WorldWideScience

Sample records for countercurrent flow limitation

  1. Countercurrent flow limitation model for RELAP5/MOD3

    International Nuclear Information System (INIS)

    Riemke, R.A.

    1991-01-01

    This paper reports on a countercurrent flow limitation model incorporated into the RELAP5/MOD3 system transient analysis code. The model is implemented in a manner similar to the RELAP5 chocking model. Simulations using air/water flooding test problem demonstrate the ability of the code to significantly improve its comparison to data when a flooding correlation is used

  2. Counter-current flow limited CHF in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, L.Y.

    1990-01-01

    An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs

  3. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    International Nuclear Information System (INIS)

    Vierow, Karen

    2008-01-01

    This project is investigating countercurrent flow and 'flooding' phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the 'surge line' and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008

  4. Countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Hewitt, G.F.; Imperial Coll. of Science and Technology, London

    1989-01-01

    A survey is presented of counter-current flow with particular reference to the limits of the regime, namely the 'flooding' phenomena. Emphasis is also given to the transiently counter-current type of flow ('churn flow') which is formed on the break-down of falling film counter-current flow. The mechanisms of flooding are reviewed and flooding in systems with heat transfer and in non-vertical channels is discussed. New data on the flooding phenomena and the region of simultaneous downflow and upflow beyond flooding are presented. The onset of churn flow is discussed and new measurements on churn flow are presented. The characteristics of the churn flow regime are shown to be independent of the coexistence of a falling film region below the liquid injection point. (orig.)

  5. Countercurrent flow-limiting characteristics of a Savannah River Plant control rod septifoil

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1992-07-01

    Experiments were performed at the Idaho National Engineering Laboratory to investigate the counter-current flow limiting characteristics of a Savannah River Plant control rod septifoil assembly. These experiments were unheated, using air and water as the working fluids. Results are presented in terms of the Wallis flooding correlation for several different control rod configurations. Flooding was observed to occur in the vicinity of the inlet slots/holes of the septifoil, rather than within the rod bundle at the location of the minimum flow area. Nearly identical flooding characteristics of the septifoil were observed for configurations with zero, three, and four rods inserted, but significantly different results occurred with 5 rods inserted

  6. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  7. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  8. A state of the art on the flooding phenomena and countercurrent flow limiting modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jong; Chang, Won Pyo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    Countercurrent flow limiting phenomenon and its modeling for vertical and nearly horizontal pipes has been reviewed in two phase flow. A number of analytical and empirical model have been developed for flooding in the vertical pipes and annulars. These may be classified as stability theory, envelope theory, static equilibrium theory, slug formation theory, Wallis correlation, and Kutateladze correlation. The theories and empirical correlations are reviewed and comparison with the various experimental data. The scatter of the experimental data is large because of the different flooding condition and because of the influence of the experimental conditions. Application of flooding for PWR best estimate system codes is reviewed. The codes provide the user options to implement CCFL correlation for the specific geometry. The codes can accommodate generally Wallis, Kutateladze, or Bankoff correlation. 4 tabs., 36 figs., 52 refs. (Author).

  9. A state of the art on the flooding phenomena and countercurrent flow limiting modeling

    International Nuclear Information System (INIS)

    Jeong, Young Jong; Chang, Won Pyo

    1996-07-01

    Countercurrent flow limiting phenomenon and its modeling for vertical and nearly horizontal pipes has been reviewed in two phase flow. A number of analytical and empirical model have been developed for flooding in the vertical pipes and annulars. These may be classified as stability theory, envelope theory, static equilibrium theory, slug formation theory, Wallis correlation, and Kutateladze correlation. The theories and empirical correlations are reviewed and comparison with the various experimental data. The scatter of the experimental data is large because of the different flooding condition and because of the influence of the experimental conditions. Application of flooding for PWR best estimate system codes is reviewed. The codes provide the user options to implement CCFL correlation for the specific geometry. The codes can accommodate generally Wallis, Kutateladze, or Bankoff correlation. 4 tabs., 36 figs., 52 refs. (Author)

  10. Numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Z., E-mail: ssfmorghi@gmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Puente, Jesus, E-mail: jpuente720@gmail.com [Centro Federal de Educaçao Tecnologica Celso Suckowda Fonseca (CEFET), Angra dos Reis, RJ (Brazil); Baliza, Ana R., E-mail: baliza@eletronuclear.gov.br [Eletrobras Eletronuclear Angra dos Reis, RJ (Brazil)

    2017-07-01

    After a loss-of-coolant accident (LOCA) in a Pressurized Water Reactor (PWR), the temperature of the fuel elements cladding increases dramatically due to the heat produced by the fission products decay, which is not adequately removed by the vapor contained in the core. In order to avoid this sharp rise in temperature and consequent melting of the core, the Emergency Core Cooling System is activated. This system initially injects borated water from accumulator tanks of the reactor through the inlet pipe (cold leg) and the outlet pipe (hot leg), or through the cold leg only, depending on the plant manufacturer. Some manufacturers add to this, direct injection into the upper plenum of the reactor. The penetration of water into the reactor core is a complex thermo fluid dynamic process because it involves the mixing of water with the vapor contained in the reactor, added to that generated in the contact of the water with the still hot surfaces in various geometries. In some critical locations, the vapor flowing in the opposite direction of the water can control the penetration of this into the core. This phenomenon is known as Countercurrent Flow Limitation (CCFL) or Flooding, and it is characterized by the control that a gas exerts in the liquid flow in the opposite direction. This work presents a proposal to use a CFD to simulate the CCFL phenomenon. Numerical computing can provide important information and data that is difficult or expensive to measure or test experimentally. Given the importance of computational science today, it can be considered a third and independent branch of science on an equal footing with the theoretical and experimental sciences. (author)

  11. Prediction of Counter-Current Flow Limitation at Hot Leg Pipe During a Small-Break Loca

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.Y. [Korea Electric Power Research Institute, Taejeon (Korea)

    2001-07-01

    The possibility of hot leg flooding during reflux condensation cooling after a small-break loss-of-coolant accident in a nuclear power plant is evaluated. The vapor and liquid velocities in hot leg and steam generator tubes are calculated during reflux condensation cooling with the accident scenarios of three typical break sizes, 0.13 %, 1.02 % and 10.19 % cold leg break. The effect of initial water level to counter-current flow limitation is taken into account. It is predicted that the hot leg flooding is precluded when all steam generators are available for heat removal. It is also shown the both hot leg flooding and SG flooding are possible under the operation of one steam generators. Therefore, it can be said that the occurrence of hot leg flooding under reflux condensation cooling is possible when the number of steam generators available for heat removal is limited. (author). 15 refs., 15 figs., 3 tabs.

  12. Two-phase flow experiments on Counter-Current Flow Limitation in a model of the hot leg of a pressurized water reactor (2015 test series)

    International Nuclear Information System (INIS)

    Beyer, Matthias; Lucas, Dirk; Pietruske, Heiko; Szalinski, Lutz

    2016-12-01

    Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.

  13. Two-phase flow experiments on Counter-Current Flow Limitation in a model of the hot leg of a pressurized water reactor (2015 test series)

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Matthias; Lucas, Dirk; Pietruske, Heiko; Szalinski, Lutz

    2016-12-15

    Counter-Current Flow Limitation (CCFL) is of importance for PWR safety analyses in several accident scenarios connected with loss of coolant. Basing on the experiences obtained during a first series of hot leg tests now new experiments on counter-current flow limitation were conducted in the TOPFLOW pressure vessel. The test series comprises air-water tests at 1 and 2 bar as well as steam-water tests at 10, 25 and 50 bar. During the experiments the flow structure was observed along the hot leg model using a high-speed camera and web-cams. In addition pressure was measured at several positions along the horizontal part and the water levels in the reactor-simulator and steam-generator-simulator tanks were determined. This report documents the experimental setup including the description of operational and special measuring techniques, the experimental procedure and the data obtained. From these data flooding curves were obtained basing on the Wallis parameter. The results show a slight shift of the curves in dependency of the pressure. In addition a slight decrease of the slope was found with increasing pressure. Additional investigations concern the effects of hysteresis and the frequencies of liquid slugs. The latter ones show a dependency on pressure and the mass flow rate of the injected water. The data are available for CFD-model development and validation.

  14. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor, E-mail: ymo@cdtn.br, E-mail: amir@cdtn.br, E-mail: aacs@cdtn.br, E-mail: vitors@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  15. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    International Nuclear Information System (INIS)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor

    2015-01-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  16. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and

  17. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B 4 C) to have the ability of reactivity control. It has annular vapor space and it

  18. Experimental characterisation of the interfacial structure during counter-current flow limitation in a model of the hot leg of a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, C., E-mail: c.vallee@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany); Nariai, T.; Futatsugi, T.; Tomiyama, A., E-mail: nariai@cfrg.scitec.kobe-u.ac.jp, E-mail: futatsugi@cfrg.scitec.kobe-u.ac.jp, E-mail: tomiyama@mech.kobe-u.ac.jp [Kobe Univ., Graduate School of Engineering, Kobe (Japan); Lucas, D., E-mail: d.lucas@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany); Murase, M., E-mail: murase@inss.co.jp [Inst. of Nuclear Safety System, Inc. (INSS), Fukui (Japan)

    2011-07-01

    In order to investigate the two-phase flow behaviour during counter-current flow limitation in the hot leg of a pressurised water reactor, dedicated experiments were performed in a scaled down model of Kobe University. The structure of the interface was observed from the side of the channel test section using a high-speed video camera. An algorithm was developed to recognise the stratified interface in the camera frames after background subtraction. The evolution of the water level along the hot leg is analysed in function of the liquid and gas flow rates. (author)

  19. Gulping phenomena in transient countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Tehrani, Ali A.K.

    2001-04-01

    Apart from previous work on countercurrent gas-liquid flow, transient tank drainage through horizontal off-take pipes is described, including experimental procedure, flow pattern on observations and countercurrent flow limitation results. A separate chapter is devoted to countercurrent two-phase flow in a pressurised water reactor hot-leg scaled model. Results concerning low head flooding, high head and loss of bowl flooding, transient draining of the steam generator and pressure variation and bubble detachment are presented. The following subjects are covered as well: draining of sealed tanks of vertical pipes, unsteady draining of closed vessel via vertical tube, unsteady filling of a closed vessel via vertical tube from a constant head reservoir. Practical significance of the results obtained is discussed

  20. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    Abe, Yutaka; Adachi, Hiromichi

    2004-01-01

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  1. Experimental Characterisation of the Interfacial Structure during Counter-Current Flow Limitation in a Model of the Hot Leg of a PWR

    Directory of Open Access Journals (Sweden)

    Christophe Vallée

    2012-01-01

    Full Text Available In order to investigate the two-phase flow behaviour during counter-current flow limitation in the hot leg of a pressurised water reactor, dedicated experiments were performed in a scaled down model of Kobe University. The experiments were performed with air and water at atmospheric pressure and room temperature. At high flow rates, CCFL occurs and the discharge of water to the reactor pressure vessel simulator is limited by the formation of slugs carrying liquid back to the steam generator. The structure of the interface was observed from the side of the channel test section using a high-speed video camera. An algorithm was developed to recognise the stratified interface in the camera frames after background subtraction. This method allows extracting the water level at any position in the image as well as performing further statistical treatments. The evolution of the interfacial structure along the horizontal part of the hot leg is shown by the visualisation of the probability distribution of the water level and analysed in function of the liquid and gas flow rates. The data achieved are useful for the analysis of the flow conditions as well as for the validation of modelling approaches like computational fluid dynamics.

  2. Numerical simulations for effects of pressure and temperature on counter-current flow limitation at lower end of a vertical pipe

    International Nuclear Information System (INIS)

    Kusunoki, Takayoshi; Tomiyama, Akio; Murase, Michio; Takata, Takashi

    2015-01-01

    The purpose of this study is to derive a CCFL (counter-current flow limitation) correlation and its uncertainty for steam generator (SG) U-tubes in a pressurized water reactor. Pressure and temperature are very high in actual U-tubes. Hence, in this paper, we evaluated effects of pressure and temperature on CCFL characteristics using numerical simulations. Results computed with the k-ω SST turbulence model gave a trend opposite to the ROSA-IV/LSTF data in the pressure range of 1.0-7.0 MPa, and the computed falling water flow rates decreased as pressure increased. Because computations with the k-ω SST were unstable at lower pressures than 1.0 MPa, the laminar flow model was used even though it significantly overestimated falling water flow rates. The results showed that: (1) the flooding under steam-water conditions was mitigated more than that under air-water conditions; (2) the falling water flow rate had a maximum value at about 1.0 MPa; and (3) the laminar flow model resulted in an opposite trend to the ROSA-IV/LSTF data in the pressure range of 1.0-7.0 MPa, as the k-ω SST turbulence model did. Thus, we concluded that accurate measurements should be made in a wide range of pressures using a single vertical pipe in order to confirm effects of fluid properties on CCFL. (author)

  3. Flooding in counter-current two-phase flow

    International Nuclear Information System (INIS)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding

  4. Flooding in counter-current two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  5. The counter-current flooding limit in vertical tubes with and without orifices

    International Nuclear Information System (INIS)

    Tye, P.; Davidson, M.; Teyssedou, A.; Tapucu, A.; Matuszkiewicz, A.; Midvidy, W.

    1993-01-01

    For hypothetical loss of coolant accidents in nuclear reactors, rapid reflooding of the core is desirable. In CANDU reactors the cooling water is injected into the headers which are connected to the fuel channels by the feeder pipes. These pipes consist of vertical and horizontal runs; in some feeders, orifices and/or venturi flow meters are installed for flow adjustments and measurements respectively. For certain postulated accident scenarios, steam coming from the fuel channels and/or generated in the hot feeders may flow in the direction opposite to that of the cooling water thereby, creating a vertical or horizontal counter-current two-phase flow. Under these conditions, the rate at which cooling water can enter the fuel channels may be limited by the flooding phenomena. This phenomena is greatly affected by the geometry of the feeder pips, shape and number of fittings, and the flow area restrictions located in the feeders. In this paper the influence that orifice type flow area restrictions have on the counter-current flooding limit (CCFL) in a vertical tube is examined. air and water at close to atmospheric conditions are used as the working fluids. The data collected on the counter-current flooding limit in a vertical tube both with and without flow area restrictions is compared against some of the most commonly used correlations that are available in the open literature. Data on the two-phase counter-current pressure drop below the flooding point are also presented. 12 refs., 10 figs., 1 tab

  6. Investigation on countercurrent flow characteristics in vertical tubes

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2001-01-01

    It is found in the experiment that for different air inlet the flooding may be occurred in air inlet or outlet in two-phase countercurrent flow. Since the positions of flooding are difference, the correlation between water flow rate and air flow rate for onset of flooding is difference. This result is of significant meaning for studying the mechanism of onset of flooding. The reason for this difference is analyzed based on two-phase flow characteristics. It is proposed that different correlation should be used to calculate the inlet flooding and outlet flooding

  7. Counter-current gas-liquid two-phase flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Sohn, Byung Hu; Kim, Byong Joo

    2000-01-01

    A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)

  8. Theoretical study of flow in a thermal countercurrent centrifuge

    International Nuclear Information System (INIS)

    Durivault, Jean; Louvet, Pierre.

    1976-03-01

    This paper deals with the flow calculation in a thermal countercurrent centrifuge at total reflux. Matched asymptotic expansions are used to find approximate solutions of Navier-Stokes equations which are assumed to be valid in the whole domaine. Convection and viscous dissipation disappear because of linearization, but compressibility is taken into account. Let epsilon be the Ekman number. The equations are solved in the inviscid core, in the horizontal Ekman layers of thickness 0 (epsilonsup(1/2) and in the Stewartson layer of thickness 0 (epsilonsup(1/3)), parallel to the axis. As the thermal convection is neglected, the Stewartson layer of thickness 0 (epsilon sup(1/4)) does not occur. The results show the importance of the recirculating mass-flow rate of order 0 (epsilonsup(1/3)) in front of the countercurrent mass-flow rate of order 0 (epsilonsup(1/2)). The temperature profile rules the pattern and the intensity of the recirculating flow [fr

  9. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  10. Interfacial heat transfer in countercurrent flows of steam and water

    International Nuclear Information System (INIS)

    Megahed, M.M.

    1987-04-01

    A study was conducted to examine the departure from equilibrium conditions with respect to direct contact condensation. A simple analytical model, which used an equilibrium factor, K, was derived. The model was structured to represent the physical dimensions of a nuclear reactor downcomer annulus, water subcooling, wall temperature, and water flow rate. In a two step process the model was first used to isolate the average interfacial heat transfer coefficient from vertical countercurrent steam/water data of Cook et al., with the aid of a Stanton number correlation. In the second step the model was assessed by regeneration of measured steam flow rates in the experiments by Cook et al., and an additional experiment of Kim. This report documents the analytical model, the derived Stanton number correlation, and the comparison of the calculated and measured steam flow rates by which the accuracy of the model was assessed

  11. Countercurrent Flow of Molten Glass and Air during Siphon Tests

    International Nuclear Information System (INIS)

    Guerrero, H.N.

    2001-01-01

    Siphon tests of molten glass were performed to simulate potential drainage of a radioactive waste melter, the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Glass is poured from the melter through a vertical downspout that is connected to the bottom of the melter through a riser. Large flow surges have the potential of completely filling the downspout and creating a siphon effect that has the potential for complete draining of the melter. Visual observations show the exiting glass stream starts as a single-phase pipe flow, constricting into a narrow glass stream. Then a half-spherical bubble forms at the exit of the downspout. The bubble grows, extending upwards into the downspout, while the liquid flows counter-currently to one side of the spout. Tests were performed to determine what are the spout geometry and glass properties that would be conducive to siphoning, conditions for terminating the siphon, and the total amount of glass drained

  12. Slug flooding in air-water countercurrent vertical flow

    International Nuclear Information System (INIS)

    Lee, Jae Young; Raman, Roger; Chang, Jen-Shih

    2000-01-01

    This paper is to study slug flooding in the vertical air-water countercurrent flow loop with a porous liquid injector in the upper plenum. More water penetration into the bottom plenum in slug flooding is observed than the annular flooding because the flow regime changes from the slug flow regime or periodic slug/annular flow regime to annular flow regime due to the hysteresis between the onset of flooding and the bridging film. Experiments were made tubes of 0.995 cm, 2.07 cm, and 5.08 cm in diameter. A mechanistic model for the slug flooding with the solitary wave whose height is four time of the mean film thickness is developed to produce relations of the critical liquid flow rate and the mean film thickness. After fitting the critical liquid flow rate with the experimental data as a function of the Bond number, the gas flow rate for the slug flooding is obtained by substituting the critical liquid flow rate to the annular flooding criteria. The present experimental data evaluate the slug flooding condition developed here by substituting the correlations for mean film thickness models in the literature. The best prediction was made by the correlation for the mean film thickness of the present study which is same as Feind's correlation multiplied by 1.35. (author)

  13. Two-phase countercurrent flow in a model of a pressurized water reactor hot leg

    International Nuclear Information System (INIS)

    Wongwises, S.

    1996-01-01

    The onset of flooding or countercurrent flow limitation (CCFL) determines the maximum rate at which one phase can flow countercurrently to another phase. In the present study, the experimental data of the CCFL for gas and liquid in a horizontal pipe with a bend are investigated. The different mechanisms that lead to flooding and that are dependent on the liquid flow rate are observed. For low and intermediate liquid flow rates, the onset of flooding appears simultaneously with the slugging of unstable waves that are formed at the crest of the hydraulic jump. At low liquid flow rates, slugging appears close to the bend; at higher liquid flow rates, it appears far away from the bend, in the horizontal section. For high liquid flow rates, no hydraulic jump is observed, and flooding occurs as a result of slug formation at the end of the horizontal pipe. The effects of the inclination angle of the bends, the liquid inlet conditions and the length of the horizontal pipes are of significance for the onset of flooding. A mathematical model of Ardron and Banerjee is modified to predict the onset of flooding. Flooding curves calculated by this model are compared with present experimental data and those of other researchers. The predictions of the onset of flooding as a function of the length-to-diameter ratio are in reasonable agreement with the experimental data. (orig.)

  14. Combustion of pulverized coal in counter-current flow

    Energy Technology Data Exchange (ETDEWEB)

    Timnat, Y M; Goldman, Y [Technion-Israel Inst. of Tech., Haifa (Israel). Faculty of Aerospace Engineering

    1991-01-01

    In this report we describe the results obtained with two prototypes of pulverized coal combustors operating in counter-current flow, one at atmospheric pressure, the other at higher pressure and compare them to the predictions of a theoretical-numerical model, we have developed. The first prototype treats a vertical configuration, eight times larger than the one treated before (Hazanov et al. 1985), while in the second a horizontal arrangement with a smaller volume is studied. Attention was focused on particle trajectories, burnout, angle of injection, ash separation by rotational motion, effects of initial particle size and temperature, impingement velocity and the effect of gravity. Main development activity was directed to achieving stable and reliable coal burning in the combustors.

  15. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  16. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  17. Counter-current flow in a vertical to horizontal tube with obstructions

    Energy Technology Data Exchange (ETDEWEB)

    Tye, P.; Matuszkiewicz, A.; Teyssedou, A. [Institut de Genie Nucleaire, Quebec (Canada)] [and others

    1995-09-01

    This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.

  18. Study on characteristics of void fraction in vertical countercurrent two-phase flow by neutron radiography

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Sudo, Yukio; Haga, Katsuhiro

    1996-01-01

    In order to make clear the flow mechanism and characteristics of falling water limitation under the countercurrent two-phase flow, that is, the countercurrent flow limitation (CCFL), in a vertical channel, a technique of neutron radiography (NRG) provided in the Research Nuclear Reactor JRR-3M was applied to an air-water system of vertical rectangular channels of 50 and 782 mm in length with 66 mm in channel width and 2.3 mm in channel gap under atmospheric pressure. The neutron radiography facility used in this study has a high thermal neutron flux that is suitable for visualization of fluid phenomena. A real-time electronic imaging method was used for capturing two-phase flow images in a vertical channel. It was found the technique applied was very potential to clarify the characteristics of instantaneous, local and average void fractions which were important to understand flow mechanism of the phenomena, while the measurements of void fraction had not been applied fully effectively to understanding of the flow mechanism of CCFL, because the differential pressure for determining void fraction is, in general, too small along the tested channel and is fluctuating too frequently to be measured accurately enough. From the void fraction measured by NRG as well as through direct flow observation, it was revealed that the shorter side walls of rectangular channel tested were predominantly wetted by water falling down with the longer side walls being rather dry by ascending air flow. It was strongly suggested that the analytical flow model thus obtained and proposed for the CCFL based on the flow observation was most effective

  19. UPTF experiment: Effect of full-scale geometry on countercurrent flow behaviour in PWR downcomer

    International Nuclear Information System (INIS)

    Liebert, J.; Weiss, P.

    1989-01-01

    Four separate effects tests (13 runs) have been performed at UPTF - a 1:1 scale test facility - to investigate the thermal-hydraulic phenomena in the full-scale downcomer of a PWR during end-of-blowdown, refill and reflood phases. Special attention has been paid to the effects of geometry - cold leg arrangement - and ECC-water subcooling on downcomer countercurrent flow and ECC bypass behaviour. A synopsis of the most significant events and a comparison of countercurrent flow limitation (CCFL) data from UPTF and 1/5 scale test facility of Creare are given. The CCFL results of UPTF are compared to data predicted by an empirical correlation developed at Creare, based on the modified dimensionless Wallis parameter J * . A significant effect of cold leg arrangement on CCFL was observed leading to strongly heterogeneous flow condition in the downcomer. CCFL in front of cold leg 1 adjacent to the broken loop exists even for very low steam flow rates. Therefore the benefit of strong water subcooling is not as much as expected. The existing flooding correlation of Creare predicts the full-scale downcomer CCFL insufficiently. New flooding correlations are required to describe the CCFL process adequately. (orig.)

  20. Local properties of countercurrent stratified steam-water flow

    International Nuclear Information System (INIS)

    Kim, H.J.

    1985-10-01

    A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4 0 -87 0 ) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed

  1. Prediction of pressure drop and CCFL breakdown in countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Ostrogorsky, A.G.; Gay, R.R.; Lahey, R.T. Jr.

    1983-01-01

    A steady-state analytical has been developed to predict channel pressure drop as a function of inlet vapor flow rate and applied heat flux during conditions of countercurrent two-phase flow. The interfacial constitutive relations utilized are flow surface dependent and allow for the existence of either smooth or way liquid films. A computer code was developed to solve the analytical model. Predictions of Δp versus vapor flow rate were found to agree favorably with experimental data from adiabatic, air/water systems. In addition, the model was used to predict countercurrent flow conditions in heated channels characteristic of a BWR/4 nuclear reactor fuel assembly

  2. Calculation of the separate parameters of a countercurrent centrifuge with an axially varying internal flow

    International Nuclear Information System (INIS)

    Migliavacca, S.C.P.

    1991-01-01

    A review of the isotope separation theory for the countercurrent gas centrifuge is presented. The diffusion-convection equation is solved according to the ONSAGER-COHEN solution for the constant internal flow and adapted to an axially varying countercurrent flow. Based on that theory, a numerical program is developed for the calculation of the isotopic compositions and the separative parameters of the centrifuge. The influence of the feed flow and the internal parameters. Like cut and countercurrent flow, on the separative parameters is then analysed for a model-centrifuge, which afterwards is optimized with respect to its separative power. Finally, a comparison between the present calculation procedure and some published results, provided by different theories, shows deviations lower then 20%. (author)

  3. Investigation of straitified and countercurrent flows in horizontal piping during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bourteele, J.P.

    1980-06-01

    The ECTHOR program consists in a loop having as objective to study the flow regimes in horizontal pipings (stratification, countercurrent flows) in conditions representative of small break transients within commercial PWR. The ECTHOR tests are in process. Experimental results are already available and are presented in this paper: scaling problem, U tube experiments, hot leg experiments, high pressure tests

  4. An experimental study of gravity-driven countercurrent two-phase flow in horizontal and inclined channels

    International Nuclear Information System (INIS)

    Lillibridge, K.H.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.

    1994-01-01

    Countercurrent two-phase flow in horizontal and inclined channels, connecting a sealed liquid-filled reservoir to the atmosphere, is experimentally studied. This type of gravity-driven countercurrent two-phase flow can occur during the operation of passive safety coolant injection systems of advanced reactors. It can also occur in the pressurizer surge line of pressurized water reactors during severe accidents when the hot leg becomes voided. Four distinct flow regimes are identified: (a) stratified countercurrent, which mainly occurs when the channel is horizontal; (b) intermittent stratified-slug; (c) oscillating, which occurs when the angle of inclination is ≥30 deg; and (d) annular countercurrent. The characteristics of each regime and their sensitivity to important geometric parameters are examined. The superficial velocities in the stratified countercurrent and oscillating regimes are empirically correlated

  5. Numerical simulation of countercurrent flow based on two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.D. [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China); School of Electric Power, South China University of Technology, Guangzhou 510640 (China); Zhang, X.Y., E-mail: zxiaoying@mail.sysu.edu.cn [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China)

    2017-03-15

    Highlights: • Using one-dimensional two-fluid model to help understanding counter-current flow two-phase flows. • Using surface tension model to make the one-dimensional two-fluid flow model well-posed. • Solving the governing equations with a modified SIMPLE algorithm. • Validating code with experimental data and applying it to vertical air/steam countercurrent flow condition - Abstract: In order to improve the understanding of counter-current two-phase flows, a transient analysis code is developed based on one-dimensional two-fluid model. A six equation model has been established and a two phase pressure model with surface tension term, wall drag force and interface shear terms have been used. Taking account of transport phenomenon, heat and mass transfer models of interface were incorporated. The staggered grids have been used in discretization of equations. For validation of the model and code, a countercurrent air-water problem in one experimental horizontal stratified flow has been considered firstly. Comparison of the computed results and the experimental one shows satisfactory agreement. As the full problem for investigation, one vertical pipe with countercurrent flow of steam-water and air-water at same boundary condition has been taken for study. The transient distribution of liquid fraction, liquid velocity and gas velocity for selected positions of steam-water and air-water problem were presented and discussed. The results show that these two simulations have similar transient behavior except that the distribution of gas velocity for steam-water problem have larger oscillation than the one for air-water. The effect of mesh size on wavy characteristics of interface surface was also investigated. The mesh size has significant influence on the simulated results. With the increased refinement, the oscillation gets stronger.

  6. Hydrodynamic behaviour of a gas—solid counter-current packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Trickle flow of a more or less fluidized catalyst through a packed column is a promising new gas—solid counter-current operation. The hydrodynamic, behaviour of such a column, filled with dumped PALL rings, has been investigated, while some results have been obtained with RASCHIG rings and

  7. VOF Simulations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg

    Directory of Open Access Journals (Sweden)

    Michio Murase

    2012-12-01

    Full Text Available In order to evaluate flow patterns and CCFL (countercurrent flow limitation characteristics in a PWR hot leg under reflux condensation, numerical simulations have been done using a two-fluid model and a VOF (volume of fluid method implemented in the CFD software, FLUENT6.3.26. The two-fluid model gave good agreement with CCFL data under low pressure conditions but did not give good results under high pressure steam-water conditions. On the other hand, the VOF method gave good agreement with CCFL data for tests with a rectangular channel but did not give good results for calculations in a circular channel. Therefore, in this paper, the computational grid and schemes were improved in the VOF method, numerical simulations were done for steam-water flows at 1.5 MPa under PWR full-scale conditions with the diameter of 0.75 m, and the calculated results were compared with the UPTF data at 1.5 MPa. As a result, the calculated flow pattern was found to be similar to the flow pattern observed in small-scale air-water tests, and the calculated CCFL characteristics agreed well with the UPTF data at 1.5 MPa except in the region of a large steam volumetric flux.

  8. An experimental investigation of the interfacial condensation heat transfer in steam/water countercurrent stratified flow in a horizontal pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In Cheol; Yu, Seon Oh; Chun, Moon Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Byong Sup; Kim, Yang Seok; Kim, In Hwan; Lee, Sang Won [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within {+-} 15%. 5 refs., 6 figs. (Author)

  9. One-dimensional three-field model of condensation in horizontal countercurrent flow with supercritical liquid velocity

    International Nuclear Information System (INIS)

    Trewin, Richard R.

    2011-01-01

    Highlights: → CCFL in the hot leg of a PWR with ECC Injection. → Three-Field Model of counter flowing water film and entrained droplets. → Flow of steam can cause a hydraulic jump in the supercritical flow of water. → Condensation of steam on subcooled water increases the required flow for hydraulic jump. → Better agreement with UPTF experimental data than Wallis-type correlation. - Abstract: A one-dimensional three-field model was developed to predict the flow of liquid and vapor that results from countercurrent flow of water injected into the hot leg of a PWR and the oncoming steam flowing from the upper plenum. The model solves the conservation equations for mass, momentum, and energy in a continuous-vapor field, a continuous-liquid field, and a dispersed-liquid (entrained-droplet) field. Single-effect experiments performed in the upper plenum test facility (UPTF) of the former SIEMENS KWU (now AREVA) at Mannheim, Germany, were used to validate the countercurrent flow limitation (CCFL) model in case of emergency core cooling water injection into the hot legs. Subcooled water and saturated steam flowed countercurrent in a horizontal pipe with an inside diameter of 0.75 m. The flow of injected water was varied from 150 kg/s to 400 kg/s, and the flow of steam varied from 13 kg/s to 178 kg/s. The subcooling of the liquid ranged from 0 K to 104 K. The velocity of the water at the injection point was supercritical (greater than the celerity of a gravity wave) for all the experiments. The three-field model was successfully used to predict the experimental data, and the results from the model provide insight into the mechanisms that influence the flows of liquid and vapor during countercurrent flow in a hot leg. When the injected water was saturated and the flow of steam was small, all or most of the injected water flowed to the upper plenum. Because the velocity of the liquid remained supercritical, entrainment of droplets was suppressed. When the injected

  10. Study of the instability of a film streaming on a vertical plane plate and submitted to a gas counter-current. Transition towards the co-current upward flow

    International Nuclear Information System (INIS)

    Bachir, Aziz

    1987-01-01

    This research thesis addresses the study of a liquid film flowing on a vertical wall in presence of a counter-current gas flow, and of its transition towards an upward co-current flow due to the increase of gas rate, such transition being herein called flooding. In the first part, the author addresses this flooding phenomenon and reports a bibliographical study of experimental and theoretical works. In the second part, he proposes an original theoretical approach to the modelling of a counter-current flow evolving towards a co-current flow: main methods of study of liquid film stability without gas flow, elaboration of the proposed model, study of the linear stability, numerical resolution, and presentation of an original theoretical criterion defining the limits of counter-current flow. The next part reports the experimental works: visualisations of mechanisms resulting in flooding in a rectangular duct, development of an experimental installation, comparison between theoretical and experimental results [fr

  11. Experimental investigation of flooding in air-water counter-current flow with a vertical adiabatic multi-rod bundle

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Hho Jung; Cha, Jong Hee; Cho, Sung Jae; Chun, Moon Hyun

    1991-01-01

    The process of flooding phenomenon in a vertical adiabatic 3 x 3 tube bundle flow channel has been studied experimentally. A series of tests was performed, using three types of tube bundle differing only in the number of spacer grids attached, to investigate the effects of spacer grids and multi-flow channel interactions on the air-water counter-current flow limitations. Experimentally determined flooding points at various water film Reynolds numbers for three different test sections are presented in graphical form and compared with entrainment criterion for co-current flow and instability criteria. In addition, empirical flooding correlations of the Kutateladze type are obtained for each type of test section using liquid penetration data

  12. Transition from condensation-induced counter-current flow to dispersed flow

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2004-01-01

    Model of transition from the horizontally stratified condensation-induced counter-current flow to slug flow has been analyzed with computer code WAHA and compared to the experimental data obtained in the steamline of the PMK2 test facility of Hungarian Atomic Energy Institute. The experiment was performed in the steamline initially filled with hot vapor that was gradually flooded with cold liquid. Successful simulation of the condensation-induced water hammer that follows the transition, requires accurate description of the horizontally stratified and slug flow regimes and criteria for transition between both flow regimes. Current version of the WAHA code, not verified for the condensation induced type of the water hammer, predicts the water-hammer pressure peak that exceeds 600 bar, while the measured pressure is p m = 170 ± 50 bar. Sensitivity analysis of the inter-phase exchange terms and transition conditions, pointed to the most important closure relations for heat, mass and momentum transfer. The main conclusion of the analysis is large uncertainty of the simulations: minor modification of the crucial correlations can lead to a severe water-hammer in one case, or to the 'calm' transient without pressure peaks in the other case. Large uncertainty is observed in experiments. The same simulation was performed also with RELAP5 code. However, no water hammer was predicted. (author)

  13. Modelling of the steam-water-countercurrent flow in the rewetting and flooding phase after loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Curca-Tivig, F.

    1990-01-01

    A new interphase momentum exchange model has been developed to simulate the Refill- Reflood Phase after LOCAs. Special phenomena of steam/water- countercurrent flow - like limitation or onset of downward-watee penetration - have been modelled and integrated into a flooding model. The interphase momentum exchange model interconnected with the flooding model has been implemented into the advanced system code RELAP5/MOD1. The new version of this code can now be utilized to predict the hot leg emergency-core-cooling (ECC) injection for German PWRs. The interfacial momentum transfer model developed includes the interphase frictional drag, the force due to virtual mass and the momenta due to interphase mass transfer. The modelling of the interfacial shear or drag accounts for the effects of phase and velocity profiles. The flooding model predicts countercurrent-flow limitation, onset of water penetration and partial delivery. The flooding correlation specifies the maximum down flow liquid velocity in case of countercurrent flow through flow restrictions for a given vapor velocity. (orig./HP) [de

  14. Estimation of shear stress in counter-current gas-liquid annular two-phase flow

    International Nuclear Information System (INIS)

    Abe, Yutaka; Akimoto, Hajime; Murao, Yoshio

    1991-01-01

    The accuracy of the correlations of the friction factor is important for the counter-current flow (CCF) analysis with two-fluid model. However, existing two fluid model codes use the correlations of friction factors for co-current flow or correlation developed based on the assumption of no wall shear stress. The assessment calculation for two fluid model code with those existing correlations of friction factors shows the falling water flow rate is overestimated. Analytical model is developed to calculate the shear stress distribution in water film at CCF in order to get the information on the shear stress at the interface and the wall. The analytical results with the analysis model and Bharathan's CCF data shows that the wall shear stress acting on the falling water film is almost same order as the interfacial shear stress and the correlations for co-current flow cannot be applied to the counter-current flow. Tentative correlations of the interfacial and the wall friction factors are developed based on the results of the present study. (author)

  15. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  16. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    Science.gov (United States)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The

  17. Analysis of the UPTF Separate Effects Test 11 (steam-water counter-current flow in the broken loop hot leg) using RELAP5/MOD2

    International Nuclear Information System (INIS)

    Dillistone, M.J.

    1989-08-01

    RELAP5/MOD2 predictions of countercurrent flow limitation in the UPTF hot leg separate effects Test (test 11) are compared with the experimental data. The code underestimates, by a factor of more than three, the gas flow necessary to prevent liquid runback from the steam generator, and this is shown to be due to an oversimplified flow-regime map which does not allow the possibility of stratified flow in the hot leg riser. The predicted countercurrent flow is also shown to depend, wrongly, on the depth of liquid in the steam generator plenum. The same test is also modelled using a version of the code in which stratified flow in the riser is made possible. The gas flow needed to prevent liquid runback is then predicted quite well, but at all lower gas flows the code predicts that the flow is completely unrestricted - i.e. liquid flows between full flow and zero flow are not predicted. This is shown to happen because the code cannot calculate correctly the liquid level in the hot leg, mainly because of a numerical effect of upwind donoring in the momentum flux terms of the code's basic equations. It is also shown that the code cannot model the considerable effect of the ECCS injection pipe (which runs inside the hot leg) on the liquid level. (author)

  18. Interfacial condensation heat transfer for countercurrent steam-water wavy flow in a horizontal circular pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.

  19. Countercurrent flow of supercritical anti-solvent in the production of pure xanthophylls from Nannochloropsis oculata.

    Science.gov (United States)

    Cho, Yueh-Cheng; Wang, Yuan-Chuen; Shieh, Chwen-Jen; Lin, Justin Chun-Te; Chang, Chieh-Ming J; Han, Esther

    2012-08-10

    This study examined pilot scaled elution chromatography coupled with supercritical anti-solvent precipitation (using countercurrent flow) in generating zeaxanthin-rich particulates from a micro-algal species. Ultrasonic agitated acetone extract subjected to column fractionation successfully yielded a fraction containing 349.4 mg/g of zeaxanthin with a recovery of 85%. Subsequently, supercritical anti-solvent (SAS) precipitation of the column fraction at 150 bar and 343 K produced submicron-sized particulates with a concentration of 845.5mg/g of zeaxanthin with a recovery of 90%. Experimental results from a two-factor response surface method SAS precipitation indicated that purity, mean size and morphology of the precipitates were significantly affected by the flow type configuration, feed flow rate and injection time. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Behaviour of liquid films and flooding in counter-current two-phase flow, (1)

    International Nuclear Information System (INIS)

    Suzuki, Shin-ichi; Ueda, Tatsuhiro.

    1978-01-01

    This paper reports on the results of study of the behavior of liquid film and flooding in counter-current two phase flow, and the flow speed of gas phase was measured over the wide ranges of tube diameter, tube length, amount of liquid flow, viscosity and surface tension. Liquid samples used for this experiment were water, glycerol, and second octyl alcohol. The phenomena were observed with a high speed camera. The maximum thickness of liquid film was measured, and the effects of various factors on the flooding were investigated. The results of investigation were as follows. The big waves which cause the flooding were developed by the interaction of one of the waves on liquid film surface with gas phase flow. The flow speed of gas phase at the time of beginning of flooding increases with the reduction of amount of liquid flow and the increase of tube diameter. The flooding flow speed is reduced with the increase of tube length. The larger maximum film thickness at the time of no gas phase flow causes flooding at low gas phase flow speed. (Kato, T.)

  1. A model for a countercurrent gas—solid—solid trickle flow reactor for equilibrium reactions. The methanol synthesis

    NARCIS (Netherlands)

    Westerterp, K.R.; Kuczynski, M.

    1987-01-01

    The theoretical background for a novel, countercurrent gas—solid—solid trickle flow reactor for equilibrium gas reactions is presented. A one-dimensional, steady-state reactor model is developed. The influence of the various process parameters on the reactor performance is discussed. The physical

  2. The Capes Current: a summer countercurrent flowing past Cape Leeuwin and Cape Naturaliste, Western Australia

    Science.gov (United States)

    Pearce, Alan; Pattiaratchi, Charitha

    1999-03-01

    Although the dominant boundary current off Western Australia is the poleward-flowing Leeuwin Current, satellite imagery shows that there is a cool equatorward coastal countercurrent running close inshore in the extreme southwest during the summer months. This seasonal current has been named the Capes Current as it appears to be strongest between Cape Leeuwin (34°20'S) and Cape Naturaliste (33°30'S), and it is probably linked with the general northward shelf current which has been observed previously along most of the Western Australian coastline further north. Strong northwards wind stresses between November and March slow the Leeuwin Current (which moves offshore) and drive the Capes Current, and there may be localised upwelling as well (Gersbach et al., Continental Shelf Research, 1998). It has important implications for the salmon fishery as it may affect the migration of adult salmon around Cape Leeuwin at this time of year.

  3. Critical investigations and model development on countercurrent flow of gas and liquid in horizontal and vertical channels

    International Nuclear Information System (INIS)

    Mewes, D.; Beckmann, H.

    1989-01-01

    Countercurrent flow of steam and water occurs in the horizontal and vertical lines of a PWR in case of a LOCA. In order to predict the emergency core cooling behaviour in case of a large or small break LOCA it is important to calculate the volumetric flow rate of water which will get to the reactor core. Theoretical and experimental results of countercurrent flow in horizontal and vertical channels given by publication and reports are critically reviewed for the purpose of a more physical understanding of the flow phenomena. The influence of geometry, pressure and other boundary conditions are emphasized. The existing models which are developed to calculate the onset of flooding are based on experimental results of small test facilities. The applicability of these models to large geometries and high pressures as well as the consideration of condensation and entrainment are investigated. (orig./HP) [de

  4. An extension of theoretical analysis for the onset of slugging criterion in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Lee, Byung Ryung

    1997-02-01

    This paper presents an experimental and theoretical investigation of interfacial friction factor, wave height and transition criterion from wavy to slug flow in a long horizontal air-water countercurrent stratified flow condition. A series of experiments have been conducted in adiabatic countercurrent stratified flow with the round pipe and rectangular duct test section to develop the interfacial friction factor and the criterion of onset of slugging in horizontal air-water countercurrent stratified flow. An adiabatic semi-empirical correlation for interfacial friction factor has been developed based on the surface roughness concept. A comparison of the measured data in this study and of other investigators with the predictions of the present correlation shows that the agreement is within ±30% error, and that the present correlation is applicable to a broader range of water flow rate than the correlations of previous investigators. The theories which can calculate the wave height and criteria of onset of slug flow in a stratified wavy flow regime have been developed based on the concept of total energy conservation and also wave theory. This theoretical criteria agree better with the measured data than the other criteria available in the literature, but the criteria range about 92∼107% of the measured data. An empirical formula for the criterion has been also developed and compared with the formula in the literatures. Comparison between the measured data and the predictions of the present theory shows that the agreement is within ±8%

  5. Flooding and non-equilibrium in counter-current flows with reference to pressurised water reactors

    International Nuclear Information System (INIS)

    Megahed, M.M.M.

    1981-12-01

    During the refill stage of a Loss of Coolant Accident (LOCA) in a Pressurised Water Reactor (PWR) the effectiveness with which the emergency coolant penetrates to the lower plenum, and hence to the core, is of paramount importance. Results of experimental and theoretical work carried out at the University of Strathclyde on two 1/10 scale planar test sections of a PWR downcomer annulus are presented. The experiments involved the countercurrent flows of air and water and the data were compared with existing flooding correlations for tubes. It was found experimentally that, as the inlet air flowed upwards against two opposing waterfalls, an increase in air flowrate caused the waterfalls to mover closer together until a critical air flowrate was reached where the waterfalls collapsed. A theoretical model defined this collapse condition. It was shown to be analogous to the choked flow of air through a nozzle whose cross sectional area varied with pressure. Previous experimental results for steam-water mixtures on similar test sections and the present air-water data were used to study condensation effects. Non-equilibrium effects were isolated and correlated against the dependent parameters of inlet water flowrate, inlet subcooling and downcomer wall temperature. A theoretical model giving good qualitative and quantitative agreement with experiment was developed. (author)

  6. Experimental investigation of droplet separation in a horizontal counter-current air/water stratified flow

    International Nuclear Information System (INIS)

    Gabriel, Stephan Gerhard

    2015-01-01

    A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV

  7. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Thomas, E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Deendarlianto,; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany)

    2011-10-15

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-{omega} turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.

  8. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hohne, T.; Deendarlianto; Vallee, C.; Lucas, D.; Beyer, M., E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany)

    2011-07-01

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden- Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a SST turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all ANSYS CFX users, with the possibility of the implementation of their own correlations. (author)

  9. 3D Numerical Study of Multiphase Counter-Current Flow within a Packed Bed for Post Combustion Carbon Dioxide Capture

    Directory of Open Access Journals (Sweden)

    Li Yang

    2018-06-01

    Full Text Available The hydrodynamics within counter-current flow packed beds is of vital importance to provide insight into the design and operational parameters that may impact reactor and reaction efficiencies in processes used for post combustion CO2 capture. However, the multiphase counter-current flows in random packing used in these processes are complicated to visualize. Hence, this work aimed at developing a computational fluid dynamics (CFD model to study more precisely the complex details of flow inside a packed bed. The simulation results clearly demonstrated the development of, and changes in, liquid distributions, wetted areas, and film thickness under various gas and liquid flow rates. An increase in values of the We number led to a more uniform liquid distribution, and the flow patterns changed from droplet flow to film flow and trickle flow as the We number was increased. In contrast, an increase in gas flow rate had no significant effect on the wetted areas and liquid holdup. It was also determined that the number of liquid inlets affected flow behavior, and the liquid surface tension had an insignificant influence on pressure drop or liquid holdup; however, lower surface tension provided a larger wetted area and a thinner film. An experimental study, performed to enable comparisons between experimentally measured pressure drops and simulation-determined pressure drops, showed close correspondence and similar trends between the experimental data and the simulation data; hence, it was concluded that the simulation model was validated and could reasonably predict flow dynamics within a counter-current flow packed bed.

  10. Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young

    2001-01-01

    A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant

  11. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  12. Heat transfer from a plate cooled by a water film with countercurrent air flow

    International Nuclear Information System (INIS)

    Ambrosini, W.; Manfredini, A.; Mariotti, F.; Oriolo, F.; Vigni, P.

    1995-01-01

    An experimental program at the University of Pisa provides specific data for the evaluation of heat and mass transfer by falling film evaporation. The problem is addressed primarily because of its relevance to the study of the behavior of passive containment cooling systems in simplified pressurized water reactors. In these plants, after an accident that releases vapor from the primary circuit, the steel containment envelope is cooled either by an ascending stream of air in natural circulation or by the combination of air flow and falling film evaporation. To qualify models for the prediction of the heat transfer capabilities in postulated accident conditions, researchers have built an experimental facility consisting of a flat heated plate with water sprays and a fan to simulate a countercurrent air stream. The range of relevant parameters to be investigated has been determined on the basis of integral calculations performed for the AP600 reactor containment. The facility has enabled the collection of data that confirm the adequacy of the classical heat and mass transfer analogy in predicting evaporation phenomena. Further developments in the research are needed to confirm the first results and to extend the experimental database by considering more subtle aspects of the phenomenon such as the characteristics of surface waviness of the water film and its effect on heat transfer

  13. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Science.gov (United States)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  14. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    International Nuclear Information System (INIS)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon

    2016-01-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  15. Liquid film and interfacial wave behavior in air-water countercurrent flow through vertical short multi-tube geometries

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Giot, M.

    1992-01-01

    A series of experiments has been performed on air-water countercurrent flow through short multi-tube geometries (tube number n = 3, diameter d = 36mm, length I = 2d, 10d and 20d). The time-varying thicknesses of the liquid films trickling down the individual tubes are measured by means of conductance probes mounted flush at different locations of the inner wall surfaces. Detailed time series analyses of the measured film thicknesses provide some useful information about the film flow behavior as well as the interfacial wave characteristics in individual tubes, which can be used as some guidelines for developing more general predictive flooding models. 18 refs., 18 figs., 1 tabs

  16. A mixture theory approach to model co- and counter-current two-phase flow in porous media accounting for viscous coupling

    Science.gov (United States)

    Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.

    2018-02-01

    It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.

  17. Wave-driven countercurrent plasma centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J; Fisch, Nathaniel J [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States)

    2009-11-15

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the {alpha} channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  18. Wave-driven countercurrent plasma centrifuge

    International Nuclear Information System (INIS)

    Fetterman, Abraham J; Fisch, Nathaniel J

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  19. Wave-driven Countercurrent Plasma Centrifuge

    International Nuclear Information System (INIS)

    Fetterman, A.J.; Fisch, N.J.

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided

  20. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.

    1987-01-01

    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  1. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  2. Humidification Dehumidification Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Shouman, L.; Karameldin, A.; Fadel, D.

    2015-01-01

    Humidification-dehumidification (HDH) is a low grade energy desalination technology. The waste heat from power plant (such NPP) can be used as heat source to preheat water (in evaporator) and air (in condenser) . Hot humid air and cooled spray water in counter current flow with direct contact is theoretically analyzing in the present work. Direct contact spray condenser is studied to provide the effect of various parameters on its performance. A computer programme describing the theoretical model is designed to solve a one-dimensional differential equations by using Rung–Kutta method. The programme predicts the droplet radius, velocity and temperature, besides, the humidity and temperature of air. The results show that, the length of column has great effect on the performance of spray condenser. At column height of 0.762, 2, 5, 10, and 20 m the humidity of the output air decreases by 50%, 72%, 89%, 97%, and 99% respectively. The condensate increases about 35% when the length increase from 5 to 10 m at ΔT = 25°C while increase only 18% at ΔT = 30°C. Also, it is found that, at ΔT = 25°C the condensate decrease from H = 10 to 5 m about 31% and increases from 10 to 20 m about 32%. While these results for ΔT = 25°C are 32% from H = 10 to 5 m and 36% from 10 to 20 m.The increase of both water and air mass fluxes increases the condensate mass flow rate. (author)

  3. Humidification-Dehumidification (HDH) Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Karameldin, A.; Shouman, L.; Fadel, D.

    2016-01-01

    Humidification-De humidification (HDH) is a low grade energy desalination technology. Hot humid air and cooling spray water in counter current flow with direct contact is theoretically analyzed in the present work. Direct contact spray condenser is studied to obtain the effect of various parameters on its performance. A computer program describing the theoretical model is designed to solve one-dimensional differential equations by using Rung-Kutta method. The results show that the column length has a great effect on the performance of the spray condenser. At a column height of 2, 5,10, and 20 m the humidity of the outlet air decreases by 72, 89, 97, and 99% respectively. The humid air temperature has a great influence on the productivity; me an while the temperature difference between the humid air and sprayed water has less effect. A case study of a contiguous co-generation electricity and water in Nuclear Power Plants (NPP) shows that the optimal productivity by HDH is feasible and can reach more than 15 m"3 /day.m"2, enabling a total productivity that varied from 120,000 to 300,000 m"3 /day. The design curves describing the process are obtained together in addition to a formula for the optimal productivity in terms of humid air and sprayed water fluxes at different humid air temperatures is derived

  4. Bunsen Reaction using a HIx Solution (HI-I2-H2O with Countercurrent Flow for Sulfur-Iodine Hydrogen Production Process

    Directory of Open Access Journals (Sweden)

    Kim Hyo-Sub

    2016-01-01

    Full Text Available In the sulfur-iodine hydrogen production process, the Bunsen reaction is a crucial section because of the linkage with the H2SO4 and HI decomposition sections. The HIx solution (HI-I2-H2O mixture was fed to the Bunsen reaction section as a reactant from the HI decomposition section. In this study, the Bunsen reaction using the HIx solution with countercurrent flow was performed. The production rate of HIx phase solution increased while that of H2SO4 phase solution was maintained constant when increasing the flow rate of HIx solution. As the SO2 flow rate increased, the production rates of H2SO4 and HIx phase solutions increased. The amount of resultant H2SO4 phase was very lower than that of resultant HIx phase under the conditions examined in this study.

  5. Penrose limits and RG flows

    International Nuclear Information System (INIS)

    Gimon, Eric G.; Sonnenschein, Jacob; Pando Zayas, Leopoldo A.

    2002-01-01

    The Penrose-Gueven limit simplifies a given supergravity solution into a pp-wave background. Aiming at clarifying its relation to renormalization group flow we study the Penrose-Guven limit of supergravity backgrounds that are dual to non-conformal gauge theories. The resulting backgrounds fall in a class simple enough that the quantum particle is exactly solvable. We propose a map between the effective time-dependent quantum mechanical problem and the RG flow in the gauge theory. As a testing ground we consider explicitly two Penrose limits of the infrared fixed point of the Pilch-Warner solution. We analyze the corresponding gauge theory picture and write down the operators which are the duals of the low lying string states. We also address RG flows of a different nature by considering the Penrose-Gueven limit of a stack of N D p branes. We note that in the far IR (for p<3)the limit generically has negative mass-squared. This phenomenon signals, in the world sheet picture, the necessity to transform to another description. In this regard, we consider explicitly the cases of M2 from D2 and F1 from D1. (author)

  6. Two-phase interactions in countercurrent flow studies of the flooding mechanism. Progress report 1 Nov 1975--30 Sep 1976

    International Nuclear Information System (INIS)

    Dukler, A.E.; Smith, L.

    1977-06-01

    During a loss of coolant accident in a pressurized water reactor countercurrent flow, flooding and upflow are all expected to take place. Predicting the transition from counter to upflow requires a reliable model for the flooding process. The first phase of a study is reported here which has the objective of evolving the mechanism for the flow reversal process and of developing sound productive models. This report includes a description of the experimental test loop constructed and the experimental measurements made during the first eleven months of the project. Measurements were made of liquid flowing downward as a film as well as upflow in the film entrained droplets as the system was carried through flow reversal. Time variation of pressure and pressure gradients were measured at four stations along the axis. The measurements demonstrated that the onset of flooding was associated with the onset of entrainment and that wave closure and blocking did not occur. Two types of flooding were observed. When entrainment takes place at the point of liquid entry, then flooding is characterized by a slugging or churning. When entrainment initiates well below the entry, then flow reversal occurs by droplet transport above the feed. Criteria for the existence of these two types of flooding are proposed

  7. Study of Co-Current and Counter-Current Gas-Liquid Two-Phase Flow Through Packed Bed in Microgravity

    Science.gov (United States)

    Revankar, Shripad T.

    2002-11-01

    The main goal of the project is to obtain new experimental data and development of models on the co-current and counter-current gas-liquid two-phase flow through a packed bed in microgravity and characterize the flow regime transition, pressure drop, void and interfacial area distribution, and liquid hold up. Experimental data will be obtained for earth gravity and microgravity conditions. Models will be developed for the prediction of flow regime transition, void fraction distribution and interfacial area concentration, which are key parameters to characterize the packed bed performance. Thus the specific objectives of the proposed research are to: (1) Develop experiments for the study of the gas liquid two-phase flow through the packed bed with three different flow combinations: co-current down flow, co-current upflow and counter current flow. (2) Develop pore scale and bed scale two-phase instrumentation for measurement of flow regime transition, void distribution and gas-liquid interfacial area concentration in the packed bed. (3) Obtain database on flow regime transition, pressure drop, void distribution, interfacial area concentration and liquid hold up as a function of bed characteristics such as bed particle size, porosity, and liquid properties such as viscosity and surface tension. (4) Develop mathematical model for flow regime transition, void fraction distribution and interfacial area concentration for co-current gas-liquid flow through the porous bed in gravity and micro gravity conditions.(4) Develop mathematical model for the flooding phenomena in counter-current gas-liquid flow through the porous bed in gravity and micro gravity conditions. The present proposal addresses the most important topic of HEDS-specific microgravity fluid physics research identified by NASA 's one of the strategic enterprises, OBPR Enterprise. The proposed project is well defined and makes efficient use of the ground-based parabolic flight research aircraft facility. The

  8. Counter-current motion in counter-current chromatography.

    Science.gov (United States)

    Ito, Yoichiro

    2014-12-12

    After the CCC2012 meeting, I have received an e-mail regarding the terminology of "Countercurrent Chromatography". It stated that the term "Countercurrent" is a misnomer, because its stationary phase is motionless in the column and that the method should be renamed as liquid-liquid separations or centrifugal separations. However, it was found that these names are already used for various other techniques as found via Google search. The term "Countercurrent Chromatography" was originally made after two preparative methods of Countercurrent distribution and liquid Chromatography, both having no countercurrent motion in the column. However, it is surprising to find that this F1 hybrid method "Countercurrent Chromatography" can clearly exhibit countercurrent motion within the separation column in both hydrodynamic and hydrostatic equilibrium systems. This justifies that "Countercurrent Chromatography" is a proper term for this chromatographic method. Published by Elsevier B.V.

  9. Image-Processing-Based Study of the Interfacial Behavior of the Countercurrent Gas-Liquid Two-Phase Flow in a Hot Leg of a PWR

    Directory of Open Access Journals (Sweden)

    Gustavo A. Montoya

    2012-01-01

    Full Text Available The interfacial behavior during countercurrent two-phase flow of air-water and steam-water in a model of a PWR hot leg was studied quantitatively using digital image processing of a subsequent recorded video images of the experimental series obtained from the TOPFLOW facility, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR, Dresden, Germany. The developed image processing technique provides the transient data of water level inside the hot leg channel up to flooding condition. In this technique, the filters such as median and Gaussian were used to eliminate the drops and the bubbles from the interface and the wall of the test section. A Statistical treatment (average, standard deviation, and probability distribution function (PDF of the obtained water level data was carried out also to identify the flow behaviors. The obtained data are characterized by a high resolution in space and time, which makes them suitable for the development and validation of CFD-grade closure models, for example, for two-fluid model. This information is essential also for the development of mechanistic modeling on the relating phenomenon. It was clarified that the local water level at the crest of the hydraulic jump is strongly affected by the liquid properties.

  10. Passive restriction of blood flow and counter-current heat exchange via lingual retia in the tongue of a neonatal gray whale Eschrichtius robustus (Cetacea, Mysticeti).

    Science.gov (United States)

    Ekdale, Eric G; Kienle, Sarah S

    2015-04-01

    Retia mirabilia play broad roles in cetacean physiology, including thermoregulation during feeding and pressure regulations during diving. Vascular bundles of lingual retia are described within the base of the tongue of a neonatal female gray whale (Eschrichtius robustus). Each rete consists of a central artery surrounded by four to six smaller veins. The retia and constituent vessels decrease in diameter as they extend anteriorly within the hyoglossus muscle from a position anterior to the basihyal cartilage toward the apex of the tongue. The position of the retia embedded in the hyoglossus and the anterior constriction of the vessels differs from reports of similar vascular bundles that were previously identified in gray whales. The retia likely serve as a counter-current heat exchange system to control body temperature during feeding. Cold blood flowing toward the body center within the periarterial veins would accept heat from warm blood in the central artery flowing toward the anterior end of the tongue. Although thermoregulatory systems have been identified within the mouths of a few mysticete species, the distribution of such vascular structures likely is more widespread among baleen whales than has previously been described. © 2015 Wiley Periodicals, Inc.

  11. Countercurrent liquid-liquid extraction on paper

    NARCIS (Netherlands)

    Salentijn, Gert Ij; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    Proof-of-concept is shown for two-phase countercurrent flow on paper. The device consists of two paper layers, one of which has been modified with a sizing agent to be hydrophobic. The layers exhibit different wetting behavior for water and octanol. Both phases dominate wetting in one of the layers

  12. Countercurrent air/water and steam/water flow above a perforated plate. Report for October 1978-October 1979

    International Nuclear Information System (INIS)

    Hsieh, C.; Bankoff, S.G.; Tankin, R.S.; Yuen, M.C.

    1980-11-01

    The perforated plate weeping phenomena have been studied in both air/water and steam/cold water systems. The air/water experiment is designed to investigate the effect of geometric factors of the perforated plate on the rate of weeping. A new dimensionless flow rate in the form of H star is suggested. The data obtained are successfully correlated by this H star scaling in the conventional flooding equation. The steam/cold water experiment is concentrated on locating the boundary between weeping and no weeping. The effects of water subcooling, water inlet flow rate, and position of water spray are investigated. Depending on the combination of these factors, several types of weeping were observed. The data obtained at high water spray position can be related to the air/water flooding correlation by replacing the stream flow rate to an effective stream flow rate, which is determined by the mixing efficiency above the plate

  13. Two-phase heat and mass transfer in turbulent parallel and countercurrent flows of liquid film and gas

    International Nuclear Information System (INIS)

    Kholpanov, L.P.; Babak, T.B.; Babak, V.N.; Malyusov, V.A.; Zhavoronkov, N.M.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1980-01-01

    To determine the ways of intensification of heat and mass transfer processes, the direct flow and counterflow heat and mass transfer is analytically investigated during the turbulent flow of a liquid and gas film on the basis of solving the energy equation for liquid and gas film, i.e. the two-phase film heat transfer is investigated from the position of a conjugate task. The analysis of the two-phase heat transfer has shown that it is necessary to know the position of each point in a plane before using this or that formula. Depending on its position on this plane, the heat transfer process will be determined by one or two phases only. It is found, that in the case of a single-phase heat transfer the temperature on the surface remains stable over the channel length. In the case of a two-phase heat transfer it can significantly change over the channel length [ru

  14. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    Science.gov (United States)

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  15. Diffusion-limited mixing by incompressible flows

    Science.gov (United States)

    Miles, Christopher J.; Doering, Charles R.

    2018-05-01

    Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).

  16. Spiral Countercurrent Chromatography

    Science.gov (United States)

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  17. Continuous countercurrent extraction and particle separation

    International Nuclear Information System (INIS)

    Ito, Y.

    1981-01-01

    A flow-through continuous countercurrent extraction or particle separation device consists of a coiled tube or spiral coplanar channel revolving around a main axis and rotating around its own axis at the same angular velocity and in the same direction. In a flow-through centrifuge for continuous countercurrent extraction, with two solvent phases A and B, there are 5 flow tubes: 1) a feed tube for phase B located at the head end of a helical separation column, 2) a return tube for phase A located at the head end, 3) a feed tube for phase A located at the tail end, 4) a return tube for phase B located at the tail end, and 5) a sample feed tube located at the middle portion of the column. The column is mounted on a hollow rotary shaft and the axis of revolution is defined by a stationary hollow central shaft. The 5 flow tubes are led through the hollow rotary shaft, and then through the stationary central shaft. In this way, the flow tubes from the rotary shaft are allowed to rotate freely without interference or twisting. (author)

  18. An analogy for evaporative heat transfer with wavy/stratified air-water flow in vertical counter-current flow conditions

    International Nuclear Information System (INIS)

    Kweon, H.; Park, K. C.

    2001-01-01

    An analogy for evaporative heat transfer with mass transfer was derived. From von-Karman analogy which has been applied between heat and momentum transfer in single phase turbulent flow, a modified Karman analogy was suggested at present paper. Nusselt number from this analogy showed good agreement with experimental results. Such a result shows that the analogy for a complex heat transfer mode between heat transfer and momentum transfer accompanying evaporation or condensation on the interface can be established

  19. Flow reversal power limit for the HFBR

    International Nuclear Information System (INIS)

    Cheng, L.Y.; Tichler, P.R.

    1997-01-01

    The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion

  20. Flux Limiter Lattice Boltzmann for Compressible Flows

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Counter-current flow limitation at hot leg pipe during reflux condensation cooling after small-break LOCA

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Sang Jun; Jo, Yung Jo; Jun, Hwang Yong

    1999-01-01

    The possibility of hot leg flooding is evaluated in case of a small-break loss-of-coolant accident in Korean Next Generation Reactor (KNGR) operating at the core power of 3983 MW normally. The vapor and liquid velocities in hot leg and steam generator tubes are calculated during reflux condensation cooling with the accident scenarios of three typical break sizes, 0.13 %, 1.02 % and 10.19 % cold leg break. The calculated results are compared with the existing flooding correlations. It is predicted that the hot leg flooding is excluded when two steam generators are available. It is also shown that the possibility of hot leg flooding under the operation with one steam generator is very low. Therefore, it can be said that the occurrence of hot leg flooding is unexpected when the reflux condensation cooling is maintained in steam generator tubes

  2. Analysis and design of flow limiter used in steam generator

    International Nuclear Information System (INIS)

    Liu Shixun; Gao Yongjun

    1995-10-01

    Flow limiter is an important safety component of PWR steam generator. It can limit the blowdown rate of steam generator inventory in case of the main steam pipeline breaks, so that the rate of the primary coolant temperature reduction can be slowed down in order to prevent fuel element from burn-out. The venturi type flow limiter is analysed, its flow characteristics are delineated, physical and mathematical models defined; the detail mathematical derivation provided. The research lays down a theoretic basis for flow limiter design. The governing equations and formulas given can be directly applied to computer analysis of the flow limiter. (3 refs., 3 figs.)

  3. Pedestrian Flow in the Mean Field Limit

    KAUST Repository

    Haji Ali, Abdul Lateef

    2012-11-01

    We study the mean-field limit of a particle-based system modeling the behavior of many indistinguishable pedestrians as their number increases. The base model is a modified version of Helbing\\'s social force model. In the mean-field limit, the time-dependent density of two-dimensional pedestrians satisfies a four-dimensional integro-differential Fokker-Planck equation. To approximate the solution of the Fokker-Planck equation we use a time-splitting approach and solve the diffusion part using a Crank-Nicholson method. The advection part is solved using a Lax-Wendroff-Leveque method or an upwind Backward Euler method depending on the advection speed. Moreover, we use multilevel Monte Carlo to estimate observables from the particle-based system. We discuss these numerical methods, and present numerical results showing the convergence of observables that were calculated using the particle-based model as the number of pedestrians increases to those calculated using the probability density function satisfying the Fokker-Planck equation.

  4. Modelling of cross-flow membrane contactors : Physical mass transfer processes

    NARCIS (Netherlands)

    Dindore, V. Y.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    Traditionally, hollow fiber membrane contactors used for gas-liquid contacting were designed in a shell and tube configuration with shell-side fluid flowing parallel to the fiber-side fluid, either in co-current or counter-current pattern. The primary limitations of these so-called 'parallel flow'

  5. Investigation of liquid film behavior at the onset of flooding during adiabatic counter-current air-water two-phase flow in an inclined pipe

    International Nuclear Information System (INIS)

    Deendarlianto; Ousaka, Akiharu; Kariyasaki, Akira; Fukano, Tohru

    2005-01-01

    The liquid film characteristics at the onset of flooding in an inclined pipe (16 mm i.d. and 2.2 m in length) have been investigated experimentally. A constant electric current method and visual observation were utilized to elucidate the flow mechanisms at the onset of flooding. Two mechanisms are clarified to control the flooding in lower flooding and upper flooding, respectively. The lower flooding occurred at lower liquid flow rate and high pipe inclination angle. In this mechanism, the liquid film does not block the pipe cross-section. On the other hand, the upper flooding occurred at higher liquid flow rate and low pipe inclination angle. In this case, blocking of the pipe cross-section by large wave and entrainment plays an important role. The experimental data indicated that there was no reversal motion of liquid film at the onset of flooding during the operation of both lower flooding and upper flooding. The effects of pipe inclination angle on the onset of flooding are also discussed

  6. Two-phase-flow models and their limitations

    International Nuclear Information System (INIS)

    Ishii, M.; Kocamustafaogullari, G.

    1982-01-01

    An accurate prediction of transient two-phase flow is essential to safety analyses of nuclear reactors under accident conditions. The fluid flow and heat transfer encountered are often extremely complex due to the reactor geometry and occurrence of transient two-phase flow. Recently considerable progresses in understanding and predicting these phenomena have been made by a combination of rigorous model development, advanced computational techniques, and a number of small and large scale supporting experiments. In view of their essential importance, the foundation of various two-phase-flow models and their limitations are discussed in this paper

  7. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  8. On Bubble Rising in Countercurrent Flow

    Czech Academy of Sciences Publication Activity Database

    Večeř, M.; Leštinský, P.; Wichterle, K.; Růžička, Marek

    2012-01-01

    Roč. 10, č. 2012 (2012), A30 ISSN 1542-6580 R&D Projects: GA ČR GA104/09/0972; GA ČR GA104/07/1110 Grant - others:GA MŠMT(CZ) CZ.1.05/2.1.00/03.0069 Institutional support: RVO:67985858 Keywords : ellipsoidal bubble * bubble shape * bubble velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.790, year: 2011

  9. The limiting current in a one-dimensional situation: Transition from a space charge limited to magnetically limited flow

    International Nuclear Information System (INIS)

    Kumar, Raghwendra; Biswas, Debabrata

    2008-01-01

    For a nonrelativistic electron beam propagating in a cylindrical drift tube, it is shown that the limiting current density does not saturate to the electrostatic one-dimensional (1D) estimate with increasing beam radius. Fully electromagnetic particle-in-cell (PIC) simulation studies show that beyond a critical aspect ratio, the limiting current density is lower than the 1D electrostatic prediction. The lowering in the limiting current density is found to be due to the transition from the space charge limited to magnetically limited flow. An adaptation of Alfven's single particle trajectory method is used to estimate the magnetically limited current as well as the critical radius beyond which the flow is magnetically limited in a drift tube. The predictions are found to be in close agreement with PIC simulations

  10. UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS

    International Nuclear Information System (INIS)

    Owen, James E.; Alvarez, Marcelo A.

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization front becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes

  11. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography.

    Science.gov (United States)

    Dutta, Amit K; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A; Zhang, Ada W; Tustian, Andrew D; Zydney, Andrew L; Shinkazh, Oleg

    2015-11-10

    Recent studies using simple model systems have demonstrated that continuous countercurrent tangential chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an "after binder" to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (∼ 0.67 g/L) and one with high titer (∼ 6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to those obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography

    Science.gov (United States)

    Dutta, Amit K.; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A.; Zhang, Ada W.; Tustian, Andrew D.; Zydney, Andrew L.; Shinkazh, Oleg

    2015-01-01

    Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. PMID:25747172

  13. Thermal hydrodynamic analysis of a countercurrent gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de

    1999-01-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  14. Correlation of Normal Gravity Mixed Convection Blowoff Limits with Microgravity Forced Flow Blowoff Limits

    Science.gov (United States)

    Marcum, Jeremy W.; Olson, Sandra L.; Ferkul, Paul V.

    2016-01-01

    The axisymmetric rod geometry in upward axial stagnation flow provides a simple way to measure normal gravity blowoff limits to compare with microgravity Burning and Suppression of Solids - II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (PMMA) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18% by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity 'upward flame spread test' method which extrapolates the linear blowoff boundary to the zero stretch limit in order to resolve microgravity flammability limits-something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.

  15. Countercurrent exchange of water in canine jejunum

    International Nuclear Information System (INIS)

    Ryu, K.H.; Grim, E.

    1985-01-01

    The possibility of countercurrent exchange of water molecules in canine intestinal villi has been examined. Tritium-labeled water ( 3 H 2 O) molecules were introduced either into the fluid lavaging the intestinal lumen or into the arterial blood supply for varying periods of time. Quickly frozen samples of intestinal tissue were sectioned such that isotopic concentrations at the villus tip, midvillus, villus base, and underlying submucosa and muscle could be determined. The villus concentration gradients observed were consistent with the existence of a countercurrent exchange but could also be explained by alternative arrangements. More convincing evidence of a countercurrent was obtained from experiments in which [ 14 C]inulin was introduced simultaneously with 3 H 2 O into the intestinal artery. The villus tip-to-base concentration ratio for 3 H 2 O was less than one while the ratio for inulin was greater than one, thus vitiating the alternative explanations and leading to the conclusion that the labeled water molecules must have undergone a countercurrent exchange

  16. Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation

    Directory of Open Access Journals (Sweden)

    Sheng-Cheng Huang

    2017-01-01

    Full Text Available Inspiratory flow limitation (IFL is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases and severe level (58 cases of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep.

  17. Limiting photocurrent analysis of a wide channel photoelectrochemical flow reactor

    International Nuclear Information System (INIS)

    Davis, Jonathan T; Esposito, Daniel V

    2017-01-01

    The development of efficient and scalable photoelectrochemical (PEC) reactors is of great importance for the eventual commercialization of solar fuels technology. In this study, we systematically explore the influence of convective mass transport and light intensity on the performance of a 3D-printed PEC flow cell reactor based on a wide channel, parallel plate geometry. Using this design, the limiting current density generated from the hydrogen evolution reaction at a p-Si metal–insulator–semiconductor (MIS) photocathode was investigated under varied reactant concentration, fluid velocity, and light intensity. Additionally, a simple model is introduced to predict the range of operating conditions (reactant concentration, light intensity, fluid velocity) for which the photocurrent generated in a parallel plate PEC flow cell is limited by light absorption or mass transport. This model can serve as a useful guide for the design and operation of wide-channel PEC flow reactors. The results of this study have important implications for PEC reactors operating in electrolytes with dilute reactant concentrations and/or under high light intensities where high fluid velocities are required in order to avoid operation in the mass transport-limited regime. (paper)

  18. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  19. The transition from flooding to upwards cocurrent annular flow in a vertical pipe

    International Nuclear Information System (INIS)

    Wallis, G.B.

    1962-02-01

    The limits of countercurrent flow in a vertical pipe are related to the onset of cocurrent upwards annual flow. The results are confirmed by evidence from several sources and lead to the criterion v g =(0.8→0.9)p g -1/2 [D g (p f -p g )] 1/2 for the minimum gas superficial velocity which will support a liquid film in concurrent flow. (author)

  20. Efficient methods for isolating five phytochemicals from Gentiana macrophylla using high-performance countercurrent chromatography.

    Science.gov (United States)

    Rho, Taewoong; Jung, Mila; Lee, Min Won; Chin, Young-Won; Yoon, Kee Dong

    2016-12-01

    Efficient high-performance countercurrent chromatography methods were developed to isolate five typical compounds from the extracts of Gentiana macrophylla. n-Butanol-soluble extract of G. macrophylla contained three hydrophilic iridoids, loganic acid (1), swertiamarin (2) and gentiopicroside (3), and a chromene derivative, macrophylloside D (4) which were successfully isolated by flow rate gradient (1.5 mL/min in 0-60 min, 5.0 mL/min in 60-120 min), and consecutive flow rate gradient HPCCC using n-butanol/0.1% aqueous trifluoroacetic acid (1:1, v/v, normal phase mode) system. The yields of 1-4 were 22, 16, 122, and 6 mg, respectively, with purities over 97% in a flow rate gradient high-performance countercurrent chromatography, and consecutive flow rate gradient high-performance countercurrent chromatography gave 1, 2, 3 (54, 41, 348 mg, respectively, purities over 97%) and 4 (13 mg, purity at 95%) from 750 mg of sample. The main compound in methylene chloride soluble extract, 2-methoxyanofinic acid, was successfully separated by n-hexane/ethyl acetate/methanol/water (4:6:4:6, v/v/v/v, flow-rate: 4 mL/min, reversed phase mode) condition. The structures of five isolates were elucidated by 1 H, 13 C NMR and ESI-Q-TOF-MS spectroscopic data which were compared with previously reported values. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Physiological techniques for detecting expiratory flow limitation during tidal breathing

    Directory of Open Access Journals (Sweden)

    N.G. Koulouris

    2011-09-01

    Full Text Available Patients with severe chronic obstructive pulmonary disease (COPD often exhale along the same flow–volume curve during quiet breathing as they do during the forced expiratory vital capacity manoeuvre, and this has been taken as an indicator of expiratory flow limitation at rest (EFLT. Therefore, EFLT, namely attainment of maximal expiratory flow during tidal expiration, occurs when an increase in transpulmonary pressure causes no increase in expiratory flow. EFLT leads to small airway injury and promotes dynamic pulmonary hyperinflation, with concurrent dyspnoea and exercise limitation. In fact, EFLT occurs commonly in COPD patients (mainly in Global Initiative for Chronic Obstructive Lung Disease III and IV stage, in whom the latter symptoms are common, but is not exclusive to COPD, since it can also be detected in other pulmonary and nonpulmonary diseases like asthma, acute respiratory distress syndrome, heart failure and obesity, etc. The existing up to date physiological techniques of assessing EFLT are reviewed in the present work. Among the currently available techniques, the negative expiratory pressure has been validated in a wide variety of settings and disorders. Consequently, it should be regarded as a simple, noninvasive, practical and accurate new technique.

  2. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  3. Limiting fragmentation in a thermal model with flow

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Simrol, Indore (India)

    2016-12-15

    The property of limiting fragmentation of various observables such as rapidity distributions (dN/dy), elliptic flow (v{sub 2}), average transverse momentum (left angle p{sub T} right angle) etc. of charged particles is observed when they are plotted as a function of rapidity (y) shifted by the beam rapidity (y{sub beam}) for a wide range of energies from AGS to RHIC. Limiting fragmentation (LF) is a well-studied phenomenon as observed in various collision energies and colliding systems experimentally. It is very interesting to verify this phenomenon theoretically. We study such a phenomenon for pion rapidity spectra using our hydrodynamic-like model where the collective flow is incorporated in a thermal model in the longitudinal direction. Our findings advocate the observation of extended longitudinal scaling in the rapidity spectra of pions from AGS to lower RHIC energies, while it is observed to be violated at top RHIC and LHC energies. Prediction of LF hypothesis for Pb+Pb collisions at √(s{sub NN}) = 5.02 TeV is given. (orig.)

  4. Analysis of the Conditions for the Appearance of the 'Overshootö Phenomenon in Counter-Current Packed Columns

    Czech Academy of Sciences Publication Activity Database

    Akramov, T. A.; Svoboda, Petr; Jiřičný, Vladimír; Staněk, Vladimír

    2004-01-01

    Roč. 43, č. 18 (2004), s. 5899-5903 ISSN 0888-5885 R&D Projects: GA ČR GA104/03/1558 Institutional research plan: CEZ:AV0Z4072921 Keywords : counter-current flow * holdup overshoot * mathematical analysis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.424, year: 2004

  5. Peak-counts blood flow model-errors and limitations

    International Nuclear Information System (INIS)

    Mullani, N.A.; Marani, S.K.; Ekas, R.D.; Gould, K.L.

    1984-01-01

    The peak-counts model has several advantages, but its use may be limited due to the condition that the venous egress may not be negligible at the time of peak-counts. Consequently, blood flow measurements by the peak-counts model will depend on the bolus size, bolus duration, and the minimum transit time of the bolus through the region of interest. The effect of bolus size on the measurement of extraction fraction and blood flow was evaluated by injecting 1 to 30ml of rubidium chloride in the femoral vein of a dog and measuring the myocardial activity with a beta probe over the heart. Regional blood flow measurements were not found to vary with bolus sizes up to 30ml. The effect of bolus duration was studied by injecting a 10cc bolus of tracer at different speeds in the femoral vein of a dog. All intravenous injections undergo a broadening of the bolus duration due to the transit time of the tracer through the lungs and the heart. This transit time was found to range from 4-6 second FWHM and dominates the duration of the bolus to the myocardium for up to 3 second injections. A computer simulation has been carried out in which the different parameters of delay time, extraction fraction, and bolus duration can be changed to assess the errors in the peak-counts model. The results of the simulations show that the error will be greatest for short transit time delays and for low extraction fractions

  6. Limits to gene flow in a cosmopolitan marine planktonic diatom.

    Science.gov (United States)

    Casteleyn, Griet; Leliaert, Frederik; Backeljau, Thierry; Debeer, Ann-Eline; Kotaki, Yuichi; Rhodes, Lesley; Lundholm, Nina; Sabbe, Koen; Vyverman, Wim

    2010-07-20

    The role of geographic isolation in marine microbial speciation is hotly debated because of the high dispersal potential and large population sizes of planktonic microorganisms and the apparent lack of strong dispersal barriers in the open sea. Here, we show that gene flow between distant populations of the globally distributed, bloom-forming diatom species Pseudo-nitzschia pungens (clade I) is limited and follows a strong isolation by distance pattern. Furthermore, phylogenetic analysis implies that under appropriate geographic and environmental circumstances, like the pronounced climatic changes in the Pleistocene, population structuring may lead to speciation and hence may play an important role in diversification of marine planktonic microorganisms. A better understanding of the factors that control population structuring is thus essential to reveal the role of allopatric speciation in marine microorganisms.

  7. Technical aspects and limitations of fractional flow reserve measurement.

    Science.gov (United States)

    Jerabek, Stepan; Kovarnik, Tomas

    2018-02-27

    The only indication for coronary revascularization is elimination of ischaemia. Invasive hemodynamic methods (fractional flow reserve - FFR and instantaneous wave-free ratio (iFR) are superior to coronary angiography in detection of lesions causing myocardial ischaemia. Current European guidelines for myocardial revascularization recommend using of FFR for detection of functional assessment of lesions severity in category IA and number of these procedures increases. However, routine usage of these methods requires knowledge of technical requirements and limitations. The aim of the study is to summarise good clinical practice for FFR and iFR measurements with explanation of possible technical challenges, that are necessary for increasing of measurement accuracy. Authors describe frequent technical mistakes and malpractice during invasive assessment of lesion severity in coronary arteries.

  8. Assessment and monitoring of flow limitation and other parameters from flow/volume loops.

    Science.gov (United States)

    Dueck, R

    2000-01-01

    Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise

  9. CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil

    KAUST Repository

    Wang, Weicheng

    2012-08-01

    Computational Fluid Dynamic (CFD) modeling of a continuous countercurrent hydrolysis process was performed using ANSYS-CFX. The liquid properties and flow behavior such as density, specific heats, dynamic viscosity, thermal conductivity, and thermal expansivity as well as water solubility of the hydrolysis components triglyceride, diglyceride, monoglyceride, free fatty acid, and glycerol were calculated. Chemical kinetics for the hydrolysis reactions were simulated in this model by applying Arrhenius parameters. The simulation was based on actual experimental reaction conditions including temperature and water-to-oil ratio. The results not only have good agreement with experimental data but also show instantaneous distributions of concentrations of every component in hydrolysis reaction. This model provided visible insight into the continuous countercurrent hydrolysis process. © 2012 Elsevier Ltd.

  10. Countercurrent heat exchange and thermoregulation during blood-feeding in kissing bugs.

    Science.gov (United States)

    Lahondère, Chloé; Insausti, Teresita C; Paim, Rafaela Mm; Luan, Xiaojie; Belev, George; Pereira, Marcos H; Ianowski, Juan P; Lazzari, Claudio R

    2017-11-21

    Blood-sucking insects experience thermal stress at each feeding event on endothermic vertebrates. We used thermography to examine how kissing-bugs Rhodnius prolixus actively protect themselves from overheating. During feeding, these bugs sequester and dissipate the excess heat in their heads while maintaining an abdominal temperature close to ambient. We employed a functional-morphological approach, combining histology, µCT and X-ray-synchrotron imaging to shed light on the way these insects manage the flow of heat across their bodies. The close alignment of the circulatory and ingestion systems, as well as other morphological characteristics, support the existence of a countercurrent heat exchanger in the head of R. prolixus , which decreases the temperature of the ingested blood before it reaches the abdomen. This kind of system has never been described before in the head of an insect. For the first time, we show that countercurrent heat exchange is associated to thermoregulation during blood-feeding.

  11. CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil

    KAUST Repository

    Wang, Weicheng; Natelson, Robert H.; Stikeleather, Larry F.; Roberts, William L.

    2012-01-01

    Computational Fluid Dynamic (CFD) modeling of a continuous countercurrent hydrolysis process was performed using ANSYS-CFX. The liquid properties and flow behavior such as density, specific heats, dynamic viscosity, thermal conductivity, and thermal expansivity as well as water solubility of the hydrolysis components triglyceride, diglyceride, monoglyceride, free fatty acid, and glycerol were calculated. Chemical kinetics for the hydrolysis reactions were simulated in this model by applying Arrhenius parameters. The simulation was based on actual experimental reaction conditions including temperature and water-to-oil ratio. The results not only have good agreement with experimental data but also show instantaneous distributions of concentrations of every component in hydrolysis reaction. This model provided visible insight into the continuous countercurrent hydrolysis process. © 2012 Elsevier Ltd.

  12. Countercurrent distribution of biological cells

    Science.gov (United States)

    Brooks, D. E.

    1979-01-01

    A neutral polymer phase system consisting of 7.5 percent dextran 40/4.5 percent PEG 6, 0.11 M Na phosphate, 5 percent fetal bovine serum (FBS), pH 7.5, was developed which has a high phase droplet electrophoretic mobility and retains cell viability over many hours. In this and related systems, the drop mobility was a linear function of drop size, at least in the range 4-30 micron diameter. Applications of and electric field of 4.5 v/cm to a system containing 10 percent v/v bottom phase cleared the system more than two orders of magnitude faster than in the absence of the field. At higher bottom phase concentrations a secondary phenomenon intervened in the field driven separations which resulted in an increase in turbidity after clearing had commenced. The increase was associated with a dilution of the phase system in the chamber. The effect depended on the presence of the electric field. It may be due to electroosmotic flow of buffer through the Amicon membranes into the sample chamber and flow of phase system out into the rinse stream. Strategies to eliminate this problem are proposed.

  13. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    Science.gov (United States)

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.

    Science.gov (United States)

    Englert, Michael; Vetter, Walter

    2015-07-16

    Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase

  15. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed-flow

  16. Nonlocal rheological properties of granular flows near a jamming limit.

    Science.gov (United States)

    Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  17. Ground Testing for Hypervelocity Flow, Capabilities and Limitations

    Science.gov (United States)

    2010-03-29

    Brisbane (T4) in Australia, see http://www.uq.edu.au/~e4dmee/t4.html, and larger ones at Göttingen in Germany (HEG), see e. g., Hannemann (2002), and...Fluids, 11:4026–4039. Hannemann , K. (2002). High-enthalpy flows in the HEG shock tunnel: Experiment and numerical rebuilding. 22nd AIAA Aerodynamic

  18. The role of heater thermal response in reactor thermal limits during oscillartory two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, A.E.; Brown, N.W. [Univ. of Tennessee, Knoxville, TN (United States); Vasil`ev, A.D. [Nuclear Safety Institute, Moscow, (Russian Federation); Wendel, M.W. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. It is shown that the CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. It is also shown that the properties of the heater strongly influence the thermal limit value in unsteady flow situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems.

  19. Limitations of radionuclide flow studies in bilateral carotid thrombosis

    International Nuclear Information System (INIS)

    Messert, B.; Tyson, I.B.; Barron, S.A.

    1975-01-01

    Radionuclide angiography as a noninvasive procedure has become an important tool in the evaluation of cerebrovascular diseases. Determinations of arm-to-brain circulation times complemented by the transit times of the radionuclide bolus through the brain afford insight into the functional status of the vascular system of the brain. Delays in perfusion, asymmetries in appearance, and washout of the radionuclide material can be correlated with disease entities. However, as with many procedures elevated to the status of a screening test, the possibility of false-positive and false-negative results exists. Two cases of bilateral carotid occlusion are presented, showing normal or only delayed, fairly symmetrical brain perfusion. The appearance of the radionuclide flow in the neck in AP and lateral views gave no suggestion of the involved deficits. Even multiple-projection imaging might fail to demonstrate major vascular obstructions. However, attentive study of these projections might yield interesting evidence of unexpected collateral flow systems. (U.S.)

  20. Numerical modeling of counter-current condensation in a Black Liquor Gasification plant

    International Nuclear Information System (INIS)

    Risberg, Mikael; Gebart, Rikard

    2013-01-01

    Pressurized Entrained flow High Temperature Black Liquor Gasification is a novel technique to recover the inorganic chemicals and available energy in black liquor originating from kraft pulping. The gasifier has a direct quench that quickly cools the raw syngas when it leaves the hot reactor by spraying the gas with a water solution. As a result, the raw syngas becomes saturated with steam. Typically the gasifier operates at 30 bar which corresponds to a dew point of about 235 °C and a steam concentration in the saturated syngas that is about 3 times higher than the total concentration of the other species in the syngas. After the quench cooler the syngas is passed through a counter-current condenser where the raw syngas is cooled and most of the steam is condensed. The condenser consists of several vertical tubes where reflux condensation occurs inside the tubes due to water cooling of the tubes on the shell-side. A large part of the condensation takes place inside the tubes on the wall and results in a counterflow of water driven by gravity through the counter current condenser. In this study a computational fluid dynamics model is developed for the two-phase fluid flow on the tube-side of the condenser and for the single phase flow of the shell-side. The two-phase flow was treated using an Euler–Euler formulation with closure correlations for heat flux, condensation rate and pressure drop inside the tubes. The single-phase model for the shell side uses closure correlations for the heat flux and pressure drop. Predictions of the model are compared with results from experimental measurements in a condenser used in a 3 MW Black Liquor Gasification development plant. The results are in good agreement with the limited experimental data that has been collected in the experimental gasifier. However, more validation data is necessary before a definite conclusion can be drawn about the predictive capability of the code. -- Highlights: • A multi-phase model for a

  1. SPIRAL COUNTER-CURRENT CHROMATOGRAPHY OF SMALL MOLECULES, PEPTIDES AND PROTEINS USING THE SPIRAL TUBING SUPPORT ROTOR

    OpenAIRE

    Knight, Martha; Finn, Thomas M.; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-01-01

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was c...

  2. The Behavior of Counter-Current Packed Bed in the Proximity of the Flooding Point under Periodic Variations of Inlet Velocities

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Jakub; Stavárek, Petr; Jiřičný, Vladimír; Staněk, Vladimír

    2006-01-01

    Roč. 20, č. 2 (2006), s. 147-155 ISSN 0352-9568 R&D Projects: GA ČR(CZ) GA104/03/1558 Institutional research plan: CEZ:AV0Z40720504 Keywords : counter-current flow * flooding point * axial dispersion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.357, year: 2006

  3. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    Science.gov (United States)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  4. Klystron - Space-charge limited flow, guns, Perveance

    International Nuclear Information System (INIS)

    Isagawa, S.

    1999-01-01

    This paper treats Thermionic emission, Cathode as an e - emitter, Space-charge limited effect and 3/2 power law, Perveance, Beam spread due to space charge, Pierce guns, Magnetically immersed guns, Method of gun design including simulations, and Examples, mainly treating E3786, which attendees will operate above 1 MW-CW in a practical exercise course at KEK. (author). 74 refs

  5. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  6. Investigations on interactions between the flowing liquid lithium limiter and plasmas

    International Nuclear Information System (INIS)

    Ren, J.; Zuo, G.Z.; Hu, J.S.; Sun, Z.; Li, J.G.; Zakharov, L.E.; Ruzic, D.N.; Xu, W.Y.

    2016-01-01

    Two different designs of flowing liquid lithium limiter were first tested for power exhaust and particle removal in HT-7 in 2012 autumn campaign. During the experiments, the reliability and compatibility of the limiters within Tokamak were experimentally demonstrated, and some positive results were achieved. It was found that the flowing liquid lithium limiter was effective for suppressing H concentration and led to a low ratio of H/(H + D). O impurity was slightly decreased by using limiters as well as when using a Li coating. A significant increase of the wall retention ratio was also observed which resulted from the outstanding D particles pumping ability of flowing liquid lithium limiters. The strong interaction between plasma and lithium surface could cause lithium ejection into plasma and lead to disruptions. The stable plasmas produced by uniform Li flow were in favor of lithium control. While the limiters were applied with a uniform Li flow, the normal plasma was easy to be obtained, and the energy confinement time increased from ∼0.025 s to 0.04 s. Furthermore, it was encouraging to note that the application of flowing liquid lithium limiters could further improve the confinement of plasma by ∼10% on the basis of Li coating. These remarkable results will help for the following design of flowing liquid lithium limiter in EAST to improve the plasma operation.

  7. Limits on reliable information flows through stochastic populations.

    Science.gov (United States)

    Boczkowski, Lucas; Natale, Emanuele; Feinerman, Ofer; Korman, Amos

    2018-06-06

    Biological systems can share and collectively process information to yield emergent effects, despite inherent noise in communication. While man-made systems often employ intricate structural solutions to overcome noise, the structure of many biological systems is more amorphous. It is not well understood how communication noise may affect the computational repertoire of such groups. To approach this question we consider the basic collective task of rumor spreading, in which information from few knowledgeable sources must reliably flow into the rest of the population. We study the effect of communication noise on the ability of groups that lack stable structures to efficiently solve this task. We present an impossibility result which strongly restricts reliable rumor spreading in such groups. Namely, we prove that, in the presence of even moderate levels of noise that affect all facets of the communication, no scheme can significantly outperform the trivial one in which agents have to wait until directly interacting with the sources-a process which requires linear time in the population size. Our results imply that in order to achieve efficient rumor spread a system must exhibit either some degree of structural stability or, alternatively, some facet of the communication which is immune to noise. We then corroborate this claim by providing new analyses of experimental data regarding recruitment in Cataglyphis niger desert ants. Finally, in light of our theoretical results, we discuss strategies to overcome noise in other biological systems.

  8. Theoretical study of the countercurrent in an ultracentrifuge-approximate solution of the countercurrent equations

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, R.

    1975-03-15

    Integrating the linearized Navier-Stokes equations linearized along the whole length of the centrifuge, we get a differential relation between the mean axial velocity and the centrifugal and viscosity forces on the ends. Then, these equations are integrated near the ends by a boundary layer approximation method. We assume that outside the boundary layer, the axial velocity reaches its mean value. So we obtain on the first hand the repartition of all physical quantities in the boundary layer, on the second hand a differential equation between the mean axial velocity and the boundary conditions imposed on the ends. This equation, valid both for the mechanical and thermal counter-current is solved numerically. Its solution shows the existence of a second boundary layer close to the wall of the tube. The present theory extends Martin's one in that it takes into account: (1) the action of pressure forces; (2) zero velocity on the wall with no transport; (3) the interaction between mechanical and thermal effects which tend to decrease the efficiency and the intensity of the counter-current. (author)

  9. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos; Katsaounis, Theodoros; Kyza, Irene

    2016-01-01

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  10. Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents

    KAUST Repository

    Athanassoulis, Agissilaos

    2016-08-30

    Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.

  11. High frequency components of tracheal sound are emphasized during prolonged flow limitation

    International Nuclear Information System (INIS)

    Tenhunen, M; Huupponen, E; Saastamoinen, A; Kulkas, A; Himanen, S-L; Rauhala, E

    2009-01-01

    A nasal pressure transducer, which is used to study nocturnal airflow, also provides information about the inspiratory flow waveform. A round flow shape is presented during normal breathing. A flattened, non-round shape is found during hypopneas and it can also appear in prolonged episodes. The significance of this prolonged flow limitation is still not established. A tracheal sound spectrum has been analyzed further in order to achieve additional information about breathing during sleep. Increased sound frequencies over 500 Hz have been connected to obstruction of the upper airway. The aim of the present study was to examine the tracheal sound signal content of prolonged flow limitation and to find out whether prolonged flow limitation would consist of abundant high frequency activity. Sleep recordings of 36 consecutive patients were examined. The tracheal sound spectral analysis was performed on 10 min episodes of prolonged flow limitation, normal breathing and periodic apnea-hypopnea breathing. The highest total spectral amplitude, implicating loudest sounds, occurred during flow-limited breathing which also presented loudest sounds in all frequency bands above 100 Hz. In addition, the tracheal sound signal during flow-limited breathing constituted proportionally more high frequency activities compared to normal breathing and even periodic apnea-hypopnea breathing

  12. Limits to ductility set by plastic flow localization

    International Nuclear Information System (INIS)

    Needleman, A.; Rice, J.R.

    1977-11-01

    The theory of strain localization is reviewed with reference both to local necking in sheet metal forming processes and to more general three dimensional shear band localizations that sometimes mark the onset of ductile rupture. Both bifurcation behavior and the growth of initial imperfections are considered. In addition to analyses based on classical Mises-like constitutive laws, approaches to localization based on constitutive models that may more accurately model processes of slip and progressive rupturing on the microscale in structural alloys are discussed. Among these non-classical constitutive features are the destabilizing roles of yield surface vertices and of non-normality effects, arising, for example, from slight pressure sensitivity of yield. Analyses based on a constitutive model of a progressively cavitating dilational plastic material which is intended to model the process of ductile void growth in metals are also discussed. A variety of numerical results are presented. In the context of the three dimensional theory of localization, it is shown that a simple vertex model predicts ratios of ductility in plane strain tension to ductility in axisymmetric tension qualitatively consistent with experiment, and the destabilizing influence of a hydrostatic stress dependent void nucleation criterion is illustrated. In the sheet necking context, and focussing on positive biaxial stretching, it is shown that forming limit curves based on a simple vertex model and those based on a simple void growth model are qualitatively in accord, although attributing instability to very different physical mechanisms. These forming limit curves are compared with those obtained from the Mises material model and employing various material and geometric imperfections

  13. Flow over an obstruction with the generation of nonlinear waves on the free surface: Limiting regimes

    International Nuclear Information System (INIS)

    Maklakov, D.V.

    1995-01-01

    A numerical-analytic method of calculating a subcritical flow over an obstruction is proposed. This method is based on the identification of the asymptotics of the behavior of a wave train in unknown functions. The method makes it possible to calculate both steep and long waves. The effectiveness of the method is demonstrated for the problem of flow over a vortex. The concept of the limiting flow regime as a regime with the maximum value of the perturbation parameter for which steady flow still persists is introduced. Various types of the limiting regimes obtained in the calculations are analyzed

  14. Lattice Boltzmann methods for complex micro-flows: applicability and limitations for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K, E-mail: suga@me.osakafu-u.ac.jp [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)

    2013-06-15

    The extensive evaluation studies of the lattice Boltzmann method for micro-scale flows ({mu}-flow LBM) by the author's group are summarized. For the two-dimensional test cases, force-driven Poiseuille flows, Couette flows, a combined nanochannel flow, and flows in a nanochannel with a square- or triangular cylinder are discussed. The three-dimensional (3D) test cases are nano-mesh flows and a flow between 3D bumpy walls. The reference data for the complex test flow geometries are from the molecular dynamics simulations of the Lennard-Jones fluid by the author's group. The focused flows are mainly in the slip and a part of the transitional flow regimes at Kn < 1. The evaluated schemes of the {mu}-flow LBMs are the lattice Bhatnagar-Gross-Krook and the multiple-relaxation time LBMs with several boundary conditions and discrete velocity models. The effects of the discrete velocity models, the wall boundary conditions, the near-wall correction models of the molecular mean free path and the regularization process are discussed to confirm the applicability and the limitations of the {mu}-flow LBMs for complex flow geometries. (invited review)

  15. Lattice Boltzmann methods for complex micro-flows: applicability and limitations for practical applications

    International Nuclear Information System (INIS)

    Suga, K

    2013-01-01

    The extensive evaluation studies of the lattice Boltzmann method for micro-scale flows (μ-flow LBM) by the author's group are summarized. For the two-dimensional test cases, force-driven Poiseuille flows, Couette flows, a combined nanochannel flow, and flows in a nanochannel with a square- or triangular cylinder are discussed. The three-dimensional (3D) test cases are nano-mesh flows and a flow between 3D bumpy walls. The reference data for the complex test flow geometries are from the molecular dynamics simulations of the Lennard-Jones fluid by the author's group. The focused flows are mainly in the slip and a part of the transitional flow regimes at Kn < 1. The evaluated schemes of the μ-flow LBMs are the lattice Bhatnagar–Gross–Krook and the multiple-relaxation time LBMs with several boundary conditions and discrete velocity models. The effects of the discrete velocity models, the wall boundary conditions, the near-wall correction models of the molecular mean free path and the regularization process are discussed to confirm the applicability and the limitations of the μ-flow LBMs for complex flow geometries. (invited review)

  16. Melt Flow and Energy Limitation of Laser Cutting

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2016-01-01

    Full Text Available Laser technology is a convertible technology for plenty of parts in most materials. Laser material processing for industrial manufacturing applications is today a widespread procedure for welding, cutting, marking and micro machining of metal and plastic parts and components. Involvement and support this huge mass-production industry of laser cutting, new technology and dry-process using lasers were and are being actively developed. Fundamentally, industrial laser cutting or other applications on industry should satisfy the four key practical application issues including “Quality or Performance”, “Throughput or Speed”, “Cost or Total Ownership Cost”, and “Reliability”. Laser requires for examples several complicated physical factors to be resolved including die strength to be enable good wire-bonding and survival of severe cycling test, clean cutting wall surface, good cutting of direct attach film, and proper speed of cutting for achieving economy of throughput. Some example of maximum cutting rate, wherewith is normally limited laser energy, cutting speed is depend on type laser, different of cutting with one laser beam and beam pattern and applied laser power/material thickness will be introduced in this paper.

  17. Countercurrent soil washing system for remediation of viscous hydrocarbons, heavy metals, radionuclides

    International Nuclear Information System (INIS)

    Kuhlman, M.I.; Karlsson, M.K.; Downie, C.A.

    1995-01-01

    Drying augers and multicell DAF tanks are excellent machines in which to countercurrently wash soil and remove hazardous hydrocarbons, metals or radionuclides. An auger works well because it preferentially moves soil along one side of its trough. Thus, when enough high pressure and temperature water jets are placed along that path, contaminants can be melted, or dissolved and scoured from the soil. Contaminants and fines flow down the opposite side of the auger and out for extraction in a series of flotation tanks. Countercurrent washing of the silt results when soil settles in tanks through rising water and air bubbles then is pumped through cyclones placed above the next DAF tank of the series. LNAPLs, DNAPLs, or metallic contaminants made hydrophobic by chemicals in the system are removed at the overflow of the cyclones or by flotation in the tanks. The overflow from the cyclones and DAF tanks flows into the previous tank of the series. Examples of contaminants remediated include; arsenic, cadmium, lead and mercury, Naturally Occurring Radioactive Materials (NORM), uranium, solid oils, polyaromatic hydrocarbons in creosote and coal tars, and polychlorinated hydrocarbons

  18. Thermal hydrodynamic analysis of a countercurrent gas centrifuge; Analise termo hidrodinamica de uma centrifuga a contracorrente

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de

    1999-07-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  19. Thermal hydrodynamic analysis of a countercurrent gas centrifuge; Analise termo hidrodinamica de uma centrifuga a contracorrente

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de

    1999-07-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  20. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path.

    Science.gov (United States)

    Katis, Ioannis N; He, Peijun J W; Eason, Robert W; Sones, Collin L

    2018-05-03

    We report on the use of a laser-direct write (LDW) technique that allows the fabrication of lateral flow devices with enhanced sensitivity and limit of detection. This manufacturing technique comprises the dispensing of a liquid photopolymer at specific regions of a nitrocellulose membrane and its subsequent photopolymerisation to create impermeable walls inside the volume of the membrane. These polymerised structures are intentionally designed to create fluidic channels which are constricted over a specific length that spans the test zone within which the sample interacts with pre-deposited reagents. Experiments were conducted to show how these constrictions alter the fluid flow rate and the test zone area within the constricted channel geometries. The slower flow rate and smaller test zone area result in the increased sensitivity and lowered limit of detection for these devices. We have quantified these via the improved performance of a C-Reactive Protein (CRP) sandwich assay on our lateral flow devices with constricted flow paths which demonstrate an improvement in its sensitivity by 62x and in its limit of detection by 30x when compared to a standard lateral flow CRP device. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  1. Heating limits of boiling downward two-phase flow in parallel channels

    International Nuclear Information System (INIS)

    Fukuda, Kenji; Kondoh, Tetsuya; Hasegawa, Shu; Sakai, Takaaki.

    1989-01-01

    Flow characteristics and heating limits of downward two-phase flow in single or parallel multi-channels are investigated experimentally and analytically. The heating section used is made of glass tube, in which the heater tube is inserted, and the flow regime inside it is observed. In single channel experiments with low flow rate conditions, it is found that, initially, gas phase which flows upward against the downward liquid phase flow condenses and diminishes as it flows up being cooled by inflowing liquid. However, as the heating power is increased, some portion of the gas phase reaches the top and accumulates to form an liquid level, which eventually causes the dryout. On the other hand, for high flow rate condition, the flooding at the bottom of the heated section is the cause of the dryout. In parallel multi-channels experiments, reversed (upward) flow which leads to the dryout is observed in some of these channels for low flow rate conditions, while the situation is the same to the single channel case for high flow rate conditions. Analyses are carried out to predict the onset of dryout in single channel using the drift flux model as well as the Wallis' flooding correlation. Above-mentioned two types of the dryout and their boundary are predicted which agree well with the experimental results. (author)

  2. Analysis of multi-dimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1989-01-01

    The presence of parallel enclosed channels in a BWR provides opportunities for multiple flow regimes in co-current and countercurrent flow under Loss-of-Coolant Accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the Steam Sector Test Facility (SSTF) which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests and integral transients with vessel blowdown and refill were performed. The present of multi-dimensional and parallel channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  3. Analysis of multidimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1991-01-01

    The presence of parallel enclosed channels in a boiling water reactor (BWR) provides opportunities for multiple flow regimes in cocurrent and countercurrent flow under loss-of-coolant accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the steam sector test facility (SSFT), which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests an integral transients with vessel vlowdown and refill were performed. The presence of multidimensional and parallel-channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  4. Effect of Flow Direction on the Extinction Limit for Flame Spread over Wire Insulation in Microgravity

    DEFF Research Database (Denmark)

    Nagachi, Masashi; Mitsui, Fumiya; Citerne, Jean-Marie

    Experiments to determine the Limiting Oxygen Concentration (LOC) of a flame spread over electric wire insulation were carried out in microgravity provided by parabolic flights. The difference between the LOC in opposed and concurrent flows was evidenced. Polyethylene insulated Copper (Cu) wires...... and polyethylene insulated Nickel-Chrome (NiCr) wires with inner core diameter of 0.50 mm and insulation thickness of 0.30 mm were examined with external flow velocities ranging from 50mm/s to 200mm/s. The results for the Copper wires show that with increasing external flow velocity, the LOC monotonically...... decreased for the concurrent flow conditions and the LOC first decreased and then increased (“U” trend) for the opposed flow conditions. Similar trends were found in the experiments with NiCr wires. Also, in terms of the minimum LOC value, the minimum LOC was comparable for both wire types in both flow...

  5. High Performance Redox Flow Batteries: An Analysis of the Upper Performance Limits of Flow Batteries Using Non-aqueous Solvents

    International Nuclear Information System (INIS)

    Sun, C.-N.; Mench, M.M.; Zawodzinski, T.A.

    2017-01-01

    Redox Flow Batteries (RFBs) are a promising technology for grid-scale electrochemical energy storage. In this work, we use a recently achieved high-performance flow battery performance curve as a basis to assess the maximum achievable performance of a RFB employing non-aqueous solutions as active materials. First we show high performance in a vanadium redox flow battery (VRFB), specifically a limiting situation in which the cell losses are ohmic in nature and derive from electrolyte conductance. Based on that case, we analyze the analogous limiting behavior of non-aqueous (NA) systems using a series of calculations assuming similar ohmic losses, scaled by the relative electrolyte resistances, with a higher voltage redox couple assumed for the NA battery. The results indicate that the NA battery performance is limited by the low electrolyte conductivity to a fraction of the performance of the VRFB. Given the narrow window in which the NARFB offers advantages, even for the most generous limiting assumptions related to performance while ignoring the numerous other disadvantageous aspects of these systems, we conclude that this technology is unlikely under present circumstances to provide practical large-scale energy storage solutions.

  6. Flow motifs reveal limitations of the static framework to represent human interactions

    Science.gov (United States)

    Rocha, Luis E. C.; Blondel, Vincent D.

    2013-04-01

    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies have shown that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site and of a sexual network, the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices containing only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices.

  7. The limit of the Yang-Mills-Higgs flow on Higgs bundles

    OpenAIRE

    Li, Jiayu; Zhang, Xi

    2014-01-01

    In this paper, we consider the gradient flow of the Yang-Mills-Higgs functional for Higgs pairs on a Hermitian vector bundle $(E, H_{0})$ over a compact K\\"ahler manifold $(M, \\omega )$. We study the asymptotic behavior of the Yang-Mills-Higgs flow for Higgs pairs at infinity, and show that the limiting Higgs sheaf is isomorphic to the double dual of the graded Higgs sheaves associated to the Harder-Narasimhan-Seshadri filtration of the initial Higgs bundle.

  8. Potential hazard of the Neopuff T-piece resuscitator in the absence of flow limitation.

    LENUS (Irish Health Repository)

    Hawkes, C P

    2012-01-31

    OBJECTIVE: (1) To assess peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP) and maximum pressure relief (P(max)) at different rates of gas flow, when the Neopuff had been set to function at 5 l\\/min. (2) To assess maximum PIP and PEEP at a flow rate of 10 l\\/min with a simulated air leak of 50%. DESIGN: 5 Neopuffs were set to a PIP of 20, PEEP of 5 and P(max) of 30 cm H(2)O at a gas flow of 5 l\\/min. PIP, PEEP and P(max) were recorded at flow rates of 10, 15 l\\/min and maximum flow. Maximum achievable pressures at 10 l\\/min gas flow, with a 50% air leak, were measured. RESULTS: At gas flow of 15 l\\/min, mean PEEP increased to 20 (95% CI 20 to 21), PIP to 28 (95% CI 28 to 29) and the P(max) to 40 cm H(2)O (95% CI 38 to 42). At maximum flow (85 l\\/min) a PEEP of 71 (95% CI 51 to 91) and PIP of 92 cm H(2)O (95% CI 69 to 115) were generated. At 10 l\\/min flow, with an air leak of 50%, the maximum PEEP and PIP were 21 (95% CI 19 to 23) and 69 cm H(2)O (95% CI 66 to 71). CONCLUSIONS: The maximum pressure relief valve is overridden by increasing the rate of gas flow and potentially harmful PIP and PEEP can be generated. Even in the presence of a 50% gas leak, more than adequate pressures can be provided at 10 l\\/min gas flow. We recommend the limitation of gas flow to a rate of 10 l\\/min as an added safety mechanism for this device.

  9. Mechanism of falling water limitation in two-phase counter flow through single hole vertical channel

    International Nuclear Information System (INIS)

    Sudo, Yukio; Ohnuki, Akira

    1983-01-01

    In the safety evaluation at the time of loss coolant accident, which is a credible accident in LWRs, recently main effort has been concentrated to the optimum evaluation calculation, and the grasp of vapor-liquid two-phase flow phenomena has become important. As one of the important phenomena, there is the limitation of falling water in two-phase counter flow through a vertical channel. This phenomenon is divided into the limitation of falling water stored in an upper plenum to a core through an upper core-supporting plate and a tie plate at the time of reflooding, and the limitation of falling emergency core-cooling water in downcomer channels at the time of reflooding in PWRs, under the presence of rising steam flow. In both cases, the evaluation of the quantity of falling water is important, because it contributes directly to core cooling. In this research, in order to clarify the mechanism of limitation of falling water in two-phase vertical counter flow, first, two-phase flow of air-water system through a single-hole vertical channel was taken up, and the effect of main parameters was experimentally studied. At the same time, the theoretical investigation was performed, and the comparison with the experimental results obtained so far was carried out. The different mechanisms for short and long channels gave the good results. (Kako, I.)

  10. Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ. (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System Inc. (INSS), Fukui (Japan)

    2012-07-01

    Stratified two-phase flows were investigated in two different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimum observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. (orig.)

  11. Equivalent linearization method for limit cycle flutter analysis of plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2009-01-01

    The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)

  12. The ω-limit sets of a flow and periodic orbits

    International Nuclear Information System (INIS)

    Wang Xiaoxia; Blackmore, Denis; Wang Chengwen

    2009-01-01

    In this paper we discuss the ω-limit sets of a flow using the Conley theory, chain recurrence and Morse decompositions. Our results generalize and improve the related result in [Schropp J. A reduction principle for ω-limit sets. Z Angew Math Meth 1996;76(6):349-56], and we also show how they can be used as a basis for some new criteria for the existence of periodic orbits.

  13. Boundary layers and the vanishing viscosity limit for incompressible 2D flow

    OpenAIRE

    Filho, Milton C. Lopes

    2007-01-01

    This manuscript is a survey on results related to boundary layers and the vanishing viscosity limit for incompressible flow. It is the lecture notes for a 10 hour minicourse given at the Morningside Center, Academia Sinica, Beijing, PRC from 11/28 to 12/07, 2007. The main topics covered are: a derivation of Prandtl's boundary layer equation; an outline of the rigorous theory of Prandtl's equation, without proofs; Kato's criterion for the vanishing viscosity limit; the vanishing viscosity limi...

  14. Enantioseparations in counter-current chromatography and centrifugal partition chromatography.

    Science.gov (United States)

    Foucault, A P

    2001-01-12

    Examples of chiral separations in counter-current chromatography (CCC) and centrifugal partition chromatography (CPC) are not numerous, due to the difficulty of finding chiral selectors highly selective in the liquid phase as well as a combination of solvents that does not destroy the selectivity and retains the capacity to elute chiral isomers of interest. New ideas and new chiral selectors generally come from other separation techniques, as will be highlighted in this review.

  15. Countercurrent Process for Lignin Separation from Biomass Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kadam; Ed Lehrburger

    2006-03-31

    The overall goal of the project was to test the concept of using a twin-screw extruder to conduct autohydrolysis pretreatment of wheat straw in countercurrent fashion, demonstrate in situ solid/liquid separation, and produce a low-lignin cellulose product using ethanol as an extractant. The resultant solid product is suitable for sugar production through enzymatic hydrolysis and for pulp applications. Pilot-scale equipment was used to successfully demonstrate the process both for sugar and pulp applications.

  16. On singular limits arising in the scale analysis of stratified fluid flows

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Klein, R.; Novotný, A.; Zatorska, E.

    2016-01-01

    Roč. 26, č. 3 (2016), s. 419-443 ISSN 0218-2025 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : isentropic fluid flow * strong stratification * singular limit * anelastic approximation Subject RIV: BA - General Mathematics Impact factor: 2.860, year: 2016 http://www.worldscientific.com/doi/10.1142/S021820251650007X

  17. Wasserstein gradient flows from large deviations of many-particle limits

    NARCIS (Netherlands)

    Duong, M.H.; Laschos, V.; Renger, D.R.M.

    2013-01-01

    We study the Fokker–Planck equation as the many-particle limit of a stochastic particle system on one hand and as a Wasserstein gradient flow on the other. We write the path-space rate functional, which characterises the large deviations from the expected trajectories, in such a way that the free

  18. Amplified fragment length polymorphism fingerprints support limited gene flow among social spider populations

    NARCIS (Netherlands)

    Smith, Deborah; van Rijn, Sander; Henschel, Joh; Bilde, Trine; Lubin, Yael

    We used DNA fingerprints to determine whether the population structure and colony composition of the cooperative social spider Stegodyphus dumicola are compatible with requirements of interdemic ('group') selection: differential proliferation of demes or groups and limited gene flow among groups. To

  19. Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh Taylor systems

    NARCIS (Netherlands)

    Scagliarini, Andrea; Biferale, L.; Sbragaglia, M.; Sugiyama, K.; Toschi, F.

    2010-01-01

    We compute the continuum thermohydrodynamical limit of a new formulation of lattice kinetic equations for thermal compressible flows, recently proposed by Sbragaglia et al. [J. Fluid Mech. 628, 299 (2009)] . We show that the hydrodynamical manifold is given by the correct compressible

  20. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Mortensen, Stefan P.; Hellsten, Ylva

    2018-01-01

    Since the first measurements of limb blood flow at rest and during nerve stimulation were conducted in the late 1800s, a number of methods have been developed for the determination of limb and skeletal muscle blood flow in humans. The methods, which have been applied in the study of aspects...... such as blood flow regulation, oxygen uptake and metabolism, differ in terms of strengths and degree of limitations but most have advantages for specific settings. The purpose of this review is to describe the origin and the basic principles of the methods, important aspects and requirements of the procedures....... One of the earliest methods, venous occlusion plethysmography, is a noninvasive method which still is extensively used and which provides similar values as other more direct blood flow methods such as ultrasound Doppler. The constant infusion thermodilution method remains the most appropriate...

  1. Low blood flow at onset of moderate-intensity exercise does not limit muscle oxygen uptake

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan P; Saltin, Bengt

    2010-01-01

    The effect of low blood flow at onset of moderate-intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5-min one-legged knee-extensor exercise bout (24 +/- 1 W, mean +/- SD) without (Con) and with (double blockade; DB) arterial infusion...... of inhibitors of nitric oxide synthase (N(G)-monomethyl-l-arginine) and cyclooxygenase (indomethacin) to inhibit the synthesis of nitric oxide and prostanoids, respectively. Leg blood flow and leg oxygen delivery throughout exercise was 25-50% lower (P ... +/- 12 vs. 262 +/- 39 ml/min). The present data demonstrate that muscle blood flow and oxygen delivery can be markedly reduced without affecting muscle oxygen uptake in the initial phase of moderate-intensity exercise, suggesting that blood flow does not limit muscle oxygen uptake at the onset...

  2. Quenching of hot wall of vertical-narrow-annular passages by water falling down counter-currently

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ohtake, Hiroyasu; Arai, Manabu; Okabayashi, Yoshiaki; Nagae, Takashi; Okano, Yukimitsu

    2004-01-01

    quenching of a thin-gap annular flow passage by gravitational liquid penetration was examined by using water. The outer wall of the test flow channel was made of stainless steel. The inner wall was made of glass or stainless steel. The annular gap spacings tested were 10, 5.0, 2.0, 1.0 and 0.5 mm. No inner wall case; the gap width = ∞, was also tested. The stainless steel walls(s) was (were) heated electrically. When the glass wall was used for the inner wall, a fiber scope was inserted inside to observe a flow state. The quenching was observed for the gap spacing over 1.0 mm. When the spacing was less than 1.0 mm, the wall was gradually and monotonously cooled down without any quenching. As the gap spacing became narrow, the counter-current flow limiting; flooding, severely occurred. The peak heat flux during the quenching process became lower than that in pool boiling as the gap spacing became narrower. The quenching propagated from the bottom when the gap spacing was larger than 5 mm. When the gap clearance was less than 2.0 mm, the quenching proceeded from the top in the bottom closed case. It was visually observed that liquid accumulated in the lower portion of the flow passage in the 5 mm gap case and the rewetting front propagated upward from the bottom. In the 1.0 mm gap case, the moving-down of the rewetting front was observed. The quenching velocity became slow as the gap spacing became narrow. Quenching simulation was performed by solving a transient heat conduction equation. The simulation indicated that the quenching velocity becomes fast as the peak heat flux becomes low with the gap spacing, which was opposite to the experimental results. It was also suggested that precursory cooling is one of key factors to control the rewetting velocity; as the precursory cooling becomes weak, the rewetting velocity becomes slow. (author)

  3. Characteristics of steady-state plasma flow in the tokamak limiter scrape-off layer

    International Nuclear Information System (INIS)

    Petrov, V.G.

    1984-01-01

    Steady state plasma flow in the scrape-off layer of a toroidal limiter is discussed. The force balance along the torus minor radius is taken into account, from which follows that the plasma pressure gradient is balanced by the ponderomotive force (1/c) j-vectorxB-vector, which arises in the presence of a current density component perpendicular to the magnetic field. The limiter has an important effect on the electric current flow in the scrape-off layer. It is shown that the electric potential and plasma density values differ from one side of the limiter to the other; this leads to plasma drift along the minor radius. The characteristic length of change in the plasma density is found to be of the order of the ion cyclotron radius calculated for a poloidal magnetic field. (author)

  4. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang; Hu, Longhua; Yoon, Sung Hwan; Lu, Shouxiang; Delichatsios, Michael; Chung, Suk-Ho

    2015-01-01

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow

  5. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards

    Science.gov (United States)

    Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.

    2010-01-01

    The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the

  6. Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps.

    Science.gov (United States)

    Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N

    2014-06-20

    The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A probabilistic method for determining effluent temperature limits for flow instability for SRS reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.J.; White, A.M.

    1990-06-01

    This manual describes the uncertainty analysis used to determine the effluent temperature limits for a Mark 22 charge in the Savannah River Site production reactors. The postulated accident scenario is a DEGB/LOCA resulting from a coolant pipe break at the plenum inlet accompanied by the safety rod failure described in the previous chapter. The analysis described in this manual is used to calculate the limits for the flow instability phase of the accident. For this phase of the accident, the limits criterion is that the Stanton number does not exceed 0.00455 [1]. The limits are determined for a specified 84% probability that the Stanton number will not exceed 0.00455 in any assembly in the core.

  8. A probabilistic method for determining effluent temperature limits for flow instability for SRS reactors

    International Nuclear Information System (INIS)

    Hardy, B.J.; White, A.M.

    1990-06-01

    This manual describes the uncertainty analysis used to determine the effluent temperature limits for a Mark 22 charge in the Savannah River Site production reactors. The postulated accident scenario is a DEGB/LOCA resulting from a coolant pipe break at the plenum inlet accompanied by the safety rod failure described in the previous chapter. The analysis described in this manual is used to calculate the limits for the flow instability phase of the accident. For this phase of the accident, the limits criterion is that the Stanton number does not exceed 0.00455 [1]. The limits are determined for a specified 84% probability that the Stanton number will not exceed 0.00455 in any assembly in the core

  9. The Economic Role and Limitations of Cooperatives: An Investment Cash Flow Derivation

    OpenAIRE

    Peterson, H. Christopher

    1992-01-01

    The economic role and limitations of cooperatives are derived using an approach based on investment cash flows and net present value. Cooperatives are viewed as an option for member investment as well as an option for member patronage. The investment approach yields results similar to the traditional paradigms that focus on patronage. In addition, the approach makes more explicit the impact of member investment on cooperative existence, valuation, performance measurement, and strategy options.

  10. Characterizing the interaction between enantiomers of eight psychoactive drugs and highly sulfated-β-cyclodextrin by counter-current capillary electrophoresis.

    Science.gov (United States)

    Asensi-Bernardi, Lucía; Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Sagrado, Salvador; Medina-Hernández, María José

    2014-01-01

    The estimation of apparent binding constants and limit mobilities of the complexes of the enantiomers that characterize the interaction of enantiomers with chiral selectors, in this case highly sulfated β-cyclodextrin, was approached using a simple and economic electrophoretic modality, the complete filling technique (CFT) in counter-current mode. The enantiomers of eight psychoactive drugs, four antihistamines (dimethindene, promethazine, orphenadrine and terfenadine) and four antidepressants (bupropion, fluoxetine, nomifensine and viloxazine) were separated for the first time for this cyclodextrin (CD). Estimations of thermodynamic and electrophoretic enantioselectivies were also performed. Results indicate that, in general, thermodynamic enantioselectivity is the main component explaining the high resolution found, but also one case suggests that electrophoretic enantioselectivity itself is enough to obtain a satisfactory resolution. CFT results advantageous compared with conventional capillary electrophoresis (CE) and partial filling technique (PFT) for the study of the interaction between drugs and chiral selectors. It combines the use of a simple fitting model (as in CE), when the enantiomers do not exit the chiral selector plug during the separation (i.e. mobility of electroosmotic flow larger than mobility of CD), and drastic reduction of the consumption (and cost; ~99.7%) of the CD reagent (as in PFT) compared with the conventional CE. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    Science.gov (United States)

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (π), selectivity (σ), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (αip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (αsw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.

    Science.gov (United States)

    Fischer, Andreas

    2016-11-01

    Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.

  13. Purification of a synthetic pterocarpanquinone by countercurrent chromatography

    International Nuclear Information System (INIS)

    Costa, Fernanda das Neves; Silva, Alcides Jose M. da; Domingos, Jorge L. de Oliveira; Costa, Paulo Roberto R.; Leitao, Gilda G.; Daher Netto, Chaquip

    2012-01-01

    Countercurrent chromatography (CCC) was employed as a useful, fast and economic alternative to conventional chromatography techniques for the purification of a synthetic pterocarpanquinone, LQB-118. The separation was performed in a two-step CCC with the solvent system hexanechloroform- methanol-water 2:1.5:5:2 in both steps. Traditional purification of these reaction products by silica gel column chromatography demanded a large amount of solvent and time, besides allowing the irreversible adsorption of the compound in the column. The use of 1 H NMR for the calculation of KD of target compound is proposed as an alternative for HPLC measurements. (author)

  14. Sports-related flow limitations in the iliac arteries in endurance athletes : aetiology, diagnosis, treatment and future developments

    NARCIS (Netherlands)

    Bender, M.H.M.; Schep, G.; Vries, de W.R.; Hoogeveen, A.R.; Wijn, P.F.F.

    2004-01-01

    Approximately one in five top-level cyclists will develop sports-related flow limitations in the iliac arteries. These flow limitations may be caused by a vascular lumen narrowing due to endofibrotic thickening of the intima and/or by kinking of the vessels. In some athletes, extreme vessel length

  15. Schinus terebinthifolius countercurrent chromatography (Part III): Method transfer from small countercurrent chromatography column to preparative centrifugal partition chromatography ones as a part of method development.

    Science.gov (United States)

    das Neves Costa, Fernanda; Hubert, Jane; Borie, Nicolas; Kotland, Alexis; Hewitson, Peter; Ignatova, Svetlana; Renault, Jean-Hugues

    2017-03-03

    Countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC) are support free liquid-liquid chromatography techniques sharing the same basic principles and features. Method transfer has previously been demonstrated for both techniques but never from one to another. This study aimed to show such a feasibility using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. Heptane - ethyl acetate - methanol -water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds. The optimized separation methodology previously described in Part I and II, was scaled up from an analytical hydrodynamic CCC column (17.4mL) to preparative hydrostatic CPC instruments (250mL and 303mL) as a part of method development. Flow-rate and sample loading were further optimized on CPC. Mobile phase linear velocity is suggested as a transfer invariant parameter if the CPC column contains sufficient number of partition cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    Science.gov (United States)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  17. Upper-airway flow limitation and transcutaneous carbon dioxide during sleep in normal pregnancy.

    Science.gov (United States)

    Rimpilä, Ville; Jernman, Riina; Lassila, Katariina; Uotila, Jukka; Huhtala, Heini; Mäenpää, Johanna; Polo, Olli

    2017-08-01

    Sleep during pregnancy involves a physiological challenge to provide sufficient gas exchange to the fetus. Enhanced ventilatory responses to hypercapnia and hypoxia may protect from deficient gas exchange, but sleep-disordered breathing (SDB) may predispose to adverse events. The aim of this study was to analyze sleep and breathing in healthy pregnant women compared to non-pregnant controls, with a focus on CO 2 changes and upper-airway flow limitation. Healthy women in the third trimester and healthy non-pregnant women with normal body mass index (BMI) were recruited for polysomnography. Conventional analysis of sleep and breathing was performed. Transcutaneous carbon dioxide (TcCO 2 ) was determined for each sleep stage. Flow-limitation was analyzed using the flattening index and TcCO 2 values were recorded for every inspiration. Eighteen pregnant women and 12 controls were studied. Pregnancy was associated with shorter sleep duration and more superficial sleep. Apnea-hypopnea index, arterial oxyhemoglobin desaturation, flow-limitation, snoring or periodic leg movements were similar in the two groups. Mean SaO 2 and minimum SaO 2 were lower and average heart rate was higher in the pregnant group. TcCO 2 levels did not differ between groups but variance of TcCO 2 was smaller in pregnant women during non-rapid eye movement (NREM). TcCO 2 profiles showed transient TcCO 2 peaks, which seem specific to pregnancy. Healthy pregnancy does not predispose to SDB. Enhanced ventilatory control manifests as narrowing threshold of TcCO 2 between wakefulness and sleep. Pregnant women have a tendency for rapid CO 2 increases during sleep which might have harmful consequences if not properly compensated. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Alternative model of space-charge-limited thermionic current flow through a plasma

    Science.gov (United States)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  19. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    Science.gov (United States)

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gas-liquid countercurrent integration process for continuous biodiesel production using a microporous solid base KF/CaO as catalyst.

    Science.gov (United States)

    Hu, Shengyang; Wen, Libai; Wang, Yun; Zheng, Xinsheng; Han, Heyou

    2012-11-01

    A continuous-flow integration process was developed for biodiesel production using rapeseed oil as feedstock, based on the countercurrent contact reaction between gas and liquid, separation of glycerol on-line and cyclic utilization of methanol. Orthogonal experimental design and response surface methodology were adopted to optimize technological parameters. A second-order polynomial model for the biodiesel yield was established and validated experimentally. The high determination coefficient (R(2)=98.98%) and the low probability value (Prcontinuous-flow process has good potential in the manufacture of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Partial analysis of wind power limit in an electric micro system using continuation power flow

    International Nuclear Information System (INIS)

    Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel

    2013-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  2. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.

    Science.gov (United States)

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.

  3. Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type

    International Nuclear Information System (INIS)

    Lee, Min Jung; Cho, Sang Moon; Choi, Byung Il; Kim, Nam Il

    2010-01-01

    Small energy sources have been interested with the recent development of small-scale mechanical systems. With the purpose of developing a basic model of micro-combustors of heat recirculation, small combustors of a counter-current channel type were fabricated, and the premixed flame stabilization characteristics were investigated experimentally. Each combustor consists of a combustion space and a pair of counter-current channels for heat recirculation. The channel gap was less than the ordinary quenching distance of a stoichiometric methane-air premixed flame. Depending on the flame locations and structures, flame stabilization was classified into four modes: an ordinary mode, a channel mode, a radiation mode, and a well-stirred reaction mode. Base-scale combustors of stainless steel were initially examined. Additional half-scale combustors of stainless steel and quartz were fabricated and their flame stabilization conditions were compared. Consequently, a change of the material of the combustor significantly affected the flame stabilization compared to the effects of a scale-down design. A half-scale quartz combustor had a wide range of flame stabilization conditions. Surface temperatures and the composition of the emission gas were measured. At a higher flow rate, the combustor temperature increases and the light emission from the middle wall is enhanced to extend the flame stabilization conditions. The combustion efficiency and the composition of emitted gas were feasible. These results provide useful information for the design of small-scale combustors.

  4. Analysis of cantilever pipes in transverse fluid flow with motion limiting stopper at the free end

    International Nuclear Information System (INIS)

    Jiyavan, R.

    1983-01-01

    Flow-induced vibration in heat exchanger tubes can result in impact with the baffle plates and subsequent tube failure through fatigue, fracture and fretting wear. As a step towards the correlation between the random flow excitations and the rate of wear, this paper presents a general theory for predicting the tube motion and the tube baffle impact forces through a case of cantilever pipe with motion limiting stopper at the free end and simultaneously subjected to transverse fluid flow. The mathematical model has been developed using the theory of fluid-structure interactions with model superposition technique. The pipe displacement induced by lift forces is evaluated by numerical integration. When displacement increases to greater than the pipe-stopper clearance, the pipe impacts on stopper. Assuming semielastic impact, the equation of pipe motion during impact is developed using extended Hertz's theory to include the vibration of one of the colliding bodies. The stopper is assumed to be at rest before and after the impact. The constraint imposed on pipe motion, at the free end due to impact of the pipe on stopper, is considered as one of the boundary conditions and is used to evaluate the pipe natural frequencies. The nonlinear equations are solved numerically. The response of the pipe due to wake induced lift forces superposed by the impact response is evaluated. (orig./GL)

  5. Expiratory flow limitation and operating lung volumes during exercise in older and younger adults.

    Science.gov (United States)

    Smith, Joshua R; Kurti, Stephanie P; Meskimen, Kayla; Harms, Craig A

    2017-06-01

    We determined the effect of aging on expiratory flow limitation (EFL) and operating lung volumes when matched for lung size. We hypothesized that older adults will exhibit greater EFL and increases in EELV during exercise compared to younger controls. Ten older (5M/5W; >60years old) and nineteen height-matched young adults (10M/9W) were recruited. Young adults were matched for%predicted forced vital capacity (FVC) (Y-matched%Pred FVC; n=10) and absolute FVC (Y-matched FVC; n=10). Tidal flow-volume loops were recorded during the incremental exercise test with maximal flow-volume loops measured pre- and post-exercise. Compared to younger controls, older adults exhibited more EFL at ventilations of 26, 35, 51, and 80L/min. The older group had higher end-inspiratory lung volume compared to Y-matched%Pred FVC group during submaximal ventilations. The older group increased EELV during exercise, while EELV stayed below resting in the Y-matched%Pred FVC group. These data suggest older adults exhibit more EFL and increase EELV earlier during exercise compared to younger adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Implicit high-order discontinuous Galerkin method with HWENO type limiters for steady viscous flow simulations

    Science.gov (United States)

    Jiang, Zhen-Hua; Yan, Chao; Yu, Jian

    2013-08-01

    Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.

  7. Space-charge-limited ion flow through an ionizing neutral layer

    International Nuclear Information System (INIS)

    Duvall, R.E.; Litwin, C.; Maron, Y.

    1993-01-01

    Space-charge-limited ion flow through an ionizing layer of neutral atoms is studied. The ion flow is between two parallel conducting plates (anode and cathode) with an externally applied voltage between them. An expanding layer of neutral atoms is adjacent to the anode surface, extending a finite distance into the anode--cathode gap. All ions originate either from the anode surface or from the ionization of neutrals; electrons originate only from ionization. Electrons are strongly magnetized by an externally applied, time-independent direct current (dc) magnetic field directed across the ion flow. The ions are unmagnetized, all motion being perpendicular to the conducting plates. Two different models of the anode layer were used to analyze this problem: a multifluid steady-state model and a single fluid time-dependent model. From both models it was found that the anode surface becomes shielded after the ion flux from the ionizing layer becomes larger than the space-charge-limited flux of the reduced gap between the neutral layer and cathode. Comparison was made between the time-dependent model and results from magnetically insulated ion beam diode (MID) experiments. Using an initial areal density of neutral hydrogen and carbon equal to the final observed electron areal density, comparison was made between calculated plasma shielding times and upper bounds on the shielding time observed in experiments. It was found that a layer of neutral hydrogen must contain a minimum of 15% carbon (by number density) to explain the rapid electric field screening observed in experiments

  8. 2SD numerical study of feed-jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2008-01-01

    Computational Fluid Dynamics (CFD) method was adopted to simulate the 2D symmetrical feed-jet flow-field in Iguacu gas centrifuge, in order to study the influence of feed-jet to counter-current. The data acquired from calculation were used to modify the feed boundary condition in counter-current calculation, and the stream lines distribution was got considering the effect o f the feed-jet. Finite volume method and 2-order implicit scheme were adopted to solve Navier-Stokes (N-S) equations in cylinder coordinates to simulate the feed-jet flow. Finite difference method was used to solve centrifuge fluid dynamics equations. The result s indicate that the feed-jet flow affects the countercurrent observably, the results of feed-jet flow simulation can be used to modify the conditions to calculate the counter-current in the real centrifuge. (authors)

  9. Improved separation with the intermittently pressed tubing of multilayer coil in type-I counter-current chromatography.

    Science.gov (United States)

    Yang, Yi; Yang, Jiao; Fang, Chen; Wang, Jihui; Gu, Dongyu; Tian, Jing; Ito, Yoichiro

    2018-05-25

    The intermittently pressed tubing was introduced in type-I counter-current chromatographic system as the separation column to improve the separation performance in the present study. The separations were performed with two different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW) and hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMW) using dipeptides and DNP-amino acids as test samples, respectively. The chromatographic performance was evaluated in terms of retention of the stationary phase (Sf), theoretical plate (N) and peak resolution (Rs). In general, the type-I planetary motion with the multilayer coil of non-modified standard tubing can yield the best separation at a low revolution speed of 200 rpm with lower flow rate. The present results with intermittently pressed tubing indicated that the performance was also optimal at the revolution speed of 200 rpm where the lower flow rate was more beneficial to retention of stationary phase and resolution. In the moderately hydrophobic two-phase solvent system composed of hexane-ethyl acetate-metanol-0.1 M hydrochloric acid (1:1:1:1, v/v), DNP-amino acids were separated with Rs at 1.67 and 1.47, respectively, with 12.66% of stationary phase retention at a flow rate of 0.25 ml/min. In the polar solvent system composed of 1-butanol-acetic acid-water (4:1:5, v/v), dipeptide samples were resolved with Rs at 2.18 and 18.75% of stationary phase retention at a flow rate of 0.25 ml/min. These results indicate that the present system substantially improves the separation efficiency of type-I counter-current chromatographic system. Published by Elsevier B.V.

  10. Development and implementation of flowing liquid lithium limiter control system for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, XiaoLin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230031 (China); Chen, Yue [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, JianSheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, JianGang; Zuo, GuiZhong; Ren, Jun; Zhou, Yue; Li, ChangZheng; Sun, Zheng; Xu, Wei; Meng, XianCai; Huang, Ming; Zheng, XingWei; Yao, Xingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Development of a FLiLi remote control system for EAST. • Intelligent instruments are used to realize FLiLi remote control. • Good operating results of the control system were obtained in the EAST campaign. - Abstract: A control system of a flowing liquid lithium (FLiLi) limiter for the Experimental Advanced Superconducting Tokamak (EAST) was developed and implemented. The control system is not only able to control the direct current (DC) electromagnetic pump and heating power but can also set scanning parameters, receive the shot number, acquire the temperature, etc. The system consists of multifunctional LAN eXtensions for Instrumentation (LXI) instrument, temperature-acquisition module, programmable DC power supply, and programmable logic controller (PLC). The multi-range DC power supply is programmed to meet the operational requirements of the DC electromagnetic pump. The LXI instrument and temperature-acquisition module are used to obtain temperature data. The PLC is adopted to control the temperature of the FLiLi limiter. A safety interlock and protection function was developed for the FLiLi limiter control system. The software was designed by using LabVIEW to achieve data interaction between multiple protocols. The FLiLi limiter control system can acquire experimental data at a speed of 100 S/s and store it for later analysis. The control system was successfully applied to a FLiLi limiter to study the interaction between plasma and a fixed wall in the EAST campaign. This paper presents the framework, the implementation details, and results of the control system.

  11. Confidence limits for regional cerebral blood flow values obtained with circular positron system, using krypton-77

    International Nuclear Information System (INIS)

    Meyer, E.; Yamamoto, Y.L.; Thompson, C.J.

    1978-01-01

    The 90% confidence limits have been determined for regional cerebral blood flow (rCBF) values obtained in each cm 2 of a cross section of the human head after inhalation of radioactive krypton-77, using the MNI circular positron emission tomography system (Positome). CBF values for small brain tissue elements are calculated by linear regression analysis on the semi-logarithmically transformed clearance curve. A computer program displays CBF values and their estimated error in numeric and gray scale forms. The following typical results have been obtained on a control subject: mean CBF in the entire cross section of the head: 54.6 + - 5 ml/min/100 g tissue, rCBF for small area of frontal gray matter: 75.8 + - 9 ml/min/100 g tissue. Confidence intervals for individual rCBF values varied between + - 13 and + - 55% except for areas pertaining to the ventricular system where particularly poor statistics have been obtained. Knowledge of confidence limits for rCBF values improves their diagnostic significance, particularly with respect to the assessment of reduced rCBF in stroke patients. A nomogram for convenient determination of 90% confidence limits for slope values obtained in linear regression analysis has been designed with the number of fitted points (n) and the correlation coefficient (r) as parameters. (author)

  12. An analytic solution for the enrichment of uranium hexafluoride in long countercurrent centrifuges

    International Nuclear Information System (INIS)

    Raetz, E.

    1977-01-01

    The paper describes an analytic solution for the enrichment and the separative power of long countercurrent centrifuges. Equations to derive optimal operation parameters like feed and feed input height are derived and solved. (orig.) [de

  13. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng; Natelson, Robert H.; Stikeleather, Larry F.; Roberts, William L.

    2013-01-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine

  14. Practice of the counter-current trickle leaching of uranium ore by refreshed liquor of bacterial oxidation

    International Nuclear Information System (INIS)

    Chen Shian; Huang Xiangfu; Fan Baotuan

    1995-01-01

    The uranium ore of the Mine No. 753 is a high-silicate type primary one, in which the tetravalent uranium accounts for 85%, and the uranium grade is in the range of 0.36% to 0.442%. To reduce the engineering investment and the operating cost a four-stage counter-current trickle leaching pilot-plant test was carried out with the leaching time 50 days and acid consumption 38 kg per ton of ore, and the recovery of more than 95% was obtained. Using the counter-current trickle leaching mode and controlling the limit concentration of the harmful matters in the bacterial leaching liquor, the latter can be effectively oxidized by the synchronical regeneration. A trickle leaching comparative test of 25 ton ore single heap also gave a good result of more than 95% in extraction rate, and 30% acid consumption was saved and the 2.0% pyrolusite (containing MnO 2 40%) was eliminated. This process is feasible in technology and worth-while in economy for treating the uranium ore of Mine No. 753, and provides a new method of uranium ore trickle leaching

  15. Permeability criteria for effective function of passive countercurrent multiplier.

    Science.gov (United States)

    Layton, H E; Knepper, M A; Chou, C L

    1996-01-01

    The urine concentrating effect of the mammalian renal inner medulla has been attributed to countercurrent multiplication of a transepithelial osmotic difference arising from passive absorption of NaCl from thin ascending limbs of long loops of Henle. This study assesses, both mathematically and experimentally, whether the permeability criteria for effective function of this passive hypothesis are consistent with transport properties measured in long loops of Henle of chinchilla. Mathematical simulations incorporating loop of Henle transepithelial permeabilities idealized for the passive hypothesis generated a steep inner medullary osmotic gradient, confirming the fundamental feasibility of the passive hypothesis. However, when permeabilities measured in chinchilla were used, no inner medullary gradient was generated. A key parameter in the apparent failure of the passive hypothesis is the long-loop descending limb (LDL) urea permeability, which must be small to prevent significant transepithelial urea flux into inner medullary LDL. Consequently, experiments in isolated perfused thin LDL were conducted to determine whether the urea permeability may be lower under conditions more nearly resembling those in the inner medulla. LDL segments were dissected from 30-70% of the distance along the inner medullary axis of the chinchilla kidney. The factors tested were NaCl concentration (125-400 mM in perfusate and bath), urea concentration (5-500 mM in perfusate and bath), calcium concentration (2-8 mM in perfusate and bath), and protamine concentration (300 micrograms/ml in perfusate). None of these factors significantly altered the measured urea permeability, which exceeded 20 x 10(-5) cm/s for all conditions. Simulation results show that this moderately high urea permeability in LDL is an order of magnitude too high for effective operation of the passive countercurrent multiplier.

  16. Externally Phase-Locked Flux Flow Oscillator for Submm Integrated Receivers; Achievements and Limitations

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Dmitriev, P. N.

    2003-01-01

    A Josephson Flux Flow Oscillator (FFO) is the most developed superconducting local oscillator for integration with an SIS mixer in a single-chip submm-wave receiver. Recently, using a new FFO design, a free-running linewidth less than or equal to10 MHz has been measured in the frequency range up...... to 712 GHz, limited only by the gap frequency of Nb. This enabled us to phase lock the FFO in the frequency range 500-712 GHz where continuous frequency tuning is possible; resulting in an absolute FFO phase noise as low as -80 dBc at 707 GHz. Comprehensive measurements of the FFO radiation linewidth...... have been performed using an integrated SIS harmonic mixer. The influence of FFO parameters on radiation linewidth, particularly the effect of the differential resistances associated both with the bias current and the applied magnetic field has been studied in order to further optimize the FFO design...

  17. Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.

    Science.gov (United States)

    Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent

    2015-01-01

    This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams. © 2015, National Ground Water Association.

  18. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  19. Novel design for centrifugal counter-current chromatography: VI. Ellipsoid column.

    Science.gov (United States)

    Gu, Dongyu; Yang, Yi; Xin, Xuelei; Aisa, Haji Akber; Ito, Yoichiro

    2015-01-01

    A novel ellipsoid column was designed for centrifugal counter-current chromatography. Performance of the ellipsoid column with a capacity of 3.4 mL was examined with three different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW), hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMH), and 12.5% (w/w) PEG1000 and 12.5% (w/w) dibasic potassium phosphate in water (PEG-DPP) each with suitable test samples. In dipeptide separation with BAW system, both stationary phase retention (Sf) and peak resolution (Rs) of the ellipsoid column were much higher at 0° column angle (column axis parallel to the centrifugal force) than at 90° column angle (column axis perpendicular to the centrifugal force), where elution with the lower phase at a low flow rate produced the best separation yielding Rs at 2.02 with 27.8% Sf at a flow rate of 0.07 ml/min. In the DNP-amino acid separation with HEMW system, the best results were obtained at a flow rate of 0.05 ml/min with 31.6% Sf yielding high Rs values at 2.16 between DNP-DL-glu and DNP-β-ala peaks and 1.81 between DNP-β-ala and DNP-L-ala peaks. In protein separation with PEG-DPP system, lysozyme and myolobin were resolved at Rs of 1.08 at a flow rate of 0.03 ml/min with 38.9% Sf. Most of those Rs values exceed those obtained from the figure-8 column under similar experimental conditions previously reported.

  20. Modelling of Churn-Annular foam flows

    NARCIS (Netherlands)

    Westende, J.M.C. van 't; Shoeibi Omrani, P.; Vercauteren, F.F.; Nennie, E.D.

    2016-01-01

    Foam assisted lift is a deliquification method in the oil and gas industry, which aims to prevent or postpone countercurrent gas-liquid flow in maturing gas wells or to assist in removing downhole accumulated liquids. According to Nimwegen, who performed experiments with foam flows, foam

  1. The benefits and limitations of electrolyte mixing in vanadium flow batteries

    International Nuclear Information System (INIS)

    Zhang, Yunong; Liu, Le; Xi, Jingyu; Wu, Zenghua; Qiu, Xinping

    2017-01-01

    Highlights: •The benefits and limitations of electrolyte mixing method are studied in this work. •Different current densities and mix times are studied. •The VFB cycle number increases from 145 to 598 at 160 mA cm −2 by mixing the electrolytes. -- Abstract: Cycle life prolongation and discharge capacity regeneration have drawn enormous attention in the field of vanadium flow batteries (VFBs). Among all the methods, mixing the positive and negative electrolytes is the most efficient, but the study about the proper time and the effect of the mix method is relatively deficient. In this study, different mix times and current densities are chosen to explore the benefits and limitations of the mix method, also the mechanism of discharge capacity behavior is discussed. Through the mix method, not only the cycle number has been extended significantly, but also the voltage and energy efficiencies are recovered. Although the contribution of the mix method is restrained by the average valence of the mixed electrolytes, it can be alleviated by electrolysis. The mix method is economic, uncomplicated and can be employed in industrial applications.

  2. Possibilities and Limitations of CFD Simulation for Flashing Flow Scenarios in Nuclear Applications

    Directory of Open Access Journals (Sweden)

    Yixiang Liao

    2017-01-01

    Full Text Available The flashing phenomenon is relevant to nuclear safety analysis, for example by a loss of coolant accident and safety release scenarios. It has been studied intensively by means of experiments and simulations with system codes, but computational fluid dynamics (CFD simulation is still at the embryonic stage. Rapid increasing computer speed makes it possible to apply the CFD technology in such complex flow situations. Nevertheless, a thorough evaluation on the limitations and restrictions is still missing, which is however indispensable for reliable application, as well as further development. In the present work, the commonly-used two-fluid model with different mono-disperse assumptions is used to simulate various flashing scenarios. With the help of available experimental data, the results are evaluated, and the limitations are discussed. A poly-disperse method is found necessary for a reliable prediction of mean bubble size and phase distribution. The first attempts to trace the evolution of the bubble size distribution by means of poly-disperse simulations are made.

  3. Corruption and illicit financial flows: The limits and possibilities of current approaches

    OpenAIRE

    Reed, Quentin; Fontana, Alessandra

    2011-01-01

    This paper attempts to clarify the links between illicit financial flows and corruption, and how corruption may be tackled by stemming such flows. For this purpose, it clarifies the terminology surrounding illicit flows, describes the impact of such flows, outlines the techniques used to launder them (with a particular focus on laundering of the proceeds of corruption), and critically analyses existing policies designed to tackle illicit flows. This paper contributes to the regulatory de...

  4. Compact type-I coil planet centrifuge for counter-current chromatography.

    Science.gov (United States)

    Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro

    2010-02-19

    A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.

  5. Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED

    International Nuclear Information System (INIS)

    Goeckeler, M.; Horsley, R.; Rakow, P.; Schierholz, G.; Sommer, R.

    1992-01-01

    We investigate the ultra-violet behavior of non-compact lattice QED with light staggered fermions. The main question is whether QED is a non-trivial theory in the continuum limit, and if not, what is its range of validity as a low-energy theory. Perhaps the limited range of validity could offer an explanation of why the fine-structure constant is so small. Non-compact QED undergoes a second-order chiral phase transition at strong coupling, at which the continuum limit can be taken. We examine the phase diagram and the critical behavior of the theory in detail. Moreover, we address the question as to whether QED confines in the chirally broken phase. This is done by investigating the potential between static external charges. We then compute the renormalized charge and derive the Callan-Symanzik β-function in the critical region. No ultra-violet stable zero is found. Instead, we find that the evolution of charge is well described by renormalized perturbation theory, and that the renormalized charge vanishes at the critical point. The consequence is that QED can only be regarded as a cut-off theory. We evaluate the maximum value of the cut-off as a function of the renormalized charge. Next, we compute the masses of fermion-antifermion composite states. The scaling behavior of these masses is well described by an effective action with mean-field critical exponents plus logarithmic corrections. This indicates that also the matter sector of the theory is non-interacting. Finally, we investigate and compare the renormalization group flow of different quantities. Altogether, we find that QED is a valid theory only for samll renormalized charges. (orig.)

  6. Modeling pH-zone refining countercurrent chromatography: a dynamic approach.

    Science.gov (United States)

    Kotland, Alexis; Chollet, Sébastien; Autret, Jean-Marie; Diard, Catherine; Marchal, Luc; Renault, Jean-Hugues

    2015-04-24

    A model based on mass transfer resistances and acid-base equilibriums at the liquid-liquid interface was developed for the pH-zone refining mode when it is used in countercurrent chromatography (CCC). The binary separation of catharanthine and vindoline, two alkaloids used as starting material for the semi-synthesis of chemotherapy drugs, was chosen for the model validation. Toluene/CH3CN/water (4/1/5, v/v/v) was selected as biphasic solvent system. First, hydrodynamics and mass transfer were studied by using chemical tracers. Trypan blue only present in the aqueous phase allowed the determination of the parameters τextra and Pe for hydrodynamic characterization whereas acetone, which partitioned between the two phases, allowed the determination of the transfer parameter k0a. It was shown that mass transfer was improved by increasing both flow rate and rotational speed, which is consistent with the observed mobile phase dispersion. Then, the different transfer parameters of the model (i.e. the local transfer coefficient for the different species involved in the process) were determined by fitting experimental concentration profiles. The model accurately predicted both equilibrium and dynamics factors (i.e. local mass transfer coefficients and acid-base equilibrium constant) variation with the CCC operating conditions (cell number, flow rate, rotational speed and thus stationary phase retention). The initial hypotheses (the acid-base reactions occurs instantaneously at the interface and the process is mainly governed by mass transfer) are thus validated. Finally, the model was used as a tool for catharanthine and vindoline separation prediction in the whole experimental domain that corresponded to a flow rate between 20 and 60 mL/min and rotational speeds from 900 and 2100 rotation per minutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Respiratory mechanics by least squares fitting in mechanically ventilated patients: application on flow-limited COPD patients.

    Science.gov (United States)

    Volta, Carlo A; Marangoni, Elisabetta; Alvisi, Valentina; Capuzzo, Maurizia; Ragazzi, Riccardo; Pavanelli, Lina; Alvisi, Raffaele

    2002-01-01

    Although computerized methods of analyzing respiratory system mechanics such as the least squares fitting method have been used in various patient populations, no conclusive data are available in patients with chronic obstructive pulmonary disease (COPD), probably because they may develop expiratory flow limitation (EFL). This suggests that respiratory mechanics be determined only during inspiration. Eight-bed multidisciplinary ICU of a teaching hospital. Eight non-flow-limited postvascular surgery patients and eight flow-limited COPD patients. Patients were sedated, paralyzed for diagnostic purposes, and ventilated in volume control ventilation with constant inspiratory flow rate. Data on resistance, compliance, and dynamic intrinsic positive end-expiratory pressure (PEEPi,dyn) obtained by applying the least squares fitting method during inspiration, expiration, and the overall breathing cycle were compared with those obtained by the traditional method (constant flow, end-inspiratory occlusion method). Our results indicate that (a) the presence of EFL markedly decreases the precision of resistance and compliance values measured by the LSF method, (b) the determination of respiratory variables during inspiration allows the calculation of respiratory mechanics in flow limited COPD patients, and (c) the LSF method is able to detect the presence of PEEPi,dyn if only inspiratory data are used.

  8. Analysis of Limit Cycle Oscillation/Transonic High Alpha Flow Visualization. Part 1: Discussion

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1998-01-01

    ...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  9. Analysis of Limit Cycle Oscillation/Transonic High ALPHA Flow Visualization. Part 2 Stationary Model Data

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1998-01-01

    ...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  10. Analysis of Limit Cycle Oscillation/Transonic High Alpha Flow Visualization

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1997-01-01

    ...) at low alpha condition typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  11. Analysis of Limit Cycle Oscillation/Transonic High ALPHA Flow Visualization. Part 3 Oscillating Model Data

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1998-01-01

    ...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  12. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  13. Axial annular flow of power-law fluids - applicability of the limiting cases

    Czech Academy of Sciences Publication Activity Database

    Filip, Petr; David, Jiří

    2007-01-01

    Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics

  14. Vanishing viscosity limits of mixed hyperbolic–elliptic systems arising in multilayer channel flows

    International Nuclear Information System (INIS)

    Papaefthymiou, E S; Papageorgiou, D T

    2015-01-01

    This study considers the spatially periodic initial value problem of 2 × 2 quasi-linear parabolic systems in one space dimension having quadratic polynomial flux functions. These systems arise physically in the interfacial dynamics of viscous immiscible multilayer channel flows. The equations describe the spatiotemporal evolution of phase-separating interfaces with dissipation arising from surface tension (fourth-order) and/or stable stratification effects (second-order). A crucial mathematical aspect of these systems is the presence of mixed hyperbolic–elliptic flux functions that provide the only source of instability. The study concentrates on scaled spatially 2π-periodic solutions as the dissipation vanishes, and in particular the behaviour of such limits when generalized dissipation operators (spanning second to fourth-order) are considered. Extensive numerical computations and asymptotic analysis suggest that the existence (or not) of bounded vanishing viscosity solutions depends crucially on the structure of the flux function. In the absence of linear terms (i.e. homogeneous flux functions) the vanishing viscosity limit does not exist in the L ∞ -norm. On the other hand, if linear terms in the flux function are present the computations strongly suggest that the solutions exist and are bounded in the L ∞ -norm as the dissipation vanishes. It is found that the key mechanism that provides such boundedness centres on persistent spatiotemporal hyperbolic–elliptic transitions. Strikingly, as the dissipation decreases, the flux function becomes almost everywhere hyperbolic except on a fractal set of elliptic regions, whose dimension depends on the order of the regularized operator. Furthermore, the spatial structures of the emerging weak solutions are found to support an increasing number of discontinuities (measure-valued solutions) located in the vicinity of the fractally distributed elliptic regions. For the unscaled problem, such spatially

  15. Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high-performance liquid chromatography.

    Science.gov (United States)

    Fan, Chen; Cao, Xueli; Liu, Man; Wang, Wei

    2016-03-04

    Alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA) are some of the main Alternaria mycotoxins that can be found as contaminants in food materials. The objective of this study was to develop a pretreatment method with countercurrent chromatography (CCC) for enrichment and cleanup of trace Alternaria mycotoxins in food samples prior to high-performance liquid chromatography (HPLC) analysis. An Analytical CCC instrument with a column volume 22.5mL was used, and a two-phase solvent system composed of ethyl acetate and water modified with 6% [HOOMIM][Cl] in mass to volume ratio was selected. Under the optimized CCC operation conditions, trace amounts of AOH, AME, and TeA in large volume of liquid sample were efficiently extracted and enriched in the stationary phase, and then eluted out just by reversing the stationary phase as mobile phase in the opposite flowing direction tail-to-head. The enrichment and elution strategies are unique and can be fulfilled online with high enrichment factors (87-114) and high recoveries (81.14-110.94%). The method has been successively applied to the determination of Alternaria mycotoxins in real apple juice and wine samples with the limits of detection (LOD) in the range of 0.03-0.14μgL(-1). Totally 12 wine samples and 15 apple juice samples from the local market were analyzed. The detection rate of AOH and AME in both kinds of the samples were more than 50%, while TeA was found in relatively high level of 1.75-49.61μgL(-1) in some of the apple juice samples. The proposed method is simple, rapid, and sensitive and could also be used for the analysis and monitoring of Alternaria mycotoxin in other food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Numerical model for swirl flow cooling in high-heat-flux particle beam targets and the design of a swirl-flow-based plasma limiter

    International Nuclear Information System (INIS)

    Milora, S.L.; Combs, S.K.; Foster, C.A.

    1984-11-01

    An unsteady, two-dimensional heat conduction code has been used to study the performance of swirl-flow-based neutral particle beam targets. The model includes the effects of two-phase heat transfer and asymmetric heating of tubular elements. The calorimeter installed in the Medium Energy Test Facility, which has been subjected to 30-s neutral beam pulses with incident heat flux intensities of greater than or equal to 5 kW/cm 2 , has been modeled. The numerical results indicate that local heat fluxes in excess of 7 kW/cm 2 occur at the water-cooled surface on the side exposed to the beam. This exceeds critical heat flux limits for uniformly heated tubes wih straight flow by approximately a factor of 5. The design of a plasma limiter based on swirl flow heat transfer is presented

  17. PIC simulations of conical magnetically insulated transmission line with LTD generator: Transition from self-limited to load-limited flow

    Science.gov (United States)

    Liu, Laqun; Wang, Huihui; Guo, Fan; Zou, Wenkang; Liu, Dagang

    2017-04-01

    Based on the 3-dimensional Particle-In-Cell (PIC) code CHIPIC3D, with a new circuit boundary algorithm we developed, a conical magnetically insulated transmission line (MITL) with a 1.0-MV linear transformer driver (LTD) is explored numerically. The values of switch jitter time of LTD are critical parameters for the system, which are difficult to be measured experimentally. In this paper, these values are obtained by comparing the PIC results with experimental data of large diode-gap MITL. By decreasing the diode gap, we find that all PIC results agree well with experimental data only if MITL works on self-limited flow no matter how large the diode gap is. However, when the diode gap decreases to a threshold, the self-limited flow would transfer to a load-limited flow. In this situation, PIC results no longer agree with experimental data anymore due to the anode plasma expansion in the diode load. This disagreement is used to estimate the plasma expansion speed.

  18. Use of limonene in countercurrent chromatography: a green alkane substitute.

    Science.gov (United States)

    Faure, Karine; Bouju, Elodie; Suchet, Pauline; Berthod, Alain

    2013-05-07

    Counter-current chromatography (CCC) is a preparative separation technique working with the two liquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other, the stationary phase, is held in place by centrifugal fields. Limonene is a biorenewable cycloterpene solvent coming from orange peel waste. It was evaluated as a possible substitute for heptane in CCC separations. The limonene/methanol/water and heptane/methanol/water phase diagrams are very similar at room temperature. The double bonds of the limonene molecule allows for possible π-π interactions with solutes rendering limonene slightly more polar than heptane giving small differences in solute partition coefficients in the two systems. The 24% higher limonene density is a difference with heptane that has major consequences in CCC. The polar and apolar phases of the limonene/methanol/water 10/9/1 v/v have -0.025 g/cm(3) density difference (lower limonene phase) compared to +0.132 g/cm(3) with heptane (upper heptane phase). This precludes the use of this limonene system with hydrodynamic CCC columns that need significant density difference to retain a liquid stationary phase. It is an advantage with hydrostatic CCC columns because density difference is related to the working pressure drop: limonene allows one to work with high centrifugal fields and moderate pressure drop. Limonene has the capability to be a "green" alternative to petroleum-based solvents in CCC applications.

  19. The effect of flow limitation on the cardiorespiratory response to arousal from sleep under controlled conditions of chemostimulation in healthy older adults.

    Science.gov (United States)

    Goff, Elizabeth A; Nicholas, Christian L; Kleiman, Jan; Spear, Owen; Morrell, Mary J; Trinder, John

    2012-12-01

    The influence of flow limitation on the magnitude of the cardiorespiratory response to arousal from sleep is of interest in older people, because they experience considerable flow limitation and frequent arousals from sleep. We studied older flow-limiting subjects, testing the hypothesis that the cardiorespiratory activation response would be larger when arousal occurred during flow limitation, compared to no flow limitation, and chemical stimuli were controlled. In 11 older adults [mean ± standard deviation (SD) age: 68 ± 5 years] ventilation was stabilized using continuous positive airway pressure, and flow limitation was induced by dialling down the pressure. Partial pressure of end-tidal carbon dioxide (PetCO(2)) was maintained by titration of the inspired CO(2) and hyperoxia was maintained using 40% O(2) balanced with nitrogen. Flow limitation at the time of arousal did not augment cardiovascular activation response (heart rate P = 0.7; systolic blood pressure P = 0.6; diastolic blood pressure P = 0.3), whereas ventilation was greater following arousals during flow limitation compared to no flow limitation (P sleep is not influenced by flow limitation at the time of arousal, when chemical stimuli are controlled in older adults. This finding may contribute to the decreased cardiovascular burden associated with sleep-disordered breathing reported in older adults, although our data do not exclude the possibility that flow limitation in the presence of mild hypoxic hypercapnia could increase the cardiovascular response to arousal. © 2012 European Sleep Research Society.

  20. New sample carrier systems for thermogravimetric analysis under forced flow conditions and their influence on microkinetic results.

    Science.gov (United States)

    Seibel, C; Fieback, T M

    2015-09-01

    For thermogravimetric analysis, it has been shown that, depending on the type of sample container, different kinetic results could be obtained despite regarding the same reaction under constant conditions. This is due to limiting macrokinetic effects which are strongly dependant on the type of sample carrying system. This prompted the need for sample containers which deliver results minimally limited by diffusive mass transport. In this way, two container systems were developed, both characterized by a forced flow stream through a solid, porous bed: one from bottom to top (counter-current flow) and one from top to bottom (co-current flow). Optical test measurements were performed, the results indicating that reaction proceedings are almost fully independent of the geometrical shape of the sample containers. The Boudouard reaction was investigated with a standard crucible and the new developed systems; the reaction rates determined differed significantly, up to a factor of 6.2 at 1373 K.

  1. Pollination of pima pineapple cactus (Coryphantha sheeri var. robustispina): does pollen flow limit abundance of this endangered species?

    Science.gov (United States)

    Christopher J. McDonald; Guy R. McPherson

    2005-01-01

    Pima pineapple cactus (PPC) (Coryphantha sheeri var. robustispina), a federally listed endangered species, occurs throughout southeastern Arizona and has relatively low population densities. To determine whether pollination limits reproduction of PPC we used florescent dye to quantify pollen flow between individuals in a PPC...

  2. Hydrodynamic and mechanical tests of a newly improved counter-current multi-stage centrifugal extractor

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Retegan, Teodora

    2003-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involves an extraction process usually carried out by means of a mixer-settler, pulse column or centrifugal contactor. This last, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. Similar apparatus was not found in the literature published to-date. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, working in horizontal position. The new internal structure and geometry of the new advanced centrifugal extractor consisting of nine cells (units), five rotation units, two mixing units, two propelling units and two final plates, ensures the counter-current running of the two phases.The central shaft having the rotation cells fixed on it is coupled by an intermediary connection to a electric motor of high rotation speed. Conceptual layout of the advanced counter-current multi-stage centrifugal extractor is presented. The newly designed extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase =1 to examine the mechanical behavior and the hydrodynamics of the two phases in countercurrent. The results showed that the performances have been generally good and the design requirements were fulfilled. The newly designed counter-current multistage centrifugal extractor appears to be a promising way to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  3. Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon

    DEFF Research Database (Denmark)

    Strandgaard, S; Jones, J V; MacKenzie, E T

    1975-01-01

    The effect of arterial hypertension on cerebral blood flow was studied by the intracarotid 133Xe clearance method in baboons. The arterial blood pressure was raised in gradual steps with angiotensin. Baboons with renal hypertension of 8-12 weeks duration were studied along with normotensive baboons....... In initially normotensive baboons, cerebral blood flow remained constant until the mean arterial blood pressure had risen to the range of 140 to 154 mm Hg; thereafter cerebral blood flow increased with each rise in mean arterial blood pressure. In the chronically hypertensive baboons, cerebral blood flow...... remained constant until the mean arterial blood pressure had been elevated to the range of 155 to 169 mm Hg. Thus, in chronic hypertension it appears that there are adaptive changes in the cerebral circulation which may help to protect the brain from further increases in arterial blood pressure....

  4. Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.

    Science.gov (United States)

    Lei, Wenwen; McKenzie, David R

    2016-07-21

    Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks.

  5. Coastal counter-currents setup patterns in the Gulf of Cadiz

    Science.gov (United States)

    Relvas, P.; Juniór, L.; Garel, E.; Drago, T.

    2017-12-01

    Alongshore coastal counter-currents (CCC) are frequent features of Eastern Boundary Upwelling Systems, where they temporally alternate with upwelling driven jets of opposite direction. Along the northern margin of the Gulf of Cadiz inner shelf, these CCCs are oriented poleward (eastward) and responsible for sharp temperature increases during the upwelling season, along with potential decline in water quality at the coast. This research is based on a multi-year ADCP velocity time-series (2008-2017), recorded at a single location (23 m water depth) over 13 deployments up to 3 months-long. The analysis focuses on the water column alongshore velocities during current inversions (i.e., the transition from equatorward upwelling jets to poleward CCCs). A set of parameters were derived from the flow structure to identify distinct types of inversions and to hypothesize about their driving mechanisms. Results show that 77% of the inversions start near the bed, propagating then to the upper layers. The bottom layer also changes direction before the surface layer for most events (71%). The vertical shear in this case is one order of magnitude greater than in the (less frequent) opposite situation. No seasonal variability is observed in the CCC occurrences. However, the parameters analysed in this study suggest different types of inversion between winter and summer. In winter, inversions are well defined (low variability), with similar patterns near the surface and bed layers as a result of a strong barotropic component. In summer the inversion patterns are more variable. In particular, the upper and bed layers are often importantly decoupled during inversions, indicating the strengthening of baroclinicity. A categorization of inversions events is proposed based on cross-correlation and multi-variable analyses of the developed parameters. Various types of inversion are obtained, suggesting that CCCs are driven by different forcings that may act separately or jointly.

  6. Large-N limit of the gradient flow in the 2D O(N) nonlinear sigma model

    International Nuclear Information System (INIS)

    Makino, Hiroki; Sugino, Fumihiko; Suzuki, Hiroshi

    2015-01-01

    The gradient flow equation in the 2D O(N) nonlinear sigma model with lattice regularization is solved in the leading order of the 1/N expansion. By using this solution, we analytically compute the thermal expectation value of a lattice energy–momentum tensor defined through the gradient flow. The expectation value reproduces thermodynamic quantities obtained by the standard large-N method. This analysis confirms that the above lattice energy–momentum tensor restores the correct normalization automatically in the continuum limit, in a system with a non-perturbative mass gap

  7. Flooding and flow reversal of two-phase annular flow

    International Nuclear Information System (INIS)

    Asahi, Y.

    1978-01-01

    The flooding and flow reversal conditions of two-phase annular flow are mathematically defined in terms of a characteristic function representing a force balance. Sufficiently below the flooding point in counter-current flow, the interface is smooth and the characteristic equation reduces to the Nusselt relationship. Just below flooding point and above the flow reversal point in cocurrent flow, the interface is 'wavy', so that the interfacial shear effect plays an important role. The theoretical analysis is compared with experimental results by others. It is suggested that the various length effects which have been experimentally observed may be accounted for by the spatial variation of the droplet entrainment. (Auth.)

  8. Heat-flow and temperature control in Tian–Calvet microcalorimeters: toward higher detection limits

    International Nuclear Information System (INIS)

    Vilchiz-Bravo, L E; Pacheco-Vega, A; Handy, B E

    2010-01-01

    Strategies based on the principle of heat flow and temperature control were implemented, and experimentally tested, to increase the sensitivity of a Tian–Calvet microcalorimeter for measuring heats of adsorption. Here, both heat-flow and temperature control schemes were explored to diminish heater-induced thermal variations within the heat sink element, hence obtaining less noise in the baseline signal. PID controllers were implemented within a closed-loop system to perform the control actions in a calorimetric setup. The experimental results demonstrate that the heat flow control strategy provided a better baseline stability when compared to the temperature control. The effects on the results stemming from the type of power supply used were also investigated

  9. Performance of intact and partially degraded concrete barriers in limiting fluid flow

    International Nuclear Information System (INIS)

    Walton, J.C.; Seitz, R.R.

    1991-07-01

    Concrete barriers will play a critical role in the long-term isolation of low-level radioactive wastes. Over time the barriers will degrade, and in many cases, the fundamental processes controlling performance of the barriers will be different for intact and degraded conditions. This document examines factors controlling fluid flow through intact and degraded concrete disposal facilities. Simplified models are presented fro predicting build up of fluid above a vault; fluid flow through and around intact vaults, through flaws in coatings/liners applied to a vault, and through cracks in a concrete vault; and the influence of different backfill materials around the outside of the vault. Example calculations are presented to illustrate the parameters and processes that influence fluid flow. 46 refs., 49 figs., 2 tabs

  10. Upper Limit of the Viscosity Parameter in Accretion Flows around a Black Hole with Shock Waves

    Science.gov (United States)

    Nagarkoti, Shreeram; Chakrabarti, Sandip K.

    2016-01-01

    Black hole accretion is necessarily transonic; thus, flows must become supersonic and, therefore, sub-Keplerian before they enter into the black hole. The viscous timescale is much longer than the infall timescale close to a black hole. Hence, the angular momentum remains almost constant and the centrifugal force ˜ {l}2/{r}3 becomes increasingly dominant over the gravitational force ˜ 1/{r}2. The slowed down matter piles creating an accretion shock. The flow between shock and inner sonic point is puffed up and behaves like a boundary layer. This so-called Comptonizing cloud/corona produces hard X-rays and jets/outflows and, therefore, is an important component of black hole astrophysics. In this paper, we study steady state viscous, axisymmetric, transonic accretion flows around a Schwarzschild black hole. We adopt a viscosity parameter α and compute the highest possible value of α (namely, {α }{cr}) for each pair of two inner boundary parameters (namely, specific angular momentum carried to horizon, lin and specific energy at inner sonic point, E({x}{in})) which is still capable of producing a standing or oscillating shock. We find that while such possibilities exist for α as high as {α }{cr}=0.3 in very small regions of the flow parameter space, typical {α }{cr} appears to be about ˜0.05-0.1. Coincidentally, this also happens to be the typical viscosity parameter achieved by simulations of magnetorotational instabilities in accretion flows. We therefore believe that all realistic accretion flows are likely to have centrifugal pressure supported shocks unless the viscosity parameter everywhere is higher than {α }{cr}.

  11. Three-dimensional inviscid analysis of radial turbine flow and a limited comparison with experimental data

    Science.gov (United States)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  12. A new flooding correlation development and its critical heat flux predictions under low air-water flow conditions in Savannah River Site assembly channels

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    The upper limit to countercurrent flow, namely, flooding, is important to analyze the reactor coolability during an emergency cooling system (ECS) phase as a result of a large-break loss-of-coolant accident (LOCA) such as a double-ended guillotine break in the Savannah River Site (SRS) reactor system. During normal operation, the reactor coolant system utilizes downward flow through concentric heated tubes with ribs, which subdivided each annular channel into four subchannels. In this paper, a new flooding correlation has been developed based on the analytical models and literature data for adiabatic, steady-state, one-dimensional, air-water flow to predict flooding phenomenon in the SRS reactor assembly channel, which may have a counter-current air-water flow pattern during the ECS phase. In addition, the correlation was benchmarked against the experimental data conducted under the Oak Ridge National Laboratory multislit channel, which is close to the SRS assembly geometry. Furthermore, the correlation has also been used as a constitutive relationship in a new two-component two-phase thermal-hydraulics code FLOWTRAN-TF, which has been developed for a detailed analysis of SRS reactor assembly behavior during LOCA scenarios. Finally, the flooding correlation was applied to the predictions of critical heat flux, and the results were compared with the data taken by the SRS heat transfer laboratory under a single annular channel with ribs and a multiannular prototypic test rig

  13. Transport-driven scrape-off layer flows and the x-point dependence of the L-H power threshold in Alcator C-Moda)

    Science.gov (United States)

    LaBombard, B.; Rice, J. E.; Hubbard, A. E.; Hughes, J. W.; Greenwald, M.; Granetz, R. S.; Irby, J. H.; Lin, Y.; Lipschultz, B.; Marmar, E. S.; Marr, K.; Mossessian, D.; Parker, R.; Rowan, W.; Smick, N.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S. J.

    2005-05-01

    Factor of ˜2 higher power thresholds for low- to high-confinement mode transitions (L-H) with unfavorable x-point topologies in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are linked to flow boundary conditions imposed by the scrape-off layer (SOL). Ballooning-like transport drives flow along magnetic field lines from low- to high-field regions with toroidal direction dependent on upper/lower x-point balance; the toroidal rotation of the confined plasma responds, exhibiting a strong counter-current rotation when B ×∇B points away from the x point. Increased auxiliary heating power (rf, no momentum input) leads to an L-H transition at approximately twice the edge electron pressure gradient when B ×∇B points away. As gradients rise prior to the transition, toroidal rotation ramps toward the co-current direction; the H mode is seen when the counter-current rotation imposed by the SOL flow becomes compensated. Remarkably, L-H thresholds in lower-limited discharges are identical to lower x-point discharges; SOL flows are also found similar, suggesting a connection.

  14. Investigation of the separation of americium(III) and europium(III) by high-speed countercurrent chromatography

    International Nuclear Information System (INIS)

    Wu, J.F.; Jin, Y.R.; Xu, Q.C.; Wang, S.L.; Zhang, L.X.

    2005-01-01

    The long-lived actinides are the important elements in the radioactive waste ;disposal. Because the ions semi diameter and chemical properties of trivalent actinides(III) and trivalent lanthanides(III) are very similar, the separation between them is very difficult. Yang Yu-Sheng put forward the actinides(III) are softer acid than the lanthanides(III), so the actinides(III) are more easily extracted by the soft extractant contain sulfur or nitrogen than the lanthanides(III). Some research have been done on the separation between actinides(III) and lanthanides(III) using the extractants contain sulfur or nitrogen. The results show that satisfactory separation efficiency was gained. Countercurrent Chromatography (CCC) have many specific advantages, such as free from solid support, permit large sample volume and high flow rate, which is useful in the preconcentration of inorganic solute and inorganic preparation. Some studies were done on the separation of lanthanides or-other inorganic elements by HSCCC, the high-purity reagents prepared by HSCCC or CPC turned out to be successful. In present paper, the investigation of separation between Americium (III) and Euricium (III) by High-Speed Countercurrent Chromatography (HSCCC) were made. The extractant used in the work was prepared by ourselves, which is of the soft extractant contrain sulfur. The effects of separation condition on the separation efficiency of Am and Eu by HSCCC were investigated using dichlorophenyl dithiophosphinic acid in xylene as the stationary phase and 0.1 mol/L NaClO4 as mobile phase, respectively. The results show that mutual separation between Am and Eu can be accomplished. The separation factor increases with the increasing of the concentration of extractant and the pH value of the mobile phase, further more, minishing the flow rate of the mobile phase can also improves the separation efficiency between Am and Eu. The nearly base separation was gained when the flow rate is 0.35 ml/min, the

  15. Numerical methods for limit problems in two-phase flow models

    International Nuclear Information System (INIS)

    Cordier, F.

    2011-01-01

    Numerical difficulties are encountered during the simulation of two-phase flows. Two issues are studied in this thesis: the simulation of phase transitions on one hand, and the simulation of both compressible and incompressible flows in the other hand. Un asymptotic study has shown that the loss of hyperbolicity of the bi fluid model was responsible for the difficulties encountered by the Roe scheme during the simulation of phase transitions. Robust and accurate polynomial schemes have thus been developed. To tackle the occasional lack of positivity of the solution, a numerical treatment based on adaptive diffusion was proposed and allowed to simulate with accuracy the test-cases of a boiling channel with creation of vapor and a tee-junction with separation of the phases. In a second part, an all-speed scheme for compressible and incompressible flows have been proposed. This pressure-based semi-implicit asymptotic preserving scheme is conservative, solves an elliptic equation on the pressure, and has been designed for general equations of state. The scheme was first developed for the full Euler equations and then extended to the Navier-Stokes equations. The good behaviour of the scheme in both compressible and incompressible regimes have been investigated. An extension of the scheme to the two-phase mixture model was implemented and demonstrated the ability of the scheme to simulate two-phase flows with phase change and a water-steam equation of state. (author) [fr

  16. Low blood flow at onset of moderate intensity exercise does not limit muscle oxygen uptake

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Saltin, Bengt

    2010-01-01

    The effect of low blood flow at onset of moderate intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5 minute one-legged knee-extensor exercise bout (24+/-1 (+/-S.D.) W) without (CON) and with (double blockade; DB) arterial infusion of i....... Additionally, prostanoids and/or NO appear to play important roles in elevating skeletal muscle blood flow in the initial phase of exercise. Key words: Oxygen delivery, oxygen extraction, nitric oxide, prostanoids.......The effect of low blood flow at onset of moderate intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5 minute one-legged knee-extensor exercise bout (24+/-1 (+/-S.D.) W) without (CON) and with (double blockade; DB) arterial infusion...... of inhibitors of nitric oxide synthase (NOS; L-NMMA) and cyclooxygenase (COX; indomethacin) in order to inhibit the synthesis of nitric oxide (NO) and prostanoids, respectively.. Leg blood flow and leg oxygen delivery throughout exercise was 25-50 % lower (P

  17. A tool to estimate bar patterns and flow conditions in estuaries when limited data is available

    Science.gov (United States)

    Leuven, J.; Verhoeve, S.; Bruijns, A. J.; Selakovic, S.; van Dijk, W. M.; Kleinhans, M. G.

    2017-12-01

    The effects of human interventions, natural evolution of estuaries and rising sea-level on food security and flood safety are largely unknown. In addition, ecologists require quantified habitat area to study future evolution of estuaries, but they lack predictive capability of bathymetry and hydrodynamics. For example, crucial input required for ecological models are values of intertidal area, inundation time, peak flow velocities and salinity. While numerical models can reproduce these spatial patterns, their computational times are long and for each case a new model must be developed. Therefore, we developed a comprehensive set of relations that accurately predict the hydrodynamics and the patterns of channels and bars, using a combination of the empirical relations derived from approximately 50 estuaries and theory for bars and estuaries. The first step is to predict local tidal prisms, which is the tidal prism that flows through a given cross-section. Second, the channel geometry is predicted from tidal prism and hydraulic geometry relations. Subsequently, typical flow velocities can be estimated from the channel geometry and tidal prism. Then, an ideal estuary shape is fitted to the measured planform: the deviation from the ideal shape, which is defined as the excess width, gives a measure of the locations where tidal bars form and their summed width (Leuven et al., 2017). From excess width, typical hypsometries can be predicted per cross-section. In the last step, flow velocities are calculated for the full range of occurring depths and salinity is calculated based on the estuary shape. Here, we will present a prototype tool that predicts equilibrium bar patterns and typical flow conditions. The tool is easy to use because the only input required is the estuary outline and tidal amplitude. Therefore it can be used by policy makers and researchers from multiple disciplines, such as ecologists, geologists and hydrologists, for example for paleogeographic

  18. Passing to the limit in a Wasserstein gradient flow : from diffusion to reaction

    NARCIS (Netherlands)

    Arnrich, S.; Mielke, A.; Peletier, M.A.; Savaré, G.; Veneroni, M.

    2012-01-01

    We study a singular-limit problem arising in the modelling of chemical reactions. At finite e > 0, the system is described by a Fokker-Planck convection-diffusion equation with a double-well convection potential. This potential is scaled by 1 / e and in the limit e --> 0, the solution concentrates

  19. Treatment of low-activity-level process wastewaters by Continuous Countercurrent Ion Exchange

    International Nuclear Information System (INIS)

    Hall, R.; Watson, J.S.; Robinson, S.M.

    1990-01-01

    This paper discusses application of the Thomas model for predicting breakthrough curves from ion exchange column tests, methods for scale-up of experimental small-scaled ion exchange columns to industrial scale columns, and methods for predicting effluent compositions in a continuous countercurrent ion exchange system. 20 refs., 6 figs., 2 tabs

  20. Counter-current acid leaching process for copper azole treated wood waste.

    Science.gov (United States)

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  1. Exogeneous countercurrent ultracentrifuges. Enrichment of a unitary machine out of a cascade

    International Nuclear Information System (INIS)

    Jacques, R.

    1977-01-01

    The integration of the equation giving isotope concentrations inside an exogeneous countercurrent ultracentrifuge is presented. The optimization of such a centrifuge, as for as the radius of the internal stream is concerned, is analyzed. The use of this type of centrifuge as part of a separating cascade is discussed

  2. Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, S.

    2012-01-01

    We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.

  3. Isolation of symlandine from the roots of common comfrey (Symphytum officinale) using countercurrent chromatography.

    Science.gov (United States)

    Kim, N C; Oberlies, N H; Brine, D R; Handy, R W; Wani, M C; Wall, M E

    2001-02-01

    Three pyrrolizidine alkaloids, symlandine, symphytine, and echimidine (1-3), were isolated from the roots of Symphytum officinale using a one-step countercurrent chromatography procedure. The structures of 1-3 were confirmed by several spectroscopic techniques including 2D NMR methods. This is the first description of the separation of symlandine (1) from its stereoisomer, symphytine (2).

  4. Tracheal sound parameters of respiratory cycle phases show differences between flow-limited and normal breathing during sleep

    International Nuclear Information System (INIS)

    Kulkas, A; Huupponen, E; Virkkala, J; Saastamoinen, A; Rauhala, E; Tenhunen, M; Himanen, S-L

    2010-01-01

    The objective of the present work was to develop new computational parameters to examine the characteristics of respiratory cycle phases from the tracheal breathing sound signal during sleep. Tracheal sound data from 14 patients (10 males and 4 females) were examined. From each patient, a 10 min long section of normal and a 10 min section of flow-limited breathing during sleep were analysed. The computationally determined proportional durations of the respiratory phases were first investigated. Moreover, the phase durations and breathing sound amplitude levels were used to calculate the area under the breathing sound envelope signal during inspiration and expiration phases. An inspiratory sound index was then developed to provide the percentage of this type of area during the inspiratory phase with respect to the combined area of inspiratory and expiratory phases. The proportional duration of the inspiratory phase showed statistically significantly higher values during flow-limited breathing than during normal breathing and inspiratory pause displayed an opposite difference. The inspiratory sound index showed statistically significantly higher values during flow-limited breathing than during normal breathing. The presented novel computational parameters could contribute to the examination of sleep-disordered breathing or as a screening tool

  5. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    Science.gov (United States)

    2015-06-01

    e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than

  6. Model predictive control for power flows in networks with limited capacity

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2012-01-01

    this problem can be formulated as an optimization problem, leading directly to the design of a model predictive controller. Using this scheme, we are able to incorporate predictions of future consumption and exploit knowledge of link limitations such that the intelligent consumers are utilized ahead of time......We consider an interconnected network of consumers powered through an electrical grid of limited capacity. A subset of the consumers are intelligent consumers and have the ability to store energy in a controllable fashion; they can be filled and emptied as desired under power and capacity...... limitations. We address the problem of maintaining power balance between production and consumption using the intelligent consumers to ensure smooth power consumption from the grid. Further, certain capacity limitations to the links interconnecting the consumers must be honored. In this paper, we show how...

  7. A high performance cocurrent-flow heat pipe for heat recovery applications

    Science.gov (United States)

    Saaski, E. W.; Hartl, J. C.

    1980-01-01

    By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.

  8. pH-zone-refining elution-extrusion countercurrent chromatography: Separation of hydroxyanthraquinones from Cassiae semen.

    Science.gov (United States)

    Bu, Zhisi; Lv, Liqiong; Li, Xingnuo; Chu, Chu; Tong, Shengqiang

    2017-11-01

    Seven hydroxyanthraquinones were successfully separated from the traditional Chinese medicinal herb Cassiae semen by conventional and pH-zone-refining countercurrent chromatography with an environmentally friendly biphasic solvent system, in which elution-extrusion mode was investigated for pH-zone-refining countercurrent chromatography for the first time. A two-phase solvent system composed of n-hexane/ethyl acetate/ethanol/water (5:3:4:4, v/v/v/v) was used for the conventional countercurrent chromatography while the same system with a different volume ratio n-hexane/ethyl acetate/ethanol/water (3:5:2:6, v/v/v/v) was used for pH-zone-refining countercurrent chromatography, in which 20 mmol/L of trifluoroacetic acid was added in the organic phase as a retainer and 15 mmol/L of ammonia was added to the aqueous phase as an eluter. A 400 mg crude sample could be well separated by pH-zone-refining countercurrent chromatography, yielding 53 mg of aurantio-obtusin, 40 mg of chryso-obtusin, 18 mg of obtusin, 24 mg of obtusifolin, 10 mg of emodin, and 105 mg of the mixture of chrysophanol and physcion with a purity of over 95.8, 95.7, 96.9, 93.5, 97.4, 77.1, and 19.8%, as determined by high-performance liquid chromatography. Furthermore, the difference in elution sequence between conventional and pH-zone-refining mode was observed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit.

    Science.gov (United States)

    Saifizul, Ahmad Abdullah; Yamanaka, Hideo; Karim, Mohamed Rehan

    2011-05-01

    Most highly motorized countries in the world have implemented different speed limits for light weight and heavy weight vehicles. The heavy vehicle speed limit is usually chosen to be lower than that of passenger cars due to the difficulty for the drivers to safely maneuver the heavy vehicle at high speed and greater impact during a crash. However, in many cases, the speed limit for heavy vehicle is set by only considering the vehicle size or category, mostly due to simplicity in enforcement. In this study, traffic and vehicular data for all vehicle types were collected using a weigh-in-motion system installed at Federal Route 54 in Malaysia. The first finding from the data showed that the weight variation for each vehicle category is considerable. Therefore, the effect of gross vehicle weight (GVW) and category of heavy vehicle on free flow speed and their interaction were analyzed using statistical techniques. Empirical analysis results showed that statistically for each type of heavy vehicle, there was a significant relationship between free flow speed of a heavy vehicle and GVW. Specifically, the results suggest that the mean and variance of free flow speed decrease with an increase GVW by the amount unrelated to size and shape for all GVW range. Then, based on the 85th percentile principle, the study proposed a new concept for setting the speed limit for heavy vehicle by incorporating GVW where a different speed limit is imposed to the heavy vehicle, not only based on vehicle classification, but also according to its GVW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. The hydrodynamic behaviour of gas—solid trickle flow over a regularly stacked packing

    NARCIS (Netherlands)

    Verver, A.B.; van Swaaij, Willibrordus Petrus Maria

    1986-01-01

    The hydrodynamic properties of counter-current gas—solid flow over a regularly stacked packing at trickle flow conditions have been studied. The flow properties of the solids phase were examined, using five types of solid particles with a mean particle diameter ranging from 70 to 880 μm and a

  11. The heat-transfer performance of gas—solid trickle flow over a regularly stacked packing

    NARCIS (Netherlands)

    Verver, A.B.; van Swaaij, Willibrordus Petrus Maria

    1986-01-01

    The heat-transfer behaviour of a countercurrent gas—solid trickle flow contactor is studied, using coarse sand particles as the solids phase. Experimental data on the overall heat-transfer rate constant between the gas flow and the solid particle flow were obtained in a 0.15 m square cross-section

  12. Two-Step Separation of Nostotrebin 6 from Cultivated Soil Cyanobacterium (Nostoc sp. by High Performance Countercurrent Chromatography

    Directory of Open Access Journals (Sweden)

    José Cheel

    2014-06-01

    Full Text Available High performance countercurrent chromatography (HPCCC was successfully applied for the separation of nostotrebin 6 from cultivated soil cyanobacteria in a two-step operation. A two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (4:5:4:5, v/v/v/v was employed for the HPCCC separation. In the first-step operation, its neutral upper phase was used as stationary phase and its basic lower phase (1% NH3 in lower phase was employed as mobile phase at a flow rate of 1 mL/min. In the second operation step, its neutral upper phase was used as stationary phase, whereas both its neutral lower phase and basic lower phase were employed as mobile phase with a linear gradient elution at a flow rate of 0.8 mL/min. The revolution speed and temperature of the separation column were 1,000 rpm and 30 °C, respectively. Using HPCCC followed by clean-up on Sephadex LH-20 gel, 4 mg of nostotrebin 6 with a purity of 99% as determined by HPLC/DAD-ESI-HRMS was obtained from 100 mg of crude extract. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, ESI-HRMS, ESI-HRMS2 with those of an authentic standard and data available in the literature.

  13. A laplace transform-based technique for solving multiscale and multidomain problems: Application to a countercurrent hemodialyzer model.

    Science.gov (United States)

    Simon, Laurent

    2017-08-01

    An integral-based method was employed to evaluate the behavior of a countercurrent hemodialyzer model. Solute transfer from the blood into the dialysate was described by writing mass balance equations over a section of the device. The approach provided Laplace transform concentration profiles on both sides of the membrane. Applications of the final value theorem led to the development of the effective time constants and steady-state concentrations in the exit streams. Transient responses were derived by a numerical inversion algorithm. Simulations show that the period elapsed, before reaching equilibrium in the effluents, decreased when the blood flow rate increased from 0.25 to 0.30 ml/s. The performance index decreased from 0.80 to 0.71 when the blood-to-dialysate flow ratio increased by 20% and increased from 0.80 to 0.85 when this fraction was reduced by 17%. The analytical solution predicted methadone removal in patients undergoing dialysis. Clinicians can use these findings to predict the time required to achieve a target extraction ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Seasonal shift in climatic limiting factors on tree transpiration: evidence from sap flow observations at alpine treelines in southeast Tibet

    Directory of Open Access Journals (Sweden)

    Liu Xinsheng

    2016-07-01

    Full Text Available Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii and juniper (Juniperus saltuaria treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0 oC. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change.

  15. Minimum current principle and variational method in theory of space charge limited flow

    Energy Technology Data Exchange (ETDEWEB)

    Rokhlenko, A. [Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States)

    2015-10-21

    In spirit of the principle of least action, which means that when a perturbation is applied to a physical system, its reaction is such that it modifies its state to “agree” with the perturbation by “minimal” change of its initial state. In particular, the electron field emission should produce the minimum current consistent with boundary conditions. It can be found theoretically by solving corresponding equations using different techniques. We apply here the variational method for the current calculation, which can be quite effective even when involving a short set of trial functions. The approach to a better result can be monitored by the total current that should decrease when we on the right track. Here, we present only an illustration for simple geometries of devices with the electron flow. The development of these methods can be useful when the emitter and/or anode shapes make difficult the use of standard approaches. Though direct numerical calculations including particle-in-cell technique are very effective, but theoretical calculations can provide an important insight for understanding general features of flow formation and even sometimes be realized by simpler routines.

  16. Electronic cleansing for 24-h limited bowel preparation CT colonography using principal curvature flow

    NARCIS (Netherlands)

    van Ravesteijn, Vincent F.; Boellaard, Thierry N.; van der Paardt, Marije P.; Serlie, Iwo W. O.; de Haan, Margriet C.; Stoker, Jaap; van Vliet, Lucas J.; Vos, Frans M.

    2013-01-01

    CT colonography (CTC) is one of the recommended methods for colorectal cancer screening. The subject's preparation is one of the most burdensome aspects of CTC with a cathartic bowel preparation. Tagging of the bowel content with an oral contrast medium facilitates CTC with limited bowel

  17. Radial space-charge-limited electron flow in semi-insulating GaN:Fe

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Prušáková, Lucie; Uxa, Štěpán; Paskova, T.; Evans, K.

    2011-01-01

    Roč. 110, č. 1 (2011), 013723/1-013723/6 ISSN 0021-8979 R&D Projects: GA ČR GAP204/10/0212 Institutional research plan: CEZ:AV0Z10100521 Keywords : gallium nitride * semi-insulator * space-charge-limited current Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.168, year: 2011

  18. A single photon emission computed tomograph based on a limited dumber of detectors for fluid flow visualization

    International Nuclear Information System (INIS)

    Legoupil, S.

    1999-01-01

    We present in this work a method for fluid flow visualization in a system using radioactive tracers. The method is based on single photon emission computed tomography techniques, applied to a limited number of discrete detectors. We propose in this work a method for the estimation of the transport matrix of photons, associated to the acquisition system. This method is based on the modelization of profiles acquired for a set of point sources located in the imaged volume. Monte Carlo simulations allow to separate scattered photons from those directly collected by the system. The influence of the energy tracer is exposed. The reconstruction method is based on the maximum likelihood - expectation maximization algorithm. An experimental device, based on 36 detectors was realised for the visualization of water circulation in a vessel. A video monitoring allows to visualize the dye water tracer. Dye and radioactive tracers are injected simultaneously in a water flow circulating in the vessel. Reconstructed and video images are compared. Quantitative and qualitative analysis show that fluid flow visualization is feasible with a limited number of detectors. This method can be applied for system involving circulations of fluids. (author)

  19. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    Science.gov (United States)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  20. Identifying Natural syNergist from Pongamia pinnata Using High-Speed Counter-Current Chromatography Combined with Isobolographic Analysis

    Directory of Open Access Journals (Sweden)

    Hao Yin

    2017-03-01

    Full Text Available For identifying the synergistic compounds from Pongamia pinnata, an approach based on high-speed counter-current chromatography (HSCCC combined with isobolographic analysis was designed to detect the synergistic effects in the complex mixture [...

  1. Co-current and Counter-Current Operations for Steam Reforming of Heptane in a Novel CFB Membrane Reformer

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.E.H.

    2004-01-01

    Hydrogen production by steam reforming of higher hydrocarbon over nickel supported catalyst is investigated in an earlier suggested novel Circulating Fast Fluidized Bed Membrane Reformer (CFFBMR). Palladium hydrogen membranes are used with co-current and counter-current operation modes. It is found that hydrogen production has a non-monotonic dependence upon the reaction temperature in the range of 623-823 K. Between 623 and 723 K. the yields of hydrogen decrease and then increase between 723 and 823 K. This important phenomenon is investigated, discussed and explained. The simulation results shows that the reformer performance can be significantly improved using hydrogen membranes, especially in the counter-current operation mode. At low temperatures around 623 K, both .co-current and counter-current operation modes provide similar yields of hydrogen. While at temperature 723 K and higher, the counter-current operation provides the highest yield of hydrogen

  2. The 9th International Countercurrent Chromatography Conference held at Dominican University, Chicago, USA, August 1-3, 2016.

    Science.gov (United States)

    Friesen, J Brent; McAlpine, James B; Chen, Shao-Nong; Pauli, Guido F

    2017-10-20

    The 9th International Countercurrent Chromatography Conference (CCC 2016) was held at Dominican University near Chicago, IL (USA), from August 1st-3rd, 2016. The biennial CCC 20XX conferences provide an opportunity for countercurrent chromatography and centrifugal partition chromatography (CCC/CPC) manufactures, marketers, theorists, and research scientists to gather together socially, learn from each other, and advance countercurrent separation technology. A synopsis of the conference proceedings as well as a series of short reviews of the special edition articles is included in this document. Many productive discussions and collegial conversation at CCC 2016 attested to the liveliness, connectivity, and productivity of the global countercurrent research community and bodes well for the success of the 10th conference at the University of Braunschweig, Germany on August 1-3, 2018. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Flow protection trip limits operational charge-discharge facility -- C Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van Wormer, F.W.

    1958-09-19

    Because of wide variations in the venturi throat pressure, well beyond the panellit gage trip range, that occur during the sequence of operational charge-discharge, the panellit gage cannot be included in the scram safety circuit during the period of time that charge- discharge operations are being performed. In its stead, the function of the panellit gage is replaced in an overlapping manner by a tube inlet pressure monitor that is equipped with high and low pressure trip mechanisms that may be included in the scram safety circuit during the time that the panellit gage must be by-passed. The tube inlet pressure monitor is then used to provide the protection from unstable flow that is normally obtained with the panellit gage. This memorandum describes the manner in which the tube inlet pressure monitor trip points are to be determined and used.

  4. Near limit flame spread over thick fuels in a concurrent forced flow

    International Nuclear Information System (INIS)

    Di Blasi, C.; Crescitelli, S.; Russo, G.

    1988-01-01

    The influence of the ambient level of oxygen concentration on the flow assisted flame spread over thick solid fuels and the extinction of the fame is studied by means of numerical modeling. The pyrolysis spread rate decreases with the oxygen concentration, showing qualitative agreement with experimental data. In fact, as the oxygen level decreases, the flame temperature decreases, causing lower heat fluxes at the fuel surfaces and lower pyrolysis mass rates so that the spread process is slowed. The effects due to finite kinetics are of increasing importance as extinction is approached. These effects appear mainly at the upstream flame leading edge, where the extinction length (distance of the flame leading edge from the edge of the fuel slab) increases. However, the spread process continues, that is, the flame and pyrolysis lengths increase with time, until the pyrolysis spread rate is greater than the upstream extinction rate. Complete extinction occurs when the extinction distance extends to the position of the pyrolysis front

  5. Possible complication regarding phosphorus removal with a continuous flow biofilm system: Diffusion limitation

    DEFF Research Database (Denmark)

    Falkentoft, C.M.; Arnz, P.; Henze, Mogens

    2001-01-01

    Diffusion limitation of phosphate possibly constitutes a serious problem regarding the use of a biofilm reactor for enhanced biological phosphorus removal. A lab-scale reactor for simultaneous removal of phosphorus and nitrate was operated in a continuous alternating mode of operation. For a steady.......4 ± 0.4% (equal to 24 ± 4 mg P/g TS). A simplified computer model indicated the reason to be phosphate diffusion limitation and the model revealed a delicate balance between the obtainable phosphorus contents of the biomass and operating parameters, such as backwash interval, biofilm thickness after...... backwash, and phase lengths. The aspect of diffusion is considered of crucial importance when evaluating the performance of a biofilter for phosphate removal. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 76: 77–85, 2001....

  6. On the low Mach number limit of compressible flows in exterior moving domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Kreml, Ondřej; Mácha, Václav; Nečasová, Šárka

    2016-01-01

    Roč. 16, č. 3 (2016), s. 705-722 ISSN 1424-3199 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * incompressible limit * moving domain Subject RIV: BA - General Mathematics Impact factor: 1.038, year: 2016 http://link.springer.com/article/10.1007%2Fs00028-016-0338-2

  7. The usefulness of computed tomography in distinguishing between asthma with irreversible air-flow limitation and pulmonary emphysema

    International Nuclear Information System (INIS)

    Taniguchi, Hiroyuki; Ogawa, Kenji; Nakajima, Yoko; Amano, Masao; Kondo, Yasuhiro; Matsumoto, Kohei; Yokoyama, Sigeki; Matsubara, Kazuhito

    1988-01-01

    Chronic asthma may develop irreversible air-flow limitation and in this circumstance, it is clinically difficult to distinguish between asthma and pulmonary emphysema. Recently, it has been reported that computed tomography (CT) may assist in detecting changes in the lung specific for emphysema. We examined patients who suffered from asthma before the age of 45 which led to irreversible air-flow limitation (BA group; n = 17, mean age = 65.9) and patients with pulmonary emphysema (CPE group; n = 19, mean age = 69.8). Pulmonary function testing and CT were performed on all patients. In assessment of CT, areas of low attenuation and vascular disruption were considered to be suggestive of emphysema, and the Emphysema Score (ES) was calculated according to the method of Bergin et al. There was no significant difference in FEV1.0, % FEV1.0, % FEV1.0/FVC, % RV and RV/TLC between the BA group and the CPE group. In contrast, there was a significant decrease in the % DLco in CPE group compared with that of the BA group (p < 0.001). The ES in total lung was 54.9 ± 18.6 % in the CPE group and 7.8 ± 11.0 % in BA group (p < 0.001). There was a significant correlation between the % DLco and the ES in the CPE group (p < 0.01). We conclude that the CT is useful in distinguishing between asthma with irreversible air-flow limitation and pulmonary emphysema. (author)

  8. A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data

    Science.gov (United States)

    Ashrafi, Mohammad; Chua, Lloyd Hock Chye; Quek, Chai; Qin, Xiaosheng

    2017-02-01

    Current state-of-the-art online neuro fuzzy models (NFMs) such as DENFIS (Dynamic Evolving Neural-Fuzzy Inference System) have been used for runoff forecasting. Online NFMs adopt a local learning approach and are able to adapt to changes continuously. The DENFIS model however requires upper/lower bound for normalization and also the number of rules increases monotonically. This requirement makes the model unsuitable for use in basins with limited data, since a priori data is required. In order to address this and other drawbacks of current online models, the Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) is adopted in this study for forecast applications in basins with limited data. GSETSK is a fully-online NFM which updates its structure and parameters based on the most recent data. The model does not require the need for historical data and adopts clustering and rule pruning techniques to generate a compact and up-to-date rule-base. GSETSK was used in two forecast applications, rainfall-runoff (a catchment in Sweden) and river routing (Lower Mekong River) forecasts. Each of these two applications was studied under two scenarios: (i) there is no prior data, and (ii) only limited data is available (1 year for the Swedish catchment and 1 season for the Mekong River). For the Swedish Basin, GSETSK model results were compared to available results from a calibrated HBV (Hydrologiska Byråns Vattenbalansavdelning) model. For the Mekong River, GSETSK results were compared against the URBS (Unified River Basin Simulator) model. Both comparisons showed that results from GSETSK are comparable with the physically based models, which were calibrated with historical data. Thus, even though GSETSK was trained with a very limited dataset in comparison with HBV or URBS, similar results were achieved. Similarly, further comparisons between GSETSK with DENFIS and the RBF (Radial Basis Function) models highlighted further advantages of GSETSK as having a rule-base (compared to

  9. Blood flow and vascular reactivity during attacks of classic migraine--limitations of the Xe-133 intraarterial technique

    DEFF Research Database (Denmark)

    Skyhøj Olsen, T; Lassen, N A

    1989-01-01

    . The Xenon-133 intraarterial injection technique was used to measure CBF. In this study, based in part on previously published data, methodological limitations, in particular caused by scattered radiation (Compton scatter), are critically analysed. Based on this analysis and the results of the CBF studies...... it is concluded: During CM attacks CBF appears to decrease focally in the posterior part of the brain to a level around 20 ml/100 g/min which is consistent with a mild degree of ischemia. Changes of CBF in focal low flow areas are difficult to evaluate accurately with the Xe-133 technique. In most cases true CBF...

  10. Observations of the southern East Madagascar Current and undercurrent and countercurrent system

    Science.gov (United States)

    Nauw, J. J.; van Aken, H. M.; Webb, A.; Lutjeharms, J. R. E.; de Ruijter, W. P. M.

    2008-08-01

    In April 2001 four hydrographic sections perpendicular to the southern East Madagascar Current were surveyed as part of the Agulhas Current Sources Experiment. Observations with a vessel mounted and a lowered ADCP produced information on the current field while temperature, salinity, oxygen and nutrient data obtained with a CTD-Rosette system, gave information on the water mass structure of the currents southeast of Madagascar. The peak velocity in the pole-ward East Madagascar Current through these four sections had a typical magnitude of ˜110 cm/s, while the width of this current was of the order of 120 km. The mean pole-ward volume transport rate of this current during the survey above the 5°C isotherm was estimated to be 37 ± 10 Sv. On all four sections an undercurrent was observed at intermediate depths below the East Madagascar Current. Its equator-ward transport rate amounted to 2.8 ± 1.4 Sv. Offshore of the East Madagascar Current the shallow South Indian Ocean Countercurrent was observed. This eastward frontal jet coincided with the barotropic and thermohaline front that separates the saline Subtropical Surface Water from the fresher Tropical Surface Water in the East Madagascar Current. The near-surface geostrophic flow of the East Madagascar Current, derived from satellite altimetry data from 1992 to 2005, suggests a strong variability of this transport due to eddy variability and interannual changes. The long-term pole-ward mean transport of the East Madagascar Current, roughly estimated from those altimetry data amounts to 32 Sv. The upper-ocean water mass of the East Madagascar Current was very saline in 2001, compared to WOCE surveys from 1995. Comparison of our undercurrent data with those of the WOCE surveys in 1995 confirms that the undercurrent is a recurrent feature. Its water mass properties are relatively saline, due to the presence of water originating from the Red Sea outflow at intermediate levels. The saline water was advected from the

  11. An experimental study on counter current flow limitation in annular narrow gaps with large diameter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Jeong, Ji Whan; Lee, Sung Jin; Cho, Young Ro; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The present study intends to carry out CCFL experiment with the same gap size as the CHFG facility and suggest an empirical correlation in order to provide basic information useful to development of an empirical critical-power correlation. The present facility consists of water accumulator tank, test section, DC pump, air regulator, valves and sensors. Air and water are used as working fluids. The experiments are carried out at the atmospheric pressure. Differential pressure between the gap ends, liquid and gas phase flow rates, temperature, lower plenum pressure are measured.Measured values are expressed in terms of Wallis' parameter using gap size as a characteristic length. There is a big difference between the present experimental results and the Koizumi et al.'s results, but the present experimental results are very similar to the Richter et al.'s results. The present results agree well with the Osakabe and Kawasaki's results. In comparison of present experiments with the Koizumi et al.'s experiments, gap thickness is similar, but the diameter of the present is bigger than that of Koizumi et al.'s experiments. In comparison of present experiments with the Richter et al.'s experiments, diameter is similar, but the gap thickness of the present is smaller than that of Richter et al.'s experiments. It is judged from these results that correlation development on CCFL to consider gap thickness is reasonable at similar condition of diameter.The developed correlation will be used to develop the CHFG model. 36 refs., 26 figs., 7 tabs. (Author)

  12. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    Science.gov (United States)

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  13. Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

    International Nuclear Information System (INIS)

    Gan Yanbiao; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar-Gross-Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dimensional Riemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Limited contemporary gene flow and high self-replenishment drives peripheral isolation in an endemic coral reef fish.

    Science.gov (United States)

    van der Meer, Martin H; Horne, John B; Gardner, Michael G; Hobbs, Jean-Paul A; Pratchett, Morgan; van Herwerden, Lynne

    2013-06-01

    Extensive ongoing degradation of coral reef habitats worldwide has lead to declines in abundance of coral reef fishes and local extinction of some species. Those most vulnerable are ecological specialists and endemic species. Determining connectivity between locations is vital to understanding recovery and long-term persistence of these species following local extinction. This study explored population connectivity in the ecologically-specialized endemic three-striped butterflyfish (Chaetodon tricinctus) using mt and msatDNA (nuclear microsatellites) to distinguish evolutionary versus contemporary gene flow, estimate self-replenishment and measure genetic diversity among locations at the remote Australian offshore coral reefs of Middleton Reef (MR), Elizabeth Reef (ER), Lord Howe Island (LHI), and Norfolk Island (NI). Mt and msatDNA suggested genetic differentiation of the most peripheral location (NI) from the remaining three locations (MR, ER, LHI). Despite high levels of mtDNA gene flow, there is limited msatDNA gene flow with evidence of high levels of self-replenishment (≥76%) at all four locations. Taken together, this suggests prolonged population recovery times following population declines. The peripheral population (NI) is most vulnerable to local extinction due to its relative isolation, extreme levels of self-replenishment (95%), and low contemporary abundance.

  15. Reduced-order aeroelastic model for limit-cycle oscillations in vortex-dominated unsteady airfoil flows

    Science.gov (United States)

    Suresh Babu, Arun Vishnu; Ramesh, Kiran; Gopalarathnam, Ashok

    2017-11-01

    In previous research, Ramesh et al. (JFM,2014) developed a low-order discrete vortex method for modeling unsteady airfoil flows with intermittent leading edge vortex (LEV) shedding using a leading edge suction parameter (LESP). LEV shedding is initiated using discrete vortices (DVs) whenever the Leading Edge Suction Parameter (LESP) exceeds a critical value. In subsequent research, the method was successfully employed by Ramesh et al. (JFS, 2015) to predict aeroelastic limit-cycle oscillations in airfoil flows dominated by intermittent LEV shedding. When applied to flows that require large number of time steps, the computational cost increases due to the increasing vortex count. In this research, we apply an amalgamation strategy to actively control the DV count, and thereby reduce simulation time. A pair each of LEVs and TEVs are amalgamated at every time step. The ideal pairs for amalgamation are identified based on the requirement that the flowfield in the vicinity of the airfoil is least affected (Spalart, 1988). Instead of placing the amalgamated vortex at the centroid, we place it at an optimal location to ensure that the leading-edge suction and the airfoil bound circulation are conserved. Results of the initial study are promising.

  16. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng

    2013-11-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.

  17. Level-set reconstruction algorithm for ultrafast limited-angle X-ray computed tomography of two-phase flows.

    Science.gov (United States)

    Bieberle, M; Hampel, U

    2015-06-13

    Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Chronic air-flow limitation does not increase respiratory epithelial permeability assessed by aerosolized solute, but smoking does

    International Nuclear Information System (INIS)

    Huchon, G.J.; Russell, J.A.; Barritault, L.G.; Lipavsky, A.; Murray, J.F.

    1984-01-01

    To determine the separate influences of smoking and severe air-flow limitation on aerosol deposition and respiratory epithelial permeability, we studied 26 normal nonsmokers, 12 smokers without airway obstruction, 12 nonsmokers with chronic obstructive pulmonary disease (COPD), and 11 smokers with COPD. We aerosolized 99mTc-labeled diethylene triamine pentaacetic acid to particles approximately 1 micron activity median aerodynamic diameter. Levels of radioactivity were plotted semilogarithmically against time to calculate clearance as percent per minute. The distribution of radioactivity was homogeneous in control subjects and in smokers, but patchy in both groups with COPD. No difference was found between clearances of the control group (1.18 +/- 0.31% min-1), and nonsmoker COPD group (1.37 +/- 0.82% min-1), whereas values in smokers without COPD (4.00 +/- 1.70% min-1) and smokers with COPD (3.62 +/- 2.88% min-1) were significantly greater than in both nonsmoking groups. We conclude that (1) small particles appear to deposit peripherally, even with severe COPD; (2) respiratory epithelial permeability is normal in nonsmokers with COPD; (3) smoking increases permeability by a mechanism unrelated to air-flow limitation

  19. Beyond the Child-Langmuir law: A review of recent results on multidimensional space-charge-limited flow

    International Nuclear Information System (INIS)

    Luginsland, J.W.; Lau, Y.Y.; Umstattd, R.J.; Watrous, J.J.

    2002-01-01

    Space-charge-limited (SCL) flows in diodes have been an area of active research since the pioneering work of Child and Langmuir in the early part of the last century. Indeed, the scaling of current density with the voltage to the 3/2's power is one of the best-known limits in the fields of non-neutral plasma physics, accelerator physics, sheath physics, vacuum electronics, and high power microwaves. In the past five years, there has been renewed interest in the physics and characteristics of SCL emission in physically realizable configurations. This research has focused on characterizing the current and current density enhancement possible from two- and three-dimensional geometries, such as field-emitting arrays. In 1996, computational efforts led to the development of a scaling law that described the increased current drawn due to two-dimensional effects. Recently, this scaling has been analytically derived from first principles. In parallel efforts, computational work has characterized the edge enhancement of the current density, leading to a better understanding of the physics of explosive emission cathodes. In this paper, the analytic and computational extensions to the one-dimensional Child-Langmuir law will be reviewed, the accuracy of SCL emission algorithms will be assessed, and the experimental implications of multidimensional SCL flows will be discussed

  20. Advanced counter-current multi-stage centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Ionita, Gheorghe; Mirica, Dumitru; Croitoru, Cornelia; Stefanescu, Ioan; Steflea, Dumitru; Mihaila, V.; Peteu, Gh.

    2002-01-01

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of a major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involve an extraction process usually by means of mixer-settler, pulse column or centrifugal contactor. The latter, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, having horizontal position as working position. The new internal structure and geometry of the new advanced centrifugal extractor is shown. It consists of nine cells (units): five rotation units, two mixing units, two propelling units and two final plates which ensures the counter-current running of the two phases. The central shaft having the rotation cells fixed on it is connected to an electric motor of high rotation speed. The extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase = 1. The mechanical and hydrodynamic behavior of the two phases in counter-current are described. The results showed that the performances have been generally good. The new facility appears to be a promising idea to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  1. Separation of calcium isotopes by counter-current electromigration in molten salts (1962)

    International Nuclear Information System (INIS)

    Menes, F.; Dirian, G.; Roth, E.

    1962-01-01

    The method of counter-current electromigration in molten salts has been applied to calcium bromide with an alkali metal bromide added to the cathode compartment. Enrichments on calcium-46 greater than a factor of two were obtained at the anode. The mass effect was found to be about 0.06. An estimation of the cost of energy for a process based on this method has been made. (authors) [fr

  2. Hybrid indirect/direct contactor for thermal management of counter-current processes

    Science.gov (United States)

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  3. Purification of drugs from biological fluids by counter-current chromatography.

    Science.gov (United States)

    Hochlowski, Jill E; Pan, Jeffrey Y; Searle, Philip A; Buck, Wayne R; Spanton, Stephen G

    2009-08-21

    Experiments were performed to demonstrate the potential of counter-current chromatography (CCC) for the isolation of drugs and their metabolites from biological matrices relevant to the metabolism studies of pharmaceutical research. Examples of typical drugs are spiked into biological media ex vivo to provide test samples for analysis. A mass spectrometer hyphenated to a CCC allows for the detection of small molecule drugs within the matrix through selected ion monitoring, and fraction collection can provide material for further structural elucidation by NMR.

  4. Spiral counter-current chromatography of small molecules, peptides and proteins using the spiral tubing support rotor.

    Science.gov (United States)

    Knight, Martha; Finn, Thomas M; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-09-09

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was constructed by laser sintering technology into which FEP tubing was placed in 4 spiral loops per layer from the bottom to the top and a cover affixed allowing the tubing to connect to flow-tubing of the planetary centrifuge. The rotor was mounted and run in a P.C. Inc. type instrument. Examples of compounds of molecular weights ranging from <300 to approximately 15,000 were chromatographed in appropriate two-phase solvent systems to assess the capability for separation and purification. A mixture of small molecules including aspirin was completely separated in hexane-ethyl acetate-methanol-water. Synthetic peptides including a very hydrophobic peptide were each purified to a very high purity level in a sec-butanol solvent system. In the STS rotor high stationary phase retention was possible with the aqueous sec-butanol solvent system at a normal flow rate. Finally, the two-phase aqueous polyethylene glycol-potassium phosphate solvent system was applied to separate a protein from a lysate of an Escherichia coli expression system. These experiments demonstrate the versatility of spiral CCC using the STS rotor. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Gas-solid trickle flow hydrodynamics in a packed column

    NARCIS (Netherlands)

    Westerterp, K.R.; Kuczynski, M.

    1987-01-01

    The pressure gradient and the static and the dynamic hold-up have been measured for a system consisting of a Fluid Cracking Catalyst (FCC) of 30–150 × 10−6 m diameter, trickling over a packed bed and with a gas streaming in countercurrent flow. The experiments were carried out at ambient conditions

  6. Churn-annular foam flow: experiments and modelling

    NARCIS (Netherlands)

    Westende, J.M.C. van 't; Shoeibi Omrani, P.; Vercauteren, F.F.; Nennie, E.D.

    2016-01-01

    Foam assisted lift is a deliquification method in the oil and gas industry, which aims to prevent or postpone countercurrent gas-liquid flow in maturing gas wells or to assist in removing downhole accumulated liquids. The creation of foam reduces the density of the liquid that needs to be

  7. CVVHD treatment with CARPEDIEM: small solute clearance at different blood and dialysate flows with three different surface area filter configurations.

    Science.gov (United States)

    Lorenzin, Anna; Garzotto, Francesco; Alghisi, Alberta; Neri, Mauro; Galeano, Dario; Aresu, Stefania; Pani, Antonello; Vidal, Enrico; Ricci, Zaccaroa; Murer, Luisa; Goldstein, Stuart L; Ronco, Claudio

    2016-10-01

    The CARdiorenal PEDIatric EMergency (CARPEDIEM) machine was originally designed to perform only continuous venovenous hemofiltration (CVVH) in neonatal and pediatric patients. In some cases, adequate convective clearance may not be reached because of a limited blood flow. In such conditions, the application of diffusive clearance [continuous venovenous hemodialysis (CVVHD)] would help optimize blood purification. In this study, the CARPEDIEM™ machine was modified to enable the circulation of dialysis through the filter allowing testing of the performance of CARPEDIEM™ machine in CVVHD. Three different polyethersulfone hemodialyzers (surface area = 0.1 m(2), 0.2 m(2), and 0.35 m(2), respectively) were tested in vitro with a scheduled combination of plasma flow rates (Qp = 10-20-30 ml/min) and dialysis fluid flow rate (Qd = 5-10-15 ml/min). Three sessions were performed in co-current and one in counter-current configuration (as control) for each filter size. Clearance was measured from the blood and dialysate sides and results with mass balance error greater than 5 % were discarded. Urea and creatinine clearances for each plasma/dialysate combination are reported: clearance increase progressively for every filter proportionally to plasma flow rates. Similarly, clearances increase progressively with dialysate flow rates at a given plasma flow. The clearance curve tends to present a steep increase for small increases in plasma flow in the range below 10 ml/min, while the curve tends to plateau for values averaging 30 ml/min. As expected, the plateau is reached earlier with the smaller filter showing the effect of membrane surface-area limitation. At every plasma flow, the effect of dialysate flow increase is evident and well defined, showing that saturation of effluent was not achieved completely in any of the experimental conditions explored. No differences (p > 0.05 for all values) were obtained in experiments using whole blood instead of

  8. Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow

    Science.gov (United States)

    Timokhin, A. N.; Arons, J.

    2013-02-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be

  9. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  10. Numerical Simulations of Counter Current Flow Experiments Using a Morphology Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Thomas Höhne

    2012-09-01

    Full Text Available In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL experiments at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a SST turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. To validate the model and to study scaling effects CFD simulations of the CCFL phenomenon in a full scale PWR hot leg of the UPTF test facility were performed. Also these results indicated a good agreement between the calculation and experimental data. The final goal is to provide an easy usable AIAD framework for all ANSYS CFX users, with the possibility of the implementation of their own correlations.

  11. Separative properties of counter-current beams type centrifuge, (2)

    International Nuclear Information System (INIS)

    Todo, Fukuzo

    1975-01-01

    One-time through scheme is studied, which would produce the highest overall centrifuge efficiency among the three different flow schemes of enriching, stripping and one-time through. If the ''optimum concentration method'' is applied to the one-time through centrifuge, the machine will be able to obtain a very high efficiency at small gas flow rates. A proposed arrangement of centrifuges for this method is shown. The efficiency of this method will be more than 15--20% higher than obtainable with enriching scheme. When the radial gas flow rate near the end caps in the rotor is increased to about 10% of the total gas feed rate, the efficiency was found to decrease by only 1%. The efficiency appears to be almost independent of small amounts of refluxing gas flow. Since a separation method having a high efficiency at small gas flow rates is required for large-scale gas centrifuge plants, the one-time through centrifuge is promising, provided the optimum concentration method is adopted. (auth.)

  12. Chiral separation of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography with biphasic recognition

    Science.gov (United States)

    Tong, Shengqiang

    2010-01-01

    This work concentrates on a novel chiral separation technology named biphasic recognition applied to resolution of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography (HSCCC). The biphasic chiral recognition HSCCC was performed by adding lipophilic (−)-2-ethylhexyl tartrate in the organic stationary phase and hydrophilic hydroxypropyl-β-cyclodextrin in the aqueous mobile phase, which preferentially recognized the (−)-enantiomer and (+)-enantiomer, respectively. The two-phase solvent system composed of n-hexane-methyl tert-butyl ether-water (9:1:10, v/v/v) with the above chiral selectors was selected according to the partition coefficient and separation factor of the target enantiomers. Various parameters involved in the chiral separation were investigated, namely the types of the chiral selector (CS); the concentration of each chiral selector; pH of the mobile phase; and the separation temperature. The mechanism involved in this biphasic recognition chiral separation by HSCCC was discussed. Langmuirian isotherm was employed to estimate the loading limits for each chiral selector. The overall experimental results show that the HSCCC separation of enantiomer based on biphasic recognition is much more efficient than the traditional monophasic recognition chiral separation, since it utilizes the cooperation of both lipophilic and hydrophilic chiral selectors. PMID:20303497

  13. One-dimensional two-fluid model for wavy flow beyond the Kelvin–Helmholtz instability: Limit cycles and chaos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Bertodano, Martín, E-mail: bertodan@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Fullmer, William D. [Department of Chemical and Biological Engineering, U. of Colorado, Boulder, CO 80309 (United States); Clausse, Alejandro [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina)

    2016-12-15

    A 1D TFM numerical simulation of near horizontal stratified two-phase flow is performed where the TFM, including surface tension and viscous stresses, is simplified to a two-equation model using the fixed-flux approximation. As the angle of inclination of the channel increases so does the driving body force, so the flow becomes KH unstable, and waves grow and develop nonlinearities. It is shown that these waves grow until they reach a limit cycle due to viscous dissipation at wave fronts. Upon further inclination of the channel, chaos is observed. The appearance of chaos in a 1D TFM implies a nonlinear process that transfers energy intermittently from long wavelengths where energy is produced to short wavelengths where energy is dissipated by viscosity, so that an averaged energy equilibrium in frequency space is attained. This is comparable to the well-known turbulent stability mechanism of the multi-dimensional Navier–Stokes equations, i.e., chaos implies Lyapunov stability, but in this case it is strictly a two-phase phenomenon.

  14. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography.

    Science.gov (United States)

    Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter

    2015-07-15

    The main procyanidins, including dimeric B2 and B5, trimeric C1, tetrameric and pentameric procyanidins, were isolated from unroasted cocoa beans (Theobroma cacao L.) using various techniques of countercurrent chromatography, such as high-speed countercurrent chromatography (HSCCC), low-speed rotary countercurrent chromatography (LSRCCC) and spiral-coil LSRCCC. Furthermore, dimeric procyanidins B1 and B7, which are not present naturally in the analysed cocoa beans, were obtained after semisynthesis of cocoa bean polymers with (+)-catechin as nucleophile and separated by countercurrent chromatography. In this way, the isolation of dimeric procyanidin B1 in considerable amounts (500mg, purity>97%) was possible in a single run. This is the first report concerning the isolation and semisynthesis of dimeric to pentameric procyanidins from T. cacao by countercurrent chromatography. Additionally, the chemical structures of tetrameric (cinnamtannin A2) and pentameric procyanidins (cinnamtannin A3) were elucidated on the basis of (1)H NMR spectroscopy. Interflavanoid linkage was determined by NOE-correlations, for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    Science.gov (United States)

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (T c ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (P a ) of 2.57 kPa followed by incremental steps in P a of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (P crit ) at which an upward inflection in T c occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The T c , mean skin temperature (T sk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDF mean ), mean local sweat rate (forearm and thigh; LSR mean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDF mean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL

  16. Investigations on flow reversal in stratified horizontal flow

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2005-01-01

    The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing

  17. Stereoselective separation of β-adrenergic blocking agents containing two chiral centers by countercurrent chromatography.

    Science.gov (United States)

    Lv, Liqiong; Bu, Zhisi; Lu, Mengxia; Wang, Xiaoping; Yan, Jizhong; Tong, Shengqiang

    2017-09-01

    Four β-adrenergic blocking agents, including 1-[(1-methylethyl)amino]-3-phenoxy-2-propanol (1), 1-[(1-methylethyl)amino]-3-(3-methylphenoxy)-2-propanol (2), 1,1'-[1,4-phenylenebis(oxy)]bis[3-[(1-methylethyl)amino]-2-propanol (3) and 1,1'-[(4-methyl-1,2-phenylene)bis(oxy)]bis[3-[(1-methylethyl)amino]-2-propanol (4), were stereoselectively separated by countercurrent chromatography using di-n-hexyl l-tartrate and boric acid as chiral selector. The compounds (3) and (4) have four optical isomers since they contained two chiral centers. A two-phase solvent system composed of chloroform-0.05molL -1 of acetate buffer containing 0.10molL -1 of boric acid (1:1, v/v) was selected, in which 0.10molL -1 of di-n-hexyl l-tartrate was added in the organic phase as chiral selector. 20-42mg of each racemate was stereoselectively separated by countercurrent chromatography in a single run with high purity of 96-98%, and the recovery of each separated compound reached around 87-93%. This is the first time report on successful stereoselective separation of optical isomeric compounds containing two chiral centers by countercurrent chromatography. At the same time, a chiral stationary phase was screened for analytical stereoselective separation of compounds (3) and (4) by high performance liquid chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. On the Behavior of ECN/RED Gateways Under a Large Number of TCP Flows: Limit Theorems

    National Research Council Canada - National Science Library

    Tinnakornsrisuphap, Peerapol; Makowski, Armand M

    2005-01-01

    .... As the number of competing flows becomes large, the asymptotic queue behavior at the gateway can be described by a simple recursion and the throughput behavior of individual TCP flows becomes asymptotically independent...

  19. Preparative Separation of Six Rhynchophylla Alkaloids from Uncaria macrophylla Wall by pH-Zone Refining Counter-Current Chromatography

    OpenAIRE

    Zhang, Qinghai; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Luo, Aiqin

    2013-01-01

    pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w) in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether–ethyl acetate–isopropanol–water (2:6:3:9, v/v), adding 10 mM triethylamine ...

  20. Mathematical simulation and calculation of continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Venitsianov, E.V.; Ivanov, V.A.; Gur'yanova, L.N.; Nikolaev, N.P.; Baturova, L.L.; Moskovskij Gosudarstvennyj Univ., Moscow

    1993-01-01

    A program 'Countercurrent' is developed for the simulation of a continuous ion-exchange extraction of strontium from the strongly mineralized solutions containing NaCl and CaCl 2 using carboxylic cation exchanger KB-4 in countercurrent columns. The use of the program allows one to calculate the consitions of Ca and Sr separation depending on the modes of operation at the stage of sorption as well as regeneration, to calculate a residual Sr content on an overloaded sorbent and Sr separation on an incompletely regenerated KB-4, and to find the optimal separation conditions

  1. Enrichment of fission products in ionic salt bath by countercurrent electromigration

    International Nuclear Information System (INIS)

    Matsuura, Haruaki; Takagi, Ryuzo; Okada, Isao; Fujita, Reiko.

    1997-01-01

    We have proposed to apply a countercurrent electromigration method to enrichment of fission products in ionic melts. In the test runs, for this purpose, we have enriched Cs, Sr and Gd from their dilute melts. All of Cs, Sr and Gd were much concentrated at the area near the anode in the migration tubes. Gd and Sr were more concentrated than Cs. It was found that the electromigration method can be applied to the salt bath refleshing process after an electrorefining process, which removes fission products of multivalent cations. (author)

  2. Preparative Separation of Phenolic Compounds from Halimodendron halodendron by High-Speed Counter-Current Chromatography

    OpenAIRE

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-01-01

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH...

  3. Multi-channel counter-current chromatography for high-throughput fractionation of natural products for drug discovery.

    Science.gov (United States)

    Wu, Shihua; Yang, Lu; Gao, Yuan; Liu, Xiaoyue; Liu, Feiyan

    2008-02-08

    A multi-channel counter-current chromatography (CCC) method has been designed and fabricated for the high-throughput fractionation of natural products without complications sometimes encountered with other conventional chromatographic systems, such as irreversible adsorptive constituent losses and deactivation, tailing of solute peaks and contamination. It has multiple independent CCC channels and each channel connects independent separation column(s) by parallel flow tubes, and thus the multi-channel CCC apparatus can achieve simultaneously two or more independent chromatographic processes. Furthermore, a high-throughput CCC fractionation method for natural products has been developed by a combination of a new three-channel CCC apparatus and conventional parallel chromatographic devices including pumps, sample injectors, effluent detectors and collectors, and its performance has been displayed on the fractionation of ethyl acetate extracts of three natural materials Solidago canadensis, Suillus placidus, and Trichosanthes kirilowii, which are found to be potent cytotoxic to tumor cell lines in the course of screening the antitumor candidates. By combination of biological screening programs and preparative high-performance liquid chromatography (HPLC) purification, 22.8 mg 6 beta-angeloyloxykolavenic acid and 29.4 mg 6 beta-tigloyloxykolavenic acid for S. canadensis, 25.3mg suillin for S. placidus, and 6.8 mg 23,24-dihydrocucurbitacin B for T. Kirilowii as their major cytotoxic principles were isolated from each 1000 mg crude ethyl acetate extract. Their chemical structures were characterized by electrospray ionization mass spectrometry, one- and two-dimensional nuclear magnetic resonance. The overall results indicate the multi-channel CCC is very useful for high-throughput fractionation of natural products for drug discovery in spite of the solvent balancing requirement and the lower resolution of the shorter CCC columns.

  4. Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato.

    Science.gov (United States)

    Bitterlich, Michael; Sandmann, Martin; Graefe, Jan

    2018-01-01

    transpiration when soil moisture declined. The water potential at the root surface and the resistance to water flow in the rhizosphere were restored in mycorrhizal pots although the bulk substrate dried more. Finally, substrates colonized by AMF can be more desiccated before substrate water flux quantitatively limits transpiration. This is most pronounced under high transpiration demands and complies with a difference of over 1,000 hPa in substrate water potential.

  5. A Comprehensive Prediction Model of Hydraulic Extended-Reach Limit Considering the Allowable Range of Drilling Fluid Flow Rate in Horizontal Drilling.

    Science.gov (United States)

    Li, Xin; Gao, Deli; Chen, Xuyue

    2017-06-08

    Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min  ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min  ≤ Q r  ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min  drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.

  6. Simultaneous separation of three isomeric sennosides from senna leaf (Cassia acutifolia) using counter-current chromatography.

    Science.gov (United States)

    Park, Sait Byul; Kim, Yeong Shik

    2015-10-01

    Senna leaf is widely consumed as tea to treat constipation or to aid in weight loss. Sennoside A, A1 , and B are dirheinanthrone glucosides that are abundant and the bioactive constituents in the plant. They are isomers that refer to the (R*R*), (S*S*), and (R*S*) forms of protons on C-10 and C-10' centers and it is difficult to refine them individually due to their structural similarities. The new separation method using counter-current chromatography successfully purified sennoside A, A1 , and B from senna leaf (Cassia acutifolia) while reversed-phase medium-pressure liquid chromatography yielded sennoside A only. n-Butanol/isopropanol/water (5:1:6, v/v/v) was selected as the solvent system for counter-current chromatography operation, and the partition coefficients were carefully determined by adding different concentrations of formic acid. High-resolution mass spectrometry and NMR spectroscopy were performed to verify the chemical properties of the compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Aerodynamic parameters of across-wind self-limiting vibration for square sections after lock-in in smooth flow

    Science.gov (United States)

    Wu, Jong-Cheng; Chang, Feng-Jung

    2011-08-01

    The paper aims to identify the across-wind aerodynamic parameters of two-dimensional square section structures after the lock-in stage from the response measurements of wind tunnel tests under smooth wind flow conditions. Firstly, a conceivable self-limiting model was selected from the existent literature and the revisit of the analytical solution shows that the aerodynamic parameters (linear and nonlinear aerodynamic dampings Y1 and ɛ, and aerodynamic stiffness Y2) are not only functions of the section shape and reduced wind velocity but also dependent on both the mass ratio ( mr) and structural damping ratio ( ξ) independently, rather than on the Scruton number as a whole. Secondly, the growth-to-resonance (GTR) method was adopted for identifying the aerodynamic parameters of four different square section models (DN1, DN2, DN3 and DN4) by varying the density ranging from 226 to 409 kg/m 3. To improve the accuracy of the results, numerical optimization of the curve-fitting for experimental and analytical response in time domain was performed to finalize the results. The experimental results of the across-wind self-limiting steady-state amplitudes after lock-in stage versus the reduced wind velocity show that, except the tail part of the DN1 case slightly decreases indicating a pure vortex-induced lock-in persists, the DN2, DN3 and DN4 cases have a trend of monotonically increasing with the reduced wind velocity, which shows an asymptotic combination with the galloping behavior. Due to such a combination effect, all three aerodynamic parameters decrease as the reduced wind velocity increases and asymptotically approaches to a constant at the high branch. In the DN1 case, the parameters Y1 and Y2 decrease as the reduced wind velocity increases while the parameter ɛ slightly reverses in the tail part. The 3-dimensional surface plot of the Y1, ɛ and Y2 curves further show that, excluding the DN1 case, the parameters in the DN2, DN3 and DN4 cases almost follow a

  8. Mathematic modulation of a simulation program for a coal and wood counter-current moving bed gasifier, which includes pyrolysis and drying processes and processes alternatives; Modelagem matematica e simulacao em computador de gaseificador de leito fixo contra-corrente para carvoes e biomassa com inclusao de processos de pirolise, secagem e alternativas do processo

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, M.L. de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1985-12-31

    A new version of a simulation program for coal and wood counter-current fixed bed gasifier has been completed and provides: all the principal information variables of the process throughout the bed as mass flow and composition for 13 gases and 6 solids, temperature of the gas and solid phases, reaction rates of combustion, gasification, pyrolysis and drying processes; composition, mass flow, temperature, combustion enthalpy and other produced gases physical and chemical properties; possibility of process alternatives analysis as volatiles recycling in order to eliminate tar, double withdrawn of gases and combinations. Comparisons between simulation and experimental results are presented. (author). 26 refs., 1 tab

  9. Elution-extrusion counter-current chromatography for the separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix.

    Science.gov (United States)

    Chu, Chu; Zhang, Shidi; Tong, Shengqiang; Li, Xingnuo; Li, Qingyong; Yan, Jizhong

    2015-09-01

    In this work, a simple and efficient protocol for the rapid separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix was developed by combining macroporous resin and elution-extrusion counter-current chromatography. The crude extract was firstly subjected to a D101 macroporous resin column eluted with water and a series of different concentrations of ethanol. Then, effluents of 30 and 95% ethanol were collected as sample 1 and sample 2 for further counter-current chromatography purification. Finally, a pair of isomers, 96 mg of compound 1 and 48 mg of compound 2 with purities of 91.1 and 96.2%, respectively, was isolated from 200 mg of sample 1. The other pair of isomers, 14 mg of compound 3 and 8 mg of compound 4 with purities of 93.6 and 88.9%, respectively, was isolated from 48 mg of sample 2. Their purities were analyzed by high-performance liquid chromatography, and their chemical structures were identified by mass spectrometry and (1) H NMR spectroscopy. Compared to a normal counter-current chromatography separation, the separation time and solvent consumption of elution-extrusion counter-current chromatography were reduced while the resolutions were still good. The established protocol is promising for the separation of natural products with great disparity of content in herbal medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Continuous treatment of heavy metal contaminated clay soils by extraction in stirred tanks and in a countercurrent column

    NARCIS (Netherlands)

    Tuin, B.J.W.; Tels, M.

    1991-01-01

    Extn. of metals from 2 contaminated waste site clay soils by 0.1-0.3 N HCl solns. was tested in 3 lab. scale, continuous processes: 2 stirred tank reactors (CSTR' s) in series; a countercurrent sieve-plate column fed with flocculated clay soil materials; and a combination of tank reactor and column.

  11. 'What does not get measured, does not get done'. The methods and limitations of measuring illicit financial flows

    OpenAIRE

    Fontana, Alessandra

    2010-01-01

    Estimates of the size of illicit financial flows have been questioned because data used to measure the phenomenon is fraught with problems. However, such estimates are necessary to inform policy making on this issue. Improving the quality of data gathering in poor countries and asking questions beyond statistics can improve the understanding of and response to illicit flows.

  12. Detection of T and B cells specific complement-fixing alloantibodies using flow cytometry: A diagnostic approach for a resource limited laboratory

    Directory of Open Access Journals (Sweden)

    Dharmendra Jain

    2017-01-01

    Conclusions: We postulate that this method incorporates most of the features of all the available modalities (i.e., National Institute of Health-complement dependent lymphocytotoxicity, FCXM, cytotoxic FCXM and C4d-flowPRA yet cost-effective and best suited for resource-limited laboratory/ies which is a common scenario in developing countries.

  13. The effect of statin treatment on the prevention of stent mediated flow limited edge dissections during PCI in patients with stable angina.

    Science.gov (United States)

    Oksuz, Fatih; Yarlioglues, Mikail; Yayla, Cagrı; Canpolat, Ugur; Murat, Sani Namık; Aydogdu, Sinan

    2016-10-01

    The effect of statin therapy before PCI with direct stenting may reduce the development of flow limited edge dissections (ED) in patients with stable angina. Flow limited ED after PCI is associated with an increased risk of major adverse cardiovascular events. Statin therapy induces important changes in the plaque composition which have been previously identified as strong predictors of ED. 100 patients complicated with flow limited ED and 100 control patients with successful procedure were enrolled into the study. EDs were described as the 5-mm regions that were immediately adjacent to the stent borders, both distally and proximally on the coronary angiography. Rate of statin use and duration of statin use were significantly higher in patients with non-ED group (63%) versus ED group (25%) (p<0.001). In addition, patients in ED group had significantly higher levels of C-reactive protein (CRP) at admission (9.9mg/dL (5.89-16.45) vs. 4.40mg/dL (3.5-7.09), respectively, p=0.014). Our findings suggested that maintenance statin treatment before PCI with direct stenting may reduce the development of flow limited ED in patients with stable angina. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations

    DEFF Research Database (Denmark)

    Correia, Manuel; Löschner, Katrin

    2018-01-01

    We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies...... were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 μm). The presence of large particulates was not observed after enzymatic...

  15. Gap Flows through Idealized Topography. Part I: Forcing by Large-Scale Winds in the Nonrotating Limit.

    Science.gov (United States)

    Gabersek, Sasa.; Durran, Dale R.

    2004-12-01

    Gap winds produced by a uniform airstream flowing over an isolated flat-top ridge cut by a straight narrow gap are investigated by numerical simulation. On the scale of the entire barrier, the proportion of the oncoming flow that passes through the gap is relatively independent of the nondimensional mountain height , even over that range of for which there is the previously documented transition from a “flow over the ridge” regime to a “flow around” regime.The kinematics and dynamics of the gap flow itself were investigated by examining mass and momentum budgets for control volumes at the entrance, central, and exit regions of the gap. These analyses suggest three basic behaviors: the linear regime (small ) in which there is essentially no enhancement of the gap flow; the mountain wave regime ( 1.5) in which vertical mass and momentum fluxes play a crucial role in creating very strong winds near the exit of the gap; and the upstream-blocking regime ( 5) in which lateral convergence generates the strongest winds near the entrance of the gap.Trajectory analysis of the flow in the strongest events, the mountain wave events, confirms the importance of net subsidence in creating high wind speeds. Neglect of vertical motion in applications of Bernoulli's equation to gap flows is shown to lead to unreasonable wind speed predictions whenever the temperature at the gap exit exceeds that at the gap entrance. The distribution of the Bernoulli function on an isentropic surface shows a correspondence between regions of high Bernoulli function and high wind speeds in the gap-exit jet similar to that previously documented for shallow-water flow.

  16. Effects of thermohydraulics on clad ballooning, flow blockage and coolability in a LOCA

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Neitzel, H.J.; Wiehr, K.

    1983-01-01

    Thermohydraulic boundary conditions have a dominating effect on clad ballooning, flow blockage and coolability: Increasing heat transfer to the fluid decreases the total circumferential strain; Countercurrent flow in a combined injection leads to a relatively small flow blockage; Burst claddings exhibit premature quenching. Differences in the test results obtained in several countries are mainly due to different thermohydraulic test conditions; all test data are consistent with the understanding elaborated within the REBEKA program. Core coolability in a LOCA can be maintained. (author)

  17. An Enhanced Discrete Artificial Bee Colony Algorithm to Minimize the Total Flow Time in Permutation Flow Shop Scheduling with Limited Buffers

    Directory of Open Access Journals (Sweden)

    Guanlong Deng

    2016-01-01

    Full Text Available This paper presents an enhanced discrete artificial bee colony algorithm for minimizing the total flow time in the flow shop scheduling problem with buffer capacity. First, the solution in the algorithm is represented as discrete job permutation to directly convert to active schedule. Then, we present a simple and effective scheme called best insertion for the employed bee and onlooker bee and introduce a combined local search exploring both insertion and swap neighborhood. To validate the performance of the presented algorithm, a computational campaign is carried out on the Taillard benchmark instances, and computations and comparisons show that the proposed algorithm is not only capable of solving the benchmark set better than the existing discrete differential evolution algorithm and iterated greedy algorithm, but also capable of performing better than two recently proposed discrete artificial bee colony algorithms.

  18. Resolution of gram quantities of racemates by high-speed counter-current chromatography.

    Science.gov (United States)

    Ma, Y; Ito, Y; Foucault, A

    1995-06-02

    Gram quantities of (+/-)-dinitrobenzoyl amino acids were separated by high-speed counter-current chromatography (CCC) using N-dodecanoyl-L-proline-3,5-dimethylanilide as a chiral selector (CS). Standard and pH-zone-refining CCC techniques were compared. By using the standard technique, 10 mg to a maximum of 1 g of samples was resolved in 2-9 h simply by increasing the concentration of the CS in the stationary phase. By using pH-zone-refining CCC, even more sample (2 g) was efficiently separated in less time (3 h). In both techniques, leakage of CS from the column was negligible. The method requires no solid support and the same column can be used repeatedly to separate a variety of enantiomers by dissolving appropriate chiral selectors in the stationary phase.

  19. Separation of two major chalcones from Angelica keiskei by high-speed counter-current chromatography.

    Science.gov (United States)

    Kil, Yun-Seo; Nam, Joo-Won; Lee, Jun; Seo, Eun Kyoung

    2015-08-01

    Angelica keiskei (Shin-sun cho) is an edible higher plant with the beneficial preventive effects on cancer, hypertension, and coronary heart disease. Two bioactive chalcones of Shin-sun cho, xanthoangelol (1) and 4-hydroxyderricin (2), were separated simultaneously by using high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-EtOAc-MeOH-H2O (9:5:9:4). Only nonconsuming processes, solvent fractionations and Sephadex LH-20 column chromatography, were conducted as presteps. Xanthoangelol (1, 35.9 mg, 99.9 % purity at 254 and 365 nm) and 4-hydroxyderricin (2, 4.4 mg, 98.7 % purity at 254 nm and 98.8 % purity at 365 nm) were successfully purified from 70 mg of the processed extract from A. keiskei. The structures of two compounds were confirmed by (1)H- and (13)C-NMR analysis.

  20. Counter-current extraction studies for the recovery of neptunium by the Purex process. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, N.; Nadkarni, M. N.; Kumar, S. V.; Kartha, P. K.S.; Sonavane, R. R.; Ramaniah, M. V.; Patil, S. K.

    1974-07-01

    It is proposed to recover neptunium-237, along with uranium and plutonium, during the fuel reprocessing in the PREFRE plant at Tarapur. Counter-current extraction studies, relevant to the code contamination (HA) and partitioning (IA) cycles of the purex process, were carried out to arrive at suitable chemical flowsheet conditions which would enable the co-extraction of neptunium along with uranium and plutonium. The results of the studies carried out using a laboratory mixer-settler unit and synthetic mixtures of neptunium and uranium are reported here. Based on these results, the chemical flowsheet conditions are proposed for the co-extraction of neptunium even if it exists as Np(V) in the aqueous feed solution. (auth)

  1. Three-dimensional inviscid analysis of radial-turbine flow and a limited comparison with experimental data

    Science.gov (United States)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  2. Exchange between the stagnant and flowing zone in gas-flowing solids-fixed bed contactors

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR P. DUDUKOVIC

    2005-02-01

    Full Text Available In countercurrent gas – flowing solids – fixed bed contactors, a fraction of the flowing solids is in motion (dynamic holdup, while the other fraction is resting on the fixed bed elements. In this study it was experimentally proved that the stagnant zone should not be considered as a dead part of the column, but that there is a dynamic exchange between these two portions of flowing solids particles. Combining a mathematical model with tracer experiments, the rate of exchange was determined and it was shown that only a small part (ca. 20 % of the stagnant region should be considered as a dead one.

  3. Experimental observation and modelling of roughness variation due to supply-limited sediment transport in uni-directional flow

    NARCIS (Netherlands)

    Tuijnder, Arjan; Ribberink, Jan S.

    2012-01-01

    This paper presents a study on the relationship between supply-limited bedform formation and the hydraulic roughness of the riverbed. The results of several new sets of flume experiments with supply-limited or partial transport conditions with bimodal sediment are presented. The results show that

  4. High-speed counter-current chromatography in separation of betacyanins from flowers of red Gomphrena globosa L. cultivars.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Hołda, Ewelina; Wybraniec, Sławomir

    2016-10-15

    Antioxidant and possible chemopreventive properties of betacyanins, natural plant pigments, contribute to a growing interest in their chemistry and separation. Mixtures of betacyanins from fresh red Gomphrena globosa L. cultivar flowers were separated in three highly polar solvent systems by high-speed counter-current chromatography (HSCCC) for a direct comparison of their separation effectiveness. Three samples of crude extract (600mg) were run on semi-preparative scale in solvent system (NH4)2SO4soln - EtOH (2.0:1.0, v/v) (system I) and the modified systems: EtOH - ACN - 1-PrOH - (NH4)2SO4satd.soln - H2O (0.5:0.5:0.5:1.2:1.0, v/v/v/v/v) (system II) and EtOH - ACN - (NH4)2SO4satd.soln - H2O (1.0:0.5:1.2:1.0, v/v/v/v) (system III). The systems were used in the head-to-tail (system I) or tail-to-head (systems II and III) mode. The flow rate of the mobile phase was 2.0ml/min and the column rotation speed was 860rpm. The retention of the stationary phase was 52.0% (system I), 80.2% (systems II) and 82.0% (system III). The betacyanins in the crude extract as well as HSCCC fractions were analyzed by LC-MS/MS. System I was applied for the first time in HSCCC for the separation of betacyanins and was quite effective in separation of amaranthine and 17-decarboxy-amaranthine (αI=1.19) and very effective for 17-decarboxy-amaranthine and betanin (αI=2.20). Modification of system I with acetonitrile (system III) as well as acetonitrile and propanol (system II) increased their separation effectiveness. Systems II-III enable complete separation of 17-decarboxy-amaranthine (KD(II)=2.94,KD(III)=2.42) and betanin (KD(II)=2.46,KD(III)=1.10) as well as betanin and gomphrenin I (KD(II)=1.62, KD(III)=0.74). In addition, separation of amaranthine and 17-decarboxy-amaranthine is the most effective in system II, therefore, this system proved to be the most suitable for the separation of all polar betacyanins. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow, a promising new countercurrent operation, was evaluated using residence time distribution (RTD) experiments. The column was packed with dumped Pall rings, the gas phase was air at ambient conditions and the solid

  6. Preparative isolation and purification of seven compounds from Hibiscus mutabilis L. leaves by two-step high-speed counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Hou Zhuoni

    2015-01-01

    Full Text Available Seven compounds from Hibiscus mutabilis L. leaves were first successfully achieved by two-step high-speed counter-current chromatography with two-phase solvent system composed of n-butanol-ethyl acetate-water (1:6:9, v/v/v and n-hexane-ethyl acetate-methanol-water (3:5:3:5, v/v/v/v/. The critical experimental parameters of first-step separation were optimized with response surface methodology as follows: flow rate was 1.1 mL/min, revolution speed was 800 rpm and temperature was 30°C. Under the optimal conditions, around 5.0 mg of salicylic acid, 13.6 mg of rutin, 5.5 mg of genistein were obtained in 100 mg crude sample. Then, 9.2 mg of potengriffioside A, 4.7 mg of kaempferol 3-O-rutinoside, 3.0 mg of steppogenin and 2.5 mg of emodin were obtained by second-step separation. The purities of the seven compounds determined by UPLC were 96.2%, 93.8%, 95.4%, 94.3%, 98.0%, 94.1% and 90.8%, respectively. Their chemical structures were identified by electron spray ionization mass spectroscopy (ESI-MS and 1H, 13C nuclear magnetic resonance (NMR. Furthermore, compound steppogenin and genistein were first reported from Hibiscus mutabilis L. The purification method was simple, efficient and evaded tedious separation process.

  7. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION.

    Science.gov (United States)

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.

  8. SEPARATION OF SATURED AND UNSATURATED FATTY ACIDS FROM PALM FATTY ACIDS DISTILLATES IN CONTINUOUS MULTISTAGE COUNTERCURRENT COLUMNS WITH SUPERCRITICAL CARBON DIOXIDE AS SOLVENT: A PROCESS DESIGN METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Nélio Teixeira MACHADO

    1997-12-01

    Full Text Available In this work the separation of multicomponent mixtures in counter-current columns with supercritical carbon dioxide has been investigated using a process design methodology. First the separation task must be defined, then phase equilibria experiments are carried out, and the data obtained are correlated with thermodynamic models or empirical functions. Mutual solubilities, Ki-values, and separation factors aij are determined. Based on this data possible operating conditions for further extraction experiments can be determined. Separation analysis using graphical methods are performed to optimize the process parameters. Hydrodynamic experiments are carried out to determine the flow capacity diagram. Extraction experiments in laboratory scale are planned and carried out in order to determine HETP values, to validate the simulation results, and to provide new materials for additional phase equilibria experiments, needed to determine the dependence of separation factors on concetration. Numerical simulation of the separation process and auxiliary systems is carried out to optimize the number of stages, solvent-to-feed ratio, product purity, yield, and energy consumption. Scale-up and cost analysis close the process design. The separation of palmitic acid and (oleic+linoleic acids from PFAD-Palm Fatty Acids Distillates was used as a case study.

  9. Two-phase flow experiments in a model of the hot leg of a pressurised water reactor. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto

    2011-09-15

    In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which

  10. Two-phase flow experiments in a model of the hot leg of a pressurised water reactor. Technical report

    International Nuclear Information System (INIS)

    Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto

    2011-09-01

    In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which

  11. Study of counter current flow limitation model of MARS-KS and SPACE codes under Dukler's air/water flooding test conditions

    International Nuclear Information System (INIS)

    Lee, Won Woong; Kim, Min Gil; Lee, Jeong Ik; Bang, Young Seok

    2015-01-01

    In particular, CCFL(the counter current flow limitation) occurs in components such as hot leg, downcomer annulus and steam generator inlet plenum during LOCA which is possible to have flows in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model will be evaluated with MARS-KS based on two-phase two-field governing equations and SPACE code based on two-phase three-field governing equations. This study will be conducted by comparing MARS-KS code which is being used for evaluating the safety of a Korean Nuclear Power Plant and SPACE code which is currently under assessment for evaluating the safety of the designed nuclear power plant. In this study, comparison of the results of liquid upflow and liquid downflow rate for different gas flow rate from two code to the famous Dukler's CCFL experimental data are presented. This study will be helpful to understand the difference between system analysis codes with different governing equations, models and correlations, and further improving the accuracy of system analysis codes. In the nuclear reactor system, CCFL is an important phenomenon for evaluating the safety of nuclear reactors. This is because CCFL phenomenon can limit injection of ECCS water when CCFL occurs in components such as hot leg, downcomer annulus or steam generator inlet plenum during LOCA which is possible to flow in two opposite directions. Therefore, CCFL is one of the thermal-hydraulic models which has significant effect on the reactor safety analysis code performance. In this study, the CCFL model was evaluated with MARS-KS and SPACE codes for studying the difference between system analysis codes with different governing equations, models and correlations. This study was conducted by comparing MARS-KS and SPACE code results of liquid upflow and liquid downflow rate for different gas flow rate to the famous Dukler

  12. Preparative Separation of Six Rhynchophylla Alkaloids from Uncaria macrophylla Wall by pH-Zone Refining Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    Qinghai Zhang

    2013-12-01

    Full Text Available pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether–ethyl acetate–isopropanol–water (2:6:3:9, v/v, adding 10 mM triethylamine in organic stationary phase and 5 mM hydrochloric acid in aqueous mobile phase. Then pH-zone refining counter-current chromatography using the other two-phase solvent system was used for final purification. Six target compounds were finally isolated and purified by following two-phase solvent system composed of methyl tert-butyl ether (MTBE–acetonitrile–water (4:0.5:5, v/v, adding triethylamine (TEA (10 mM to the organic phase and HCl (5 mM to aqueous mobile phase. The separation of 2.8 g enriched total alkaloids yielded 36 mg hirsutine, 48 mg hirsuteine, 82 mg uncarine C, 73 mg uncarine E, 163 mg rhynchophylline, and 149 mg corynoxeine, all with purities above 96% as verified by HPLC Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS and 1H-NMR spectroscopy.

  13. Preparative separation of six rhynchophylla alkaloids from Uncaria macrophylla wall by pH-zone refining counter-current chromatography.

    Science.gov (United States)

    Zhang, Qinghai; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Luo, Aiqin

    2013-12-12

    pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w) in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether-ethyl acetate-isopropanol-water (2:6:3:9, v/v), adding 10 mM triethylamine in organic stationary phase and 5 mM hydrochloric acid in aqueous mobile phase. Then pH-zone refining counter-current chromatography using the other two-phase solvent system was used for final purification. Six target compounds were finally isolated and purified by following two-phase solvent system composed of methyl tert-butyl ether (MTBE)-acetonitrile-water (4:0.5:5, v/v), adding triethylamine (TEA) (10 mM) to the organic phase and HCl (5 mM) to aqueous mobile phase. The separation of 2.8 g enriched total alkaloids yielded 36 mg hirsutine, 48 mg hirsuteine, 82 mg uncarine C, 73 mg uncarine E, 163 mg rhynchophylline, and 149 mg corynoxeine, all with purities above 96% as verified by HPLC Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and 1H-NMR spectroscopy.

  14. Enantioseparation of pheniramine enantiomers by high-speed countercurrent chromatography using β-cyclodextrin derivatives as a chiral selector.

    Science.gov (United States)

    Xu, Weifeng; Wang, Shichuan; Xie, Xiaojuan; Zhang, Panliang; Tang, Kewen

    2017-10-01

    The enantioselective separation of pheniramine was studied by a high-speed countercurrent chromatography method using β-cyclodextrin derivatives as a chiral selector. Several key variables, for instance, type of organic solvent and chiral selector, concentration of chiral selector, pH value of aqueous phase, and temperature on the enantioselectivity, were investigated systematically by liquid-liquid extraction experiments. Combining the results of extraction experiments and high-speed countercurrent chromatography, the most suitable conditions for separation of pheniramine enantiomers were obtained with the two-phase system that consisted of isobutyl acetate/aqueous phase, containing 0.02 mol/L carboxymethyl-β-cyclodextrin, pH 8.50 at 278.15 K. Under the optimal conditions, pheniramine enantiomer was successfully resolved after four cycles of high-speed countercurrent chromatography. By using high-performance liquid chromatography to analyze the fractions, the purities of both (+)-pheniramine and (-)-pheniramine were over 99% and the recovery of this method was up to 85-90%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: Large effective slip in the narrow-channel limit

    Science.gov (United States)

    Schnitzer, Ory; Yariv, Ehud

    2017-07-01

    The gross amplification of the fluid velocity in pressure-driven flows due to the introduction of superhydrophobic walls is commonly quantified by an effective slip length. The canonical duct-flow geometry involves a periodic structure of longitudinal shear-free stripes at either one or both of the bounding walls, corresponding to flat-meniscus gas bubbles trapped within a periodic array of grooves. This grating configuration is characterized by two geometric parameters, namely the ratio κ of channel width to microstructure period and the areal fraction Δ of the shear-free stripes. For wide channels, κ ≫1 , this geometry is known to possess an approximate solution where the dimensionless slip length λ , normalized by the duct semiwidth, is small, indicating a weak superhydrophobic effect. We here address the other extreme of narrow channels, κ ≪1 , identifying large O (κ-2) values of λ for the symmetric configuration, where both bounding walls are superhydrophobic. This velocity enhancement is associated with an unconventional Poiseuille-like flow profile where the parabolic velocity variation takes place in a direction parallel (rather than perpendicular) to the boundaries. Use of matched asymptotic expansions and conformal-mapping techniques provides λ up to O (κ-1) , establishing the approximationλ ˜κ-2Δ/33 +κ-1Δ/2π ln4 +⋯, which is in excellent agreement with a semianalytic solution of the dual equations governing the respective coefficients of a Fourier-series representation of the fluid velocity. No similar singularity occurs in the corresponding asymmetric configuration, involving a single superhydrophobic wall; in that geometry, a Hele-Shaw approximation shows that λ =O (1 ) .

  16. Benefits and limitations of using the weather radar for the definition of rainfall thresholds for debris flows. Case study from Catalonia (Spain).

    Science.gov (United States)

    Abancó, C.; Hürlimann, M.; Sempere, D.; Berenguer, M.

    2012-04-01

    Torrential processes such as debris flows or hyperconcentrated flows are fast movements formed by a mix of water and different amounts of unsorted solid material. They occur in steep torrents and suppose a high risk for the human settlements. Rainfall is the most common triggering factor for debris flows. The rainfall threshold defines the rainfall conditions that, when reached or exceeded, are likely to provoke one or more events. Many different types of empirical rainfall thresholds for landslide triggering have been defined. Direct measurements of rainfall data are normally not available from a point next to or in the surroundings of the initiation area of the landslide. For this reason, most of the thresholds published for debris flows have been established by data measured at the nearest rain gauges (often located several km far from the landslide). Only in very few cases, the rainfall data to analyse the triggering conditions of the debris flows have been obtained by weather (Doppler) radar. Radar devices present certain limitations in mountainous regions due to undesired reboots, but their main advantage is that radar data can be obtained for any point of the territory. The objective of this work was to test the use of the weather radar data for the definition of rainfall thresholds for debris-flow triggering. Thus, rainfall data obtained from 3 to 5 rain gauges and from radar were compared for a dataset of events occurred in Catalonia (Spain). The goal was to determine in which cases the description of the rainfall episode (in particular the maximum intensity) had been more accurate. The analysed dataset consists of: 1) three events occurred in the Rebaixader debris-flow monitoring station (Axial Pyrenees) including two hyperconcentrated flows and one debris flow; 2) one debris-flow event occurred in the Port Ainé ski resort (Axial Pyrenees); 3) one debris-flow event in Montserrat (Mediterranean Coastal range). The comparison of the hyetographs from the

  17. Pressure Drop Versus Flow Rate Analysis of the Limited Streamer Tube Gas System of the BaBar Muon Detector Upgrade

    International Nuclear Information System (INIS)

    Yi, M.

    2004-01-01

    It has been proposed that Limited Streamer Tubes (LST) be used in the current upgrade of the muon detector in the BaBar detector. An LST consists of a thin silver plated wire centered in a graphite-coated cell. One standard LST tube consists of eight such cells, and two or three such tubes form an LST module. Under operation, the cells are filled with a gas mixture of CO 2 , argon and isobutane. During normal operation of the detector, the gas will be flushed out of the system at a constant low rate of one volume change per day. During times such as installation, however, it is often desired to flush and change the LST gas volumes very rapidly, leading to higher than normal pressure which may damage the modules. This project studied this pressure as a function of flow rate and the number of modules that are put in series in search of the maximal safe flow rate at which to flush the modules. Measurements of pressure drop versus flow rate were taken using a flow meter and a pressure transducer on configurations of one to five modules put in series. Minimal Poly-Flo tubing was used for all connections between test equipment and modules. They contributed less than 25% to all measurements. A ratio of 0.00022 ± 0.00001 mmHg per Standard Cubic Centimeter per Minute (SCCM) per module was found, which was a slight overestimate since it included the contributions from the tubing connections. However, for the purpose of finding a flow rate at which the modules can be safely flushed, this overestimate acts as a safety cushion. For a standard module with a volume of 16 liters and a known safe overpressure of 2 inches of water, the ratio translates into a flow rate of 17000 ± 1000SCCM and a time requirement of 56 ± 5 seconds to flush an entire module

  18. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography.

    Science.gov (United States)

    Yan, Rongwei; Shen, Jie; Liu, Xiaojing; Zou, Yong; Xu, Xinjun

    2018-05-01

    The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO 2 , solvent extraction, and two-step high-speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO 2 , and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two-step high-speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high-speed countercurrent chromatography for further enrichment and consecutive high-speed countercurrent chromatography for purification. The yield of concentrates from high-speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high-speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high-speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability

    NARCIS (Netherlands)

    Firmansyah, I.; Spiller, M.; Ruijter, De F.J.; Carsjens, G.J.; Zeeman, G.

    2017-01-01

    Nitrogen (N) and phosphorus (P) are two essential macronutrients required in agricultural production. The
    major share of this production relies on chemical fertilizer that requires energy and relies on limited resources
    (P). Since these nutrients are lost to the environment, there is a need

  20. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Zhang, Guang-Hui [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China); Gu, Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of cesium by copper ferrocyanide followed a Freundlich model. Black-Right-Pointing-Pointer Decontamination factor of cesium was higher in lab-scale test than that in jar test. Black-Right-Pointing-Pointer A countercurrent two-stage adsorption-microfiltration process was achieved. Black-Right-Pointing-Pointer Cesium concentration in the effluent could be calculated. Black-Right-Pointing-Pointer It is a new cesium removal process with a higher decontamination factor. - Abstract: Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3 {mu}g/L, the dosage of CuFC was 40 mg/L and the adsorption time was 20 min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75 {mu}g/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test.

  1. Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow

    International Nuclear Information System (INIS)

    Baier, G.; Graham, M.D.

    1998-01-01

    The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations

  2. Hydrodynamic resistance and flow patterns in the gills of a tilapine fish.

    Science.gov (United States)

    Strother, James A

    2013-07-15

    The gills of teleost fishes are often discussed as an archetypal counter-current exchange system, capable of supporting the relatively high metabolic rates of some fishes despite the low oxygen solubility of water. Despite an appreciation for the physiology of exchange at the gills, many questions remain regarding the hydrodynamical basis of ventilation in teleost fishes. In this study, the hydrodynamic resistance and flow fields around the isolated gills of a tilapia, Oreochromis mossambicus, were measured as a function of the applied pressure head. At ventilatory pressures typical of a fish at rest, the hydrodynamic resistance of the gills was nearly constant, the flow was laminar, shunting of water around the gills was essentially absent, and the distribution of water flow was relatively uniform. However, at the higher pressures typical of an active or stressed fish, some of these qualities were lost. In particular, at elevated pressures there was a decrease in the hydrodynamic resistance of the gills and substantial shunting of water around the gills. These effects suggest mechanical limits to maximum aerobic performance during activity or under adverse environmental conditions.

  3. Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs

    Science.gov (United States)

    Tokunaga, Tetsu K.; Shen, Weijun; Wan, Jiamin; Kim, Yongman; Cihan, Abdullah; Zhang, Yingqi; Finsterle, Stefan

    2017-11-01

    Large volumes of water are used for hydraulic fracturing of low permeability shale reservoirs to stimulate gas production, with most of the water remaining unrecovered and distributed in a poorly understood manner within stimulated regions. Because water partitioning into shale pores controls gas release, we measured the water saturation dependence on relative humidity (rh) and capillary pressure (Pc) for imbibition (adsorption) as well as drainage (desorption) on samples of Woodford Shale. Experiments and modeling of water vapor adsorption into shale laminae at rh = 0.31 demonstrated that long times are needed to characterize equilibrium in larger (5 mm thick) pieces of shales, and yielded effective diffusion coefficients from 9 × 10-9 to 3 × 10-8 m2 s-1, similar in magnitude to the literature values for typical low porosity and low permeability rocks. Most of the experiments, conducted at 50°C on crushed shale grains in order to facilitate rapid equilibration, showed significant saturation hysteresis, and that very large Pc (˜1 MPa) are required to drain the shales. These results quantify the severity of the water blocking problem, and suggest that gas production from unconventional reservoirs is largely associated with stimulated regions that have had little or no exposure to injected water. Gravity drainage of water from fractures residing above horizontal wells reconciles gas production in the presence of largely unrecovered injected water, and is discussed in the broader context of unsaturated flow in fractures.

  4. Purification of optical imaging ligand-Cybesin by high-speed counter-current chromatography

    Science.gov (United States)

    Ma, Zhiyong; Ma, Ying; Sun, Xilin; Ye, Yunpeng; Shen, Baozhong; Chen, Xiaoyuan; Ito, Yoichiro

    2010-01-01

    Fluorescent Cybesin (Cypate-Bombesin Peptide Analogue Conjugate) was synthesized from Indocyanine Green (ICG) and the bombesin receptor ligand as a contrast agent for detecting pancreas tumors. However, the LC–MS analysis indicated that the target compound was only a minor component in the reaction mixture. Since preparative HPLC can hardly separate such a small amount of the target compound directly from the original crude reaction mixture without a considerable adsorptive loss onto the solid support, high-speed counter-current chromatography (HSCCC) was used for purification since the method uses no solid support and promises high sample recovery. A suitable two-phase solvent system composed of hexane/ethyl acetate/methanol/methyl t.-butyl ether/acetonitrile/water) at a volume ratio of 1:1:1:4:4:7 was selected based on the partition coefficient of Cybesin (K ≈ 0.9) determined by LC–MS. The separation was performed in two steps using the same solvent system with lower aqueous mobile phase. From 400 mg of the crude reaction mixture the first separation yielded 7.7 mg of fractions containing the target compound at 12.8% purity, and in the second run 1 mg of Cybesin was obtained at purity of 94.0% with a sample recovery rate of over 95% based on the LC–MS Analysis. PMID:20933483

  5. SEPARATION OF THE MINOR FLAVONOLS FROM FLOS GOSSYPII BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY

    Science.gov (United States)

    Yang, Yi; Zhao, Yongxin; Gu, Dongyu; Ayupbek, Amatjan; Huang, Yun; Dou, Jun; Ito, Yoichiro; Zhang, Tianyou; Aisa, Haji Akber

    2010-01-01

    An effective high-speed countercurrent chromatography (HSCCC) method was established for further separation and purification of four minor flavonols in addition to five major flavonols which were reported by our previous study from extracts of Flos Gossypii. HSCCC was performed with three two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water (7.5:15:6:7, v/v), (2.5:15:2:7, v/v) and (0:1:0:1, v/v). The separation was repeated 3 times, and 3.8 mg of 8-methoxyl-kaempferol-7-O-β-D-rhamnoside (HPLC purity 98.27%), 6.7 mg of astragalin (HPLC purity 94.18%), 3.3 mg of 4′-methoxyl-quercetin-7-O-β-D-glucoside (HPLC purity 94.30%) and 8.2 mg of hyperoside (HPLC purity 93.48%) were separated from 150 mg of the crude sample. The chemical structures of the flavonols were confirmed by MS, 1H NMR and 13C NMR. Meanwhile, the results indicated that the target compound with smaller K value (<0.5) can be separated by increasing column length of HSCCC. And four separation rules of flavonols according to the present study and references were summarized, which can be used as a useful guide for separation of flavonols by HSCCC. PMID:21494318

  6. Preparative separation of cacao bean procyanidins by high-speed counter-current chromatography.

    Science.gov (United States)

    Li, Lingxi; Zhang, Shuting; Cui, Yan; Li, Yuanyuan; Luo, Lanxin; Zhou, Peiyu; Sun, Baoshan

    2016-11-15

    In this work, an efficient method for preparative separation of procyanidins from raw cacao bean extract by high-speed counter-current chromatography (HSCCC) was developed. Under the optimized solvent system of n-hexane-ethyl acetate-water (1:50:50, v/v/v) with a combination of head-tail and tail-head elution modes, various procyanidins fractions with different polymerization degrees were successfully separated. UPLC, QTOF-MS and 1 H NMR analysis verified that these fractions contained monomer up to pentamer respectively. Dimeric procyanidin B2 (purity>86%) could be isolated by HSCCC in a single run. Other individual procyanidins in these fractions could be further isolated and purified by preparative HPLC. The developed HSCCC together with preparative HPLC techniques appeared to be a useful tool for large preparation of different procyanidins from cacao beans. Furthermore, by antioxidant activity assays, it was proved that both fractions and individual procyanidins possessed greater antioxidant activities compared to standard trolox. The antioxidant activities of procyanidins increase as the increase of their polymerization degree. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rapid isolation and purification of phorbol esters from Jatropha curcas by high-speed countercurrent chromatography.

    Science.gov (United States)

    Hua, Wan; Hu, Huiling; Chen, Fang; Tang, Lin; Peng, Tong; Wang, Zhanguo

    2015-03-18

    In this work, a high-speed countercurrent chromatography (HSCCC) method was established for the preparation of phorbol esters (PEs) from Jatropha curcas. n-Hexane-ethyl acetate-methanol-water (1.5:1.5:1.2:0.5, v/v) was selected as the optimum two-phase solvent system to separate and purify jatropha factor C1 (JC1) with a purity of 85.2%, as determined by HPLC, and to obtain a mixture containing four or five PEs. Subsequently, continuous semipreparative HPLC was applied to further purify JC1 (99.8% as determined by HPLC). In addition, UPLC-PDA and UPLC-MS were established and successfully used to evaluate the isolated JC1 and PE-rich crude extract. The purity of JC1 was only 87.8% by UPLC-UV. A peak (a compound highly similar to JC1) was indentified as the isomer of JC1 by comparing the characteristic UV absorption and MS spectra. Meanwhile, this strategy was also applied to analyze the PE-rich crude extract from J. curcas. It is interesting that there may be more than 15 PEs according to the same quasi-molecular ion peaks, highly similar sequence-specific fragment ions, and similar UV absorption spectrum.

  8. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production.

    Science.gov (United States)

    Steinebach, Fabian; Müller-Späth, Thomas; Morbidelli, Massimo

    2016-09-01

    The economic advantages of continuous processing of biopharmaceuticals, which include smaller equipment and faster, efficient processes, have increased interest in this technology over the past decade. Continuous processes can also improve quality assurance and enable greater controllability, consistent with the quality initiatives of the FDA. Here, we discuss different continuous multi-column chromatography processes. Differences in the capture and polishing steps result in two different types of continuous processes that employ counter-current column movement. Continuous-capture processes are associated with increased productivity per cycle and decreased buffer consumption, whereas the typical purity-yield trade-off of classical batch chromatography can be surmounted by continuous processes for polishing applications. In the context of continuous manufacturing, different but complementary chromatographic columns or devices are typically combined to improve overall process performance and avoid unnecessary product storage. In the following, these various processes, their performances compared with batch processing and resulting product quality are discussed based on a review of the literature. Based on various examples of applications, primarily monoclonal antibody production processes, conclusions are drawn about the future of these continuous-manufacturing technologies. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    Science.gov (United States)

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  10. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.

    Science.gov (United States)

    Wade, Kristina L; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W David; Fahey, Jed W

    2015-01-01

    Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down

    Science.gov (United States)

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2015-01-01

    Counter-current heat exchangers associated with appendages of endotherms feature bundles of closely applied arteriovenous vessels. The accepted paradigm is that heat from warm arterial blood travelling into the appendage crosses into cool venous blood returning to the body. High core temperature is maintained, but the appendage functions at low temperature. Leatherback turtles have elevated core temperatures in cold seawater and arteriovenous plexuses at the roots of all four limbs. We demonstrate that plexuses of the hindlimbs are situated wholly within the hip musculature, and that, at the distal ends of the plexuses, most blood vessels supply or drain the hip muscles, with little distal vascular supply to, or drainage from the limb blades. Venous blood entering a plexus will therefore be drained from active locomotory muscles that are overlaid by thick blubber when the adults are foraging in cold temperate waters. Plexuses maintain high limb muscle temperature and avoid excessive loss of heat to the core, the reverse of the accepted paradigm. Plexuses protect the core from overheating generated by muscular thermogenesis during nesting.

  12. Separation of amaranthine-type betacyanins by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Jerz, Gerold; Gebers, Nadine; Szot, Dominika; Szaleniec, Maciej; Winterhalter, Peter; Wybraniec, Slawomir

    2014-05-30

    Betacyanins, red-violet plant pigments, were fractionated by ion-pair high-speed countercurrent chromatography (IP-HSCCC) from leaves extract of Iresine lindenii Van Houtte, an ornamental plant of the family Amaranthaceae. An HSCCC solvent system consisting of TBME-1-BuOH-ACN-H2O (1:3:1:5, v/v/v/v) was applied using ion-pair forming heptafluorobutyric acid (HFBA). Significantly different elution profiles of betacyanin diastereomeric pairs (derivatives based on betanidin and isobetanidin) observed in the HSCCC in comparison to HPLC systems indicate a complementarity of both techniques' fractionation capabilities. The numerous diastereomeric pairs can be selectively separated from each other using the HSCCC system simplifying the pigment purification process. Apart from the three well known highly abundant pigments (amaranthine, betanin and iresinin I) together with their isoforms, three new acylated (feruloylated and sinapoylated) betacyanins as well as known pigment hylocerenin (previously isolated from cacti fruits) were characterized in the plant for the first time and they are new for the whole Amaranthaceae family. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Pulsed counter-current ultrasound-assisted extraction and characterization of polysaccharides from Boletus edulis.

    Science.gov (United States)

    You, Qinghong; Yin, Xiulian; Ji, Chaowen

    2014-01-30

    Four methods for extracting polysaccharides from Boletus edulis, namely, hot-water extraction, ultrasonic clearer extraction, static probe ultrasonic extraction, and pulsed counter-current probe ultrasonic extraction (CCPUE), were studied. Results showed that CCPUE has the highest extraction efficiency among the methods studied. Under optimal CCPUE conditions, a B. edulis polysaccharide (BEP) yield of 8.21% was obtained. Three purified fractions, BEP-I, BEP-II, and BEP-III, were obtained through sequential purification by DEAE-52 and Sephadex G-75 chromatography. The average molecular weights of BEP-I, BEP-II, and BEP-III were 10,278, 23,761, and 42,736 Da, respectively. The polysaccharides were mainly composed of xylose, mannose, galactose, and glucose; of these, mannose contents were the highest. The antioxidant activities of the BEPs were further investigated by measurement of their ability to scavenge DPPH and hydroxyl radicals as well as their reducing power. The results indicated that the BEPs have good antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Countercurrent extraction of soluble sugars from almond hulls and assessment of the bioenergy potential.

    Science.gov (United States)

    Holtman, Kevin M; Offeman, Richard D; Franqui-Villanueva, Diana; Bayati, Andre K; Orts, William J

    2015-03-11

    Almond hulls contain considerable proportions (37% by dry weight) of water-soluble, fermentable sugars (sucrose, glucose, and fructose), which can be extracted for industrial purposes. The maximum optimal solids loading was determined to be 20% for sugar extraction, and the addition of 0.5% (w/v) pectinase aided in maintaining a sufficient free water volume for sugar recovery. A laboratory countercurrent extraction experiment utilizing a 1 h steep followed by three extraction (wash) stages produced a high-concentration (131 g/L fermentable sugar) syrup. Overall, sugar recovery efficiency was 88%. The inner stage washing efficiencies were compatible with solution equilibrium calculations, indicating that efficiency was high. The concentrated sugar syrup was fermented to ethanol at high efficiency (86% conversion), and ethanol concentrations in the broth were 7.4% (v/v). Thin stillage contained 233 g SCOD/L, which was converted to biomethane at an efficiency of 90% with a biomethane potential of 297 mL/g SCODdestroyed. Overall, results suggested that a minima of 49 gal (185 L) ethanol and 75 m(3) methane/t hulls (dry whole hull basis) are achievable.

  15. Metal ion-improved complexation countercurrent chromatography for enantioseparation of dihydroflavone enantiomers.

    Science.gov (United States)

    Han, Chao; Wang, Wenli; Xue, Guimin; Xu, Dingqiao; Zhu, Tianyu; Wang, Shanshan; Cai, Pei; Luo, Jianguang; Kong, Lingyi

    2018-01-12

    Cu(II) ion was selected as an additive to improve the enantioseparation efficiency of three dihydroflavone enantiomers in high-speed counter-current chromatography (HSCCC), using hydroxypropyl-β-cyclodextrin (HP-β-CyD) as the chiral selector. The influences of important parameters, including the metal ion, the concentrations of HP-β-CyD and the Cu(II) ion, and the sample size were investigated. Under optimal conditions, three dihydroflavone enantiomers, including (±)-hesperetin, (±)-naringenin, and (±)-farrerol, were successfully enantioseparated. The chiral recognition mechanism was investigated. The enantioseparation was attributed to the different thermodynamic stabilities of the binary complexes of HP-β-CyD and (±)-hesperetin, and Cu(II) ion could enhance this difference by forming ternary complexes with the binary complexes. This Cu(II) ion-improved complexation HSCCC system exhibited improved performance for chiral separation, and therefore it has great application potential in the preparative enantioseparation of other compounds with similar skeletons. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Preparative Separation of Phenolic Compounds from Halimodendron halodendron by High-Speed Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    Zhu Yu

    2010-08-01

    Full Text Available Three phenolic compounds, p-hydroxybenzoic acid (1, isorhamnetin-3-O-β-D-rutinoside (2, and 3,3'-di-O-methylquercetin (5, along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3 and 3-O-methylquercetin (4. Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC. The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3 and 3-O-methylquercetin (4 (26.43% and 71.89%, respectively in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5 at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1 at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2 at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  17. Preparative isolation and purification of theaflavins and catechins by high-speed countercurrent chromatography.

    Science.gov (United States)

    Wang, Kunbo; Liu, Zhonghua; Huang, Jian-an; Dong, Xinrong; Song, Lubing; Pan, Yu; liu, Fang

    2008-05-15

    High-speed countercurrent chromatography (HSCCC) has been applied for the separation of theaflavins and catechins. The HSCCC run was carried out with a two-phase solvent system composed of hexane-ethyl acetate-methanol-water-acetic acid (1:5:1:5:0.25, v/v) by eluting the lower aqueous phase at 2 ml/min at 700 rpm. The results indicated that pure theaflavin, theaflavins-3-gallate, theaflavins-3'-gallate and theaflavin-3,3'-digallate could be obtained from crude theaflavins sample and black tea. The structures of the isolated compounds were positively confirmed by (1)H NMR and (13)C NMR, MS analysis, HPLC data and TLC data. Meanwhile, catechins including epigallocatechin gallate, gallocatechin gallate, epicatechin gallate and epigallocatechin were isolated from the aqueous extract of green tea by using the same solvent system. This study developed a modified method combined with enrichment theaflavins method by using HSCCC for separation of four individual theaflavins, especially for better separation of theaflavins monogallates.

  18. Preparative separation of phenolic compounds from Halimodendron halodendron by high-speed counter-current chromatography.

    Science.gov (United States)

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-08-31

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3) and 3-O-methylquercetin (4). Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC). The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3) and 3-O-methylquercetin (4) (26.43% and 71.89%, respectively) in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5) at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1) at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2) at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  19. Chromium (Ⅵ) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption.

    Science.gov (United States)

    Wang, Wenqiang

    2018-01-01

    To exploit the adsorption capacity of commercial powdered activated carbon (PAC) and to improve the efficiency of Cr(VI) removal from aqueous solutions, the adsorption of Cr(VI) by commercial PAC and the countercurrent two-stage adsorption (CTA) process was investigated. Different adsorption kinetics models and isotherms were compared, and the pseudo-second-order model and the Langmuir and Freundlich models fit the experimental data well. The Cr(VI) removal efficiency was >80% and was improved by 37% through the CTA process compared with the conventional single-stage adsorption process when the initial Cr(VI) concentration was 50 mg/L with a PAC dose of 1.250 g/L and a pH of 3. A calculation method for calculating the effluent Cr(VI) concentration and the PAC dose was developed for the CTA process, and the validity of the method was confirmed by a deviation of <5%. Copyright © 2017. Published by Elsevier Ltd.

  20. Treatment of low-activity-level process wastewaters by continuous countercurrent ion exchange

    International Nuclear Information System (INIS)

    Hall, R.; Watson, J.S.; Robinson, S.M.

    1990-01-01

    A mobile pilot-scale continuous countercurrent ion-exchange (CCIX) system is being operated at the Oak Ridge National Laboratory (ORNL) for the treatment of wastewaters that contain predominantly calcium sodium, and magnesium bicarbonates and are slightly contaminated with 90 Sr and 137 Cs radioisotopes. A demonstration study is being conducted to evaluate the near-steady-state performance and feasibility of a pilot-scale CCIX column for the selective removal of strontium from wastewater. Test results show that the process removes strontium sufficiently from the wastewater to permit discharge while significantly reducing the volume of secondary waste generation. CCIX has the potential for effective use in several applications; however, it has not been frequently utilized by industries to date. The CCIX system could offer an economical alternative for decontamination of wastewaters containing trace amounts of contaminants prior to discharge into the environment. This paper discusses (a) application of the Thomas model for predicting breakthrough curves from ion exchange column tests, (b) methods for scaleup of experimental small-scale ion-exchange columns to industrial-scale columns, and (c) methods for predicting effluent compositions in a CCIX system. 20 refs., 6 figs., 2 tabs

  1. Implementation of a Particle Image Velocimetry (PIV) system. An example application of PIV to wake-flows behind objects

    International Nuclear Information System (INIS)

    Tokuhiro, A.; Hishida, K.; Ohki, Y.

    1996-10-01

    In the present work an introduction to PIV is given by way of an example. The selected flow configuration is that of wake-flow behind a bubble and its solid equivalent. By solid equivalent we mean a solid model with approximately the equivalent bubble breadth and volume. This two-component, two-phase flow aptly demonstrates the applicability of PIV to spatio-temporal flows. Use was additionally made of an Infrared Shadow Technique (IST) in order to capture the unlit image (shadow) of the bubble or solid within the flow field. By triggering both the laser and infrared light sources with the CCD camera, the shape of the object as well as the flow field was simultaneously recorded. Besides the 2D vector field, calculations of the vorticity, Reynolds stress and turbulent kinetic energy (tke) distributions were made. The results indicate that for counter-current flow (U avg ∼0.245m/s) of water in a square channel (100mm) with a single air bubble of roughly 10mm diameter (Re Db ∼10 4 ) one could conclude the following: 1) PIV can detect differences in the wake flow field behind a bubble and that behind an equivalently sized solid, 2) the wake flow field behind the bubble is spatio-temporal due to the oscillation of the bubble, 3) as the bubble tries to minimize the energy-loss associated with its inherent motion it does so by distributing the hydrodynamic tke uniformly in the wake-field whereas in the case of the solid, the energy is distributed in a confined region in the near-wake. The order of magnitude of the tke is however similar which strongly suggests leads us to believe that the energy dissipation mechanisms are different in the two cases. We also made a limited comparison of velocity data obtained via DPIV and ultrasound Doppler velocimetry. (J.P.N.)

  2. Effects of non-fatiguing respiratory muscle loading induced by expiratory flow limitation during strenuous incremental cycle exercise on metabolic stress and circulating natural killer cells.

    Science.gov (United States)

    Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio

    2017-12-01

    Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.

  3. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow.

    Science.gov (United States)

    Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P

    2016-11-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of

  4. Exogenous and endogenous angiotensin‐II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow

    Science.gov (United States)

    Emans, Tonja W.; Janssen, Ben J.; Pinkham, Maximilian I.; Ow, Connie P. C.; Evans, Roger G.; Joles, Jaap A.; Malpas, Simon C.; Krediet, C. T. Paul

    2016-01-01

    Key points Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary.We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats.This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation.Exogenous angiotensin‐II reduced renal cortical tissue PO2 more than equi‐pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine.Activation of the endogenous renin–angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin‐II receptor type 1 antagonist.Angiotensin‐II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. Abstract We hypothesised that both exogenous and endogenous angiotensin‐II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose‐dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi‐pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min−1

  5. TOPFLOW-experiments, model development and validation for the qualification of CFD-odes for two-phase flows. Final report

    International Nuclear Information System (INIS)

    Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.

    2016-12-01

    This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.

  6. A randomised controlled trial of flow driver and bubble continuous positive airway pressure in preterm infants in a resource-limited setting.

    Science.gov (United States)

    Mazmanyan, P; Mellor, K; Doré, C J; Modi, N

    2016-01-01

    The variable-flow flow driver (FD; EME) and continuous-flow bubble (Fisher-Paykel) continuous positive airway pressure (CPAP) systems are widely used. As these differ in cost and technical requirements, determining comparative efficacy is important particularly where resources are limited. We performed a randomised, controlled, equivalence trial of CPAP systems. We specified the margin of equivalence as 2 days. We analysed binary variables by logistical regression adjusted for gestation, and log transformed continuous variables by multiple linear regression adjusted for gestation, sex and antenatal steroids. A neonatal unit with no blood gas analyser or surfactant availability and limited X-ray and laboratory facilities Neonates CPAP at delivery followed by randomisation to FD or bubble (B). Primary outcome included total days receiving CPAP; secondary outcomes included days receiving CPAP, supplemental oxygen, ventilation, death, pneumothorax and nasal excoriation. We randomised 125 infants (B 66, FD 59). Differences in infant outcomes on B and FD were not statistically significant. The median (range) for CPAP days for survivors was B 0.8 (0.04 to 17.5), FD 0.5 (0.04 to 5.3). B:FD (95% CI) ratios were CPAP days 1.3 (0.9 to 2.1), CPAP plus supplementary oxygen days 1.2 (0.7 to 1.9). B:FD (95% CI) ORs were death 2.3 (0.2 to 28), ventilation 2.1 (0.5 to 9), nasal excoriation 1.2 (0.2 to 8) and pneumothorax 2.4 (0.2 to 26). In a resource-limited setting we found B CPAP equivalent to FD CPAP in the total number of days receiving CPAP within a margin of 2 days. ISRCTN22578364. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Combinative application of pH-zone-refining and conventional high-speed counter-current chromatography for preparative separation of caged polyprenylated xanthones from gamboge.

    Science.gov (United States)

    Xu, Min; Fu, Wenwei; Zhang, Baojun; Tan, Hongsheng; Xiu, Yanfeng; Xu, Hongxi

    2016-02-01

    An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography for the first time. pH-zone-refining counter-current chromatography was performed with the solvent system composed of n-hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high-speed counter-current chromatography with a solvent system composed of n-hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n-hexane/methyl tert-butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β-morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high-performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Scale-up of counter-current chromatography: demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale.

    Science.gov (United States)

    Sutherland, Ian; Hewitson, Peter; Ignatova, Svetlana

    2009-12-11

    Predictable scale-up from test tube derived distribution ratios and analytical-scale sample loading optimisation is demonstrated using a model sample system of benzyl alcohol and p-cresol in a heptane:ethyl acetate:methanol:water phase system with the new 18 L Maxi counter-current chromatography centrifuge. The versatility of having a liquid stationary phase with its high loading capacity and flexible operating modes is demonstrated at two different scales by separating and concentrating target compounds using a mixture of caffeine, vanillin, naringenin and carvone using a quasi-continuous technique called intermittent counter-current extraction.

  9. Isolation of xanthyletin, an inhibitor of ants' symbiotic fungus, by high-speed counter-current chromatography.

    Science.gov (United States)

    Cazal, Cristiane de Melo; Domingues, Vanessa de Cássia; Batalhão, Jaqueline Raquel; Bueno, Odair Corrêa; Filho, Edson Rodrigues; da Silva, Maria Fátima G Fernandes; Vieira, Paulo Cezar; Fernandes, João Batista

    2009-05-08

    Xanthyletin, an inhibitor of symbiotic fungus (Leucoagaricus gongylophorus) of leaf-cutting ant (Atta sexdens rubropilosa), as well as suberosin, seselin and xanthoxyletin were isolated from Citrus sinensis grafted on Citrus limonia. A two-phase solvent system composed of hexane/ethanol/acetonitrile/water (10:8:1:1, v/v) was used for the high-speed counter-current chromatographic isolation of xanthyletin with high yield and over 99% purity as determined by liquid and gas chromatography with mass spectrometry detection. Identifications were performed by UV spectra, IR spectra, (1)H NMR and (13)C NMR.

  10. Preparative separation of flavonoids from the medicinal plant Davilla elliptica St. Hill. by high-speed counter-current chromatography

    OpenAIRE

    Rinaldo Daniel; Silva Marcelo Aparecido; Rodrigues Clenilson Martins; Calvo Tamara Regina; Sannomiya Miriam; Santos Lourdes Campaner dos; Vilegas Wagner; Kushima Hélio; Hiruma-Lima Clélia Akiko; Brito Alba Regina Monteiro de Souza

    2006-01-01

    High-speed counter-current chromatography (HSCCC) is a major tool for the fast separation of natural products from plants. It was used for the preparative isolation of the flavonoid monoglucosides present in the aerial parts of the Davilla elliptica St. Hill. (Dilleniaceae). This species is used in Brazilian folk medicine for the treatment of gastric disorders. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80, v/v/v) and led to a successful...

  11. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY

    OpenAIRE

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2013-01-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside (I, 20.2 mg),, syringin (II, 56.8 mg), sinapaldehyde glucoside (III, 26.2 mg),, syringaresinol 4'-o-β-d-glucopyra...

  12. Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor.

    Science.gov (United States)

    Park, Seongjun; Chung, Jinwook; Rittmann, Bruce E; Bae, Wookeun

    2015-01-01

    To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2-4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate. © 2014 Wiley Periodicals, Inc.

  13. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography.

    Science.gov (United States)

    Vieira, Mariana N; Winterhalter, Peter; Jerz, Gerold

    2016-01-01

    Impatiens glandulifera Royle (Balsaminaceae) is an annual herb from the Himalaya region, currently widespread along European river systems and one of the most important neophyte invading plants in Germany. Exploring the effects of allelopathic plant chemicals is important for the understanding of its ecological impacts in the process of suppression of indigenous plant species. To investigate the chemical composition of Impatiens glandulifera flowers (IGFs) using high performance countercurrent chromatography (HPCCC). The flowers of Impatiens glandulifera were manually separated and extracted with ethanol. LC-ESI-MS/MS was used to characterise the crude extract of IGF. The various flavonoids detected were isolated by HPCCC using of methyl tert-butyl ether-acetonitrile-water (2:2:3, v/v/v). The combination of the data provided by preparative ESI-MS/MS metabolite profiling, LC-ESI-MS/MS, UV-vis and 1D/2D-NMR spectroscopic analysis was used to elucidate the structures of the isolated compounds. HPCCC runs led to the direct isolation of pure dihydromyricetin (ampelopsin), eriodictyol-7-O-glucoside, kaempferol-3-O-glucoside (astragalin) and kaempferol-3-O-6"-malonyl-glucoside, as well as the pre-purification of kaempferol-3-O-rhamno-rhamnosyldiglucoside, quercetin-3-O-galactoside (hyperoside), quercetin and kaempferol in a single step. This is the first report on the flavonoid composition of the species Impatiens glandulifera. The developed protocol was successfully used to isolate the main flavonoids from the crude extract of IGFs. This combined HPCCC and HPLC procedure could be applied to the fast fractionation and recovery of flavonoid derivatives of other plant extracts. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration.

    Science.gov (United States)

    Han, Fei; Zhang, Guang-Hui; Gu, Ping

    2012-07-30

    Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3μg/L, the dosage of CuFC was 40mg/L and the adsorption time was 20min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75μg/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Studies on polar high-speed counter-current chromatographic systems in separation of amaranthine-type betacyanins from Celosia species.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Milo, Angelika; Kumorkiewicz, Agnieszka; Wybraniec, Sławomir

    2018-01-15

    Betacyanins, natural plant pigments exhibiting antioxidant and chemopreventive properties, were extracted from Celosia spicata (Thouars) Spreng. inflorescences and separated by high-speed counter-current chromatography (HSCCC) in two polar solvent systems composed of: TBME - 1-BuOH - ACN - H 2 O (0.7% HFBA, 2:2:1:5, v/v/v/v) (system I) and EtOH - ACN - 1-PrOH - (NH 4 ) 2 SO 4satd.soln - H 2 O (0.5:0.5:0.5:1.2:1, v/v/v/v/v) (system II). The systems were used in the head-to-tail (system I) and tail-to-head (system II) mode. The flow rate of the mobile phase was 2.0 ml/min and the column rotation speed was 860 rpm. The retention of the stationary phase was 73.5% (system I) and 80.0% (system II). For the identification of separated betacyanins in the crude extract as well as in the HSCCC fractions, LC-DAD-ESI-MS/MS analyses were performed. Depending on the target compounds, each of the systems exhibit meaningfully different selectivity and applicability. For the pairs of amaranthines (1/1') and betanins (2/2'), the best choice is the system II, but the acylated amaranthine pairs (3/3' and 4/4') can be resolved only in the ion-pair system I. For the indication of the most suitable solvent system for Celosia plumosa hort., Celosia cristata L. and Celosia spicata (Thouars) Spreng. species, the profiles of betacyanins in different plant parts were studied. Copyright © 2017. Published by Elsevier B.V.

  16. Preparative isolation and purification of three stilbene glycosides from the tibetan medicinal plant Rheum tanguticum maxim. Ex Balf. by high-speed counter-current chromatography.

    Science.gov (United States)

    Zhao, Xiao-Hui; Han, Fa; Li, Yu-Lin; Yue, Hui-Lan

    2013-02-01

    Stilbene glycosides are the primary constituents of Rheum tanguticum Maxim. ex Balf., to which different bioactivities has been attributed, including: anti-HIV, anti-oxidant, anti-tumour, anti-malarial, and anti-allergy activity. However, effective methods for the isolation and purification of stilbene glycosides, such as trans-rhapontin, cis-rhapontin and trans-desoxyrhaponticin, from this herb are not currently available. To develop an efficient method for the preparative isolation and purification of three stilbene glycosides from Rheum tanguticum Maxim. ex Balf. via high-speed counter-current chromatography (HSCCC). A solvent system composed of chloroform:n-butanol:methanol:water (4:1:3:2, v/v/v/v) was developed for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. The flow rate was 1.8 mL/min. The apparatus was controlled at 800 rpm and 25 °C, and the effluent was monitored at 280 nm. Chemical constituents were analysed by high-performance liquid chromatography (HPLC), and their structures were identified by ¹H- and ¹³C-NMR. Under the optimised conditions, 25.5 mg trans-rhapontin, 16.0 mg cis-rhapontin and 20.5 mg trans-desoxyrhaponticin were separated from 80 mg crude sample; the isolates had purities of 99.6, 97.2 and 99.2%, respectively. A simple and efficient HSCCC method has been optimised for the preparative separation of stilbene glycosides from Rheum tanguticum Maxim. ex Balf. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Preparative isolation and purification of four flavonoids from the petals of Nelumbo nucifera by high-speed counter-current chromatography.

    Science.gov (United States)

    Xingfeng, Guo; Daijie, Wang; Wenjuan, Duan; Jinhua, Du; Xiao, Wang

    2010-01-01

    Flavonoids, the primary constituents of the petals of Nelumbo nucifera, are known to have antioxidant properties and antibacterial bioactivities. However, efficient methods for the preparative isolation and purification of flavonoids from this plant are not currently available. To develop an efficient method for the preparative isolation and purification of flavonoids from the petals of N. nucifera by high-speed counter-current chromatography (HSCCC). Following an initial clean-up step on a polyamide column, HSCCC was utilised to separate and purify flavonoids. Purities and identities of the isolated compounds were established by HPLC-PAD, ESI-MS, (1)H-NMR and (13)C-NMR. The separation was performed using a two-phase solvent system composed of ethyl acetate-methanol-water-acetic acid (4 : 1 : 5 : 0.1, by volume), in which the upper phase was used as the stationary phase and the lower phase was used as the mobile phase at a flow-rate of 1.0 mL/min in the head-to-tail elution mode. Ultimately, 5.0 mg syringetin-3-O-beta-d-glucoside, 6.5 mg quercetin-3-O-beta-d-glucoside, 12.8 mg isorhamnetin-3-O-beta-d-glucoside and 32.5 mg kaempferol-3-O-beta-d-glucoside were obtained from 125 mg crude sample. The combination of HSCCC with a polyamide column is an efficient method for the preparative separation and purification of flavonoids from the petals of N. nucifera. (c) 2009 John Wiley & Sons, Ltd.

  18. Schinus terebinthifolius scale-up countercurrent chromatography (Part I): High performance countercurrent chromatography fractionation of triterpene acids with off-line detection using atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Vieira, Mariana Neves; Costa, Fernanda das Neves; Leitão, Gilda Guimarães; Garrard, Ian; Hewitson, Peter; Ignatova, Svetlana; Winterhalter, Peter; Jerz, Gerold

    2015-04-10

    'Countercurrent chromatography' (CCC) is an ideal technique for the recovery, purification and isolation of bioactive natural products, due to the liquid nature of the stationary phase, process predictability and the possibility of scale-up from analytical to preparative scale. In this work, a method developed for the fractionation of Schinus terebinthifolius Raddi berries dichloromethane extract was thoroughly optimized to achieve maximal throughput with minimal solvent and time consumption per gram of processed crude extract, using analytical, semi-preparative and preparative 'high performance countercurrent chromatography' (HPCCC) instruments. The method using the biphasic solvent system composed of n-heptane-ethyl acetate-methanol-water (6:1:6:1, v/v/v/v) was volumetrically scaled up to increase sample throughput up to 120 times, while maintaining separation efficiency and time. As a fast and specific detection alternative, the fractions collected from the CCC-separations were injected to an 'atmospheric pressure chemical ionization mass-spectrometer' (APCI-MS/MS) and reconstituted molecular weight MS-chromatograms of the APCI-ionizable compounds from S. terebinthifolius were obtained. This procedure led to the direct isolation of tirucallane type triterpenes such as masticadienonic and 3β-masticadienolic acids. Also oleanonic and moronic acids have been identified for the first time in the species. In summary, this approach can be used for other CCC scale-up processes, enabling MS-target-guided isolation procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Low reproductive isolation and highly variable levels of gene flow reveal limited progress towards speciation between European river and brook lampreys.

    Science.gov (United States)

    Rougemont, Q; Gaigher, A; Lasne, E; Côte, J; Coke, M; Besnard, A-L; Launey, S; Evanno, G

    2015-12-01

    Ecologically based divergent selection is a factor that could drive reproductive isolation even in the presence of gene flow. Population pairs arrayed along a continuum of divergence provide a good opportunity to address this issue. Here, we used a combination of mating trials, experimental crosses and population genetic analyses to investigate the evolution of reproductive isolation between two closely related species of lampreys with distinct life histories. We used microsatellite markers to genotype over 1000 individuals of the migratory parasitic river lamprey (Lampetra fluviatilis) and freshwater-resident nonparasitic brook lamprey (Lampetra planeri) distributed in 10 sympatric and parapatric population pairs in France. Mating trials, parentage analyses and artificial fertilizations demonstrated a low level of reproductive isolation between species even though size-assortative mating may contribute to isolation. Most parapatric population pairs were strongly differentiated due to the joint effects of geographic distance and barriers to migration. In contrast, we found variable levels of gene flow between sympatric populations ranging from panmixia to moderate differentiation, which indicates a gradient of divergence with some population pairs that may correspond to alternative morphs or ecotypes of a single species and others that remain partially isolated. Ecologically based divergent selection may explain these variable levels of divergence among sympatric population pairs, but incomplete genome swamping following secondary contact could have also played a role. Overall, this study illustrates how highly differentiated phenotypes can be maintained despite high levels of gene flow that limit the progress towards speciation. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  20. Experimental investigation of stratified two-phase flows in the hot leg of a PWR for CFD validation

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Tomiyama, Akio [Kobe Univ (Japan). Graduate School of Engineering; Murase, Michio [Institute of Nuclear Safety System, Inc. (INSS), Fukui (Japan)

    2012-12-15

    Stratified 2-phase flows were investigated in 2 different models of the hot leg of a pressurised water reactor (PWR) in order to provide experimental data for the development and validation of computational fluid dynamics (CFD) codes. Therefore, the local flow structure was visualised with a high-speed video camera. Moreover, one test section was designed with a rectangular cross-section to achieve optimal observation conditions. The phenomenon of counter-current flow limitation (CCFL) was investigated, which may affect the reflux condenser cooling mode in some accident scenarios. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and saturated water at boundary conditions of up to 50 bar and 264 C. The measured CCFL characteristics were compared with similar experimental data and correlations available in the literature. This shows that the channel height is the characteristic length to be used in the Wallis parameter for channels with rectangular cross-sections. Furthermore, the experimental results confirm that the Wallis similarity is appropriate to scale CCFL in the hot leg of a PWR over a wide range of pressure and temperature conditions. Finally, an image processing algorithm was developed to recognise the stratified interface in the camera frames. Subsequently, the interfacial structure along the hot leg was visualised by the representation of the probability distribution of the water level. (orig.)

  1. Investigating the limitations of single breath-hold renal artery blood flow measurements using spiral phase contrast MR with R-R interval averaging.

    Science.gov (United States)

    Steeden, Jennifer A; Muthurangu, Vivek

    2015-04-01

    1) To validate an R-R interval averaged golden angle spiral phase contrast magnetic resonance (RAGS PCMR) sequence against conventional cine PCMR for assessment of renal blood flow (RBF) in normal volunteers; and 2) To investigate the effects of motion and heart rate on the accuracy of flow measurements using an in silico simulation. In 20 healthy volunteers RAGS (∼6 sec breath-hold) and respiratory-navigated cine (∼5 min) PCMR were performed in both renal arteries to assess RBF. A simulation of RAGS PCMR was used to assess the effect of heart rate (30-105 bpm), vessel expandability (0-150%) and translational motion (x1.0-4.0) on the accuracy of RBF measurements. There was good agreement between RAGS and cine PCMR in the volunteer study (bias: 0.01 L/min, limits of agreement: -0.04 to +0.06 L/min, P = 0.0001). The simulation demonstrated a positive linear relationship between heart rate and error (r = 0.9894, P 100 bpm), or when there is significant motion (vessel expandability: >80%, vessel translation: >x2.2). © 2014 Wiley Periodicals, Inc.

  2. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors.

    Science.gov (United States)

    Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl

    2017-02-01

    The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm -2 d -1 , while during counter-current operation biomass productivity decreased to 8.7±0.5gm -2 d -1 as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.

    Science.gov (United States)

    Lafond, Stéphanie; Blais, Jean-François; Mercier, Guy; Martel, Richard

    2013-01-01

    This research explores the performance of a counter-current leaching process (CCLP) for Cu, Pb, Sb and Zn extraction in a polluted shooting range soil. The initial metal concentrations in the soil were 1790 mg Cu/kg, 48,300 mg Pb/kg, 840 mg Sb/kg and 368 mg Zn/kg. The leaching process consisted of five one-hour acid leaching steps, which used 1 M H2SO4 + 4 M NaCl (20 degrees C, soil suspension = 100 g/L) followed by two water rinsing steps. Ten counter-current remediation cycles were completed and the average metal removal yields were 98.3 +/- 0.3% of Cu, 99.5 +/- 0.1% of Pb, 75.5 +/- 5.1% of Sb and 29.1 +/- 27.2% of Zn. The quality of metal leaching did not deteriorate throughout the 10 remediation cycles completed for this study. The CCLP reduced acid and salt use by approximately 68% and reduced water consumption by approximately 60%, exceeding reductions achieved by a standard acid leaching process.

  4. Development of the APR1400 model for countercurrent natural circulation in hot leg and steam generator under station blackout

    International Nuclear Information System (INIS)

    Park, Sang Gil; Kim, Han Chul

    2012-01-01

    In order to analyze severe accident phenomena, Korea Institute of Nuclear Safety (KINS) made a MELCOR model for APR1400 to examine natural circulation and creep rupture failure in the Reactor Coolant System (RCS) under station blackout (SBO). In this study, we are trying to advance the former model to describe natural circulation more accurately. After Fukushima accident, the concerns of severe accident management, assuring the heat removal capability, has risen for the case when the SBO is happened and there are no more electric powers to cool down decay heat. Under SBO there are three kinds of natural circulation which can delay the core heatup. One is in vessel natural circulation in the upper plenum of reactor vessel and the second is countercurrent natural circulation in hot leg through steam generator tubes and the last is full loop natural circulation when the reactor coolant pump loop seal is cleared and reactor coolant pump sealing is damaged by high temperature and high pressure. Among them this study focuses on the countercurrent natural circulation model using MELCOR1.8.6

  5. Isolation and purification of arctigenin from Fructus Arctii by enzymatic hydrolysis combined with high-speed counter-current chromatography.

    Science.gov (United States)

    Liu, Feng; Xi, Xingjun; Wang, Mei; Fan, Li; Geng, Yanling; Wang, Xiao

    2014-02-01

    Enzymatic hydrolysis pretreatment combined with high-speed counter-current chromatography for the transformation and isolation of arctigenin from Fructus Arctii was successfully developed. In the first step, the extract solution of Fructus Arctii was enzymatic hydrolyzed by β-glucosidase. The optimal hydrolysis conditions were 40°C, pH 5.0, 24 h of hydrolysis time, and 1.25 mg/mL β-glucosidase concentration. Under these conditions, the content of arctigenin was transformed from 2.60 to 12.59 mg/g. In the second step, arctigenin in the hydrolysis products was separated and purified by high-speed counter-current chromatography with a two-phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (10:25:15:20, v/v), and the fraction was analyzed by HPLC, ESI-MS, and (1)H NMR spectroscopy. Finally, 102 mg of arctigenin with a purity of 98.9% was obtained in a one-step separation from 200 mg of hydrolyzed sample. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  7. On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye–Huckel Limit

    Directory of Open Access Journals (Sweden)

    Weiyu Liu

    2018-02-01

    Full Text Available We present herein a novel method of bipolar field-effect control on DC electroosmosis (DCEO from a physical point of view, in the context of an intelligent and robust operation tool for stratified laminar streams in microscale systems. In this unique design of the DC flow field-effect-transistor (DC-FFET, a pair of face-to-face external gate terminals are imposed with opposite gate-voltage polarities. Diffuse-charge dynamics induces heteropolar Debye screening charge within the diffuse double layer adjacent to the face-to-face oppositely-polarized gates, respectively. A background electric field is applied across the source-drain terminal and forces the face-to-face counterionic charge of reversed polarities into induced-charge electroosmotic (ICEO vortex flow in the lateral direction. The chaotic turbulence of the transverse ICEO whirlpool interacts actively with the conventional plug flow of DCEO, giving rise to twisted streamlines for simultaneous DCEO pumping and ICEO mixing of fluid samples along the channel length direction. A mathematical model in thin-layer approximation and the low-voltage limit is subsequently established to test the feasibility of the bipolar DC-FFET configuration in electrokinetic manipulation of fluids at the micrometer dimension. According to our simulation analysis, an integrated device design with two sets of side-by-side, but upside-down gate electrode pair exhibits outstanding performance in electroconvective pumping and mixing even without any externally-applied pressure difference. Moreover, a paradigm of a microdevice for fully electrokinetics-driven analyte treatment is established with an array of reversed bipolar gate-terminal pairs arranged on top of the dielectric membrane along the channel length direction, from which we can obtain almost a perfect liquid mixture by using a smaller magnitude of gate voltages for causing less detrimental effects at a small Dukhin number. Sustained by theoretical

  8. Current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, D.H. [Sandia National Labs., Albuquerque, NM (United States). Systems Surety Assessment Dept.; Noren, K. [Univ. of Idaho, Moscow, ID (United States). Dept. of Electrical Engineering

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  9. Purification of Proteins From Cell-Culture Medium or Cell-Lysate by High-Speed Counter-Current Chromatography Using Cross-Axis Coil Planet Centrifuge

    Science.gov (United States)

    Shibusawa, Yoichi; Ito, Yoichiro

    2014-01-01

    This review describes protein purifications from cell culture medium or cell-lysate by high speed counter-current chromatography using the cross-axis coil planet centrifuge. Purifications were performed using aqueous two phase systems composed of polyethylene glycols and dextrans. PMID:25360182

  10. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    Science.gov (United States)

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  11. The hydrodynamic behaviour of gas—solid trickle flow over a regularly stacked packing

    OpenAIRE

    Verver, A.B.; van Swaaij, Willibrordus Petrus Maria

    1986-01-01

    The hydrodynamic properties of counter-current gas—solid flow over a regularly stacked packing at trickle flow conditions have been studied. The flow properties of the solids phase were examined, using five types of solid particles with a mean particle diameter ranging from 70 to 880 μm and a particle density from 800 to 7800 kg m−3. Data on the solids hold-up and the pressure drop caused by the solids flow were obtained from experiments in a test column of 0.10 m square cross-section. A part...

  12. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.

    2002-10-08

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  13. Modeling and simulation of nanoparticles transport in a two-phase flow in porous media

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu

    2012-01-01

    In the current paper, a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium is presented. Both capillary forces as well as Brownian diffusion are considered in the model. A numerical example of countercurrent water-oil imbibition is considered. We monitor the changing of the fluid and solid properties due to the addition of the nanoparticles using numerical experiments. Variation of water saturation, nanoparticles concentration and porosity ratio are investigated.

  14. Studies of thermal-hydrodynamic flow instability, 2

    International Nuclear Information System (INIS)

    Suzuoki, Akira

    1977-01-01

    For reliable prediction of flow stability in sodium-heated steam generators, a dynamic model was proposed for boiling flow oscillation in parallel channel systems, and an analysis code was developed. The model contains a description of a sodium flow exchanging heat with a water flow in counter-current fashion. The code was applied to three representative flow systems whose heating conditions differed from each other, whereby their flow stabilities were compared with a focus on the effects of heating condition. Eigenvalues and flow impedances of the oscillation determined for each system reveal that: (1) Two fundamental systems for the steam generator, parallel tube system in an evaporator and steam generator modules arranged in parallel, have different stabilities under low frequency oscillation. (2) Existing analysis model conditioned on constant heat flux gives different results on stability from those of either steam generator model under low frequency oscillation. (auth.)

  15. Simulations of overall flow in gas centrifuge considering feed jet

    International Nuclear Information System (INIS)

    He Liang; Jiang Dongjun; Ying Chuntong

    2010-01-01

    A coupled method for the numerical solution of the flow in rapidly rotating gas centrifuge was presented. An iteration process of DSMC and CFD was performed to analyze the overall flow in radial direction, in which DSMC was adopted to simulate the rarefied region, and CFD was adopted to the counter-current of gas centrifuge to discrete the model equations. It was applied to simulate the 2D symmetrical flow model considering the rarefied region with the feed jet flow. A series of illustrative numerical examples were given. The flow structures of the feed jet in the rarefied gas flow region were shown. The results suggest that DSMC CFD coupled method is competent to the simulations of overall flow in a gas centrifuge. (authors)

  16. Application and comparison of high-speed countercurrent chromatography and high performance liquid chromatography in preparative enantioseparation of α-substitution mandelic acids.

    Science.gov (United States)

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang; Ito, Yoichiro; Yan, Jizhong

    2015-04-01

    Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by high-speed countercurrent chromatography (HSCCC) and high performance liquid chromatography (HPLC) were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C 18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L -1 phosphate buffer at pH 2.68 containing 20 mmol L -1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L -1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n -hexane-methyl tert. -butyl ether-0.1 molL -1 phosphate buffer solution at pH 2.67 containing 0.1 mol L -1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L -1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, total 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 105-110 mg of enantiomers with 95-98% purity and 85-90% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper preparative enantioseparation by HSCCC and HPLC was compared from various aspects.

  17. Southward flow on the western flank of the Florida Current

    Science.gov (United States)

    Soloviev, Alexander V.; Hirons, Amy; Maingot, Christopher; Dean, Cayla W.; Dodge, Richard E.; Yankovsky, Alexander E.; Wood, Jon; Weisberg, Robert H.; Luther, Mark E.; McCreary, Julian P.

    2017-07-01

    A suite of long-term in situ measurements in the Straits of Florida, including the ADCP bottom moorings at an 11-m isobath and 244-m isobath (Miami Terrace) and several ADCP ship transects, have revealed a remarkable feature of the ocean circulation - southward flow on the western, coastal flank of the Florida Current. We have observed three forms of the southward flow - a seasonally varying coastal countercurrent, an undercurrent jet attached to the Florida shelf, and an intermittent undercurrent on the Miami Terrace. According to a 13-year monthly climatology obtained from the near-shore mooring, the coastal countercurrent is a persistent feature from October through January. The southward flow in the form of an undercurrent jet attached to the continental slope was observed during five ship transects from April through September but was not observed during three transects in February, March, and November. This undercurrent jet is well mixed due to strong shear at its top associated with the northward direction of the surface flow (Florida Current) and friction at the bottom. At the same time, no statistically significant seasonal cycle has been observed in the undercurrent flow on the Miami Terrace. Theoretical considerations suggest that several processes could drive the southward current, including interaction between the Florida Current and the shelf, as well as forcing that is independent of the Florida Current. The exact nature of the southward flow on the western flank of the Florida Current is, however, unknown.

  18. Isolamento do alcalóide ricinina das folhas de Ricinus communis (Euphorbiaceae através de cromatografias em contracorrente Isolation of the alkaloid ricinine from the leaves of Ricinus communis (Euphorbiaceae through counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Ana Cristina Leite

    2005-12-01

    Full Text Available Droplet counter-current chromatography, rotation locular counter-current chromatography and high-speed counter-current chromatography were applied to the preparative separation of the alkaloid ricinine from the dichloromethane extracts of Ricinus communis leaves. The solvent system used was composed of dichloromethane-methanol-water (93:35:72 v/v/v and all techniques led to the isolation of large amounts of the alkaloid. The best result was obtained through HSCCC, since the ricinine yield was respectively 50% and 30% higher than when using RLCCC or DCCC.

  19. TOPFLOW-experiments, model development and validation for the qualification of CFD-odes for two-phase flows. Final report; TOPFLOW-Experimente, Modellentwicklung und Validierung zur Qualifizierung von CFD-Codes fuer Zweiphasenstroemungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.

    2016-12-15

    This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.

  20. Feasibility study of respiratory questionnaire and peak flow recordings in autobody shop workers exposed to isocyanate-containing spray paint: observations and limitations.

    Science.gov (United States)

    Cullen, M R; Redlich, C A; Beckett, W S; Weltmann, B; Sparer, J; Jackson, G; Ruff, T; Rubinstein, E; Holden, W

    1996-06-01

    Diisocyanates, highly reactive monomers which cross-link polyurethane, are the most widely recognized causes of occupational asthma. Many exposed workers are end-users, including autobody spray painters who form a large population at risk. Neither the factors which determine incidence rate nor strategies for control have been adequately studied in this setting. We have conducted a cross-sectional survey of 23 (about one in five) autobody shops in the New Haven area to determine the feasibility of clinical epidemiological studies in this population. Among 102 workers, there was a high rate of airway symptoms consistent with occupational asthma (19.6%). Symptoms were most prevalent among those with the greatest opportunity for exposure (dedicated spray painters) and least among office workers; part-time painters had intermediate rates. Atopy was not associated with risk while smoking seemed to correlate with symptoms. Regular use of air-supplied respirators appeared to be associated with lower risk among workers who painted part- or full-time. We were unable to validate the questionnaire responses with peak expiratory flow record data attempted on a 1/3 sample of the workers. Despite intensive training and effort, subject compliance was limited. Among those who provided adequate data (24 of 38), only two demonstrated unequivocal evidence of labile airways; two others demonstrated lesser changes consistent with an occupational effect on flow rates. There was no clear association between these findings and either questionnaire responses or exposure classification. Overall, the survey suggests that there is a high prevalence of airway symptoms among workers in autobody shops, at least in part due to work-related asthma. However, there is need for both methodological and substantive research in this setting to document rates of occupational asthma and to develop a scientific basis for its effective control.

  1. Design and Development of a Continuous-Flow Countercurrent Metal Extraction System to Remove Heavy Metals from Contaminated Soils

    National Research Council Canada - National Science Library

    Neale, Christopher M. U

    1997-01-01

    .... The research focused on eight contaminated soils from Army installations and the metal extraction capabilities of eight extracting agents including HNO3, HCI, fluorosilicic acid, citric acid, EDTA, DTPA, NTA, and NaOH...

  2. Experimental CFD grade data for stratified two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, Christophe, E-mail: c.vallee@fzd.d [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, D-01314 Dresden (Germany); Lucas, Dirk; Beyer, Matthias; Pietruske, Heiko; Schuetz, Peter; Carl, Helmar [Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, D-01314 Dresden (Germany)

    2010-09-15

    1:3. The investigations focus on the flow regimes observed in the region of the elbow and of the steam generator inlet chamber, which are equipped with glass side walls. An overview of the experimental methodology and of the acquired data is given. These cover experiments without water circulation, which can be seen as test cases for CFD development, as well as counter-current flow limitation experiments, representing transient validation cases of a typical nuclear reactor safety issue.

  3. Experimental CFD grade data for stratified two-phase flows

    International Nuclear Information System (INIS)

    Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Pietruske, Heiko; Schuetz, Peter; Carl, Helmar

    2010-01-01

    :3. The investigations focus on the flow regimes observed in the region of the elbow and of the steam generator inlet chamber, which are equipped with glass side walls. An overview of the experimental methodology and of the acquired data is given. These cover experiments without water circulation, which can be seen as test cases for CFD development, as well as counter-current flow limitation experiments, representing transient validation cases of a typical nuclear reactor safety issue.

  4. Mass transfer in counter current flows

    Energy Technology Data Exchange (ETDEWEB)

    Doichinova, Maria D.; Popova, Petya G.; Boyadjiev, Christo B. [Bulgarian Academy of Science, Institute of Chemical Engineering, Sofia (Bulgaria)

    2011-07-01

    A theoretical analysis of gas-liquid counter-current flow in laminar boundary layers with flat phase boundary based on similarity variables method has been done. The obtained numerical results for the energy dissipation, mass transfer rate and their ratio are compared with analogous results for concurrent flows. A diffusion type of model is proposed for modeling of the mass transfer with chemical reaction in the column apparatuses in the cases of circulation zones. The presence of rising and descending flows (the change of the velocity direction) leads to using three coordinate systems. An iterative algorithm for the concentration distribution calculation is proposed. The influence of the zones breadths on the mass transfer efficiency in the column is investigated. Key words: efficiency, mass transfer, velocity distribution, column apparatuses, circulation zones.

  5. DSMC simulation of feed jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2011-01-01

    Feed jet flow acts an important role for the counter-current in gas centrifuge. Direct simulation Monte-Carlo (DSMC) method was adopted to simulate the structure of the radial feed jet model. By setting the proper boundary conditions and the collision model of molecules, the flow distributions of the 2D radial feed jet were acquired under different feed conditions, including the wave structure of feed jet and the profile of the flow parameters. The analyses of the calculation results note the following flow phenomena: Near the radial outflow boundary, the obvious peaks of the flow parameters exist; higher speed of feed gas brings stronger influence on the flow field of the centrifuge; including the density, pressure and velocity of the gas, the distribution of the temperature is affected by the feed jet, at the outflow boundary, temperature to double times of the average value. (authors)

  6. Improvements to TRAC models of condensing stratified flow. Pt. 1

    International Nuclear Information System (INIS)

    Zhang, Q.; Leslie, D.C.

    1991-12-01

    Direct contact condensation in stratified flow is an important phenomenon in LOCA analyses. In this report, the TRAC interfacial heat transfer model for stratified condensing flow has been assessed against the Bankoff experiments. A rectangular channel option has been added to the code to represent the experimental geometry. In almost all cases the TRAC heat transfer coefficient (HTC) over-predicts the condensation rates and in some cases it is so high that the predicted steam is sucked in from the normal outlet in order to conserve mass. Based on their cocurrent and countercurrent condensing flow experiments, Bankoff and his students (Lim 1981, Kim 1985) developed HTC models from the two cases. The replacement of the TRAC HTC with either of Bankoff's models greatly improves the predictions of condensation rates in the experiment with cocurrent condensing flow. However, the Bankoff HTC for countercurrent flow is preferable because it is based only on the local quantities rather than on the quantities averaged from the inlet. (author)

  7. Two-step purification of scutellarin from Erigeron breviscapus (vant.) Hand. Mazz. by high-speed counter-current chromatography.

    Science.gov (United States)

    Gao, Min; Gu, Ming; Liu, Chun-Zhao

    2006-07-11

    Scutellarin, a flavone glycoside, popularly applied for the treatment of cardiopathy, has been purified in two-step purification by high-speed counter-current chromatography (HSCCC) from Erigeron breviscapus (vant.) Hand. Mazz. (Deng-zhan-hua in Chinese), a well-known traditional Chinese medicinal plant for heart disease. Two solvent systems, n-hexane-ethyl acetate-methanol-acetic acid-water (1:6:1.5:1:4, v/v/v/v/v) and ethyl acetate-n-butanol-acetonitrile-0.1% HCl (5:2:5:10, v/v/v/v) were used for the two-step purification. The purity of the collected fraction of scutellarin was 95.6%. This study supplies a new alternative method for purification of scutellarin.

  8. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY

    Science.gov (United States)

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2013-01-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside (I, 20.2 mg),, syringin (II, 56.8 mg), sinapaldehyde glucoside (III, 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside (IV, 20.4 mg), and pedunculoside (V, 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1H and 13C NMR studies. Glycoside I was isolated from this plant for the first time. PMID:25132792

  9. Isolation and Purification of Oridonin from the Whole Plant of Isodon rubescens by High-Speed Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    ChunYue Yu

    2011-09-01

    Full Text Available Semi-preparative high-speed counter-current chromatography (HSCCC was successfully used for isolation and purification of oridonin from Isodon rubescens by using a two-phase-solvent system composed of n-hexane-ethyl acetate-methanol-water (2.8:5:2.8:5, v/v/v/v. The targeted compound isolated, collected and purified by HSCCC was analyzed by high performance liquid chromatography (HPLC. A total of 40.6 mg of oridonin with the purity of 73.5% was obtained in less than 100 min from 100 mg of crude Isodon rubescens extract. The chemical structure of the compound was identified by IR, 1H-NMR and 13C-NMR.

  10. ISOLATION OF GLYCOSIDES FROM THE BARKS OF ILEX ROTUNDA BY HIGH-SPEED COUNTER-CURRENT CHROMATOGRAPHY.

    Science.gov (United States)

    Wang, Chun; Chao, Zhimao; Sun, Wen; Wu, Xiaoyi; Ito, Yoichiro

    2014-04-01

    Semi-preparative and preparative high-speed counter-current chromatography (HSCCC) were successfully used for isolation of glycosides from 50% ethanol extract of the dried barks of Ilex rotunda Thunb. (Aquifoliaceae) by using a two-phase solvent system composed of ethyl acetate-n-butanol-water (1:6:7, v/v/v). From 1.0 g of the extract, syringaresinol 4',4"-di-o-β-d-glucopyranoside ( I , 20.2 mg),, syringin ( II , 56.8 mg), sinapaldehyde glucoside ( III , 26.2 mg),, syringaresinol 4'-o-β-d-glucopyranoside ( IV , 20.4 mg), and pedunculoside ( V , 45.1 mg) were obtained by one run of TBE-1000A HSCCC instrument with 1000 mL of column volume. Their structures were identified by IR, MS, and 1 H and 13 C NMR studies. Glycoside I was isolated from this plant for the first time.

  11. Application of silver ion in the separation of macrolide antibiotic components by high-speed counter-current chromatography.

    Science.gov (United States)

    Wen, Yaoming; Wang, Jiaoyan; Chen, Xiuming; Le, Zhanxian; Chen, Yuxiang; Zheng, Wei

    2009-05-29

    Three macrolide antibiotic components - ascomycin, tacrolimus and dihydrotacrolimus - were separated and purified by silver ion high-speed counter-current chromatography (HSCCC). The solvent system consisted of n-hexane-tert-butyl methyl ether-methanol-water (1:3:6:5, v/v) and silver nitrate (0.10mol/l). The silver ion acted as a pi-complexing agent with tacrolimus because of its extra side double bond compared with ascomycin and dihydrotacrolimus. This complexation modified the partition coefficient values and the separation factors of the three components. As a result, ascomycin, tacrolimus and dihydrotacrolimus were purified from 150mg extracted crude sample with purities of 97.6%, 98.7% and 96.5%, respectively, and yields over 80% (including their tautomers). These results cannot be achieved with the same solvent system but without the addition of silver ion.

  12. Isolation and Purification of Two Isoflavones from Hericium erinaceum Mycelium by High-Speed Counter-Current Chromatography.

    Science.gov (United States)

    He, Jinzhe; Fan, Peng; Feng, Simin; Shao, Ping; Sun, Peilong

    2018-03-02

    High-speed counter-current chromatography (HSCCC) was used to separate and purify two isoflavones for the first time from Hericium erinaceum ( H. erinaceum ) mycelium using a two-phase solvent system composed of chloroform-dichloromethane-methanol-water (4:2:3:2, v / v / v / v ). These two isoflavones were identified as genistein (4',5,7-trihydroxyisoflavone, C 15 H 10 O₅) and daidzein (4',7-dihydroxyisoflavone, C 15 H 10 O₄), using infrared spectroscopy (IR), electro-spary ionisation mass (ESI-MS), ¹H-nuclear magnetic resonance (NMR) and 13 C-NMR spectra. About 23 mg genistein with 95.7% purity and 18 mg daidzein with 97.3% purity were isolated from 150 mg ethanolic extract of H. erinaceum mycelium. The results demonstrated that HSCCC was a feasible method to separate and purify genistein and daidzein from H. erinaceum mycelium.

  13. Mathematical simulation and calculation of the continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Guryanova, L.N.; Baturova, L.L.; Venetsianov, E.V.; Ivanov, V.A.; Nikolaev, N.P.

    1993-01-01

    The program open-quotes Countercurrentclose quotes is developed for the simulation of a continuous ion-exchange extraction of strontium from strongly mineralized NaCl and CaCl 2 solutions using a KB-4 carboxylic cation-exchanger in the countercurrent columns. The program allows one to Calculate the conditions of Ca and Sr separation depending on the mode of operation at the sorption and regeneration stages, the residual Sr content on the overloaded sorbent, and the Sr separation on incompletely regenerated KB-4. It also makes it possible to find the optimal separation conditions. The program open-quotes Countercurrentclose quotes can be also used to simulate other ion-exchange processes

  14. Discussion of various flow calculation methods in high-speed centrifuges

    International Nuclear Information System (INIS)

    Louvet, P.; Cortet, C.

    1979-01-01

    The flow in high-speed centrifuges for the separation of uranium isotopes has been studied in the frame of linearized theory for long years. Three different methods have been derived for viscous compressible flow with small Ekman numbers and high Mach numbers: - numerical solution of flow equation by finite element method and Gaussian elimination (Centaure Code), - boundary layer theory using matched asymptotic expansions, - the so called eigenfunction method slightly modified. The mathematical assumptions, the easiness and the accuracy of the computations are compared. Numerical applications are performed successively for thermal countercurrent centrifuges with or without injections

  15. Advances in gas-liquid flows 1990

    International Nuclear Information System (INIS)

    Kim, J.M.; Hashemi, A.

    1990-01-01

    Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows

  16. Using an aqueous two-phase polymer-salt system to rapidly concentrate viruses for improving the detection limit of the lateral-flow immunoassay.

    Science.gov (United States)

    Jue, Erik; Yamanishi, Cameron D; Chiu, Ricky Y T; Wu, Benjamin M; Kamei, Daniel T

    2014-12-01

    The development of point-of-need (PON) diagnostics for viruses has the potential to prevent pandemics and protects against biological warfare threats. Here we discuss the approach of using aqueous two-phase systems (ATPSs) to concentrate biomolecules prior to the lateral-flow immunoassay (LFA) for improved viral detection. In this paper, we developed a rapid PON detection assay as an extension to our previous proof-of-concept studies which used a micellar ATPS. We present our investigation of a more rapid polymer-salt ATPS that can drastically improve the assay time, and show that the phase containing the concentrated biomolecule can be extracted prior to macroscopic phase separation equilibrium without affecting the measured biomolecule concentration in that phase. We could therefore significantly decrease the time of the diagnostic assay with an early extraction time of just 30 min. Using this rapid ATPS, the model virus bacteriophage M13 was concentrated between approximately 2 and 10-fold by altering the volume ratio between the two phases. As the extracted virus-rich phase contained a high salt concentration which destabilized the colloidal gold indicator used in LFA, we decorated the gold nanoprobes with polyethylene glycol (PEG) to provide steric stabilization, and used these nanoprobes to demonstrate a 10-fold improvement in the LFA detection limit. Lastly, a MATLAB script was used to quantify the LFA results with and without the pre-concentration step. This approach of combining a rapid ATPS with LFA has great potential for PON applications, especially as greater concentration-fold improvements can be achieved by further varying the volume ratio. Biotechnol. Bioeng. 2014;111: 2499-2507. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  17. Matching the reaction-diffusion simulation to dynamic [18F]FMISO PET measurements in tumors: extension to a flow-limited oxygen-dependent model.

    Science.gov (United States)

    Shi, Kuangyu; Bayer, Christine; Gaertner, Florian C; Astner, Sabrina T; Wilkens, Jan J; Nüsslin, Fridtjof; Vaupel, Peter; Ziegler, Sibylle I

    2017-02-01

    Positron-emission tomography (PET) with hypoxia specific tracers provides a noninvasive method to assess the tumor oxygenation status. Reaction-diffusion models have advantages in revealing the quantitative relation between in vivo imaging and the tumor microenvironment. However, there is no quantitative comparison of the simulation results with the real PET measurements yet. The lack of experimental support hampers further applications of computational simulation models. This study aims to compare the simulation results with a preclinical [ 18 F]FMISO PET study and to optimize the reaction-diffusion model accordingly. Nude mice with xenografted human squamous cell carcinomas (CAL33) were investigated with a 2 h dynamic [ 18 F]FMISO PET followed by immunofluorescence staining using the hypoxia marker pimonidazole and the endothelium marker CD 31. A large data pool of tumor time-activity curves (TAC) was simulated for each mouse by feeding the arterial input function (AIF) extracted from experiments into the model with different configurations of the tumor microenvironment. A measured TAC was considered to match a simulated TAC when the difference metric was below a certain, noise-dependent threshold. As an extension to the well-established Kelly model, a flow-limited oxygen-dependent (FLOD) model was developed to improve the matching between measurements and simulations. The matching rate between the simulated TACs of the Kelly model and the mouse PET data ranged from 0 to 28.1% (on average 9.8%). By modifying the Kelly model to an FLOD model, the matching rate between the simulation and the PET measurements could be improved to 41.2-84.8% (on average 64.4%). Using a simulation data pool and a matching strategy, we were able to compare the simulated temporal course of dynamic PET with in vivo measurements. By modifying the Kelly model to a FLOD model, the computational simulation was able to approach the dynamic [ 18 F]FMISO measurements in the investigated

  18. Flow regimes

    International Nuclear Information System (INIS)

    Kh'yuitt, G.

    1980-01-01

    An introduction into the problem of two-phase flows is presented. Flow regimes arizing in two-phase flows are described, and classification of these regimes is given. Structures of vertical and horizontal two-phase flows and a method of their identification using regime maps are considered. The limits of this method application are discussed. The flooding phenomena and phenomena of direction change (flow reversal) of the flow and interrelation of these phenomena as well as transitions from slug regime to churn one and from churn one to annular one in vertical flows are described. Problems of phase transitions and equilibrium are discussed. Flow regimes in tubes where evaporating liquid is running, are described [ru

  19. New solvent systems for gradient counter-current chromatography in separation of betanin and its derivatives from processed Beta vulgaris L. juice.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Garrard, Ian; Ignatova, Svetlana; Wybraniec, Sławomir

    2015-02-06

    Betalains, natural plant pigments, are beneficial compounds due to their antioxidant and possible chemoprotective properties. A mixture of betalains: betanin/isobetanin, decarboxybetanins and neobetanin from processed red beet roots (Beta vulgaris L.) juice was separated in food-grade, gradient solvent systems using high-performance counter-current chromatography (HPCCC). The decarboxylated and dehydrogenated betanins were obtained by thermal degradation of betanin/isobetanin from processed B. vulgaris L. juice under mild conditions. Two solvent systems (differing in their composition by phosphoric acid and ethanol volume gradient) consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-1000:1300:700:2.5-10) in the 'tail-to-head' mode were run. The flow rate of the mobile phase (organic phase) was 1.0 or 2.0 ml/min and the column rotation speed was 1,600 rpm (20°C). The retention of the solvent system stationary phase (aqueous phase) was ca. 80%. The system with the acid and ethanol volume gradient consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-240:1300:700:2.5-4.5) pumped at 2.0 ml/min was the most effective for a separation of betanin/isobetanin, 17-decarboxy-betanin/-isobetanin, 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin pairs as well as neobetanin. The pigments were detected by LC-DAD and LC-MS. The results are crucial in the application of completely food-grade solvent systems in separation of food-grade compounds as well, and the systems can possibly be extended to other ionizable and polar compounds with potential health benefits. In particular, the method is applicable for the isolation and purification of betalains present in such rich sources as B. vulgaris L. roots as well as cacti fruits and Amaranthaceae flowering plants due to modification possibilities of the solvent systems polarity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The influence of knowledge flow on sustainable innovation in a project-based industry : From demonstration to limited adoption of eco-innovations

    NARCIS (Netherlands)

    Bossink, Bart

    2018-01-01

    The effect of the flow of knowledge on sustainable innovation in project-based firms in project-based industries is the subject of in-depth research in this paper. It studies the simultaneous functioning and effects of knowledge flow mechanisms on sustainable innovation in project-based firms in

  1. Efficient C1-continuous phase-potential upwind (C1-PPU) schemes for coupled multiphase flow and transport with gravity

    Science.gov (United States)

    Jiang, Jiamin; Younis, Rami M.

    2017-10-01

    In the presence of counter-current flow, nonlinear convergence problems may arise in implicit time-stepping when the popular phase-potential upwinding (PPU) scheme is used. The PPU numerical flux is non-differentiable across the co-current/counter-current flow regimes. This may lead to cycles or divergence in the Newton iterations. Recently proposed methods address improved smoothness of the numerical flux. The objective of this work is to devise and analyze an alternative numerical flux scheme called C1-PPU that, in addition to improving smoothness with respect to saturations and phase potentials, also improves the level of scalar nonlinearity and accuracy. C1-PPU involves a novel use of the flux limiter concept from the context of high-resolution methods, and allows a smooth variation between the co-current/counter-current flow regimes. The scheme is general and applies to fully coupled flow and transport formulations with an arbitrary number of phases. We analyze the consistency property of the C1-PPU scheme, and derive saturation and pressure estimates, which are used to prove the solution existence. Several numerical examples for two- and three-phase flows in heterogeneous and multi-dimensional reservoirs are presented. The proposed scheme is compared to the conventional PPU and the recently proposed Hybrid Upwinding schemes. We investigate three properties of these numerical fluxes: smoothness, nonlinearity, and accuracy. The results indicate that in addition to smoothness, nonlinearity may also be critical for convergence behavior and thus needs to be considered in the design of an efficient numerical flux scheme. Moreover, the numerical examples show that the C1-PPU scheme exhibits superior convergence properties for large time steps compared to the other alternatives.

  2. Isolation of a furan fatty acid from Hevea brasiliensis latex employing the combined use of pH-zone-refining and conventional countercurrent chromatography.

    Science.gov (United States)

    Englert, Michael; Ulms, Kerstin; Wendlinger, Christine; Vetter, Walter

    2016-02-01

    Furan fatty acids are valuable and bioactive minor fatty acids that usually contribute chromatography. A first run using pH-zone-refining countercurrent chromatography provided 48.4 mg of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid from 210 mg latex extract in a purity of 95%. The purity was increased to 99% by means of one second run in conventional countercurrent chromatography mode. The Structure and purity of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid were determined by gas chromatography coupled to mass spectrometry and (1)H and (13)C NMR spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua; Lu, Yong; Yoshioka, Kosuke; Zhang, Yangshu; Fernandez-Pello, Carlos; Chung, Suk-Ho; Fujita, Osamu

    2016-01-01

    . The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow

  4. A comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane dual-type FTS reactor in GTL technology

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, M.R.; Forghani, A.A.; Mostafazadeh, A. Khosravanipour; Shariati, A. [Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran)

    2010-01-15

    In this work, a comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane reactor for Fischer-Tropsch Synthesis (FTS) has been carried out. In both modes of operations, a system with two-catalyst bed instead of one single catalyst bed is developed for FTS reactions. In the first catalytic reactor, the synthesis gas is partly converted to products in a conventional water-cooled fixed-bed reactor, while in the second reactor which is a membrane fixed-bed reactor, the FTS reactions are completed and heat of reaction is used to preheat the feed synthesis gas to the first reactor. In the co-current mode, feed gas is entered into the tubes of the second reactor in the same direction with the reacting gas stream in shell side while in the counter-current mode the gas streams are in the opposite direction. Simulation results for both co-current and counter-current modes have been compared in terms of temperature, gasoline and CO{sub 2} yields, H{sub 2} and CO conversion, selectivity of components as well as permeation rate of hydrogen through the membrane. The results showed that the reactor in the co-current configuration operates with lower conversion and lower permeation rate of hydrogen, but it has more favorable profile of temperature. The counter-current mode of operation decreases undesired products such as CO{sub 2} and CH{sub 4} and also produces more gasoline. (author)

  5. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    OpenAIRE

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2012-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:...

  6. Flow visualization

    International Nuclear Information System (INIS)

    Weinstein, L.M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities. 8 refs

  7. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    Science.gov (United States)

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparative separation of two subsidiary colors of FD&C Yellow No. 5 (Tartrazine) using spiral high-speed counter-current chromatography.

    Science.gov (United States)

    Weisz, Adrian; Ridge, Clark D; Roque, Jose A; Mazzola, Eugene P; Ito, Yoichiro

    2014-05-23

    Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Color Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) to separate the closely related minor components Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ∼3.5% Pk5 and ∼0.7% Pk7. The separations were performed with highly polar organic/high-ionic strength aqueous two-phase solvent systems that were chosen by applying the recently introduced method known as graphic optimization of partition coefficients (Zeng et al., 2013). Multiple ∼1.0g portions of FD&C Yellow No. 5 (totaling 6.4g dye) were separated, using the upper phase of the solvent system 1-butanol/abs. ethanol/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched dye mixture (∼160mg) of which Pk5 represented ∼46% and Pk7, ∼21%. Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ∼61mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7%. Pk7 (20.7mg, ∼83% purity) was recovered from the upper phase of the column contents. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass

  9. Preparative separation of two subsidiary colors of FD&C Yellow No. 5 (Tartrazine) using spiral high-speed counter-current chromatography◊

    Science.gov (United States)

    Roque, Jose A.; Mazzola, Eugene P.; Ito, Yoichiro

    2014-01-01

    Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Colour Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) with the recently introduced highly polar organic/high-ionic strength aqueous solvent systems to separate Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ~3.5% Pk5 and ~0.7% Pk7. Multiple ~1.0 g portions of FD&C Yellow No. 5 (totaling 6.4 g dye) were separated, using the upper phase of the solvent system 1-BuOH/EtOHabs/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After applying a specially developed method for removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched mixture (~160 mg) of Pk5 and Pk7 (~46% and ~21%, respectively). Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ~ 61 mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7% (by HPLC at 254 nm). Pk7 (20.7 mg, ~83% purity) was recovered from the upper phase of the column content. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass spectrometry and several 1H and 13C nuclear magnetic resonance spectroscopic techniques (COSY, NOESY, HSQC, and HMBC). PMID:24755184

  10. The separative power of a family of idealized countercurrent gas centrifuges

    International Nuclear Information System (INIS)

    Berndt, S.

    1976-01-01

    In a gas centrifuge there are always losses of separative power caused by deviations from the ideal flow velocity distribution and the optimum radial concentration distribution, as well as by axial back diffusion and mixing of streams of different concentration. The present paper is concerned with minimizing the sum of these losses within a family of idealized centrifuges characterized by a set of predetermined axially invariant velocity distributions. A computer program has been developed to do this job. It requires a user supplied subroutine generating the admitted velocity distributions. Sample results are presented for a particular type of almost axial flow. (orig.) [de

  11. Experimental study of gas–liquid two-phase flow through packed bed under natural circulation conditions

    International Nuclear Information System (INIS)

    Chen, Shao-Wen; Miwa, Shuichiro; Griffiths, Matt

    2016-01-01

    Dry-out phenomena in packed beds or porous media may cause a significant digression of cooling/reaction performance in heat transfer/chemical reactor systems. One of the phenomena responsible for the dry-out in packed beds is known as the counter-current flow limitation (CCFL). In order to investigate the CCFL phenomena induced by gas–liquid two-phase flow in packed beds inside a pool, a natural circulation packed bed test facility was designed and constructed. A total of 27 experimental conditions covering various packing media sizes (sphere diameters: 3.0, 6.4 and 9.5 mm), packed bed heights (15, 35 and 50 cm) and water level heights (1.0, 1.5 and 2.0 m) were tested to examine the CCFL criteria with adiabatic air–water two-phase flow under natural circulation conditions. Both CCFL and flow reversal phenomena were observed, and the experimental data including instantaneous and time-averaged void fraction, differential pressure and superficial gas–liquid velocities were collected. The CCFL criteria were determined when periodical oscillations of void fraction and differential pressure appear. In addition, the Wallis correlation for CCFL was utilized for data analysis, and the Wallis coefficient, C, was determined experimentally from the packed bed CCFL tests. Compared to the existing data-sets in literature, the higher C values obtained in the present experiment suggest a possibly higher dry-out heat flux for natural circulation debris systems, which may be due to the water supply from both top and bottom surfaces of the packed beds. Considering the effects of bed height and hydraulic diameter of the packing media, a newly developed model for the Wallis coefficient, C, under natural circulation CCFL is presented. The present model can predict the experimental data with an averaged absolute error of ±7.9%. (author)

  12. Numerical Simulation of Magnetic Nanoparticles Injection into Two–phase Flow in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2017-06-09

    In this paper, the problem of magnetic nanoparticles injection into a water–oil two–phase flow under an external permanent magnetic field is investigated. The mathematical model of the problem under consideration has been developed. We treat the water-nanoparticles suspension as a miscible mixture while it is immiscible with the oil phase. The magnetized phase pressure includes an additional pressure term with the conventional thermodynamic pressure. The countercurrent imbibition flow problem is taken as an example. Physical variables including water–nanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat deposited nanoparticles are investigated under the influence of the magnetic field.

  13. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-01-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods

  14. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  15. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic-aqueous two-phase solvent systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-05-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase

  16. Isolation of Flavonoids From Wild Aquilaria sinensis Leaves by an Improved Preparative High-Speed Counter-Current Chromatography Apparatus.

    Science.gov (United States)

    Yang, Mao-Xun; Liang, Yao-Guang; Chen, He-Ru; Huang, Yong-Fang; Gong, Hai-Guang; Zhang, Tian-You; Ito, Yoichiro

    2018-01-01

    Four flavonoids including apigenin-7,4'-dimethylether, genkwanin, quercetin, and kaempferol were isolated in a preparative or semi-preparative scale from the leaves of wild Aquilaria sinensis using an improved preparative high-speed counter-current chromatography apparatus. The separations were performed with a two-phase solvent system composed of hexane-ethyl acetate, methanol-water at suitable volume ratios. The obtained fractions were analyzed by HPLC, and the identification of each target compound was carried out by ESI-MS and NMR. The yields of the above four target flavonoids were 4.7, 10.0, 11.0 and 4.4%, respectively. All these four flavonoids exhibited nitrite scavenging activities with the clearance rate of 12.40 ± 0.20%, 5.84 ± 0.03%, 28.10 ± 0.17% and 5.19 ± 0.11%, respectively. Quercetin was originally isolated from the Thymelaeaceae family, while kaempferol was isolated from the Aquilaria genus for the first time. In cytotoxicity test these two flavonoids exhibited moderate inhibitory activities against HepG2 cells with the IC50 values of 12.54 ± 1.37 and 38.63 ± 4.05 μM, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Microwave-Assisted Extraction and Purification of Arctiin and Arctigenin from Fructus Arctii by High-Speed Countercurrent Chromatography.

    Science.gov (United States)

    Lü, Haitao; Sun, Zhaoyun; Shan, Hu; Song, Jiying

    2016-03-01

    An efficient method for the rapid extraction, separation and purification of bioactive lignans, arctiin and arctigenin, from Fructus arctii by microwave-assisted extraction coupled with high-speed countercurrent chromatography was developed. The optimal extraction conditions of arctiin and arctigenin were evaluated by orthogonal array. Arctigenin could be converted from arctiin by hydrochloric acid hydrolysis. The separations were performed at a preparative scale with two-phase solvents composed of ethyl acetate-ethanol-water (5 : 1 : 5, v/v/v) for arctiin, and n-hexane-ethyl acetate-ethanol-water (4 : 4 : 3 : 4, v/v/v/v) for arctigenin. From 500 mg of crude extract sample, 122.3 mg of arctiin and 45.7 mg of arctigenin were obtained with the purity of 98.46 and 96.57%, and the recovery of 94.3 and 81.6%, respectively. Their structures were determined by comparison with the high-performance liquid chromatography retention time of standard substance as well as UV, FT-IR, electrospray ion source (ESI)-MS, (1)H-NMR and (13)C-NMR spectrum. According to the antioxidant activity assay, arctigenin had stronger 1,1-diphenyl-2-picrylhydrazyl free radicals scavenging activity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Preparative separation of polyphenols from artichoke by polyamide column chromatography and high-speed counter-current chromatography

    International Nuclear Information System (INIS)

    Shu, Xikai; Wang, Mei; Liu, Daicheng; Wang, Daijie; Lin, Xiaojing; Liu, Jianhua; Wang, Xiao; Huang, Luqi

    2013-01-01

    An efficient method for the rapid separation and purification of polyphenols from artichoke by polyamide column chromatography in combination with high-speed counter-current chromatography (HSCCC) was successfully built. The crude ethanol extracts from dry artichoke were first pre-separated by polyamide column chromatography and divided in two parts as sample 1 and sample 2. Then, the samples were further separated by HSCCC and yielded 7.8 mg of chlorogenic acid (compound I), 24.5 mg of luteolin-7-O-β-D-rutinoside (compound II), 18.4 mg of luteolin-7-O-β-D-glucoside (compound III), and 33.4 mg of cynarin (compound IV) with purity levels of 92.0%, 98.2%, 98.5%, and 98.0%, respectively, as determined by high-performance liquid chromatography (HPLC) method. The chemical structures of these compounds were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). (author)

  19. Preparative separation of polyphenols from artichoke by polyamide column chromatography and high-speed counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xikai; Wang, Mei; Liu, Daicheng [College of Life Science, Shandong Normal University, Jinan, Shandong (China); Wang, Daijie; Lin, Xiaojing; Liu, Jianhua; Wang, Xiao; Huang, Luqi, E-mail: wxjn1998@126.com [Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, Shandong (China)

    2013-09-01

    An efficient method for the rapid separation and purification of polyphenols from artichoke by polyamide column chromatography in combination with high-speed counter-current chromatography (HSCCC) was successfully built. The crude ethanol extracts from dry artichoke were first pre-separated by polyamide column chromatography and divided in two parts as sample 1 and sample 2. Then, the samples were further separated by HSCCC and yielded 7.8 mg of chlorogenic acid (compound I), 24.5 mg of luteolin-7-O-{beta}-D-rutinoside (compound II), 18.4 mg of luteolin-7-O-{beta}-D-glucoside (compound III), and 33.4 mg of cynarin (compound IV) with purity levels of 92.0%, 98.2%, 98.5%, and 98.0%, respectively, as determined by high-performance liquid chromatography (HPLC) method. The chemical structures of these compounds were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). (author)

  20. Schinus terebinthifolius countercurrent chromatography (Part II): Intra-apparatus scale-up and inter-apparatus method transfer.

    Science.gov (United States)

    Costa, Fernanda das Neves; Vieira, Mariana Neves; Garrard, Ian; Hewitson, Peter; Jerz, Gerold; Leitão, Gilda Guimarães; Ignatova, Svetlana

    2016-09-30

    Countercurrent chromatography (CCC) is being widely used across the world for purification of various materials, especially in natural product research. The predictability of CCC scale-up has been successfully demonstrated using specially designed instruments of the same manufacturer. The reality is that the most of CCC users do not have access to such instruments and do not have enough experience to transfer methods from one CCC column to another. This unique study of three international teams is based on innovative approach to simplify the scale-up between different CCC machines using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. The optimized separation methodology, recently developed by the authors (Part I), was repeatedly performed on CCC columns of different design available at most research laboratories across the world. Hexane - ethyl acetate - methanol - water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds to monitor stationary phase retention and calculate peak resolution. It has been demonstrated that volumetric, linear and length scale-up transfer factors based on column characteristics can be directly applied to different i.d., volume and length columns independently on instrument make in an intra-apparatus scale-up and inter-apparatus method transfer. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Recovery of Butanol by Counter-Current Carbon Dioxide Fractionation with its Potential Application to Butanol Fermentation

    Directory of Open Access Journals (Sweden)

    Miriam Solana

    2016-06-01

    Full Text Available A counter-current CO2 fractionation method was applied as a mean to recover n-butanol and other compounds that are typically obtained from biobutanol fermentation broth from aqueous solutions. The influence of operating variables, such as solvent-to-feed ratio, temperature, pressure and feed solution composition was experimentally studied in terms of separation efficiency, butanol removal rate, total removal and butanol concentration in the extract at the end of the continuous cycle. With respect to the temperature and pressure conditions investigated, results show that the highest separation efficiency was obtained at 35 °C and 10.34 MPa. At these operating conditions, 92.3% of the butanol present in the feed solution was extracted, and a concentration of 787.5 g·L−1 of butanol in the extract was obtained, starting from a feed solution of 20 g·L−1. Selectivity was calculated from experimental data, concluding that our column performs much better than a single equilibrium stage. When adding ethanol and acetone to the feed solution, ethanol was detected in the water-rich fraction (raffinate, whereas the highest concentration of acetone was found in the butanol rich fraction (extract.

  2. Rational approach to solvent system selection for liquid-liquid extraction-assisted sample pretreatment in counter-current chromatography.

    Science.gov (United States)

    Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi

    2017-05-15

    A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. One-step isolation of γ-oryzanol from rice bran oil by non-aqueous hydrostatic countercurrent chromatography.

    Science.gov (United States)

    Angelis, Apostolis; Urbain, Aurélie; Halabalaki, Maria; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros

    2011-09-01

    The value-added γ-oryzanol was purified in one step from crude rice bran oil (RBO) using a preparative hydrostatic countercurrent chromatography (hydrostatic CCC) method, operating in the dual mode. The fractionation was performed using a non-aqueous biphasic solvent system consisting of heptane-acetonitrile-butanol (1.8:1.4:0.7, v/v/v), leading rapidly to the target compounds. Transfer of the analytical CCC method to large-scale isolation was also carried out yielding a high quantity-high purity fraction of γ-oryzanol. In addition, a fraction of hydroxylated triterpene alcohol ferulates (polar γ-oryzanol) was clearly separated and obtained. Furthermore, a fast HPLC-APCI(±)-HRMS method was developed and applied for the identification of γ-oryzanol as well as the polar γ-oryzanol in RBO and the resulting fractions. The purity of γ-oryzanol fraction was estimated as 97% based on HPLC-APCI-HRMS analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparative separation of capsaicin and dihydrocapsaicin from Capsicum frutescens by high-speed counter-current chromatography.

    Science.gov (United States)

    Peng, Aihua; Ye, Haoyu; Li, Xia; Chen, Lijuan

    2009-09-01

    Capsaicin and dihydrocapsaicin are two main bioactive components of Capsicum frutescens and are widely used as food additives and drugs in China and India. Due to their similarity in structures, isolation of capsaicin and dihydrocapsaicin with traditional methods such as silica gel column chromatography, normal-phase thin-layer chromatography (TLC) becomes difficult. This study involves separating capsaicin and dihydrocapsaicin with sufficient purity and recovery using high-speed counter-current chromatography (HSCCC) with a solvent system composed of n-hexane-ethyl acetate-methanol-water-acetic acid (20:20:20:20:2, v/v/v/v/v). Separation parameters such as sample volume, and sample concentration were first optimized on analytical HSCCC, and then scaled up to preparative HSCCC. 0.65 g capsaicin and 0.28 g dihydrocapsaicin were obtained from 1.2 g crude extract and their purities were 98.5 and 97.8%, respectively. The recoveries of the two compounds were 86.3 and 85.4%, respectively. The purity of the isolated compounds was analyzed by high-performance liquid chromatography (HPLC) and their structures were identified by (1)H nuclear magnetic resonance (NMR) and (13)C NMR analysis.

  5. The three-dimensional model for helical columns on type-J synchronous counter-current chromatography.

    Science.gov (United States)

    Guan, Y H; van den Heuvel, Remco

    2011-08-05

    Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Multi-species counter-current diffusion model for etching depleted uranium oxide in NF3, RF glow discharge

    International Nuclear Information System (INIS)

    Saber, H.H.; El-Genk, M.S.

    1999-01-01

    Results of recent experiments investigating the decontamination of depleted UO 2 using NF 3 gas, RF gloss discharge, showed that etching rate decreased monotonically with immersion time to the end point. In addition to the formation of non-volatile reaction products on UO 2 surface, the accumulation of UF 6 in the sheath contributed to the decrease in etch rate with immersion time. To investigate the latter, a transient, multi-species, counter-current diffusion model for UO 2 etching is developed. Model results indicated that, depending on gas pressure and absorbed power, the diffusion coefficient of F in the sheath decreased at the end point by ∼15%. At 17.0 Pa and 200 W, the mole fraction of F at UO 2 surface decreased rapidly with immersion time to 61% and 86% of its initial value, after one and two characteristic etch time, respectively, it became almost zero at the end point, reached after 4--5 characteristic etch times

  7. Preparative Separation of Alkaloids from Picrasma quassioides (D. Don Benn. by Conventional and pH-Zone-Refining Countercurrent Chromatography

    Directory of Open Access Journals (Sweden)

    Qinghai Zhang

    2014-06-01

    Full Text Available Two high-speed countercurrent chromatography (HSCCC modes were compared by separation of major alkaloids from crude extract of Picrasma quassioides. The conventional HSCCC separation was performed with a two-phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (5:5:4.5:5.5, v/v/v/v with 200 mg loading. pH-Zone-refining CCC was performed with two-phase solvent system composed of petroleum ether–ethyl acetate–n-butanol–water (3:2:7:9, v/v/v/v where triethylamine (10 mM was added to the upper organic stationary phase and hydrochloric acid (5 mM was added to the lower aqueous phase with 2 g loading. From 2 g of crude extract, 87 mg of 5-methoxycanthin-6-one (a, 38 mg of 1-methoxy-β-carboline (b, 134 mg of 1-ethyl-4,8-dimethoxy-β-carboline (c, 74 mg of 1-ethoxycarbonyl-β-carboline (d, 56 mg of 1-vinyl-4,8-dimethoxy-β-carboline (e and 26 mg of 1-vinyl-4-dimethoxy-β-carboline (f were obtained with purities of over 97.0%. The results indicated that pH-zone-refining CCC is an excellent separations tool at the multigram level.

  8. Radial flow in non-extensive thermodynamics and study of particle spectra at LHC in the limit of small (q - 1)

    International Nuclear Information System (INIS)

    Bhattacharyya, Trambak; Khuntia, Arvind; Pareek, Pooja; Sahoo, Raghunath; Cleymans, Jean

    2016-01-01

    We expand the Tsallis distribution in a Taylor series of powers of (q - 1), where q is the Tsallis parameter, assuming q is very close to 1. This helps in studying the degree of deviation of transverse momentum spectra and other thermodynamic quantities from a thermalized Boltzmann distribution. After checking thermodynamic consistency, we provide analytical results for the Tsallis distribution in the presence of collective flow up to the first order of (q - 1). The formulae are compared with the experimental data. (orig.)

  9. Radial flow in non-extensive thermodynamics and study of particle spectra at LHC in the limit of small (q - 1)

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Trambak; Khuntia, Arvind; Pareek, Pooja; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Simrol (India); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)

    2016-02-15

    We expand the Tsallis distribution in a Taylor series of powers of (q - 1), where q is the Tsallis parameter, assuming q is very close to 1. This helps in studying the degree of deviation of transverse momentum spectra and other thermodynamic quantities from a thermalized Boltzmann distribution. After checking thermodynamic consistency, we provide analytical results for the Tsallis distribution in the presence of collective flow up to the first order of (q - 1). The formulae are compared with the experimental data. (orig.)

  10. Microwave plasma ion sources for selected ion flow tube mass spectrometry: Optimizing their performance and detection limits for trace gas analysis

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Dryahina, Kseniya; Smith, D.

    2007-01-01

    Roč. 267, 1-3 (2007), s. 117-124 ISSN 1387-3806 R&D Projects: GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : microwave plasma ion source * selected ion flow tube mass spectrometry * SIFT-MS * breath analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.411, year: 2007

  11. Potential of flow pre-whirl at the compressor inlet of automotive engine turbochargers to enlarge surge margin and overcome packaging limitations

    International Nuclear Information System (INIS)

    Galindo, J.; Serrano, J.R.; Margot, X.; Tiseira, A.; Schorn, N.; Kindl, H.

    2007-01-01

    Due to the packaging constraints to which turbocharged engines are submitted in passenger cars, the inlet duct of the centrifugal compressor often requires a 90 o bend. The compressor inlet perpendicular to its axis disturbs the flow and reduces the compressor performance. This paper presents an interesting solution based on a specifically designed inlet swirl-generator device (SGD) that palliates these negative effects. In addition, the SGD can be used to extend the surge margin of the compressor if the position of the SGD blades is modified in function of the reciprocating engine operation conditions. The paper describes how the swirl level and the pressure losses generated by the device have been characterized in a continuous flow test rig. After this the SGD plus a centrifugal compressor from a turbocharger unit have been tested in a specific turbocharger test bench. The results obtained show the influence of the SGD blades position on the compressor performance. In order to better understand the influence of the SGD on the turbocharger behaviour, the flow velocity triangles near the inducer have been reconstructed using an approach based on CFD calculations

  12. Direct numerical simulation of annular flows

    Science.gov (United States)

    Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  13. Ecological limit functions relating fish community response to hydrologic departures of the ecological flow regime in the Tennessee River basin, United States

    Science.gov (United States)

    Knight, Rodney R.; Murphy, Jennifer C.; Wolfe, William J.; Saylor, Charles F.; Wales, Amy K.

    2014-01-01

    Ecological limit functions relating streamflow and aquatic ecosystems remain elusive despite decades of research. We investigated functional relationships between species richness and changes in streamflow characteristics at 662 fish sampling sites in the Tennessee River basin. Our approach included the following: (1) a brief summary of relevant literature on functional relations between fish and streamflow, (2) the development of ecological limit functions that describe the strongest discernible relationships between fish species richness and streamflow characteristics, (3) the evaluation of proposed definitions of hydrologic reference conditions, and (4) an investigation of the internal structures of wedge-shaped distributions underlying ecological limit functions.Twenty-one ecological limit functions were developed across three ecoregions that relate the species richness of 11 fish groups and departures from hydrologic reference conditions using multivariate and quantile regression methods. Each negatively sloped function is described using up to four streamflow characteristics expressed in terms of cumulative departure from hydrologic reference conditions. Negative slopes indicate increased departure results in decreased species richness.Sites with the highest measured fish species richness generally had near-reference hydrologic conditions for a given ecoregion. Hydrology did not generally differ between sites with the highest and lowest fish species richness, indicating that other environmental factors likely limit species richness at sites with reference hydrology.Use of ecological limit functions to make decisions regarding proposed hydrologic regime changes, although commonly presented as a management tool, is not as straightforward or informative as often assumed. We contend that statistical evaluation of the internal wedge structure below limit functions may provide a probabilistic understanding of how aquatic ecology is influenced by altered hydrology

  14. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  15. Numerical and dimensional investigation of two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2013-04-01

    In this paper, we introduce a numerical solution of the problem of two-phase immiscible flow in porous media. In the first part of this work, we present the general conservation laws for multiphase flows in porous media as outlined in the literature for the sake of completion where we emphasize the difficulties associated with these equations in their primitive form and the fact that they are, generally, unclosed. The second part concerns the 1D computation for dimensional and non-dimensional cases and a theoretical analysis of the problem under consideration. A time-scale based on the characteristic velocity is used to transform the macroscopic governing equations into a non-dimensional form. The resulting dimensionless governing equations involved some important dimensionless physical parameters such as Bond number Bo, capillary number Ca and Darcy number Da. Numerical experiments on the Bond number effect is performed for two cases, gravity opposing and assisting. The theoretical analysis illustrates that common formulations of the time-scale forces the coefficient Da12Ca to be equal to one, while formulation of dimensionless time based on a characteristic velocity allows the capillary and Darcy numbers to appear in the dimensionless governing equation which leads to a wide range of scales and physical properties of fluids and rocks. The results indicate that the buoyancy effects due to gravity force take place depending on the location of the open boundary. © 2012 Elsevier B.V. All rights reserved.

  16. Preparative Separation of Sulfur-Containing Diketopiperazines from Marine Fungus Cladosporium sp. Using High-Speed Counter-Current Chromatography in Stepwise Elution Mode

    OpenAIRE

    Gu, Binbin; Zhang, Yanying; Ding, Lijian; He, Shan; Wu, Bin; Dong, Junde; Zhu, Peng; Chen, Juanjuan; Zhang, Jinrong; Yan, Xiaojun

    2015-01-01

    High-speed counter-current chromatography (HSCCC) was successively applied to the separation of three sulfur-containing diketopiperazines (DKPs) (including two new compounds cladosporin A (1) and cladosporin B (3), and a known compound haematocin (2)) from a marine fungus Cladosporium sp. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v) and (2:1:2:1, v/v), in stepwise elution mode, was used for HSCCC. The preparative HSCCC separation was perfor...

  17. High-speed counter-current chromatography coupled online to high performance liquid chromatography-diode array detector-mass spectrometry for purification, analysis and identification of target compounds from natural products.

    Science.gov (United States)

    Liang, Xuejuan; Zhang, Yuping; Chen, Wei; Cai, Ping; Zhang, Shuihan; Chen, Xiaoqin; Shi, Shuyun

    2015-03-13

    A challenge in coupling high-speed counter-current chromatography (HSCCC) online with high performance liquid chromatography (HPLC) for purity analysis was their time incompatibility. Consequently, HSCCC-HPLC was conducted by either controlling HPLC analysis time and HSCCC flow rate or using stop-and-go scheme. For natural products containing compounds with a wide range of polarities, the former would optimize experimental conditions, while the latter required more time. Here, a novel HSCCC-HPLC-diode array detector-mass spectrometry (HSCCC-HPLC-DAD-MS) was developed for undisrupted purification, analysis and identification of multi-compounds from natural products. Two six-port injection valves and a six-port switching valve were used as interface for collecting key HSCCC effluents alternatively for HPLC-DAD-MS analysis and identification. The ethyl acetate extract of Malus doumeri was performed on the hyphenated system to verify its efficacy. Five main flavonoids, 3-hydroxyphloridzin (1), phloridzin (2), 4',6'-dihydroxyhydrochalcone-2'-O-β-D-glucopyranoside (3, first found in M. doumeri), phloretin (4), and chrysin (5), were purified with purities over 99% by extrusion elution and/or stepwise elution mode in two-step HSCCC, and 25mM ammonium acetate solution was selected instead of water to depress emulsification in the first HSCCC. The online system shortened manipulation time largely compared with off-line analysis procedure and stop-and-go scheme. The results indicated that the present method could serve as a simple, rapid and effective way to achieve target compounds with high purity from natural products. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Sap flow measurements combining sap-flux density radial profiles with punctual sap-flux density measurements in oak trees (Quercus ilex and Quercus pyrenaica) - water-use implications in a water-limited savanna-

    Science.gov (United States)

    Reyes, J. Leonardo; Lubczynski1, Maciek W.

    2010-05-01

    Sap flow measurement is a key aspect for understanding how plants use water and their impacts on the ecosystems. A variety of sensors have been developed to measure sap flow, each one with its unique characteristics. When the aim of a research is to have accurate tree water use calculations, with high temporal and spatial resolution (i.e. scaled), a sensor with high accuracy, high measurement efficiency, low signal-to-noise ratio and low price is ideal, but such has not been developed yet. Granier's thermal dissipation probes (TDP) have been widely used in many studies and various environmental conditions because of its simplicity, reliability, efficiency and low cost. However, it has two major flaws when is used in semi-arid environments and broad-stem tree species: it is often affected by high natural thermal gradients (NTG), which distorts the measurements, and it cannot measure the radial variability of sap-flux density in trees with sapwood thicker than two centimeters. The new, multi point heat field deformation sensor (HFD) is theoretically not affected by NTG, and it can measure the radial variability of the sap flow at different depths. However, its high cost is a serious limitation when simultaneous measurements are required in several trees (e.g. catchment-scale studies). The underlying challenge is to develop a monitoring schema in which HFD and TDP are combined to satisfy the needs of measurement efficiency and accuracy in water accounting. To assess the level of agreement between TDP and HFD methods in quantifying sap flow rates and temporal patterns on Quercus ilex (Q.i ) and Quercus pyrenaica trees (Q.p.), three measurement schemas: standard TDP, TDP-NTG-corrected and HFD were compared in dry season at the semi-arid Sardon area, near Salamanca in Spain in the period from June to September 2009. To correct TDP measurements with regard to radial sap flow variability, a radial sap flux density correction factor was applied and tested by adjusting TDP

  19. Impact of Model Error on the Measurement of Flow Properties Needed to Describe Flow Through Porous Media La répercussion de l'erreur de modèle sur la mesure des propriétés d'un débit nécessaires pour décrire ce dernier à travers un milieu poreux

    Directory of Open Access Journals (Sweden)

    Bentsen R. G.

    2006-12-01

    Full Text Available Indirect methods are commonly employed to determine the fundamental flow properties needed to describe flow through porous media. Consequently, if one or more of the postulates underlying the mathematical description of such indirect methods is invalid, significant model error can be introduced into the measured value of the flow property. In particular, this study shows that effective mobility curves that include the effect of viscous coupling between fluid phases differ significantly from those that exclude such coupling. Moreover, it is shown that the conventional effective mobilities that pertain to steady-state, cocurrent flow, steady-state, countercurrent flow and pure countercurrent imbibition differ significantly. Thus, it appears that traditional effective mobilities are not true parameters; rather, they are infinitely nonunique. In addition, it is shown that, while neglect of hydrodynamic forces introduces a small amount of model error into the pressure difference curve for cocurrent flow in unconsolidated porous media, such neglect introduces a large amount of model error into the pressure difference curve for countercurrent flow in such porous media. Moreover, such neglect makes it difficult to explain why the pressure gradients that pertain to steady-state, countercurrent flow are opposite in sign. It is shown also that improper handling of the inlet boundary condition can introduce significant model error into the analysis. This is because, if a short core is used with one of the unsteady-state methods for determining effective mobility, it may take many pore volumes of injection before the inlet saturation rises to its maximal value, which is in contradiction with the usual assumption that the inlet saturation rises immediately to its maximal value. Finally, it is pointed out that, because of differences in flow regime and scale, the effective mobilities measured in the laboratory may not be appropriate for inclusion in the data

  20. Evidence of Zonal-Flow-Driven Limit-Cycle Oscillations during L-H Transition and at H-mode Pedestal of a New Small-ELM Regime in EAST

    DEFF Research Database (Denmark)

    Xu, G.; Wang, H.; Guo, H.

    Small-amplitude edge localized oscillations have been observed, for the first time, in EAST preceding the L-H transition at marginal input power, which manifest themselves as dithering in the divertor D signals at a frequency under 4 kHz, much lower than the GAM frequency. Detailed measurements...... edge turbulence in the range of 30 100 kHz and low-frequency Er oscillations. Just prior to the L-H transition, the Er oscillations often evolve into intermittent negative Er spikes. The Er oscillations, as well as the Er spikes, are strongly correlated with the turbulence driven Reynolds stress, thus...... providing a direct evidence of the zonal flows for the L-H transition at marginal input power. Furthermore, near the transition threshold sawtooth heat pulses appear to periodically enhance the dithering, finally triggering the L-H transition after a big sawtooth crash. The zonal flow induced limit...

  1. Multivariate regression applied to the performance optimization of a countercurrent ultracentrifuge - a preliminary study

    International Nuclear Information System (INIS)

    Migliavacca, Elder; Andrade, Delvonei Alves de

    2004-01-01

    In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting in order to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 173 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process control variables, which significantly influence the δU values, are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow F and cut θ . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heterocedasticity with any regression model variable. The response curves are made relating the separative power with the control variables F and θ, to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)

  2. Kinetics of 13N-ammonia uptake in myocardial single cells indicating potential limitations in its applicability as a marker of myocardial blood flow

    International Nuclear Information System (INIS)

    Rauch, B.; Helus, F.; Grunze, M.; Braunwell, E.; Mall, G.; Hasselbach, W.; Kuebler, W.

    1985-01-01

    To study kinetics and principles of cellular uptake of 13 N-ammonia, a marker of coronary perfusion in myocardial scintigraphy, heart muscle cells of adult rats were isolated by perfusion with collagenase and hyaluronidase. Net uptake of 13 N, measured by flow dialysis, reached equilibrium within 20 sec in the presence of sodium bicarbonate and carbon dioxide (pH 7.4, 37 degrees C). Total extraction, 80 sec after the reaction start, was 786 +/- 159 mumol/ml cell volume. Cells destroyed by calcium overload were unable to extract 13 N-ammonia. Omission of bicarbonate and carbon dioxide reduced total extraction to 36% of control. 13 N-Ammonia uptake could also be reduced by 50 muM 4,4' diisothiocyanostilbene 2,2' disulfonic acid, by 100 micrograms/ml 1-methionine sulfoximine, and by preincubation with 5 muM free oleic acid. These results indicate that in addition to metabolic trapping by glutamine synthetase, the extraction of 13 N-ammonia by myocardial cells is influenced by cell membrane integrity, intracellular-extracellular pH gradient, and possibly an anion exchange system for bicarbonate. For this reason, the uptake of 13 N-ammonia may not always provide a valid measurement of myocardial perfusion

  3. Separation and purification of four flavonol diglucosides from the flower of Meconopsis integrifolia by high-speed counter-current chromatography.

    Science.gov (United States)

    Huang, Yanfei; Han, Yatao; Chen, Keli; Huang, Bisheng; Liu, Yuan

    2015-12-01

    Flavonoids are the main components of Meconopsis integrifolia (Maxim.) Franch, which is a traditional Tibetan medicine. However, traditional chromatography separation requires a large quantity of raw M. integrifolia and is very time consuming. Herein, we applied high-speed counter-current chromatography in the separation and purification of flavonoids from the ethanol extracts of M. integrifolia flower. Ethyl acetate/n-butanol/water (2:3:5, v/v/v) was selected as the optimum solvent system to purify the four components, namely quercetin-3-O-β-d-glucopyrannosy-(1→6)-β-d-glucopyranoside (compound 1, 60 mg), quercetin 3-O-[2'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 2, 40 mg), quercetin 3-O-[3'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 3, 11 mg), and quercetin 3-O-[6'''-O-acetyl-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (compound 4, 16 mg). Among the four compounds, 3 and 4 were new acetylated flavonol diglucosides. After the high-speed counter-current chromatography separation, the purities of the four flavonol diglucosides were 98, 95, 90, and 92%, respectively. The structures of these compounds were identified by mass spectrometry and NMR spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Isolation of four phenolic compounds from Mangifera indica L. flowers by using normal phase combined with elution extrusion two-step high speed countercurrent chromatography.

    Science.gov (United States)

    Shaheen, Nusrat; Lu, Yanzhen; Geng, Ping; Shao, Qian; Wei, Yun

    2017-03-01

    Two-step high speed countercurrent chromatography method, following normal phase and elution-extrusion mode of operation by using selected solvent systems, was introduced for phenolic compounds separation. Phenolic compounds including gallic acid, ethyl gallate, ethyl digallate and ellagic acid were separated from the ethanol extract of mango (Mangifera indica L.) flowers for the first time. In the first step, gallic acid of 3.7mg and ethyl gallate of 3.9mg with the purities of 98.87% and 99.55%, respectively, were isolated by using hexane-ethylacetate-methanol-water (4:6:4:6, v/v) in normal phase high speed countercurrent chromatography from 200mg of crude extract, while ethyl digallate and ellagic acid were collected in the form of mixture fraction. In the second step, further purification of the mixture was carried out with the help of another selected solvent system of dichloromethane-methanol-water (4:3:2, v/v) following elusion-extrusion mode of operation. Ethyl digallate of 3.8mg and ellagic acid of 5.7mg were separated well with high purities of 98.68% and 99.71%, respectively. The separated phenolic compounds were identified and confirmed by HPLC, UPLC-QTOF/ESI-MS, 1 H and 13 C NMR spectrometric analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Isolation of sutherlandins A, B, C and D from Sutherlandia frutescens (L.) R. Br. by counter-current chromatography using spiral tubing support rotors.

    Science.gov (United States)

    Chen, Cuiping; Folk, William R; Lazo-Portugal, Rodrigo; Finn, Thomas M; Knight, Martha

    2017-07-28

    Spiral countercurrent-chromatography has great potential for improving the capacity and efficiency of purification of secondary metabolites, and here we describe applications useful for the isolation of flavonoids from the widely used South African medicinal plant, Sutherlandia frutescens (L.) R. Br. In the spiral tubing support rotor, STS-4 for high-speed counter-current chromatography, several polar butanol aqueous solvent systems were selected using a logK plot, and the novel flavonol glycosides (sutherlandins A-D) were well separated by the optimized solvent system (ethyl acetate:n-butanol:acetic acid:water; 5:1:0.3:6 by vol.). The yield of purified flavonoids from 0.9g extract varied from 8.6mg to 54mg of the sutherlandins for a total of 85.3mg. The same extract was fractionated in the new STS-12 rotor of the same outside dimensions but with more radial channels forming 12 loops of the tubing instead of 4. The rotor holds more layers and increased length of tubing. From 0.9g extract the STS-12 rotor yielded more recovery of 110.4mg total with amounts varying from 11.2mg to 64mg of the sutherlandins and apparent increased separation efficiency as noted by less volume of each fraction peak. Thus from 1-g amounts of extract, good recovery of the flavonoids was achieved in the butanol aqueous solvent system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A single photon emission computed tomograph based on a limited dumber of detectors for fluid flow visualization; Tomographie d'emission gamma a partir d'un nombre limite de detecteurs appliquee a la visualisation d'ecoulements

    Energy Technology Data Exchange (ETDEWEB)

    Legoupil, S

    1999-07-01

    We present in this work a method for fluid flow visualization in a system using radioactive tracers. The method is based on single photon emission computed tomography techniques, applied to a limited number of discrete detectors. We propose in this work a method for the estimation of the transport matrix of photons, associated to the acquisition system.This method is based on the modelization of profiles acquired for a set of point sources located in the imaged volume. Monte Carlo simulations allow to separate scattered photons from those directly collected by the system. The influence of the energy tracer is exposed. The reconstruction method is based on the maximum likelihood - expectation maximization algorithm. An experimental device, based on 36 detectors was realised for the visualization of water circulation in a vessel. A video monitoring allows to visualize the dye water tracer. Dye and radioactive tracers are injected simultaneously in a water flow circulating in the vessel. Reconstructed and video images are compared. Quantitative and qualitative analysis show that fluid flow visualization is feasible with a limited number of detectors. This method can be applied for system involving circulations of fluids. (author)

  7. Turbulence Considerations for Comparing Ecosystem Exchange over Old-Growth and Clear-Cut Stands For Limited Fetch and Complex Canopy Flow Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Schroeder, M; Paw U, K T; Falk, M; Bible, K

    2009-01-08

    Carbon dioxide, water vapor and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early seral (ES). Here we present eddy flux and meteorological data from two early seral stands and the Wind River AmeriFlux old-growth forest during the growing season (March-October) in 2006 and 2007. We show an alternative approach to the usual friction velocity (u*) method for determining periods of adequate atmospheric boundary layer (ABL) mixing based on the ratio of mean horizontal ({bar u}) and vertical ({bar w}) wind flow to a modified turbulent kinetic energy scale (uTKE). This new parameter in addition to footprint modeling showed that daytime CO{sub 2} fluxes (F{sub NEE}) in small clear-cuts (< 10 hectares) can be measured accurately with EC if micrometeorological conditions are carefully evaluated. Peak midday CO{sub 2} fluxes (F{sub NEE} = -14.0 to -12.3 {micro}mol m{sup -2} s{sup -1}) at OG were measured in April in both 2006 and 2007 before bud break when air and soil temperatures and vapor pressure deficit were relatively low, and soil moisture and light levels were favorable for photosynthesis. At the early seral stands, peak midday CO{sub 2} fluxes (F{sub NEE} = -11.0 to -8.7 {micro}mol m{sup -2} s{sup -1}) were measured in June and July while spring-time CO{sub 2} fluxes were much smaller (F{sub NEE} = -3.8 to -3.6 {micro}mol m{sup -2} s{sup -1}). Overall, we measured lower evapotranspiration (OG = 230 mm; ES = 297 mm) higher midday F{sub NEE} (OG F{sub NEE} = -9.0 {micro}mol m{sup -2} s{sup -1}; ES F{sub NEE} = -7.3 {micro}mol m{sup -2} s{sup -1}) and higher Bowen ratios (OG {beta} = 2.0. ES {beta} = 1.2) at the old-growth forest than at the ES sites during the summer months (May-August). Eddy covariance studies such as ours

  8. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography.

    Science.gov (United States)

    Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef

    2009-10-09

    Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also

  9. Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography.

    Science.gov (United States)

    Spórna-Kucab, Aneta; Ignatova, Svetlana; Garrard, Ian; Wybraniec, Sławomir

    2013-12-15

    Two mixtures of decarboxylated and dehydrogenated betacyanins from processed red beet roots (Beta vulgaris L.) juice were fractionated by high performance counter-current chromatography (HPCCC) producing a range of isolated components. Mixture 1 contained mainly betacyanins, 14,15-dehydro-betanin (neobetanin) and their decarboxylated derivatives while mixture 2 consisted of decarboxy- and dehydro-betacyanins. The products of mixture 1 arose during thermal degradation of betanin/isobetanin in mild conditions while the dehydro-betacyanins of mixture 2 appeared after longer heating of the juice from B. vulgaris L. Two solvent systems were found to be effective for the HPCCC. A highly polar, high salt concentration system of 1-PrOH-ACN-(NH4)2SO4 (satd. soln)-water (v/v/v/v, 1:0.5:1.2:1) (tail-to-head mode) enabled the purification of 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin and neobetanin (all from mixture 1) plus 17-decarboxy-neobetanin, 2,15,17-tridecarboxy-2,3-dehydro-neobetanin, 2-decarboxy-neobetanin and 2,15,17-tridecarboxy-neobetanin (from mixture 2). The other solvent system included heptafluorobutyric acid (HFBA) as ion-pair reagent and consisted of tert-butyl methyl ether (TBME)-1-BuOH-ACN-water (acidified with 0.7% HFBA) (2:2:1:5, v/v/v/v) (head-to-tail mode). This system enabled the HPCCC purification of 2,17-bidecarboxy-betanin/-isobetanin and neobetanin (from mixture 1) plus 2,15,17-tridecarboxy-2,3-dehydro-neobetanin, 2,17-bidecarboxy-2,3-dehydro-neobetanin and 2,15,17-tridecarboxy-neobetanin (mixture 2). The results of this research are crucial in finding effective isolation methods of betacyanins and their derivatives which are meaningful compounds due their colorant properties and potential health benefits regarding antioxidant and cancer prevention. The pigments were detected by LC-DAD and LC-MS/MS techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Be-limiter experiment on ISX

    International Nuclear Information System (INIS)

    Mioduszewski, P.K.

    1984-01-01

    The relevance of this experiment to the JET experiment is described. Data on the following issues are given: (1) thermo-mechanical properties of the Be-limiter; (2) particle flow to limiter; (3) heat flow to the limiter; (4) limiter-plasma-wall interaction; (5) plasma properties/operation; (6) active control of plasma-limiter operation; and (7) fault conditions

  11. Characterization of phosphofructokinase activity in Mycobacterium tuberculosis reveals that a functional glycolytic carbon flow is necessary to limit the accumulation of toxic metabolic intermediates under hypoxia.

    Directory of Open Access Journals (Sweden)

    Wai Yee Phong

    Full Text Available Metabolic versatility has been increasingly recognized as a major virulence mechanism that enables Mycobacterium tuberculosis to persist in many microenvironments encountered in its host. Glucose is one of the most abundant carbon sources that is exploited by many pathogenic bacteria in the human host. M. tuberculosis has an intact glycolytic pathway that is highly conserved in all clinical isolates sequenced to date suggesting that glucose may represent a non-negligible source of carbon and energy for this pathogen in vivo. Fructose-6-phosphate phosphorylation represents the key-committing step in glycolysis and is catalyzed by a phosphofructokinase (PFK activity. Two genes, pfkA and pfkB have been annotated to encode putative PFK in M. tuberculosis. Here, we show that PFKA is the sole PFK enzyme in M. tuberculosis with no functional redundancy with PFKB. PFKA is required for growth on glucose as sole carbon source. In co-metabolism experiments, we report that disruption of the glycolytic pathway at the PFK step results in intracellular accumulation of sugar-phosphates that correlated with significant impairment of the cell viability. Concomitantly, we found that the presence of glucose is highly toxic for the long-term survival of hypoxic non-replicating mycobacteria, suggesting that accumulation of glucose-derived toxic metabolites does occur in the absence of sustained aerobic respiration. The culture medium traditionally used to study the physiology of hypoxic mycobacteria is supplemented with glucose. In this medium, M. tuberculosis can survive for only 7-10 days in a true non-replicating state before death is observed. By omitting glucose in the medium this period could be extended for up to at least 40 days without significant viability loss. Therefore, our study suggests that glycolysis leads to accumulation of glucose-derived toxic metabolites that limits long-term survival of hypoxic mycobacteria. Such toxic effect is exacerbated when

  12. Three-Phase Flow and Capillarity in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Helset, H.M.

    1996-06-01

    Multiphase flow occurs in most production operations on the reservoir rock of an oil field. Three-phase flow occurs in many oil recovery processes, such as gas or water alternating gas injection into water flooded reservoirs, thermal oil recovery and surfactant flooding. In this doctoral thesis, three-phase flow in porous media is modeled using the method of characteristics and simple wave theory. The general mathematical methods are used to model different flow processes: secondary migration of hydrocarbons, gravity segregated three-phase flow, and displacement experiments for relative permeabilities. The main conclusions from applying the methods to the migration process through a water-saturated carrier bed to a partially permeable seal are: (1) the three-phase solutions are generally dominated by the very low gas viscosity and gas density, (2) countercurrent flow and interference between the gas and oil mobilities can lead to trapping in situations where the permeability contrast between the seal and the carrier bed is insufficient to trap oil alone, (3) zones in which pressures exceed those from hydrostatic gradients (overpressured zones) exist even when the permeability contrast between the seal and the carrier bed is modest. The discussion of gravity segregated flow identifies stable displacement fronts, which usually occur only for a single value of the gas-water injection ratio. The new method developed for interpreting displacement experiments, with capillary pressure included, is based on the travelling wave solution of the flow equations. 185 refs., 69 figs., 5 tabs.

  13. Tests of the TRAC code against known analytical solutions for stratified flow

    International Nuclear Information System (INIS)

    Black, P.S.; Leslie, D.C.; Hewitt, G.F.

    1987-01-01

    The area averaged equations for gas-liquid flow are briefly summarized and related, for the specific case of stratified flow, to the shallow water equations commonly used in hydraulics. These equations are then compared to the equations used in TRAC-PF/MOD1 and are shown to differ in their treatment of the gravity head terms. A modification of the TRAC code is therefore necessary to bring it into line with established shallow water theory. The corrected form of the code was compared with a number of specific cases, each of which throws further light on the code behavior. The following areas are discussed in the paper: (1) the dam break problem; (2) Kelvin-Helmholtz instability; (3) counter-current flow; and (4) slug flow. It is concluded that detailed comparisons of the code with known analytic solutions and with a number of the more complex phenomenological experiments can give useful insights into its behavior

  14. Design of a novel coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with organic-aqueous two-phase solvent systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-01-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1 = ω2 + ω3. This relation enabled to lay out the flow tube by two different ways, the SS type and the JS type. In the SS type, the flow tube was introduced from the upper side of the apparatus into the sun axis of the first rotary frame and connected to the planet axis of the second rotary frame like a double letter SS. In the JS type, the flow tube was introduced from the bottom of the apparatus into the sun axis reaching the upper side of the planet axis an inversed letter J, followed by distribution as in the SS type. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for lower phase mobile and (1 : 4 : 5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) – CCW (ω2) – CCW (ω3) by the JS type flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) – CW (ω2) – CW (ω3) by the JS type flow tube distribution. A series of experiments on peak resolution and

  15. Flow patterns in vertical two-phase flow

    International Nuclear Information System (INIS)

    McQuillan, K.W.; Whalley, P.B.

    1985-01-01

    This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow patter maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained

  16. Experimental investigation and physical description of stratified flow in horizontal channels

    International Nuclear Information System (INIS)

    Staebler, T.

    2007-05-01

    The interaction between a liquid film and turbulent gas flows plays an important role in many technical applications (e.g. in hydraulic engineering, process engineering and nuclear engineering). The local kinematic and turbulent time-averaged flow quantities for counter-current stratified flows (supercritical and subcritical flows with and without flow reversal) have been measured for the first time. Therefore, the method of Particle Image Velocimetry was applied. By using fluorescent particles in combination with an optical filter it was possible to determine the flow quantities of the liquid phase up to the free surface. Additionally, the gaseous phase was investigated by using the scattering of light of conventional particles. With a further measurement technique the void fraction distribution along the channel height has been determined. For this purpose, a single-tip conductivity probe was developed. Furthermore, water delivery rates and pressure losses along the test section were measured over a wide range of parameters. The measurements also revealed new details on the hysteresis effect after the occurrence of flow reversal. The experimental findings were used to develop and validate a statistical model in which the liquid phase is considered to be an agglomeration of interacting particles. The statistical consideration of the particle interactions delivers a differential equation which can be used to predict the local void fraction distribution with the local turbulent kinematic energies of the liquid phase. Beyond that, an additional statistical description is presented in which the probability density functions of the local void fraction are described by beta-functions. Both theoretical approaches can be used for numerical modelling whereas the statistical model can be used to describe the phase interactions and the statistical description to describe the turbulent fluctuations of the local void fraction. Thus, this work has made available all necessary

  17. Hybrid upwind discretization of nonlinear two-phase flow with gravity

    Science.gov (United States)

    Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.

    2015-08-01

    Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit

  18. Preparative separation and purification of bufadienolides from ChanSu by high-speed counter-current chromatography combined with preparative HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jialian; Zhang, Yongqing, E-mail: fleiv@163.com [College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong (China); Lin, Yunliang; Wang, Xiao; Fang, Lei; Geng, Yanling [Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, Shandong (China); Zhang, Qinde [Shandong College of Traditional Chinese Medicine, Laiyang, Shandong (China)

    2013-09-01

    Eight bufadienolides were successfully isolated and purified from ChanSu by high-speed counter-current chromatography (HSCCC) combined with preparative HPLC (prep-HPLC). First, a stepwise elution mode of HSCCC with the solvent system composed of petroleum ether-ethyl acetate-methanol-water (4:6:4:6, 4:6:5:5, v/v) was employed and four bufadienolides, two partially purified fractions were obtained from 200 mg of crude extract. The partially purified fractions III and VI were then further separated by prepHPLC, respectively, and another four bufadienolides were recovered. Their structures were confirmed by ESI-MS and {sup 1}H-NMR spectra. (author)

  19. Preparative separation of C{sub 19}-diterpenoid alkaloids from Aconitum carmichaelii Debx by pH zone-refining counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dahui [Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming (China); Shu, Xikai; Wang, Xiao; Fang, Lei; Huang, Luqi, E-mail: wxjn1998@126.com [Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, Shandong (China); Xi, Xingjun; Zheng, Zhenjia [China National institute of Standardization, Beijing (China)

    2013-11-01

    The technique of pH-zone-refining counter-current chromatography was successfully applied to preparatively separate three C{sub 19}-diterpenoid alkaloids from the crude extracts of Aconitum carmichaelii for the first time using a two-phase solvent system of petroleum ether-ethyl acetate-methanol-water (5:5:1:9, v/v/v/v). Mesaconitine (I), hypaconitine (II), and deoxyaconitine (III) were obtained from 2.5 g of the crude alkaloids in a one-step separation; the yields were 4.16%, 16.96%, and 5.05%, respectively. The purities of compounds I, II, and III were 93.0%, 95%, and 96%, respectively, as determined by HPLC. The chemical structures of the three compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and NMR. (author)

  20. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    International Nuclear Information System (INIS)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao; Zhang, Jinjie; Qiu, Jiying

    2012-01-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and 13 C-NMR. (author)