergency response system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  8. Integrated simulation of emergency response in disasters

    International Nuclear Information System (INIS)

    Kanno, Taro; Furuta, Kazuo

    2005-01-01

    An integrated simulation system of emergency response in disasters is under development that can consider various factors of disasters, such as disaster phenomena, activities of response organizations, resident behavior, and their environment. The aim of this system is to provide support for design and assessment of disaster management systems. This paper introduces the conceptual design of the entire system and presents simulators of organizational behavior in nuclear and earthquake disasters. (author)

  9. PHMC post-NPH emergency response training

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1997-04-08

    This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site.

  10. The TransPetro emergency response system

    Energy Technology Data Exchange (ETDEWEB)

    Filho, A.T.F.; Cardoso, V.F.; Carbone, R.; Berardinelli, R.P. [Petrobras-TransPetro, Rio de Janeiro (Brazil); Carvalho, M.T.M.; Casanova, M.A. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil). Dept. de Informatica, TeCGraf

    2004-07-01

    Petrobras-TransPetro developed the TransPetro Emergency Response System in response to emergency situations at large oil pipelines or at terminal facilities located in sea or river harbour areas. The standard of excellence includes full compliance with environmental regulations set by the federal government. A distributed workflow management software called InfoPAE forms the basis of the system in which actions are defined, along with geographic and conventional data. The first prototype of InfoPAE was installed in 1999. Currently it is operational in nearly 80 installations. The basic concepts and functionality of the TransPetro Emergency Response System were outlined in this paper with reference to the mitigative actions that are based on an evaluation of the organization of the emergency teams; the communication procedures; characterization of the installations; definition of accidental scenarios; environmental sensitivity maps; simulation of oil spill trajectories and dispersion behaviour; geographical data of the area surrounding the installations; and, other conventional data related to the installations, including available equipment. The emergency response team can take action as soon as an accident is detected. The action plan involves characterizing several scenarios and delegating mitigative actions to specific sub-teams, each with access to geographic data on the region where the emergency occurred. 13 refs., 3 figs.

  11. Emergency response capabilities developed in the United States to deal with nuclear materials transportation accidents

    International Nuclear Information System (INIS)

    Vandevender, S.G.; Reese, R.T.; Schilling, A.H.

    1980-01-01

    The non-existence of emergency response programs is frequently stated as a reason for restricting the movement of radioactive materials through states or local jurisdictions. Yet, studies discussed here indicate that emergency response capability, while not in the best condition, is getting more money, interest and attention, and in most states response networks exist which could be effective in responding to radiological emergencies. Awareness of such capabilities by the public is an important feature in increasing the public's confidence in the ability of federal, state and local officials in controlling hazards. One aspect of this awareness program could be in broader availability of radioactive emergency techniques for possible first responders to emergencies. This training, public awareness and more emphasis on workable emergency plans will help to assure reliable and workable emergency response plans

  12. Emergency response packaging: A conceptual outline

    International Nuclear Information System (INIS)

    Luna, R.E.; McClure, J.D.; Bennett, P.C.; Wheeler, T.A.

    1992-01-01

    The Packaging and Transportation Needs in the 1990's (PATN) component of the Transportation Assessment and Integration (TRAIN) program (DOE Nov. 1991) was designed to survey United States Department of Energy programs, both ongoing and planned, to identify needs for packaging and transportation services over the next decade. PATN also identified transportation elements that should be developed by the DOE Office of Environmental Restoration and Waste Management (DOE EM) Transportation Management Program (TMP). As a result of the predominant involvement of the TMP in radioactive material shipment issues and DOE EM's involvement with waste management issues, the primary focus of PATN was on waste packaging issues. Pending DOE regulations will formalize federal guidelines and regulations for transportation of hazardous and radioactive materials within the boundaries of DOE reservations and facilities and reflect a growing awareness of concern regarding safety environmental responsibility activities on DOE reservations. Future practices involving the transportation of radioactive material within DOE reservations will closely parallel those used for commercial and governmental transportation across the United States. This has added to the perceived need for emergency recovery packaging and emergency response features on primary packaging, for both on-site shipments and shipments between DOE facilities (off-site). Historically, emergency response and recovery functions of packaging have not been adequately considered in packaging design and construction concepts. This paper develops the rationale for emergency response packaging, including both overpack concepts for repackaging compromised packaging and primary packaging redesign to facilitate the recovery of packages via mobile remote handling equipment. The rationale will examine concepts for determination of likely use patterns to identify types of shipments where recovery packaging may have the most favorable payoff

  13. Post-emergency response resources guide

    International Nuclear Information System (INIS)

    1991-07-01

    On August 28 and September 18, 1990, the States of Louisiana and Mississippi, Gulf States Utilities, five local parishes, six Federal agencies, and the American Nuclear Insurers participated in a post-emergency TABLETOP exercise in Baton Rouge, Louisiana. One of the products developed from that experience is this guide for understanding the responsibilities and obtaining resources for specific needs from the various participants, particularly those organizations within the federal government. This guide should assist state and local government organizations with identifying and obtaining those resources for the post-emergency response when theirs have been exhausted

  14. Contraceptive availability during an emergency response in the United States.

    Science.gov (United States)

    Ellington, Sascha R; Kourtis, Athena P; Curtis, Kathryn M; Tepper, Naomi; Gorman, Susan; Jamieson, Denise J; Zotti, Marianne; Barfield, Wanda

    2013-03-01

    This article provides the evidence for contraceptive need to prevent unintended pregnancy during an emergency response, discusses the most appropriate types of contraceptives for disaster situations, and details the current provisions in place to provide contraceptives during an emergency response.

  15. IAEA emergency response network ERNET. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    2003-04-01

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency have undertaken to co-operate among themselves and with the IAEA in facilitating the prompt provision of assistance in the event of a nuclear accident or radiological emergency, and in minimizing the consequences and in protecting life, property and the environment from the effects of any radioactive releases. As part of the IAEA strategy for supporting such co-operation, the Secretariat of the IAEA is establishing a global Emergency Response Network (ERNET) of teams suitably qualified to respond rapidly, on a regional basis, to nuclear accidents or radiological emergencies. This manual sets out the criteria and requirements to be met by ERNET teams. It is intended for use by institutions in Member States in developing, applying and maintaining their emergency response capabilities and in implementing quality assurance programmes within the context of ERNET. The manual is worded on the assumption that a State Competent Authority designated as the body responsible for reacting to nuclear accidents or radiological emergencies which occur outside the jurisdiction of that State will be the State Contact Point for receiving requests for assistance from the IAEA under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

  16. IAEA emergency response network ERNET. Emergency preparedness and response. Date effective: 1 December 2000

    International Nuclear Information System (INIS)

    2000-12-01

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency have undertaken to co-operate among themselves and with the IAEA in facilitating the prompt provision of assistance in the event of a nuclear accident or radiological emergency, and in minimizing the consequences and in protecting life, property and the environment from the effects of any radioactive releases. As part of the IAEA strategy for supporting such co-operation, the Secretariat of the IAEA is establishing a global Emergency Response Network (ERNET) of teams suitably qualified to respond rapidly, on a regional basis, to nuclear accidents or radiological emergencies. This manual sets out the criteria and requirements to be met by ERNET teams. It is intended for use by institutions in Member States in developing, applying and maintaining their emergency response capabilities and in implementing quality assurance programmes within the context of ERNET. The manual is worded on the assumption that a State Competent Authority designated as the body responsible for reacting to nuclear accidents or radiological emergencies which occur outside the jurisdiction of that State will be the State Contact Point for receiving requests for assistance from the IAEA under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

  17. Basic data of emergency response centre

    International Nuclear Information System (INIS)

    Jenieek, O.

    1995-01-01

    Emergency Response Centre (ERC) of Czech Republic is a highly specialized institution belonging to Nuclear Safety State Administration (SONS), which assures its activities both organizationally and technically. Main function of the ERC in the case of nuclear emergency is to fulfil the needs of SONS, Governmental Committee for Nuclear Emergencies in ER (GCNE ER) and the regional organs of State Authorities concerning the emergency planning and preparedness, evaluation of nuclear emergency consequences, including the emergency management and response. In the case of major failure or accident on NPP, the ERC carries out the performance analysis and review of a given NPP. It also monitors the dosimetric situation and transfers the recommendation to GCNE ER, Regional Emergency Management Committees and to NPP

  18. Gap Assessment in the Emergency Response Community

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Jonathan L.; Burtner, Edwin R.; Pike, William A.; Peddicord, Annie M Boe; Minsk, Brian S.

    2010-09-27

    This report describes a gap analysis of the emergency response and management (EM) community, performed during the fall of 2009. Pacific Northwest National Laboratory (PNNL) undertook this effort to identify potential improvements to the functional domains in EM that could be provided by the application of current or future technology. To perform this domain-based gap analysis, PNNL personnel interviewed subject matter experts (SMEs) across the EM domain; to make certain that the analyses reflected a representative view of the community, the SMEs were from a variety of geographic areas and from various sized communities (urban, suburban, and rural). PNNL personnel also examined recent and relevant after-action reports and U.S. Government Accountability Office reports.

  19. L-007: Objectives preparation and Emergency response

    International Nuclear Information System (INIS)

    2011-01-01

    This lecture explains the preparation and response in a nuclear and radiological emergency. Must be taken into consideration a program of preparedness, the public health and environment protection, propagation of contamination limit, first aid and treatment radiation damage, the stochastic, psychological and physical effects reduction

  20. Radioactive materials transportation emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1987-05-01

    Ontario Hydro transports radioactive material between its nuclear facilities, Atomic Energy of Canada Limited at Chalk River Laboratories and Radiochemical Company in Kanata, on a regular basis. Ontario Hydro also occasionally transports to Whiteshell Laboratories, Hydro-Quebec and New Brunswick Electric Power Commission. Although there are stringent packaging and procedural requirements for these shipments, Ontario Hydro has developed a Radioactive Materials Transportation Emergency Response Plan in the event that there is an accident. The Transportation Emergency Response plan is based on six concepts: 1) the Province id divided into three response areas with each station (Pickering, Darlington, Bruce) having identified response areas; 2) response is activated via a toll-free number. A shift supervisor at Pickering will answer the call, determine the hazards involved from the central shipment log and provide on-line advice to the emergency worker. At the same time he will notify the nearest Ontario Hydro area office to provide initial corporate response, and will request the nearest nuclear station to provide response assistance; 3) all stations have capability in terms of trained personnel and equipment to respond to an accident; 4) all Ontario Hydro shipments are logged with Pickering NGS. Present capability is based on computerized logging with the computer located in the shift office at Pickering to allow quick access to information on the shipment; 5) there is a three tier structure for emergency public information. The local Area Manager is the first Ontario Hydro person at the scene of the accident. The responding facility technical spokesperson is the second line of Corporate presence and the Ontario Hydro Corporate spokesperson is notified in case the accident is a media event; and 6) Ontario Hydro will respond to non-Hydro shipments of radioactive materials in terms of providing assistance, guidance and capability. However, the shipper is responsible

  1. Training programs for emergency response personnel at Hanford

    International Nuclear Information System (INIS)

    Oscarson, E.E.

    1979-01-01

    The Three Mile Island reactor accident has focused attention on emergency planning and preparedness including selection and training of personnel. At Hanford, Pacific Northwest Laboratory (PNL) is in the unique position of providing emergency response personnel, planning, training and equipment not only for its own organization and facilities but also for the Hanford Site in general, as well as the Interagency Radiological Assistance Plan (IRAP) Region 8 Team. Team members are chosen for one or more of the emergency teams based upon professional education and/or experience as well as interest, aptitude and specialized knowledge. Consequently, the initial training orientation of each new team member is not directed toward general professional ability, but rather toward specialized knowledge required to carry out their assigned emergency tasks. Continual training and practice is necessary to maintain the interest and skills for effectively coping with major emergencies. The types of training which are conducted include: tests of emergency systems and/or procedures; drills involving plant employees and/or emergency team members (e.g., activation of emergency notification systems); short training sessions on special topics; and realistic emergency exercises involving the simulation of major accidents wherein the emergency team must solve specific problems on a real time basis

  2. An environmental BeO-OSL dosimeter for emergency response

    International Nuclear Information System (INIS)

    Woda, Clemens; Kaiser, Jan Christian; Urso, Laura; Greiter, Matthias

    2012-01-01

    A conceptual design is presented to use measurements of localized absorbed dose in inner cities for production of high resolution maps of the radioactive contamination following a nuclear emergency or radiological attack. The doses are derived from luminescent detectors pre-fixed at places of high importance (e.g. public squares). For such an environmental dosimeter, BeO is used, which can be read out using optically stimulated luminescence (OSL). A suitable casing of black Perspex has been developed to give a sufficiently accurate estimate of the air kerma value at the detector position. The dosimeter is characterized according to light tightness, dose response and angular photon energy dependence. A short overview of the approach for map production is also given. - Highlights: ► An inexpensive, environmentally stable BeO based OSL dosimeter has been developed for emergency response. ► The detector enables fast readouts and shows highly favorable dosimetric properties. ► A conceptual design is described to produce maps of radioactive contamination from localized dose measurements in urban areas.

  3. An advanced system for environmental emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, James S.; Sullivan, Thomas J. [Lawrence Livermore National Laboratory, Livermore, California (United States)

    2000-05-01

    The Atmospheric Release Advisory Capability, better known as ARAC, is a hybrid system of models, computers, databases, communications and highly skilled staff dedicated to emergency consequence analysis and prediction of atmospheric hazardous material releases. The ARAC system is located at and operated by Lawrence Livermore National Laboratory (in Livermore, California, USA). It's development and operational support for the U.S. government have been funded by the U.S. Departments of Energy and Defense for the purpose of providing real-time, down-wind consequence assessments for emergency responders and managers for radiological and other hazardous releases. This service is available for both fixed facilities and any location in the world whenever and wherever the U.S. government has interest or concern. Over the past 26 years ARAC has provided consequence assessments for more than 160 potential and actual hazardous releases. This capability has been applied to diverse real-world releases such as the 1978 reentry of the COSMOS 954 nuclear powered satellite over Canada, the Three Mile Island and Chernobyl nuclear powerplant accidents, the Tomsk nuclear facility accident in Russia, two radiological accidents at Tokai (Japan) the Algeciras (Spain) melt of a radiotherapy source, and several non-radiological events such as chemical releases, toxic fires including the Kuwait oil fires, and even volcanic ash emissions. (author)

  4. Updating Dosimetry for Emergency Response Dose Projections.

    Science.gov (United States)

    DeCair, Sara

    2016-02-01

    In 2013, the U.S. Environmental Protection Agency (EPA) proposed an update to the 1992 Protective Action Guides (PAG) Manual. The PAG Manual provides guidance to state and local officials planning for radiological emergencies. EPA requested public comment on the proposed revisions, while making them available for interim use by officials faced with an emergency situation. Developed with interagency partners, EPA's proposal incorporates newer dosimetric methods, identifies tools and guidelines developed since the current document was issued, and extends the scope of the PAGs to all significant radiological incidents, including radiological dispersal devices or improvised nuclear devices. In order to best serve the emergency management community, scientific policy direction had to be set on how to use International Commission on Radiological Protection Publication 60 age groups in dose assessment when implementing emergency guidelines. Certain guidelines that lend themselves to different PAGs for different subpopulations are the PAGs for potassium iodide (KI), food, and water. These guidelines provide age-specific recommendations because of the radiosensitivity of the thyroid and young children with respect to ingestion and inhalation doses in particular. Taking protective actions like using KI, avoiding certain foods or using alternative sources of drinking water can be relatively simple to implement by the parents of young children. Clear public messages can convey which age groups should take which action, unlike how an evacuation or relocation order should apply to entire households or neighborhoods. New in the PAG Manual is planning guidance for the late phase of an incident, after the situation is stabilized and efforts turn toward recovery. Because the late phase can take years to complete, decision makers are faced with managing public exposures in areas not fully remediated. The proposal includes quick-reference operational guidelines to inform re-entry to

  5. Global approach of emergency response, reflection analysis

    International Nuclear Information System (INIS)

    Velasco Garcia, E.; Garcia Ahumada, F.; Albaladejo Vidal, S.

    1998-01-01

    The emergency response management approach must be dealt with adequately within company strategy, since a badly managed emergency situation can adversely affect a company, not only in terms of asset, but also in terms of the negative impact on its credibility, profitability and image. Thereby, it can be said that there are three main supports to manage the response in an emergency situation. a) Diagnosis b) Prognosis. c) Communications. To reach these capabilities it is necessary a co-ordination of different actions at the following levels. i. Facility Operation implies Local level. ii. Facility Property implies National level iii. Local Authority implies Local level iv. National Authority implies National level Taking into account all the last, these following functions must be covered: a) Management: incorporating communication, diagnosis and prognosis areas. b) Decision: incorporating communication and information means. c) Services: in order to facilitate the decision, as well as the execution of this decision. d) Analysis: in order to facilitate the situations that make easier to decide. e) Documentation: to seek the information for the analysts and decision makers. (Author)

  6. Emergency Response Data System (ERDS) implementation

    International Nuclear Information System (INIS)

    Jolicoeur, J.

    1990-04-01

    The US Nuclear Regulatory Commission has begun implementation of the Emergency Response Data System (ERDS) to upgrade its ability to acquire data from nuclear power plants in the event of an emergency at the plant. ERDS provides a direct real-time transfer of data from licensee plant computers to the NRC Operations Center. The system has been designed to be activated by the licensee during an emergency which has been classified at an ALERT or higher level. The NRC portion of ERDS will receive the data stream, sort and file the data. The users will include the NRC Operations Center, the NRC Regional Office of the affected plant, and if requested the States which are within the ten mile EPZ of the site. The currently installed Emergency Notification System will be used to supplement ERDS data. This report provides the minimum guidance for implementation of ERDS at licensee sites. It is intended to be used for planning implementation under the current voluntary program as well as for providing the minimum standards for implementing the proposed ERDS rule

  7. Emergency Response Data System (ERDS) implementation

    International Nuclear Information System (INIS)

    Jolicoeur, J.

    1991-06-01

    The US Nuclear Regulatory Commission has begun implementation of the Emergency Response Data System (ERDS) to upgrade its ability to acquire data from nuclear power plants in the event of an emergency at the plant. ERDS provides a direct real-time transfer of data from licensee plant computers to the NRC Operations Center. The system has been designed to be activated by the licensee during an emergency which has been classified at an ALERT or higher level. The NRC portion of ERDS will receive the data stream, sort and file the data. The users will include the NRC Operations Center, the NRC Regional Office of the affected plant, and if requested the States which are within the ten mile EPZ of the site. The currently installed Emergency Notification System will be used to supplement ERDS data. This report provides the minimum guidance for implementation of ERDS at licensee sites. It is intended to be used for planning implementation under the current voluntary program as well as for providing the minimum standards for implementing the proposed ERDS rule. 4 refs., 3 figs

  8. Development of a Rapidly Deployed Department of Energy Emergency Response Element

    International Nuclear Information System (INIS)

    Riland, C.A.; Hopkins, R.C.; Tighe, R.J.

    1999-01-01

    The Federal Radiological Emergency Response Plan (FRERP) directs the Department of Energy (DOE) to maintain a viable, timely, and fully documented response option capable of supporting the responsible Lead Federal Agency in the event of a radiological emergency impacting any state or US territory (e.g., CONUS). In addition, the DOE maintains a response option to support radiological emergencies outside the continental US (OCONUS). While the OCUNUS mission is not governed by the FREP, this response is operationally similar to that assigned to the DOE by the FREP. The DOE is prepared to alert, activate, and deploy radiological response teams to augment the Radiological Assistance Program and/or local responders. The Radiological Monitoring and Assessment Center (RMAC) is a phased response that integrates with the Federal Radiological Monitoring and Assessment Center (FRMAC) in CONUS environments and represents a stand-alone DOE response for OCONUS environments. The FRMAC/RMAC Phase I was formally ''stood up'' as an operational element in April 1999. The FRMAC/RMAC Phase II proposed ''stand-up'' date is midyear 2000

  9. Explanation of procedure on site medical emergency response for nuclear accident

    International Nuclear Information System (INIS)

    Liu Yulong; Jiang Zhong

    2012-01-01

    National occupational health standard-Procedure on Site Medical Emergency Response for Nuclear Accident has been approved and issued by the Ministry of Health. This standard is formulated according to the Emergency Response Law of the People's Republic of China, Law of the People 's Republic of China on Prevention and Control of Occupational Diseases, Regulations on Emergency Measures for Nuclear Accidents at Nuclear Power Plants, and Health Emergency Plans for Nuclear and Radiological Accidents of Ministry of Health, supporting the use of On-site Medical Emergency Planning and Preparedness for Nuclear Accidents and Off-site Medical Emergency Planning and Preparedness for Nuclear Accidents. Nuclear accident on-site medical response procedure is a part of the on-site emergency plan. The standard specifies the basic content and requirements of the nuclear accident on-site medical emergency response procedures of nuclear facilities operating units to guide and regulate the work of nuclear accident on-site medical emergency response of nuclear facilities operating units. The criteria-related contents were interpreted in this article. (authors)

  10. Some Qualitative Requirements for Testing of Nuclear Emergency Response Robots

    International Nuclear Information System (INIS)

    Eom, Heungseop; Cho, Jai Wan; Choi, Youngsoo; Jeong, Kyungmin

    2014-01-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out the project 'Development of Core Technology for Remote Response in Nuclear Emergency Situation', and as a part of the project, we are studying the reliability and performance requirements of nuclear emergency response robots. In this paper, we described some qualitative requirements for testing of nuclear emergency response robots which are different to general emergency response robots. We briefly introduced test requirements of general emergency response robots and described some qualitative aspects of test requirements for nuclear emergency response robots. When considering an immature field-robot technology and variety of nuclear emergency situations, it seems hard to establish quantitative test requirements of these robots at this time. However, based on studies of nuclear severe accidents and the experience of Fukushima NPP accident, we can expect some test requirements including quantitative ones for nuclear emergency response robots

  11. Emergency response technical centre of the IPSN

    International Nuclear Information System (INIS)

    Dallendre, R.

    2000-01-01

    The Institute for Nuclear Safety and Protection (IPSN), the technical support of the French nuclear safety authority, provides the technical support needed for protect the surrounding population from the consequences of radioactive releases. In the event of an accident arising at a nuclear facility, the IPSN would set up an Emergency Response Technical Centre (CTC) at Fontenay-aux-Roses. The IPSN's objectives are: (a) to diagnose the state of the nuclear facility and monitor its development, (b) to prepare prognosis for the evolution of the accident and to give an estimation of the associated consequences according to the situation evolution, (c) to estimate the risk of radioactive releases and the consequences on man and on the environment, mainly on the basis of weather forecasts and on the prognosis. This diagnosis-prognosis approach is build-up with the information on the state of the installation given by: the concerned site via audio-conference system and telescope, the security panels of the nuclear plant via networks. To perform its missions, the CTC, which has to be both safe and secure, uses multiple telecommunication resources to dialogue with partners and also mapping computer systems, data bases and software tools: (a) the SESAME system, which gives, during an accident of a PWR, a calculation method for the diagnosis-prognosis aforesaid, (b) the CONRAD system, which calculates the atmospheric dispersal of radioactive substances and consequences in the environment in the early phase of an accident, (c) the ASTRAL code, which allows to cope with long lasting situations. In order to be operational, the IPSN expert regularly undergo training in emergency situation management and participate in exercises organised by the government authorities. (author)

  12. Emergency response in the Newfoundland offshore industry

    International Nuclear Information System (INIS)

    Dempsey, J.

    2006-01-01

    equipped with fast rescue craft with crews trained in marine rescue. It was concluded that the emergency response process should assess and prioritize all concerns, with people being the highest priority. figs

  13. A prototype nuclear emergency response decision making expert system

    International Nuclear Information System (INIS)

    Chang, C.; Shih, C.; Hong, M.; Yu, W.; Su, M.; Wang, S.

    1990-01-01

    A prototype of emergency response expert system developed for nuclear power plants, has been fulfilled by Institute of Nuclear Energy Research. Key elements that have been implemented for emergency response include radioactive material dispersion assessment, dynamic transportation evacuation assessment, and meteorological parametric forecasting. A network system consists of five 80386 Personal Computers (PCs) has been installed to perform the system functions above. A further project is still continuing to achieve a more complicated and fanciful computer aid integral emergency response expert system

  14. Meteorological considerations in emergency response capability at nuclear power plant

    International Nuclear Information System (INIS)

    Fairobent, J.E.

    1985-01-01

    Meteorological considerations in emergency response at nuclear power plants are discussed through examination of current regulations and guidance documents, including discussion of the rationale for current regulatory requirements related to meteorological information for emergency response. Areas discussed include: major meteorological features important to emergency response; onsite meteorological measurements programs, including redundant and backup measurements; access to offsite sources of meteorological information; consideration of real-time and forecast conditions and atmospheric dispersion modeling

  15. Emergency response to mass casualty incidents in Lebanon.

    Science.gov (United States)

    El Sayed, Mazen J

    2013-08-01

    The emergency response to mass casualty incidents in Lebanon lacks uniformity. Three recent large-scale incidents have challenged the existing emergency response process and have raised the need to improve and develop incident management for better resilience in times of crisis. We describe some simple emergency management principles that are currently applied in the United States. These principles can be easily adopted by Lebanon and other developing countries to standardize and improve their emergency response systems using existing infrastructure.

  16. Aquatic emergency response model at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1987-01-01

    The Savannah River Plant emergency response plans include a stream/river emergency response model to predict travel times, maximum concentrations, and concentration distributions as a function of time at selected downstream/river locations from each of the major SRP installations. The menu driven model can be operated from any of the terminals that are linked to the real-time computer monitoring system for emergency response

  17. Radiation emergency response in Illinois, Alabama, and Texas

    International Nuclear Information System (INIS)

    Larsen, D.K.; Chester, R.O.

    1978-03-01

    The objective of this study was to examine state radiation emergency response and to locate any areas of emergency planning in need of improvement. This report briefly presents a summary of laws and defining documents governing radiation emergency response, describes the existing and projected need for such response, and presents the authors' analyses of the evolution of state response plans and their application to radiation incidents. Three states' programs are discussed in detail: Illinois, Alabama, and Texas. These states were selected because they have quite different emergency-response programs. Therefore, these state programs provide a wide variety of approaches to state radiation emergency response

  18. Experiences from exercises associated with nuclear emergency response in Germany

    International Nuclear Information System (INIS)

    Becker, D.E.

    2001-01-01

    Full text: Responsibilities Regarding Emergency Response in Germany - In the Federal Republic of Germany, the 16 federal state Ministries of the Interior are responsible for emergency response (threat through weapons, explosives, etc.). In the case of threats due to radioactive material experts of the competent federal state radiological protection authorities are consulted. The Federal Office for Radiation Protection assists in serious cases of defence against nuclear hazards (nuclear fuels, criticality, risk of dispersion). Currently, exercises are being performed in all 16 federal states to co-ordinate the ways of behaviour, action and thinking of the various necessary organisational units, like police, deactivators, prosecution officials, radiological protection experts and fire brigade. The joint exercises serve the purpose to practice the total chain of necessary measures like: notification chain, organisation at the place of action, co-ordination of appropriate search strategy, investigation of who was responsible, analysis (X-ray pictures, radiological analysis), activity determination, assessment of possible effects due to deactivation measures, determination of dispersion conditions, recommendation of measures for the protection of responders and the general population and measures to limit the consequences. Given Exercise Scenario - Via the emergency emergency call a situation is transmitted that urgently demands joint and co-ordinated action of prosecution authority, emergency response and radiation protection authority, to be able to master the situation successfully. As a rule this means that one deals with an IED (Improvised Explosive Device) secured by a booby trap with added radioactive substances. Organisation at the Place of Action - Experience shows that as a rule the patrol police and the local fire brigade will be the first to arrive at the place of action, already after a few minutes. Gradually, the other experts arrive. Depending on distance

  19. Radiation-induced damage analysed by luminescence methods in retrospective dosimetry and emergency response.

    Science.gov (United States)

    Woda, Clemens; Bassinet, Céline; Trompier, François; Bortolin, Emanuela; Della Monaca, Sara; Fattibene, Paola

    2009-01-01

    The increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry. The properties of the materials are critically discussed with regard to the requirements for population triage. It is concluded that electronic components found within portable electronic devices, such as e.g. mobile phones, are at present the most promising material to function as a fortuitous dosimeter in an emergency response.

  20. Emergency response in the Newfoundland offshore industry

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, J. [Cormorant Ltd., St. John' s, NL (Canada)

    2006-07-01

    . Supply vessels are also equipped with fast rescue craft with crews trained in marine rescue. It was concluded that the emergency response process should assess and prioritize all concerns, with people being the highest priority. figs.

  1. Challenges in defining a radiologic and hydrologic source term for underground nuclear test centers, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Smith, D.K.

    1995-06-01

    The compilation of a radionuclide inventory for long-lived radioactive contaminants residual from nuclear testing provides a partial measure of the radiologic source term at the Nevada Test Site. The radiologic source term also includes potentially mobile short-lived radionuclides excluded from the inventory. The radiologic source term for tritium is known with accuracy and is equivalent to the hydrologic source term within the saturated zone. Definition of the total hydrologic source term for fission and activation products that have high activities for decades following underground testing involves knowledge and assumptions which are presently unavailable. Systematic investigation of the behavior of fission products, activation products and actinides under saturated or Partially saturated conditions is imperative to define a representative total hydrologic source term. This is particularly important given the heterogeneous distribution of radionuclides within testing centers. Data quality objectives which emphasize a combination of measurements and credible estimates of the hydrologic source term are a priority for near-field investigations at the Nevada Test Site

  2. Review of current neutron detection systems for emergency response

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig

    2014-09-01

    Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.

  3. Scaling-up Support for Emergency Response Organizations

    NARCIS (Netherlands)

    Oomes, A.H.J.; Neef, R.M.

    2005-01-01

    We present the design of an information system that supports the process of scaling-up of emergency response organizations. This process is vital for effective emergency response but tends to go awry in practice. Our proposed system consists of multiple distributed agents that are capable of

  4. 48 CFR 452.236-77 - Emergency Response.

    Science.gov (United States)

    2010-10-01

    ... contracts: Emergency Response (NOV 1996) (a) Contractor's Responsibility for Fire Fighting. (1) The... emergency work (anticipated to be restricted to fire fighting). An equitable adjustment for the temporary... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Emergency Response. 452...

  5. Enhancing nuclear emergency response through international co-operation

    International Nuclear Information System (INIS)

    Ugletveit, F.; Aaltonen, H.

    2003-01-01

    perspective however, there are probably substantial resources available for response to nuclear or radiological emergencies. The problem is that during an emergency, these resources are not where they are needed. Most resources are under authority control in the respective countries, but if all countries would commit themselves to contribute to such assistance arrangements between countries and invoke all resources available and efficiently co-ordinate and route them to where they are mostly needed, the international community and individual States would achieve a better and more efficient response to emergencies. Resources could in this respect be everything that is needed to respond to an emergency, e.g. equipment, expertise, assessment capabilities or other services. These arrangements should be global arrangements as bi-lateral or regional arrangements are only adequate for some scenarios. The Convention an Early Notification of a Nuclear Accident and the Convention an Assistance in Case of a Nuclear Accident or Radiological Emergency established in 1986 are at present acceded by approx. 85 IAEA Member States. These conventions constitute the framework of international co-operation on response to nuclear and radiological emergencies between States and describe the obligations and mechanisms of international notification and assistance. The conventions recognize the need for a co-ordinating and facilitating body in this co-operation and the IAEA has been given this role. The conventions an Assistance and Early Notification provide a good framework for achieving international co-operation an nuclear emergency response. It has however been recognised that the implementation of these conventions needs to be improved. This is the responsibility of acceding states. To efficiently share information between many states, it is necessary to establish a standard international communication platform for information exchange with a communication strategy and standardization

  6. Oil supply security: the emergency response potential of IEA countries

    International Nuclear Information System (INIS)

    1995-01-01

    This work deals with the oil supply security and more particularly with the emergency response potential of International Energy Agency (IEA) countries. The first part describes the changing pattern of IEA emergency response requirements. It begins with the experience from the past, then gives the energy outlook to 2010 and ends with the emergency response policy issues for the future. The second part is an overview on the IEA emergency response potential which includes the organisation, the emergency reserves, the demand restraint and the other response mechanisms. The third part gives the response potential of individual IEA countries. The last part deals with IEA emergency response in practice and more particularly with the gulf crisis of 1990-1991. It includes the initial problems raised by the gulf crisis, the adjustment and preparation and the onset of military action with the IEA response.(O.L.). 7 figs., 85 tabs

  7. Letter from Brian Croft and Andrew Johnson, Tetra Tech EM, Inc., to Steve Spurlin, USEPA. Subject: Emergency Response Report, American Drum and Pallet Site, TN. EPA Contract Ep-W-05-054, TDD No. TTEMI-05-001-0040

    Science.gov (United States)

    Contains April l4, 2008 letter submitting the emergency response report for the American Drum and Pallet Site in Memphis, Shelby County, Tennessee. This report summarizes field activities conducted at the site from June 11, 2007 through January 18, 2008.

  8. The development of nuclear power and emergency response

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2007-01-01

    Nuclear power is a safe, clean energy, which has been evidenced by the history of nuclear power development. Nuclear power is associated with very low risk but not equal to zero. Accident emergency response and preparedness is a final barrier necessary to reduce potential risks that may arise from nuclear power plants, which must be enhanced. In the course of accident emergency response and preparedness, it is highly necessary to draw domestic and foreign experiences and lessons. Lastly, the paper presents the discussions of some issues which merit attention with respect to emergency response and preparedness in China. (authors)

  9. Emergency response training with the BNL plant analyzer

    International Nuclear Information System (INIS)

    Cheng, H.S.; Guppy, J.G.; Mallen, A.N.; Wulff, W.

    1987-01-01

    Presented is the experience in the use of the BNL Plant Analyzer for NRC emergency response training to simulated accidents in a BWR. The unique features of the BNL Plant Analyzer that are important for the emergency response training are summarized. A closed-loop simulation of all the key systems of a power plant in question was found essential to the realism of the emergency drills conducted at NRC. The faster than real-time simulation speeds afforded by the BNL Plant Analyzer have demonstrated its usefulness for the timely conduct of the emergency response training

  10. A model national emergency plan for radiological accidents

    International Nuclear Information System (INIS)

    2000-07-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a result, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request

  11. ESTE EMO and ESTE EBO - emergency response system for NPP Mochovce and NPP Bohunice V-2

    International Nuclear Information System (INIS)

    Caeny, P.; Chyly, M.; Suchon, D.; Smejkalova, E.; Fabova, V.; Mancikova, M.; Muller, P.

    2009-01-01

    Programs ESTE EMO and ESTE EBO are emergency response systems that help the crisis staff of the NPP in assessing the source term (predicted possible release of radionuclides to the atmosphere ), in assessing the urgent protective measures and sectors under threat, in assessing real release (symptoms of release really detected and observed), in calculating radiological impacts of real release, averted or avertable doses, potential doses and doses during transport or evacuation on specified routes. Both systems serve as instruments in case of severe accident (DBA or BDBA) at NPP Mochovce or NPP Bohunice, accidents with threat of release of radioactivity to the atmosphere. Systems are implemented at emergency centre of Mochovce NPP and Bohunice NPP and connected online to the sources of technological and radiological data from the reactor, primary circuit, confinement, secondary circuit, ventilation stack, from the area of NPP (TDS 1) and from the emergency planning zone (TDS 11). Systems are connected online to the sources of meteorological data, too. (authors)

  12. ESTE EMO and ESTE EBO - emergency response system for NPP Mochovce and NPP Bohunice V-2

    International Nuclear Information System (INIS)

    Caeny, P.; Chyly, M.; Suchon, D.; Smejkalova, E.; Fabova, V.; Mancikova, M.; Muller, P.

    2008-01-01

    Programs ESTE EMO and ESTE EBO are emergency response systems that help the crisis staff of the NPP in assessing the source term (predicted possible release of radionuclides to the atmosphere ), in assessing the urgent protective measures and sectors under threat, in assessing real release (symptoms of release really detected and observed), in calculating radiological impacts of real release, averted or avertable doses, potential doses and doses during transport or evacuation on specified routes. Both systems serve as instruments in case of severe accident (DBA or BDBA) at NPP Mochovce or NPP Bohunice, accidents with threat of release of radioactivity to the atmosphere. Systems are implemented at emergency centre of Mochovce NPP and Bohunice NPP and connected online to the sources of technological and radiological data from the reactor, primary circuit, confinement, secondary circuit, ventilation stack, from the area of NPP (TDS 1) and from the emergency planning zone (TDS 11). Systems are connected online to the sources of meteorological data, too. (authors)

  13. General RMP Guidance - Chapter 8: Emergency Response Program

    Science.gov (United States)

    If you have a Program 2 or 3 process at your facility, 40 CFR Part 68 (risk management program) requires an emergency response program in place if employees respond to some releases involving regulated toxic or flammable substances.

  14. Emergency response facility technical data system of Taiwan Power Company

    International Nuclear Information System (INIS)

    Lin, E.; Liang, T.M.

    1987-01-01

    Taiwan Power Company (Taipower) has developed its emergency response facility program since 1981. This program is integrated with the following activities to enhance the emergency response capability of nuclear power plants: (1) survey of the plant instrumentation based on the requirements of R.G. 1.97; (2) improvement of plant specific emergency operating procedures based on the emergency response guidelines developed by the Owners group; (3) implementation of the detailed control room design review with the consideration of human engineering and task analysis; and (4) organization, staff and communication of emergency planning of nuclear power plant. The emergency response facility programs of Taipower are implemented in Chinshan (GE BWR4/MARK I), Kuosheng (GE BWR6/MARK III) and Maanshan (W PWR). The major items included in each program are: (1) to establish new buildings for On-Site Technical Support Center, Near-Site Emergency Operation Facility; (2) to establish an Emergency Executive Center at Taipower headquarters; (3) to establish the communication network between control room and emergency response facilities; and (4) to install a dedicated Emergency Response Facility Technical Data System (ERFTDS) for each plant. The ERFTDS provides the functions of data acquisition, data processing, data storage and display in meeting with the requirements of NUREG 0696. The ERFTDS is designed with plant specific requirements. These specific requirements are expected to be useful not only for the emergency condition but also for normal operation conditions

  15. Joint research and development on toxic-material emergency response between ENEA and LLNL. 1982 progress report

    International Nuclear Information System (INIS)

    Gudiksen, P.; Lange, R.; Dickerson, M.; Sullivan, T.; Rosen, L.; Walker, H.; Boeri, G.B.; Caracciolo, R.; Fiorenza, R.

    1982-11-01

    A summary is presented of current and future cooperative studies between ENEA and LLNL researchers designed to develop improved real-time emergency response capabilities for assessing the environmental consequences resulting from an accidental release of toxic materials into the atmosphere. These studies include development and evaluation of atmospheric transport and dispersion models, interfacing of data processing and communications systems, supporting meteorological field experiments, and integration of radiological measurements and model results into real-time assessments

  16. Modernisation of Radiation Monitoring Room as a Part of Slovenian Emergency Response Centre

    International Nuclear Information System (INIS)

    Sarvari, A.; Mitic, D.

    2003-01-01

    In the year 2002 the Slovenian Nuclear Safety Administration (SNSA) moved to the new premises therefore it had to rearrange some of its rooms for the emergency situation. SNSA does not operate with a dedicated Emergency Response Centre (ERC), instead of it the SNSA has to rearrange the existing rooms in case of an emergency. Modernisation of the equipment, with the help of government of the United Kingdom of Great Britain and Northern Ireland, for the emergency situation was carried out, especially in the monitoring room. The radiation monitoring system, which is placed in the monitoring room, continuously collects, processes and archives the incoming data of exposure to radiation and meteorological parameters on the Slovenian territory (A model national emergency response plan for radiological accidents, IAEA, Vienna, 1993. IAEA-TECDOC-718). In the emergency situation the monitoring room transforms into the room for the Dose Assessment Group (DAG), which is part of ERC (IAEA emergency response network, IAEA, Vienna, 2000, EPR-ERNET (2000)). The modernisation of monitoring room and within the DAG room with new equipment and its purpose is described in this article. Modernisation of the monitoring room and the room for DAG showed to be inevitably needed. Modernisation of the monitoring room has brought the SNSA a sophisticated and reliable system of controlling the external exposure to radiation on the Slovenian territory. The equipment, especially the equipment for the use in the emergency situation, brought novelties for the Dose Assessment Group. The group has now better and easier control of radiation situation in case of an accident. In overall this modernisation has put the Slovenian Nuclear Safety Administration a step forward in having a dedicated Emergency Response Centre, since it does not need to rearrange the room for the Dose Assessment Group. (author)

  17. Development of a health and safety manual for emergency response operations

    International Nuclear Information System (INIS)

    Riland, C.A.; Junio, S.S.

    2000-01-01

    The Federal Radiological Monitoring and Assessment Center (FRMAC) Health and Safety Manual, which has been under development by a multi-agency group, is nearing completion and publication. The manual applies to offsite monitoring during a radiological accident or incident. Though written for multi-agency offsite monitoring activities (FRMAC), the manual is generic in nature and should be readily adaptable for other emergency response operations. Health and safety issues for emergency response situations often differ from those of normal operations. Examples of these differences and methodologies to address these issues are discussed. Challenges in manual development, including lack of regulatory and guidance documentation, are also discussed. One overriding principle in the Health and Safety Manual development is the overall reduction of risk, not just dose. The manual is broken into several chapters, which include Overview of Responsibities, Health Physics, Industrial Hygiene and Safey, Medical, and Environmental Compliance and Records. Included is a series of appendices, which presents additional information on forms and plans for default scenarios

  18. New functions of the este system - new possibilities for emergency response

    International Nuclear Information System (INIS)

    Carny, P.

    2005-01-01

    The ESTE system (Emergency Source Term Evaluation) is support instrument for off-site emergency response and its main objective is to assist to the crisis staff: - to mitigate radiological consequences of significant releases; - to manage the protective measures; - to manage emergency monitoring. At national level the ESTE system are implemented at the Emergency Response Centre of the Czech Republic (SUJB) and Austrian versions are implemented at the Crisis Centre of the Austrian Republic (BMLFUW). ESTE system can now be utilized not only in close (40 km) vicinity of the point of the release (NPP), but radiological impacts are now calculated across the whole country or over the country border. Puff Trajectory Model (PTM) with the background of geographical information system (GIS) is included in este. Numerical weather prediction data (wind fields) predicted for the whole or the part of the country are online connected with este and utilized for the puffs movement simulation and impacts calculations. It means that not only meteorological data from the point of release (measured or predicted), but 'meteorological data wind field' predicted for larger region across the country are used by the este system. (author)

  19. Radiological emergency preparedness (REP) program

    International Nuclear Information System (INIS)

    Kwiatkowski, D.H.

    1995-01-01

    This talk focuses on the accomplishments of Radiological Emergency Preparedness Program. Major topics include the following: strengthening the partnership between FEMA, the States, and the Industry; the Standard Exercise Report Format (SERF); Multi-year performance partnership agreement (MYPPA); new REP Program guidance; comprehensive exercise program; federal radiological emergency response plan (FRERP); international interest; REP user fee; implementation EPA PAGs and Dose Limits; Contamination monitoring standard for portal monitors; guidance documents and training

  20. Radiological assessment and optimization

    International Nuclear Information System (INIS)

    Zeevaert, T.; Sohier, A.

    1998-01-01

    The objectives of SCK-CEN's research in the field of radiological assessment and optimization are (1) to implement ALARA principles in activities with radiological consequences; (2) to develop methodologies for radiological optimization in decision-aiding; (3) to improve methods to assess in real time the radiological hazards in the environment in case of an accident; (4) to develop methods and programmes to assist decision-makers during a nuclear emergency; (5) to support the policy of radioactive waste management authorities in the field of radiation protection; (6) to investigate computer codes in the area of multi criteria analysis; (7) to organise courses on off-site emergency response to nuclear accidents. Main achievements in these areas for 1997 are summarised

  1. Applications of complex terrain meteorological models to emergency response management

    International Nuclear Information System (INIS)

    Yamada, Tetsuji; Leone, J.M. Jr.; Rao, K.S.; Dickerson, M.H.; Bader, D.C.; Williams, M.D.

    1989-01-01

    The Office of Health and Environmental Research (OHER), US Department of Energy (DOE), has supported the development of mesoscale transport and diffusion and meteorological models for several decades. The model development activities are closely tied to the OHER field measurement program which has generated a large amount of meteorological and tracer gas data that have been used extensively to test and improve both meteorological and dispersion models. This paper briefly discusses the history of the model development activities associated with the OHER atmospheric science program. The discussion will then focus on how results from this program have made their way into the emergency response community in the past, and what activities are presently being pursued to improve real-time emergency response capabilities. Finally, fruitful areas of research for improving real-time emergency response modeling capabilities are suggested. 35 refs., 5 figs

  2. Emergency response and radiation monitoring systems in Russian regions

    International Nuclear Information System (INIS)

    Arutyunyan, R.; Osipiyants, I.; Kiselev, V.; Ogar, K; Gavrilov, S.

    2008-01-01

    Full text: Preparedness of the emergency response system to elimination of radiation incidents and accidents is one of the most important elements of ensuring safe operation of nuclear power facilities. Routine activities on prevention of emergency situations along with adequate, efficient and opportune response actions are the key factors reducing the risks of adverse effects on population and environment. Both high engineering level and multiformity of the nuclear branch facilities make special demands on establishment of response system activities to eventual emergency situations. First and foremost, while resolving sophisticated engineering and scientific problems emerging during the emergency response process, one needs a powerful scientific and technical support system.The emergency response system established in the past decade in Russian nuclear branch provides a high efficiency of response activities due to the use of scientific and engineering potential and experience of the involved institutions. In Russia the responsibility for population protection is imposed on regional authority. So regional emergence response system should include up-to-date tools of radiation monitoring and infrastructure. That's why new activities on development of radiation monitoring and emergency response system were started in the regions of Russia. The main directions of these activities are: 1) Modernization of the existing and setting-up new facility and territorial automatic radiation monitoring systems, including mobile radiation surveillance kits; 2) Establishment of the Regional Crisis Centres and Crisis Centres of nuclear and radiation hazardous facilities; 3) Setting up communication systems for transfer, acquisition, processing, storage and presentation of data for participants of emergency response at the facility, regional and federal levels; 4) Development of software and hardware systems for expert support of decision-making on protection of personnel, population

  3. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

    2012-07-01

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable

  4. Functional criteria for emergency response facilities. Technical report (final)

    International Nuclear Information System (INIS)

    1981-02-01

    This report describes the facilities and systems to be used by nuclear power plant licensees to improve responses to emergency situations. The facilities include the Technical Support Center (TSC), Onsite Operational Support Center (OSC), and Nearsite Emergency Operations Facility (EOF), as well as a brief discussion of the emergency response function of the control room. The data systems described are the Safety Parameter Display System (SPDS) and Nuclear Data Link (NDL). Together, these facilities and systems make up the total Emergency Response Facilities (ERFs). Licensees should follow the guidance provided both in this report and in NUREG-0654 (FEMA-REP-1), Revision 1, for design and implementation of the ERFs

  5. Challenges in designing interactive systems for emergency response

    DEFF Research Database (Denmark)

    Kristensen, Margit; Kyng, Morten; Nielsen, Esben Toftdahl

    2007-01-01

    and visions as ways to bridge between fieldwork and literature studies on the one hand and the emerging computer based prototypes on the other. Our case concerns design of innovative interactive systems for support in emergency response, including patient identification and monitoring as well as construction......This paper presents research on participatory design of interactive systems for emergency response. We present the work by going through the design method with a focus on the new elements that we developed for the participatory design toolkit, in particular we emphasize the use of challenges...

  6. Science in Emergency Response at CDC: Structure and Functions.

    Science.gov (United States)

    Iskander, John; Rose, Dale A; Ghiya, Neelam D

    2017-09-01

    Recent high-profile activations of the US Centers for Disease Control and Prevention (CDC) Emergency Operations Center (EOC) include responses to the West African Ebola and Zika virus epidemics. Within the EOC, emergency responses are organized according to the Incident Management System, which provides a standardized structure and chain of command, regardless of whether the EOC activation occurs in response to an outbreak, natural disaster, or other type of public health emergency. By embedding key scientific roles, such as the associate director for science, and functions within a Scientific Response Section, the current CDC emergency response structure ensures that both urgent and important science issues receive needed attention. Key functions during emergency responses include internal coordination of scientific work, data management, information dissemination, and scientific publication. We describe a case example involving the ongoing Zika virus response that demonstrates how the scientific response structure can be used to rapidly produce high-quality science needed to answer urgent public health questions and guide policy. Within the context of emergency response, longer-term priorities at CDC include both streamlining administrative requirements and funding mechanisms for scientific research.

  7. Status and developing of nuclear emergency response techniques in China

    International Nuclear Information System (INIS)

    Jiangang, Zhang; Bing, Zhao; Rongyao, Tang; Xiaoxiao, Xu

    2008-01-01

    Full text: Nuclear Emergency preparedness and response in China is consistent with international basic principle of nuclear safety and emergency response. Nuclear emergency response techniques in China developed with nuclear power from 1980s. The status of nuclear emergency techniques in China are: 1) China have plentiful experiences and abilities in the fields of nuclear facility emergency planning and preparedness, nuclear accident consequence assessment, emergency monitoring, and emergency advisory; 2) Emergency assistance ability in China has a foundation, however it cannot satisfy national requirement; 3) Emergency planning and preparedness is not based on hazard assessment; 4) Remote monitoring and robot techniques in not adaptable to the requirements of nuclear emergency response; 5) A consistent emergency assessment system is lack in China. In this paper, it is analyzed what is the developing focal points of nuclear emergency response techniques in China, and it is proposed that the main points are: a) To develop the research of emergency preparedness on the base of hazard analysis; b) To improve remote monitoring and robot ability during nuclear emergency; c) To develop the response technique research with anti-terrorism. (author)

  8. Gamification for data gathering in emergency response exercises

    NARCIS (Netherlands)

    Meesters, Kenny; Ruhe, Aaron; Soetanto, Marvin; Munkvold, R.; Kolås, L.

    2015-01-01

    Our paper describes how gamification can be implemented in an emergency response exercise. In particular, we focus on the potential of gamification to support self-evaluation processes through the automated gathering of data about the participants' performance. Disaster-exercises are typically

  9. Development of emergency response plans for community water ...

    African Journals Online (AJOL)

    All water services systems, irrespective of size, location etc., should have emergency response plans (ERPs) to guide officials, stakeholders and consumers through emergencies, as part of managing risks in the water supply system. Emergencies in the water supply system may result from, among other causes, natural ...

  10. Multi-objective evolutionary emergency response optimization for major accidents

    International Nuclear Information System (INIS)

    Georgiadou, Paraskevi S.; Papazoglou, Ioannis A.; Kiranoudis, Chris T.; Markatos, Nikolaos C.

    2010-01-01

    Emergency response planning in case of a major accident (hazardous material event, nuclear accident) is very important for the protection of the public and workers' safety and health. In this context, several protective actions can be performed, such as, evacuation of an area; protection of the population in buildings; and use of personal protective equipment. The best solution is not unique when multiple criteria are taken into consideration (e.g. health consequences, social disruption, economic cost). This paper presents a methodology for multi-objective optimization of emergency response planning in case of a major accident. The emergency policy with regards to protective actions to be implemented is optimized. An evolutionary algorithm has been used as the optimization tool. Case studies demonstrating the methodology and its application in emergency response decision-making in case of accidents related to hazardous materials installations are presented. However, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency response procedures in other cases (nuclear accidents, transportation of hazardous materials) or for land-use planning issues.

  11. Correlates of emergency response interval and mortality from ...

    African Journals Online (AJOL)

    A retrospective study to determine the influence of blood transfusion emergency response interval on Mortality from childhood severe anemia was carried out. An admission record of all children with severe anemia over a 5-year period was reviewed. Those who either died before transfusion or got discharged against ...

  12. The Student Volunteer Army: a 'repeat emergent' emergency response organisation.

    Science.gov (United States)

    Carlton, Sally; Mills, Colleen E

    2017-10-01

    This paper seeks to contribute to understanding of the factors associated with an effective emergent emergency response organisation and to provide new insights into this understudied area. It examines, through an analysis of a range of textual resources, the emergence and re-emergence of the Student Volunteer Army (SVA) during the devastating earthquakes in Canterbury, New Zealand, in 2010-11. This evaluation is conducted in relation to the four key features of an effective emergency response organisation: adaptability; direction; leadership; and communication. In addition, the paper aims to further understanding of 'emergency entrepreneurship' and thus of the values and strategies that underpin social entrepreneur organisations in times of normalcy. The paper concludes that the unique position of the SVA as a 'repeat emergent' emergency response organisation enabled it to innovate continually and to improve repeatedly its systems, relationships, and image, such that it exhibited features common to emergent and established emergency response organisations. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  13. Disaster Monitoring and Emergency Response Services in China

    Science.gov (United States)

    Wu, J.; Han, X.; Zhou, Y.; Yue, P.; Wang, X.; Lu, J.; Jiang, W.; Li, J.; Tang, H.; Wang, F.; Li, X.; Fan, J.

    2018-04-01

    The Disaster Monitoring and Emergency Response Service(DIMERS) project was kicked off in 2017 in China, with the purpose to improve timely responsive service of the institutions involved in the management of natural disasters and man-made emergency situations with the timely and high-quality products derived from Space-based, Air-based and the in-situ Earth observation. The project team brought together a group of top universities and research institutions in the field of Earth observations as well as the operational institute in typical disaster services at national level. The project will bridge the scientific research and the response services of massive catastrophe in order to improve the emergency response capability of China and provide scientific and technological support for the implementation of the national emergency response strategy. In response to the call for proposal of "Earth Observation and Navigation" of 2017 National Key R&D Program of China, Professor Wu Jianjun, the deputy chairman of Faculty of Geographical Science of Beijing Normal University, submitted the Disaster Monitoring and Emergency Response Service (DIMERS) project, jointly with the experts and scholars from Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Wuhan University, China Institute of Earthquake Forecasting of China Earthquake Administration and China Institute of Water Resources and Hydropower Science. After two round evaluations, the proposal was funded by Ministry of Science and Technology of China.

  14. Analysis of emergency response procedures and air traffic accidents ...

    African Journals Online (AJOL)

    Incessant air transport accidents have been a source of concern to stakeholders and aviation experts in Nigeria, yet the response and process has not been adequately appraised. This study attempts an evaluation of the emergency response procedures in the aviation industry with particular focus on Murtala Muhammed ...

  15. RMP Guidance for Warehouses - Chapter 8: Emergency Response Program

    Science.gov (United States)

    Implementing an emergency response program along with your risk management plan may be required if you have at least one Program 2 or 3 process in place, and if your employees will respond to some releases involving regulated toxic or flammable substances.

  16. Emergency Response Capability Baseline Needs Assessment - Requirements Document

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2016-10-04

    This document was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by LLNL Emergency Management Department Head James Colson. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only addresses emergency response.

  17. 47 CFR 0.192 - Emergency Response Interoperability Center.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Emergency Response Interoperability Center. 0.192 Section 0.192 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMISSION ORGANIZATION..., industry representatives, and service providers. [75 FR 28207, May 20, 2010] ...

  18. Application of Robotic System for Emergency Response in NPP

    International Nuclear Information System (INIS)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho

    2010-01-01

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and obtaining remote

  19. Application of Robotic System for Emergency Response in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and

  20. Development of an extended framework for emergency response criteria. Interim report for comments

    International Nuclear Information System (INIS)

    2005-01-01

    Experience from response to recent nuclear and radiological emergencies has clearly demonstrated the importance of an efficient response system that includes, among other components, emergency plans, procedures, and internally consistent operational criteria. An analysis of lessons identified from recent responses has shown that a lack of crucial components in the emergency response system could result in major radiological and nonradiological consequences at the national level. One of the reasons for the overwhelming psychological consequences of the Chernobyl and Goiania emergencies was public mistrust of decision-makers, who lost their credibility by frequently changing the criteria for taking action. Moreover, national response arrangements that are incompatible among countries can result in major mistrust by the public. It is considered important to have internationally agreed criteria and guidance for emergency response established in advance of an emergency. Currently there are several IAEA safety standards that contain recommendations for response to radiation emergencies, addressing principles and response criteria. Mindful of the lessons identified from recent emergencies, the IAEA convened in November 2001 a technical committee meeting (TCM) to develop aspects of the technical basis for emergency response to radiation emergencies. At this meeting, the lessons from response to the Chernobyl, Goiania and other emergencies over the past years were examined to identify where revisions were needed to the existing international guidance for response. In particular, the existing international criteria and guidance for taking protective and other actions were examined in the light of these lessons. The objectives of this document are: (1) to propose an extension of existing criteria for undertaking protective and other actions during or following a nuclear or radiological emergency that: addresses the lessons from past emergencies, addresses the recently

  1. Development of a Online Nuclear Emergency Response System (ONERS) for Kalpakkam site - the design aspects

    Energy Technology Data Exchange (ETDEWEB)

    Raja Shekhar, S. S.; Bhatawadekar, Shantanu; Krishna Murthy, Y. V.N., [Regional Remote Sensing Service Centre, Department of Space, Nagpur (India); Srinivas, C. V.; Venkatesan, [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalapakkam (India)

    2012-07-01

    An Online Nuclear Emergency Response System (ONERS) is developed for the nuclear power plant site at Kalpakkam as part of the Department of Atomic Energy (DAE) initiative. ONERS is a GIS based spatial analysis system designed indigenously to provide decision support in the event of a radioactive leak or accident from any of the nuclear facilities by assessing the dispersion and deposition patterns of the atmospheric releases, integrate with spatial geographical database for impact assessment and guidance for mitigation. The system is designed with open software tools (UMN Map server, MYSQL, PHP, Java scripts) and its main features include assessment of dose, short and long term forecast, counter measure support, impact assessment to minimize potential threat to man and environment during radiological emergencies. The system is implemented in live mode with integration of numerical models and spatial data base for the site region and is presently operational for the Kalpakkam site. (author)

  2. Development of a Online Nuclear Emergency Response System (ONERS) for Kalpakkam site - the design aspects

    International Nuclear Information System (INIS)

    Raja Shekhar, S.S.; Bhatawadekar, Shantanu; Krishna Murthy, Y.V.N.; Srinivas, C.V.; Venkatesan

    2012-01-01

    An Online Nuclear Emergency Response System (ONERS) is developed for the nuclear power plant site at Kalpakkam as part of the Department of Atomic Energy (DAE) initiative. ONERS is a GIS based spatial analysis system designed indigenously to provide decision support in the event of a radioactive leak or accident from any of the nuclear facilities by assessing the dispersion and deposition patterns of the atmospheric releases, integrate with spatial geographical database for impact assessment and guidance for mitigation. The system is designed with open software tools (UMN Map server, MYSQL, PHP, Java scripts) and its main features include assessment of dose, short and long term forecast, counter measure support, impact assessment to minimize potential threat to man and environment during radiological emergencies. The system is implemented in live mode with integration of numerical models and spatial data base for the site region and is presently operational for the Kalpakkam site. (author)

  3. Severe deterministic effects of external exposure and intake of radioactive material: basis for emergency response criteria

    International Nuclear Information System (INIS)

    Kutkov, V; Buglova, E; McKenna, T

    2011-01-01

    Lessons learned from responses to past events have shown that more guidance is needed for the response to radiation emergencies (in this context, a 'radiation emergency' means the same as a 'nuclear or radiological emergency') which could lead to severe deterministic effects. The International Atomic Energy Agency (IAEA) requirements for preparedness and response for a radiation emergency, inter alia, require that arrangements shall be made to prevent, to a practicable extent, severe deterministic effects and to provide the appropriate specialised treatment for these effects. These requirements apply to all exposure pathways, both internal and external, and all reasonable scenarios, to include those resulting from malicious acts (e.g. dirty bombs). This paper briefly describes the approach used to develop the basis for emergency response criteria for protective actions to prevent severe deterministic effects in the case of external exposure and intake of radioactive material.

  4. Assessment of emergency response planning and implementation in the aftermath of major natural disasters and technological accidents

    International Nuclear Information System (INIS)

    Milligan, Patricia A.; Jones, Joseph; Walton, F.; Smith, J.D.

    2008-01-01

    Emergency planning around nuclear power plants represents some of the most mature and well developed emergency planning in the United States. Since the implementation of NUREG-0654 / FEMA-REP-1, Rev. 1, A Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants (NRC, 1980a) the licensees, local, and State agencies have developed detailed Radiological Emergency Response Programs. An important component of these plans is the evacuation of the population in the event of a general emergency condition at the plant. In January 2005, the U.S. Nuclear Regulatory Commission (NRC) published the landmark report, 'Identification and Analysis of Factors Affecting Emergency Evacuations' (NUREG/CR 6864/), which represented the most comprehensive investigation of public evacuations in the United States in more than 15 years. Since the completion of this research, several high profile evacuations have occurred, including Hurricane Katrina in New Orleans, Hurricane Rita in Houston, as well as major wildfires across the western U.S. The NRC commissioned an update to its 2005 evacuation case study publication to evaluate the evacuation experience of the selected communities (e.g., timeliness, related injuries, hazard avoidance); the level of preplanning that was in place for the affected areas and extent that the pre planned requirements were implemented during the emergency response; the critical factors contributing to the efficiency of or impediments to the evacuations (e.g., training, drills, preparedness, experience, resources, facilities, and organizational structure); and additional factors that may have contributed to less than satisfactory public response (i.e., availability of personal transportation, use of public transportation, lack of availability of shelters, etc.). The comprehensive report will be published in fall of 2008 as NUREG/CR-6981, Assessment of Emergency Response Planning and

  5. Evaluating nuclear power plant crew performance during emergency response drills

    International Nuclear Information System (INIS)

    Rabin, D.

    1999-01-01

    The Atomic Energy Control Board (AECB) is responsible for the regulation of the health, safety and environmental consequences of nuclear activities in Canada. Recently, the Human Factors Specialists of the AECB have become involved in the assessment of emergency preparedness and emergency response at nuclear facilities. One key contribution to existing AECB methodology is the introduction of Behaviourally Anchored Rating Scales (BARS) to measure crew interaction skills during emergency response drills. This report presents results of an on-going pilot study to determine if the BARS provide a reliable and valid means of rating the key dimensions of communications, openness, task coordination and adaptability under simulated emergency circumstances. To date, the objectivity of the BARS is supported by good inter-rater reliability while the validity of the BARS is supported by the agreement between ratings of crew interaction and qualitative and quantitative observations of crew performance. (author)

  6. Methodology for Estimating Ingestion Dose for Emergency Response at SRS

    CERN Document Server

    Simpkins, A A

    2002-01-01

    At the Savannah River Site (SRS), emergency response models estimate dose for inhalation and ground shine pathways. A methodology has been developed to incorporate ingestion doses into the emergency response models. The methodology follows a two-phase approach. The first phase estimates site-specific derived response levels (DRLs) which can be compared with predicted ground-level concentrations to determine if intervention is needed to protect the public. This phase uses accepted methods with little deviation from recommended guidance. The second phase uses site-specific data to estimate a 'best estimate' dose to offsite individuals from ingestion of foodstuffs. While this method deviates from recommended guidance, it is technically defensibly and more realistic. As guidance is updated, these methods also will need to be updated.

  7. Employer Requirements to Work during Emergency Responses: Key Ethics Considerations.

    Science.gov (United States)

    Rutkow, Lainie; Taylor, Holly A; Powell, Tia

    2017-03-01

    Local health departments and their employees are at the forefront of emergency preparedness and response. Yet, recent studies have found that some local public health workers are unwilling to report to work in a variety of disaster scenarios. This can greatly compromise a response, as many local health departments need "all hands on deck" to effectively meet increased demands. To address these concerns, local health departments have employed varied policy strategies to ensure that employees do report to work. After describing different approaches taken by local health departments throughout the United States, we briefly identify and explore key ethics considerations that arise for local health departments when employees are required to report to work for emergency responses. We then discuss how these ethics considerations may inform local health department practices intended to promote a robust emergency response.

  8. Real-time information support for managing plant emergency responses

    International Nuclear Information System (INIS)

    Cain, D.G.; Lord, R.J.; Wilkinson, C.D.

    1983-01-01

    The Three Mile Island Unit 2 accident highlighted the need to develop a systematic approach to managing plant emergency responses, to identify a better decision-making process, and to implement real-time information support for decision-making. The overall process management function is described and general information requirements for management of plant emergencies are identified. Basic information systems are being incorporated and future extensions and problem areas are discussed. (U.K.)

  9. Emergency response capability for pollutant releases to streams and rivers

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hayes, D.W.; Watts, J.R.

    1975-01-01

    Stream-river models have been developed which provide an accurate prediction of normal and accidental pollutant releases to streams and rivers. Stream parameters are being developed for the Savannah River Plant streams and the Savannah River to allow quick response in case of an accidental release of radioactive material. These data are stored on permanent disk storage for quick access via the JOSHUA operating system. This system provides an efficient and flexible emergency response capability for pollutant releases to streams and rivers

  10. Integrating Social Media Monitoring Into Public Health Emergency Response Operations.

    Science.gov (United States)

    Hadi, Tamer A; Fleshler, Keren

    2016-10-01

    Social media monitoring for public health emergency response and recovery is an essential response capability for any health department. The value of social media for emergency response lies not only in the capacity to rapidly communicate official and critical incident information, but as a rich source of incoming data that can be gathered to inform leadership decision-making. Social media monitoring is a function that can be formally integrated into the Incident Command System of any response agency. The approach to planning and required resources, such as staffing, logistics, and technology, is flexible and adaptable based on the needs of the agency and size and scope of the emergency. The New York City Department of Health and Mental Hygiene has successfully used its Social Media Monitoring Team during public health emergency responses and planned events including major Ebola and Legionnaires' disease responses. The concepts and implementations described can be applied by any agency, large or small, interested in building a social media monitoring capacity. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  11. Emergency response information within the National LLW Information Management System

    International Nuclear Information System (INIS)

    Paukert, J.G.; Fuchs, R.L.

    1986-01-01

    The U.S. Department of Energy, with operational assistance from EG and G Idaho, Inc., maintains the National Low-Level Waste Information Management System, a relational data base management system with extensive information collection and reporting capabilities. The system operates on an IBM 4341 main-frame computer in Idaho Falls, Idaho and is accessible through terminals in 46 states. One of the many programs available on the system is an emergency response data network, which was developed jointly by EG and G Idaho, Inc. and the Federal Emergency Management Agency. As a prototype, the program comprises emergency response team contacts, policies, activities and decisions; federal, state and local government contacts; facility and support center locations; and news releases for nine reactor sites in the southeast. The emergency response program provides a method for consolidating currently fragmented information into a central and user-friendly system. When the program is implemented, immediate answers to response questions will be available through a remote terminal or telephone on a 24-hour basis. In view of current hazardous and low-level waste shipment rates and future movements of high-level waste, the program can offer needed and timely information for transportation as well as site incident response

  12. Oil supply security -- Emergency response of IEA countries 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-29

    When Hurricane Katrina hit the Gulf of Mexico in 2005, the region's oil production and refining infrastructure was devastated and world energy markets were disrupted. The International Energy Agency decided in a matter of days to bring 60 million barrels of additional oil to the market. The emergency response system worked - the collective action helped to stabilise global markets. Since its founding in 1974, oil supply security has been a core mission of the IEA and the Agency has improved its mechanisms to respond to short-term oil supply disruptions. Nevertheless, numerous factors will continue to test the delicate balance of supply and demand. Oil demand growth will continue to accelerate in Asia; oil will be increasingly produced by a shrinking number of countries; and capacities in the supply chain will need to expand. These are just a few of the challenges facing an already tight market. What are the emergency response systems of IEA countries? How are their emergency structures organised? How prepared is the IEA to deal with an oil supply disruption? This publication addresses these questions. It presents another cycle of rigorous reviews of the emergency response mechanisms of IEA member countries. The goal of these reviews is to ensure that the IEA stays ready to respond effectively to oil supply disruptions. This publication also includes overviews of how China, India and countries of Southeast Asia are progressing with domestic policies to improve oil supply security, based on emergency stocks.

  13. Oil supply security -- Emergency response of IEA countries 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-29

    When Hurricane Katrina hit the Gulf of Mexico in 2005, the region's oil production and refining infrastructure was devastated and world energy markets were disrupted. The International Energy Agency decided in a matter of days to bring 60 million barrels of additional oil to the market. The emergency response system worked - the collective action helped to stabilise global markets. Since its founding in 1974, oil supply security has been a core mission of the IEA and the Agency has improved its mechanisms to respond to short-term oil supply disruptions. Nevertheless, numerous factors will continue to test the delicate balance of supply and demand. Oil demand growth will continue to accelerate in Asia; oil will be increasingly produced by a shrinking number of countries; and capacities in the supply chain will need to expand. These are just a few of the challenges facing an already tight market. What are the emergency response systems of IEA countries? How are their emergency structures organised? How prepared is the IEA to deal with an oil supply disruption? This publication addresses these questions. It presents another cycle of rigorous reviews of the emergency response mechanisms of IEA member countries. The goal of these reviews is to ensure that the IEA stays ready to respond effectively to oil supply disruptions. This publication also includes overviews of how China, India and countries of Southeast Asia are progressing with domestic policies to improve oil supply security, based on emergency stocks.

  14. The U.S. Department of Energy, National Nuclear Security Agency's Use of Geographic Information Systems for Nuclear Emergency Response Support

    International Nuclear Information System (INIS)

    Guber, A. L.

    2001-01-01

    The U.S, Department of Energy (DOE), National Nuclear Security Agency's (NNSA) Remote Sensing Laboratory (RSL) provides Geographic Information System (GIS) support during nuclear emergency response activities. As directed by the NNSA, the RSL GIS staff maintains databases and equipment for rapid field deployment during an emergency response. When on location, GIS operators provide information products to on-site emergency managers as well as to emergency managers at the DOE Headquarters (HQ) Emergency Operations Center (EOC) in Washington, D.C. Data products are derived from multiple information sources in the field including radiological prediction models, field measurements taken on the ground and from the air, and pertinent information researched on the Internet. The GIS functions as a central data hub where it supplies the information to response elements in the field, as well as to headquarters officials at HQ during emergency response activities

  15. 76 FR 72431 - Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness...

    Science.gov (United States)

    2011-11-23

    ... national preparedness terms and concepts found in the National Incident Management System (NIMS)/ Incident... many of the REP Program's operative guidance and policy documents into one location, and [[Page 72432... for alert and notification systems. In addition, Supplement 4 revises and adds evaluation criteria and...

  16. A simulator-based nuclear reactor emergency response training exercise.

    Science.gov (United States)

    Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois

    Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.

  17. Use of fiber optics in an emergency response data system

    International Nuclear Information System (INIS)

    Mahaffey, J.A.; Wahab, E.Z.

    1988-01-01

    An optical fiber communications medium has been installed in the Emergency Response Data Systems (ERDS) in the E. I. Hatch Nuclear Power Plant. These high-speed, digital communications systems are used to link together two data-collection nodes in each of two computer networks, so that the plant operating data may be shared on a real-time basis. The use of a glass-and-plastic fiber for data communications may have several advantages over a metallic medium in this special application, and it has proven to be a very reliable means of data linkage over several unit-years of operation

  18. Hazardous Materials Management and Emergency Response training Center needs assessment

    International Nuclear Information System (INIS)

    McGinnis, K.A.; Bolton, P.A.; Robinson, R.K.

    1993-09-01

    For the Hanford Site to provide high-quality training using simulated job-site situations to prepare the 4,000 Site workers and 500 emergency responders for known and unknown hazards a Hazardous Materials Management and Emergency Response Training Center is needed. The center will focus on providing classroom lecture as well as hands-on, realistic training. The establishment of the center will create a partnership among the US Department of Energy; its contractors; labor; local, state, and tribal governments; and Xavier and Tulane Universities of Louisiana. This report presents the background, history, need, benefits, and associated costs of the proposed center

  19. Emergency Response Capability Baseline Needs Assessment Compliance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-16

    This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2013 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2009 BNA, the 2012 BNA document, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures.

  20. Emergency response preparedness: the French experience of large scale exercises

    International Nuclear Information System (INIS)

    Chanson, D.; Desnoyers, B.; Chabane, J.M.

    2004-01-01

    In compliance with the IAEA regulations for the transport of radioactive material in the event of accidents during transport of radioactive material, emergency provisions to protect persons, property and environment have to be established and developed by the relevant national organisations. In France, the prefect of the department where the accident occurs is responsible for decisions and measures required to ensure the protection of both population and property at risk owing to the accident. During an accident, the ministers concerned provide the prefect with recommendations and information, in order to help him take the requisite decisions. On their side, the nuclear industry and transport companies also have to be prepared to intervene and to support the authorities at their request, depending on their capacities and their specialities. To prepare the emergency teams properly and acquire effective emergency plans, training exercises have to be conducted regularly with every ministerial department involved, the nuclear industry and transport companies, members of the public and the media. Then, the feedback from such exercises shall be taken into account to improve the emergency procedures. This paper will introduce: - emergency response preparedness: what is required by the relevant regulations? - emergency response preparedness: how is France organised? - the French experience of conducting large training exercises simulating accidents involving the transport of radioactive material; - the main difficulties and lessons learned; - the perspectives

  1. Caire - A real-time feedback system for emergency response

    International Nuclear Information System (INIS)

    Braun, H.; Brenk, H.D.; de Witt, H.

    1991-01-01

    In cases of nuclear emergencies it is the primary task of emergency response forces and decision making authorities to act properly. Whatever the specific reason for the contingency may be, a quick and most accurate estimate of the radiation exposure in consequence of the emergency must be made. This is a necessary prerequisite for decisions on protective measures and off-site emergency management. With respect to this fact ant the recent experience of the Chernobyl accident, remote monitoring systems have increased their importance as an inherent part of environmental surveillance installations in the FRG and in other countries. The existing systems in Germany are designed to cover both, routine operation and emergency situations. They provide site specific meteorological data, gross effluent dose rates, and dose rate measurements at on-site and approximately 30 off-site locations in the vicinity of a plant. Based on such telemetric surveillance networks an advanced automatic on-line system named CAIRE (Computer Aided Response to Emergencies) has been developed as a real time emergency response tool for nuclear facilities. this tool is designed to provide decision makers with most relevant radiation exposure data of the population at risk. The development phase of CAIRE has already been finished. CAIRE is now in an operational status and available for applications in emergency planning and response

  2. Emergency Response Imagery Related to Hurricanes Harvey, Irma, and Maria

    Science.gov (United States)

    Worthem, A. V.; Madore, B.; Imahori, G.; Woolard, J.; Sellars, J.; Halbach, A.; Helmricks, D.; Quarrick, J.

    2017-12-01

    NOAA's National Geodetic Survey (NGS) and Remote Sensing Division acquired and rapidly disseminated emergency response imagery related to the three recent hurricanes Harvey, Irma, and Maria. Aerial imagery was collected using a Trimble Digital Sensor System, a high-resolution digital camera, by means of NOAA's King Air 350ER and DeHavilland Twin Otter (DHC-6) Aircraft. The emergency response images are used to assess the before and after effects of the hurricanes' damage. The imagery aids emergency responders, such as FEMA, Coast Guard, and other state and local governments, in developing recovery strategies and efforts by prioritizing areas most affected and distributing appropriate resources. Collected imagery is also used to provide damage assessment for use in long-term recovery and rebuilding efforts. Additionally, the imagery allows for those evacuated persons to see images of their homes and neighborhoods remotely. Each of the individual images are processed through ortho-rectification and merged into a uniform mosaic image. These remotely sensed datasets are publically available, and often used by web-based map servers as well as, federal, state, and local government agencies. This poster will show the imagery collected for these three hurricanes and the processes involved in getting data quickly into the hands of those that need it most.

  3. Initial operations in local nuclear emergency response headquarter

    International Nuclear Information System (INIS)

    2012-06-01

    As a result of the Fukushima nuclear accident due to the Great East Japan Earthquake and the tsunami that occurred thereafter, local nuclear emergency response headquarters (local headquarters) was set up at off-site center (OFC). However, several obstacles such as the collapse of means of communication resulting from severed communication lines, food and fuel shortage resulting from stagnant physical distribution, and increasing radiation dose around the center significantly restricted originally intended operation of local headquarters. In such severe situation, the personnel gathered at the OFC from the government, local public bodies and electric companies from March 11 to 15 acted without sufficient food, sleep or rest and did all they could against successively occurring unexpected challenges by using limited means of communication. However, issues requiring further consideration were activities of each functional group, location of OFC and the functions of equipment, machines and materials and reflecting the consideration results into future protective measures and revision of the manual for nuclear emergency response were greatly important. This report described investigated results on initial operations in local headquarters such as situation of activities conducted by local headquarters and operations at functional groups. (T. Tanaka)

  4. Roles that numerical models can play in emergency response

    International Nuclear Information System (INIS)

    Dickerson, M.H.

    1982-03-01

    Four points are presented with regard to a perspective on modeling for emergency preparedness. First, and probably foremost, modeling should be considered a tool, along with measurements and experience when used for emergency preparedness. The second point is that the potential for large errors associated with knowing the source term during an accident should not be used as a guide for determining the level of the model development and application. There are many other uses for models than estimating consequences, given the source term. These uses range from estimating the source term to bracketing the problem at hand. The third point is that several levels of model complexity should be considered when addressing emergency response. These levels can vary from the simple Gaussian calculation to the more complex three-dimensional transport and diffusion calculations where terrain and vertical and horizontal shears in the wind fields can be modeled. Lastly, proper interaction and feedback between model results and measurements enhances the capabilities of each if they were applied independently for emergency response purposes

  5. How the Nuclear Applications Laboratories Help in Strengthening Emergency Response

    International Nuclear Information System (INIS)

    2014-01-01

    Safety is one of the most important considerations when engaging in highly advanced scientific and technological activities. In this respect, utilizing the potential of nuclear technology for peaceful purposes also involves risks, and nuclear techniques themselves can be useful in strengthening emergency response measures related to the use of nuclear technology. In the case of a nuclear incident, the rapid measurement and subsequent monitoring of radiation levels are top priorities as they help to determine the degree of risk faced by emergency responders and the general public. Instruments for the remote measurement of radioactivity are particularly important when there are potential health risks associated with entering areas with elevated radiation levels. The Nuclear Science and Instrumentation Laboratory (NSIL) — one of the eight laboratories of the Department of Nuclear Sciences and Applications (NA) in Seibersdorf, Austria — focuses on developing a variety of specialized analytical and diagnostic instruments and methods, and transferring knowledge to IAEA Member States. These include instruments capable of carrying out remote measurements. This emergency response work carried out by the NA laboratories supports health and safety in Member States and supports the IAEA’s mandate to promote the safe and peaceful use of nuclear energy

  6. A new emergency response model for MACCS. Final report

    International Nuclear Information System (INIS)

    Chanin, D.I.

    1992-01-01

    Under DOE sponsorship, as directed by the Los Alamos National Laboratory (LANL), the MACCS code (version 1.5.11.1) [Ch92] was modified to implement a series of improvements in its modeling of emergency response actions. The purpose of this effort has been to aid the Westinghouse Savannah River Company (WSRC) in its performance of the Level III analysis for the Savannah River Site (SRS) probabilistic risk analysis (PRA) of K Reactor [Wo90]. To ensure its usefulness to WSRC, and facilitate the new model's eventual merger with other MACCS enhancements, close cooperation with WSRC and the MACCS development team at Sandia National Laboratories (SNL) was maintained throughout the project. These improvements are intended to allow a greater degree of flexibility in modeling the mitigative actions of evacuation and sheltering. The emergency response model in MACCS version 1.5.11.1 was developed to support NRC analyses of consequences from severe accidents at commercial nuclear power plants. The NRC code imposes unnecessary constraints on DOE safety analyses, particularly for consequences to onsite worker populations, and it has therefore been revamped. The changes to the code have been implemented in a manner that preserves previous modeling capabilities and therefore prior analyses can be repeated with the new code

  7. Federal Radiological Monitoring and Assessment Center Overview of FRMAC Operations

    International Nuclear Information System (INIS)

    1998-01-01

    In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response Plan. This cooperative effort will ensure that all federal radiological assistance fully supports their efforts to protect the public. the mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of Federal Radiological Monitoring and Assessment Center (FRMAC) describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas

  8. Radiological criteria in nuclear emergencies

    International Nuclear Information System (INIS)

    Carrillo, D.; Diaz de la Cruz, F.

    1985-01-01

    It is pretended to enlighten the way to adopt the recommendations, from supranational organizations or the practices followed in other countries, to the peculiarities existing in Spain for the specific case of Nuclear Emergency Response Planning. The adaptation has been focalized in the criteria given by the Spanish Nuclear Safety Council and has taken into account the radiological protection levels, which have been considered adequate for Spanish population in case of nuclear accidents. (author)

  9. EPPM and willingness to respond: the role of risk and efficacy communication in strengthening public health emergency response systems.

    Science.gov (United States)

    Barnett, Daniel J; Thompson, Carol B; Semon, Natalie L; Errett, Nicole A; Harrison, Krista L; Anderson, Marilyn K; Ferrell, Justin L; Freiheit, Jennifer M; Hudson, Robert; McKee, Mary; Mejia-Echeverry, Alvaro; Spitzer, James; Balicer, Ran D; Links, Jonathan M; Storey, J Douglas

    2014-01-01

    This study examines the attitudinal impact of an Extended Parallel Process Model (EPPM)-based training curriculum on local public health department (LHD) workers' willingness to respond to representative public health emergency scenarios. Data are from 71 U.S. LHDs in urban and rural settings across nine states. The study explores changes in response willingness and EPPM threat and efficacy appraisals between randomly assigned control versus intervention health departments, at baseline and 1 week post curriculum, through an EPPM-based survey/resurvey design. Levels of response willingness and emergency response-related attitudes/beliefs are measured. Analyses focus on two scenario categories that have appeared on a U.S. government list of scenarios of significant concern: a weather-related emergency and a radiological "dirty" bomb event (U.S. Department of Homeland Security, 2007). The greatest impact from the training intervention on response willingness was observed among LHD workers who had low levels of EPPM-related threat and efficacy perceptions at baseline. Self-efficacy and response efficacy and response willingness increased in intervention LHDs for both scenarios, with greater response willingness increases observed for the radiological "dirty" bomb terrorism scenario. Findings indicate the importance of building efficacy versus enhancing threat perceptions as a path toward greater response willingness, and suggest the potential applicability of such curricular interventions for boosting emergency response willingness among other cadres of health providers.

  10. Radiology today

    International Nuclear Information System (INIS)

    Donner, M.W.; Heuck, F.H.W.

    1981-01-01

    The book encompasses the proceedings of a postgraduate course held in Salzburg in June 1980. 230 radiologists from 17 countries discussed here the important and practical advances of diagnostic radiology, nuclear medicine and ultrasound as they contribute to gastrointestinal, urologic, skeletal, cardiovascular, pediatric, and neuroradiology. The book contains 55 single contributions of different authors to the following main themes: Cardiovascular, Radiology, pulmonary radiology, gastrointestinal radiology, urinary tract radiology, skeletal radiology, mammography, lymphography, ultrasound, ENT radiology, and neuroradiology. (orig./MG)

  11. Radiological emergencies the first response

    International Nuclear Information System (INIS)

    2011-11-01

    This national training course about radiological emergencies first answer include: Targets and preparation for emergency response in case of a nuclear or radiological accident. Operations center, action guide for fire fighting, medical coverage, forensic test, first aid, basic instrumentation for radiation, safety equipment, monitoring radiation, gamma rays, personnel exposed protection , radiation exposure rate, injury and illness for radiation, cancer risk, contamination, decontamination and treatment, markers, personnel dosimetry, training, medical and equipment transportation, shielded and tools. Psychological, physical (health and illness), economical (agriculture and industry) and environment impacts. Terrorist attacks, security belts. Support and international agreements (IAEA)

  12. Simulation analysis of the use of emergency resources during the emergency response to a major fire

    NARCIS (Netherlands)

    Zhou, Jianfeng; Reniers, G.L.L.M.E.

    2016-01-01

    During an emergency response to an accident or disaster, emergency response actions often need to use various emergency resources. The use of resources plays an important role in the successful implementation of emergency response, but there may be conflicts in the use of resources for emergency

  13. Emergency Response Capability Baseline Needs Assessment - Compliance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-01

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by LLNL Emergency Management Department Head, James Colson. This document is the second of a two-part analysis on Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2016 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2016 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. The 2013 BNA was approved by NNSA’s Livermore Field Office on January 22, 2014.

  14. Emergency response preparedness analysis for radioactive materials transportation

    International Nuclear Information System (INIS)

    Parentela, E.M.; Burli, S.S.; Sathisan, S.K.; Vodrazka, W.C.

    1994-01-01

    This paper evaluates the emergency response capabilities of first responders, specifically fire services, within the state of Nevada. It addresses issues relating to the available emergency responders such as general capabilities, jurisdictions, and response times. Graphical displays of the response units and attribute tables were created using GIS ARC/INFO. These coverages, plus the existing Census Bureau TIGER Files and highway network for the state of Nevada, were utilized to determine approximate service areas of each response unit, population density served by each response unit, population density served by each response unit and the areas that can be served by a response unit for 3, 5, 10, and 30 minutes response times. Results of the analysis enabled identification of the critical areas along the proposed highway route corridor

  15. Emergency response arrangements for the transport of radioactive materials

    International Nuclear Information System (INIS)

    Morgan-Warren, E.

    2004-01-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability

  16. High-speed LWR transients simulation for optimizing emergency response

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.

    1984-01-01

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant

  17. Ontario Hydro's transportation of radioactive material and emergency response plan

    International Nuclear Information System (INIS)

    Karmali, N.

    1993-01-01

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro's shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada

  18. Emergency Response Resources guide for nuclear power plant emergencies

    International Nuclear Information System (INIS)

    1992-07-01

    On August 28 and September 18, 1990, the States of Louisiana and Mississippi, Gulf States Utilities, five local parishes, six Federal agencies, and the American Nuclear Insurers participated in a post-emergency TABLETOP exercise in Baton Rouge, Louisiana. One of the products developed from that experience was this guide for understanding the responsibilities and obtaining resources for specific needs from the various participants, particularly from those organizations within the Federal Government. This first revision of that guide broadens the focus of the original document. Also, new information defines the major Federal response facilities. This guide should assist State and local government organizations with identifying and obtaining those resources for the post-emergency response when their resources have been exhausted

  19. Exploring mHealth Participation for Emergency Response Communities

    Directory of Open Access Journals (Sweden)

    David G. Schwartz

    2017-03-01

    Full Text Available We explore the challenges of participation by members of emergency response communities who share a similar condition and treatment, and are called upon to participate in emergency events experienced by fellow members. Smartphones and location-based social networking technologies present an opportunity to re-engineer certain aspects of emergency medical response. Life-saving prescription medication extended in an emergency by one individual to another occurs on a micro level, anecdotally documented. We illustrate the issues and our approach through the example of an app to support patients prone to anaphylaxis and prescribed to carry epinephrine auto-injectors. We address unique participation challenges in an mHealth environment in which interventions are primarily short-term interactions which require clear and precise decision-making and constant tracking of potential participants in responding to an emergency medical event. The conflicting effects of diffused responsibility and shared identity are identified as key factors in modeling participation.

  20. Evaluating the success of an emergency response medical information system.

    Science.gov (United States)

    Petter, Stacie; Fruhling, Ann

    2011-07-01

    STATPack™ is an information system used to aid in the diagnosis of pathogens in hospitals and state public health laboratories. STATPack™ is used as a communication and telemedicine diagnosis tool during emergencies. This paper explores the success of this emergency response medical information system (ERMIS) using a well-known framework of information systems success developed by DeLone and McLean. Using an online survey, the entire population of STATPack™ users evaluated the success of the information system by considering system quality, information quality, system use, intention to use, user satisfaction, individual impact, and organizational impact. The results indicate that the overall quality of this ERMIS (i.e., system quality, information quality, and service quality) has a positive impact on both user satisfaction and intention to use the system. However, given the nature of ERMIS, overall quality does not necessarily predict use of the system. Moreover, the user's satisfaction with the information system positively affected the intention to use the system. User satisfaction, intention to use, and system use had a positive influence on the system's impact on the individual. Finally, the organizational impacts of the system were positively influenced by use of the system and the system's individual impact on the user. The results of the study demonstrate how to evaluate the success of an ERMIS as well as introduce potential changes in how one applies the DeLone and McLean success model in an emergency response medical information system context. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Timing criteria for supplemental BWR emergency response equipment

    International Nuclear Information System (INIS)

    Bickel, John H.

    2015-01-01

    The Great Tohuku Earthquake and subsequent Tsunami represented a double failure event which destroyed offsite power connections to Fukushima-Daiichi site and then destroyed on-site electrical systems needed to run decay heat removal systems. The accident could have been mitigated had there been supplemental portable battery chargers, supplemental pumps, and in-place piping connections to provide alternate decay heat removal. In response to this event in the USA, two national response centers, one in Memphis, Tennessee, and another in Phoenix, Arizona, will begin operation. They will be able to dispatch supplemental emergency response equipment to any nuclear plant in the U.S. within 24 hours. In order to define requirements for supplemental nuclear power plant emergency response equipment maintained onsite vs. in a regional support center it is necessary to confirm: (a) the earliest time such equipment might be needed depending on the specific scenario, (b) the nominal time to move the equipment from a storage location either on-site or within the region of a nuclear power plant, and (c) the time required to connect in the supplemental equipment to use it. This paper describes an evaluation process for a BWR-4 with a Mark I Containment starting with: (a) severe accident simulation to define best estimate times available for recovery based on the specific scenario, (b) identify the key supplemental response equipment needed at specific times to accomplish recovery of key safety functions, and (c) evaluate what types of equipment should be warehoused on-site vs. in regional response centers. (authors)

  2. A model national emergency plan for radiological accidents; Plan modelo nacional de respuesta de emergencia para accidentes radiologicos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The IAEA has supported several projects for the development of a national response plan for radiological emergencies. As a result, the IAEA has developed a model National Emergency Response Plan for Radiological Accidents (RAD PLAN), particularly for countries that have no nuclear power plants. This plan can be adapted for use by countries interested in developing their own national radiological emergency response plan, and the IAEA will supply the latest version of the RAD PLAN on computer diskette upon request.

  3. Composition and fundamental requirements of nuclear emergency response monitoring equipment

    International Nuclear Information System (INIS)

    Lai Yongfang; Huang Weiqi; Wang Yonghong

    2009-01-01

    Nuclear emergency monitoring equipment is concrete foundation for accomplishing radiation monitoring in nuclear or radiation accidents. Based on technical report: Generic procedures for monitoring in a nuclear or radiological emergency published by IAEA in 1999, this paper presents the main task and composition of nuclear emergency monitoring briefly, and then the basic equipment and trends of nuclear emergency monitoring equipment is put forward in detail, which is useful to construction and reinforcement of our nuclear emergency monitoring. (authors)

  4. The production and operation of the nuclear industry road emergency response plan (NIREP)

    International Nuclear Information System (INIS)

    Higson, J.

    1991-01-01

    For many years, radioactive material, ranging from small sources used for medical and commercial purposes to large consignments of irradiated fuel, has been safely moved by road in Great Britain. All such movements are controlled by law and have to meet clearly specified safety requirements concerning packaging and shielding to ensure that if the transporting vehicle is involved in an accident, there is no increase in the hazards involved because of the nature of its load. There are currently some 40,000 movements by road every year, but over more than 25 years, there has never been an accident which has led to any significant radiological impact to members of the public. A national scheme to provide contingency arrangements in the event of a road accident involving radioactive materials has now been set up by the major users and consignors of radioactive material. Called NIREP (Nuclear Industry Road Emergency Response Plan), the member industries have agreed immediately to despatch, from the nearest organisation to the incident, qualified health physicist personnel to deal with any incident involving radioactive material belonging to (or consigned by) any of the participating companies. With their widespread location of establishments, all parts of the UK mainland are covered. Vehicles covered by the scheme will display a NIREP placard, thus giving the Police, or other emergency services, an emergency telephone number of a coordinating centre and information on the site responsible for the load. (author)

  5. Emergency Response Damage Assessment using Satellite Remote Sensing Data

    Science.gov (United States)

    Clandillon, Stephen; Yésou, Hervé; Schneiderhan, Tobias; de Boissezon, Hélène; de Fraipont, Paul

    2013-04-01

    During disasters rescue and relief organisations need quick access to reliable and accurate information to be better equipped to do their job. It is increasingly felt that satellites offer a unique near real time (NRT) tool to aid disaster management. A short introduction to the International Charter 'Space and Major Disasters', in operation since 2000 promoting worldwide cooperation among member space agencies, will be given as it is the foundation on which satellite-based, emergency response, damage assessment has been built. Other complementary mechanisms will also be discussed. The user access, triggering mechanism, an essential component for this user-driven service, will be highlighted with its 24/7 single access point. Then, a clear distinction will be made between data provision and geo-information delivery mechanisms to underline the user need for geo-information that is easily integrated into their working environments. Briefly, the path to assured emergency response product quality will be presented beginning with user requirements, expressed early-on, for emergency response value-adding services. Initiatives were then established, supported by national and European institutions, to develop the sector, with SERTIT and DLR being key players, providing support to decision makers in headquarters and relief teams in the field. To consistently meet the high quality levels demanded by users, rapid mapping has been transformed via workflow and quality control standardisation to improve both speed and quality. As such, SERTIT located in Alsace, France, and DLR/ZKI from Bavaria, Germany, join their knowledge in this presentation to report about recent standards as both have ISO certified their rapid mapping services based on experienced, well-trained, 24/7 on-call teams and established systems providing the first crisis analysis product in 6 hours after satellite data reception. The three main product types provided are then outlined: up-to-date pre

  6. Modeling operators' emergency response time for chemical processing operations.

    Science.gov (United States)

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    to determine performance coefficients. These coefficients represent the decrease in time required for various basic motions in emergency situations and were used to model an emergency response. This approach will make hazardous operations requiring operator response, alarm management, and evacuation processes easier to design and predict. An application of this methodology is included in the article. The time required for an emergency response was roughly a one-third faster than for a normal response time.

  7. County Spending

    Data.gov (United States)

    Montgomery County of Maryland — This dataset includes County spending data for Montgomery County government. It does not include agency spending. Data considered sensitive or confidential and will...

  8. Study of developing nuclear fabrication facility's integrated emergency response manual

    International Nuclear Information System (INIS)

    Kim, Taeh Yeong; Cho, Nam Chan; Han, Seung Hoon; Moon, Jong Han; Lee, Jin Hang; Min, Guem Young; Han, Ji Ah

    2016-01-01

    Public begin to pay attention to emergency management. Thus, public's consensus on having high level of emergency management system up to advanced country's is reached. In this social atmosphere, manual is considered as key factor to prevent accident or secure business continuity. Therefore, we first define possible crisis at KEPCO Nuclear Fuel (hereinafter KNF) and also make a 'Reaction List' for each crisis situation at the view of information-design. To achieve it, we analyze several country's crisis response manual and then derive component, indicate duties and roles at the information-design point of view. From this, we suggested guideline to make 'Integrated emergency response manual(IERM)'. The manual we used before have following few problems; difficult to applicate at the site, difficult to deliver information. To complement these problems, we searched manual elements from the view of information-design. As a result, we develop administrative manual. Although, this manual could be thought as fragmentary manual because it confined specific several agency/organization and disaster type

  9. Integration of radiation monitoring for nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, J T; Thompson, N Y [Royal Military Coll. of Canada, Kingston, ON (Canada)

    1994-12-31

    The Canadian Forces have established Nuclear Emergency Response Teams to cope with potential radiation accidents. Previously, only gamma and high-energy beta radiation could be detected. Recently, new radiation sampling, detecting, and analytical equipment has been bought, including air samplers, beta counters, high-purity germanium gamma detectors, and multi-channel analyzers together with Gamma Vision Software to analyze gamma spectra. The purpose of the present study is to propose a way to use the new equipment, to analyze the results from the gamma and beta detectors, and to integrate the results into a format for decision making. Integration is achieved through the creation of a computer program, Radiation Integration Program (RIP). This program analyzes gross beta counts, and uses them to estimate danger to the thyroid. As well the results from Gamma Vision are converted from Bq to dose rate for several parts of the body. Overall gamma results affecting the thyroid are compared to the beta results to verify the initial estimations.

  10. Rapid screening of radioactivity in food for emergency response

    International Nuclear Information System (INIS)

    Bari, A.; Khan, A.J.; Semkow, T.M.; Syed, U.-F.; Roselan, A.; Haines, D.K.; Roth, G.; West, L.; Arndt, M.

    2011-01-01

    This paper describes the development of methods for the rapid screening of gross alpha (GA) and gross beta (GB) radioactivity in liquid foods, specifically, Tang drink mix, apple juice, and milk, as well as screening of GA, GB, and gamma radioactivity from surface deposition on apples. Detailed procedures were developed for spiking of matrices with 241 Am (alpha radioactivity), 90 Sr/ 90 Y (beta radioactivity), and 60 Co, 137 Cs, and 241 Am (gamma radioactivity). Matrix stability studies were performed for 43 days after spiking. The method for liquid foods is based upon rapid digestion, evaporation, and flaming, followed by gas proportional (GP) counting. For the apple matrix, surface radioactivity was acid-leached, followed by GP counting and/or gamma spectrometry. The average leaching recoveries from four different apple brands were between 63% and 96%, and have been interpreted on the basis of ion transport through the apple cuticle. The minimum detectable concentrations (MDCs) were calculated from either the background or method-blank (MB) measurements. They were found to satisfy the required U.S. FDA's Derived Intervention Levels (DILs) in all but one case. The newly developed methods can perform radioactivity screening in foods within a few hours and have the potential to capacity with further automation. They are especially applicable to emergency response following accidental or intentional contamination of food with radioactivity.

  11. New Structure of Emergency Response Plan in Croatia

    International Nuclear Information System (INIS)

    Valcic, I.; Subasic, D.; Cavlina, N.

    1998-01-01

    The new structure of a national emergency response plan in the case of nuclear accident is based on general requirements of modernization according to international recommendations, with a new Technical Support Center as a so-called lead technical agency, with the plan adapted to the organization of the Civil Protection, with all necessary elements of preparedness for the event of a nuclear accident in Krsko NPP and Paks NPP and with such a plan of procedures that will, to greatest possible extent, be compatible with the existing plan in neighboring countries Slovenia and Hungary. The main requirement that direct s a new organization scheme for taking protective actions in the event of a nuclear accident, is the requirement of introducing a Technical Support Center. The basic role of TSC is collecting data and information on nuclear accident, analyzing and estimating development of an accident, and preparing proposals for taking protective actions and for informing the public. TSC is required to forward those proposals to the Civil Protection, which on the basis of evaluation of proposals makes decisions on implementation and surveillance of implementation of protective measures. (author)

  12. Rapid screening of radioactivity in food for emergency response.

    Science.gov (United States)

    Bari, A; Khan, A J; Semkow, T M; Syed, U-F; Roselan, A; Haines, D K; Roth, G; West, L; Arndt, M

    2011-06-01

    This paper describes the development of methods for the rapid screening of gross alpha (GA) and gross beta (GB) radioactivity in liquid foods, specifically, Tang drink mix, apple juice, and milk, as well as screening of GA, GB, and gamma radioactivity from surface deposition on apples. Detailed procedures were developed for spiking of matrices with (241)Am (alpha radioactivity), (90)Sr/(90)Y (beta radioactivity), and (60)Co, (137)Cs, and (241)Am (gamma radioactivity). Matrix stability studies were performed for 43 days after spiking. The method for liquid foods is based upon rapid digestion, evaporation, and flaming, followed by gas proportional (GP) counting. For the apple matrix, surface radioactivity was acid-leached, followed by GP counting and/or gamma spectrometry. The average leaching recoveries from four different apple brands were between 63% and 96%, and have been interpreted on the basis of ion transport through the apple cuticle. The minimum detectable concentrations (MDCs) were calculated from either the background or method-blank (MB) measurements. They were found to satisfy the required U.S. FDA's Derived Intervention Levels (DILs) in all but one case. The newly developed methods can perform radioactivity screening in foods within a few hours and have the potential to capacity with further automation. They are especially applicable to emergency response following accidental or intentional contamination of food with radioactivity. Published by Elsevier Ltd.

  13. Oil Notifications: Emergency Response Notification System (ERNS) fact sheet

    International Nuclear Information System (INIS)

    1992-04-01

    The Emergency Response Notification System (ERNS) is a national computer database which provides the only centralized mechanism for documenting and verifying incident notification information as initially reported to the National Response Center (NRC), the U.S. Environmental Protection Agency (EPA), and to a limited extent, the U.S. Coast Guard (USCG). The initial notification data may be followed up with updated information from various Federal, State and local response authorities, as appropriate. ERNS contains data that can be used to analyze release notifications, support emergency planning efforts, and assist decision makers in developing spill prevention programs. The fact sheet provides summary information on notifications of releases of oil reported in accordance with the Clean Water Act (CWA). Under Section 311 of the CWA, discharges of oil which: (1) cause a sheen to appear on the surface of the water; (2) violate applicable water quality standards; or (3) cause sludge or emulsion to be deposited beneath the surface of the water or adjoining shoreline, must be reported to the NRC

  14. Emergency response arrangements for the transport of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Morgan-Warren, E. [Radioactive Materials Transport Div., Dept. for Transport, London (United Kingdom)

    2004-07-01

    Response arrangements are required for the transport of radioactive materials, under both transport and health and safety legislation, to safeguard persons, property and the environment in the event of incidents and emergencies. Responsibilities fall on both government and industry: government is responsible for ensuring public safety and providing information and reassurance. This responsibility is discharged for each type of incident by a nominated ''lead department'', supported as appropriate by other government departments and agencies; for their part, operators are obliged to have arrangements in place for dealing with the practicalities of any reasonably foreseeable incident, including recovery and onward transport of a package, and any required clean-up or restoration of the environment. This paper outlines both the government and industry arrangements in Great Britain. The principles of response and intervention are discussed, together with the lead department concept, regulatory requirements, and the plans developed by the transport industry to ensure a nation-wide response capability.

  15. Optimization of emergency response to major nuclear accidents

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Christou, M.D.

    1991-01-01

    A methodology for the optimization of the short-term emergency response in the event of a nuclear accident has been developed. The method aims at an optimum combination of protective actions in the presence of a multitude of conflicting objectives and under uncertainty. Conflicting objectives arise when the minimization of the potential adverse effects of an accident and the simultaneous minimization of the associated socioeconomic impacts is attempted. Additional conflicting objectives appear whenever an emergency plan tends to decrease a particular health effect (e.g. acute deaths) while at the same time it increases another (e.g. latent deaths). The uncertainty is due to the multitude of the possible accident scenarios and their respective probability of occurrence, the stochastic variability in the weather conditions and in the variability and/or lack of knowledge in the parameters of the risk assessment models. A multiobjective optimization approach is adopted in a dynamic programming scheme. An emergency protective plan consists of defining a protective action (e.g. evacuation, sheltering) at each spatial cell around the plant. Three criteria (evaluators) are used as the objective functions of the problem, namely, acute fatalities, latent effects and socioeconomic cost. The optimization procedure defines the efficient frontier, i.e. all emergency plans that are not dominated by another in all three criteria. No value trade-offs are necessary up to this point

  16. Improving the emergency response by education and training

    International Nuclear Information System (INIS)

    Lakey, J.R.A.

    1998-01-01

    The issue of communication between professionals and the wide public is discussed. It is concluded that we should encourage education about the understanding of risks and hazards. We must support education about our own subject and we should contribute to the development of the national curriculum. Above all we should try to help individual school teachers. We should try to provide a radiological protection input to courses on hazards and safety culture for undergraduates. We should try to improve the status of the profession and to ensure awareness of the profession in universities. We should see ourselves as partners with the media but we must learn interview technique. (P.A.)

  17. International IAEA Emergency Response Workshop in Fukushima Concludes

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: An IAEA workshop aimed at further strengthening nuclear and radiological emergency preparedness and response capabilities concluded today in Fukushima, Japan. More than 40 participants from 18 countries took part in the four-day Response and Assistance Network (RANET) workshop, which included a field exercise in areas affected following the March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station. During the exercise, participants conducted radiation monitoring and environmental sampling and analysis. They measured the contamination level of the ground surface and conducted gamma spectrum analysis and vehicle-based monitoring - activities that are conducted following any nuclear or radiological incident or emergency. Results were then compared amongst participants. RANET is a network currently comprising 22 countries through which the IAEA can facilitate the provision of expert support and equipment on request under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency. Pat Kenny, IAEA RANET Officer, said the workshop provided an opportunity to practice cooperation between international teams that would be deployed through RANET following an emergency. 'By bringing together so many experts from different countries in one place, the workshop helped us learn how international teams can work together to provide assistance in a nuclear or radiological emergency situation,' he said. 'It also enabled us to improve the coordination of such assistance, and it gave participants the opportunity to learn from each other.' The workshop was the first activity conducted from the IAEA RANET Capacity Building Centre, a new training centre based in the city of Fukushima that was designated earlier this week with the support of the Japanese Foreign Ministry and Fukushima Prefecture. The Centre will host RANET and other training courses, workshops and exercises aimed at enhancing nuclear emergency preparedness and response

  18. An aerial radiological survey of Project Gasbuggy and surrounding area, Rio Arriba County, New Mexico. Date of survey: October 27, 1994

    International Nuclear Information System (INIS)

    1995-08-01

    An aerial radiological survey was conducted over the Project Gasbuggy site, 55 miles (89 kilometers) east of Farmington, New Mexico, on October 27, 1994. Parallel lines were flown at intervals of 300 feet (91 meters) over a 16-square-mile (41-square-kilometer) area at a 150-foot (46-meter) altitude centered on the Gasbuggy site. The gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a high altitude aerial photograph of the area. The terrestrial exposure rate varied from 14 to 20 microR/h at 1 meter above ground level. No anomalous or man-made isotopes were found

  19. Innovations in emergency response plans : making the useful application of the 2007 CDA guidelines for emergency response plans

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, A.J. [Columbia Power Corp., Castlegar, BC (Canada)

    2008-07-01

    Columbia Power Corporation (CPC) changed its perspective and approach to emergency response plans (ERP) between 2002 and 2007 from one of administrative necessity to one of important functional reference. The new 2007 Canadian Dam Association Guidelines helped facilitate that transition for both CPC and all dam owners. As part of the licensing requirements for its new facility, CPC had an ERP commissioned and developed in 2002. A potential dam safety event occurred in 2004, which necessitated the need for the ERP to be put to use. However, at the time, it was found to be lacking in functionality for field personnel. As a result, CPC recognized the significance of having a functional ERP for field staff and undertook a substantial redraft between 2005 and 2007. This paper discussed the development of the ERP with particular reference to assessing the top potential emergency scenarios for the facility; development of response plans for the identified scenarios; a flow chart to guide personnel through the required actions; response checklist; detailed inspection checklists and any required forms, photos or specific information. It was concluded that the new ERP has been well received and has improved facility awareness and emergency preparedness. 1 ref., 2 figs.

  20. UTILIZING SAR AND MULTISPECTRAL INTEGRATED DATA FOR EMERGENCY RESPONSE

    Directory of Open Access Journals (Sweden)

    S. Havivi

    2016-06-01

    complete scene for the emergency response following an event.

  1. The emergency response guidelines for the Westinghouse pressurized water reactor

    International Nuclear Information System (INIS)

    Dekens, J.P.; Bastien, R.; Prokopovich, S.R.

    1985-01-01

    The Three Mile Island accident has demonstrated that the guidance provided for mitigating the consequences of design basis accidents could be inadequate when multiple incidents, failures or errors occur during or after the accident. Westinghouse and the Westinghouse Owners Group have developed new Emergency Response Guidelines (E.R.G.). The E.R.G. are composed of two independent sets of procedures and of a systematic tool to continuously evaluate the plant safety throughout the response to an accident. a) The Optimal Recovery Guidelines are entered each time the reactor is tripped or the Emergency Core Cooling System is actuated. An immediate verification of the automatic protective actuations is performed and the accident diagnosis process is initiated. When nature of the accident is identified, the operator is transferred to the applicable recovery procedure and subprocedures. A permanent rediagnosis is performed throughout the application of the optimal Recovery Guidelines and cross connections are provided to the adequate procedure if an error in diagnosis is identified. b) Early in the course of the accident, the operating staff initiates monitoring of the Critical Safety Functions. These are defined as the set of functions ensuring the integrity of the physical barriers against radioactivity release. The review of these functions is peformed continuously through a cyclic application of the status trees. c) The Function Restoration Guidelines are entered when the Critical Safety Function monitoring identifies a challenge to one of the functions. Depending on the severity of the challenge, the transfer to a Function Restoration Guideline can be immediate for a severe challenge or delayed for a minor challenge. Those guidelines are independent of the scenario of the accident, but only based on plant parameters and equipment availability

  2. Emergency response monitoring activities and environmental impact of the K-Reactor aqueous tritium release of December 1991

    International Nuclear Information System (INIS)

    Hamby, D.M.; Addis, R.P.; Beals, D.M.; Cadieux, J.R.; Carlton, W.H.; Dunn, D.L.; Hall, G.; Hayes, D.W.; Lorenz, R.; Kantelo, M.V.; Taylor, R.W.

    1992-01-01

    Approximately 150 gallons of tritiated water leaked from one of the K-Reactor heat exchangers between December 22 and December 25, 1991. Upon notification, the Environmental Technology Section (ETS) activated its emergency response team to provide predictions of river concentrations, transport times, and radiological effects to downstream water users. Additionally, within a few days of the release, ETS and the Environmental Monitoring Section (EMS) began a comprehensive program to collect and analyze surface water samples from SRS down to the Savannah River estuary. The TRAC mobile laboratory was deployed to the Beaufort-Jasper water treatment plant to provide initial analyses for downriver water samples. This document discusses the results of the sampling activities. Concentration levels are provided along with hypothetical maximum individual doses

  3. Emergency response plan for accidents in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Solaiman, K.M.; Al-Arfaj, A.M.; Farouk, M.A.

    2000-01-01

    This paper presents a brief description of the general emergency plan for accidents involving radioactive materials in the Kingdom of Saudi Arabia. Uses of radioactive materials and radiation sources and their associated potential accident are specified. Most general accident scenarios of various levels have been determined. Protective measures have been specified to reduce individual and collective doses arising during accident situations. Intervention levels for temporary exposure situations, as established in the IAEA's basic safety standards for protection against ionising radiation and for the safety of radiation sources, are adopted as national intervention levels. General procedures for implementation of the response plan, including notification and radiological monitoring instrumentation and equipment, are described and radiation monitoring teams are nominated. Training programs for the different parties which may be called upon to respond are studied and will be started. (author)

  4. 40 CFR 1.47 - Office of Solid Waste and Emergency Response.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Office of Solid Waste and Emergency... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.47 Office of Solid Waste and Emergency Response. The Office of Solid Waste and Emergency Response (OSWER), under the supervision of the Assistant...

  5. AERIAL RADIOLOGICAL SURVEYS

    International Nuclear Information System (INIS)

    Proctor, A.E.

    1997-01-01

    Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described

  6. Radiological English

    Energy Technology Data Exchange (ETDEWEB)

    Ribes, R. [Hospital Reina Sofia, Cordoba (Spain). Servicio de Radiologia; Ros, P.R. [Harvard Medical School, Boston, MA (United States). Div. of Radiology

    2007-07-01

    The book is an introductory book to radiological English on the basis that there are a lot of radiologists, radiology residents, radiology nurses, radiology students, and radiographers worldwide whose English level is indeterminate because their reading skills are much higher than their fluency. It is intended to help those health care professionals who need English for their work but do not speak English on a day-to-day basis. (orig.)

  7. Radiological English

    International Nuclear Information System (INIS)

    Ribes, R.; Ros, P.R.

    2007-01-01

    The book is an introductory book to radiological English on the basis that there are a lot of radiologists, radiology residents, radiology nurses, radiology students, and radiographers worldwide whose English level is indeterminate because their reading skills are much higher than their fluency. It is intended to help those health care professionals who need English for their work but do not speak English on a day-to-day basis. (orig.)

  8. Emergency Response and the International Charter Space and Major Disasters

    Science.gov (United States)

    Jones, B.; Lamb, R.

    2011-12-01

    Responding to catastrophic natural disasters requires information. When the flow of information on the ground is interrupted by crises such as earthquakes, landslides, volcanoes, hurricanes, and floods, satellite imagery and aerial photographs become invaluable tools in revealing post-disaster conditions and in aiding disaster response and recovery efforts. USGS is a global clearinghouse for remotely sensed disaster imagery. It is also a source of innovative products derived from satellite imagery that can provide unique overviews as well as important details about the impacts of disasters. Repeatedly, USGS and its resources have proven their worth in assisting with disaster recovery activities in the United States and abroad. USGS has a well-established role in emergency response in the United States. It works closely with the Federal Emergency Management Agency (FEMA) by providing first responders with satellite and aerial images of disaster-impacted sites and products developed from those images. The combination of the USGS image archive, coupled with its global data transfer capability and on-site science staff, was instrumental in the USGS becoming a participating agency in the International Charter Space and Major Disasters. This participation provides the USGS with access to international members and their space agencies, to information on European and other global member methodology in disaster response, and to data from satellites operated by Charter member countries. Such access enhances the USGS' ability to respond to global emergencies and to disasters that occur in the United States (US). As one example, the Charter agencies provided imagery to the US for over 4 months in response to the Gulf oil spill. The International Charter mission is to provide a unified system of space data acquisition and delivery to those affected by natural or man-made disasters. Each member space agency has committed resources to support the provisions of the Charter and

  9. Federal Radiological Monitoring and Assessment Center (FRMAC), US response to major radiological accidents

    International Nuclear Information System (INIS)

    Mueller, P.G.

    2000-01-01

    During the 1960's and 70's the expanded use of nuclear materials to generate electricity, to provide medical benefits, and for research purposes continued to grow in the United States. While substantial effort went into constructing plants and facilities and providing for a number of redundant backup systems for safety purposes, little effort went into the development of emergency response plans for possible major radiological accidents. Unfortunately, adequate plans and procedures had not been developed to co-ordinate either state or federal emergency response assets and personnel should a major radiological accident occur. This situation became quite evident following the Three Mile Island Nuclear Reactor accident in 1979. An accident of that magnitude had not been adequately prepared for and Pennsylvania's limited emergency radiological resources and capabilities were quickly exhausted. Several federal agencies with statutory responsibilities for emergency response, including the U.S. Environmental Protection Agency (EPA), U.S. Department of Energy (DOE), Federal Emergency Management Agency (FEMA), Nuclear Regulatory Commission (NRC), and others provided extensive assistance and support during the accident. However, the assistance was not fully co-ordinated nor controlled. Following the Three Mile Island incident 13 federal agencies worked co-operatively to develop an agreement called the Federal Radiological Emergency Response Plan (FRERP). Signed in November 1985, this plan delineated the statutory responsibilities and authorities of each federal agency signatory to the FRERP. In the event of a major radiological accident, the FRERP would be activated to ensure that a co-ordinated federal emergency response would be available to respond to any major radiological accident scenario. The FRERP encompasses a wide variety of radiological accidents, not just those stemming from nuclear power plants. Activation of the FRERP could occur from major accidents involving

  10. Radiology fundamentals

    CERN Document Server

    Singh, Harjit

    2011-01-01

    ""Radiology Fundamentals"" is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imag

  11. RSVP radiology

    International Nuclear Information System (INIS)

    Kirks, D.R.; Chaffee, D.J.

    1990-01-01

    This paper develops a relative scale of value for pediatric radiology (RSVPR). Neither the HCFA/ACA Relative Value Scale nor the Workload Measurement System developed by Health and Welfare Canada specifically addressed pediatric radiologic examinations. Technical and professional charges for examinations at Children's Hospital Medical Center were reviewed and compared with time and cost analysis. A scale was developed with chest radiography (PA and lateral views) assigned a value of 1. After review by pediatric radiologic technologists, radiologic administrators, pediatric radiologists, and chairs of departments of children's hospitals, this proposed scale was modified to reflect more accurately relative value components of pediatric radiologic and imaging examinations

  12. Decision Strategy: Radiological Evaluations: Air

    Energy Technology Data Exchange (ETDEWEB)

    Sohier, A

    2000-07-01

    The objectives of SCK-CEN's R and D programme on off-site emergency management are (1) to improve methods to assess in real time the radiological impact to the population and the environment during a nuclear emergency; (2) to support and advise the Belgian authorities on specific problems concerning existing and potential hazards from exposure to ionising radiation in normal and accidental conditions; (3) to organise training courses on off-site emergency response to nuclear accidents. Main achievements in 1999 are reported on.

  13. Decision Strategy: Radiological Evaluations: Air

    International Nuclear Information System (INIS)

    Sohier, A.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on off-site emergency management are (1) to improve methods to assess in real time the radiological impact to the population and the environment during a nuclear emergency; (2) to support and advise the Belgian authorities on specific problems concerning existing and potential hazards from exposure to ionising radiation in normal and accidental conditions; (3) to organise training courses on off-site emergency response to nuclear accidents. Main achievements in 1999 are reported on

  14. Emergency response exercise of laboratories equipped with gamma spectrometry

    International Nuclear Information System (INIS)

    Mala, H.; Jezkova, T.; Rulik, P.; Beckova, V. et al.

    2014-01-01

    Seven laboratories equipped with semiconductor gamma spectrometry (HPGe detectors) are currently included in the Radiation Monitoring Network (RMN) in the Czech Republic. These laboratories have more than 30 spectrometric chains and approximately 20 'experts' and 70 'users' who would guarantee measurements during the radiological emergency (RE). The emergency exercise was carried out in 5 of them in 2014 (in 4 of them also in 2013). The aim was to test repeatedly their capacity in existing technical facilities and with current staff in the event of a RE and identify problems (bottlenecks) in the whole process from receipt of samples to entering the results into the central database of RMN. Duration of the exercise was 12 hours, due to the shortage of staff; work in one 12-hour shift is presumed during a RE, which the laboratories should be able to provide for 14 days. These exercise samples covered a wide range of commodities that would probably come to the laboratories during the RE (aerosol filters, sorbents for sorption of gaseous forms of iodine, fallout, surface and drinking waters, food chain components and soils). Some of the samples were previously spiked with 85 Sr, 88 Y and 40 K (in the exercise these nuclides represented actual contamination that would occur in RE); liquid samples were spiked with 85 Sr and 88 Y and bulk materials with 40 K.During the exercise almost 800 samples were analysed; in addition, the automatic gamma counter (GA) in Prague laboratory measured other 90 samples automatically during the night (samples were prepared during the day-shift). On the basis of the results the total measuring capacity of the laboratories of RMN CR was estimated at about 1300 samples per day. (authors)

  15. Emergency response exercise of laboratories equipped with gammaspectrometry

    International Nuclear Information System (INIS)

    Mala, H.; Jezkova, T.; Rulik, P.; Beckova, V.

    2014-01-01

    Seven laboratories equipped with semiconductor gamma spectrometry (HPGe detectors) are currently included in the Radiation Monitoring Network (RMN) in the Czech Republic. These laboratories have more than 30 spectrometric chains and approximately 20 'experts' and 70 'users' who would guarantee measurements during the radiological emergency (RE). The emergency exercise was carried out in 5 of them in 2014 (in 4 of them also in 2013). The aim was to test repeatedly their capacity in existing technical facilities and with current staff in the event of a RE and identify problems (bottlenecks) in the whole process from receipt of samples to entering the results into the central database of RMN. Duration of the exercise was 12 hours, due to the shortage of staff; work in one 12-hour shift is presumed during a RE, which the laboratories should be able to provide for 14 days. These exercise samples covered a wide range of commodities that would probably come to the laboratories during the RE (aerosol filters, sorbents for sorption of gaseous forms of iodine, fallout, surface and drinking waters, food chain components and soils). Some of the samples were previously spiked with 85 Sr, 88 Y and 40 K (in the exercise these nuclides represented actual contamination that would occur in RE); liquid samples were spiked with 85 Sr and 88 Y and bulk materials with 40 K.During the exercise almost 800 samples were analysed; in addition, the automatic gamma counter (GA) in Prague laboratory measured other 90 samples automatically during the night (samples were prepared during the day-shift). On the basis of the results the total measuring capacity of the laboratories of RMN CR was estimated at about 1300 samples per day. (authors)

  16. Transportation radiological emergency preparedness: STAR 95 Exercise final report

    International Nuclear Information System (INIS)

    1998-01-01

    Emergency response for a transportation accident involving radiological materials, while not inherently difficult, presents a challenge for several reasons. These accidents, although they can occur anywhere, are rare. Also, although the health consequences are usually slight, accidents involving radioactive materials generally cause a great deal of concern, both for the emergency responders and the general public. How can communities be prepared for an event that requires some technical knowledge, but is so rare that it will never occur in most areas, without expending an effort disproportionate to the actual risk? How can one appropriately deal with an event that may cause excessive public concern? These questions are at the heart of the preparedness issues this program addressed. The overall goal of the Transportation Emergency Preparedness Program was to establish the framework for a coordinated response by all levels of government to a transportation accident involving radioactive material. The Program involved both preparedness activities and the development, conduct and evaluation of a field exercise in Saratoga County, New York. This Report concentrates on the functional activities, lessons learned, recommendations, and action plans for improving preparedness and response to a transportation accident involving radioactive materials

  17. Emergency Response of Iranian Hospitals Against Disasters: A Practical Framework for Improvement.

    Science.gov (United States)

    Janati, Ali; Sadeghi-Bazargani, Homayoun; Hasanpoor, Edris; Sokhanvar, Mobin; HaghGoshyie, Elaheh; Salehi, Abdollah

    2018-04-01

    Hospital emergency management is a continuous process that requires monolithic integration of planning and response attempts with local and national schemes. The aim of the current study is to evaluate emergency response by hospitals against potential disasters in Tabriz, north-west Iran. A cross-sectional study was conducted in the city of Tabriz, in Iran, in 2016. The study population included all hospitals in Tabriz. A total of 18 hospitals were assessed. The hospital emergency response checklist was used to collect data. Tool components included command and control, communication, safety and security, triage, surge capacity, continuity of essential services, human resources, logistics and supply management, and post-disaster recovery. Data entry and analysis were carried out using SPSS software (version 20). The results showed that the emergency response rate of hospitals was 54.26% in Tabriz. The lowest response rates were for Shafaa hospital (18.89%) and the highest response rates were for Razi Hospital (91.67%). The components of hospital emergency response were assessed to be between 48.07% (surge capacity) and 58.95% (communication). On the basis of the World Health Organization checklist, the emergency response rate for hospitals in Tabriz was only 54.26%. Therefore, hospital emergency responses against disasters have to be improved and must be made to reach 100%. It is essential to design a comprehensive framework for hospital emergency response. (Disaster Med Public Health Preparedness. 2018;12:166-171).

  18. Radiology illustrated. Pediatric radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-One (ed.) [Seoul National Univ. College of Medicine (Korea, Republic of). Dept. of Radiology

    2014-11-01

    Depicts characteristic imaging findings of common and uncommon diseases in the pediatric age group. Will serve as an ideal diagnostic reference in daily practice. Offers an excellent teaching aid, with numerous high-quality illustrations. This case-based atlas presents images depicting the findings typically observed when imaging a variety of common and uncommon diseases in the pediatric age group. The cases are organized according to anatomic region, covering disorders of the brain, spinal cord, head and neck, chest, cardiovascular system, gastrointestinal system, genitourinary system, and musculoskeletal system. Cases are presented in a form resembling teaching files, and the images are accompanied by concise informative text. The goal is to provide a diagnostic reference suitable for use in daily routine by both practicing radiologists and radiology residents or fellows. The atlas will also serve as a teaching aide and a study resource, and will offer pediatricians and surgeons guidance on the clinical applications of pediatric imaging.

  19. Using principles from emergency management to improve emergency response plans for research animals.

    Science.gov (United States)

    Vogelweid, Catherine M

    2013-10-01

    Animal research regulatory agencies have issued updated requirements for emergency response planning by regulated research institutions. A thorough emergency response plan is an essential component of an institution's animal care and use program, but developing an effective plan can be a daunting task. The author provides basic information drawn from the field of emergency management about best practices for developing emergency response plans. Planners should use the basic principles of emergency management to develop a common-sense approach to managing emergencies in their facilities.

  20. Numerical models and their role in emergency response: a perspective on dispersion modeling for emergency preparedness

    International Nuclear Information System (INIS)

    Greenly, G.D.; Dickerson, M.H.

    1983-03-01

    Numerical models on several levels of complexity should be available to the emergency response planner. They are a basic tool but must be used in conjunction with both measurements and experience. When these tools are used in a complimentary fashion they greatly enhance the capability of the consequence manager to respond in an emergency situation. Because each accident or incident develops it's own characteristics and requirements the system must be capable of a flexible response. Interaction and feedback between model results from a suite of models and measurements (including airborne measurements) serve the emergency response planner's spectrum of needs, ranging from planning exercises and emergency precalculations to a real-time emergency response

  1. Emergency response exercise of laboratories equipped with gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mala, Helena; Rulik, Petr; Jezkova, Tereza; Beckova, Vera [National Radiation Protection Institute (SURO), 140 00 Praha 28 (Czech Republic)

    2014-07-01

    At present 7 laboratories equipped with semiconductor gamma spectrometry (HPGe detectors) are included in the Radiation Monitoring Network (RMN) in the Czech Republic. These laboratories have 31 spectrometric chains and approximately 20 'experts' and 70 'users' who would guarantee measurements during a radiological emergency (RE). The stress exercise (a load test) was carried out in 4 of them. The aim was to test their measuring capacity in existing technical facilities and staff in the event of a RE and identify problems (bottlenecks) in the whole process from receipt of samples to entering the results into the central database of RMN. Duration of the exercise was 8 to 14 hours. Due to lack of staff, work in one 12-hour shift during a RE is presumed, which the laboratories should be able to provide for 14 days. Exercise samples covered a wide range of commodities that would probably come to the laboratories during RE (aerosol filters, adsorbed gaseous forms of iodine, fallout, surface and drinking waters, food chain components and soils). Some of the samples were previously spiked with {sup 85}Sr, {sup 88}Y and {sup 40}K (these nuclides represented actual nuclides that would occur in RE); soil samples contained higher values of {sup 137}Cs activity originating from the Chernobyl accident. Almost 40 employees took part in the exercise and measurements were carried out at 18 spectrometric chains. An automatic gamma counter which allows automatic operation of two HPGe detectors including the analysis of the spectra with a storage for up to 180 sample containers was operating in one of the laboratories involved in the exercise. The procedures in individual laboratories varied slightly depending on the staff and laboratory space available. During the exercise about 700 samples were evaluated; in addition, gamma-automat measured other 80 samples in the 'night shift'. 700 samples, this means 40 samples per a spectrometric chain or, from

  2. Nuclear emergency response planning based on participatory decision analytic approaches

    International Nuclear Information System (INIS)

    Sinkko, K.

    2004-10-01

    principles in radiation protection. Insight was also gained in what information should be collected or subject studied for emergency management. It was proved to be essential that information is in the proper form for decision-making. Therefore, methods and models to assess realistically the radiological and cost implications of different countermeasures need to be further developed. In the consequent assessments, it is necessary to take production, economic, demographic and geographical information into account. Also, the feasibility and constraints of protective actions, such as logistics, require further investigation. For example, there seems to exist no plans in the EU or Nordic countries to dispose radioactive waste that may result from decontamination. The experience gained strongly supports the format of a facilitated workshop for tackling a decision problem that concerns many different key players. The participants considered the workshop and the decision analysis very useful in planning actions in advance. They also expected a similar approach to be applicable in a real situation, although its suitability was not rated as highly as for planning. The suitability of the approach in the early phase of an accident was rated the lowest. It is concluded that a facilitated workshop is a valuable instrument for emergency management and in exercises in order to revise emergency plans or identify issues that need to be resolved. The pros and cons of the facilitated workshop method can be compared with the conventional approaches. The general goal in all methods is that key players would be better prepared for an accident situation. All participatory methods, when practiced in advance, also create a network of key players. Facilitated workshops provide the participants with an forum for structured dialogue to discuss openly the values behind the decision. Stakeholder network can evaluate and augment generic countermeasures but all the possible and feasible protective actions

  3. Radiological emergency: Malaysian preparedness and response

    International Nuclear Information System (INIS)

    Yusof, M. A. W.; Ali, H. M.

    2011-01-01

    Planning and preparation in advance for radiological emergencies can help to minimise potential public health and environmental threats if and when an actual emergency occurs. During the planning process, emergency response organisations think through how they would respond to each type of incident and the resources that will be needed. In Malaysia, planning, preparation for and response to radiological emergencies involve many parties. In the event of a radiological emergency and if it is considered a disaster, the National Security Council, the Atomic Energy Licensing Board and the Malaysian Nuclear Agency (Nuclear Malaysia) will work together with other federal agencies, state and local governments, first responders and international organisations to monitor the situation, contain the release, and clean up the contaminated site. Throughout the response, these agencies use their protective action guidelines. This paper discusses Malaysian preparedness for, and response to, any potential radiological emergency. (authors)

  4. Imaging and radiology

    Science.gov (United States)

    Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...

  5. Chronicle of pediatric radiology

    International Nuclear Information System (INIS)

    Benz-Bohm, Gabriele; Richter, Ernst

    2012-01-01

    The chronicle of pediatric radiology covers the following issues: Development of pediatric radiology in Germany (BRD, DDR, pediatric radiological accommodations); development of pediatric radiology in the Netherlands (chronology and pediatric radiological accommodations); development of pediatric radiology in Austria (chronology and pediatric radiological accommodations); development of pediatric radiology in Switzerland (chronology and pediatric radiological accommodations).

  6. Development of urban planning guidelines for improving emergency response capacities in seismic areas of Iran.

    Science.gov (United States)

    Hosseini, Kambod Amini; Jafari, Mohammad Kazem; Hosseini, Maziar; Mansouri, Babak; Hosseinioon, Solmaz

    2009-10-01

    This paper presents the results of research carried out to improve emergency response activities in earthquake-prone areas of Iran. The research concentrated on emergency response operations, emergency medical care, emergency transportation, and evacuation-the most important issues after an earthquake with regard to saving the lives of victims. For each topic, some guidelines and criteria are presented for enhancing emergency response activities, based on evaluations of experience of strong earthquakes that have occurred over the past two decades in Iran, notably Manjil (1990), Bam (2003), Firouz Abad-Kojour (2004), Zarand (2005) and Broujerd (2006). These guidelines and criteria are applicable to other national contexts, especially countries with similar seismic and social conditions as Iran. The results of this study should be incorporated into comprehensive plans to ensure sustainable development or reconstruction of cities as well as to augment the efficiency of emergency response after an earthquake.

  7. Training and exercises of the Emergency Response Team at the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Yearwood, D.D.

    1988-01-01

    The Los Alamos National Laboratory Plutonium Facility has an active Emergency Response Team. The Emergency Response Team is composed of members of the operating and support groups within the Plutonium Facility. In addition to their initial indoctrination, the members are trained and certified in first-aid, CPR, fire and rescue, and the use of self-contained-breathing-apparatus. Training exercises, drills, are conducted once a month. The drills consist of scenarios which require the Emergency Response Team to apply CPR and/or first aid. The drills are performed in the Plutonium Facility, they are video taped, then reviewed and critiqued by site personnel. Through training and effective drills and the Emergency Response Team can efficiently respond to any credible accident which may occur at the Plutonium Facility. 3 tabs

  8. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-11-09

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

  9. Emergency Response Program Designing Based On Case Study ERP Regulations In Ilam Gas Refinery

    Directory of Open Access Journals (Sweden)

    Mehdi Tahmasbi

    2015-08-01

    Full Text Available The study of Emergency response plan designing is one of the most important prevention approaches in crisis management. This study aims to design emergency response plan based on case study ERP regulations in Ilam gas refinery. On the basis of risk assessment and identification techniques such as HAZOP and FMEA in Ilam gas refinery the risks have been prioritized and then according to this prioritization the design of possible scenarios which have the highest rate of occurrence and the highest level of damage has been separated. Possible scenarios were simulated with PHAST software. Then emergency response program has been designed for the special mode or similar cases. According to the internal emergency response plan for Ilam gas refinery and predictable conditions of the process special instructions should be considered at the time of the incident to suffer the least damage on people and environment in the shortest time possible.

  10. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    International Nuclear Information System (INIS)

    Kelly, K.E.

    1994-01-01

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel

  11. 76 FR 23810 - Public Safety and Homeland Security Bureau; Federal Advisory Committee Act; Emergency Response...

    Science.gov (United States)

    2011-04-28

    ... FEDERAL COMMUNICATIONS COMMISSION Public Safety and Homeland Security Bureau; Federal Advisory Committee Act; Emergency Response Interoperability Center Public Safety Advisory Committee Meeting AGENCY... Fullano, Associate Chief, Public Safety and Homeland Security Bureau, Federal Communications Commission...

  12. Radiological terrorism and Australia's response

    International Nuclear Information System (INIS)

    Patterson, D.

    2003-01-01

    A terrorist attack in Australia involving dispersal of radioactive material is different from conventional terrorist attacks involving explosives. The trauma experienced by victims during an explosive incident includes cuts, broken limbs, burns and shock. When an explosive device involving radioactive materials is involved, there are a number of additional characteristics including the contamination of victims and the surrounding area and the potential requirement for ongoing monitoring and decontamination. Response actions may require additional complex emergency response measures including immediate protective actions to protect those potentially exposed to contamination, mass casualty care, and public and mental health. There are concerns that terrorist organizations are showing increasing interest in acquiring radiological material that could be used with explosive. A dirty bomb or technically known as a radiological dispersal device (RDD) is a device designed to spread radioactive contamination over a wide area and pose a health and safety threat to those within the contaminated area. The radioactive material could be in the form of a large chunk of material, fine powder, a liquid mist, or a gas. The material may also be spread in other ways, such as by simply emptying a container over the desired area. As RDD's do not require large amounts of explosives, there is unlikely to be a large numbers of casualties, however the areas contaminated by the radiological material may cause immediate and long term health risks to those exposed. An RDD is a weapon of Mass Disruption rather than destruction. While the likelihood of RDD's being employed by terrorist in Australia is still considered remote, Australia's emergency response organizations are developing plans to ensure a rapid and comprehensive response occurs should such an event occur in this country, The presentation will outline Australia's response arrangements at the local/state level and the type of federal

  13. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  14. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2013-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  15. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    2012-01-01

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  16. Implementation of new policy and principles of harmonisation of nuclear emergency preparedness in conditions of emergency Response Centre of the Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    Janko, K.; Zatlkajova, H.; Sladek, V.

    2003-01-01

    With respect to Chernobyl accident the changes in understanding of nuclear emergency preparedness have initiated a developing process resulting in an effective enhancement of conditions ensuring adequate response to nuclear or radiological accidents of emergency situations in many countries. The Slovak Nuclear Regulatory Authority (UJD) in frame of co-operations with IAEA, EC, OECD/NEA and other international organisations has actively participated in this challenging work targeting implementation of international experience and best practices in the country. The new international policy (principles declared e.g. in 'Memorandum of Understanding', IAEA, Vienna, 1997) based on experiences propagating importance of regional co-operation, harmonised approach and clear strategy for protective measures implementation in case of a nuclear or radiological accident has influenced the development also in Slovakia. The implementation process in the country was supported by changes in legal conditions regulating peaceful use of nuclear energy [1,2] including basic rules for emergency preparedness published in the second half of 1990 years. The principles of emergency preparedness in Slovakia fully support regional harmonisation and co-operation. Effective implementation of international practice and sharing of experience substantially contributed to the level of emergency response in the country and to the harmonisation of emergency response preparedness creating also conditions for an efficient regional integration. (authors)

  17. Dental radiology

    International Nuclear Information System (INIS)

    Bhaskar, S.N.

    1982-01-01

    The book presents the radiological manifestations of the maxillodental region in a suitable manner for fast detection and correct diagnosing of diseases of the teeth, soft tissue, and jaws. Classification therefore is made according to the radiological manifestations of the diseases and not according to etiology. (orig./MG) [de

  18. Experience from implementing international standards in national emergency response planning national adjustments and suggestions for improvements

    International Nuclear Information System (INIS)

    Naadland Holo, E.

    2003-01-01

    Full text: A process has been going on for some time in Norway to establish a harmonized background for emergency response planning for any kind of nuclear or radiological accident. The national emergency preparedness organisation with the crisis committee for nuclear accident, consisting of representatives from civil defence, defence, police-, health-, and food control authorities, has the authority to implement countermeasures to protect health, environment and national interests in case of an accident or in case of nuclear terrorism. However, in an early phase, the response plans need to be fully harmonized to ensure that every operational level knows their responsibility and the responsibilities of others. Our intention is to implement the IAEA standard 'preparedness and response for a nuclear or radiological emergency'. We believe this will simplify national and international communication and also simplify the crisis management if an accident occurs. In revising the national plans, and also the planning basis at regional and local level, as well as the planning basis for response to accidents at national nuclear facilities and in connection with arrival of nuclear submarines in Norwegian harbours, we have seen the need to make national adjustments to the international standards. In addition to the standard, there exist several other processes and routines for reporting different kinds of incidents. We have seen a need to coordinate this internally at the competent authority to simplify the routines. This paper will focus on the challenges we have met, our national solutions and some suggestions for simplification. National adjustments to the international standard. - Firstly, the threat categorization needs to be adjusted. First of all, we do not have nuclear power plants in Norway. In the aftermath of 11 September 2001 we also have focused more an the potential for nuclear terrorism. Nuclear terrorism is unlikely but puts up some new requirements in the

  19. Handbook of radiologic procedures

    International Nuclear Information System (INIS)

    Hedgcock, M.

    1986-01-01

    This book is organized around radiologic procedures with each discussed from the points of view of: indications, contraindications, materials, method of procedures and complications. Covered in this book are: emergency radiology chest radiology, bone radiology, gastrointestinal radiology, GU radiology, pediatric radiology, computerized tomography, neuroradiology, visceral and peripheral angiography, cardiovascular radiology, nuclear medicine, lymphangiography, and mammography

  20. An Ontology-Underpinned Emergency Response System for Water Pollution Accidents

    Directory of Open Access Journals (Sweden)

    Xiaoliang Meng

    2018-02-01

    Full Text Available With the unceasing development and maturation of environment geographic information system, the response to water pollution accidents has been digitalized through the combination of monitoring sensors, management servers, and application software. However, most of these systems only achieve the basic and general geospatial data management and functional process tasks by adopting mechanistic water-quality models. To satisfy the sustainable monitoring and real-time emergency response application demand of the government and public users, it is a hotspot to study how to make the water pollution information being semantic and make the referred applications intelligent. Thus, the architecture of the ontology-underpinned emergency response system for water pollution accidents is proposed in this paper. This paper also makes a case study for usability testing of the water ontology models, and emergency response rules through an online water pollution emergency response system. The system contributes scientifically to the safety and sustainability of drinking water by providing emergency response and decision-making to the government and public in a timely manner.

  1. Emergency response planning and preparedness for transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    1988-01-01

    The purpose of this Guide is to provide assistance to public authorities and others (including consignors and carriers of radioactive materials) who are responsible for ensuring safety in establishing and developing emergency response arrangements for responding effectively to transport accidents involving radioactive materials. This Guide is concerned mainly with the preparation of emergency response plans. It provides information which will assist those countries whose involvement with radioactive materials is just beginning and those which have already developed their industries involving radioactive materials and attendant emergency plans, but may need to review and improve these plans. The need for emergency response plans and the ways in which they are implemented vary from country to country. In each country, the responsible authorities must decide how best to apply this Guide, taking into account the actual shipments and associated hazards. In this Guide the emergency response planning and response philosophy are outlined, including identification of emergency response organizations and emergency services that would be required during a transport accident. General consequences which could prevail during an accident are described taking into account the IAEA Regulations for the Safe Transport of Radioactive Material. 43 refs, figs and tabs

  2. Review of IAEA documentation on Nuclear and radiological emergency

    International Nuclear Information System (INIS)

    Mukhono, P. M.

    2014-10-01

    The project focuses on the review of IAEA documentation on nuclear or radiological emergencies with main focus on methodology for developing and arrangement for nuclear and radiological emergencies. The main objective of this work is to identify limitations in IAEA documentation on emergency preparedness and response (EPR) and provide recommendation on the main actions needed to fill the gaps identified thus aiding in improvement of emergency preparedness and response to nuclear and radiological accidents. The review of IAEA documentation on nuclear and radiological emergency has been carried out by evaluating various emergency response elements. Several elements for EPR were highlighted covering the safety fundamentals, general safety requirements and EPR methods for development of an effective emergence response capability for nuclear or radiological emergencies. From these issues, the limitations of IAEA documentation on EPR were drawn and recommendations suggested as a means of improving EPR methods. Among them was the need for IAEA consider establishment of follow up and inspection programmes to facilitate implementation of EPR requirements in most developing countries, establishment of programmes that provide platforms for the countries to be motivated to update their system in line with the current status of emergency preparedness, review of the international information exchange aspects of nuclear emergencies in order to improve capabilities to communicate reliable data, information and decisions quickly and effectively among national authorities and their emergency and emergency response centres. (au)

  3. Planning for a radiological emergency in health care institutions

    International Nuclear Information System (INIS)

    Jerez Vegueria, S.F.; Jerez Vegueria, P.F.

    1998-01-01

    The possible occurrence of accidents involving sources of ionizing radiation calls for response plans to mitigate the consequences of radiological accidents. An emergency planning framework is suggested for institutions which use medical applications of ionizing radiation. Bearing in mind that the prevention of accidents is of prime importance in dealing with radioactive materials and other sources of ionizing radiation, it is recommended that emergency instructions and procedures address certain aspects of the causes of these radiological events. Issues such as identification of radiological events in medical practices and their consequences, protective measures, planning for an emergency response and maintenance of emergency capacity are considered. (author)

  4. Federal Radiological Monitoring and Assessment Center Phased Response Operations

    International Nuclear Information System (INIS)

    Riland, C.A.; Bowman, D.R.

    1999-01-01

    A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to the Lead Federal Agency (LFA) or state request when a major radiological emergency is anticipated of has occurred. The FRMAC becomes a coalition of federal off-site monitoring and assessment activities to assist the LFA, state(s), local, and tribal authorities. State, local, and tribal authorities are invited to co-locate and prioritize monitoring and assessment efforts in the FRMAC. The Department of Energy is tasked by the Federal Radiological Emergency Response Plan to coordinate the FRMAC

  5. Emergency radiological monitoring and analysis: Federal Radiological Monitoring and Assessment Center

    International Nuclear Information System (INIS)

    Thome, D.J.

    1995-01-01

    The US Federal Radiological Emergency Response Plan (FRERP) provides the framework for integrating the various Federal agencies responding to a major radiological emergency. The FRERP authorizes the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC), which is established to coordinate all Federal agencies involved in the monitoring and assessment of the off-site radiological conditions in support of the impacted State(s) and the Lead Federal Agency (LFA). Within the FRMAC, the Monitoring and Analysis Division (M ampersand A) is responsible for coordinating all FRMAC assets involved in conducting a comprehensive program of environmental monitoring, sampling, radioanalysis, and quality assurance. To assure consistency, completeness, and the quality of the data produced, a methodology and procedures manual is being developed. This paper discusses the structure, assets, and operations of the FRMAC M ampersand A and the content and preparation of the manual

  6. Radiological optimization

    International Nuclear Information System (INIS)

    Zeevaert, T.

    1998-01-01

    Radiological optimization is one of the basic principles in each radiation-protection system and it is a basic requirement in the safety standards for radiation protection in the European Communities. The objectives of the research, performed in this field at the Belgian Nuclear Research Centre SCK-CEN, are: (1) to implement the ALARA principles in activities with radiological consequences; (2) to develop methodologies for optimization techniques in decision-aiding; (3) to optimize radiological assessment models by validation and intercomparison; (4) to improve methods to assess in real time the radiological hazards in the environment in case of an accident; (5) to develop methods and programmes to assist decision-makers during a nuclear emergency; (6) to support the policy of radioactive waste management authorities in the field of radiation protection; (7) to investigate existing software programmes in the domain of multi criteria analysis. The main achievements for 1997 are given

  7. MEMO radiology

    International Nuclear Information System (INIS)

    Wagner-Manslau, C.

    1989-01-01

    This radiology volume is a concise handbook of imaging techniques, nuclear medicine, and radiation therapy, albeit that the main emphasis is on classic radiology. It offers, for instance, a survey of radiological findings for the most frequent pathological conditions, many overviews of differential diagnosis, a glossary of the technical bases of radiology and so forth. The contents are divided into the following chapters: Physical and biological bases; skeleton; thorax with the subdivisions lungs, heart, mediastinum, and pleura; gastrointestinal tract with the subsections esophagus, small and large intestine; liver; biliary tract; pancreas; retroperitoneal space; kidney; suprarenal glands; bladder; blood vessels, lymph nodes, spleen; mammary glands; female genitals; prostate and scrotum, epididymis and seminal vesicle. (orig./MG) With 23 figs [de

  8. Clarification of TMI action plan requirements. Requirements for emergency response capability

    International Nuclear Information System (INIS)

    1983-01-01

    This document, Supplement 1 to NUREG-0737, is a letter from D. G. Eisenhut, Director of the Division of Licensing, NRR, to licensees of operating power reactors, applicants for operating licenses, and holders of construction permits forwarding post-TMI requirements for emergency response capability which have been approved for implementation. On October 30, 1980, the NRC staff issued NUREG-0737, which incorporated into one document all TMI-related items approved for implementation by the Commission at that time. In this NRC report, additional clarification is provided regarding Safety Parameter Display Systems, Detailed Control Room Design Reviews, Regulatory Guide 1.97 (Revision 2) - Application to Emergency Response Facilities, Upgrade of Emergency Operating Procedures, Emergency Response Facilities, and Meteorological Data

  9. Expert system technology to support emergency response: its prospects and limitations

    International Nuclear Information System (INIS)

    Belardo, S.; Wallace, W.A.

    1988-01-01

    The capabilities for computer technologies to provide decision support in emergency response are now well recognized. The information flow prior to, during, and after potentially catastrophic events must be managed in order to have effective response. We feel strongly that computer technology can be a crucial component in this management process. We will first review a relatively new facet of computer technology - expert systems. We will then provide a conceptual framework for decision making under crisis, a situation typified by emergency response. We follow with a discussion of a prototype expert system for response to an accident at a nuclear power generation facility. Our final section discusses the potential advantages and limitations of expert system technology in emergency response. (author)

  10. Tactical and strategic decision-making aids for nuclear power plant emergency response

    International Nuclear Information System (INIS)

    Cain, D.G.

    1987-01-01

    This paper examines the prospective role of computer-based decision aids for nuclear power plant emergency response. The role of these systems is subordinate to human activities, but in a complementary manner these systems process decision logic more accurately and foster a more thorough understanding of emergency situations than might other wise be possible. Within this context two decision support systems being developed are discussed. Both of these systems utilize technology derived from artificial intelligence, focussing on two different facets of emergency response. An automated emergency operating procedures (EOP) tracking expert system is described as a tactical aid for control room operator response. A reactor emergency action level monitor (REALM) expert system is proposed as a strategic decision aid for site emergency response. The discrimination between tactical and strategic decision-making is an intrinsic part of this examination

  11. Radiological hazards

    International Nuclear Information System (INIS)

    Hamilton, M.

    1984-01-01

    The work of the (United Kingdom) National Radiological Protection Board is discussed. The following topics are mentioned: relative contributions to genetically significant doses of radiation from various sources; radon gas in non-coal mines and in dwelling houses; effects of radiation accidents; radioactive waste disposal; radiological protection of the patient in medicine; microwaves, infrared radiation and cataracts; guidance notes for use with forthcoming Ionising Radiations Regulations; training courses; personal dosimetry service; work related to European Communities. (U.K.)

  12. Radiological aspects of nuclear accident scenarios. Volume 1 real-time emergency response systems post-Chernobyl action

    International Nuclear Information System (INIS)

    Sinnaeve, J.

    1991-01-01

    In the event of a nuclear accident, there is a need for a rapid assessment of the resulting levels of environmental contamination in order to facilitate decisions on possible countermeasures. Volume 1 of this report covers the development of numerical models, in the form of software packages, to simulate atmospheric transport and deposition over various distances, and techniques for estimation of the resulting doses

  13. DAE emergency response centre (ERC) at Kalpakkam for response to nuclear and radiological emergencies in public domain

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Mathiyarasu, R.; Subramanian, V.; Rajaram, S.; Somayaji, K.M.; Kannan, V.; Rajagopalan, H.

    2008-01-01

    In India, Department of Atomic Energy (DAE) has been identified as the nodal agency/authority in respect of providing the necessary technical inputs in the event of any radiation emergency that may occur in public domain. The overall system takes into consideration statutory requirements, executive decisions as well as National and International obligations. This paper highlights the details about the strength of the Kalpakkam ERC and other essential requisites and their compliance since its formation

  14. Building Up an On-Line Plant Information System for the Emergency Response Center of the Hungarian Nuclear Safety Directorate

    International Nuclear Information System (INIS)

    Vegh, Janos; Major, Csaba; Horvath, Csaba; Hozer, Zoltan; Adorjan, Ferenc; Lux, Ivan; Horvath, Kristof

    2002-01-01

    The main design features, services, and human-machine interface characteristics are described of the CERTA VITA on-line plant information system developed and installed by KFKI AEKI at the Nuclear Safety Directorate (NSD) of the Hungarian Atomic Energy Authority (HAEA) in cooperation with experts from the NSD. The Center for Emergency Response, Training, and Analysis (CERTA) located at the headquarters of NSD, Budapest, Hungary, was established in 1997. The center supports the NSD installation, radiological monitoring, and advisory team in case of nuclear emergencies, with appropriate hardware and software for communication, diagnosis, prognosis, and prediction. The vital information transfer and analysis (VITA) system represents an important part of the CERTA, as it provides for the continuous remote inspection of the four VVER-440/V213 units of the Hungarian Paks nuclear power plant (NPP). The on-line information system maintains a continuous data link with the NPP through a managed leased line that connects CERTA to a gateway computer located at the Paks NPP. The present scope of the system is a result of a 4-yr development project: In addition to the basic safety parameter display functions, the VITA system now includes an on-line break parameter estimation module, an extensive training package based on simulated transients, and on-line data transfer capabilities to feed accident diagnosis/analysis codes

  15. Occupational Safety and Health System for Workers Engaged in Emergency Response Operations in the USA.

    Science.gov (United States)

    Toyoda, Hiroyuki; Kubo, Tatsuhiko; Mori, Koji

    2016-12-03

    To study the occupational safety and health systems used for emergency response workers in the USA, we performed interviews with related federal agencies and conducted research on related studies. We visited the Federal Emergency Management Agency (FEMA) and National Institute for Occupational Safety and Health (NIOSH) in the USA and performed interviews with their managers on the agencies' roles in the national emergency response system. We also obtained information prepared for our visit from the USA's Occupational Safety and Health Administration (OSHA). In addition, we conducted research on related studies and information on the website of the agencies. We found that the USA had an established emergency response system based on their National Incident Management System (NIMS). This enabled several organizations to respond to emergencies cooperatively using a National Response Framework (NRF) that clarifies the roles and cooperative functions of each federal agency. The core system in NIMS was the Incident Command System (ICS), within which a Safety Officer was positioned as one of the command staff supporting the commander. All ICS staff were required to complete a training program specific to their position; in addition, the Safety Officer was required to have experience. The All-Hazards model was commonly used in the emergency response system. We found that FEMA coordinated support functions, and OSHA and NIOSH, which had specific functions to protect workers, worked cooperatively under NRF. These agencies employed certified industrial hygienists that play a professional role in safety and health. NIOSH recently executed support activities during disasters and other emergencies. The USA's emergency response system is characterized by functions that protect the lives and health of emergency response workers. Trained and experienced human resources support system effectiveness. The findings provided valuable information that could be used to improve the

  16. Update of the Nuclear Criticality Slide Rule for the Emergency Response to a Nuclear Criticality Accident

    Science.gov (United States)

    Duluc, Matthieu; Bardelay, Aurélie; Celik, Cihangir; Heinrichs, Dave; Hopper, Calvin; Jones, Richard; Kim, Soon; Miller, Thomas; Troisne, Marc; Wilson, Chris

    2017-09-01

    AWE (UK), IRSN (France), LLNL (USA) and ORNL (USA) began a long term collaboration effort in 2015 to update the nuclear criticality Slide Rule for the emergency response to a nuclear criticality accident. This document, published almost 20 years ago, gives order of magnitude estimates of key parameters, such as number of fissions and doses (neutron and gamma), useful for emergency response teams and public authorities. This paper will present, firstly the motivation and the long term objectives for this update, then the overview of the initial configurations for updated calculations and preliminary results obtained with modern 3D codes.

  17. Update of the Nuclear Criticality Slide Rule for the Emergency Response to a Nuclear Criticality Accident

    Directory of Open Access Journals (Sweden)

    Duluc Matthieu

    2017-01-01

    Full Text Available AWE (UK, IRSN (France, LLNL (USA and ORNL (USA began a long term collaboration effort in 2015 to update the nuclear criticality Slide Rule for the emergency response to a nuclear criticality accident. This document, published almost 20 years ago, gives order of magnitude estimates of key parameters, such as number of fissions and doses (neutron and gamma, useful for emergency response teams and public authorities. This paper will present, firstly the motivation and the long term objectives for this update, then the overview of the initial configurations for updated calculations and preliminary results obtained with modern 3D codes.

  18. A FTA-based method for risk decision-making in emergency response

    DEFF Research Database (Denmark)

    Liu, Yang; Li, Hongyan

    2014-01-01

    Decision-making problems in emergency response are usually risky and uncertain due to the limited decision data and possible evolvement of emergency scenarios. This paper focuses on a risk decisionmaking problem in emergency response with several distinct characteristics including dynamic...... evolvement process of emergency, multiple scenarios, and impact of response actions on the emergency scenarios. A method based on Fault Tree Analysis (FTA) is proposed to solve the problem. By analyzing the evolvement process of emergency, the Fault Tree (FT) is constructed to describe the logical relations...

  19. Developing a highway emergency response plan for incidents involving hazardous materials, second edition, March 1992

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This provides minimum guidelines for developing an emergency response plan for incidents involving hazardous liquid hydrocarbons, such as gasoline and crude oil, transported in MC 306/DOT 406 and MC 307/DOT 407 aluminum cargo tanks and for coordinating and cooperating with local, state, and federal officials. This publication covers response plan priorities, personnel training, special equipment, media relations, environmental relations, and post-response activities. The apprendixes to this recommended practice outline a highway emergency response plan and suggest a procedure for removing liquid hydrocarbons from overturned cargo tanks and righting the tank vehicles

  20. Nuclear criticality safety aspects of emergency response at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Baker, J.S.

    2003-01-01

    Emergency response at Los Alamos National Laboratory (LANL) is handled through a graded approach depending on the specific emergency situation . LANL maintains a comprehensive capability to respond to events ranging from minor facility events (alerts) through major community events (general emergencies), including criticality accidents . Criticality safety and emergency response apply to all activities involving significant quantities of fissile material at LANL, primarily at Technical Area 18 (TA-18, the Los Alamos Critical Experiments Facility) and Technical Area 55 (TA-55, the Plutonium Facility). This discussion focuses on response to a criticality accident at TA-55; the approach at TA-18 is comparable .

  1. Radiological protection

    International Nuclear Information System (INIS)

    Azorin N, J.; Azorin V, J. C.

    2010-01-01

    This work is directed to all those people related with the exercise of the radiological protection and has the purpose of providing them a base of knowledge in this discipline so that they can make decisions documented on technical and scientist factors for the protection of the personnel occupationally exposed, the people in general and the environment during the work with ionizing radiations. Before de lack of a text on this matter, this work seeks to cover the specific necessities of our country, providing a solid presentation of the radiological protection, included the bases of the radiations physics, the detection and radiation dosimetry, the radiobiology, the normative and operational procedures associates, the radioactive wastes, the emergencies and the transport of the radioactive material through the medical and industrial applications of the radiations, making emphasis in the relative particular aspects to the radiological protection in Mexico. The book have 16 chapters and with the purpose of supplementing the given information, are included at the end four appendixes: 1) the radioactive waste management in Mexico, 2-3) the Mexican official standards related with the radiological protection, 4) a terms glossary used in radiological protection. We hope this book will be of utility for those people that work in the investigation and the applications of the ionizing radiations. (Author)

  2. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  3. An emergency response intercomparison exercise using a synthetically generated gamma-ray spectrum

    DEFF Research Database (Denmark)

    Dowdall, M.; Selnæs, O.G.; Standring, W.J.F.

    2010-01-01

    Although high resolution gamma ray spectrometry serves as the primary analytical technique in emergency response situations, chances for laboratories to practice analysing the type of spectra that may be expected in the early phase of such a situation are limited. This problem is more acute for l...

  4. Stakeholder Attitudes Toward and Values Embedded in a Sensor-Enhanced Personal Emergency Response System

    DEFF Research Database (Denmark)

    Dahl, Yngve; Farshchian, Babak; Vilarinho, Thomas

    2016-01-01

    This paper provides an empirical understanding of concerns that the application of a sensor-enhanced medical alert system, or personal emergency response (PER) system, raises from the perspective of care receivers (users) and care providers. Data were gathered in the context of a field trial...

  5. Emergency response to a highway accident in Springfield, Massachusetts, on December 16, 1991

    International Nuclear Information System (INIS)

    1992-06-01

    On December 16, 1991, a truck carrying unirradiated (fresh) nuclear fuel was involved in an accident on US Interstate 91, in Springfield, Massachusetts. This report describes the emergency response measures undertaken by local, State, Federal, and private parties. The report also discusses ''lessons learned'' from the response to the accident and suggests areas where improvements might be made

  6. Three Essays on Law Enforcement and Emergency Response Information Sharing and Collaboration: An Insider Perspective

    Science.gov (United States)

    Treglia, Joseph V.

    2013-01-01

    This dissertation identifies what may be done to overcome barriers to information sharing among federal, tribal, state, and local law enforcement agencies and emergency responders. Social, technical, and policy factors related to information sharing and collaboration in the law enforcement and emergency response communities are examined. This…

  7. Study of arcview GIS application in the nuclear power plant emergency response decision support system

    International Nuclear Information System (INIS)

    Li Peng; Chen Lin; Dong Binjiang

    2003-01-01

    It is very significant to apply the technique of GIS to the development of the Nuclear Power Plant Emergency Response Decision Support System. On the basis of the software system ArcView. This paper investigate the framework, the function and the development methods of the system. (authors)

  8. A GLIMPSE INTO THE EYE OF THE EMERGENCY RESPONSE AT EPA KATRINA AND RITA

    Science.gov (United States)

    This presentation was given at the Texas Environmental Health Association Annual Meeting in Round Rock, TX on October 12, 2005. The keynote address was focused on the conditions after Katrins, organizing response, field response, EPA's role in emergency response, what is EPA doi...

  9. Evaluating the effectiveness of burned area emergency response (BAER) efforts after the 2003 wildfires, southern California

    Science.gov (United States)

    Peter M. Wohlgemuth; Ken R. Hubbert; Jan L. Beyers; David R. Weise

    2007-01-01

    Wildfires burned approximately 300,000 hectares (750,000 acres) across southern California in the fall of 2003. Over 10 million dollars were spent on Burned Area Emergency Response (BAER) treatments following these fires. To support the BAER efforts, we designed a comprehensive strategy with standardized protocols to evaluate the effectiveness of various erosion...

  10. Experience Report: Constraint-Based Modelling and Simulation of Railway Emergency Response Plans

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Sandberg, Lene

    2016-01-01

    ways to proceed, including ways not necessarily anticipated in the paper-based emergency response plans. The case study was undertaken as part of a short research, ProSec, project funded by the Danish Defence Agency, with the aim of applying and developing methods for collaborative mapping of emergency...

  11. DOE Region 6 Radiological Assistance Program plan. Revision 1

    International Nuclear Information System (INIS)

    Jakubowski, F.M.

    1995-11-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the 1950's. The RAP is designed to make DOE resources available to other DOE facilities, state, tribal, local, private businesses, and individuals for the explicit purpose of assisting during radiological incidents. The DOE has an obligation, through the Atomic Energy Act of 1954, as amended, to provide resources through the Federal Radiological Emergency Response Plan (FRERP, Nov. 1985) in the event of a radiological incident. Toward this end, the RAP program is implemented on a regional basis, and has planned for an incremental response capability with regional coordination between states and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological assistance elements and those state, tribal, and local agencies responsible for first response to protect public health and safety

  12. Report on the observation of IAEA international emergency response exercise ConvEx-3(2008)

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya; Sumiya, Akihiro

    2009-02-01

    The International Atomic Energy Agency IAEA carried out a large-scale international emergency response exercise under the designated name of ConvEx-3(2008), accompanying the national exercise of Mexico in July 2008. This review report summarizes two simultaneous observations of the exercises in Mexico and the IAEA headquarter during ConvEx-3(2008). Mexico has established a very steady nuclear emergency response system based on that of US, while only two BWR nuclear power units have been operated yet. The Mexican nuclear emergency response system and the emergency response activities of the Incident and Emergency Centre of the IAEA headquarter impressed important knowledge on observers that is helpful for enhancement of Japanese nuclear emergency response system in the future, e.g. establishment of Emergency Action Level and of implementation of long time exercise and enhancement of prompt protective actions. Japan had established the Act on Special Measures Concerning Nuclear Emergency Preparedness and has developed the nuclear disaster prevention system since the JCO Criticality Accident in Tokai-mura. Now is the new stage to enhance the system on the view point of prevention of a nuclear disaster affecting the neighboring countries' or prevention of a nuclear disaster which arise from the neighboring countries'. The ConvEx-3(2008) suggested key issues about nuclear disaster prevention related to the neighboring countries, e.g. establishment of much wider environmental monitoring and of international assistance system against a foreign nuclear disaster. The observations of the IAEA ConvEx-3(2008) exercise described in this review report were funded by the MEXT (Ministry of Education, Culture, Sports, Science and Technology). (author)

  13. Radionuclide radiology

    International Nuclear Information System (INIS)

    Scarsbrook, A.F.; Graham, R.N.J.; Perriss, R.W.; Bradley, K.M.

    2006-01-01

    This is the fourth in a series of short reviews of internet-based radiological educational resources, and will focus on radionuclide radiology and nuclear medicine. What follows is a list of carefully selected websites to save time in searching them out. Most of the sites cater for trainee or non-specialist radiologists, but may also be of interest to specialists for use in teaching. This article may be particularly useful to radiologists interested in the rapidly expanding field of positron emission tomography computed tomography (PET-CT). Hyperlinks are available in the electronic version of this article and were all active at the time of going to press (February 2006)

  14. Emergency radiology

    International Nuclear Information System (INIS)

    Keats, T.E.

    1986-01-01

    This book is the German, translated version of the original published in 1984 in the U.S.A., entitled 'Emergency Radiology'. The publication for the most part is made up as an atlas of the radiological images presenting the findings required for assessment of the emergency cases and their first treatment. The test parts' function is to explain the images and give the necessary information. The material is arranged in seven sections dealing with the skull, the facial part of the skull, the spine, thorax, abdominal region, the pelvis and the hip, and the limbs. With 690 figs [de

  15. Postoperative radiology

    International Nuclear Information System (INIS)

    Burhenne, H.J.

    1989-01-01

    This paper reports on the importance of postoperative radiology. Most surgical procedures on the alimentary tract are successful, but postoperative complications remain a common occurrence. The radiologist must be familiar with a large variety of possible surgical complications, because it is this specialty that is most commonly called on to render a definitive diagnosis. The decision for reoperation, for instance, is usually based on results from radiologic imaging techniques. These now include ultrasonography, CT scanning, needle biopsy, and interventional techniques in addition to contrast studies and nuclear medicine investigation

  16. Radiological protection in interventional radiology

    International Nuclear Information System (INIS)

    Padovani, R.

    2001-01-01

    Interventional radiology (IR) reduces the need for many traditional interventions, particularly surgery, so reducing the discomfort and risk for patients compared with traditional systems. IR procedures are frequently performed by non-radiologist physicians, often without the proper radiological equipment and sufficient knowledge of radiation protection. Levels of doses to patients and staff in IR vary enormously. A poor correlation exists between patient and staff dose, and large variations of dose are reported for the same procedure. The occurrence of deterministic effects in patients is another peculiar aspect of IR owing to the potentially high skin doses of some procedures. The paper reviews the use of IR and the radiological protection of patients and staff, and examines the need for new standards for IR equipment and the training of personnel. (author)

  17. Pediatric radiology

    International Nuclear Information System (INIS)

    Benz-Bohm, G.

    1997-01-01

    Pediatric radiology is an important subsection of diagnostic radiology involving specific difficulties, but unfortunately is quite too often neglected as a subject of further education and training. The book therefore is not intended for specialists in the field, but for radiologists wishing to plunge deeper into the matter of pediatric radiology and to acquire a sound, basic knowledge and information about well-proven modalities, the resulting diagnostic images, and interpretation of results. The book is a compact guide and a helpful source of reference and information required for every-day work, or in special cases. With patients who are babies or children, the challenges are different. The book offers all the information needed, including important experience from pediatric hospital units that may be helpful in diagnostic evaluation, information about specific dissimilarities in anatomy and physiology which affect the imaging results, hints for radiology planning and performance, as well as information about the various techniques and their indication and achievements. The book presents a wide spectrum of informative and annotated images. (orig./CB) [de

  18. Radiologic considerations

    International Nuclear Information System (INIS)

    Judge, L.O.

    1987-01-01

    An increasing variety of imaging modalities as well as refinements of interventional techniques have led to a resurgence of radiologic interest and participation in urolithiasis management. Judicious selection of the diagnostic examination, close monitoring during the procedure, consultation with urologic colleagues, and a careful regard for radiation safety guidelines define the role of the radiologist in renal stone disease

  19. Off-site response for radiological emergencies

    International Nuclear Information System (INIS)

    Eldridge, J.S.; Oakes, T.W.; Hubbard, H.M.; Hibbitts, H.W.

    1982-01-01

    Environmental radiological surveillance under emergency conditions at off-site locations is one of the advisory functions provided by DOE within the ORO jurisdiction. The Department of Environmental Management of ORNL has been requested to provide sampling and analytical assistance at such emergency response activities. We have assembled and identified specific individuals and equipment to provide a rapid response force to perform field measurements for environmental radioactivity releases as a consequence of nuclear accidents. Survey teams for sample collection and field measurements are provided along with analytical assistance to operate the radioactivity measuring equipment in the DOE emergency van

  20. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    International Nuclear Information System (INIS)

    Borgeson, M.E.

    1994-01-01

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations

  1. Biomaterials and computation: a strategic alliance to investigate emergent responses of neural cells.

    Science.gov (United States)

    Sergi, Pier Nicola; Cavalcanti-Adam, Elisabetta Ada

    2017-03-28

    Topographical and chemical cues drive migration, outgrowth and regeneration of neurons in different and crucial biological conditions. In the natural extracellular matrix, their influences are so closely coupled that they result in complex cellular responses. As a consequence, engineered biomaterials are widely used to simplify in vitro conditions, disentangling intricate in vivo behaviours, and narrowing the investigation on particular emergent responses. Nevertheless, how topographical and chemical cues affect the emergent response of neural cells is still unclear, thus in silico models are used as additional tools to reproduce and investigate the interactions between cells and engineered biomaterials. This work aims at presenting the synergistic use of biomaterials-based experiments and computation as a strategic way to promote the discovering of complex neural responses as well as to allow the interactions between cells and biomaterials to be quantitatively investigated, fostering a rational design of experiments.

  2. Inclusion of routine wind and turbulence forecasts in the Savannah River Plant's emergency response capabilities

    International Nuclear Information System (INIS)

    Pendergast, M.M.; Gilhousen, D.B.

    1980-01-01

    The Savannah River Plant's emergency response computer system was improved by the implementation of automatic forecasts of wind and turbulence for periods up to 30 hours. The forecasts include wind direction, wind speed, and horizontal and vertical turbulence intensity at 10, 91, and 243 m above ground for the SRP area, and were obtained by using the Model Output Statistics (MOS) technique. A technique was developed and tested to use the 30-hour MOS forecasts of wind and turbulence issued twice daily from the National Weather Service at Suitland, Maryland, into SRP's emergency response program. The technique for combining MOS forecasts, persistence, and adjusted-MOS forecast is used to generate good forecasts any time of day. Wind speed and turbulence forecasts have been shown to produce smaller root mean square errors (RMSE) than forecasts of persistence for time periods over about two hours. For wind direction, the adjusted-MOS forecasts produce smaller RMSE than persistence for times greater than four hours

  3. Development of a virtual reality training system. An application to emergency response in radioactive materials transport

    International Nuclear Information System (INIS)

    Watabe, Naohito

    2003-01-01

    A virtual reality (VR) training system was developed for the purpose of confirming the applicability of virtual reality on training systems for emergency response of radioactive materials transport. This system has following features; 1) Accident scenarios were derived from an event tree analysis. 2) Instructors can edit the training scenario. 3) Three VR scenes were prepared: vehicle and equipment checks, vehicle travel on an expressway, and emergency response in a tunnel fire accident. 4) every action by users is recorded automatically. 5) Instructors and users hold briefing session after the training, and they can review and confirm the results with VR animation. 6) A support database is provided for the convenience of users. The applicability of the system was validated through some trial applications and demonstrations. (author)

  4. Resilience and Brittleness in a Nuclear Emergency Response Simulation: Focusing on Team Coordination Activity

    International Nuclear Information System (INIS)

    Costa, Wagner Schenkel; Buarque, Lia; Voshell, Martin; Branlat, Matthieu; Woods, David D.; Gomes, Jose Orlando

    2008-01-01

    The current work presents results from a cognitive task analysis (CTA) of a nuclear disaster simulation. Audio-visual records were collected from an emergency room team composed of individuals from 26 different agencies as they responded to multiple scenarios in a simulated nuclear disaster. This simulation was part of a national emergency response training activity for a nuclear power plant located in a developing country. The objectives of this paper are to describe sources of resilience and brittleness in these activities, identify cues of potential improvements for future emergency simulations, and leveraging the resilience of the emergency response System in case of a real disaster. Multiple CTA techniques were used to gain a better understanding of the cognitive dimensions of the activity and to identify team coordination and crisis management patterns that emerged from the simulation training. (authors)

  5. Bulgarian Emergency Response System (BERS) in case of nuclear accident with exposure doses estimation

    Energy Technology Data Exchange (ETDEWEB)

    Syrakov, D.; Prodanova, M.; Slavov, K.; Veleva, B.

    2015-07-01

    A PC-oriented Emergency Response System in case of nuclear accident (BERS) is developed and works operationally in the National Institute of Meteorology and Hydrology (NIMH). The creation and development of BERS was highly stimulated by the ETEX (European Tracer Experiment) project. BERS comprises two main parts - the operational and the accidental ones. The operational part, run automatically every 12 hours, prepares the input meteorological file used by both trajectory and dispersion models, runs the trajectory models, visualizes the results and uploads the maps of trajectories to a dedicated web-site. The accidental part is activated manually when a real radioactive releases occur or during emergency exercises. Its core is the Bulgarian dispersion models EMAP. Outputs are concentration, accumulated deposition and selected doses fields. In the paper, the BERS overall structure is described and examples of its products are presented. Key words: nuclear accident, emergency response, early warning system, air dispersion models, radioactive exposure dose. (Author)

  6. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    Science.gov (United States)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  7. Review and assessment of package requirements (yellowcake) and emergency response to transportation accidents

    International Nuclear Information System (INIS)

    1978-10-01

    As a consequence of an accident involving a truck shipment of yellowcake, a joint NRC--DOT study was undertaken to review and assess the regulations and practices related to package integrity and to emergency response to transportation accidents involving low specific activity radioactive materials. Recommendations are made regarding the responsibilities of state and local agencies, carriers, and shippers, and the DOT and NRC regulations

  8. Meteorological monitoring for dose assessment and emergency response modeling - how much is enough?

    International Nuclear Information System (INIS)

    Glantz, C.S.

    1990-01-01

    Individuals responsible for emergency response or environmental/dose assessment routinely ask if there are enough meteorological data to adequately support their objectives. The answer requires detailed consideration of the intended applications, capabilities of the atmospheric dispersion model data, pollutant release characteristics, terrain in the modeling region, and size and distribution of the human population in the modeling domain. The meteorologist's detailed knowledge of, and experience in, studying atmospheric transport and diffusion can assist in determining the appropriate level of meteorological monitoring

  9. Advances in real-time technology assessment and emergency response: Close-in atmospheric dispersion modeling and exposure estimation

    International Nuclear Information System (INIS)

    Sims, J.; Lee, R.; McCallen, R.; Lawver, B.; Clark, J.; Rueppel, D.; Sullivan, T.

    1992-07-01

    We have developed a stand-alone, real-time emergency response system to assess and predict the offsite dispersion of particulate releases. We have also developed advanced modeling tools that win expand the capability of the emergency response system to predict nearfield dispersion over complex terrain and around buildings

  10. Hybrid Decision-making Method for Emergency Response System of Unattended Train Operation Metro

    Directory of Open Access Journals (Sweden)

    Bobo Zhao

    2016-04-01

    Full Text Available Suitable selection of the emergency alternatives is a critical issue in emergency response system of Unattended Train Operation (UTO metro system of China. However, there is no available method for dispatcher group in Operating Control Center (OCC to evaluate the decision under emergency situation. It was found that the emergency decision making in UTO metro system is relative with the preferences and the importance of multi-dispatcher in emergency. Regarding these factors, this paper presents a hybrid method to determinate the priority weights of emergency alternatives, which aggregates the preference matrix by constructing the emergency response task model based on the Weighted Ordered Weighted Averaging (WOWA operator. This calculation approach derives the importance weights depending on the dispatcher emergency tasks and integrates it into the Ordered Weighted Averaging (OWA operator weights based on a fuzzy membership relation. A case from train fire is given to demonstrate the feasibility and practicability of the proposed methods for Group Multi-Criteria Decision Making (GMCDM in emergency management of UTO metro system. The innovation of this research is paving the way for a systematic emergency decision-making solution which connects the automatic metro emergency response system with the GMCDM theory.

  11. Identifying and training non-technical skills of nuclear emergency response teams

    International Nuclear Information System (INIS)

    Crichton, M.T.; Flin, R.

    2004-01-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams

  12. Identifying and training non-technical skills of nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, M.T. E-mail: m.crichton@abdn.ac.uk; Flin, R

    2004-08-01

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams.

  13. New insights into flood warning reception and emergency response by affected parties

    Science.gov (United States)

    Kreibich, Heidi; Müller, Meike; Schröter, Kai; Thieken, Annegret H.

    2017-11-01

    Flood damage can be mitigated if the parties at risk are reached by flood warnings and if they know how to react appropriately. To gain more knowledge about warning reception and emergency response of private households and companies, surveys were undertaken after the August 2002 and the June 2013 floods in Germany. Despite pronounced regional differences, the results show a clear overall picture: in 2002, early warnings did not work well; e.g. many households (27 %) and companies (45 %) stated that they had not received any flood warnings. Additionally, the preparedness of private households and companies was low in 2002, mainly due to a lack of flood experience. After the 2002 flood, many initiatives were launched and investments undertaken to improve flood risk management, including early warnings and an emergency response in Germany. In 2013, only a small share of the affected households (5 %) and companies (3 %) were not reached by any warnings. Additionally, private households and companies were better prepared. For instance, the share of companies which have an emergency plan in place has increased from 10 % in 2002 to 34 % in 2013. However, there is still room for improvement, which needs to be triggered mainly by effective risk and emergency communication. The challenge is to continuously maintain and advance an integrated early warning and emergency response system even without the occurrence of extreme floods.

  14. New insights into flood warning reception and emergency response by affected parties

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2017-11-01

    Full Text Available Flood damage can be mitigated if the parties at risk are reached by flood warnings and if they know how to react appropriately. To gain more knowledge about warning reception and emergency response of private households and companies, surveys were undertaken after the August 2002 and the June 2013 floods in Germany. Despite pronounced regional differences, the results show a clear overall picture: in 2002, early warnings did not work well; e.g. many households (27 % and companies (45 % stated that they had not received any flood warnings. Additionally, the preparedness of private households and companies was low in 2002, mainly due to a lack of flood experience. After the 2002 flood, many initiatives were launched and investments undertaken to improve flood risk management, including early warnings and an emergency response in Germany. In 2013, only a small share of the affected households (5 % and companies (3 % were not reached by any warnings. Additionally, private households and companies were better prepared. For instance, the share of companies which have an emergency plan in place has increased from 10 % in 2002 to 34 % in 2013. However, there is still room for improvement, which needs to be triggered mainly by effective risk and emergency communication. The challenge is to continuously maintain and advance an integrated early warning and emergency response system even without the occurrence of extreme floods.

  15. Introducing PCTRAN as an evaluation tool for nuclear power plant emergency responses

    International Nuclear Information System (INIS)

    Cheng, Yi-Hsiang; Shih, Chunkuan; Chiang, Show-Chyuan; Weng, Tung-Li

    2012-01-01

    Highlights: ► PCTRAN is integrated with an atmospheric dispersion algorithm. ► The improved PCTRAN acts as an accident/incident simulator and a data exchange system. ► The software helps the responsible organizations decide the rescue and protective actions. ► The evaluation results show the nuclear power plant accident and its off-site dose consequences. ► The software can be used for nuclear power plant emergency responses. - Abstract: Protecting the public from radiation exposure is important if a nuclear power plant (NPP) accident occurs. Deciding appropriate protective actions in a timely and effective manner can be fulfilled by using an effective accident evaluation tool. In our earlier work, we have integrated PCTRAN (Personal Computer Transient Analyzer) with the off-site dose calculation model. In this study, we introduce PCTRAN as an evaluation tool for nuclear power plant emergency responses. If abnormal conditions in the plant are monitored or observed, the plant staffs can distinguish accident/incident initiation events. Thus, the responsible personnel can immediately operate PCTRAN and set up those accident/incident initiation events to simulate the nuclear power plant transient or accident in conjunction with off-site dose distributions. The evaluation results consequently help the responsible organizations decide the rescue and protective actions. In this study, we explain and demonstrate the capabilities of PCTRAN for nuclear emergency responses, through applying it to simulate the postulated nuclear power plant accident scenarios.

  16. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    International Nuclear Information System (INIS)

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo

    2016-01-01

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted

  17. Functional design criteria for the Hazardous Materials Management and Emergency Response (HAMMER) Training Center. Revision 1

    International Nuclear Information System (INIS)

    Sato, P.K.

    1995-01-01

    Within the United States, there are few hands-on training centers capable of providing integrated technical training within a practical application environment. Currently, there are no training facilities that offer both radioactive and chemical hazardous response training. There are no hands-on training centers that provide training for both hazardous material operations and emergency response that also operate as a partnership between organized labor, state agencies, tribes, and local emergency responders within the US Department of Energy (DOE) complex. Available facilities appear grossly inadequate for training the thousands of people at Hanford, and throughout the Pacific Northwest, who are required to qualify under nationally-mandated requirements. It is estimated that 4,000 workers at the Hanford Site alone need hands-on training. Throughout the Pacific Northwest, the potential target audience would be over 30,000 public sector emergency response personnel, as well as another 10,000 clean-up workers represented by organized labor. The HAMMER Training Center will be an interagency-sponsored training center. It will be designed, built, and operated to ensure that clean-up workers, fire fighters, and public sector management and emergency response personnel are trained to handle accidental spills of hazardous materials. Training will cover wastes at clean-up sites, and in jurisdictions along the transportation corridors, to effectively protect human life, property, and the environment

  18. Design of a High Power Robotic Manipulator for Emergency Response to the Nuclear Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Bae, Yeong-Geol; Kim, Myoung Ho; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    An accident in a nuclear facility causes a great social cost. To prevent an unexpected nuclear accident from spreading to the catastrophic disaster, emergency response action in early stage is required. However, high radiation environment has been proved as a challenging obstacle for human workers to access to the accident site and take an action in previous accident cases. Therefore, emergency response robotic technology to be used in a nuclear accident site instead of human workers are actively conducted in domestically and internationally. Robots in an accident situation are required to carry out a variety of tasks depend on the types and patterns of accidents. An emergency response usually includes removing of debris, make an access road to a certain place and handling valves. These tasks normally involve high payload handling. A small sized high power robotic manipulator can be an appropriate candidate to deal with a wide spectrum of tasks in an emergency situation. In this paper, we discuss about the design of a high power robotic manipulator, which is capable of handling high payloads for an initial response action to the nuclear facility accident. In this paper, we presented a small sized high power robotic manipulator design. Actuator types of manipulator was selected and mechanical structure was discussed. In the future, the servo valve and hydraulic pump systems will be determined. Furthermore, control algorithms and test bed experiments will be also conducted.

  19. Study on IAEA international emergency response exercise convEx-3

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya

    2007-05-01

    The International Atomic Energy Agency (IAEA) carried out a large-scale international emergency response exercise in 2005 under the designated name of ConvEx-3(2005), at Romania. This review report summarizes a study about ConvEx-3(2005) based on several related open literature. The ConvEx-3 was conducted in accordance with Agency's safety standard series and requirements in the field of Emergency Preparedness and Response. The study on the preparation, conduct and evaluation of ConvEx-3(2005) exercise is expected to provide very useful knowledge for development of drills and educational programs conducted by Nuclear Emergency Assistance and Training Center (NEAT). Especially, study on the exercise evaluations is instrumental in improving evaluations of drills planned by the national government and local governments. As international cooperation among Asian countries in the field of nuclear emergency preparedness and response is going to realize, it is very useful to survey and consider scheme and methodology about international emergency preparedness, response and exercise referring the knowledge of this ConvEx-3 study. The lessons learned from this study of ConvEx-3(2005) are summarized in four chapters; methodology of exercises and educational programs, exercise evaluation process, amendments/verification of the emergency response plan of NEAT, and technical issues of systems for emergency response and assistance of NEAT relevant to interface for international emergency communication. (author)

  20. Criteria and actions facing a radiological environmental contamination

    International Nuclear Information System (INIS)

    Gutierrez, Jose; Montero, Milagros

    2008-01-01

    An approach to improve the management of the radiological risk due to an environmental contamination is presented. The experience gained in emergency response has clearly demonstrated the importance to have an efficient emergency system including planning, procedures and operational internally consistent criteria. The lack of these components in the emergency system could lead to important radiological and non radiological consequences. The setting of internationally agreed criteria and guides is very important in the anticipated emergency response plan. The paper firstly reviews the approaches proposed by international recommendations and norms. From this review, a substantial coincidence on the basic principles is stated, in spite of small differences in its formulation. Also, a need for harmonization is endorsed. So, generic levels, in terms of imparted dose or avoided dose due to intervention, and, in some cases, derived levels, in terms of activity concentration, are proposed. Numerical values for emergency actions are also identified. The second part deals with the adaptation of the existing prediction and decision systems to the above radiological criteria. Relations among deposition, activity concentrations and annual doses for different scenarios, exposure pathways and age groups are established. Also, the sensibility of the radiological impact against different characteristics of the intervention scenarios is stated. This makes easy to assess the radiological significance of different contamination situations by comparison to the existing action generic levels. Furthermore, the radiological impact can be numerically incorporated in a decision system which includes non radiological aspects of the applicable intervention options. Agricultural, urban and mixed scenarios are presented and solved for a 137 Cs contamination. The results can be further used to develop a methodology guide for setting action generic levels in post-accidental interventions and

  1. Chest radiology

    International Nuclear Information System (INIS)

    Reed, J.C.

    1990-01-01

    This book is a reference in plain chest film diagnosis provides a thorough background in the differential diagnosis of 22 of the most common radiologic patterns of chest disease. Each chapter is introduced with problem cases and a set of questions, followed by a tabular listing of the appropriate differential considerations. The book emphasizes plain films, CT and some MR scans are integrated to demonstrate how these modalities enhance the work of a case

  2. Emergency radiological monitoring and analysis United States Federal Radiological Monitoring and Assessment Center

    International Nuclear Information System (INIS)

    Thome, D.J.

    1994-01-01

    The United States Federal Radiological Emergency Response Plan (FRERP) provides the framework for integrating the various Federal agencies responding to a major radiological emergency. Following a major radiological incident the FRERP authorizes the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC). The FRMAC is established to coordinate all Federal agencies involved in the monitoring and assessment of the off-site radiological conditions in support of the impacted states and the Lead Federal Agency (LFA). Within the FRMAC, the Monitoring and Analysis Division is responsible for coordinating all FRMAC assets involved in conducting a comprehensive program of environmental monitoring, sampling, radioanalysis and quality assurance. This program includes: (1) Aerial Radiological Monitoring - Fixed Wing and Helicopter, (2) Field Monitoring and Sampling, (3) Radioanalysis - Mobile and Fixed Laboratories, (4) Radiation Detection Instrumentation - Calibration and Maintenance, (5) Environmental Dosimetry, and (6) An integrated program of Quality Assurance. To assure consistency, completeness and the quality of the data produced, a methodology and procedures handbook is being developed. This paper discusses the structure, assets and operations of FRMAC monitoring and analysis and the content and preparation of this handbook

  3. Planning and preparedness for radiological emergencies at nuclear power stations

    International Nuclear Information System (INIS)

    Thomson, R.; Muzzarelli, J.

    1996-01-01

    The Radiological Emergency Preparedness (REP) Program was created after the March 1979 accident at the Three Mile Island nuclear power station. The Federal Emergency Management Agency (FEMA) assists state and local governments in reviewing and evaluating state and local REP plans and preparedness for accidents at nuclear power plants, in partnership with the US Nuclear Regulatory Commission (NRC), which evaluates safety and emergency preparedness at the power stations themselves. Argonne National Laboratory provides support and technical assistance to FEMA in evaluating nuclear power plant emergency response exercises, radiological emergency plans, and preparedness

  4. Prevention and preparedness for response to nuclear and radiological threats

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.

    2016-01-01

    Challenges from smuggled or illegally transported radioactive sources with malevolent intention of causing potential threats to the society are much higher to those potential radiological emergencies from misplaced, orphan or lost radioactive sources. Large number of radioactive sources world over is transported for its application in various fields. The emergency preparedness and response system is less developed for potential radiological emergencies caused by them compared to those at nuclear facilities which are kept in readiness to respond to any kind of emergency. After the terrorist attack on WTC of 2001, there is significant concern world over about the malicious use of nuclear and other radioactive material. This calls for prevention of stealing/smuggling of radioactive materials and improving the emergency response system. Use of Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) are considered as possible radiological and nuclear threats, can lead to large area contamination in addition to the injuries caused by blast and thermal effects. (author)

  5. Generic procedures for assessment and response during a radiological emergency

    International Nuclear Information System (INIS)

    2000-08-01

    One of the most important aspects of managing a radiological emergency is the ability to promptly and adequately determine and take actions to protect members of the public and emergency workers. Radiological accident assessment must take account of all critical information available at any time and must be an iterative and dynamic process aimed at reviewing the response as more detailed and complete information becomes available. This manual provides the tools, generic procedures and data needed for an initial response to a non-reactor radiological accident. This manual is one out of a set of IAEA publications on emergency preparedness and response, including Method for the Development of Emergency Response Preparedness for Nuclear or Radiological Accidents (IAEA-TECDOC-953), Generic Assessment Procedures for Determining Protective Actions During a Reactor Accident (IAEA-TECDOC-955) and Intervention Criteria in a Nuclear or Radiation Emergency (Safety Series No. 109)

  6. Federal Radiological Monitoring and Assessment Center. The analytical response

    International Nuclear Information System (INIS)

    Nielsen, E.C.

    2005-01-01

    The Federal Radiological Monitoring and Assessment Center (FRMAC) is authorized by the Federal Radiological Emergency Response Plan to coordinate all off-site radiological response assistance to state and local governments, in the event of a major radiological emergency in the United States. The FRMAC is established by the U.S. Department of Energy, National Nuclear Security Administration, to coordinate all Federal assets involved in conducting a comprehensive program of radiological environmental monitoring, sampling, radioanalysis, quality assurance, and dose assessment. During an emergency response, the initial analytical data is provided by portable field instrumentation. As incident responders scale up their response based on the seriousness of the incident, local analytical assets and mobile laboratories add additional capability and capacity. During the intermediate phase of the response, data quality objectives and measurement quality objectives are more rigorous. These higher objectives will require the use of larger laboratories, with greater capacity and enhanced capabilities. These labs may be geographically distant from the incident, which will increase sample management challenges. Emergency radioanalytical capability and capacity and its utilization during FRMAC operations are discussed. (author)

  7. Federal Radiological Monitoring and Assessment Center Analytical Response

    International Nuclear Information System (INIS)

    Nielsen, E.C.

    2003-01-01

    The Federal Radiological Monitoring and Assessment Center (FR-MAC) is authorized by the Federal Radiological Emergency Response Plan to coordinate all off-site radiological response assistance to state and local government s, in the event of a major radiological emergency in the United States. The FR-MAC is established by the U.S. Department of Energy, National Nuclear Security Administration, to coordinate all Federal assets involved in conducting a comprehensive program of radiological environmental monitoring, sampling, radioanalysis, quality assurance, and dose assessment. During an emergency response, the initial analytical data is provided by portable field instrumentation. As incident responders scale up their response based on the seriousness of the incident, local analytical assets and mobile laboratories add additional capability and capacity. During the intermediate phase of the response, data quality objectives and measurement quality objectives are more rigorous. These higher objectives will require the use of larger laboratories, with greater capacity and enhanced capabilities. These labs may be geographically distant FR-om the incident, which will increase sample management challenges. This paper addresses emergency radioanalytical capability and capacity and its utilization during FR-MAC operations

  8. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2009-12-30

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection

  9. Diagnostic radiology 1987

    International Nuclear Information System (INIS)

    Margulis, A.R.; Gooding, C.A.

    1987-01-01

    This is the latest version of the continuing education course on diagnostic radiology given yearly by the Department of Radiology at the University of California, San Francisco. The lectures are grouped into sections on gastrointestinal radiology, mammography, uroradiology, magnetic resonance, hepatobiliary radiology, pediatric radiology, ultrasound, interventional radiology, chest radiology, nuclear medicine, cardiovascular radiology, and skeletal radiology. Each section contains four to eight topics. Each of these consists of text that represents highlights in narrative form, selected illustrations, and a short bibliography. The presentation gives a general idea of what points were made in the lecture

  10. Cardiothoracic radiology

    International Nuclear Information System (INIS)

    Scarsbrook, A.F.; Graham, R.N.J.; Perriss, R.W.

    2005-01-01

    A wealth of cardiothoracic websites exist on the internet. What follows is a list of the higher quality resources currently available which should save you time searching them out for yourself. Many of the sites listed cater for undergraduates and trainee or non-specialist radiologists, nevertheless these may also be of interest to specialists in thoracic radiology, particularly for use in teaching. Hyperlinks are available in the electronic version of this article and were all active at the time of going to press (April 2005)

  11. Pediatric radiology

    International Nuclear Information System (INIS)

    Silverman, F.N.

    1982-01-01

    A literature review with 186 references of diagnostic pediatric radiology, a speciality restricted to an age group rather than to an organ system or technique of examination, is presented. In the present chapter topics follow the basic organ system divisions with discussions of special techniques within these divisions. The diagnosis of congenital malformations, infectious diseases and neoplasms are a few of the topics discussed for the head and neck region, the vertebrae, the cardiovascular system, the respiratory system, the gastrointestinal tract, the urinary tract, and the skeleton

  12. Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning

    Science.gov (United States)

    Cannon, S.H.; Boldt, E.M.; Laber, J.L.; Kean, J.W.; Staley, D.M.

    2011-01-01

    Following wildfires, emergency-response and public-safety agencies can be faced with evacuation and resource-deployment decisions well in advance of coming winter storms and during storms themselves. Information critical to these decisions is provided for recently burned areas in the San Gabriel Mountains of southern California. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands is used to develop a system for classifying magnitudes of hydrologic response. The four-class system describes combinations of reported volumes of individual debris flows, consequences of debris flows and floods in an urban setting, and spatial extents of the hydrologic response. The range of rainfall conditions associated with different magnitude classes is defined by integrating local rainfall data with the response magnitude information. Magnitude I events can be expected when within-storm rainfall accumulations (A) of given durations (D) fall above the threshold A = 0.4D0.5 and below A = 0.5D0.6 for durations greater than 1 h. Magnitude II events will be generated in response to rainfall accumulations and durations between A = 0.4D0.5 and A = 0.9D0.5 for durations less than 1 h, and between A = 0.5D0.6 and A = 0.9D0.5 or durations greater than 1 h. Magnitude III events can be expected in response to rainfall conditions above the threshold A = 0.9D0.5. Rainfall threshold-magnitude relations are linked with potential emergency-response actions as an emergency-response decision chart, which leads a user through steps to determine potential event magnitudes and identify possible evacuation and resource-deployment levels. Use of this information in planning and response decision-making process could result in increased safety for both the public and emergency responders. ?? 2011 US Government.

  13. Radiological effects

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Environmental monitoring in the vicinity of the Calvert Cliffs Nuclear Power Plant has been shown the radiation dose to the public from plant operation to be quite small. Calculations from the reported release rates yield 0.2 mrem whole body dose and 0.6 mrem skin dose for the calendar quarter of maximum release. Radioactivity discharges to the Chesapeake Bay have resulted in detectable concentrations of /sup 110m/Ag, 58 Co, and 60 Co in sediments and shellfish. The area yielding samples with detectable concentrations of plant effluents extends for roughly six miles up and down the western shore, with maximum values found at the plant discharge area. The radiation dose to an individual eating 29 doz oysters and 15 doz crabs (5 kg of each) taken from the plant discharge area would be about 4/1000 mrem whole body dose and 0.2 mrem gastrointestinal tract dose (about 0.007% and 0.5% of the applicable guidelines, respectively.) Comparison of these power plant-induced doses with the fluctuations in natural radiation dose already experienced by the public indicates that the power plant effects are insignificant. The natural variations are tens of times greater than the maximum doses resulting from Calvert Cliffs Power Plant. Although operations to date provide an insufficient basis to predict radiological impact of the Calvert Cliffs Plant over its operational lifetime, available data indicate that the plant should continue to operate with insignificant radiological impact, well within all applicable guidelines

  14. Pediatric radiology

    International Nuclear Information System (INIS)

    Kirkpatrick, J.A. Jr.

    1985-01-01

    Computed tomography has made possible the excellent and basic work having to do with the characteristics of the trachea, its caliber, shape, and length in children. Another group of articles has to do with interventional pediatric radiology. This year there were a number of articles of which only a sample is included, dealing with therapeutic procedures involving drainage of abscesses, angioplasty, nephrostomy, therapeutic embolization, and the removal of esophageal foreign bodies. Obviously, there is no reason to think that techniques developed for the adult may not be applicable to the infant or child; also, there is no reason to believe that processes peculiar to the child should not be amenable to intervention, for instance, use of embolization of hepatic hemangioma and transluminal balloon valvuloplasty for pulmonary valvular stenosis. Among the reports and reviews, the author would add that sonography remains a basic imaging technique in pediatric radiology and each year its application broadens. For example, there is an excellent article having to do with sonography of the neonatal and infant hip and evaluation of the inferior vena cava and the gallbladder. Nuclear medicine continues to play a significant role in diagnosis, which is featured in two articles concerned with problems of the hip

  15. Radiological malpractice

    International Nuclear Information System (INIS)

    Bauer, G.

    1987-01-01

    As medico-legal statistics show, compared with other branches of medicine, cases of liability of the radiologist or his assistants are relatively rare. The duty to exercise due care as set out in Paragraph 6 of the Austrian penal code or Paragraph 276 of the German civil code, respectively, provide a basic rule of law also for radiology. Due to the risk inherent in the investigation method, incidents in angiography cannot be totally excluded. Therefore, it is of utmost importance that all steps be taken with regard to staff, equipment and drugs to be able to deal with any complications and incidents that may arise. The courts of law require the employer to produce strongest exonerating evidence to prove that the duty to exercise due care in the selection and supervision of the assistants has been duly fulfilled. For the practical execution of radiological investigations of the digestive tract, also the RTA is responsible; her liability when performing an irrigoscopy is particularly great, as perforation of the intestine is often lethal. The introduction of the rectal tube into the vagina by mistake, with resultant injury or death of the patient, will regularly lead to conviction under penal law. (orig.) [de

  16. Oil and Gas Security. Emergency Response of IEA Countries - Norway 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Norway for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  17. SAVANNAH RIVER SITE CAPABILITIES FOR CONDUCTING INGESTION PATHWAY CONSEQUENCE ASSESSMENTS FOR EMERGENCY RESPONSE

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C

    2007-12-11

    Potential airborne releases of radioactivity from facilities operated for the U. S. Department of Energy at the Savannah River Site could pose significant consequences to the public through the ingestion pathway. The Savannah River National Laboratory has developed a suite of technologies needed to conduct assessments of ingestion dose during emergency response, enabling emergency manager at SRS to develop initial protective action recommendation for state agencies early in the response and to make informed decisions on activation of additional Federal assets that would be needed to support long-term monitoring and assessment activities.

  18. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  19. Oil and Gas Security. Emergency Response of IEA Countries - Poland 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Poland for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  20. Oil and Gas Security. Emergency Response of IEA Countries - Italy 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Italy for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  1. Oil and Gas Security. Emergency Response of IEA Countries - Czech Republic 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Czech Republic for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  2. Oil and Gas Security. Emergency Response of IEA Countries - Slovak Republic 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Slovak Republic for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  3. Mesoscale atmospheric modeling of accidental toxic and radioactive releases for emergency response at SRS

    International Nuclear Information System (INIS)

    O'Steen, B.L.; Fast, J.D.

    1992-01-01

    In August of 1991, the Environmental Transport Group (ETG) began the development of an advanced Emergency Response (ER) system based upon the Colorado State University Regional Atmospheric Modeling System 1 (RAMS). This model simulates the three-dimensional, time-dependent, flow field and thermodynamic structure of the planetary boundary layer (PBL). A companion Lagrangian Particle Dispersion Model 2 (LPDM) simulates contaminant transport based on the flow and turbulence fields generated by RAMS. The current report describes progress to date on this project in the areas of data development, data assimilation, and operational (real-time) procedures. In particular, a diagnostic capability for simulating contaminant transport is demonstrated

  4. Development of regional atmospheric dynamic and air pollution models for nuclear emergency response system WSPEEDI

    International Nuclear Information System (INIS)

    Furuno, Akiko; Yamazawa, Hiromi; Lee, Soon-Hwan; Tsujita, Yuichi; Takemiya, Hiroshi; Chino, Masamichi

    2000-01-01

    WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information) is a computer-based emergency response system to predict long-range atmospheric dispersion of radionuclides discharged into the atmosphere due to a nuclear accident. WSPEEDI has been applied to several international exercises and real events. Through such experiences, the new version of WSPEEDI aims to employ a combination of an atmospheric dynamic model and a particle random walk model for more accurate predictions. This paper describes these models, improvement of prediction and computational techniques for quick responses. (author)

  5. Experiences in the development of an emergency response facility (ERF) system for a nuclear power plant

    International Nuclear Information System (INIS)

    Seisdedos, A.; Sanchez-Fornie, M.A.

    1985-01-01

    The TMI-2 accident gave rise to a series of new requirements with which Nuclear Power Plants must comply and amongst which the implementation of emergency response facilities, particularly the SPDS, has received special attention. This paper covers the experience and problems encountered in the developing of the engineering necessary for the detailed definition of the ERF in a Nuclear Power Plant in the commercial operation phase. Also, a real example is provided for the case of a plant in the last phase of construction and installation. This will serve to illustrate each of the topics covered. (author)

  6. Oil and Gas Security. Emergency Response of IEA Countries - Spain 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Spain for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  7. Oil and Gas Security. Emergency Response of IEA Countries - Denmark 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Denmark for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  8. Supporting system in emergency response plan for nuclear material transport accidents

    International Nuclear Information System (INIS)

    Nakagome, Y.; Aoki, S.

    1993-01-01

    As aiming to provide the detailed information concerning nuclear material transport accidents and to supply it to the concerned organizations by an online computer, the Emergency Response Supporting System has been constructed in the Nuclear Safety Technology Center, Japan. The system consists of four subsystems and four data bases. By inputting initial information such as name of package and date of accident, one can obtain the appropriate initial response procedures and related information for the accident immediately. The system must be useful for protecting the public safety from nuclear material transport accidents. But, it is not expected that the system shall be used in future. (J.P.N.)

  9. Oil and Gas Security. Emergency Response of IEA Countries - United Kingdom 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in United Kingdom for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  10. Oil and Gas Security. Emergency Response of IEA Countries - New Zealand 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in New Zealand for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  11. A Production-Rule Analysis System for Nuclear Plant monitoring and emergency response applications

    International Nuclear Information System (INIS)

    Ragheb, M.; Tsoukalas, L.; McDonough, T.; Parker, M.

    1987-01-01

    A Production-Rule Analysis System for Nuclear Power Plant Monitoring is presented. The signals generated by the Zion-1 Plant are considered for emergency Response applications. The integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems, is monitored. Representation of the system is in the form of a goal-tree generating a Knowledge-Base searched by an Inference Engine functioning in the forward-chaining mode. The Gaol-tree is built from Fault-Trees based on plant operational information. The system is implemented on a VAX-8500 and is programmed in OPS-5

  12. Oil and Gas Security. Emergency Response of IEA Countries - Belgium 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Belgium for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  13. Oil and Gas Security. Emergency Response of IEA Countries - Portugal 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Portugal for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  14. Design basis of off-site emergency response plans for fuel cycle installations

    International Nuclear Information System (INIS)

    Rzepka, J.P.; Dubiau, Ph.; Jouve, A.C.; Charles, T.; Mercier, J.P.

    1995-01-01

    In France, the term 'off-site emergency response plan' refers to all the arrangements which should be made by the government authorities to protect the population in the event of an accident affecting the installations of the site considered. The outline of the method of defining typical accidents, evaluation of 'source-terms' and health consequences is presented. Two applications to installations from the front-end and from the back-end of the fuel cycle are discussed. (K.A.). 1 tab

  15. Oil and Gas Security. Emergency Response of IEA Countries - Canada 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Canada for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  16. Oil and Gas Security. Emergency Response of IEA Countries - Ireland 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Ireland for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  17. Planning and preparing for emergency response to transport accidents involving radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to provide guidance to the public authorities and others (including consignors, carriers and emergency response authorities) who are responsible for developing and establishing emergency arrangements for dealing effectively and safely with transport accidents involving radioactive material. It may assist those concerned with establishing the capability to respond to such transport emergencies. It provides guidance for those Member States whose involvement with radioactive material is just beginning. It also provides guidance for those Member States that have already developed their radioactive material industries and the attendant emergency plans but that may need to review and improve these plans

  18. Project T100 -- Hazardous Materials Management and Emergency Response Training Center (HAMMER)

    International Nuclear Information System (INIS)

    Norton, C.E.

    1994-01-01

    The scope of this Quality Assurance Program Plan (QAPP) is to provide a system of Quality Assurance reviews and verifications on the design and construction of the Hazardous Materials Management and Emergency Response (HAMMER) Training Center, project 95L-EWT-100 at Hanford. The reviews and verifications will be on activities associated with design, procurement, and construction of the HAMMER project which includes, but is not limited to earthwork, placement of concrete, laying of rail, drilling of wells, water and sewer line fabrication and installation, communications systems, fire protection/detection systems, line tie-ins, building and mock-up (prop) construction, electrical, instrumentation, pump and valves and special coatings

  19. Some simple improvements to an emergency response model for use in complex coastal terrain

    International Nuclear Information System (INIS)

    Miller, N.L.

    1992-06-01

    The MACHWIND model (Meyers 1989) is one of a group of models used to compute regional wind fields from tower wind data and/or vertical wind profiles. The wind fields are in turn used to calculate atmospheric diffusion, to guide emergency responses. MACHWIND has performed acceptably in uniform terrain under steady, well mixed conditions. However, extension of the model to more complex situations is problematic. In coastal, hilly terrain like that near Vandenberg Air Force Base (VAFB) in southern California, calculations of the wind field can be enhanced significantly by several modifications to the original code. This report highlights the structure of MACHWIND and details the enhancements that were implemented

  20. Web-based emergency response exercise management systems and methods thereof

    Science.gov (United States)

    Goforth, John W.; Mercer, Michael B.; Heath, Zach; Yang, Lynn I.

    2014-09-09

    According to one embodiment, a method for simulating portions of an emergency response exercise includes generating situational awareness outputs associated with a simulated emergency and sending the situational awareness outputs to a plurality of output devices. Also, the method includes outputting to a user device a plurality of decisions associated with the situational awareness outputs at a decision point, receiving a selection of one of the decisions from the user device, generating new situational awareness outputs based on the selected decision, and repeating the sending, outputting and receiving steps based on the new situational awareness outputs. Other methods, systems, and computer program products are included according to other embodiments of the invention.

  1. Oil and Gas Security. Emergency Response of IEA Countries - Luxembourg 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Luxembourg for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  2. Procedures in diagnostic radiology

    International Nuclear Information System (INIS)

    Doyle, T.; Hare, W.S.C.; Thomson, K.; Tess, B.

    1989-01-01

    This book outlines the various procedures necessary for the successful practice of diagnostic radiology. Topics covered are: general principles, imaging of the urinary and gastrointestinal tracts, vascular radiology, arthrography, and miscellaneous diagnostic radiologic procedures

  3. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2015-07-01

    Full Text Available In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs is a significant issue in China. An emergency response system (ERS was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  4. Preparing for the worst : Calgary startup brings emergency response into the digital age

    International Nuclear Information System (INIS)

    Smith, M.

    2009-01-01

    The potential danger of blowouts and oil spills is present in areas with high concentration of energy facilities and infrastructure. Ensuring that all possible measures have been taken to alert residents as early as possible is one way to alleviate fears of well blowouts, gas processing plant leaks, pipeline failures, or refinery or upgrader explosions. This article presented the GeoAlert, a high technology solution developed by Cell Bridge Communications Corporation to bring emergency response into the modern communications era. The features, benefits, and applications of GeoAlert were described. The program is a web-based emergency notification geographic information system application, that created a digital audit trail, and served as an internal communications and training platform, and had the potential to eliminate duplication among oil companies with overlapping jurisdictions. The system enabled companies to program emergency zones based on precise geographical co-ordinates and to use the system to proactively manage emergency response. It was concluded that the most visually striking feature of GeoAlert is its three-dimensional satellite mapping technology, which could display plumes as a purple-coloured initial isolation zone laid over designated emergency planning zones, moving in real-time while automatically identifying who should be notified and when. 1 fig.

  5. Emergency response network design for hazardous materials transportation with uncertain demand

    Directory of Open Access Journals (Sweden)

    Kamran Shahanaghi

    2012-10-01

    Full Text Available Transportation of hazardous materials play an essential role on keeping a friendly environment. Every day, a substantial amount of hazardous materials (hazmats, such as flammable liquids and poisonous gases, need to be transferred prior to consumption or disposal. Such transportation may result in unsuitable events for people and environment. Emergency response network is designed for this reason where specialist responding teams resolve any issue as quickly as possible. This study proposes a new multi-objective model to locate emergency response centers for transporting the hazardous materials. Since many real-world applications are faced with uncertainty in input parameters, the proposed model of this paper also assumes that reference and demand to such centre is subject to uncertainty, where demand is fuzzy random. The resulted problem formulation is modelled as nonlinear non-convex mixed integer programming and we used NSGAII method to solve the resulted problem. The performance of the proposed model is examined with several examples using various probability distribution and they are compared with the performance of other existing method.

  6. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications.

    Science.gov (United States)

    Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Tonolo, Fabio Giulio; Lingua, Andrea

    2015-07-02

    Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author's group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.

  7. Real-time monitoring/emergency response modeling workstation for a tritium facility

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sims, J.M.; Baskett, R.L.

    1993-01-01

    At Lawrence Livermore National Laboratory (LLNL) we have developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation, which computes a three-dimensional numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 yr within the U.S. Department of Energy's Atmospheric Release Advisory Capability (ARAC) project. Faster workstations and real-time instruments allow utilization of more complex three-dimensional models, which provides a foundation for building a real-time monitoring and emergency response workstation for a tritium facility. The stack monitors are two ion chambers per stack

  8. METALert - an emergency response system for China for heavy metals in the environment

    Science.gov (United States)

    Joris, Ingeborg; Seuntjens, Piet; Dams, Jef; Desmet, Nele; Van Looy, Stijn; Raymaekers, Jens; Decorte, Lieve; Raben, Ingrid; Thijssen, Chris; Zhang, Hongzhen; Dong, Jingqi; Zhang, Qianwen

    2016-04-01

    The rapid industrialisation and economic growth of China has resulted in a mirrored increase of environmental issues and threats, which make the updating of the current environmental emergency response protocols very important. Heavy metal pollution accidents with high environmental risks are happening more frequently than ever in recent years. Despite efforts made by the authorites in respect to the formulation of sound policy, efficient technical methods and regulations for dealing with appropriate responses to emergency environmental incidents related to heavy metal pollution are still lacking. METALert is a generic Emergency Response System (ERS) for accidental pollution incidents caused by key heavy metal related industries in China and developed to support China in achieving its environmental targets. The METALert tool is based on environmental models for forecasting, simulation and visualisation of dispersion of heavy metal pollution in water, air and soil. The tool contains a generic database with scenarios for accidental release of metals in typical accidents related to the five key heavy metal industries in China. The tool can calculate the impact of an accident in water, air and soil and is evaluated and demonstrated for a river basin in the Chenzhou area, an important heavy metal mining area in China. The setup of the tool, the background models and the application in Chenzhou will be presented.

  9. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications

    Directory of Open Access Journals (Sweden)

    Piero Boccardo

    2015-07-01

    Full Text Available Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author’s group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.

  10. Implementation of distributed computing system for emergency response and contaminant spill monitoring

    International Nuclear Information System (INIS)

    Ojo, T.O.; Sterling, M.C.Jr.; Bonner, J.S.; Fuller, C.B.; Kelly, F.; Page, C.A.

    2003-01-01

    The availability and use of real-time environmental data greatly enhances emergency response and spill monitoring in coastal and near shore environments. The data would include surface currents, wind speed, wind direction, and temperature. Model predictions (fate and transport) or forensics can also be included. In order to achieve an integrated system suitable for application in spill or emergency response situations, a link is required because this information exists on many different computing platforms. When real-time measurements are needed to monitor a spill, the use of a wide array of sensors and ship-based post-processing methods help reduce the latency in data transfer between field sampling stations and the Incident Command Centre. The common thread linking all these modules is the Transmission Control Protocol/Internet Protocol (TCP/IP), and the result is an integrated distributed computing system (DCS). The in-situ sensors are linked to an onboard computer through the use of a ship-based local area network (LAN) using a submersible device server. The onboard computer serves as both the data post-processor and communications server. It links the field sampling station with other modules, and is responsible for transferring data to the Incident Command Centre. This link is facilitated by a wide area network (WAN) based on wireless broadband communications facilities. This paper described the implementation of the DCS. The test results for the communications link and system readiness were also included. 6 refs., 2 tabs., 3 figs

  11. Example of emergency response model evaluation of studies using the Mathew/Adpic models

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Lange, R.

    1986-04-01

    This report summarizes model evaluation studies conducted for the MATHEW/ADPIC transport and diffusion models during the past ten years. These models support the US Department of Energy Atmospheric Release Advisory Capability, an emergency response service for atmospheric releases of nuclear material. Field studies involving tracer releases used in these studies cover a broad range of meteorology, terrain and tracer release heights, the three most important aspects of estimating air concentration values resulting from airborne releases of toxic material. Results of these studies show that these models can estimate air concentration values within a factor of 2 20% to 50% of the time and a factor of 5 40% to 80% of the time. As the meterology and terrain become more complex and the release height of the tracer is increased, the accuracy of the model calculations degrades. This band of uncertainty appears to correctly represent the capability of these models at this time. A method for estimating angular uncertainty in the model calculations is described and used to suggest alternative methods for evaluating emergency response models

  12. Analysis of inland crude oil spill threats, vulnerabilities, and emergency response in the midwest United States.

    Science.gov (United States)

    Brody, Thomas M; Di Bianca, Paisly; Krysa, Jan

    2012-10-01

    Although coastal oil spills tend to be highly publicized, crude oil spills in the United States affect inland areas relatively often. Spills to inland areas often affect sensitive environments and can have greater impacts to health and welfare than spills to coastal areas. For these reasons, the authors investigated inland crude oil spill threats, vulnerabilities, and emergency response in the midwestern U.S. states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. These states work with the Region 5 Offices of the U.S. Environmental Protection Agency. Region 5's geospatial data in the Inland Sensitivity Atlas were turned into metrics indicating inland crude oil spill threats and vulnerabilities among the Region's sub-watersheds. These threats and vulnerabilities were weighted using data from the National Response Center and the Department of Energy's Environmental Restoration Priority System. The locations of the Region's emergency responders were geocoded in GIS. The GIS calculated the emergency response times to the Region's sub-watersheds. The resulting scatter plots are connected to the sub-watersheds in the map so stakeholders can (1) see the outlying sub-watersheds of concern and (2) better understand how reducing threats and better response time can reduce the risk of inland crude oil spills. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  13. Optimization of in-vivo monitoring program for radiation emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Wi Ho; Kim, Jong Kyung [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. In this study, minimum detectable doses (MDDs) for '1'3'4Cs, {sup 137}Cs, and {sup 131}I were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detectable level was determined to set committed effective dose of 0.1 mSv for emergency response. We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for {sup 134}Cs and {sup 137}Cs, and 100 Bq for {sup 131}I were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.

  14. AEROS: a real-time emergency response system for atmospheric releases of toxic material

    International Nuclear Information System (INIS)

    Nasstrom, J.S.; Greenly, G.D.

    1986-01-01

    The Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory has developed a sophisticated computer-based real-time emergency response system for radiotoxic releases into the atmosphere. The ARAC Emergency Response Operating System (AEROS) has a centralized computer facility linked to remote site computers, meteorological towers, and meteorological data sources. The system supports certain fixed sites, but has the ability to respond to accidents at arbitrary locations. Product quality and response time are optimized by using complex three-dimensional dispersion models; extensive on-line data bases; automated data processing; and an efficient user interface, employing graphical computer displays and computer-displayed forms. Upon notification, the system automatically initiates a response to an emergency and proceeds through preliminary calculations, automatically processing accident information, meteorological data, and model parameters. The model calculations incorporate mass-consistent three-dimensional wind fields, terrain effects, and particle-in-cell diffusion. Model products are color images of dose or deposition contours overlaid on a base map

  15. Digital radiology

    International Nuclear Information System (INIS)

    Dallas, W.J.

    1990-01-01

    Radiology is vital to the life-saving efforts of surgeons and other physicians, but precious time can be lost generating the images and transferring them to and from the operating room. Furthermore, hospitals are straining under the task of storing and managing the deluge of diagnostic films produced every year. A 300-bed hospital generates about 1 gigabyte (8 x 10 9 bits) of picture information every day and is legally bound to hold it for three to seven years--30 years in the case of silicosis or black lung disease, illnesses that may have relevance to future lawsuits. Consequently, hospital warehouses are filling with x-ray film and written reports that are important for analysis of patient histories, for comparison between patients, and for analyzing the progress of disease. Yet only a fraction of the information's potential is being used because access is so complicated. What is more, films are easily lost, erasing valuable medical histories

  16. Federal Radiological Monitoring and Assessment Center (FRMAC) overview of FRMAC operations

    International Nuclear Information System (INIS)

    1996-02-01

    In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response plan (FRERP). This cooperative effort will assure the designated Lead Federal Agency (LFA) and the state(s) that all federal radiological assistance fully supports their efforts to protect the public. The mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of the Federal Radiological Monitoring and Assessment Center (FRMAC) Operations describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas. These off-site areas may include one or more affected states

  17. Federal Radiological Monitoring and Assessment Center (FRMAC): Overview of FRMAC operations

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of this Management Overview of the Federal Radiological Monitoring and Assessment Center (FRMAC) is to explain the federal preparation for a radiological accident and to describe the subsequent response activities which provide radiological monitoring and assessment outside the boundaries of the monitoring which support the radiological accident site. In the event of a radiological accident, federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the accident scene under the umbrella of the Federal Radiological Emergency Response Plan (FRERP). This cooperative effort will assure the state(s) and the Lead Federal Agency (LFA) that all federal technical assistance is fully supporting their efforts to protect the public and will provide these monitoring results in a working data center for immediate use by the state(s) and LFA decision makers. The federal agencies do not relinquish their statutory responsibilities. However, the mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibility

  18. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents

    International Nuclear Information System (INIS)

    Kuhlen, Johannes

    2014-01-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  19. Radiologic protection in dental radiology

    International Nuclear Information System (INIS)

    Pacheco Jimenez, R.E.; Bermudez Jimenez, L.A.

    2000-01-01

    With this work and employing the radioprotection criterion, the authors pretend to minimize the risks associated to this practice; without losing the quality of the radiologic image. Odontology should perform the following criterions: 1. Justification: all operation of practice that implies exposition to radiations, should be reweighed, through an analysis of risks versus benefits, with the purpose to assure, that the total detriment will be small, compared to resultant benefit of this activity. 2. Optimization: all of the exposures should be maintained as low as reasonable possible, considering the social and economic factors. 3. Dose limit: any dose limit system should be considered as a top condition, nota as an admissible level. (S. Grainger)

  20. A mobile computer system to support first responders to a radiological emergency

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Antonio J.D. da, E-mail: antoniojoseds@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Pos-Graduacao em Informatica; Santos, Joao R. dos; Pereira, Claudio M.N.A.; Carvalho, Paulo V.R., E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Decision-making in emergency situations is characterized by its speed, pressure, and especially the uncertainty of information. Uninformed decisions or decisions based on unreliable data may lead to inappropriate actions. Although several studies that aim to combine different databases and provide full information to emergency response operation commanders can be found, only few of them are dedicated to radiological emergencies situations and even less are those that aim to provide support for the emergency first responder. We developed a system to support first responders to deal with radiological emergencies using cognitive task analysis techniques to elicit the tacitly knowledge of practitioners to grasp what information is really needed during radiological emergency response. (author)

  1. A mobile computer system to support first responders to a radiological emergency

    International Nuclear Information System (INIS)

    Silva, Antonio J.D. da

    2013-01-01

    Decision-making in emergency situations is characterized by its speed, pressure, and especially the uncertainty of information. Uninformed decisions or decisions based on unreliable data may lead to inappropriate actions. Although several studies that aim to combine different databases and provide full information to emergency response operation commanders can be found, only few of them are dedicated to radiological emergencies situations and even less are those that aim to provide support for the emergency first responder. We developed a system to support first responders to deal with radiological emergencies using cognitive task analysis techniques to elicit the tacitly knowledge of practitioners to grasp what information is really needed during radiological emergency response. (author)

  2. Current radiology. Volume 5

    International Nuclear Information System (INIS)

    Wilson, G.H.; Hanafee, W.N.

    1984-01-01

    This book contains 10 selections. They are: Nuclear Magnetic Resonance Imaging, Interventional Vascular Radiology, Genitourinary Radiology, Skeletal Radiology, Digital Subtraction Angiography, Neuroradiology, Computed Tomographic Evaluation of Degenerative Diseases of the Lumbar Spine, The Lung, Otolaringology and Opthalmology, and Pediatric Radiology: Cranial, Facial, Cervical, Vertebral, and Appendicular

  3. Introduction of an Emergency Response Plan for flood loading of Sultan Abu Bakar Dam in Malaysia

    Science.gov (United States)

    Said, N. F. Md; Sidek, L. M.; Basri, H.; Muda, R. S.; Razad, A. Z. Abdul

    2016-03-01

    Sultan Abu Bakar Dam Emergency Response Plan (ERP) is designed to assist employees for identifying, monitoring, responding and mitigation dam safety emergencies. This paper is outlined to identification of an organization chart, responsibility for emergency management team and triggering level in Sultan Abu Bakar Dam ERP. ERP is a plan that guides responsibilities for proper operation of Sultan Abu Bakar Dam in respond to emergency incidents affecting the dam. Based on this study four major responsibilities are needed for Abu Bakar Dam owing to protect any probable risk for downstream which they can be Incident Commander, Deputy Incident Commander, On-Scene Commander, Civil Engineer. In conclusion, having organization charts based on ERP studies can be helpful for decreasing the probable risks in any projects such as Abu Bakar Dam and it is a way to identify and suspected and actual dam safety emergencies.

  4. Oil spill emergency response: Fulfilling regulatory requirements on the Grand Banks

    International Nuclear Information System (INIS)

    Horvath, C.L.

    1991-01-01

    Offshore well licensing under Canadian regulations requires the operator to conduct a practice exercise of oil spill countermeasures and emergency response procedures at least yearly, once the drilling program starts. The relevant parts of the Newfoundland Offshore Petroleum Drilling Regulations are summarized and the objectives and benefits of the practice exercises are reviewed. In addition to ensuring regulatory compliance, the exercises also provide the opportunity to test operational procedures, to provide in-house training, and improve response efficiency by regular repetition of the exercise. Exercises in communications during a spill incident in the offshore and in deployment of offshore spill response equipment conducted by Petro-Canada in Newfoundland are described. Problems identified during the exercises are noted

  5. Risk-Averse Evolutionary Game Model of Aviation Joint Emergency Response

    Directory of Open Access Journals (Sweden)

    Wei Pan

    2016-01-01

    Full Text Available We study effects of risk-averse attitude of both participators in aviation joint emergency response on the coevolution of cooperation mechanisms and individual preferences between airport and nonprofit organization. First, based on the current aviation joint emergency mechanism in China, we put forward two mechanisms to select the joint nonprofit organization, including reputation cooperation and bidding competition. Meanwhile, we consider two preferences including altruism and selfishness. Then we build replicator dynamics equations using the theory of conditional value-at-risk (CVaR taking risk aversion attitude into account. Finally, we introduce the factor of government and give all participators some suggestions. We show that the risk-averse attitude of the other game participator affects the one participator’s decision and the effects subject to some parameters.

  6. Development of Educational and Training Simulator for Emergency Response to Chinese Nuclear Accidents

    International Nuclear Information System (INIS)

    Kim, Juyub; Kim, Juyoul; Kim, Sukhoon; Lee, Seunghee; Yoon, Taebin; Cliff, Li-Chi

    2015-01-01

    One of the lessons in the emergency response category is that information on the nuclear power plants of neighboring countries should be organized and the consequence can be assessed. In addition, many reactors have been constructed and are under construction on the eastern coast of China recently. Korea might be directly affected by an accident of Chinese nuclear power plant since Korea is located in the westerly belt. performed with the PCTRAN/CPR-1000 module. The result showed that normal operation and DBA conditions were simulated swiftly with the speed of 16 times faster than real time. Thus, it would be a good source term estimation module for the educational and training simulator

  7. Measurement strategies for the Dutch Nuclear Emergency Response System of the National Poisons Control Centre

    International Nuclear Information System (INIS)

    Van Oostrum, I.E.A.; Joore, J.C.A.; Meulenbelt, J.; Savelkoul, T.J.F.

    1997-04-01

    The measurement strategy applicable to Public Health in case of a Nuclear Emergency affecting the Netherlands is presented. Within the framework of the Dutch Nuclear Emergency Response System (NPK, abbreviated in Dutch) the National Poisons Control Centre of the RIVM/AZU has an advisory obligation towards the Ministry of Public Health, Welfare and Sports (WVS). This role comprises advice to relevant ministries, coordination of the measurement strategies and advice on persons to be reviewed, i.e. physical, biological and clinical dosimetry. The choice of dosimetric methods and measurements to be achieved in case of a larger scale nuclear emergency in the Netherlands is discussed. An actual plan of handling is presented for this measurement plan. Intervention levels defined in NPK 1991 serve as guidelines for successive actions to be performed by regional health services. 8 figs., 6 tabs., 81 refs

  8. The mesoscale dispersion modeling system a simulation tool for development of an emergency response system

    International Nuclear Information System (INIS)

    Uliasz, M.

    1990-01-01

    The mesoscale dispersion modeling system is under continuous development. The included numerical models require further improvements and evaluation against data from meteorological and tracer field experiments. The system can not be directly applied to real time predictions. However, it seems to be a useful simulation tool for solving several problems related to planning the monitoring network and development of the emergency response system for the nuclear power plant located in a coastal area. The modeling system can be also applied to another environmental problems connected with air pollution dispersion in complex terrain. The presented numerical models are designed for the use on personal computers and are relatively fast in comparison with the similar mesoscale models developed on mainframe computers

  9. Development of emergency response training program for on-site commanders (1)

    International Nuclear Information System (INIS)

    Hikono, Masaru; Matsui, Yuko; Kanayama, Masaki

    2017-01-01

    Since the Great East Japan Earthquake of 2011, there have been increasing calls for developing the leadership capabilities of managers who are in charge of command and control of the on-site emergency response center at nuclear power plants. Training programs to improve non-technical skills are being developed and introduced. The authors developed an active learning exercise that can be repeatedly performed on-site, targeting on-site commander teams in charge of the initial response in an emergency situation. The exercise forms the core element of a non-technical skills training curriculum. This paper outlines the developed exercise, evaluates the stress on the participants caused by the exercise, and identifies any issues before actually introducing it to a site. (author)

  10. The knowledge-based off-site emergency response system for a nuclear power plant

    International Nuclear Information System (INIS)

    Ho, L.W.; Loa, W.W.; Wang, C.L.

    1987-01-01

    A knowledge-based expert system for a nuclear power plant off-site emergency response system is described. The system incorporates the knowledge about the nuclear power plant behaviours, site environment and site geographic factors, etc. The system is developed using Chinshan nuclear power station of Taipower Company, Taiwan, ROC as a representative model. The objectives of developing this system are to provide an automated intelligent system with functions of accident simulation, prediction and with learning capabilities to supplement the actions of the emergency planners and accident managers in order to protect the plant personnel and the surrounding population, and prevent or mitigate property damages resulting from the plant accident. The system is capable of providing local and national authorities with rapid retrieval data from the site characteristics and accident progression. The system can also provide the framework for allocation of available resources and can handle the uncertainties in data and models

  11. SOFTWARE QUALITY ASSURANCE FOR EMERGENCY RESPONSE CONSEQUENCE ASSESSMENT MODELS AT DOE'S SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Hunter, C

    2007-01-01

    The Savannah River National Laboratory's (SRNL) Atmospheric Technologies Group develops, maintains, and operates computer-based software applications for use in emergency response consequence assessment at DOE's Savannah River Site. These applications range from straightforward, stand-alone Gaussian dispersion models run with simple meteorological input to complex computational software systems with supporting scripts that simulate highly dynamic atmospheric processes. A software quality assurance program has been developed to ensure appropriate lifecycle management of these software applications. This program was designed to meet fully the overall structure and intent of SRNL's institutional software QA programs, yet remain sufficiently practical to achieve the necessary level of control in a cost-effective manner. A general overview of this program is described

  12. Meteorological monitoring for environmental/dose assessment and emergency response modeling: How much is enough?

    International Nuclear Information System (INIS)

    Glantz, C.S.

    1989-01-01

    In evaluation the effectiveness and appropriateness of meteorological monitoring programs, managers responsible for planning and operating emergency response or environmental/dose assessment systems must routinely question whether enough meteorological data are being obtained to adequately support system applications. There is no simple answer or cookbook procedure that can be followed in generating an appropriate answer to this question. The answer must be developed through detailed consideration of the intended applications for the data, the capabilities of the models that would use the data, pollutant release characteristics, terrain in the modeling region, the size of the modeling domain, and the distribution of human population in the modeling domain. It is recommended that manager consult meteorologists when assessing these factors; the meteorologist's detailed knowledge of, and experience in, studying atmospheric transport and diffusion should assist the manager in determining the appropriate level of meteorological monitoring. 1 ref

  13. Real time quality control of meteorological data used in SRP's emergency response system

    International Nuclear Information System (INIS)

    Pendergast, M.M.

    1980-05-01

    The Savannah River Laboratory's WIND minicomputer system allows quick and accurate assessment of an accidental release at the Savannah River Plant using data from eight meteorological towers. The accuracy of the assessment is largely determined by the accuracy of the meteorological data; therefore quality control is important in an emergency response system. Real-time quality control of this data will be added to the WIND system to automatically identify inaccurate data. Currently, the system averages the measurements from the towers to minimize the influence of inaccurate data being used in calculations. The computer code used in the real-time quality control has been previously used to identify inaccurate measurements from the archived tower data

  14. Applications of the new program system UFOMOD in the field of emergency response planning

    International Nuclear Information System (INIS)

    Burkart, K.; Ehrhardt, J.; Hasemann, I.

    1988-01-01

    In addition to the main purpose of assessing the consequences of nuclear accidents, the new program system UFOMOD is designed to be a very flexible tool for investigation of alternatives in emergency response planning and emergency management, and for studies of the differences in collective exposure due to different response of parts of the population (disregard or misinterpretation of alarms, spontaneous evacuation etc.). After a brief summary of the main features of the countermeasures submodel, scope, flexibility and variety of results are demonstrated by means of calculations with both an early short and a slightly delayed longer lasting release. Risks and benefits of 3 types of evacuation, i.e. prophylactic, during release and after passage of the plume, are discussed by comparing CCFDs of early fatalities. The number of injuries and fatalities as well as areas and numbers of persons affected by countermeasures may depend considerably on the intervention levels applied. Correlations between these quantities obtained within a parameter study are presented

  15. Uncertainty of fast biological radiation dose assessment for emergency response scenarios.

    Science.gov (United States)

    Ainsbury, Elizabeth A; Higueras, Manuel; Puig, Pedro; Einbeck, Jochen; Samaga, Daniel; Barquinero, Joan Francesc; Barrios, Lleonard; Brzozowska, Beata; Fattibene, Paola; Gregoire, Eric; Jaworska, Alicja; Lloyd, David; Oestreicher, Ursula; Romm, Horst; Rothkamm, Kai; Roy, Laurence; Sommer, Sylwester; Terzoudi, Georgia; Thierens, Hubert; Trompier, Francois; Vral, Anne; Woda, Clemens

    2017-01-01

    Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.

  16. Bulgarian Emergency Response System (BERS) in case of nuclear accident with exposure doses’estimation

    Energy Technology Data Exchange (ETDEWEB)

    Syrakov, M.; Prodanova, M.; Slavov, K.; Veleva, B.

    2015-07-01

    A PC-oriented Emergency Response System in case of nuclear accident (BERS) is developed and works operationally in the National Institute of Meteorology and Hydrology (NIMH). The creation and development of BERS was highly stimulated by the ETEX (European Tracer Experiment) project. BERS comprises two main parts - the operational and the accidental ones. The operational part, run automatically every 12 hours, prepares the input meteorological file used by both trajectory and dispersion models, runs the trajectory models, visualizes the results and uploads the maps of trajectories to a dedicated web-site. The accidental part is activated manually when a real radioactive releases occur or during emergency exercises. Its core is the Bulgarian dispersion models EMAP. Outputs are concentration, accumulated deposition and selected doses fields. In the paper, the BERS overall structure is described and examples of its products are presented. (Author)

  17. Project management plan, Hazardous Materials Management and Emergency Response Training Center

    International Nuclear Information System (INIS)

    Borgeson, M.E.

    1994-01-01

    For the next 30 years, the main activities at the Hanford Site will involve the handling and cleanup of toxic substances. Thousands of workers involved in these new activities will need systematic training appropriate to their tasks and associated risks. This project is an important part of the Hanford Site mission and will enable the US Department of Energy (DOE) to meet high standards for safety. The Hazardous Materials Management and Emergency Response Training Center (HAMMER) project will construct a centralized regional training center dedicated to training hazardous materials workers and emergency responders in classrooms and with hands-on, realistic training aids representing actual field conditions. The HAMMER Training Center will provide a cost-effective, high-quality way to meet the Hanford Site training needs. The training center creates a partnership among DOE; government contractors; labor; local, state, and tribal governments; and selected institutions of higher education

  18. Radiological Control Manual

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

  19. Radiological Control Manual

    International Nuclear Information System (INIS)

    1993-04-01

    This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records

  20. Emergency response facilities including primary and secondary prevention strategies across 79 professional football clubs in England.

    Science.gov (United States)

    Malhotra, Aneil; Dhutia, Harshil; Gati, Sabiha; Yeo, Tee-Joo; Finocchiaro, Gherardo; Keteepe-Arachi, Tracey; Richards, Thomas; Walker, Mike; Birt, Robin; Stuckey, David; Robinson, Laurence; Tome, Maite; Beasley, Ian; Papadakis, Michael; Sharma, Sanjay

    2017-06-14

    To assess the emergency response planning and prevention strategies for sudden cardiac arrest (SCA) across a wide range of professional football clubs in England. A written survey was sent to all professional clubs in the English football league, namely the Premiership, Championship, League 1 and League 2. Outcomes included: (1) number of clubs performing cardiac screening and frequency of screening; (2) emergency planning and documentation; (3) automated external defibrillator (AED) training and availability; and (4) provision of emergency services at sporting venues. 79 clubs (86%) responded to the survey. 100% clubs participated in cardiac screening. All clubs had AEDs available on match days and during training sessions. 100% Premiership clubs provided AED training to designated staff. In contrast, 30% of lower division clubs with AEDs available did not provide formal training. Most clubs (n=66; 83%) reported the existence of an emergency action plan for SCA but formal documentation was variable. All clubs in the Premiership and League 1 provided an ambulance equipped for medical emergencies on match days compared with 75% of clubs in the Championship and 66% in League 2. The majority of football clubs in England have satisfactory prevention strategies and emergency response planning in line with European recommendations. Additional improvements such as increasing awareness of European guidelines for emergency planning, AED training and mentorship with financial support to lower division clubs are necessary to further enhance cardiovascular safety of athletes and spectators and close the gap between the highest and lower divisions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Rapid post-earthquake modelling of coseismic landslide intensity and distribution for emergency response decision support

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    2017-09-01

    Full Text Available Current methods to identify coseismic landslides immediately after an earthquake using optical imagery are too slow to effectively inform emergency response activities. Issues with cloud cover, data collection and processing, and manual landslide identification mean even the most rapid mapping exercises are often incomplete when the emergency response ends. In this study, we demonstrate how traditional empirical methods for modelling the total distribution and relative intensity (in terms of point density of coseismic landsliding can be successfully undertaken in the hours and days immediately after an earthquake, allowing the results to effectively inform stakeholders during the response. The method uses fuzzy logic in a GIS (Geographic Information Systems to quickly assess and identify the location-specific relationships between predisposing factors and landslide occurrence during the earthquake, based on small initial samples of identified landslides. We show that this approach can accurately model both the spatial pattern and the number density of landsliding from the event based on just several hundred mapped landslides, provided they have sufficiently wide spatial coverage, improving upon previous methods. This suggests that systematic high-fidelity mapping of landslides following an earthquake is not necessary for informing rapid modelling attempts. Instead, mapping should focus on rapid sampling from the entire affected area to generate results that can inform the modelling. This method is therefore suited to conditions in which imagery is affected by partial cloud cover or in which the total number of landslides is so large that mapping requires significant time to complete. The method therefore has the potential to provide a quick assessment of landslide hazard after an earthquake and may therefore inform emergency operations more effectively compared to current practice.

  2. A quick earthquake disaster loss assessment method supported by dasymetric data for emergency response in China

    Science.gov (United States)

    Xu, Jinghai; An, Jiwen; Nie, Gaozong

    2016-04-01

    Improving earthquake disaster loss estimation speed and accuracy is one of the key factors in effective earthquake response and rescue. The presentation of exposure data by applying a dasymetric map approach has good potential for addressing this issue. With the support of 30'' × 30'' areal exposure data (population and building data in China), this paper presents a new earthquake disaster loss estimation method for emergency response situations. This method has two phases: a pre-earthquake phase and a co-earthquake phase. In the pre-earthquake phase, we pre-calculate the earthquake loss related to different seismic intensities and store them in a 30'' × 30'' grid format, which has several stages: determining the earthquake loss calculation factor, gridding damage probability matrices, calculating building damage and calculating human losses. Then, in the co-earthquake phase, there are two stages of estimating loss: generating a theoretical isoseismal map to depict the spatial distribution of the seismic intensity field; then, using the seismic intensity field to extract statistics of losses from the pre-calculated estimation data. Thus, the final loss estimation results are obtained. The method is validated by four actual earthquakes that occurred in China. The method not only significantly improves the speed and accuracy of loss estimation but also provides the spatial distribution of the losses, which will be effective in aiding earthquake emergency response and rescue. Additionally, related pre-calculated earthquake loss estimation data in China could serve to provide disaster risk analysis before earthquakes occur. Currently, the pre-calculated loss estimation data and the two-phase estimation method are used by the China Earthquake Administration.

  3. Nuclear emergency response exercises and decision support systems - integrating domestic experience with international reference systems

    International Nuclear Information System (INIS)

    Slavnicu, D.S.; Vamanu, D.V.; Gheorghiu, D.; Acasandrei, V.T.; Slavnicu, E.

    2010-01-01

    The paper glosses on the experience of a research-oriented team routinely involved in emergency preparedness and response management activities, with the assimilation, implementation, and application of decision support systems (DSS) of continental reference in Europe, and the development of supportive, domestic radiological assessment tools. Two exemplary nuclear alert exercises are discussed, along with solutions that emerged during drill planning and execution, to make decision support tools of various origins and strength to work synergistically and complement each other. (authors)

  4. Mobile Radiological Laboratories Intercomparison Measurements - Chernobyl

    International Nuclear Information System (INIS)

    Martincic, R.; Glavic-Cindro, D.; Korun, M.; Pucelj, B.; Vodenik, B.

    2001-01-01

    Full text: In last decade different institutions in European countries have organised periodic intercomparison exercises of mobile radiological laboratories to improve the preparedness of emergency monitoring teams. The 12th Regular Workshop on Mobile Radiological Laboratories was held in Exclusion Zone of the Chernobyl NPP, Ukraine from September 13 to September 18, 1999 under the acronym MORAL-12. The European Centre of Technological Safety (TESEC), Kiev, Ukraine and J. Stefan Institute, Ljubljana, Slovenia organised Intercomparison Measurements 99 jointly under the auspices of the International Atomic Energy Agency (IAEA). Nineteen teams from 9 countries and IAEA participated in the Workshop. Six field and personal and equipment contamination control exercises were prepared and conducted at two measuring sites with very different ambient dose rate levels. The Workshop pointed out that such exercises are very valuable for rapid, efficient and harmonised emergency response in case of nuclear or radiological emergency. The teams had an opportunity to test their ability to perform field measurements in the contaminated environment, and to report results on the spot, as well as to test their emergency preparedness and persistence. They gained new experiences for fieldwork under stress conditions. An overview and results of these intercomparison measurements are presented and lessons learned are discussed. (author)

  5. Educational treasures in Radiology: The Radiology Olympics - striving for gold in Radiology education

    OpenAIRE

    Talanow, Roland

    2010-01-01

    This article focuses on Radiology Olympics (www.RadiologyOlympics.com) - a collaboration with the international Radiology community for Radiology education, Radiolopolis (www.Radiolopolis.com). The Radiology Olympics honour the movers and shakers in Radiology education and offer an easy to use platform for educating medical professionals based on Radiology cases.

  6. Development of the University Center for Disaster Preparedness and Emergency Response (UCDPER)

    Science.gov (United States)

    2011-09-30

    these two devices receive the quality of reception data from the remote receivers and instruct the modulator which modulation and FEC to use whilst...you will see that they are starting to shift to focus on providing movies on demand through your cable box and over the Internet. I think the next 10...facilities via rail or tractor- trailer . This presents a potential hazard to the Gloucester County community and it is imperative that all partners in

  7. A Multi-Element Approach to Location Inference of Twitter: A Case for Emergency Response

    Directory of Open Access Journals (Sweden)

    Farhad Laylavi

    2016-04-01

    Full Text Available Since its inception, Twitter has played a major role in real-world events—especially in the aftermath of disasters and catastrophic incidents, and has been increasingly becoming the first point of contact for users wishing to provide or seek information about such situations. The use of Twitter in emergency response and disaster management opens up avenues of research concerning different aspects of Twitter data quality, usefulness and credibility. A real challenge that has attracted substantial attention in the Twitter research community exists in the location inference of twitter data. Considering that less than 2% of tweets are geotagged, finding location inference methods that can go beyond the geotagging capability is undoubtedly the priority research area. This is especially true in terms of emergency response, where spatial aspects of information play an important role. This paper introduces a multi-elemental location inference method that puts the geotagging aside and tries to predict the location of tweets by exploiting the other inherently attached data elements. In this regard, textual content, users’ profile location and place labelling, as the main location-related elements, are taken into account. Location-name classes in three granularity levels are defined and employed to look up the location references from the location-associated elements. The inferred location of the finest granular level is assigned to a tweet, based on a novel location assignment rule. The location assigned by the location inference process is considered to be the inferred location of a tweet, and is compared with the geotagged coordinates as the ground truth of the study. The results show that this method is able to successfully infer the location of 87% of the tweets at the average distance error of 12.2 km and the median distance error of 4.5 km, which is a significant improvement compared with that of the current methods that can predict the location

  8. Evaluation of food emergency response laboratories' capability for 210Po analysis using proficiency test material with verifiable traceability

    International Nuclear Information System (INIS)

    Zhongyu Wu; Zhichao Lin; Mackill, P.; Cong Wei; Noonan, J.; Cherniack, J.; Gillis-Landrum, D.

    2009-01-01

    Measurement capability and data comparability are essential for emergency response when analytical data from cooperative laboratories are used for risk assessment and post incident decision making. In this study, the current capability of food emergency response laboratories for the analysis of 210 Po in water was evaluated using a proficiency test scheme in compliance with ISO-43 and ILAC G13 guidelines, which comprises a test sample preparation and verification protocol and an insightful statistical data evaluation. The results of performance evaluations on relative bias, value trueness, precision, false positive detection, minimum detection limit, and limit of quantification, are presented. (author)

  9. Preliminary study on Malaysian Nuclear Agency emergency response and preparedness plan from ICT perspective

    International Nuclear Information System (INIS)

    Amy Hamijah Ab Hamid; Muhd Noor Muhd Yunus; Mohd Ashhar Khalid; Abdul Muin Abdul Rahman; Mohd Yusof Mohd Ali; Mohamad Safuan Sulaiman; Hasfazilah Hassan

    2009-01-01

    Emergency response and preparedness (ERP) is an important components of a safety programme developed for any nuclear research centre or nuclear power plant to ensure that the facility can be operated safely and immediate response and actions can be taken to minimize the risk in case of unplanned events and incidences. ERP inclusion in the safety program has been made compulsory by most of the safety standard systems introduced currently including those of ISO 14000, OSHAS 18001 and IAEA. ERP has been included in the Nuclear Malaysia's Safety Health and Environment Management System (SHE-MS) for similar purpose. The ERP has been developed based on guidelines stipulated by AELB, IAEA, DOSH, Fire Brigade and Police Force, taking into consideration all possible events and incidences that can happen within the laboratories and irradiation facilities as a result of activities carried out by its personnel. This paper briefly describes the overall structure of the Nuclear Malaysia ERP, how it functions and being managed, and a brief historical perspective. However ERP is not easily implemented because of human errors and other weaknesses identified. Some ERP cases are analysed and assessed which based on the challenges, strategies and lessons learned from an ICT (Information and Communication Technology) perspective. Therefore, results of the analysis could then be used as inputs to develop a new system of Decision Support System (DSS) for ERP that is more effective in managing emergencies. This system is to be incorporated into the existing SHE-MS of Nuclear Malaysia. (Author)

  10. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    International Nuclear Information System (INIS)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant's operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ''onsite'' response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world's collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously

  11. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant`s operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ``onsite`` response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world`s collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously.

  12. Understanding the Value of a Computer Emergency Response Capability for Nuclear Security

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Peter Donald [Idaho National Laboratory; Rodriguez, Julio Gallardo [Idaho National Laboratory

    2015-06-01

    The international nuclear community has a great understanding of the physical security needs relating to the prevention, detection, and response of malicious acts associated with nuclear facilities and radioactive material. International Atomic Energy Agency (IAEA) Nuclear Security Recommendations (INFCIRC_225_Rev 5) outlines specific guidelines and recommendations for implementing and maintaining an organization’s nuclear security posture. An important element for inclusion into supporting revision 5 is the establishment of a “Cyber Emergency Response Team (CERT)” focused on the international communities cybersecurity needs to maintain a comprehensive nuclear security posture. Cybersecurity and the importance of nuclear cybersecurity require that there be a specific focus on developing an International Nuclear CERT (NS-CERT). States establishing contingency plans should have an understanding of the cyber threat landscape and the potential impacts to systems in place to protect and mitigate malicious activities. This paper will outline the necessary components, discuss the relationships needed within the international community, and outline a process by which the NS-CERT identifies, collects, processes, and reports critical information in order to establish situational awareness (SA) and support decision-making

  13. UAVs Use for the Support of Emergency Response Teams Specific Missions

    Directory of Open Access Journals (Sweden)

    Sorin-Gabriel CONSTANTINESCU

    2013-03-01

    Full Text Available This article presents various methods of implementation for a new technology concerning the assessment and coordination of emergency situations, which is based upon the usage of Unmanned Aerial Vehicles (UAVs. The UAV platform is equipped with optical electronic sensors and other types of sensors, being an aerial surveillance device as efficient as any other classically piloted platform. While currently being in service as military operations support for various operation theaters, they can also be used for assisting emergency response teams, providing full national coverage. For these special response teams, the ability to carry out overview, surveillance or information gathering activities and locating fixed or mobile targets are key components for the successful accomplishment of their missions, which have the purpose of saving lives and properties and of limiting the damage done to the surrounding environment. More concretely, the presented scenarios are: response in emergency situations, extinguishing of large-scale fires, testing of chemically, biologically or radioactively polluted areas and assessment of natural disasters.

  14. Combining TerraSAR-X and Landsat Images for Emergency Response in Urban Environments

    Directory of Open Access Journals (Sweden)

    Shiran Havivi

    2018-05-01

    Full Text Available Rapid damage mapping following a disaster event, especially in an urban environment, is critical to ensure that the emergency response in the affected area is rapid and efficient. This work presents a new method for mapping damage assessment in urban environments. Based on combining SAR and optical data, the method is applicable as support during initial emergency planning and rescue operations. The study focuses on the urban areas affected by the Tohoku earthquake and subsequent tsunami event in Japan that occurred on 11 March 2011. High-resolution TerraSAR-X (TSX images of before and after the event, and a Landsat 5 image before the event were acquired. The affected areas were analyzed with the SAR data using only one interferometric SAR (InSAR coherence map. To increase the damage mapping accuracy, the normalized difference vegetation index (NDVI was applied. The generated map, with a grid size of 50 m, provides a quantitative assessment of the nature and distribution of the damage. The damage mapping shows detailed information about the affected area, with high overall accuracy (89%, and high Kappa coefficient (82% and, as expected, it shows total destruction along the coastline compared to the inland region.

  15. A decision support system for emergency response to major nuclear accidents

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Christou, M.D.

    1997-01-01

    A methodology for the optimization of the short-term emergency response in the event of a nuclear accident is presented. The method seeks an optimum combination of protective actions in the presence of a multitude of conflicting objectives and under uncertainty. Conflicting objectives arise in the attempt to minimize simultaneously the potential adverse effects of an accident and the associated socioeconomic impacts. Additional conflicting objectives arise whenever an emergency plan tends to decrease a particular health effect, such as acute deaths, while it increases another, such as latent deaths. The uncertainty is due to the multitude of possible accident scenarios and their respective probability of occurrence, the stochastic variability in the weather conditions, and the variability and/or lack of knowledge of the parameters of the risk assessment models. A multiobjective optimization approach is adopted. An emergency protection plan consists of defining a protective action at each spatial cell around the plant. Three criteria are used as the objective functions of the problem, namely, acute fatalities, latent effects, and socioeconomic cost. The optimization procedure defines the efficient frontier, i.e., all emergency plans that are not dominated by another in all three criteria. No value trade-offs are necessary up to this point. The most preferred emergency plan is then chosen among the set of efficient plans. Finally, the methodology is integrated into a computerized decision support system, and its use is demonstrated in a realistic application

  16. CMSMAP : oil, chemical, search and rescue, and marine emergency response crisis management system

    International Nuclear Information System (INIS)

    Anderson, E.L.; Howlett, E.; Galagan, C.; Giguere, T.; Wee, F.; Chong, J.

    2002-01-01

    This paper describes a newly developed Crisis Management System (CMS) which makes it possible to view oil and chemical spills on the seafloor. The CMS is designed to run in a network environment, so that multiple stations can be used cooperatively to respond to a spill incident. It was developed by the Maritime and Port Authority in Singapore and represents a singular integration of a ship's bridge simulator hardware and software. It incorporates numerical models and emergency response software. The CMS is installed in a specifically designed building at the Singapore Polytechnic University, and is integrated with two shipping bridge simulators. One user interface has access to models dealing with oil spills, chemical spills, search and rescues, marine emergencies, and nuclear disasters. The interface is linked to a response management system. The entire system is used to train response personnel to marine emergencies. The histories and costs of planned response activities are described and logged for reference purposes. Estimates of damages associated with spills can be obtained. Alternative response plans can also be determined. Further research in 2002 will focus on developing real time response. 3 refs., 6 figs

  17. Secure Utilization of Beacons and UAVs in Emergency Response Systems for Building Fire Hazard.

    Science.gov (United States)

    Seo, Seung-Hyun; Choi, Jung-In; Song, Jinseok

    2017-09-25

    An intelligent emergency system for hazard monitoring and building evacuation is a very important application area in Internet of Things (IoT) technology. Through the use of smart sensors, such a system can provide more vital and reliable information to first-responders and also reduce the incidents of false alarms. Several smart monitoring and warning systems do already exist, though they exhibit key weaknesses such as a limited monitoring coverage and security, which have not yet been sufficiently addressed. In this paper, we propose a monitoring and emergency response method for buildings by utilizing beacons and Unmanned Aerial Vehicles (UAVs) on an IoT security platform. In order to demonstrate the practicability of our method, we also implement a proof of concept prototype, which we call the UAV-EMOR (UAV-assisted Emergency Monitoring and Response) system. Our UAV-EMOR system provides the following novel features: (1) secure communications between UAVs, smart sensors, the control server and a smartphone app for security managers; (2) enhanced coordination between smart sensors and indoor/outdoor UAVs to expand real-time monitoring coverage; and (3) beacon-aided rescue and building evacuation.

  18. Workload differences across command levels and emergency response organizations during a major joint training exercise.

    Science.gov (United States)

    Prytz, Erik G; Rybing, Jonas; Jonson, Carl-Oscar

    2016-01-01

    This study reports on an initial test using a validated workload measurement method, the NASA Task Load Index (TLX), as an indicator of joint emergency exercise effectiveness. Prior research on emergency exercises indicates that exercises must be challenging, ie, result in high workload, to be effective. However, this is often problematic with some participants being underloaded and some overloaded. The NASA TLX was used to test for differences in workload between commanders and subordinates and among three different emergency response organizations during a joint emergency exercise. Questionnaire-based evaluation with professional emergency responders. The study was performed in conjunction with a large-scale interorganizational joint emergency exercise in Sweden. A total of 20 participants from the rescue services, 12 from the emergency medical services, and 12 from the police participated in the study (N=44). Ten participants had a command-level role during the exercise and the remaining 34 were subordinates. The main outcome measures were the workload subscales of the NASA TLX: mental demands, physical demands, temporal demands, performance, effort, and frustration. The results showed that the organizations experienced different levels of workload, that the commanders experienced a higher workload than the subordinates, and that two out of three organizations fell below the twenty-fifth percentile of average workload scores compiled from 237 prior studies. The results support the notion that the NASA TLX could be a useful complementary tool to evaluate exercise designs and outcomes. This should be further explored and verified in additional studies.

  19. Alaska GRIN project : development of geospatial data management interface for oil spill and emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, S. [Cook Inlet Regional Citizens Advisory Council, Kenai, AK (United States); Robertson, T.L. [Nuka Research and Planning Group LLC, Seldovia, AK (United States); DeCola, E. [Nuka Research and Planning Group LLC, Plymouth, MA (United States)

    2009-07-01

    A geographic response network (GRIN) project was conducted in 2005 to develop a computer-based tool for organizing maps and data related to oil spill and emergency response logistics and community resources. Originally conceived as an html-based website where information was organized based on incident command system divisions of responsibility, open source mapping applications are also being added to crate an interactive map interface with geospatially referenced information. GRIN information is organized by community. A locator map is embedded in the lower right-hand corner of each map. GRIN includes categories of information related to emergency management, air logistics, law enforcement, marine logistics, and shore-side logistics. A project is now being conducted by the Cook Inlet Regional Citizens' Advisory Council to convert the html-based GRIN into a geospatial data management tool. A prototype has now been populated with data for several Cook Inlet communities. GRIN can also be accessed on only computer with an Internet browser. It was concluded that the use of open source programming will make GRIN an easy tool for planners and emergency responders. 5 refs., 6 figs.

  20. Design Concepts of Emergency Response Robot Platform K-R2D2

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sun Young; Jeong, Kyungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    From the analysis for various mobile robots competed in DARPA Robotics Challenge, there are some drawbacks in using two or four legs because bipedal locomotion is not yet suitable for maintaining stability and quadrupedal locomotion is difficult to go through narrow aisles. Motivated by the above observations, we propose a K-R2D2 robot platform with three legs arranged in the form of a triangle like as R2-D2 robot which is a fictional robot character in the Star Wars movies. This robot has 3 legs with tracks in each sole of the leg. It is statically stable since there are three contact points to ground. In addition, three legs are also possible to design a structure walking stairs that can expand and contract in the vertical direction. This paper has presented the conceptual design, it is developed on the purpose of quick response instead of emergent workers to the extreme conditions disasters. This robot is emergency response robot platform KR2D2 with three legs, which is statically stable to walk or wheel depending on the terrains and move quickly as possible as on uneven terrain or stairs.

  1. Distributed emergency response system to model dispersion and deposition of atmospheric releases

    International Nuclear Information System (INIS)

    Taylor, S.S.

    1985-04-01

    Aging hardware and software and increasing commitments by the Departments of Energy and Defense have led us to develop a new, expanded system to replace the existing Atmospheric Release Advisory Capability (ARAC) system. This distributed, computer-based, emergency response system is used by state and federal agencies to assess the environmental health hazards resulting from an accidental release of radioactive material into the atmosphere. Like its predecessor, the expanded system uses local meteorology (e.g., wind speed and wind direction), as well as terrain information, to simulate the transport and dispersion of the airborne material. The system also calculates deposition and dose and displays them graphically over base maps of the local geography for use by on-site authorities. This paper discusses the limitations of the existing ARAC system. It also discusses the components and functionality of the new system, the technical difficulties encountered and resolved in its design and implementation, and the software methodologies and tools employed in its development

  2. Development of computerized supporting system for emergency response in nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Jae Il

    1992-02-01

    In emergency situation of nuclear power plants, effective use of emergency operating procedures (EOPs) is a crucial part of the emergency response process. However, there are several problems in the emergency operating procedures because of the form of the written procedures. They are voluminous and complicate for effective references under high stress situation. Inevitably, it takes time that could be better spent employing measures to control and stabilize to select the correct procedures and apply the decision logic. In this study, a computerized supporting system has been developed to reduce the operator error possibility under emergency situations of nuclear power plant. Using on-line input parameters, the system can determine the status of the critical safety functions and can find appropriate procedures and necessary operator actions automatically. Moreover, the system can help the operator decision making in the core melt accident situation. By tracking the EOP in an on-line mode, most steps concerning checking or verifying plant state are processed automatically without operator participations. Therefore, the interactions between the system and the operator are simplified significantly and the possibility of human error is reduced

  3. Offshore industry: medical emergency response in the offshore oil and gas industry.

    Science.gov (United States)

    Ponsonby, Will; Mika, Frano; Irons, Greg

    2009-08-01

    The hunt for oil and gas has taken workers into new more distant locations including those offshore. The remoteness of the offshore platforms and vessels coupled with the potential risk of being cut off by bad weather presents particular challenges for medical emergency response (MER). Firstly to define the challenges for MER in terms of locations, population and epidemiology of injuries and illnesses in the offshore environment. Secondly to give examples of legal requirements and industry standards to manage MER. Thirdly to look at existing and emerging practice to manage these challenges. A review of published literature was supplemented with a summary of current practice in the industry. Medical professionals (medics) working offshore on installations and vessels are primarily responsible for the medical care of the workers. The medics have clinics with suitable medical equipment for managing emergencies as well as providing limited primary care. Some countries have legislation that stipulate minimum requirements. Where there is no national legislation, industry and company guidance is used to define the MER standards. Supervision of the offshore medics is often provided by doctors on shore via radio and phone links. These methods of communication are now being augmented with more sophisticated telemedicine solutions such as the Internet and live video links. These newer solutions allow for prompt high-quality care and provide the scope for a variety of new treatment options to be available for the offshore workforce.

  4. A real-time monitoring/emergency response modeling workstation for a tritium facility

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sims, J.M.; Baskett, R.L.

    1993-07-01

    At Lawrence Livermore National Laboratory (LLNL) we developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation which computes a 3D numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 years within the Department of Energy's Atmospheric Release Advisory Capability (ARAC[1,2]) project

  5. Planning guidance for emergency response to a hypothetical nuclear attack on Riyadh, Saudi Arabia

    Science.gov (United States)

    Shubayr, Nasser Ali M.

    The threat of nuclear attack will remain imminent in an ever-advancing society. Saudi Arabia is not immune to this threat. This dissertation establishes planning guidance for response to a nuclear attack on Riyadh, the capital of Saudi Arabia, based on a hypothetical scenario of a nuclear detonation. A case scenario of a one-megaton thermonuclear bomb detonated at ground level over Riyadh is used to support the thesis. Previous nuclear tests and the Hiroshima and Nagasaki bombings have been used to present possible effects on Riyadh. US planning guidance and lessons learned from the Chernobyl and Fukushima nuclear plants accidents have been used to develop the emergency response guidance. The planning guidance outlines a rapid response to the nuclear detonation. Four damage zones have been identified; severe damage zone, moderate damage zone, light damage zone and dangerous fallout zone. Actions that are recommended, and those that should be avoided, have been determined for each zone. Shelter/ evacuation evaluation for blast-affected and fallout-affected areas is the basis for the recommendation that shelter in place is the best decision for the first hours to days after the attack. Guidelines for medical care response and population monitoring and decontamination are included to reduce the early and long-term effects of the attack. Recommendations to the Saudi Arabian authorities have been made to facilitate suitable preparedness and response for such an event.

  6. Police Mental Health Partnership project: Police Ambulance Crisis Emergency Response (PACER) model development.

    Science.gov (United States)

    Huppert, David; Griffiths, Matthew

    2015-10-01

    To review internationally recognized models of police interactions with people experiencing mental health crises that are sometimes complex and associated with adverse experience for the person in crisis, their family and emergency service personnel. To develop, implement and review a partnership model trial between mental health and emergency services that offers alternative response pathways with improved outcomes in care. Three unique models of police and mental health partnership in the USA were reviewed and used to develop the PACER (Police Ambulance Crisis Emergency Response) model. A three month trial of the model was implemented and evaluated. Significant improvements in response times, the interactions with and the outcomes for people in crisis were some of the benefits shown when compared with usual services. The pilot showed that a partnership involving mental health and police services in Melbourne, Australia could be replicated based on international models. Initial data supported improvements compared with usual care. Further data collection regarding usual care and this new model is required to confirm observed benefits. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  7. Estimating Derived Response Levels at the Savannah River Site for Use with Emergency Response Models

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    2002-01-01

    Emergency response computer models at the Savannah River Site (SRS) are coupled with real-time meteorological data to estimate dose to individuals downwind of accidental radioactive releases. Currently, these models estimate doses for inhalation and shine pathways, but do not consider dose due to ingestion of contaminated food products. The Food and Drug Administration (FDA) has developed derived intervention levels (DIL) which refer to the radionuclide-specific concentration in food present throughout the relevant period of time, with no intervention, that could lead to an individual receiving a radiation dose equal to the protective action guide. In the event of an emergency, concentrations in various food types are compared with these levels to make interdictions decisions. Prior to monitoring results being available, concentrations in the environmental media (i.e. soil), called derived response levels (DRLs), can be estimated from the DILs and directly compared with computer output to provide preliminary guidance as to whether intervention is necessary. Site-specific derived response levels (DRLs) are developed for ingestion pathways pertinent to SRS: milk, meat, fish, grain, produce, and beverage. This provides decision-makers with an additional tool for use immediately following an accident prior to the acquisition of food monitoring data

  8. Hazardous materials emergency response training program at Texas A ampersand M University

    International Nuclear Information System (INIS)

    Stirling, A.G.

    1989-01-01

    The Texas Engineering Extension Service (TEEX) as the engineering vocational training arm of the Texas A ampersand M University system has conducted oil-spill, hazardous-material, and related safety training for industry since 1976 and fire suppression training since 1931. In 1987 TEEX conducted training for some 66,000 persons, of which some 6000 were in hazardous-materials safety training and 22,000 in fire suppression or related fields. Various laws and regulations exist relative to employee training at an industrial facility, such as the Hazard Communication Act, the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or more commonly Superfund), the Community Right to Know Law, and the Superfund Amendments and Reauthorization Act (SARA), Titles I and III. The TEEX programs developed on the foundation emphasize the hands-on approach (60% field exercises) to provide a comprehensive training curriculum resulting in regulatory compliance, an effective emergency response capability, a prepared community, and a safe work environment

  9. Modelling command and control for emergency response scenarios: A marine oil spills perspective

    International Nuclear Information System (INIS)

    Weisman, R.

    1993-01-01

    Commanders in emergency response scenarios have to rapidly formulate viable plans of action in the face of uncertainty, and on the basis of incomplete information and a constantly changing situation. Automated intelligent decision support systems may be a means of helping the commander to elaborate a plan, producing the operations order, and monitoring the plan's execution. The latter aspect would permit the system to advise a commander when key assumptions upon which the plan is based are no longer valid. Any such system will invariably be complex. The first step is the development of a conceptual model which will provide a sound structure to contain all of the requisite knowledge and information. The subject model is relatively simple and includes a metric for evaluating plans, a practical means of handling uncertainty, and a constraint language to capture expert knowledge precisely. Aspects of the model are illustrated using practical examples from the domain of maritime oil spill response. Results from several computer-based implementations of parts of the model are also discussed. 13 refs., 17 figs

  10. The atmospheric release advisory capability (ARAC): A federal emergency response capability

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Sullivan, T.J.

    1988-03-01

    The Atmospheric Release Capability (ARAC) is a Department of Energy (DOE)-sponsored emergency-response service set up to provide real-time prediction of the dose levels and the extent of surface contamination resulting from a broad range of possible occurrences (accidents, spills, extortion threats involving nuclear material, reentry of nuclear-powered satellites, and atmospheric nuclear tests) that could involve the release of airborne radioactive material. During the past decade, ARAC has responded to more than 150 real-time situations, including exercises. The most notable responses include the Three Mile Island accident in Pennsylvania, the Titan II missile accident in Arkansas, the reentry of the USSR's COSMOS-954 into the atmosphere over Canada, the accidental release of uranium hexafluoride from the Sequoyah Facility accident in Oklahoma, and, most recently, the Chernobyl reactor accident in the Soviet Union. ARAC currently supports the emergency-preparedness plans at 50 Department of Defense (DOD) and DOE sites within the US and also responds to accidents that happen elsewhere. Our ARAC center serves as the focal point for data acquisition, data analysis and assessments during a response, using a computer-based communication network to acquire real-time weather data from the accident site and the surrounding region, as well as pertinent accident information. Its three-dimensional computer models for atmospheric dispersion, MATHEW and ADPIC, digest all this information and produce the predictions used in accident assessment. 9 refs., 6 figs., 1 tab

  11. A 'mixed reality' simulator concept for future Medical Emergency Response Team training.

    Science.gov (United States)

    Stone, Robert J; Guest, R; Mahoney, P; Lamb, D; Gibson, C

    2017-08-01

    The UK Defence Medical Service's Pre-Hospital Emergency Care (PHEC) capability includes rapid-deployment Medical Emergency Response Teams (MERTs) comprising tri-service trauma consultants, paramedics and specialised nurses, all of whom are qualified to administer emergency care under extreme conditions to improve the survival prospects of combat casualties. The pre-deployment training of MERT personnel is designed to foster individual knowledge, skills and abilities in PHEC and in small team performance and cohesion in 'mission-specific' contexts. Until now, the provision of airborne pre-deployment MERT training had been dependent on either the availability of an operational aircraft (eg, the CH-47 Chinook helicopter) or access to one of only two ground-based facsimiles of the Chinook 's rear cargo/passenger cabin. Although MERT training has high priority, there will always be competition with other military taskings for access to helicopter assets (and for other platforms in other branches of the Armed Forces). This paper describes the development of an inexpensive, reconfigurable and transportable MERT training concept based on 'mixed reality' technologies-in effect the 'blending' of real-world objects of training relevance with virtual reality reconstructions of operational contexts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Evaluation of Savannah River Plant emergency response models using standard and nonstandard meteorological data

    International Nuclear Information System (INIS)

    Hoel, D.D.

    1984-01-01

    Two computer codes have been developed for operational use in performing real time evaluations of atmospheric releases from the Savannah River Plant (SRP) in South Carolina. These codes, based on mathematical models, are part of the SRP WIND (Weather Information and Display) automated emergency response system. Accuracy of ground level concentrations from a Gaussian puff-plume model and a two-dimensional sequential puff model are being evaluated with data from a series of short range diffusion experiments using sulfur hexafluoride as a tracer. The models use meteorological data collected from 7 towers on SRP and at the 300 m WJBF-TV tower about 15 km northwest of SRP. The winds and the stability, which is based on turbulence measurements, are measured at the 60 m stack heights. These results are compared to downwind concentrations using only standard meteorological data, i.e., adjusted 10 m winds and stability determined by the Pasquill-Turner stability classification method. Scattergrams and simple statistics were used for model evaluations. Results indicate predictions within accepted limits for the puff-plume code and a bias in the sequential puff model predictions using the meteorologist-adjusted nonstandard data. 5 references, 4 figures, 2 tables

  13. Preparedness and Emergency Response Learning Centers: supporting the workforce for national health security.

    Science.gov (United States)

    Richmond, Alyson L; Sobelson, Robyn K; Cioffi, Joan P

    2014-01-01

    The importance of a competent and prepared national public health workforce, ready to respond to threats to the public's health, has been acknowledged in numerous publications since the 1980s. The Preparedness and Emergency Response Learning Centers (PERLCs) were funded by the Centers for Disease Control and Prevention in 2010 to continue to build upon a decade of focused activities in public health workforce preparedness development initiated under the Centers for Public Health Preparedness program (http://www.cdc.gov/phpr/cphp/). All 14 PERLCs were located within Council on Education for Public Health (CEPH) accredited schools of public health. These centers aimed to improve workforce readiness and competence through the development, delivery, and evaluation of targeted learning programs designed to meet specific requirements of state, local, and tribal partners. The PERLCs supported organizational and community readiness locally, regionally, or nationally through the provision of technical consultation and dissemination of specific, practical tools aligned with national preparedness competency frameworks and public health preparedness capabilities. Public health agencies strive to address growing public needs and a continuous stream of current and emerging public health threats. The PERLC network represented a flexible, scalable, and experienced national learning system linking academia with practice. This system improved national health security by enhancing individual, organizational, and community performance through the application of public health science and learning technologies to frontline practice.

  14. Trasax '90: An integrated transportation emergency response exercise program involving transuranic waste shipments

    International Nuclear Information System (INIS)

    Kouba, S.; Everitt, J.

    1991-01-01

    Over the last five years, the US Department of Energy (DOE), and several states and numerous local governments have been preparing for the transportation of transuranic (TRU) waste to be shipped to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, near Carlsbad. Seven western states, represented by the Western Governors' Association (WGA), submitted a report to the US Congress that discussed the concerns of their constituents related to the transportation of TRU waste through their communities. One of the three major concerns identified was emergency preparedness. Initial funding to resolve concerns identified in the WGA report to Congress was provided by the US Department of Transportation. Upon receiving funding, lead states were assigned responsibilities to devise programs aimed at increasing public confidence in the areas of most concern. The responsibility for emergency response readiness, as demonstrated through a program of training and responding to simulated accident scenarios, was accepted by the state of Colorado. The state of Colorado laid out an exercise program which expanded upon the DOE training programs already offered to emergency responders along Colorado's designated TRU-waste transportation corridor. The ongoing program included a full-scale field exercise staged in Colorado Springs and dubbed, ''TRANSAX '90.''

  15. Behavioral Emergency Response Team: Implementation Improves Patient Safety, Staff Safety, and Staff Collaboration.

    Science.gov (United States)

    Zicko, Cdr Jennifer M; Schroeder, Lcdr Rebecca A; Byers, Cdr William S; Taylor, Lt Adam M; Spence, Cdr Dennis L

    2017-10-01

    Staff members working on our nonmental health (non-MH) units (i.e., medical-surgical [MS] units) were not educated in recognizing or deescalating behavioral emergencies. Published evidence suggests a behavioral emergency response team (BERT) composed of MH experts who assist with deescalating behavioral emergencies may be beneficial in these situations. Therefore, we sought to implement a BERT on the inpatient non-MH units at our military treatment facility. The objectives of this evidence-based practice process improvement project were to determine how implementation of a BERT affects staff and patient safety and to examine nursing staffs' level of knowledge, confidence, and support in caring for psychiatric patients and patients exhibiting behavioral emergencies. A BERT was piloted on one MS unit for 5 months and expanded to two additional units for 3 months. Pre- and postimplementation staff surveys were conducted, and the number of staff assaults and injuries, restraint usage, and security intervention were compared. The BERT responded to 17 behavioral emergencies. The number of assaults decreased from 10 (pre) to 1 (post); security intervention decreased from 14 to 1; and restraint use decreased from 8 to 1. MS staffs' level of BERT knowledge and rating of support between MH staff and their staff significantly increased. Both MS and MH nurses rated the BERT as supportive and effective. A BERT can assist with deescalating behavioral emergencies, and improve staff collaboration and patient and staff safety. © 2017 Sigma Theta Tau International.

  16. Design Concepts of Emergency Response Robot Platform K-R2D2

    International Nuclear Information System (INIS)

    Noh, Sun Young; Jeong, Kyungmin

    2016-01-01

    From the analysis for various mobile robots competed in DARPA Robotics Challenge, there are some drawbacks in using two or four legs because bipedal locomotion is not yet suitable for maintaining stability and quadrupedal locomotion is difficult to go through narrow aisles. Motivated by the above observations, we propose a K-R2D2 robot platform with three legs arranged in the form of a triangle like as R2-D2 robot which is a fictional robot character in the Star Wars movies. This robot has 3 legs with tracks in each sole of the leg. It is statically stable since there are three contact points to ground. In addition, three legs are also possible to design a structure walking stairs that can expand and contract in the vertical direction. This paper has presented the conceptual design, it is developed on the purpose of quick response instead of emergent workers to the extreme conditions disasters. This robot is emergency response robot platform KR2D2 with three legs, which is statically stable to walk or wheel depending on the terrains and move quickly as possible as on uneven terrain or stairs

  17. Bulgarian emergency response system in case of nuclear accident: description, performance and verification

    International Nuclear Information System (INIS)

    Syrakov, D.; Prodanova, M.; Slavov, K.

    2004-01-01

    A PC-oriented Emergency Response System (ERS) is developed and works in National Institute of Meteorology and Hydrology with Bulgarian Academy of Science. The creation and the development of ERS was highly stimulated by the CEC/IAEA/WMO project ETEX (European Tracer EXperiment). ERS comprises of two main parts - operational and accidental ones, realized for both regions 'Europe' and 'Northern Hemisphere'. The operational part runs automatically. It consists of the following modules: selection of proper meteorological data (analyses and forecast) received via the Global Telecommunication System (GTS) of WMO; preparation of input meteorological files used by both trajectory and dispersion models (so called operational data base); completion of the respective meteorological archives, trajectory calculations for selected NPP in Europe and Northern Hemisphere; visualization of the results and putting the pictures in a specialized Web-site. The operational part runs every 12 hours, after new meteorological information is received. The accidental part is activated manually when a real radioactive releases in occurred or during emergency exercises. Two Bulgarian dispersion models - LED and EMAP are a core of the accidental part, LED (Lagrangean-Eulerian Diffusion) being a typical puff-model, wile EMAP (Eulerian Model for Air Pollution) is a 3-D dispersion model. The source input is specified by the user - Bulgarian emergency authorities, and the visualized output (pollution distribution maps) is sent back via fax and FTP. In the paper, the ERS overall structure and its modules are described and an ERS application in emergency management is shown. (authors)

  18. Environmental emergency response plans (EERPs): A single plan approach to satisfy multiple regulations

    International Nuclear Information System (INIS)

    Muzyka, L.

    1995-01-01

    Conrail is a freight railroad operating in twelve northeast and midwestern states transporting goods and materials over 11,700 miles of railroad. To repair, maintain, rebuild, and manufacture locomotives and rail cars, and to maintain the track, right of way, bridges, tunnels and other structures, Conrail uses petroleum products, solvents and cleaners. These products are stored in hundreds of storage tanks in and around the yards and right of way. To power the trains, locomotives are fueled with diesel fuel. With large volumes of fuel, lubricants, solvents and cleaners, safe and efficient handling of petroleum and chemicals is crucial to avoid negative impacts on the environment. Conrail recently revisited the issue of environmental emergency response planning. In an attempt to assure full compliance with a myriad of federal, state, and local regulation, a ''single plan approach'' was chosen. Single plans for each facility, coined EERPs, were decided on after careful review of the regulations, and evaluation of the company's operational and organizational needs

  19. Study of developing nuclear fabrication facility's integrated emergency response manual

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeh Yeong; Cho, Nam Chan; Han, Seung Hoon; Moon, Jong Han; Lee, Jin Hang [KEPCO, Daejeon (Korea, Republic of); Min, Guem Young; Han, Ji Ah [Dongguk Univ., Daejeon (Korea, Republic of)

    2016-05-15

    Public begin to pay attention to emergency management. Thus, public's consensus on having high level of emergency management system up to advanced country's is reached. In this social atmosphere, manual is considered as key factor to prevent accident or secure business continuity. Therefore, we first define possible crisis at KEPCO Nuclear Fuel (hereinafter KNF) and also make a 'Reaction List' for each crisis situation at the view of information-design. To achieve it, we analyze several country's crisis response manual and then derive component, indicate duties and roles at the information-design point of view. From this, we suggested guideline to make 'Integrated emergency response manual(IERM)'. The manual we used before have following few problems; difficult to applicate at the site, difficult to deliver information. To complement these problems, we searched manual elements from the view of information-design. As a result, we develop administrative manual. Although, this manual could be thought as fragmentary manual because it confined specific several agency/organization and disaster type.

  20. Emergency response guide-B ECCS guideline evaluation analyses for N reactor

    International Nuclear Information System (INIS)

    Chapman, J.C.; Callow, R.A.

    1989-07-01

    INEL conducted two ECCS analyses for Westinghouse Hanford. Both analyses will assist in the evaluation of proposed changes to the N Reactor Emergency Response Guide-B (ERG-B) Emergency Core System (ECCS) guideline. The analyses were a sensitivity study for reduced-ECCS flow rates and a mechanistically determined confinement steam source for a delayed-ECCS LOCA sequence. The reduced-ECCS sensitivity study established the maximum allowable reduction in ECCS flow as a function of time after core refill for a large break loss-of-coolant accident (LOCA) sequence in the N Reactor. The maximum allowable ECCS flow reduction is defined as the maximum flow reduction for which ECCS continues to provide adequate core cooling. The delayed-ECCS analysis established the liquid and steam break flows and enthalpies during the reflood of a hot core following a delayed ECCS injection LOCA sequence. A simulation of a large, hot leg manifold break with a seven-minute ECCS injection delay was used as a representative LOCA sequence. Both analyses were perform using the RELAP5/MOD2.5 transient computer code. 13 refs., 17 figs., 3 tabs

  1. Personal Protective Equipment Supply Chain: Lessons Learned from Recent Public Health Emergency Responses.

    Science.gov (United States)

    Patel, Anita; D'Alessandro, Maryann M; Ireland, Karen J; Burel, W Greg; Wencil, Elaine B; Rasmussen, Sonja A

    Personal protective equipment (PPE) that protects healthcare workers from infection is a critical component of infection control strategies in healthcare settings. During a public health emergency response, protecting healthcare workers from infectious disease is essential, given that they provide clinical care to those who fall ill, have a high risk of exposure, and need to be assured of occupational safety. Like most goods in the United States, the PPE market supply is based on demand. The US PPE supply chain has minimal ability to rapidly surge production, resulting in challenges to meeting large unexpected increases in demand that might occur during a public health emergency. Additionally, a significant proportion of the supply chain is produced off-shore and might not be available to the US market during an emergency because of export restrictions or nationalization of manufacturing facilities. Efforts to increase supplies during previous public health emergencies have been challenging. During the 2009 H1N1 influenza pandemic and the 2014 Ebola virus epidemic, the commercial supply chain of pharmaceutical and healthcare products quickly became critical response components. This article reviews lessons learned from these responses from a PPE supply chain and systems perspective and examines ways to improve PPE readiness for future responses.

  2. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  3. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  4. Allegheny County Addressing Landmarks

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  5. Allegheny County Council Districts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset portrays the boundaries of the County Council Districts in Allegheny County. The dataset is based on municipal boundaries and City of Pittsburgh ward...

  6. Allegheny County Address Points

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains address points which represent physical address locations assigned by the Allegheny County addressing authority. Data is updated by County...

  7. Radiology trainer. Musculoskeletal system

    International Nuclear Information System (INIS)

    Staebler, A.; Erlt-Wagner, B.

    2006-01-01

    This book enables students to simulate examinations. The Radiology Trainer series comprises the whole knowledge of radiology in the form of case studies for self-testing. It is based on the best-sorted German-language collection of radiological examinations of all organ regions. Step by step, radiological knowledge is trained in order to make diagnoses more efficient. The book series ensures optimal preparation for the final medical examinations and is also a valuable tool for practical training. (orig.)

  8. Radiological diagnostics in hyperparathyroidism

    International Nuclear Information System (INIS)

    Moedder, U.; Kuhn, F.P.; Gruetzner, G.

    1991-01-01

    The most important radiologically detectable effects of the primary and secondary hyperparathyroidism of the skeletal system and the periarticular soft tissue structures are presented. In the following sensitivity and specificity of radiological imaging - sonography, scintigraphy, computed tomography, magnetic resonance imaging, arteriography and selective venous sampling - in the preoperative diagnostic of the parathyroid adenomas are discussed. Therefore, radiological imaging can be omitted before primary surgery. It was only in secondary surgery that radiological process proved useful and a guide during surgical intervention. (orig.) [de

  9. Radiology systems architecture.

    Science.gov (United States)

    Deibel, S R; Greenes, R A

    1996-05-01

    This article focuses on the software requirements for enterprise integration in radiology. The needs of a future radiology systems architecture are examined, both at a concrete functional level and at an abstract system-properties level. A component-based approach to software development is described and is validated in the context of each of the abstract system requirements for future radiology computing environments.

  10. Analysis of emergency response after the Chernobyl accident in Belarus: observed and prevented medical consequences, lessons learned

    International Nuclear Information System (INIS)

    Buglova, E.; Kenigsberg, J.

    1997-01-01

    Belarus is one of the most contaminated Republic due to the Chernobyl accident. 23% of the entire area of Belarus was contaminated with radionuclides. To protect the population after the accident different types of protective actions were performed during all phases, based on various temporary dose limits. An analysis of conducted protective actions and lessons obtained during the emergency response is briefly presented

  11. Comparative Analysis of Emergency Response Operations: Haiti Earthquake in January 2010 and Pakistan’s Flood in 2010

    Science.gov (United States)

    2011-09-01

    Earthquake, Pakistan, Flood, Emergency Response Operations, International Community, HA/DR, United Nations , FRC, NDMA , ICT 16. PRICE CODE 17. SECURITY...Registration Authority NATO North Atlantic Treaty Organization NDMA National Disaster and Management Authority NDMC National Disaster Management...complicates relief efforts. 6 NDMA Pakistan, “Pakistan Floods-Summary of Damages,” No Author. Accessed 24

  12. Simulation of emergency response operations for a static chemical spill within a building using an opportunistic resource utilization network

    NARCIS (Netherlands)

    Lilien, L.T.; Elbes, M.W.; Ben Othmane, L.; Salih, R.M.

    2013-01-01

    We investigate supporting emergency response operations with opportunistic resource utilization networks ("oppnets"), based on a network paradigm for inviting and integrating diverse devices and systems available in the environment. We simulate chemical spill on a single floor of a building and

  13. Formal modelling of processes and tasks to support use and search of geo-information in emergency response

    NARCIS (Netherlands)

    Zlatanova, S.

    2010-01-01

    Many Command& Control or Early warning systems have been developed providing access to large amounts of data (and metadata) via geo-portals, or by accessing predefined data sets relaying on Spatial Data Infrastructure. However, the users involved in emergency response are usually not geoinformation

  14. From reactive to proactive use of social media in emergency response: A critical discussion of the Twitcident Project

    NARCIS (Netherlands)

    Boersma, F.K.; Diks, D.; Ferguson, J.E.; Wolbers, J.J.; Silvius, G.

    2016-01-01

    This chapter examines the introduction and implementation of the pilot project Twitcident in an emergency response room setting. Twitcident is a web-based system for filtering, searching and analyzing data on real-world incidents or crises. Social media data is seen as important for emergency

  15. Effectiveness of light paths coupled with personal emergency response systems in preventing functional decline among the elderly

    Directory of Open Access Journals (Sweden)

    Florent Lachal

    2016-08-01

    Full Text Available Introduction: The elderly population is at high risk of functional decline, which will induce significant costs due to long-term care. Dependency could be delayed by preventing one of its major determinants: falls. Light paths coupled with personal emergency response systems could prevent the functional decline through fall prevention. Methods: This study aimed to evaluate the effectiveness of light paths coupled with personal emergency response systems on the functional decline in an elderly population living at home. It is a secondary analysis on data from a previous cohort. In all, 190 older adults (aged 65 years or more living at home participated. Participants in the exposed group were equipped with home-based technologies: light paths coupled with personal emergency response systems. The participants’ functional status was assessed using the Functional Autonomy Measurement System scale at baseline (T0 and at the end of the study (T12-month. Baseline characteristics were evaluated by a comprehensive geriatric assessment. Results: After 1 year, 43% of the unexposed group had functional decline versus 16% of the exposed group. Light paths coupled with personal emergency response systems were significantly associated with a decrease in the functional decline (Δ Functional Autonomy Measurement System ⩾ 5 at home (odds ratio = 0.24, 95% confidence interval (0.11–0.54, p = 0.002. Discussion: This study suggests that light paths coupled with personal emergency response systems prevent the functional decline over 12 months. This result may encourage the prescription and use of home-based technologies to postpone dependency and institutionalization, but they need a larger cost-effectiveness study to demonstrate the efficiency of these technologies.

  16. Operational mesoscale atmospheric dispersion prediction using high performance parallel computing cluster for emergency response

    International Nuclear Information System (INIS)

    Srinivas, C.V.; Venkatesan, R.; Muralidharan, N.V.; Das, Someshwar; Dass, Hari; Eswara Kumar, P.

    2005-08-01

    An operational atmospheric dispersion prediction system is implemented on a cluster super computer for 'Online Emergency Response' for Kalpakkam nuclear site. The numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion model FLEXPART. The system provides 48 hour forecast of the local weather and radioactive plume dispersion due to hypothetical air borne releases in a range of 100 km around the site. The parallel code was implemented on different cluster configurations like distributed and shared memory systems. Results of MM5 run time performance for 1-day prediction are reported on all the machines available for testing. A reduction of 5 times in runtime is achieved using 9 dual Xeon nodes (18 physical/36 logical processors) compared to a single node sequential run. Based on the above run time results a cluster computer facility with 9-node Dual Xeon is commissioned at IGCAR for model operation. The run time of a triple nested domain MM5 is about 4 h for 24 h forecast. The system has been operated continuously for a few months and results were ported on the IMSc home page. Initial and periodic boundary condition data for MM5 are provided by NCMRWF, New Delhi. An alternative source is found to be NCEP, USA. These two sources provide the input data to the operational models at different spatial and temporal resolutions and using different assimilation methods. A comparative study on the results of forecast is presented using these two data sources for present operational use. Slight improvement is noticed in rainfall, winds, geopotential heights and the vertical atmospheric structure while using NCEP data probably because of its high spatial and temporal resolution. (author)

  17. Using the /phi/resund experimental data to evaluate the ARAC emergency response models

    International Nuclear Information System (INIS)

    Gudiksen, P.H.; Gryning, S.E.

    1988-07-01

    A series of meteorological and tracer experiments, was conducted during May and June 1984 over the 20-km wide /O/resund strait between Denmark and Sweden for the purpose of studying atmospheric dispersion processes over cold water and warm land surfaces and providing the data needed to evaluate meso-scale models in a coastal environment. In concert with these objectives the data from these experiments have been used as part of a continuing effort to evaluate the capability of the three-dimensional MATHEW/ADPIC (M/A) atmospheric dispersion models to simulate pollutant transport and diffusion characteristics of the atmospheric during a wide variety of meteorological conditions. Since previous studies have focused primarily on M/A model evaluations over rolling and complex terrain at inland sites, the /O/resund experiments provide a unique opportunity to evaluate the models in a coastal environment. The M/A models are used by the Atmospheric Release Advisory Capability (ARAC), developed by the Lawrence Livermore National Laboratory, for performing real-time assessments of the environmental consequences of potential or actual releases of radioactivity into the atmosphere. These assessments include estimation of radiation doses to nearby population centers and of the extent of surface contamination. Model evaluations, using field experimental data such as those generated by the /O/resund experiments, serve as a basis for providing emergency response managers with estimated of the uncertainties associated with accident consequence assessments. This report provides a brief description of the /O/resund experiments, the current understanding of the meteorological processes governing pollutant dispersion over the /O/resund strait, and the results of the M/A model simulations of these experiments. 11 refs., 7 figs., 1 tab

  18. USGS Provision of Near Real Time Remotely Sensed Imagery for Emergency Response

    Science.gov (United States)

    Jones, B. K.

    2014-12-01

    The use of remotely sensed imagery in the aftermath of a disaster can have an important impact on the effectiveness of the response for many types of disasters such as floods, earthquakes, volcanic eruptions, landslides, and other natural or human-induced disasters. Ideally, responders in areas that are commonly affected by disasters would have access to archived remote sensing imagery plus the ability to easily obtain the new post event data products. The cost of obtaining and storing the data and the lack of trained professionals who can process the data into a mapping product oftentimes prevent this from happening. USGS Emergency Operations provides remote sensing and geospatial support to emergency managers by providing access to satellite images from numerous domestic and international space agencies including those affiliated with the International Charter Space and Major Disasters and their space-based assets and by hosting and distributing thousands of near real time event related images and map products through the Hazards Data Distribution System (HDDS). These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other pre and post disaster data. These layers are incorporated into a Web-based browser and data delivery service, the Hazards Data Distribution System (HDDS). The HDDS can be made accessible either to the general public or to specific response agencies. The HDDS concept anticipates customer requirements and provides rapid delivery of data and services. This presentation will provide an overview of remotely sensed imagery that is currently available to support emergency response operations and examples of products that have been created for past events that have provided near real time situational awareness for responding agencies.

  19. A research of virtual reality engineering for emergency response in radioactive materials transport

    International Nuclear Information System (INIS)

    Watabe, Naoto; Hagiwara, Yutaka; Nakajima, Chikahito; Itoh, Norihiko

    2000-01-01

    As the result of typical nuclear accidents in last few years, people began to pay attention to the emergency response in nuclear accidents. CRIEPI developed the concept of support system for all of normal condition, emergency condition and education during transport, using Virtual Reality technique and other up-to-date engineering. This system consist of three subsystems, namely 'on-site' for normal condition, 'on-site support system' for emergency condition and 'education system' for transport workers training. Each subsystem contains computer, communication devices, display, video camera, various sensors, data base and control or analysis programs. This system needs the following characteristics; 1) Using Virtual Reality technique, it is practicable for users to produce the hypothetical accident scenes and to show data, graphs and text messages on a see-through type head-mounted display. 2) Each subsystem refers the common data bases for route soundings, accident probability estimation and environment impact assessment and so on. 3) In the case of accident, it can smoothly transfer from 'on-site support system' for normal condition to 'on-site support system' for emergency condition. 4) It is capable to communicate by digital full duplex communication between on-site and the control center. 5) Movie from video camera and observed data from on-site monitoring posts are transmitted to the control center, analyzed with the central computer, then returned to on-site transportation team for visualization on each head mounted displays of crew. Some technology, mainly in the field for communication, have been developed up to now, but the others are expected to realize in near future. CRIEPI will constantly make efforts for those development. (author)

  20. Geographic Information System Technology Leveraged for Crisis Planning, Emergency, Response, and Disaster Management

    Science.gov (United States)

    Ross, A.; Little, M. M.

    2013-12-01

    NASA's Atmospheric Science Data Center (ASDC) is piloting the use of Geographic Information System (GIS) technology that can be leveraged for crisis planning, emergency response, and disaster management/awareness. Many different organizations currently use GIS tools and geospatial data during a disaster event. ASDC datasets have not been fully utilized by this community in the past due to incompatible data formats that ASDC holdings are archived in. Through the successful implementation of this pilot effort and continued collaboration with the larger Homeland Defense and Department of Defense emergency management community through the Homeland Infrastructure Foundation-Level Data Working Group (HIFLD WG), our data will be easily accessible to those using GIS and increase the ability to plan, respond, manage, and provide awareness during disasters. The HIFLD WG Partnership has expanded to include more than 5,900 mission partners representing the 14 executive departments, 98 agencies, 50 states (and 3 territories), and more than 700 private sector organizations to directly enhance the federal, state, and local government's ability to support domestic infrastructure data gathering, sharing and protection, visualization, and spatial knowledge management.The HIFLD WG Executive Membership is lead by representatives from the Department of Defense (DoD) Office of the Assistant Secretary of Defense for Homeland Defense and Americas' Security Affairs - OASD (HD&ASA); the Department of Homeland Security (DHS), National Protection and Programs Directorate's Office of Infrastructure Protection (NPPD IP); the National Geospatial-Intelligence Agency (NGA) Integrated Working Group - Readiness, Response and Recovery (IWG-R3); the Department of Interior (DOI) United States Geological Survey (USGS) National Geospatial Program (NGP), and DHS Federal Emergency Management Agency (FEMA).

  1. Federal Radiological Monitoring and Assessment Center Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    FRMAC Health and Safety Working Group

    2012-03-20

    This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

  2. Factors influencing media coverage of a radiological incident

    International Nuclear Information System (INIS)

    Bernhardt, R.K.; O'Neill, L.J.

    1986-01-01

    Most organizations have an existing policy for interactions with the media. This policy often requires that interactions be with or through a professional group of public information officers or the Office of Public Affairs. This policy tends to give individual members of an organization the belief that they are not responsible or in some instances, even allowed to interact with the media. To achieve good media relationships and/or coverage, individual interactions are necessary and required. The guidelines for media interactions provided in the Federal Emergency Management Agency (FEMA) sponsored Radiological Emergency Response course are relatively straightforward and simple to adopt

  3. A Portrait of School District Crisis Management: Leadership Choices in Montgomery County during the Sniper Shootings of October 2002

    Science.gov (United States)

    Porter, Brian Joseph

    2010-01-01

    The actions of two assailants who shot and killed 10 people and wounded three others, including a student, in the region around Washington, D.C., in October 2002, provides the backdrop for a qualitative study of the emergency response by school district leaders in Montgomery County, Maryland. The study explores and describes the experiences of the…

  4. Radiology and fine art.

    Science.gov (United States)

    Marinković, Slobodan; Stošić-Opinćal, Tatjana; Tomić, Oliver

    2012-07-01

    The radiologic aesthetics of some body parts and internal organs have inspired certain artists to create specific works of art. Our aim was to describe the link between radiology and fine art. We explored 13,625 artworks in the literature produced by 2049 artists and found several thousand photographs in an online image search. The examination revealed 271 radiologic artworks (1.99%) created by 59 artists (2.88%) who mainly applied radiography, sonography, CT, and MRI. Some authors produced radiologic artistic photographs, and others used radiologic images to create artful compositions, specific sculptures, or digital works. Many radiologic artworks have symbolic, metaphoric, or conceptual connotations. Radiology is clearly becoming an original and important field of modern art.

  5. Radiological maps for Trabzon, Turkey

    International Nuclear Information System (INIS)

    Kurnaz, A.; Kucukomeroglu, B.; Damla, N.; Cevik, U.

    2011-01-01

    The activity concentrations and absorbed gamma dose rates due to primordial radionuclides and 137 Cs have been ascertained in 222 soil samples in 18 counties of the Trabzon province of Turkey using a HPGe detector. The mean activity concentrations of 238 U, 232 Th, 40 K and 137 Cs in soil samples were 41, 35, 437 and 21 Bq kg -1 , respectively. Based on the measured concentrations of these radionuclides, the mean absorbed gamma dose in air was calculated as 59 nGy h -1 and hence, the mean annual effective dose due to terrestrial gamma radiation was calculated as 72 μSv y -1 . In addition, outdoor in situ gamma dose rate (D) measurements were performed in the same 222 locations using a portable NaI detector and the annual effective dose was calculated to be 66 μSv y -1 from these results. The results presented in this study are compared with other parts of Turkey. Radiological maps of the Trabzon province were composed using the results obtained from the study. - Highlights: → →The study highlights activity concentrations of 238 U, 232 Th, 40 K and 137 Cs in soil. → The absorbed gamma dose in air and the mean annual effective dose were calculated. → The calculated results compared with outdoor in situ gamma dose measurements. → Radiological maps of the Trabzon province were created using ArcGIS applications. → The results will be valuable data for future estimations of radioactive pollution.

  6. Experiences of an Engineer working in Reactor Safety and Emergency Response

    Science.gov (United States)

    Osborn, Douglas

    2015-04-01

    The U.S. Department of Energy's Federal Radiological Monitoring and Assessment Center Consequence Management Home Team (FRMAC/CMHT) Assessment Scientist's roles, responsibilities incorporate the FRMAC with other federal, state, and local agencies during a nuclear/radiological emergency. Before the Consequence Management Response Team arrives on-site, the FRMAC/CMHT provides technical and logistical support to the FRMAC and to state, local, and tribal authorities following a nuclear/radiological event. The FRMAC/CMHT support includes analyzing event data, evaluating hazards that relate to protection of the public, and providing event information and data products to protective action decision makers. The Assessment Scientist is the primary scientist responsible for performing calculations and analyses and communicating results to the field during any activation of the FRMAC/CMHT assets. As such, the FRMAC/CMHT Assessment Scientist has a number of different roles and responsibilities to fill depending upon the type of response that is required. Additionally, the Sandia National Laboratories (SNL) Consequence Assessment Team (CAT) Consequence Assessor roles, responsibilities involve hazardous materials operational emergency at SNL New Mexico facilities (SNL/NM) which include loss of control over radioactive, chemical, or explosive hazardous materials. When a hazardous materials operational emergency occurs, key decisions must be made in order to regain control over the hazards, protect personnel from the effects of the hazards, and mitigate impacts on operations, facilities, property, and the environment. Many of these decisions depend in whole or in part on the evaluation of potential consequences from a loss of control over the hazards. As such, the CAT has a number of different roles and responsibilities to fill depending upon the type of response that is required. Primary consequence-based decisions supported by the CAT during a hazardous materials operational

  7. Capabilities of the Los Alamos National Laboratory's environmental emergency-response vehicle

    International Nuclear Information System (INIS)

    Van Etten, D.; Talley, D.; Buhl, T.; Hansen, W.

    1982-01-01

    A 4-wheel drive van has been outfitted for rapid and varied monitoring response to radiological emergencies. The vehicle's capabilities include 4-wheel drive plus auxiliary winch for access to rugged off-road terrain. On-board equipment is powered by a 6.5 kilowatt ac generator or by external ac power where available. Monitoring systems include two multichannel analyzers; one, a 2 K portable analyzer with intrinsic germanium detector, the second, a microprocessor based 4 K analyzer with a swivel head intrinsic germanium detector. Rapid gamma searches are performed with a delta rate meter system using a chart recorder and two 4'' x 4'' x 16'' NaI detectors. Other equipment includes portable high volume air samplers and a portable phoswich, as well as the usual portable radiation survey instruments. The construction is modular so that equipment racks, detectors, AC generator and other major structures can be removed or replaced in a matter of minutes

  8. Occupational radiological protection in diagnostic radiology

    International Nuclear Information System (INIS)

    Mota, H.C.

    1983-01-01

    The following topics are discussed: occupational expossure (the ALARA principle, dose-equivalent limit, ICRP justification); radiological protection planning (general aspects, barrier estimation) and determination of the occupational expossures (individual monitoring). (M.A.) [pt

  9. Role of the Federal Radiological Monitoring and Assessment Center (FRMAC) following a radiological accident

    International Nuclear Information System (INIS)

    Doyle, J.F. III.

    1986-01-01

    The Federal Radiological Emergency Response Plan (FRERP) calls for the Department of Energy to establish a Federal Radiological Monitoring and Assessment Center (FRMAC) immediately following a major radiological accident to coordinate all federal off-site monitoring efforts in support of the State and the Cognizant Federal Agency (CFA) for the facility or material involved in the accident. Some accidents are potentailly very complex and may require hundreds of radiation specialists to ensure immediate protection of the public and workers in the area, and to identify priorities for the Environmental Protection Agency (EPA) long-term efforts once the immediate protective actions have been carried out. The FRMAC provides a working environment with today's high technology tools (i.e., communication, computers, management procedures, etc.) to assure that the State and CFA decision makers have the best possible information in a timely manner on which to act. The FRMAC planners also recognize an underlying responsibility to continuously document such operations in order to provide the State, the CFA, and the EPA the technical information they will require for long term assessments. In addition, it is fully recognized that information collected and actions taken by the FRMAC will be subjected to the same scrutiny as other parts of the accident and the overall response

  10. Perceived Facilitators and Barriers to Local Health Department Workers' Participation in Infectious Disease Emergency Responses.

    Science.gov (United States)

    Rutkow, Lainie; Paul, Amy; Taylor, Holly A; Barnett, Daniel J

    strategies likely to promote willingness to respond among their staff. As LHDs face the persistent threat of infectious diseases, they must account for response willingness when planning for and fielding emergency responses. Our findings highlight opportunities for local health departments to revisit their internal policies and engage in strategies likely to promote response willingness to infectious disease emergencies among their staff.

  11. Development of an automated speech recognition interface for personal emergency response systems

    Directory of Open Access Journals (Sweden)

    Mihailidis Alex

    2009-07-01

    Full Text Available Abstract Background Demands on long-term-care facilities are predicted to increase at an unprecedented rate as the baby boomer generation reaches retirement age. Aging-in-place (i.e. aging at home is the desire of most seniors and is also a good option to reduce the burden on an over-stretched long-term-care system. Personal Emergency Response Systems (PERSs help enable older adults to age-in-place by providing them with immediate access to emergency assistance. Traditionally they operate with push-button activators that connect the occupant via speaker-phone to a live emergency call-centre operator. If occupants do not wear the push button or cannot access the button, then the system is useless in the event of a fall or emergency. Additionally, a false alarm or failure to check-in at a regular interval will trigger a connection to a live operator, which can be unwanted and intrusive to the occupant. This paper describes the development and testing of an automated, hands-free, dialogue-based PERS prototype. Methods The prototype system was built using a ceiling mounted microphone array, an open-source automatic speech recognition engine, and a 'yes' and 'no' response dialog modelled after an existing call-centre protocol. Testing compared a single microphone versus a microphone array with nine adults in both noisy and quiet conditions. Dialogue testing was completed with four adults. Results and discussion The microphone array demonstrated improvement over the single microphone. In all cases, dialog testing resulted in the system reaching the correct decision about the kind of assistance the user was requesting. Further testing is required with elderly voices and under different noise conditions to ensure the appropriateness of the technology. Future developments include integration of the system with an emergency detection method as well as communication enhancement using features such as barge-in capability. Conclusion The use of an automated

  12. Recommendations of the German Commission on Radiological Protection on information to authorities and public

    International Nuclear Information System (INIS)

    Hille, R.

    1997-01-01

    Information to the authorities and the public in nuclear emergency situations is a very sensitive point in accident prevention and emergency response. The German Commission on Radiological Protection has made several recommendations on this and defined the necessary measures. Thus, the Commission has had a crucial influence on the German information system for nuclear accidents. It therefore seems wortwhile to give an overview of all these recommendations. (orig.) [de

  13. The Emergency Radiological Monitoring and Analysis Division of the United States Federal Radiological Monitoring and Assessment Center

    International Nuclear Information System (INIS)

    Thome, D.J.

    2000-01-01

    The U.S. Federal Radiological Emergency Response Plan (FRERP) provides the framework for integrating the various Federal agencies responding to a major radiological emergency. The FRERP authorises the creation of the Federal Radiological Monitoring and Assessment Center (FRMAC), which is established to co-ordinate all Federal agencies involved in the monitoring and assessment of the off-site radiological conditions in support of the impacted States and the Lead Federal Agency (LFA). Within the FRMAC, the Monitoring and Analysis Division is responsible for co-ordinating all FRMAC assets involved in conducting a comprehensive program of environmental monitoring, sampling, radioanalysis, and quality assurance. This program includes: 1. Aerial Radiological Monitoring - Fixed-Wing and Helicopter; 2. Field Monitoring and Sampling; 3. Radioanalysis - Mobile and Fixed Laboratories; 4. Radiation Detection Instrumentation - Calibration and Maintenance; 5. Environmental Dosimetry; 6. Integrated program of Quality Assurance. To assure consistency, completeness, and the quality of the data produced, a methodology and procedures manual is being developed. This paper discusses the structure, assets, and operations of the FRMAC Monitoring and Analysis Division and the content and preparation of the manual. (author)

  14. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    Science.gov (United States)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  15. Poul Erik Andersen's radiological work on Osteochondrodysplasias and interventional radiology

    DEFF Research Database (Denmark)

    Andersen, Poul Erik

    2011-01-01

    Hospital. His significant experience and extensive scientific work has led to many posts in the Danish Society of Interventional Radiology, the European Society of Radiology and the Cardiovascular and Interventional Radiological Society of Europe, where he is a fellow and has passed the European Board...... of Interventional Radiology - The European qualification in Interventional Radiology....

  16. A real-time monitoring/emergency response workstation using a 3-D numerical model initialized with SODAR

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sullivan, T.J.; Baskett, R.L.

    1993-01-01

    Many workstation based emergency response dispersion modeling systems provide simple Gaussian models driven by single meteorological tower inputs to estimate the downwind consequences from accidental spills or stack releases. Complex meteorological or terrain settings demand more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion. Mountain valleys and sea breeze flows are two common examples of such settings. To address these complexities, we have implemented the three-dimensional-diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on a workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 years within the Department of Energy's Atmospheric Release Advisory Capability project

  17. Socioeconomic trends in radiology

    International Nuclear Information System (INIS)

    Barneveld Binkhuysen, F.H.

    1998-01-01

    For radiology the socioeconomic environment is a topic of increasing importance. In addition to the well-known important scientific developments in radiology such as interventional MRI, several other major trends can be recognized: (1) changes in the delivery of health care, in which all kinds of managed care are developing and will influence the practice of radiology, and (2) the process of computerization and digitization. The socioeconomic environment of radiology will be transformed by the developments in managed care, teleradiology and the integration of information systems. If radiologists want to manage future radiology departments they must have an understanding of the changes in the fields of economics and politics that are taking place and that will increasingly influence radiology. Some important and recognizable aspects of these changes will be described here. (orig.)

  18. Requirement of trained first responders and national level preparedness for prevention and response to radiological terrorism

    International Nuclear Information System (INIS)

    Sharma, R.; Pradeepkumar, K.S.

    2010-01-01

    In this paper we have identified the educational needs for response to radiological emergency in India with major thrust on training. The paper has also enumerated the available educational and training infrastructure, the human resources, as well as the important stake holders for development of sustainable education and training programme. The training of emergency response personnel will help in quick decision making, planning and effective response during such emergencies. Medical Emergency management requires planning by hospitals which includes up-gradation of earmarked hospitals, development of mobile hospitals and mobile medical teams supported by communication backups and adequate medical logistics for radiological emergency. Department of Atomic Energy (DAE) is a nodal agency for advising authorities for any nuclear/radiological emergency in public domain. DAE through the various ERCs have already developed technical expertise, systems, software and methodology for quick impact assessment which may be required for the implementation of countermeasures if required following any nuclear disaster/radiological emergency

  19. Analysis of emergency response after the Chernobyl accident in Belarus: observed and prevented medical consequences, lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Buglova, E.; Kenigsberg, J. [Research Clinical Inst. of Radiation Medicine and Endocrinology, Minsk (Belarus)

    1997-12-31

    Belarus is one of the most contaminated Republic due to the Chernobyl accident. 23% of the entire area of Belarus was contaminated with radionuclides. To protect the population after the accident different types of protective actions were performed during all phases, based on various temporary dose limits. An analysis of conducted protective actions and lessons obtained during the emergency response is briefly presented 9 refs.

  20. The radiological accident in Istanbul

    International Nuclear Information System (INIS)

    2000-01-01

    treatment of persons and assistance in the emergency response to the accident and the subsequent investigation. The IAEA is grateful to the Turkish authorities for their assistance in the preparation of this report