Coulomb nuclear interference with deuterons in even palladium isotopes
International Nuclear Information System (INIS)
Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Ukita, G.M.
2004-01-01
Angular distributions for the inelastic scattering of 13.0 MeV deuterons on 104,106,108,110 Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12 0 ≤θ lab ≤64 0 . A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = δ LC /δ LN , the ratio of charge to isoscalar deformation lengths, and of (δ LN ) 2 were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For 104 Pd, and preliminary for 108 Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for 106 Pd, C = 1.06(3) and for 110 Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)
Coulomb nuclear interference with deuterons in even palladium isotopes
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M. [Sao Paulo Univ., SP (Brazil); Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia
2004-09-15
Angular distributions for the inelastic scattering of 13.0 MeV deuterons on {sup 104,106,108,110}Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12{sup 0} {<=}{theta}{sub lab} {<=}64{sup 0}. A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = {delta}{sub LC}/{delta}{sub LN}, the ratio of charge to isoscalar deformation lengths, and of ({delta}{sub LN}){sup 2} were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For {sup 104}Pd, and preliminary for {sup 108}Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for {sup 106}Pd, C = 1.06(3) and for {sup 110}Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)
Coulomb-nuclear interference measurements of hexadecapole deformations in 168Yb and 178,180Hf
International Nuclear Information System (INIS)
Nettles, W.G.; Mississippi Coll., Clinton; Ramayya, A.V.; Hamilton, J.H.
1988-01-01
Coulomb-nuclear interference studies of 168 Yb and 178,180 Hf have been carried out with alpha particles from the Pittsburgh tandem. From coupled channel fits to the data at 18 MeV for 168 Yb and 19.5 MeV for 178,180 Hf, β 4 c values of -0.030(20), -0.166(18), and -0.180(6) were obtained, respectively. These data agree with the positive M 04 value from sub-Coulomb studies of 168 Yb but with the large negative M 04 values from sub-Coulomb studies of 178,180 Hf. (author)
Interference of Coulomb and nuclear excitation in inelastic scattering of 20Ne from 40Ca
International Nuclear Information System (INIS)
Ratel, Guy.
1976-01-01
Angular distributions at 54 and 63MeV and excitation functions from 35 to 95MeV for the elastic and inelastic scattering of 20 Ne by 40 Ca have been measured. Experimental data for the inelastic scattering leading to the 20 Ne (2 + , 1.63MeV) state show a characteristic minimum for the angular distributions and excitation functions. This phenomenon was explained by an interference effect between Coulomb and nuclear excitation amplitudes with the DWBA and the coupled-channel formalism. The existence of this interference minimum could be explained only by assuming a nuclear deformation stronger than these obtained with light ion scattering. However a small shift between the experimental data and theoretical curves suggests that effects of a stronger complex coupling or nuclear reorientation due to the large quadrupole moment of 20 Ne must be included [fr
Coulomb and nuclear components of the breakup, their interference and effect on the fusion process
International Nuclear Information System (INIS)
Gomes, P R S; Lubian, J; Canto, L F; Otomar, D R; Hussein, M S
2015-01-01
We discuss reaction mechanisms involving weakly bound nuclei, at near barrier energies, and the couplings between different reaction channels. This paper may be thought as a brief description of state of the art of this field, particularly on breakup reactions and their influence on the fusion cross section. Recent experimental and theoretical results are presented, including the interference between Coulomb and nuclear components of the breakup and the systematics so far reached on the static effects due to the characteristic of weakly bound nuclei, especially halo-nuclei and the dynamic effects of the breakup coupling on the fusion cross section. (paper)
Energy dependence of the Coulomb-nuclear interference at small momentum transfers
International Nuclear Information System (INIS)
Selyugin, O.V.
1997-01-01
The analyzing power of the elastic proton-proton scattering at small momentum transfers and the effect of the Coulomb-nuclear interference are examined on the basis of the available experimental data at p L from 6 up to 200 GeV/c taking account of a phenomenological analysis at p L =6 GeV/c and of the dynamic high energy spin model. The structure of the spin-dependent elastic scattering amplitude at small momentum transfers is obtained. The predictions for the analyzing power at RHIC energies are made
The Coulomb-nuclear force interference in the system 32S + 60Ni
International Nuclear Information System (INIS)
Dannhaeuser, G.
1980-01-01
For the reaction 60 Ni( 32 S, 32 S*) 60 Ni* using particle-γ-coincidences the excitation functions of 32 S(2 + 1 ) and 60 Ni(2 + 1 ) for projectile energies of 70-100 MeV as well as with Si single counters the angular distribution of the elastically and inelastically scattered 32 S ions for incident energies of 90, 95, and 100 MeV were measured. A comparison of the measurements with the results of different computer codes led to following results: 1.) At the determination of the static quadrupole moment Q 2 of 32 S using the reorientation effect the influence of the nuclear force can be neglected for projectile energies Esub(P) 32 S the value Q 2 = -0.18 +- 0.04 eb was found. (Hereby destructive interference with the virtual excitation of the 2 + 2 -state is assumed). 3.) For projectile energies Esub(P) >= 72 MeV at which the excitation by nuclear forces was small against the Coulomb excitation, an evaluation of the excitation function of 32 S(2 + 1 ) by the semiclassical code NCL, which regards the influence of the nuclear interaction approximatively, yielded values for the static quadrupole moment, which agree within the measurement errors with the above value. 4.) For the quantitative analysis of the measured angular distributions a quantum mechanical CC-code was required. 5.) Using the semiclassical CC-code NCL an illustrative and detailed interpretation of the excitation functions of 32 S(2 + 1 ) and 60 Ni(2 + 1 ) could be given. 6.) The code NCL allows the study of the influence of the Coulomb-nuclear force interference on the temporal behaviour of the excitation process. 7.) Using the code NCL the angular distribution of the decay γ quanta for a fixed particle-scattering angle theta approx. 0 in dependence on the incident energy was calculated. (orig.) [de
Coulomb-nuclear interference in the inelastic scattering of 6Li on 76Ge
International Nuclear Information System (INIS)
Zhang, X X; Rodrigues, M R D; Borello-Lewin, T; Rodrigues, C L; Benevides, L R B; Duarte, J L M; Horodynski-Matsushigue, L B; Ukita, G M
2015-01-01
Angular distribution for the inelastic scattering of 28 MeV 6 Li on 76 Ge was measured using the Sao Paulo PelletronEngeSplit-pole Spectrograph facility. The coulomb-nuclear interference (CNI) analysis was applied to the first quadrupole state transition. The values of C L = δ C L /δ N L , the ratio of charge to isoscalardeformation lengths, and of (δ N L 0 2 were extracted through the comparison of experimental and DWBA-DOMP predicted cross section. The ratio of reduced charge to isoscalartransition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C L and were thus obtained with the advantage of scale uncertainties cancellation. The value of C 2 = 1.10(2) obtained indicate a slight predominance of the protons relative to the neutrons for 76 Ge. (paper)
Effect of the moment-of-inertia variation on Coulomb-nuclear interference in heavy ion scattering
International Nuclear Information System (INIS)
Bolotin, Yu.L.; Gonchar, V.Yu.; Inopin, E.V.; Chekanov, N.A.
1987-01-01
Effect of moment-of-inertia (MI) variation on probabilities of the Coulomb excitation of nucleus rotational states (RS) is investigated. The calculation is performed in the generalized quasiclassical approximation. Cillisions with an aimed parameter equal to 0 and recording of scattered ion at angles close to 180 deg were considered. Effect of MI dependence on angular momentum (AM) on the RS Coulomb excitation probability in the 86 Kr+ 238 U process at 400 MeV 86 Kr has been studied. For small AMs (I < 10), when the MI variation can be neglected, the Coulomb-nuclear interference leads to a marked shift of RS excitation probability maxima. However, with increasing transferred AM the convergence of probabilities conditioned with mutual compensation of phases shift related to the MI variation and Coulomb-nucleus interference, is noted. It is also noted that correct parameters of deformed nuclei extracted from experiments on the Coulomb excitation of high-spin states can be obtained only during simultaneous accountancy of both the Coulomb-nuclear interference and the MI variation of excited nuclei
Examination of the Coulomb-nuclear interference in inelastic scattering of 6Li in 76Ge
International Nuclear Information System (INIS)
Zhang, Xinxin
2015-01-01
The inelastic scattering of 28,0 MeV 6 Li on 76 Ge in the excitation of the 2 + 1 state, has been studied with the Coulomb-Nuclear Interference (CNI) analysis. The data were measured at the Pelletron-Enge-Spectrograph facility at LAFN-IFUSP. A solid-state position sensitive silicon detector (PSD) (500μm thickness and 47 × 8 mm 2 area) was used to measure the data at the spectrometer focal plane. Digital pulse processing (DPP) was implemented in the acquisition system. Twenty-six spectra were measured at carefully chosen scattering angles in the range of 10 deg ≤ θ Lab ≤ 55 deg to obtain an angular distribution. The analysis was performed with the Distorted Wave Born Approximation (DWBA) and applied for the nuclear transition potential, the Deformed Optical Potential Model (DOMP), under well-established global optical parameters. The fit of the predicted cross sections to the experimental data through χ 2 minimization, using the iterative method of Gauss, allowed for the extraction of the correlated parameters, δ N 2 , the mass deformation length, and C 2 = Ν C 2 /δ N 2 , the ratio between charge and mass deformation lengths. The correlated parameters obtained in the present work were C 2 = 1,101 (20) and δ N 2 = 1,08(21)fm. Statistical tests, through a Monte Carlo simulation of 5000 new data sets, validated the method employed in the correlated parameters fit. The methodology applied for the CNI analysis allowed the extraction of ratio B(EL)/B(ISL), which is proportional to the square of C 2 , with a good precision due to the scale uncertainties cancellation of the absolute cross sections. The values of B(IS2) and of the ratios B(E2)/B(IS2) obtained in the present work have not been reported before and allow the study of the evolution of the collectivity throughout the even-A germanium chain together with former results obtained for the 70 , 72 , 74 Ge isotopes. The results along the chain indicate that although the protons relative to the neutrons
Energy Technology Data Exchange (ETDEWEB)
Akchurin, N; Onel, Y [Iowa Univ., Iowa City, IA (USA). Dept. of Physics; Carey, D; Coleman, R; Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (USA); Corcoran, M D; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Phillips, G C; Roberts, J B; White, J L [Rice Univ., Houston, TX (USA). Bonner Nuclear Labs.; Derevschikov, A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Gazzaly, M M [Minnesota Univ., Minneapolis (USA). Dept. of Physics; Grosnick, D P; Hill, D; Laghai, M; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (USA); Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Takeutchi, F; Tamura, N; Yoshida, T [Kyoto Univ. (Japan); Kuroda, K; Michalowicz, A [Institut National de Physique Nucleaire et de Physique des Particules, 74 - Annecy-le-Vieux (France). Lab. de P; E-581/704 Collaboration
1989-10-12
The analyzing power A{sub N} of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon scattering in the Coulomb-nuclear interference region has been measured using the 185 GeV/c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties. (orig.).
International Nuclear Information System (INIS)
Rodrigues, C.L.; Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Hanninger, G.N.; Ukita, G.M.
2004-01-01
The study of the odd 99,101 Ru nuclei complements the investigation of the collectivity of the first quadrupolar excitations in 100,102,104 Ru. Angular distributions for the 99,101 Ru(d, d') reactions at 13 MeV were obtained in the Pelletron Laboratory using nuclear emulsion plates on the focal plane of the Enge spectrograph. A Coulomb- Nuclear Interference analysis employing DWBA-DOMP predictions with global optical potential parameters was applied to the excitation of states which could belong to the multiplet built on the first quadrupolar excitation of the core. In the analysis, three states were identified for each of the isotopes and associated, respectively, with adopted levels in the Nuclear Data Sheets Compilation of Jπ = 5=2 + , 7=2 + and 9=2 + . Through the comparison of experimental and predicted cross section angular distributions, the values of (δ L N ) 2 and of the ratio C = δ L C /δ L N were obtained. (author)
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, C.L.; Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Hanninger, G.N. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia
2004-09-15
The study of the odd {sup 99,101}Ru nuclei complements the investigation of the collectivity of the first quadrupolar excitations in {sup 100,102,104}Ru. Angular distributions for the {sup 99,101}Ru(d, d') reactions at 13 MeV were obtained in the Pelletron Laboratory using nuclear emulsion plates on the focal plane of the Enge spectrograph. A Coulomb- Nuclear Interference analysis employing DWBA-DOMP predictions with global optical potential parameters was applied to the excitation of states which could belong to the multiplet built on the first quadrupolar excitation of the core. In the analysis, three states were identified for each of the isotopes and associated, respectively, with adopted levels in the Nuclear Data Sheets Compilation of J{pi} = 5=2{sup +}, 7=2{sup +} and 9=2{sup +}. Through the comparison of experimental and predicted cross section angular distributions, the values of ({delta}{sup L}{sub N}){sup 2} and of the ratio C = {delta}{sub L}{sup C} /{delta}{sub L}{sup N} were obtained. (author)
Coulomb-nuclear interference with 6Li: Isospin character of the 21+ excitation in 70,72,74Ge
International Nuclear Information System (INIS)
Barbosa, M.D.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Rodrigues, M.R.D.; Ukita, G.M.
2005-01-01
Ratios of B(E2) to B(IS2), that is, of the reduced quadrupole transition probabilities related, respectively, to charge and mass were extracted through Coulomb-nuclear interference (CNI) for the excitation of the 2 1 + states in 70,72,74 Ge, with a relative accuracy of less than 4%. For this purpose, the CNI angular distributions associated with the inelastic scattering of 28-MeV incident 6 Li ions accelerated by the Sao Paulo Pelletron, and momentum analyzed by the Enge magnetic spectrograph were interpreted within the DWBA-DOMP approach (distorted wave approximation for the scattering process and deformed optical model for the structure representation) with global 6 Li optical parameters. The present CNI results demonstrate an abrupt change in the B(E2)/B(IS2) ratio for 74 Ge: although for 70,72 Ge, values of the order of 1.0 or slightly higher were obtained, this ratio is 0.66 (7) for 74 Ge. The heavier Ge isotope is thus one of the few nuclei that, so far, have been shown to present clear mixed symmetry components in their ground-state band
Coulomb interference and bending slope in hadron-hadron scattering
International Nuclear Information System (INIS)
Pereira, Flavio I.; Ferreira, Erasmo
1994-01-01
With the purpose of testing the results of QCD calculations on the structure of the forward elastic scattering cross-section, we analyse the coulombic-nuclear interference occurring at small values of the momentum transfer. We emphasize the influence of the hadronic structures on the determination of the Coulomb phase and consequently on the t-dependence of the strong interaction slope parameter. (author)
Exclusion of nuclear forces in heavy-ion Coulomb excitation and Coulomb fission experiments
International Nuclear Information System (INIS)
Neese, R.E.; Guidry, M.W.
1982-01-01
A simple prescription for estimating the energy at which nuclear forces begin to play a role in heavy-ion Coulomb excitation and Coulomb fission experiments is presented. The method differs from most commonly used recipes in accounting for projectile and target nucleus deformation effects. Using a single adjustable parameter the formula reproduces the energy for the onset of Coulomb-nuclear interference effects for a broad range of heavy-ion systems. It is suggested that most Coulomb fission experiments which have been done involve both Coulomb and nuclear excitation processes and should more properly be termed Coulomb-nuclear fission experiments
International Nuclear Information System (INIS)
Nettles, W.G.
1979-01-01
Alpha scattering measurements were performed at center-of-mass energies near the Coulomb barrier. These energies allow for nuclear as well as pure Coulomb forces to play a significant role in the excitation process. The interference of these two forces is very sensitive to the sign of the E4 ground-state moment, whereas pure Coulomb excitation is not. Systematics of the E4 moments of the rare earth mass region indicate a transition in the magnitude and sign of the reduced matrix element of the M(E4) operator between 0 + and 4 + states from small and positive to large and negative between Yb and W. Previous Coulomb-nuclear interference measurements show that this reduced matrix element for 180 Hf is large and negative. The present results agree with that conclusion. It is also shown that the above reduced matrix element for 178 Hf, like that of 180 Hf, is large and negative. The small and positive moment (matrix element) for 168 Yb is seen to be consistent with the experimental data. No conclusions are drawn for the E4 moment in 176 Hf. The measurement of nuclear lifetimes shorter than 500 ps requires the use of plastic scintilltor detectors. These detectors, however have very poor energy resolution. A system is described that uses plastic scintillators with a magnetic lens spectrometer for energy selection. The system was used to measure the lifetime of the 522-keV 0 + sate in 186 Hf. A data analysis method using higher-order distribution moments is also presented
International Nuclear Information System (INIS)
Kudryavtsev, A.E.; Markushin, V.E.
1985-01-01
The experimental data on the low energy elastic p-barp scattering in the Coulomb-nuclear interference region and on the shift and width of the 1s level of p-barp-atom are analysed. The partial wave amplitudes for l=0.1 are extracted. The p-wave amplitude is in fair agreement with the atomic data for the 2p state and exhibits some energy structure. It is shown that the real-to-imaginary ratio of the p-barp forward elastic-scattering amplitude becomes negative in an energy interval just near p-barp-threshold
International Nuclear Information System (INIS)
Akchurin, N.; Langland, J.; Onel, Y.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.; Giacomich, R.; Penzo, A.; Schiavon, P.; Zanetti, A.; Bystricky, J.; Lehar, F.; de Lesquen, A.; van Rossum, L.; Cossairt, J.D.; Read, A.L.; Derevschikov, A.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shima, T.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Iwatani, K.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Rappazzo, G.F.; Salvato, G.; Takashima, R.
1993-01-01
The analyzing power A N of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5x10 -3 to 5.0x10 -2 (GeV/c) 2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed
Tests of a Coulomb-nuclear polarimeter
International Nuclear Information System (INIS)
Pauletta, G.; University of Texas, Austin, TX, 78712)
1989-01-01
We report on the development and testing of a polarimeter for the high energy polarized proton and antiproton beam at Fermi National Accelerator Laboratory (FNAL). The polarimeter was designed to make use of a small but well-known analyzing power in the region of Coulomb-nuclear interference (CNI) in order to obtain an absolute measurement of the polarization. Feasibility was established in the course of a brief running period at the end of the last fixed-target period at FNAL and potential for considerable improvement was revealed. Beam-time was insufficient to measure polarization accurately but the data obtained bears out design expectations for the beam-line and confirms polarization-tagging techniques to within uncertainties
Energy Technology Data Exchange (ETDEWEB)
Carnegie, R K; Cashmore, R J; Davier, M; Leith, D W.G.S.; Richard, F; Schacht, P; Walden, P; Williams, S H [Stanford Linear Accelerator Center, Calif. (USA)
1975-11-10
The differential cross section for K/sup + -/p elastic scattering has been measured in the very low t region (0.003
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xinxin
2015-07-01
The inelastic scattering of 28,0 MeV {sup 6}Li on {sup 76}Ge in the excitation of the 2{sup +}{sub 1} state, has been studied with the Coulomb-Nuclear Interference (CNI) analysis. The data were measured at the Pelletron-Enge-Spectrograph facility at LAFN-IFUSP. A solid-state position sensitive silicon detector (PSD) (500μm thickness and 47 × 8 mm{sup 2} area) was used to measure the data at the spectrometer focal plane. Digital pulse processing (DPP) was implemented in the acquisition system. Twenty-six spectra were measured at carefully chosen scattering angles in the range of 10 deg ≤ θ{sub Lab} ≤ 55 deg to obtain an angular distribution. The analysis was performed with the Distorted Wave Born Approximation (DWBA) and applied for the nuclear transition potential, the Deformed Optical Potential Model (DOMP), under well-established global optical parameters. The fit of the predicted cross sections to the experimental data through χ{sup 2} minimization, using the iterative method of Gauss, allowed for the extraction of the correlated parameters, δ{sup N}{sub 2}, the mass deformation length, and C{sub 2} = Ν{sup C}{sub 2}/δ{sup N}{sub 2}, the ratio between charge and mass deformation lengths. The correlated parameters obtained in the present work were C{sub 2} = 1,101 (20) and δ{sup N}{sub 2} = 1,08(21)fm. Statistical tests, through a Monte Carlo simulation of 5000 new data sets, validated the method employed in the correlated parameters fit. The methodology applied for the CNI analysis allowed the extraction of ratio B(EL)/B(ISL), which is proportional to the square of C{sub 2}, with a good precision due to the scale uncertainties cancellation of the absolute cross sections. The values of B(IS2) and of the ratios B(E2)/B(IS2) obtained in the present work have not been reported before and allow the study of the evolution of the collectivity throughout the even-A germanium chain together with former results obtained for the {sup 70},{sup 72},{sup 74}Ge
Chaos near the Coulomb barrier. Nuclear molecules
International Nuclear Information System (INIS)
Strayer, M.R.
1984-01-01
The present work examines in detail the classical behavior of the α + 14 C and the 12 C + 12 C(O + ) collison at energies near the Coulomb barrier. The long-time motion of the compound nuclear system is identified in terms of its classical quasiperiodic and chaotic behavior. The consequences of this motion are discussed and interpreted in terms of the evolution of the system along a dynamical energy surface. 45 references
International Nuclear Information System (INIS)
Baillon, P.; Bricman, C.; Ferro-Luzzi, M.; Jenni, P.; Perreau, J.M.; Tripp, R.D.; Ypsilantis, T.; Declais, Y.; Seguinot, J.
1975-01-01
The differential cross sections for π + p elastic scattering at 0.6, 1.0, 1.5, 2.0 GeV/c, for π - p at 1.0, 1.5, 2.0 GeV/c, for K + p at 1.2, 1.8, 2.6 GeV/c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/c have been measured with an overall accuracy of the order of 1 to 2 per cent in a counter experiment over the angular region corresponding to momentum transfers t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, a determination has been done of the magnitude and sign of the real part of the scattering amplitude near t = 0. The πp real parts are compared to the values predicted by the dispersion relations and found to agree quite well. The Ksup(+-)p real parts have been used in a dispersion relation to derive the value of the KNA coupling constant. Two possible values of this coupling constant are found, both much larger than those commonly accepted. One of them agrees well with the value predicted by the SU(3) and SU(6) symmetry schemes. (Author)
Mapping the Coulomb Environment in Interference-Quenched Ballistic Nanowires.
Gutstein, D; Lynall, D; Nair, S V; Savelyev, I; Blumin, M; Ercolani, D; Ruda, H E
2018-01-10
The conductance of semiconductor nanowires is strongly dependent on their electrostatic history because of the overwhelming influence of charged surface and interface states on electron confinement and scattering. We show that InAs nanowire field-effect transistor devices can be conditioned to suppress resonances that obscure quantized conduction thereby revealing as many as six sub-bands in the conductance spectra as the Fermi-level is swept across the sub-band energies. The energy level spectra extracted from conductance, coupled with detailed modeling shows the significance of the interface state charge distribution revealing the Coulomb landscape of the nanowire device. Inclusion of self-consistent Coulomb potentials, the measured geometrical shape of the nanowire, the gate geometry and nonparabolicity of the conduction band provide a quantitative and accurate description of the confinement potential and resulting energy level structure. Surfaces of the nanowire terminated by HfO 2 are shown to have their interface donor density reduced by a factor of 30 signifying the passivating role played by HfO 2 .
Role amplification of the coulomb interaction in nuclear reactions
Energy Technology Data Exchange (ETDEWEB)
Kumar, Ashok; Soni, S K; Pancholi, S K; Gupta, S L [AN SSSR, Moscow. Radiotekhnicheskij Inst.
1976-10-01
The genarally adopted estimate of coulomb interaction in nuclear reactions based on the comparison of relative energies of real particles participating in the reaction with the coulomb barrier has been shown to provide wrong presentation of the role of coulomb interaction in the reaction mechanism. The relative energy of particles participating in virtual processes forming the reaction mechanism and its relation to the coulomb barrier turn out to be tens of per cent less than for the particles in an inlet channel. This is the main reason of increasing the role of coulomb interaction in the reaction mechanism. This increase is particularly significant for nuclei with large charges, in particular, in heavy ion reaction.
Some studies in scatering by Coulomb modified nuclear potentials
International Nuclear Information System (INIS)
Laha, U.
1988-01-01
Recently, there has been a surge of interest in theoretical questions concerning the Coulomb nuclear problems with the main emphasis on their off-shell behaviour. Earlier approaches to the problem made use of a version of the two-potential formula as used by Bajzer. A slightly different point of view is presented here. An expression for the interacting Green's function for motion in the Coulomb plus Graz potential is constructed and used to obtain the half-off-shell T matrix in the ''maximal reduced form''. Similar results were also derived for the off-shell Jost functions. It is explicitly demonstrated that Coulomb and Coulomb-like potentials the half-off-shell T matrix can be expressed in terms of on-and off-shell Jost functions in the same way as one does for a purely short range interaction. In presenting the results for T matrix and other related quantities, the Coulomb effect is included rigorously. Results clearly delineate the branch point singularities originating from the long range nature of the Coulomb interaction and thus provide a better understanding of the off-shell two-body Coulomb-like T matrices. It is hoped that these results will form an adequate starting point for rigorous calculations on few-body systems with charges. (author). 16 refs
Nuclear sizes and the Coulomb Displacement Energy
International Nuclear Information System (INIS)
Van der Werf, S.Y.
1997-01-01
Data on Coulomb Displacement Energies in the mass range A = 40 - 240 are analyzed in the deformed Liquid Drop model and in the independent particle model. Reduced half-widths of Woods-Saxon mean-field potential of the resulting neutron-excess distributions are deduced. It is argued that the Nolen-Schiffer anomaly may be lifted by allowing for a slight binding-energy dependence of the mean-field potential geometry. (author)
Detection method of elastic scattering in the Coulomb interference region: scintillation target
International Nuclear Information System (INIS)
Azaiez, Hamza.
1981-01-01
Measurement of polarization in (p-p) elastic scattering in the Coulomb interference region is considered as a valid method for calibrating high energy polarized proton beams. Possibility of using a scintillation target to detect low energy recoil protons in this /t/ region has been studied by using a 4 GeV/c π - beam from CERN PS. The results obtained with a steack of thin plastic scintillators, each 1 mm thick, showed the feasibility of detecting recoil protons in a /t/ range as low a 5.10 -3 (GeV/c) 2 . This method thus confirmed experimentally can be used also to measure, using a polarized beam, polarization in Coulomb interference region [fr
Hyperon excitation in nuclear coulomb field
International Nuclear Information System (INIS)
Vanyashin, A.V.; Nikitin, Yu.P.; Shan'gin, A.A.
1981-01-01
A possibility is studied to measure radiative decay partial widths from the 3/2 + decuplet hyperon resonances by means of the Coulomb excitation method of the octet hyperons. The expected contributions from the strong and electromagnetic interactions in the coherence range to the hyperon excitation cross sections on heavy nuclei and on the 4 He nucleus are estimated. The particle angular distributions in the reactions Σ-+A→Σ-(1385)+A and Λ+A→Σ 0 (1385)+A are analysed in order to determine the energy range where the background conditions are the most favorable to extract the electromagnetic mechanism of the hyperon excitation [ru
WIX: statistical nuclear multifragmentation with collective expansion and Coulomb forces
Randrup, J.∅rgen
1993-10-01
By suitable augmentation of the event generator FREESCO, a code WIX has been constructed with which it is possible to simulate the statistical multifragmentation of a specified nuclear source, which may be both hollow and deformed, in the presence of a collective expansion and with the interfragment Coulomb forces included.
Semiclassical treatment of nuclear effects in Coulomb excitation
Energy Technology Data Exchange (ETDEWEB)
Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Rasmussen, J O; Ring, P; Stoyer, M A [Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.
1990-09-27
We introduce the effects of the nuclear potential in the semiclassical Alder-Winther-de Boer method, both in the coupling matrix elements and as corrections to the Rutherford orbit. We compare our results to those of pure Coulomb excitation and to coupled-channel calculations. (orig.).
International Nuclear Information System (INIS)
Hoffmann, B.
1984-07-01
In three chapters different physical situations are described which have commonly the Coulomb interaction as driving force. The first two chapters study the Coulomb interactions in connection with the excitation of inner electron shells and the Coulomb excitation of nuclei in first order. In the third part on effect ofthe Coulomb interaction between electronic shell and nucleus is treated in second order (nuclear polarization), and its effect on the isotopic and isomeric shift is studied. (orig./HSI) [de
Prospects for coherently driven nuclear radiation by Coulomb excitation
International Nuclear Information System (INIS)
Karamyan, S.A.; Carroll, J.J.
2006-01-01
Possible experiments are discussed in which the Coulomb excitation of nuclear isomers would be followed by sequential energy release. The possibility of the coherent Coulomb excitation of nuclei ensconced in a crystal by channeled relativistic heavy projectiles is considered. The phase shift between neighbor-nuclei excitations can be identical to the photon phase shift for emission in forward direction. Thus, the elementary string of atoms can radiate coherently with emission of characteristic nuclear γ rays and the intensity of the radiation could be increased due to the summation of amplitudes. The Moessbauer conditions should be important for this new type of collective radiation that could be promising in the context of the γ-lasing problem
Coulomb effects in low-energy nuclear fragmentation
Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah
1993-01-01
Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.
Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.
Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W
2016-01-22
In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5 GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.
Coulomb and Nuclear Breakup at Low Energies: Scaling Laws
Directory of Open Access Journals (Sweden)
Hussein M. S.
2013-12-01
Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.
Aspects of Coulomb dissociation and interference in peripheral nucleus-nucleus collisions
International Nuclear Information System (INIS)
Nystrand, Joakim; Baltz, Anthony; Klein, Spencer R.
2001-01-01
Coherent vector meson production in peripheral nucleus-nucleus collisions is discussed. These interactions may occur for impact parameters much larger than the sum of the nuclear radii. Since the vector meson production is always localized to one of the nuclei, the system acts as a two-source interferometer in the transverse plane. By tagging the outgoing nuclei for Coulomb dissociation it is possible to obtain a measure of the impact parameter and thus the source separation in the interferometer. This is of particular interest since the life-time of the vector mesons are generally much shorter than the impact parameters of the collisions
On some aspects of Coulomb excitation of nuclear rotational states
International Nuclear Information System (INIS)
Massmann, H.; Robotham, H.
1979-01-01
The Coulomb excitation of nuclear rotational states is studied with a semiclassical method using classical trajectories and the classical action in order to construct the excitation probabilities. This method allows one to consider the effect on the excitation probabilities of a weak nuclear potential. An explicit expression for the 'safe bombarding energy' that is the largest bombarding energy for which the nuclear force can be neglected, is found. Also the transfer of angular momentum to the projectile's orbit is considered. One finds that the dynamical distortion of the orbit has a measurable effect on the excitation probabilities for the case of very heavy ions. Furthermore, new dimensionless parameters measuring the dynamical distortion and the effect of the adiabaticity of the collision are introduced and discussed. (author)
International Nuclear Information System (INIS)
Silveira, R. da
1996-07-01
Possible effects of quantum-mechanical interferences between gravitational forces and the nucleus-nucleus Coulomb interaction are discussed. It is shown that, although very small, these effects could be measured using low energy scattering between identical heavy nuclei, e.g. for the system 208 Pb + 208 Pb (E L = 5 MeV). (author)
AUTHOR|(CDS)2069260; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Broulím, P.; Buzzo, A.; Cafagna, F.S.; Campanella, C.E.; Catanesi, M.G.; Csanád, M.; Csörgö, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Guaragnella, C.; Hammerbauer, J.; Heino, J.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lippmaa, E.; Lippmaa, J.; Lokajíček, M.V.; Losurdo, L; Lo Vetere, M.; Lucas Rodriguez, F.; Macrí, M.; Mercadante, A.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Paločko, L.; Passaro, V.; Peroutka, Z.; Petruzzelli, V.; Politi, T.; Procházka, J.; Prudenzano, F.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Wyszkowski, P.; Zielinski, K.
2016-01-01
The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy $\\sqrt{s}$ = 8 TeV and four-momentum transfers squared, $|t|$, from $6\\times10^{-4}$ GeV$^2$ to 0.2 GeV$^2$. Near the lower end of the $t$-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the $\\rho$-pa...
Energy Technology Data Exchange (ETDEWEB)
Antchev, G.; Atanassov, I.; Broulim, P.; Eremin, V.; Georgiev, V.; Hammerbauer, J.; Linhart, R.; Oriunno, M.; Palocko, L.; Peroutka, Z. [University of West Bohemia, Pilsen (Czech Republic); Aspell, P.; Baechler, J.; Burkhardt, H.; Giani, S.; Karev, A.; Lucas Rodriguez, F.; Oliveri, E.; Palazzi, P.; Radermacher, E.; Ravotti, F.; Redaelli, S.; Ropelewski, L.; Ruggiero, G.; Salvachua, B.; Smajek, J.; Snoeys, W.; Valentino, G.; Wenninger, J. [CERN, Geneva (Switzerland); Avati, V. [AGH University of Science and Technology, Krakow (Poland); CERN, Geneva (Switzerland); Berardi, V.; Quinto, M. [INFN Sezione di Bari, Bari (Italy); Dipartimento Interateneo di Fisica di Bari, Bari (Italy); Berretti, M. [Universita degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena (Italy); CERN, Geneva (Switzerland); Bossini, E.; Bottigli, U.; Latino, G.; Losurdo, L.; Turini, N. [Universita degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena (Italy); Bozzo, M.; Lo Vetere, M. [INFN Sezione di Genova, Genoa (Italy); Universita degli Studi di Genova, Genoa (Italy); Buzzo, A.; Ferro, F.; Macri, M.; Minutoli, S.; Robutti, E. [INFN Sezione di Genova, Genoa (Italy); Cafagna, F.S.; Catanesi, M.G.; Fiergolski, A.; Mercadante, A.; Radicioni, E. [INFN Sezione di Bari, Bari (Italy); Campanella, C.E.; De Leonardis, F.; D' Orazio, A.; Guaragnella, C.; Passaro, V.; Petruzzelli, V.; Politi, T.; Prudenzano, F. [INFN Sezione di Bari, Bari (Italy); Dipartimento di Ingegneria Elettrica e dell' Informazione - Politecnico di Bari, Bari (Italy); Csanad, M.; Nemes, F.; Sziklai, J. [Wigner Research Centre for Physics, Budapest (Hungary); Csoergo, T. [Wigner Research Centre for Physics, Budapest (Hungary); KRF University College, Gyoengyoes (Hungary); Deile, M. [Dipartimento di Ingegneria Elettrica e dell' Informazione - Politecnico di Bari, Bari (Italy); Doubek, M.; Vacek, V. [Czech Technical University, Prague (Czech Republic); Eggert, K.; Niewiadomski, H.; Taylor, C. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Garcia, F.; Heino, J.; Lauhakangas, R. [Helsinki Institute of Physics, Helsinki (Finland); Grzanka, L.; Wyszkowski, P.; Zielinski, K. [AGH University of Science and Technology, Krakow (Poland); Kaspar, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kopal, J.; Kundrat, V.; Lokajicek, M.V.; Prochazka, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Lami, S.; Scribano, A. [INFN Sezione di Pisa, Pisa (Italy); Lippmaa, E.; Lippmaa, J. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Minafra, N. [Dipartimento Interateneo di Fisica di Bari, Bari (Italy); CERN, Geneva (Switzerland); Naaranoja, T.; Oljemark, F.; Orava, R.; Oesterberg, K.; Saarikko, H.; Welti, J. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland)
2016-12-15
The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy √(s) = 8 TeV and four-momentum transfers squared, vertical stroke t vertical stroke, from 6 x 10{sup -4} to 0.2 GeV{sup 2}. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12 ± 0.03. The results for the total hadronic cross-section are σ{sub tot} = (102.9 ± 2.3) mb and (103.0 ± 2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements. (orig.)
International Nuclear Information System (INIS)
Antchev, G.; Atanassov, I.; Broulim, P.; Eremin, V.; Georgiev, V.; Hammerbauer, J.; Linhart, R.; Oriunno, M.; Palocko, L.; Peroutka, Z.; Aspell, P.; Baechler, J.; Burkhardt, H.; Giani, S.; Karev, A.; Lucas Rodriguez, F.; Oliveri, E.; Palazzi, P.; Radermacher, E.; Ravotti, F.; Redaelli, S.; Ropelewski, L.; Ruggiero, G.; Salvachua, B.; Smajek, J.; Snoeys, W.; Valentino, G.; Wenninger, J.; Avati, V.; Berardi, V.; Quinto, M.; Berretti, M.; Bossini, E.; Bottigli, U.; Latino, G.; Losurdo, L.; Turini, N.; Bozzo, M.; Lo Vetere, M.; Buzzo, A.; Ferro, F.; Macri, M.; Minutoli, S.; Robutti, E.; Cafagna, F.S.; Catanesi, M.G.; Fiergolski, A.; Mercadante, A.; Radicioni, E.; Campanella, C.E.; De Leonardis, F.; D'Orazio, A.; Guaragnella, C.; Passaro, V.; Petruzzelli, V.; Politi, T.; Prudenzano, F.; Csanad, M.; Nemes, F.; Sziklai, J.; Csoergo, T.; Deile, M.; Doubek, M.; Vacek, V.; Eggert, K.; Niewiadomski, H.; Taylor, C.; Garcia, F.; Heino, J.; Lauhakangas, R.; Grzanka, L.; Wyszkowski, P.; Zielinski, K.; Kaspar, J.; Kopal, J.; Kundrat, V.; Lokajicek, M.V.; Prochazka, J.; Lami, S.; Scribano, A.; Lippmaa, E.; Lippmaa, J.; Minafra, N.; Naaranoja, T.; Oljemark, F.; Orava, R.; Oesterberg, K.; Saarikko, H.; Welti, J.
2016-01-01
The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy √(s) = 8 TeV and four-momentum transfers squared, vertical stroke t vertical stroke, from 6 x 10"-"4 to 0.2 GeV"2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12 ± 0.03. The results for the total hadronic cross-section are σ_t_o_t = (102.9 ± 2.3) mb and (103.0 ± 2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements. (orig.)
International Nuclear Information System (INIS)
Swenson, J.K.; Burgdoerfer, J.; Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N.
1991-01-01
Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is ''focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb ''path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s 2 1 S autoionizing state measured near 0 degree following low energy He + + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb ''path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0 degree. 14 refs., 7 figs
Coulomb Dissociation as a Tool of Nuclear Astrophysics
International Nuclear Information System (INIS)
Utsunomiya, H.
2000-01-01
My talk will begin with an introduction of the Coulomb dissociation method, proceed to discussions on Coulomb breakup of 7 Li with respect to the big-bang nucleosynthesis and end with the revision of astrophysical S-factors. The methodology based on the virtual photon source will be introduced in view of experimental techniques. The discussion will include the quantum tunnelling effect in non-resonant breakup, the lifetime of continuum states, and Coulomb distortion of relevant cross sections. Roles of multi-step processes and different multipolarities will also be discussed on the basis of solving a time-dependent Schroedinger equation. My talk will present quantitative results. The theoretical framework of the Coulomb dissociation method and a broad scope of its applications are given by G. Baur. Applications to radioactive nuclei which have quickly become vogue are discussed in the related lecture of J. Kiener. (author)
Coulomb corrections to nuclear scattering lengths and effective ranges for weakly bound systems
International Nuclear Information System (INIS)
Mur, V.D.; Popov, V.S.; Sergeev, A.V.
1996-01-01
A procedure is considered for extracting the purely nuclear scattering length as and effective range rs (which correspond to a strong-interaction potential Vs with disregarded Coulomb interaction) from the experimentally determined nuclear quantities acs and rcs, which are modified by Coulomb interaction. The Coulomb renormalization of as and rs is especially strong if the system under study involves a level with energy close to zero (on the nuclear scale). This applies to formulas that determine the Coulomb renormalization of the low-energy parameters of s scattering (l=0). Detailed numerical calculations are performed for coefficients appearing in the equations that determine Coulomb corrections for various models of the potential Vs(r). This makes it possible to draw qualitative conclusions that the dependence of Coulomb corrections on the form of the strong-interaction potential and, in particular, on its small-distance behavior. A considerable enhancement of Coulomb corrections to the effective range rs is found for potentials with a barrier
Study of the nuclear-coulomb low-energy scattering parameters on the basis of the p-matrix approach
International Nuclear Information System (INIS)
Babenko, V.A.; Petrov, N.M.
1993-01-01
The P-matrix approach application to the description of two charged strongly interacting particles nuclear-Coulomb scattering parameters is considered. The nuclear-Coulomb scattering length and effective range explicit expressions in terms of the P-matrix parameters are found. The nuclear-Coulomb low-energy parameters expansions in powers of small parameter β ≡ R/a b , involving terms with big logarithms, are obtained. The nuclear-Coulomb scattering length and effective range for the square-well and the delta-shell short range potentials are found in an explicit form. (author). 21 refs
Coulomb reacceleration as a clock for nuclear reactions -- II
International Nuclear Information System (INIS)
Bertulani, C.A.; Bertsch, G.F.
1994-01-01
Reacceleration effects in the Coulomb breakup of nuclei are modeled with the two-dimensional time-dependent Schroedinger equation, extending a previous one-dimensional study. The present model better describes the individual contributions of longitudinal and transverse forces to the breakup and reacceleration. Reacceleration effects are found to preserve a strong memory of the pre-breakup phase of the reaction, as was concluded with the one-dimensional model
Coulomb disintegration as an information source for relevant processes in nuclear astrophysics
International Nuclear Information System (INIS)
Bertulani, C.A.
1989-01-01
The possibility of obtaining the photodisintegration cross section using the equivalent-photon number method first deduced and employed for the Coulomb disintegration processes has been suggested. This is very interesting because there exist radioactive capture processes, related to the photodisintegration through time reversal, that are relevant in astrophysics. In this paper, the recent results of the Karlsruhe and the Texas A and M groups on the Coulomb disintegration of 6 Li and 7 Li and the problems of the method are discussed. The ideas developed in a previous paper (Nucl. Phys. A458 (1986) 188) are confirmed qualitatively. To understand the process quantitatively it is necessary to use a quantum treatment that would imply the introduction of Coulomb excitation effects of higher orders. The Coulomb disintegration of exotic secondary beams is also studied. It is particularly interesting the question about what kind of nuclear structure information, as binding energies of momentum distributions, may be obtained. (Author) [es
International Nuclear Information System (INIS)
McGowan, F.K.; Stelson, P.H.
1974-01-01
The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)
International Nuclear Information System (INIS)
Nguen Suan Khan; Pervushin, V.N.
1975-01-01
An eikonal representation has been obtained for the amplitude of the πN-scattering in the asymptotic form into account the anomalous nucleon magnetic moment leads to the introduction of the additive term in to the eikonal phase which is responsible for the spin flip in the scattering process. The Coulomb interference is considered
Coulomb and nuclear excitations of narrow resonances in 17Ne
Directory of Open Access Journals (Sweden)
J. Marganiec
2016-08-01
Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.
Energy Technology Data Exchange (ETDEWEB)
Swenson, J.K. (Lawrence Livermore National Lab., CA (USA)); Burgdoerfer, J. (Tennessee Univ., Knoxville, TN (USA)); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. (Oak Ridge National Lab., TN (USA))
1991-03-13
Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s{sup 2} {sup 1}S autoionizing state measured near 0{degree} following low energy He{sup +} + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0{degree}. 14 refs., 7 figs.
Relativity, nuclear polarizability, and screening in sub-Coulomb elastic scattering
International Nuclear Information System (INIS)
Lynch, W.G.; Tsang, M.B.; Bhang, H.C.; Cramer, J.G.; Puigh, R.J.
Elastic scattering of p-shell nuclear projectiles from 208 Pb has been examined for deviations from Rutherford scattering. Four effects can be important: atomic screening, vacuum polarization, nuclear polarizability and a relativistic effect of dynamical origin. The presence of atomic screening, nuclear polarizability and the relativistic effect was observed thus constituting the first measurement of this relativistic effect using complex nuclei and the first measurement of this relativistic effect using complex nuclei and the first measurement of nuclear polarizability in an external Coulomb field
Azimuthal angle dependence of Coulomb and nuclear interactions between two deformed nuclei
International Nuclear Information System (INIS)
Ismail, M.; Ellithi, A. Y.; Botros, M. M.; Mellik, A. E.
2007-01-01
The azimuthal angle (φ) variation of the Coulomb and nuclear heavy ion (HI) potentials is studied in the framework of the double folding model, which is derived from realistic nuclear density distributions and a nucleon-nucleon (NN) interaction. The present calculation shows that the variation of HI potentials with the azimuthal angle depends strongly on the range of the NN forces. For the long-range Coulomb force, the maximum variation with φ is about 0.9%, and for HI potential derived from zero-range NN interaction the φ-variation can reach up to 90.0%. Our calculations are compared with the recent φ-dependence of the HI potential derived from proximity method. The present realistic φ-dependence calculations of the HI potential is completely different from the results of the proximity calculations
Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram
International Nuclear Information System (INIS)
Moretto, L.G.; Elliott, J.B.; Phair, L.
2003-01-01
In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)
Nuclear moments from heavy-ion inelastic scattering above the Coulomb barrier
International Nuclear Information System (INIS)
Gross, E.E.
1981-01-01
Use of appropriate theoretical techniques allows the study of the moments of the nuclear charge distribution to be extended above the Coulomb barrier. The investigation of nuclear moments through analysis of differential cross sections is discussed with the aid of several examples: 12 C(70.4 MeV) + 144 146 Nd, importance of multistep effects; 20 Ne(131 MeV) + 208 Pb, large hexadecapole deformation; 12 C(78 MeV) + 194 Pt, asymmetric rotor model; and 22 Ne(93.5 MeV) + 126 Te, mutual excitation. 13 figures, 1 table
An astrophysical engine that stores gravitational work as nuclear Coulomb energy
Clayton, Donald
2014-03-01
I describe supernovae gravity machines that store large internal nuclear Coulomb energy, 0.80Z2A- 1 / 3MeV per nucleus. Excess of it is returned later by electron capture and positron emission. Decay energy manifests as (1) observable gamma-ray lines (2) light curves of supernovae (3) chemical energy of free carbon dissociated from CO molecules (4) huge abundances of radiogenic daughters. I illustrate by rapid silicon burning, a natural epoch in SN II. Gravitational work produces the high temperatures that photoeject nucleons and alpha particles from heavy nuclei. These are retained by other nuclei to balance photoejection rates (quasiequilibrium). The abundance distribution adjusts slowly as remaining abundance of Z = N 28Si decomposes, so p, n, α recaptures hug the Z = N line. This occurs in milliseconds, too rapidly for weak decay to alter bulk Z/N ratio. The figure displays those quasiequilibrium abundances color-coded to their decays. Z = N = 2k nuclei having k 10 are radioactive owing to excess Coulomb energy. Weak decays radiate that excess energy weeks later to fuel the four macroscopic energetic phenomena cited. How startling to think of the Coulomb nuclear force as storing cosmic energy and its weak decay releasing macroscopic activation to SNII.
Coulomb systems distorted at short distances in atomic and nuclear physics
International Nuclear Information System (INIS)
Popov, V.S.
1987-01-01
In systems bound by the Coulomb interaction distorted at short distances there may appear, under certain conditions, a rearrangment of atomic spectrum (or the Zel'dovich effect). Specific features of this effect are discussed for states with an arbitrary angular momentum l (both with and without the absorption). The equation is studied which connects nuclear level shifts with the low-energy scattering parameters a l , r l . The conditions have been found under which the rearrangement of spectrum is replaced by oscillations of atomic levels. The Coulomb renormalization of scattering lengths and that of effective ranges is discussed. Some manifestations of the Zel'dovich effect in the physics of hadronic atoms and mesomolecules are considered
Break up of light ions in the nuclear and Coulomb field of nuclei
International Nuclear Information System (INIS)
Srivastava, D.K.
1985-12-01
The break up of light ion projectiles in the nuclear and Coulomb field of nuclei is considered. Current theoretical concepts for describing break up processes and their theoretical features are discussed. An alternative method, based on a prior-interaction DWBA, is introduced for the calculation of the direct elastic break up cross sections. This method reveals the role of the internal momentum distribution of the break up fragments and includes corresponding 'finite range' effects. The Coulomb break up of 6 Li is studied on the basis of a quasi-sequential break up approach (following Rybicki and Austern) and results are obtained for very low relative energies of the emerging α-particles and deuteron fragments. The astrophysical interest in these cross sections is noted. A view on further extensions of the break up theory is given. (orig.) [de
International Nuclear Information System (INIS)
Canto, L.F.; Donangelo, R.J.; Farhan, A.R.; Guidry, M.W.; Rasmussen, J.O.; Ring, P.; Stoyer, M.A.
1989-11-01
This paper presents new theoretical results for rotational population patterns in the nuclear SQUID effect. (The term nuclear SQUID is in analogy to the solid-state Superconducting Quantum Interference Devices.) The SQUID effect is an interesting new twist to an old quest to understand Coriolis anti-pairing (CAP) effects in nuclear rotational bands. Two-neutron transfer reaction cross sections among high-spin states have long been touted as more specific CAP probes than other nuclear properties. Heavy projectiles like Sn or Pb generally are recommended to pump the deformed nucleus to as high spin as possible for transfer. The interference and sign reversal of 2n transfer amplitudes at high spin, as predicted in the early SQUID work imposes the difficult requirement of Coulomb pumping to near back-bending spins at closest approach. For Pb on rare earths we find a dramatic departure from sudden-approximation, so that the population depression occurs as low as final spin 10h. 14 refs., 8 figs
Coulomb versus nuclear break-up of 11Be halo nucleus in a non perturbative framework
International Nuclear Information System (INIS)
Fallot, M.; Scarpaci, J.A.; Margueron, J.; Lacroix, D.; Chomaz, Ph.
2000-01-01
The 11 Be break-up is calculated using a non perturbative time-dependent quantum calculation. The evolution of the neutron halo wave function shows an emission of neutron at large angles for grazing impact parameters and at forward angles for large impact parameters. The neutron angular distribution is deduced for the different targets and compared to experimental data. We emphasize the diversity of diffraction mechanisms, in particular we discuss the interplay of the nuclear effects such as the towing mode and the Coulomb break-up. A good agreement is found with experimental data. (authors)
Quantum interference vs. quantum chaos in the nuclear shell model
International Nuclear Information System (INIS)
Fernández, Gerardo; Hautefeuille, M; Velázquez, V; Hernández, Edna M; Landa, E; Morales, I O; Frank, A; Fossion, R; Vargas, C E
2015-01-01
In this paper we study the complexity of the nuclear states in terms of a two body quadupole-quadrupole interaction. Energy distributions and eigenvectors composition exhibit a visible interference pattern which is dependent on the intensity of the interaction. In analogy with optics, the visibility of the interference is related to the purity of the states, therefore, we show that the fluctuations associated with quantum chaos have as their origin the remaining quantum coherence with a visibility magnitude close to 5%
Interference elimination: nuclear spin in the cabin
International Nuclear Information System (INIS)
Anon.
1984-01-01
Constructed on Michael Faraday's cage principle, such cabins enable nuclear spin tomographs to operate undisturbed by foreign radiation. The working signals of these medical research apparatus are screened from the environment so that radio and television reception are not affected. Details are given of the structure of the cabin, of the prefabricated structural elements of non-magnetic materials (chromium-nickel steel). (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Hestand, Nicholas J.; Spano, Frank C. [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)
2015-12-28
The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.
International Nuclear Information System (INIS)
Hestand, Nicholas J.; Spano, Frank C.
2015-01-01
The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t e ) and hole (t h ) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t e t h and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems
International Nuclear Information System (INIS)
Ille, B.
1979-01-01
The differential cross section of elastic π - -p scattering in the Coulomb interference region from 30 GeV to 140 GeV has been measured at the CERN SPS using in conjunction an ionization chamber recoil spectrometer and a forward multiwire proportional chamber-magnet spectrometer. The phase of the π - -p forward hadronic amplitude was found to go four negative value (at 30 GeV) to positive value (at 140 GeV), passing through zero at about 60 GeV. The logarithmic slope at small /t/ (/t/ approximately 0.03 (GeV/c) 2 ) has also been measured and was found to be higher by about 3 (GeV/c) -2 than the values determined at higher /t/ (/t/ = 0.2 (GeV/c) 2 ) [fr
Energy Technology Data Exchange (ETDEWEB)
Kohara, Anderson Kendi; Ferreira, Erasmo; Kodama, Takeshi [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)
2011-07-01
Full text: We use exact Derivative Dispersion Relations [?, ?] to investigate properties of the real and imaginary amplitudes in the forward region of pp and pbarp scattering. We emphasize that the effective slope in dσ/dt is formed by different exponential slopes in the real and imaginary amplitudes (called B{sub R} and B{sub I} ). For this purpose a more general treatment of the Coulomb phase is developed. The dσ/dt data in the range from 19 to 1800 GeV for low |t| are analysed in terms of the four quantities σ, ρ, B{sub I}, B{sub R} that are basic for dynamical models . The usual assumption that B{sub I} and B{sub R} are the same, with σ not depending strongly on t, does not agree with dispersion relations, for which B{sub R} > B{sub I} , and with the expectation that the first real zero approaches t=0 as the energy increases. Our work uses dispersion relations to disentangle the quantities that represent observables in terms of imaginary and real parts, intrinsically combined with the Coulomb contribution. To investigate real slopes we use new forms of dispersion relations [?]. With the difference between imaginary and real slopes , the future RHIC and LHC data will require the extended analysis with B{sub R} as a free quantity. We investigate in detail the region from 19 to 30 GeV where the real amplitude in pp scattering may vanish. The data for ρ are contradictory in this range. We investigate the meaning of the real slope B{sub R} in this region where the parameter ρ is very small, and construct coherent description of the data. In the high energy region we obtain scattering parameters for the RHIC and LHC experiments. (author)
Approximate Coulomb effects in the three-body scattering problem
International Nuclear Information System (INIS)
Haftel, M.I.; Zankel, H.
1981-01-01
From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles
International Nuclear Information System (INIS)
DeVeaux, J.C.; Miley, G.H.
1982-01-01
A variance-reduction technique involving use of exponential transform and angular-biasing methods has been developed. Its purpose is to minimize the variance and computer time involved in estimating the mean fusion product (fp) energy deposited in a hot, multi-region plasma under the influence of small-energy transfer Coulomb collisions and large-energy transfer nuclear elastic scattering (NES) events. This technique is applicable to high-temperature D- 3 He, Cat. D and D-T plasmas which have highly energetic fps capable of undergoing NES. A first application of this technique is made to a D- 3 He Field Reversed Mirror (FRM) where the Larmor radius of the 14.7 MeV protons are typically comparable to the plasma radius (plasma radius approx. 2 fp gyroradii) and the optimistic fp confinement (approx. 45% of 14.7 MeV protons) previously predicted is vulnerable to large orbit perturbations induced by NES. In the FRM problem, this variance reduction technique is used to estimate the fractional difference in the average fp energy deposited in the closed-field region, E/sub cf/, with and without NES collisions
Alpha particles-and 3He inelastic scattering by 124Sn in the coulomb barrier region
International Nuclear Information System (INIS)
Appoloni, C.R.
1976-01-01
Angular distributions for inelastic scattering of α and 3 He particles in 124 Sn at the incident energies around Coulomb barrier were measured using the 8UD Pelletron Tandem Accelerator of The University of Sao Paulo. The results were analysed by DWBA with a collective form factor including the effects due to the interference between coulomb and nuclear excitations with the code PATIWEN (Ba75). The nuclear deformation parameters for the one phonon levels (2 + and 3 - ) have been obtained. (Author) [pt
International Nuclear Information System (INIS)
Bolotin, Yu.L.; Gonchar, V.Yu.; Chekanov, N.A.
1985-01-01
Coulomb excitation of rotational states induced in heavyion collisions is treated in the framework of the generalized semiclassical approximation. The Hamiltonian of the system under consideration involves not only Coulomb forces (monopole, quadrupole, and hexadecapole) but as well a real nuclear potential in the form of the deformed Woods-Saxon potential. Strong dependence of the excitation probability on the interference between the Coulomb and nuclear interactions is shown. Calculations are carried out for the reaction 40 Ar+ 162 Dy at E=148.6 MeV. The calculated Coulomb excitation probabilities agree satisfactory with the corresponding experimental values
Calculation of the Coulomb nuclear energy for the 1fsub(7/2) shell
International Nuclear Information System (INIS)
Kaminski, V.A.; Shpikovski, S.
1980-01-01
Calculated was the Coulomb energy for nuclei with half-filled 1fsub(7/2) shell i.e. for configurations, where quasiparticle basis can serve as a total basis for precise calculations. Presented are calculation results of vector and tensor components of the Coulomb energy for Ca-Se-Ti-V isobaric pairs, as well as experimental and theoretical values for the Coulomb displacements. To estimate the Coulomb energies used were wave functions of a Hamiltonian taking account of pair and quadrupole interactions. There is good agreement with experimental data. Quasiparticle consideration is useful for calculating matrix elements of half-filled shells and for the cases of such an isospin value, where the technique of genealogical coefficients becomes extremely cumbersome
Last, Isidore; Jortner, Joshua
2004-11-01
In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters
Effect of compound nuclear reaction mechanism in 12C(6Li,d) reaction at sub-Coulomb energy
Mondal, Ashok; Adhikari, S.; Basu, C.
2017-09-01
The angular distribution of the 12C(6Li,d) reaction populating the 6.92 and 7.12 MeV states of 16O at sub-Coulomb energy (Ecm=3 MeV) are analysed in the framework of the Distorted Wave Born Approximation (DWBA). Recent results on excitation function measurements and backward angle angular distributions derive ANC for both the states on the basis of an alpha transfer mechanism. In the present work, we show that considering both forward and backward angle data in the analysis, the 7.12 MeV state at sub-Coulomb energy is populated from Compound nuclear process rather than transfer process. The 6.92 MeV state is however produced from direct reaction mechanism.
Nuclear reactions of the system 6 Li on 58 Ni near the Coulomb barrier
International Nuclear Information System (INIS)
Lizcano, D.; Aguilera, E.F.; Garcia M, H.; Martinez Q, E.
2004-01-01
Protons, alpha particles and deuterons coming from the reactions 6 Li + 58 Ni are detected to three different energy around the Coulomb barrier. The possible effects of the weakly bound character of the projectile are studied and the results are compared with previous data for the system 6 Li + 59 Co. (Author)
Boschini, M.J.; Gervasi, M.; Giani, S.; Grandi, D.; Ivantchenko, V.; Pensotti, S.; Rancoita, P.G.; Tacconi, M.
2011-01-01
In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.
International Nuclear Information System (INIS)
Buisson, Jacques; Cochinal, R.; Duquesnoy, J.; Roquefort, H.
1972-07-01
The correct functioning of pulse measurement units in industrial environmental conditions where interference is high, frequently gives rise to many installation problems which are difficult to solve. This paper offers some recommendations with a view to minimising the effect to electric interference on electronic equipment and gives a test method which enables this effect to be assessed qualitatively. It has been devised for nuclear electronic instrumentation but it may also be applied to other equipment and in particular the test method may be used for other cases. After a few preliminaries on how interference acts and on the terminology, the design of the equipment and the recommended connections are mentioned. Test methods are then indicated, followed by various technical comments. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Hellgartner, Stefanie Christine
2015-11-13
In this work, the N=40 subshell closure is investigated with two complementary methods using a radioactive {sup 72}Zn ISOLDE beam: One- and two-neutron transfer reactions and multiple Coulomb excitation. In the one-neutron transfer reaction, two new levels of {sup 73}Zn were discovered. The two-neutron transfer channel allowed to study the differential cross section of the ground state and the 2{sup +}{sub 1} state of {sup 74}Zn. In the Coulomb excitation experiment, the measured B(E2) values and quadrupole moments of {sup 72}Zn showed that the yrast states 0{sup +}{sub 1}, 2{sup +}{sub 1} and 4{sup +}{sub 1} are moderately collective. Contrary, the 0{sup +}{sub 2} state has a different structure, since it features a stronger closed N=40 configuration compared to the ground state.
Signals and interferences in the nuclear car wash
Church, J. A.; Slaughter, D. R.; Asztalos, S.; Biltoft, P.; Descalle, M.-A.; Hall, J.; Luu, T.; Manatt, D.; Mauger, J.; Norman, E. B.; Petersen, D.; Prussin, S.
2007-08-01
The screening of sea-going cargo containers for highly enriched uranium (HEU) and other fissile material is a challenging problem. This is due in part to the cargo itself, which acts as an attenuator to any radiation that might signal its presence. In the nuclear car wash, β-delayed high-energy γ-rays following neutron-induced fission are utilized as this signal. The delayed γ-rays above 3 MeV are highly penetrating and have energies above natural background radiation. In addition, the half-lives of most fission products emitting γ-rays at these energies are less than 160 s, making it feasible to construct decay curves on a time scale which preserves the flow of commerce through the port. A particular goal of the project is to understand the rate of false alarms. To this end, experiments are underway to investigate possible interferences, and to understand variations in the overall γ-ray background. The experiments and preliminary results are discussed. Work performed under the auspices of the DOE by the UC LLNL W7405Eng4,UCRL-PROC-224803.
Signals and interferences in the nuclear car wash
International Nuclear Information System (INIS)
Church, J.A.; Slaughter, D.R.; Asztalos, S.; Biltoft, P.; Descalle, M.-A.; Hall, J.; Luu, T.; Manatt, D.; Mauger, J.; Norman, E.B.; Petersen, D.; Prussin, S.
2007-01-01
The screening of sea-going cargo containers for highly enriched uranium (HEU) and other fissile material is a challenging problem. This is due in part to the cargo itself, which acts as an attenuator to any radiation that might signal its presence. In the nuclear car wash, β-delayed high-energy γ-rays following neutron-induced fission are utilized as this signal. The delayed γ-rays above 3 MeV are highly penetrating and have energies above natural background radiation. In addition, the half-lives of most fission products emitting γ-rays at these energies are less than 160 s, making it feasible to construct decay curves on a time scale which preserves the flow of commerce through the port. A particular goal of the project is to understand the rate of false alarms. To this end, experiments are underway to investigate possible interferences, and to understand variations in the overall γ-ray background. The experiments and preliminary results are discussed. Work performed under the auspices of the DOE by the UC LLNL W7405Eng4,UCRL-PROC-224803
Coulomb interaction in multiple scattering theory
International Nuclear Information System (INIS)
Ray, L.; Hoffmann, G.W.; Thaler, R.M.
1980-01-01
The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+ 208 Pb elastic scattering and compared with experimental data
Progress report on nuclear spectroscopic studies, June 1, 1977--May 31, 1978
International Nuclear Information System (INIS)
Bingham, C.R.; Riedinger, L.L.; Guidry, M.W.
1978-01-01
Research progress is summarized for activities of the University of Tennessee department of physics and astronomy in the following areas: (1) in-beam spectroscopy of high-spin state, (2) Coulomb-nuclear interference and inelastic heavy ion scattering (3) Coulomb excitation, nuclear theory, (4) nuclear structure studies with alpha-induced direct reactions, and (5) developmental activities
Nuclear structure studies of the neutron-rich Rubidium isotopes using Coulomb excitation
Reiter, P; Blazhev, A A; Voulot, D; Meot, V H; Simpson, G S; Georgiev, G P; Gaudefroy, L; Roig, O
We propose to study the properties of odd-mass neutron-rich rubidium isotopes by the Coulomb-excitation technique, using the Miniball array coupled to the REX-ISOLDE facility. The results from similar measurements from the recent years (e.g. for the odd-mass and the odd-odd Cu isotopes, IS435) have shown the strong potential in such measurements for gaining information both for single-particle-like and collective states in exotic nuclei. Since there is practically no experimental information for excited states in the odd-mass Rb isotopes beyond $^{93}$Rb, the present study should be able to provide new data in a region of spherical ($^{93}$Rb and $^{95}$Rb) as well as well-deformed nuclei ($^{97}$Rb and $^{99}$Rb). Of particular interest is the rapid shape change that occurs when going from $^{95}$Rb (${\\varepsilon}_{2}$=0.06) to $^{97}$Rb (${\\varepsilon}_{2}$=0.3). These results should be of significant astrophysical interest as well, due to the close proximity of the r-process path.
Coulomb Dissociation of {sup 17}Ne and its role for nuclear astrophysics
Energy Technology Data Exchange (ETDEWEB)
Marganiec, Justyna [ExtreMe Matter Institute EMMI, GSI, Darmstadt (Germany); Aumann, Thomas; Wamers, Felix [Kernreaktion und Nuklear Astrophysik, GSI, Darmstadt (Germany); Institut fuer Kernphysik, TU, Darmstadt (Germany); Heil, Michael [Kernreaktion und Nuklear Astrophysik, GSI, Darmstadt (Germany); Plag, Ralf [Kernreaktion und Nuklear Astrophysik, GSI, Darmstadt (Germany); Goethe-Universitaet, Frankfurt am Main (Germany); Collaboration: R3B-Collaboration
2011-07-01
The study of the Coulomb break up of {sup 17}Ne gives us an access to information about the time-reversed reaction {sup 15}O(2p,{gamma}){sup 17}Ne, which could serve as a bypass of {sup 15}O waiting point during the rp process, and move the initial CNO material towards heavier nuclei. The three-body radiative capture can proceed sequentially (J. Goerres, et al., Phys. Rev. C 51, 392, 1995) or directly from the three-body continuum (L.V. Grigorenko, M.V. Zhukov, Phys. Rev. C 72, 015803, 2005). It has been suggested that the reaction rate can be enhanced by a few orders of magnitude by taking into account the three-body continuum. In order to verify these calculations, the {sup 15}O(2p,{gamma}){sup 17}Ne cross section has been investigated. The experiment has been performed at the LAND/R{sup 3}B setup at GSI, using the fragment separator FRS to select a {sup 17}Ne secondary beam.
Two-pulse driving of D+D nuclear fusion within a single Coulomb exploding nanodroplet
International Nuclear Information System (INIS)
Last, Isidore; Jortner, Joshua; Peano, Fabio; Silva, Luis O.
2010-01-01
This paper presents a computational study of D+D fusion driven by Coulomb explosion (CE) within a single, homonuclear deuterium nanodroplet, subjected to double-pulse ultraintense laser irradiation. This irradiation scheme results in the attainment (by the first weaker pulse) of a transient inhomogeneous density profile, which serves as a target for the driving (by the second superintense pulse) of nonuniform CE that triggers overrun effects and induces intrananodroplet (INTRA) D+D fusion. Scaled electron and ion dynamics simulations were utilized to explore the INTRA D+D fusion yields for double-pulse, near-infrared laser irradiation of deuterium nanodroplets. The dependence of the INTRA yield on the nanodroplet size and on the parameters of the two laser pulses was determined, establishing the conditions for the prevalence of efficient INTRA fusion. The INTRA fusion yields are amenable to experimental observation within an assembly of nanodroplets. The INTRA D+D fusion can be distinguished from the concurrent internanodroplet D+D fusion reaction occurring in the macroscopic plasma filament and outside it in terms of the different energies of the neutrons produced in these two channels.
Fay, Temple H.
2012-01-01
Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…
Cold transfer between deformed, Coulomb excited nuclei
International Nuclear Information System (INIS)
Bauer, H.
1998-01-01
The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)
Two-Loop Self-Energy Correction in a Strong Coulomb Nuclear Field
International Nuclear Information System (INIS)
Yerokhin, V.A.; Indelicato, P.; Shabaev, V.M.
2005-01-01
The two-loop self-energy correction to the ground-state energy levels of hydrogen-like ions with nuclear charges Z ≥ 10 is calculated without the Zα expansion, where α is the fine-structure constant. The data obtained are compared with the results of analytical calculations within the Zα expansion; significant disagreement with the analytical results of order α 2 (Zα) 6 has been found. Extrapolation is used to obtain the most accurate value for the two-loop self-energy correction for the 1s state in hydrogen
Coulomb displacement energies in relativistic and non-relativistic self-consistent models
International Nuclear Information System (INIS)
Marcos, S.; Savushkin, L.N.; Giai, N. van.
1992-03-01
Coulomb displacement energies in mirror nuclei are comparatively analyzed in Dirac-Hartree and Skyrme-Hartree-Fock models. Using a non-linear effective Lagrangian fitted on ground state properties of finite nuclei, it is found that the predictions of relativistic models are lower than those of Hartree-Fock calculations with Skyrme force. The main sources of reduction are the kinetic energy and the Coulomb-nuclear interference potential. The discrepancy with the data is larger than in the Skyrme-Hartree-Fock case. (author) 24 refs., 3 tabs
Survey of ambient electromagnetic and radio-frequency interference levels in nuclear power plants
International Nuclear Information System (INIS)
Kercel, S.W.; Moore, M.R.; Blakeman, E.D.; Ewing, P.D.; Wood, R.T.
1996-11-01
This document reports the results of a survey of ambient electromagnetic conditions in representative nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research engaged the Oak Ridge National Laboratory (ORNL) to perform these measurements to characterize the electromagnetic interference (EMI) and radio-frequency interference (RFI) levels that can be expected in nuclear power plant environments. This survey is the first of its kind, being based on long-term unattended observations. The data presented in this report were measured at eight different nuclear units and required 14 months to collect. A representative sampling of power plant conditions (reactor type, operating mode, site location) monitored over extended observation periods (up to 5 weeks) were selected to more completely determine the characteristic electromagnetic environment for nuclear power plants. Radiated electric fields were measured over the frequency range of 5 MHz to 8 GHz. Radiated magnetic fields and conducted EMI events were measured over the frequency range of 305 Hz to 5 MHz. Highest strength observations of the electromagnetic ambient environment across all measurement conditions at each site provide frequency-dependent profiles for EMI/RFI levels in nuclear power plants
International Nuclear Information System (INIS)
Cullen, D.E.; Perkins, S.T.
1977-01-01
Multi-group averaged reaction rates and transfer matrices were calculated for charged particle induced elastic nuclear (plus interference) scattering. Results are presented using a ten group structure for all twenty-five permutations of projectile and target for the following charged particles: p, d, t, 3 He and alpha. Transfer matrices are presented in a simplified form for both incident projectile and the knock-ons; these matrices explicitly conserve energy
Coulomb Effects in Few-Body Reactions
Directory of Open Access Journals (Sweden)
Deltuva A.
2010-04-01
Full Text Available The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the momentum-space description of three- and four-body nuclear reactions. The necessity for the renormalization of the scattering amplitudes and the reliability of the method is demonstrated. The Coulomb eﬀect on observables is discussed.
Coulomb potentials between spherical heavy ions
International Nuclear Information System (INIS)
Iwe, H.
1982-01-01
The Coulomb interaction between spherical nuclei having arbitrary radial nuclear charge distributions is calculated. All these realistic Coulomb potentials are given in terms of analytical expressions and are available for immediate application. So in no case a numerical computation of the Coulomb integral is required. The parameters of the charge distributions are taken from electron scattering analysis. The Coulomb self-energies of the charge distributions used are also calculated analytically in a closed form. For a number of nucleus-nucleus pairs, the Coulomb potentials derived from realistic charge distributions are compared with those normally used in various nucleus-nucleus optical model calculations. In this connection a detailed discussion of the problem how to choose consistently Coulomb parameters for different approximations is given. (orig.)
International Nuclear Information System (INIS)
Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe
2015-01-01
Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields
Analysis of interference on over-temperature protection value ΔT in nuclear power plant
International Nuclear Information System (INIS)
Chen Yongwei; Fu Jingqiang
2015-01-01
In nuclear power plant, the over-temperature protection value ΔT prevents nucleate from boiling and protects the fuel cladding. This paper focused on the fluctuation of ΔT, which is one of the common-mode failures. After sensitivity analysis and simulations of explanatory variables on over-temperature protection value, the sources and objects of the interference are located. And according to investigations on the fluctuation phenomena, the cable layout design defects are confirmed as the causes. The solutions were thus given and successfully verified by on-site implementation. (authors)
Radiative capture versus Coulomb dissociation
International Nuclear Information System (INIS)
Esbensen, H.; Physics
2006-01-01
Measurements of the Coulomb dissociation of 8 B have been used to infer the rate of the inverse radiative proton capture on 7 Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed
Radiative Capture versus Coulomb Dissociation
International Nuclear Information System (INIS)
Esbensen, Henning
2006-01-01
Measurements of the Coulomb dissociation of 8B have been used to infer the rate of the inverse radiative proton capture on 7Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-05
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.
Fan, Non Q.; Clarke, John
1993-01-01
A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.
Energy Technology Data Exchange (ETDEWEB)
Min, Moon-Gi; Lee, Jae-Ki; Ji, Yeong-Haw; Jo, Sung-Han [Korea Hydro & Nuclear Power Co., Ltd., 1312-70 Yuesong-daero, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Hee-Je, E-mail: heeje@pusan.ac.kr [Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of)
2015-04-15
Highlights: • We surveyed the electromagnetic emissions at the location of I&C systems. • We assessed the electromagnetic levels on reactor types from thirteen nuclear plants. • We evaluated the margin between plant emission limits and the highest composite levels. • We presented the formula of radiated susceptibility test levels to non-safety-related I&C systems. - Abstract: The electromagnetic interference (EMI) generated from sources in power units can interfere with digital Instrument and Control (I&C) systems. When EMI is emitted with conducted and radiated noise, it interferes with the signals of the I&C systems. Since the digital I&C systems are efficient and competitively priced, the analogue I&C systems have been upgraded and replaced with digital I&C systems, but these systems have less EMI immunity. When safety-related I&C systems are installed in the units, the verification of equipment EMI should not be done in site-specific tests but in test facilities. There are needs to do the overall site-specific EMI assessment of I&C systems depending on the reactor types from thirteen operating units. This study evaluated the margin between plant emission limits and the highest composite plant emissions of the EMI. When the non-safety-related I&C equipment or systems are placed in the units, there are no individual test levels of the radiated electrical field. If need be, the level should comply with the test levels of the radiated electrical field on the safety-related I&C systems. This paper presents the test levels of radiated electrical fields to non-safety-related I&C equipment or systems.
DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta
2012-06-01
Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.
International Nuclear Information System (INIS)
Stepanov, E.P.; Artem'ev, A.N.; Perstnev, I.P.; Sklyarevskii, G.V.
1975-01-01
A new type of interference manifested by the interaction of recoilless gamma radiation with matter was studied, i.e., the interference between different transitions of the magnetic hyperfine structure in nuclear diffraction. The measurements were carried out using a Moessbauer diffractometer at room temperature. Gamma radiation from a 57 Fe in Cr source was scattered by an α-Fe 2 O 3 single crystal. Peak asymmetry of the velocity spectra was observed in all measured spectra. It was most marked in the central parts of the spectra. The interference term had the typical shape of a dispersion curve. The magnitude of asymmetry, i.e., the ratio of the dispersion curve amplitudes to the peak was about 5 %, its sign depending on the signs and magnitudes of all transitions in the spectrum. The magnitude of the interference term decreased with increasing the distance between resonances. Theoretical curves were in good agreement with the experimental spectra. (L.O.)
Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg
1998-01-01
Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)
International Nuclear Information System (INIS)
Sun, Zhen; Xiang, Wenqing; Guo, Yajuan; Chen, Zhi; Liu, Wei; Lu, Daru
2011-01-01
Highlights: → LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. → LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. → LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.
Energy Technology Data Exchange (ETDEWEB)
Sun, Zhen [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China); Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Xiang, Wenqing; Guo, Yajuan [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Chen, Zhi [The State Key Laboratory for Infectious Disease, Institute of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Liu, Wei, E-mail: liuwei666@zju.edu.cn [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Lu, Daru, E-mail: drlu@fudan.edu.cn [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China)
2011-06-10
Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
International Nuclear Information System (INIS)
Itagaki, Masafumi; Miyoshi, Yoshinori; Gakuhari, Kazuhiko; Okada, Noboru; Sakai, Tomohiro.
1993-01-01
The control rods in the reactor of the nuclear ship MUTSU are classified into four groups: groups G1 and G2 are located in the central part of the core, while groups G3 and G4 are in the peripheral zone of the core. Several types of mutual interference effects among these control-rod groups were observed during reactor physics experiments with this reactor. During normal hot operations, positive shadowing was dominant between the G1 and G2 groups; the degree of the shadowing effect of one rod group depended on the position of the other rod group. Both positive and negative shadowing effects occurred between an inner rod group (G1 or G2) and an outer group (G3 or G4) depending on the three-dimensional arrangement of the control rods. The rod worths of G1 and G2 increased as a result of slight core burnup, about 1,400 MWd/t, mainly due to the decrease in shadowing effects resulting from a change in control-rod pattern. A three-dimensional diffusion calculation with internal control-rod boundary conditions has proved to be useful for analyzing these various interaction effects. (author)
Coulomb Interactions in Hanbury Brown-Twiss Experiments with Electrons
Shen, Kan
2009-01-01
This dissertation examines the effect of Coulomb interactions in Hanbury Brown-Twiss (HBT) type experiments with electrons. HBT experiments deal with intensity interference, which is related to the second-order correlation function of the particle field. This is an extension of the usual amplitude interference experiment, such as Young's…
Critical opalescence in the pure Coulomb system
Energy Technology Data Exchange (ETDEWEB)
Bobrov, V.B., E-mail: vic5907@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Trigger, S.A., E-mail: satron@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)
2011-04-18
Highlights: The review of the critical opalescence problem is presented. Light scattering in a two-component electron-nuclear system is studied. The exact relations between the structure factors and compressibility are found. The obtained relations are valid for strong interaction for the Coulomb systems. The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.
Critical opalescence in the pure Coulomb system
International Nuclear Information System (INIS)
Bobrov, V.B.; Trigger, S.A.
2011-01-01
Highlights: → The review of the critical opalescence problem is presented. → Light scattering in a two-component electron-nuclear system is studied. → The exact relations between the structure factors and compressibility are found. → The obtained relations are valid for strong interaction for the Coulomb systems. → The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.
Separable expansions for local potentials with Coulomb interactions
International Nuclear Information System (INIS)
Adhikari, S.K.
1976-01-01
If two particles are interacting via a short range potential and a repulsive Coulomb potential the t matrix can be written as a sum of the Coulomb and the ''nuclear'' t matrices. In order to solve the three-nucleon problem with Coulomb interactions usually we need a separable representation of this ''nuclear'' t matrix. A recently proposed method for finding a separable expansion for local potentials is here extended to find a rapidly convergent separable expansion, with analytic form factors, for the ''nuclear'' part of the t matrix of a local potential, in the presence of Coulomb interactions. The method is illustrated for a two-term Malfliet-Tjon potential. In each rank the ''nuclear'' phase shift is close to the corresponding phase shift when the Coulomb interaction is switched off
Critical opalescence in the pure Coulomb system
Bobrov, V. B.; Trigger, S. A.
2011-04-01
Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.
International Nuclear Information System (INIS)
Greensite, J.; Olejnik, S.
2003-01-01
We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.
Suppression of relay interference, with particular reference to nuclear reactor safety circuits
International Nuclear Information System (INIS)
Phillips, P.; Cake, B.V.; Fowler, E.P.
1976-11-01
In recent years the maximum level of induced interference current which can normally be expected in instrumentation systems has been found to be in the region of 100mA rms. However, in the course of investigating interference problems abnormally high levels, of as much as 20A peak, have been found to originate from relay circuit interruption. A likely coupling mechanism for this source of interference is discussed and analysed and it is concluded that proper suppression of relays is practical, safe and beneficial. (author)
Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography
Maxwell, A. S.; Figueira de Morisson Faria, C.
2018-06-01
We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.
Coulomb Blockade Plasmonic Switch.
Xiang, Dao; Wu, Jian; Gordon, Reuven
2017-04-12
Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.
Appleberry, W. T.
1983-01-01
Standard hydraulic shock absorber modified to form coulomb (linear friction) damper. Device damps very small velocities and is well suited for use with large masses mounted on soft springs. Damping force is easily adjusted for different loads. Dampers are more reliable than fluid dampers and also more economical to build and to maintain.
Relativistic Coulomb excitation
International Nuclear Information System (INIS)
Winther, A.; Alder, K.
1979-01-01
Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)
Expansions for Coulomb wave functions
Boersma, J.
1969-01-01
In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are
Coulomb dissociation studies for astrophysical thermonuclear reactions
Energy Technology Data Exchange (ETDEWEB)
Motobayashi, T [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)
1998-06-01
The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)
On Coulomb disintegration of relativistic nuclei and hypernuclei
International Nuclear Information System (INIS)
Lyuboshits, V.L.
1989-01-01
The dependence of the total cross-section of excitation and disintegration of a relativistic nucleus in the Coulomb field on the energy and parameters characterizing nuclear dimensions is investigated. The analogy with the problem of atomic ionization at the passage of charged particles through matter is used. The results are applied to the description of the Coulomb dissociation of nuclei with small binding energies. An explicit expression for the effective cross-section of the Coulomb disintegration of the hypernucleus-Λ 3 H into a deuteron and Λ-particle. 12 refs
International Nuclear Information System (INIS)
Igamov, S.B.; Yarmukhamedov, R.
1999-10-01
A method of calculation of the triple-differential cross section of the 208 Pb( 6 Li, αd) 208 Pb Coulomb breakup at astrophysically relevant energies E of the relative motion of the breakup fragments, taking into account the three-body (α - d - 208 Pb) Coulomb effects and the contributions from the E1- and E2- multipoles, including their interference, has been proposed. The new results for the astrophysical S-factor of the direct radiative capture d(α, γ) 6 Li reaction at E ≤ 250 keV have been obtained. It is shown that the experimental triple-differential cross section of the 208 Pb( 6 Li, αd) 208 Pb Coulomb breakup can also be used to give information about the value of the modulus squared of the nuclear vertex constant for the virtual 6 Li → α + d. (author)
International Nuclear Information System (INIS)
Fan, N.Q.; Heaney, M.B.; Clark, J.; Newitt, D.; Wald, L.; Hahn, E.L.; Bierlecki, A.; Pines, A.
1988-08-01
Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by 35 Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 /times/ 10 16 nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing 35 Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in 119 Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10 18 nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in 195 Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs
McClarty, P. A.; O'Brien, A.; Pollmann, F.
2014-05-01
We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.
International Nuclear Information System (INIS)
Hrasko, P.; Foeldy, L.; Toth, A.
1986-07-01
Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)
Coulomb energy, vortices, and confinement
International Nuclear Information System (INIS)
Greensite, Jeff; Olejnik, Stefan
2003-01-01
We estimate the Coulomb energy of static quarks from a Monte Carlo calculation of the correlator of timelike link variables in the Coulomb gauge. We find, in agreement with Cucchieri and Zwanziger, that this energy grows linearly with distance at large quark separations. The corresponding string tension, however, is several times greater than the accepted asymptotic string tension, indicating that a state containing only static sources, with no constituent gluons, is not the lowest energy flux tube state. The Coulomb energy is also measured on thermalized lattices with center vortices removed by the de Forcrand-D'Elia procedure. We find that when vortices are removed, the Coulomb string tension vanishes
International Nuclear Information System (INIS)
Sotty, C.
2013-01-01
The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to
Integral equation for Coulomb problem
International Nuclear Information System (INIS)
Sasakawa, T.
1986-01-01
For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems
Coulomb double helical structure
Kamimura, Tetsuo; Ishihara, Osamu
2012-01-01
Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.
The Coulomb gap and low energy statistics for Coulomb glasses
International Nuclear Information System (INIS)
Glatz, Andreas; Vinokur, Valerii M; Bergli, Joakim; Kirkengen, Martin; Galperin, Yuri M
2008-01-01
We study the statistics of local energy minima in the configuration space of two-dimensional lattice Coulomb glasses with site disorder and the behavior of the Coulomb gap depending on the strength of random site energies. At intermediate disorder, i.e., when the typical strength of the disorder is of the same order as the nearest-neighbor Coulomb energy, the high energy tail of the distribution of the local minima is exponential. We furthermore analyze the structure of the local minima and show that most sites of the system have the same occupation numbers in all of these states. The density of states (DOS) shows a transition from the crystalline state at zero disorder (with a hard gap) to an intermediate, probably glassy state with a Coulomb gap. We analyze this Coulomb gap in some detail and show that the DOS deviates slightly from the traditional linear behavior in 2D. For finite systems these intermediate Coulomb gap states disappear for large disorder strengths and only a random localized state in which all electrons are in the minima of the random potential exists. Dedication: This paper is dedicated to Thomas Nattermann, our dearest friend, brilliant colleague, and outstanding teacher
Interatomic Coulombic electron capture
International Nuclear Information System (INIS)
Gokhberg, K.; Cederbaum, L. S.
2010-01-01
In a previous publication [K. Gokhberg and L. S. Cederbaum, J. Phys. B 42, 231001 (2009)] we presented the interatomic Coulombic electron capture process--an efficient electron capture mechanism by atoms and ions in the presence of an environment. In the present work we derive and discuss the mechanism in detail. We demonstrate thereby that this mechanism belongs to a family of interatomic electron capture processes driven by electron correlation. In these processes the excess energy released in the capture event is transferred to the environment and used to ionize (or to excite) it. This family includes the processes where the capture is into the lowest or into an excited unoccupied orbital of an atom or ion and proceeds in step with the ionization (or excitation) of the environment, as well as the process where an intermediate autoionizing excited resonance state is formed in the capturing center which subsequently deexcites to a stable state transferring its excess energy to the environment. Detailed derivation of the asymptotic cross sections of these processes is presented. The derived expressions make clear that the environment assisted capture processes can be important for many systems. Illustrative examples are presented for a number of model systems for which the data needed to construct the various capture cross sections are available in the literature.
DEFF Research Database (Denmark)
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek
2016-01-01
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...
International Nuclear Information System (INIS)
Williams, D.R.; Hislop, J.S.
1980-09-01
A table of γ rays observed in the high resolution γ ray spectra of 40 to 44 MeV γ photon activation products is presented. This table is arranged in order of increasing γ ray energy and the parent isotopes, their half-lives and their inactive precursors are identified. Nuclear interferences caused by production of an active isotope from different parent elements have been identified and evaluated quantitatively. These are also tabulated. (author)
The structure of small molecules with the Coulomb Explosion method
International Nuclear Information System (INIS)
Vager, Z.; Kanter, E.P.
1987-01-01
The content of this paper is divided into two parts: (1) achievements of the last two years in studying molecular ion structure with the aid of the newly developed Coulomb-Explosion (CE) method, and (2) the understanding of the modern CE data in terms of an invariant density of nuclear coordinates of the studied molecule
Coulomb corrections to scattering length and effective radius
International Nuclear Information System (INIS)
Mur, V.D.; Kudryavtsev, A.E.; Popov, V.S.
1983-01-01
The problem considered is extraction of the ''purely nuclear'' scattering length asub(s) (corresponding to the strong potential Vsub(s) at the Coulomb interaction switched off) from the Coulomb-nuclear scattering length asub(cs), which is an object of experimental measurement. The difference between asub(s) and asub(cs) is especially large if the potential Vsub(s) has a level (real or virtual) with an energy close to zero. For this case formulae are obtained relating the scattering lengths asub(s) and asub(cs), as well as the effective radii rsub(s) and rsub(cs). The results are extended to states with arbitrary angular momenta l. It is shown that the Coulomb correction is especially large for the coefficient with ksup(2l) in the expansion of the effective radius; in this case the correction contains a large logarithm ln(asub(B)/rsub(0)). The Coulomb renormalization of other terms in the effective radius espansion is of order (rsub(0)/asub(B)), where r 0 is the nuclear force radius, asub(B) is the Bohr radius. The obtained formulae are tried on a number of model potentials Vsub(s), used in nuclear physics
The Coulomb law and atomic levels in a superstrong B
Directory of Open Access Journals (Sweden)
Vysotsky M.I.
2014-04-01
Full Text Available The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level in an external homogeneous superstrong magnetic field is obtained. The influence of the screening of the Coulomb potential on the values of critical nuclear charges is studied.
Duffin-Kemmer-Petiau equation under a scalar Coulomb interaction
International Nuclear Information System (INIS)
Hassanabadi, H.; Yazarloo, B. H.; Zarrinkamar, S.; Rajabi, A. A.
2011-01-01
Approximate analytical solutions of a Duffin-Kemmer-Petiau (DKP) equation are obtained via an elegant ansatz after successive transformations. Apart from the wide application of the DKP equation in both cosmology and theoretical nuclear physics as well as the physical significance of the Coulomb interaction, this is particularly important as we have provided a solution to the corresponding Heun equation.
Norbury, John W.
1992-01-01
Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.
Vibrational motions in rotating nuclei studied by Coulomb excitations
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics
1998-03-01
As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)
Coulomb branches with complex singularities
Argyres, Philip C.; Martone, Mario
2018-06-01
We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.
Gauge orbits and the Coulomb potential
International Nuclear Information System (INIS)
Greensite, J.
2009-01-01
If the color Coulomb potential is confining, then the Coulomb field energy of an isolated color charge is infinite on an infinite lattice, even if the usual UV divergence is lattice regulated. A simple criterion for Coulomb confinement is that the expectation value of timelike link variables vanishes in the Coulomb gauge, but it is unclear how this criterion is related to the spectrum of the corresponding Faddeev-Popov operator, which can be used to formulate a quite different criterion for Coulomb confinement. The purpose of this article is to connect the two seemingly different Coulomb confinement criteria, and explain the geometrical basis of the connection.
International Nuclear Information System (INIS)
Brandao, S.B.
1987-01-01
The level structure of 189 Os has been studied by Coulomb excitation using 35 Cl, 28 Si, 16 O beams. GOSIA, a code written to analyze multiple Coulomb excitation, was used to obtain the reduced probabilities of transition B(E2). The results for interband and intraband turned out possible the classification of the states following Nilsson levels. Gamma-rays originating from deexcitation of 216.7 and 219.4 keV have been separated and the reduced probability of transition has been measured. (A.C.A.S.) [pt
Shakeoff Ionization near the Coulomb Barrier Energy
Sharma, Prashant; Nandi, T.
2017-11-01
We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.
International Nuclear Information System (INIS)
Sugiyama, Shota; Matsuura, Hideaki; Uchiyama, Daisuke; Sawada, Daisuke; Watanabe, Tsuguhiro; Goto, Takuya; Mitarai, Osamu
2015-01-01
A verification scenario of knock-on tail formation in the deuteron distribution function due to nuclear plus interference scattering is presented by observing the incident angle distribution of neutrons in a vacuum vessel. Assuming a knock-on tail created in a "3He-beam-injected deuterium plasma, the incident angle distribution and energy spectra of the neutrons produced by fusion reactions between 1-MeV and thermal deuterons are evaluated. The relation between the neutron incident angle to the vacuum vessel and neutron energy is examined in the case of anisotropic neutron emission due to knock-on tail formation in neutral-beam-injected plasmas. (author)
Coulomb fission and transfer fission at heavy ion collisions
International Nuclear Information System (INIS)
Himmele, G.
1981-01-01
In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de
Coulomb effects in deuteron stripping reactions as a three-body problem
International Nuclear Information System (INIS)
Osman, A.
1981-08-01
Deuteron stripping nuclear reactions are reconsidered as a three-body problem. The Coulomb effects between the proton and the target nucleus are investigated. The mathematical formalism introduces three-body integral equations which can be exactly calculated for such simple models. These coupled integral equations suitably include the Coulomb effects due to replusive or attractive Coulomb potential. Numerical calculations of the differential cross-sections of the reactions 28 Si(d,p) 29 Si and 40 Ca(d,p) 41 Ca are carried out showing the importance of the Coulomb effects. The angular distributions of these reactions are theoretically calculated and fitted to the experimental data. From this fitting, reasonable spectroscopic factors are obtained. Inclusion of Coulomb force in the three-body model are found to improve the results by a percentage of about 6.826%. (author)
Coulomb interactions in charged fluids.
Vernizzi, Graziano; Guerrero-García, Guillermo Iván; de la Cruz, Monica Olvera
2011-07-01
The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present. Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we propose a simple analytical O(N(2)) method which is based on Gauss's law for computing exactly the Coulomb interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and molecular dynamics simulations.
Coulombic Fluids Bulk and Interfaces
Freyland, Werner
2011-01-01
Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.
Ordering in classical Coulombic systems
International Nuclear Information System (INIS)
Schiffer, J. P.
1998-01-01
The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity Λ (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than approximately175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4
Nucleon-nucleon correlations and the Coulomb Displacement Energy
International Nuclear Information System (INIS)
Van Neck, D.; Waroquier, M.; Heyde, K.
1997-01-01
Coulomb Displacement Energies (CDE) are accurately known for a wide range of nuclear masses. Assuming isospin independence in the nuclear Hamiltonian, the CDE can in first instance be interpreted as the Coulomb interaction energy between the density of the excess neutrons and the proton charge density in the parent nucleus. However, when using reasonable mean-field models for the proton and neutron density one underestimates the CDE by about 8% on average. This discrepancy is known as the Nolen-Schiffer anomaly, and various explanations have been put forward in the past. In this work the role of nucleon-nucleon correlations are re-examined. Calculations for the pair density functions in various nuclei are presented. Preliminary results suggest that the modifications to the mean-field pair density functions cause an enhancement of the CDE in the order of 4%, which is rather A-independent. (author)
Wang, Zhigang; Fu, Zhenguo; He, Bin; Hu, Zehua; Zhang, Ping
2016-09-01
The nuclear plus interference scattering (NIS) effect on the stopping power of hot dense beryllium (Be) plasma for multi-MeV protons is theoretically investigated by using the generalized Brown-Preston-Singleton (BPS) model, in which a NIS term is taken into account. The analytical formula of the NIS term is detailedly derived. By using this formula, the density and temperature dependence of the NIS effect is numerically studied, and the results show that the NIS effect becomes more and more important with increasing the plasma temperature or density. Different from the cases of protons traveling through the deuterium-tritium plasmas, for a Be plasma, a prominent oscillation valley structure is observed in the NIS term when the proton's energy is close to E_{p}=7MeV. Furthermore, the penetration distance is remarkably reduced when the NIS term is considered.
Coulomb blockade induced by magnetic field
International Nuclear Information System (INIS)
Kusmartsev, F.V.
1992-01-01
In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field
Evaluation of the Coulomb logarithm using cutoff and screened Coulomb interaction potentials
International Nuclear Information System (INIS)
Ordonez, C.A.; Molina, M.I.
1994-01-01
The Coulomb logarithm is a fundamental plasma parameter which is commonly derived within the framework of the binary collision approximation. The conventional formula for the Coulomb logarithm, λ=ln Λ, takes into account a pure Coulomb interaction potential for binary collisions and is not accurate at small values (λ D in place of λ D (the Debye length) in the conventional formula for the Coulomb logarithm
On low energy scattering theory with Coulomb potentials
International Nuclear Information System (INIS)
Gibson, A.G.
1985-09-01
The scattering length is a very useful characteristic of the scattering phenomena. But in the presence of a combined potential (e.g. in nuclear physics, when Coulomb, the polarization and the strong potentials are to be added), the analytical definition of the scattering length in not unambigous and strictly defined. This problem is discussed in detail, the various alternatives are examined and compared. A practical suggestion is given for the proper choice of the definition and for the calculation of scattering length. Numerical solutions of the Schroedinger equation are compared with the results of different definitions. Some questions of application to nuclear physics are discussed. (D.Gy.)
International Nuclear Information System (INIS)
Dunn, W.L.
1974-07-01
The development of mathematical models for an application of the dual-gauge principle to surface neutron moisture content gauges were made under an Agency co-ordinated research programme. The response of a detector (such as a BF 3 proportional counter) to low-energy neutrons is dependent on the hydrogen present in the sample in the form of water. Other factors which affect the gauge response are sample density, composition (particularly with regard to the presence of strong thermal neutron absorbers), and bound hydrogen content. In this work mathematical models for epicadmium and bare BF 3 detector response have been developed for surface neutron moisture content gauges. These models are based on epithermal and thermal line and area flux models obtained from Diffusion Theory and Transport Theory, where flux as a function of radial distance, r, from the source is phi(r), line flux ∫ phi (r) dr, and area flux is ∫ phi (r)rdr. All models have been checked by calculation and comparison to experimental results except for the Transport Theory thermal flux models. The computer calculations were made on an IBM 370/165 system. In addition, the dual-gauge principle was applied and demonstrated as a means of minimizing the composition measurement interference
Hidalgo, María A; Romero, Alex; Figueroa, Jaime; Cortés, Patricia; Concha, Ilona I; Hancke, Juan L; Burgos, Rafael A
2005-01-01
Andrographolide, the major active component from Andrographis paniculata, has shown to possess anti-inflammatory activity. Andrographolide inhibits the expression of several proinflammatory proteins that exhibit a nuclear factor kappa B (NF-κB) binding site in their gene. In the present study, we analyzed the effect of andrographolide on the activation of NF-κB induced by platelet-activating factor (PAF) and N-formyl-methionyl-leucyl-phenylalanine (fMLP) in HL-60 cells differentiated to neutrophils. PAF (100 nM) and fMLP (100 nM) induced activation of NF-κB as determined by degradation of inhibitory factor B α (IκBα) using Western blotting in cytosolic extracts and by binding to DNA using electrophoretic mobility shift assay (EMSA) in nuclear extracts. Andrographolide (5 and 50 μM) inhibited the NF-κB-luciferase activity induced by PAF. However, andrographolide did not reduce phosphorylation of p38 MAPK or ERK1/2 and did not change IκBα degradation induced by PAF and fMLP. Andrographolide reduced the DNA binding of NF-κB in whole cells and in nuclear extracts induced by PAF and fMLP. Andrographolide reduced cyclooxygenase-2 (COX-2) expression induced by PAF and fMLP in HL-60/neutrophils. It is concluded that andrographolide exerts its anti-inflammatory effects by inhibiting NF-κB binding to DNA, and thus reducing the expression of proinflammatory proteins, such as COX-2. PMID:15678086
Intersite Coulomb interaction and Heisenberg exchange
Eder, R; van den Brink, J.; Sawatzky, G.A
1996-01-01
Based on exact diagonalization results for small clusters we discuss the effect of intersite Coulomb repulsion in Mott-Hubbard or charge transfers insulators. Whereas the exchange constant J for direct exchange is enhanced by intersite Coulomb interaction, that for superexchange is suppressed. The
Coulomb dissociation of N-20,N-21
Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Kalantar-Nayestanaki, Nasser; Najafi, Mohammad Ali; Rigollet, Catherine; Stoica, V.; Streicher, Branislav; Van de Walle, J.
2016-01-01
Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a
Sub-Coulomb heavy ion neutron transfer reactions and neutron orbit sizes
International Nuclear Information System (INIS)
Phillips, W.R.
1976-01-01
Direct transfer reactions below the Coulomb barrier offer the best means of determining neutron densities near the nuclear surface. This paper describes how heavy ion sub-Coulomb transfer can be used to determine the rms radii of neutron orbits in certain nuclei. The theoretical background is outlined and problems associated with the comparison of experiment and theory are discussed. Experiments performed to calibrate sub-Coulomb heavy ion transfer reactions are presented, and some comments are made on the relative roles of light and heavy ion reactions. Preliminary values for the rms radii of neutron orbits and neutron excesses extracted from recent experiments are given, and some remarks are made concerning the implications of these results for the triton wave function and for the Coulomb energy difference anomaly. (author)
11Li Breakup on 208 at energies around the Coulomb barrier.
Fernández-García, J P; Cubero, M; Rodríguez-Gallardo, M; Acosta, L; Alcorta, M; Alvarez, M A G; Borge, M J G; Buchmann, L; Diget, C A; Falou, H A; Fulton, B R; Fynbo, H O U; Galaviz, D; Gómez-Camacho, J; Kanungo, R; Lay, J A; Madurga, M; Martel, I; Moro, A M; Mukha, I; Nilsson, T; Sánchez-Benítez, A M; Shotter, A; Tengblad, O; Walden, P
2013-04-05
The inclusive breakup for the (11)Li + (208)Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of (9)Li following the (11)Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the (11)Li continuum at low excitation energy.
11Li Breakup on 208Pb at Energies Around the Coulomb Barrier
DEFF Research Database (Denmark)
Fernández-García, J.P.; Cubero, M.; Rodríguez-Gallardo, M.
2013-01-01
The inclusive breakup for the 11Li+208Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of 9Li following the 11Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation...... theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear...... and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the 11Li continuum at low excitation energy....
Mirror symmetry and Coulomb effects in light N ≅ Z nuclei
International Nuclear Information System (INIS)
Bentley, M.A.; Williams, S.J.; Joss, D.T.
2002-01-01
Some latest results from gamma-ray spectroscopic studies of high spin states of isobaric multiplets are presented. An experimental programme is underway to examine exited states of isobaric multiplets of total isospin T 1/2 and T = 1 and the comparison of energies of excited states can be interpreted in terms of Coulomb effects. Through a systematic study of these Coulomb effects, and through examination of the calculated Coulomb energies from full pf-shell model calculations, it is now becoming clear that measurement of Coulomb energies can yield very detailed information on the evolution of nuclear structure phenomena as a function of energy and angular momentum. In this contribution, latest results of studies of isobaric analogue states at high spin in the A = 50, 51 and 53 systems are presented. (author)
Coulomb correction calculations of pp Bremsstrahlung
International Nuclear Information System (INIS)
Katsogiannis, A.; Amos, K.; Jetter, M.; von Geramb, H.V.
1994-01-01
The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs
Nuclear proton-proton elastic scattering via the Trojan Horse method
International Nuclear Information System (INIS)
Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A.
2009-01-01
The Trojan Horse Method (THM) is a powerful indirect technique to study charged particle two-body reactions at sub-Coulomb energies [1,2]. As known, it makes it possible to extract their cross sections down to the relevant energies without experiencing Coulomb suppression. For this reason, since a couple of decades it is successfully applied to rearrangement reactions of astrophysical interest. Recently, we have investigate the suppression of the Coulomb amplitude when the THM is applied to scattering processes. This was done by considering the p - p scattering at low energy, the simplest case where the Coulomb suppression can be observed. Proton-proton cross section was extensively studied in the past. Its energy trend appears to be very similar to that of n-n or p-n systems (1/E behaviour) except at lower proton relative energies, where a deep minimum shows up (E pp = 191.2 keV, θ cm = 90 o ). This minimum is interpreted as being the signature of the interference between nuclear and Coulomb scattering amplitudes. Therefore, if one considers that a non sizable Coulomb amplitude would make the minimum in the p-p cross section to disappear, the strong interference pattern offers an unique possibility to validate the THM suppression of Coulomb amplitude for scattering. This has been realized by measuring the p - p elastic scattering within the region of the minimum through the 2 H (p, pp)n reaction at 4.8 and 5 MeV in the quasi-free (QF) kinematics regime [3,4]. The THM p-p cross-section was extracted in the framework of the Plane Wave Impulse Approximation [5] down to E lab = 80 keV, and compared with the direct p-p behaviour. No minimum shows up in the THM data, whose trend appears to be smooth, much similar to that of the n-n or n-p cross-section. A detailed formalism was developed to build-up the expression of the theoretical half-off-shell p-p cross section, whose behaviour agrees with the THM data, given the fact that in its expression the Coulomb amplitude is
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2014-01-01
We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Electric and Magnetic Coulomb Potentials in the Deuteron
Directory of Open Access Journals (Sweden)
Bernard Schaeffer
2013-09-01
Full Text Available After one century of nuclear physics, the underlying fun- damental laws of nuclear physics are still missing. Bohr had found a formula for the H atom and another for the H2 molecule but no equivalent formula exists for the deuteron 2H. The only known Coulomb interaction in a nucleus by the mainstream nuclear physics is the long range repulsion between protons, forgetting that the neutron contains elec- tric charges with no net charge. The neutron is attracted by the proton in a way discovered two millenaries ago by the Greeks. This attraction is equilibrated by the repulsion between the opposite magnetic moments of the proton and of the neutron in the deuteron. The bare application of ge- ometry together with electric and magnetic Coulomb’s in- teractions accounts for the binding energy of the deuteron, without fitting, with only 4 per cent discrepancy, proving the electromagnetic nature of the nuclear energy.
Energy Technology Data Exchange (ETDEWEB)
Apokin, V D; Vasiliev, A N; Derevshchikov, A A; Matulenko, Yu A; Meschanin, A P; Mysnik, A I; Nurushev, S B; Saraykin, A I; Siksin, V V; Smirnov, E V [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij
1976-04-19
Differential cross sections for the elastic scattering of negative pions on protons, as well as total cross sections have been measured for the incident momentum range from 33 up to 60 GeV/c. The values for four-momentum transfer were within the limits of -(10/sup -3/-8x10/sup -2/) (GeV/c)/sup 2/. The energy dependence of the ratio rho(0) of the real part of the forward elastic scattering amplitude to the imaginary part has been determined from the experimental data. The magnitude rho(0) smoothly increases from (-10.9+-1.2)% at momenta 33.52 GeV/c up to (-1.8+-1.8)% at 59.4 GeV/c. The results obtained are compared with the predictions of theoretical models.
Deep inelastic scattering near the Coulomb barrier
International Nuclear Information System (INIS)
Gehring, J.; Back, B.; Chan, K.
1995-01-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems 124,112 Sn + 58,64 Ni by Wolfs et al. We previously extended these measurements to the system 136 Xe + 64 Ni and currently measured the system 124 Xe + 58 Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring
Deep inelastic scattering near the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Gehring, J.; Back, B.; Chan, K. [and others
1995-08-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.
Coulomb repulsion in short polypeptides.
Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M
2015-01-08
Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...
Coulomb interaction in the supermultiplet basis
International Nuclear Information System (INIS)
Ruzha, Ya.Kh.; Guseva, T.V.; Tamberg, Yu.Ya.; Vanagas, V.V.
1989-01-01
An approximate expression for the matrix elements of the Coulomb interaction operator in the supermultiplet basis has been derived with the account for the orbitally-nonsymmetric terms. From the general expression a simplified formula for the Coulomb interaction energy has been proposed. On the basis of the expression obtained the contribution of the Coulomb interaction to the framework of a strongly restricted dynamic model in the light (4≤A≤40) and heavy (158≤A≤196) nuclei region has been studied. 19 refs.; 4 tabs
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...
Selfconsistent theory of Coulomb mixing in nuclei
International Nuclear Information System (INIS)
Pyatov, N.I.
1978-01-01
The theory of isobaric states is considered according to the Coulomb mixing in nuclei. For a given form of the isovestor potential the separable residual interactions are constructed by means of the isotopic invariance principle. The strength parameter of the force is found from a selfconsistency condition. The charge dependent force is represented by the Coulomb effective potential. The theory of the isobaric states is developed using the random phase approximation. The Coulomb mixing effects in the ground and isobaric 0 + states of even-mass nuclei are investigated
The eikonal phase of supersymmetric Coulomb partners
Lassaut, M; Lombard, R J
1998-01-01
We investigate the eikonal phase and its systematic corrections for the two supersymmetric Coulomb partners V sub 1 and V sub 2 derived by Amado. Apart from a constant shift of -pi for V sub 1 and -2 pi for V sub 2 , the eikonal phase decay to the eikonal phase of the Coulomb potential as 1/kb. For the potential V sub 2 , which is phase equivalent to the Coulomb potential, this result is only valid at b approx =0 and asymptotically; in the intermediate range, it constitutes a lower limit. (author)
On the Coulomb displacement energy
International Nuclear Information System (INIS)
Sato, H.
1976-01-01
The Coulomb displacement energies of the T=1/2 mirror nuclei (A=15,17,27,29,31,33,39 and 41) are re-examined with the best available HF wave functions (the DME and the Skyrme II interaction), with the inclusion of all electromagnetic corrections. The results are compared with the experimental s.p. charge dependent energies extracted from the experimental data taking into account admixtures of core-excitation corrections with the help of present shell-model and co-existence model calculations. Although the so-called Nolen-Schiffer anomaly is not removed by these improvements, it is found that the remaining observed anomalies in the ground states of s.p. and s.h. systems can be resolved with the introduction of a simple, phenomenological charge symmetry breaking nucleon-nucleon force. This force can also account for the observed anomalies in the higher excited s.p. states, while those of the deeper s.h. states need further explanation. (Auth.)
Scattering of strongly absorbed particles near the Coulomb barrier
International Nuclear Information System (INIS)
Fernandez, B.
1979-01-01
The elastic scattering of strongly absorbed particles near the Coulomb barrier is sensitive to one size parameter, which is the distance at which the real nuclear potential has some fixed value, 0.2 MeV for α-particle, 1 MeV for 16 O. This size parameter can be related in a simple way to the radial distance of the target nucleus where the density takes some given value, 2x10 -3 nucleon /fm 3 for α-particle scattering and 5x10 -3 nucleon/fm 3 for 16 O scattering
Relativistic Coulomb excitation of giant resonances in the hydrodynamic model
International Nuclear Information System (INIS)
Vasconcellos Gomes, Ana Cristina de.
1990-05-01
We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy ion collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. This model is used as input to study the characteristics of multiple excitation of giant dipole resonances in nuclei. Possible signatures for the existence of such states are also discussed quantitatively. (author). 52 refs., 14 figs., 3 tabs
International Nuclear Information System (INIS)
Liu Jianye; Guo Wenjun; Li Xiguo; Xing Yongzhong
2004-01-01
The authors investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. The authors also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section. In this case, Coulomb interaction does not changes obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential. (author)
Coulomb-Driven Relativistic Electron Beam Compression
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-01
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Coulomb effects in particle distributions inclusive
International Nuclear Information System (INIS)
Erazmus, B.; Martin, L.; Pluta, J.; Stavinky, A.
1997-01-01
Single pion distributions from central 158 A.GeV/c Pb + Pb collisions measured by the NA44 experiment show the effect of Coulomb interaction with the net charge produced during the reaction. Coulomb effects are analyzed with the help of the microscopic model RQMD and a model including the Coulomb interaction. Different sets of kinematical characteristics of the net charge have been used to reproduce the experimental data and a strong sensitivity to the charge value has been found. This study has evidenced the non-negligible influence of a Coulomb charge, present in the region of the central rapidity in heavy ion collisions on the inclusive distributions of the produced particles. A more thorough analysis of the data obtained from the experiment NA44 is now under way to take into account the hyperon decay that can modify the fraction of different particles, particularly at low transverse momenta
Structure and Spectrum of Dust Coulomb Clusters
International Nuclear Information System (INIS)
Cheung, F.M.H.; Ford, C.; Barkby, S.; Samarian, A.A.; Vladimirov, S.V.
2005-01-01
In our study, the dynamics of Coulomb cluster systems were simulated for different number of particles. The spectra of energy states of dust Coulomb clusters corresponding to various packing sequences were obtained. The broadening of the spectrum due to inter-ring twist was discovered. It was found that the inter-ring twist will lead to a change in the energy spectrum of Coulomb cluster. This change was accompanied by a distortion of stable shells such that particles are able to compensate for any additional Coulomb energy (owing to the inter-ring twist) by further reducing their radial distance as much as possible. The overall effect is a change in the shape of the outer-shell from circular to elliptical
Coulomb-Driven Relativistic Electron Beam Compression.
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-26
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Experiments on Coulomb ionization by charged particles
International Nuclear Information System (INIS)
Andersen, J.U.; Laegsgaard, E.; Lund, M.
1978-01-01
Inner-shell ionization by light projectiles, i.e., in very asymmetric collisions, is often denoted 'Coulomb ionization' because it is caused by the Coulomb interaction between the electron and the projectile. Although with little justification, the term is also used to distinquish such processes, in which the projectile Coulomb field is a small perturbation, from ionization in more violent, nearly symmetric ion-atom collisions. A discussion of Coulomb ionization of atomic K shells is given, with emphasis on experimental methods and results. The discussion is not intended as a review of the field but rather as a progress report on the anthor's work on the subject. A more detailed account was recently presented at the ICPEAC meeting in Paris. (Auth.)
Classical- and quantum mechanical Coulomb scattering
International Nuclear Information System (INIS)
Gratzl, W.
1987-01-01
Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)
Cavity QED experiments with ion Coulomb crystals
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan
2009-01-01
Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....
Monotonicity of energy eigenvalues for Coulomb systems
International Nuclear Information System (INIS)
Englisch, R.
1983-01-01
Generalising results by earlier workers for a large class of Hamiltonians (among others, Hamiltonians of Coulomb systems) which can be written in the form H(α) = H 0 + αH' the present works shows that their eigenvalues decrease with increasing α. This result is applied to Coulomb systems in which the distances between the infinitely heavy particles are varying and also is used to obtain a completion and simplification of proof for the stability of the biexciton. (author)
Coulomb Distortion in the Inelastic Regime
Energy Technology Data Exchange (ETDEWEB)
Patricia Solvignon, Dave Gaskell, John Arrington
2009-09-01
The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.
Tur\\'an type inequalities for regular Coulomb wave functions
Baricz, Árpád
2015-01-01
Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.
Trinucleon asymptotic normalization constants including Coulomb effects
International Nuclear Information System (INIS)
Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.
1982-01-01
Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects
Coulomb interactions in particle beams
International Nuclear Information System (INIS)
Jansen, G.H.
1988-01-01
This thesis presents a theoretical description of the Coulomb interaction between identical charged particles (electrons or ions) in focussed beam. The charge-density effects as well as the various statistical interaction effects, known as the Boersch effect and the 'trajectory displacement effect', are treated. An introductory literature survey is presented from which the large differences in theoretical approach appear. Subsequently the methods are investigated which are used in studies of comparable problems in plasma physics and stellar dynamics. These turn out to be applicable to particle beams only for certain extreme conditions. The approach finally chosen in this study is twofold. On the one hand use is made of a semi-analytical model in which the statistical and dynamical aspects of the N-particle problem are reduced to two-particle problem. This model results in a number of explicit equations in the experimental parameters, with ties of the beam can be determined directly. On the other hand use has been made of a purely numerical Monte Carlo model in which the kinematical equations of an ensemble interacting particles with 'at random' chosen starting conditions are solved exactly. This model does not lead to general expressions, but yields a specific numerical prediction for each simulated experimental situation. The results of both models appear to agree well mutually. This yields a consistent theory which complements the existing knowledge of particle optics and which allow the description of systems in which the interaction between particles can not be neglected. The predictions of this theory are qualitatively and quantitatively compared with those from some other models, recently reported in literature. (author). 256 refs.; 114 figs.; 1180 schemes; 5 tabs
Coulomb correction to the screening angle of the Moliere multiple scattering theory
International Nuclear Information System (INIS)
Kuraev, E.A.; Voskresenskaya, O.O.; Tarasov, A.V.
2012-01-01
Coulomb correction to the screening angular parameter of the Moliere multiple scattering theory is found. Numerical calculations are presented in the range of nuclear charge 4 ≤ Z ≤ 82. Comparison with the Moliere result for the screening angle reveals up to 30% deviation from it for sufficiently heavy elements of the target material
International Nuclear Information System (INIS)
Bykov, V.P.; Gerasimov, A.V.
1992-08-01
A new variational method without a basis set for calculation of the eigenvalues and eigenfunctions of Hamiltonians is suggested. The expansion of this method for the Coulomb potentials is given. Calculation of the energy and charge distribution in the two-electron system for different values of the nuclear charge Z is made. It is shown that at small Z the Coulomb forces disintegrate the electron cloud into two clots. (author). 3 refs, 4 figs, 1 tab
On the theory for Coulomb break-up of deuterons by atomic nuclei at low energy
International Nuclear Information System (INIS)
Grantsev, V.I.; Evlanov, M.V.
1982-01-01
The influence of a finite range of nuclear forces between nucleons in the deuteron on angular and energy distributions for products of deuteron disintegration by the Coulomb field of nucleus is investigated. This effect leads to the difference of differential cross sections of Coulomb deuteron disintegration from differential cross sections obtained in the framework of the approximation of the zero-radius interaction. Angular and energy dependences of differential cross sections of deuteron disintegration with the energy of 13.6 MeV on the 208 Pb nucleus are given [ru
Scaling laws and higher-order effects in Coulomb excitation of neutron halo nuclei
International Nuclear Information System (INIS)
Typel, S.; Baur, G.
2008-01-01
Essential properties of halo nuclei can be described in terms of a few low-energy constants. For neutron halo nuclei, analytical results can be found for wave functions and electromagnetic transition matrix elements in simple but well-adapted models. These wave functions can be used to study nuclear reactions; an especially simple and instructive example is Coulomb excitation. A systematic expansion in terms of small parameters can be given. We present scaling laws for excitation amplitudes and cross-sections. The results can be used to analyze experiments like 11 Be Coulomb excitation. They also serve as benchmark tests for more involved reaction theories. (orig.)
An algorithm for computing screened Coulomb scattering in GEANT4
Energy Technology Data Exchange (ETDEWEB)
Mendenhall, Marcus H. [Vanderbilt University Free Electron Laser Center, P.O. Box 351816 Station B, Nashville, TN 37235-1816 (United States)]. E-mail: marcus.h.mendenhall@vanderbilt.edu; Weller, Robert A. [Department of Electrical Engineering and Computer Science, Vanderbilt University, P.O. Box 351821 Station B, Nashville, TN 37235-1821 (United States)]. E-mail: robert.a.weller@vanderbilt.edu
2005-01-01
An algorithm has been developed for the GEANT4 Monte-Carlo package for the efficient computation of screened Coulomb interatomic scattering. It explicitly integrates the classical equations of motion for scattering events, resulting in precise tracking of both the projectile and the recoil target nucleus. The algorithm permits the user to plug in an arbitrary screening function, such as Lens-Jensen screening, which is good for backscattering calculations, or Ziegler-Biersack-Littmark screening, which is good for nuclear straggling and implantation problems. This will allow many of the applications of the TRIM and SRIM codes to be extended into the much more general GEANT4 framework where nuclear and other effects can be included.
An algorithm for computing screened Coulomb scattering in GEANT4
International Nuclear Information System (INIS)
Mendenhall, Marcus H.; Weller, Robert A.
2005-01-01
An algorithm has been developed for the GEANT4 Monte-Carlo package for the efficient computation of screened Coulomb interatomic scattering. It explicitly integrates the classical equations of motion for scattering events, resulting in precise tracking of both the projectile and the recoil target nucleus. The algorithm permits the user to plug in an arbitrary screening function, such as Lens-Jensen screening, which is good for backscattering calculations, or Ziegler-Biersack-Littmark screening, which is good for nuclear straggling and implantation problems. This will allow many of the applications of the TRIM and SRIM codes to be extended into the much more general GEANT4 framework where nuclear and other effects can be included
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...
Coulomb explosion of “hot spot”
Energy Technology Data Exchange (ETDEWEB)
Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)
2016-09-15
The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.
Coulomb explosion of “hot spot”
International Nuclear Information System (INIS)
Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.
2016-01-01
The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.
Coulomb states in atoms and solids
International Nuclear Information System (INIS)
Ortalano, D.M.
1988-05-01
In this dissertation, an empirical quantum defect approach to describe the valence excitons of the rare gas solids is developed. These Coulomb states are of s-symmetry and form a hydrogen-like series which converges to the bottom of the lowest conduction band. A non-zero quantum defect is found for all of the excitons of neon, argon and xenon. For these systems, then, there exists, in addition to the screened Coulombic component, a non-Coulombic component to the total exciton binding energy. The Wannier formalism is, therefore, inappropriate for the excitons of Ne, Ar and Xe. From the sign of the quantum defect, the non-Coulombic potential is repulsive for Ne and Ar, attractive for Xe, and nearly zero for Kr. This is opposite to that for the Rydberg states of the corresponding rare gas atoms, where the non-Coulombic potential between the electron and the cation is attractive for all of the atoms. The excitons then, are not simply perturbed Rydberg states of the corresponding rare gas atoms (i.e., the excitons do not possess atomic parentage). Interatomic term value/band gap energy correlations and reduced term value/reduced band gap correlations were performed. These correlations were exploited to provide further evidence against both the Wannier formalism and the atomic parentage view point. From these correlations, it was also discovered that the non-Coulombic potential varies smoothly across the valence isoelectronic series of solids, and that it becomes more attractive (or less repulsive) in going from neon to xenon. In order to address the atomic parentage controversy, it was necessary to compare the excitons to the low-n Rydberg states of the rare gas atoms. A review of the quantum defect description of the atomic Rydberg states is, therefore, presented. Also, Rydberg term value/ionization energy correlations are discussed and compared with the analogous exciton correlations. 7 refs., 10 figs., 5 tabs
Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VIII. Role of Coulomb exchange
International Nuclear Information System (INIS)
Goriely, S.; Pearson, J. M.
2008-01-01
Following suggestions that the energy associated with Coulomb correlations and a possible charge-symmetry breaking of nuclear forces might largely cancel the Coulomb-exchange term, we refit the HFB-14 mass model without the Coulomb-exchange term to essentially all the mass data. The resulting mass model, HFB-15, gives a better fit to the 2149 mass data, σ rms falling from 0.729 to 0.678 MeV. The improvement in the energy differences between mirror nuclei is particularly striking: the Nolen-Schiffer anomaly, which is strong for HFB-14, is essentially eliminated. As for the extrapolation to highly neutron-rich nuclei, the HFB-15 model differs significantly from HFB-14, with up to 15 MeV less binding being predicted. However, the differences in the predicted values of differential quantities such as the neutron-separation energies, β-decay energies and fission barriers are very much smaller
Coulomb excitation of neutron-deficient polonium isotopes studied at ISOLDE
Neven, Michiel
The polonium isotopes represent an interesting region of the nuclear chart having only two protons outside the Z = 82 closed shell. These isotopes have already been extensively studied theoretically and experimentally. The heavier isotopes (A > 200) seem to follow a "regular seniority-type regime" while for the lighter isotopes (A < 200) a more collective behavior is observed. Many questions remain regarding the transition between these two regimes and the configuration mixing between quantum states. Experiments in the lighter polonium isotopes point to the presence of shape coexistence, however the phenomenon is not fully understood. A Coulomb excitation study of the polonium isotopes whereby the dynamic properties are investigated can provide helpful insights in understanding the shape coexistence phenomena. In this thesis $^{202}$Po was studied via Coulomb excitation. The $^{202}$Po isotope was part of an experimental campaign in which the $^{196,198,200,206}$Po isotopes were studied as well via Coulomb...
Treating Coulomb exchange contributions in relativistic mean field calculations: why and how
International Nuclear Information System (INIS)
Giai, Nguyen Van; Liang, Haozhao; Gu, Huai-Qiang; Long, Wenhui; Meng, Jie
2014-01-01
The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow ‘mock up’ the effects of meson-induced exchange terms by adjusting the meson–nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this work, we show that the Coulomb exchange effects can be easily included with good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation
Calculation of proton-deuteron phase parameters including the Coulomb force
International Nuclear Information System (INIS)
Alt, E.O.; Sandhas, W.; Ziegelmann, H.
1985-04-01
A previously proposed exact method for including the Coulomb force in three-body collisions is applied to proton-deuteron scattering. We present phase shifts for angular momenta up to L=9, from elastic threshold to 50 MeV proton laboratory energy. Separable rank-one potentials are taken for the nuclear interactions. A charge-independent and a charge-symmetric choise, while leading to different neutron-deuteron and proton-deuteron phase parameters, nevertheless yields practically the same Coulomb corrections. We, moreover, investigate the question of P-wave resonances.A critical comparison of our results with those obtained in a co-ordinate space formalism is performed. Furthermore, proposals for an approximate inclusion of the Coulomb potential are tested, and found unsatisfactory. (orig.)
Coulomb collisions in the solar wind
Klein, L. W.; Ogilvie, K. W.; Burlaga, L. F.
1985-01-01
A major improvement of the present investigation over previous studies of the subject is related to the use of helium temperatures obtained from helium ion measurements uncontaminated by the high-velocity tail of the proton distribution. More observations, covering a large parameter range, were employed, and the effects of interspecies drift were taken into account. It is shown in a more definite way than has been done previously, that Coulomb collisions provide the most important mechanism bringing about equilibrium between helium and protons in the solar wind. Other mechanisms may play some part in restricted regions, but Coulomb collisions are dominant on the macroscale.
Frictional Coulomb drag in strong magnetic fields
DEFF Research Database (Denmark)
Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang
1997-01-01
A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...
Critical behavior in graphene with Coulomb interactions.
Wang, Jianhui; Fertig, H A; Murthy, Ganpathy
2010-05-07
We demonstrate that, in the presence of Coulomb interactions, electrons in graphene behave like a critical system, supporting power law correlations with interaction-dependent exponents. An asymptotic analysis shows that the origin of this behavior lies in particle-hole scattering, for which the Coulomb interaction induces anomalously close approaches. With increasing interaction strength the relevant power law changes from real to complex, leading to an unusual instability characterized by a complex-valued susceptibility in the thermodynamic limit. Measurable quantities, as well as the connection to classical two-dimensional systems, are discussed.
Observation of a Coulomb flux tube
Greensite, Jeff; Chung, Kristian
2018-03-01
In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.
Perturbative ambiguities in Coulomb gauge QCD
International Nuclear Information System (INIS)
Doust, P.
1987-01-01
The naive Coulomb gauge Feynman rules in non-abelian gauge theory give rise to ambiguous integrals, in addition to the usual ultraviolet divergences. Generalizing the work of Cheng and Tsai, these ambiguities are resolved to all orders in perturbation theory, by defining a gauge that interpolates smoothly between the Feynman gauge and the Coulomb gauge. The extra terms V 1 +V 2 of Christ and Lee are identified with certain two-loop ambiguous terms. However, there still seem to be unsolved problems connected with renormalisation. copyright 1987 Academic Press, Inc
Coulomb dissociation of N 20,21
Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos
2016-01-01
Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is...
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-28
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing
2016-06-22
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.
Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".
Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A
2015-02-01
In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.
A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift
International Nuclear Information System (INIS)
Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio
2017-01-01
We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancellation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude. (author)
Simplistic Coulomb Forces in Molecular Dynamics
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.
2012-01-01
In this paper we compare the Wolf method to the shifted forces (SF) method for efficient computer simulation of bulk systems with Coulomb forces, taking results from the Ewald summation and particle mesh Ewald methods as representing the true behavior. We find that for the Hansen–McDonald molten...
Coulomb's Electrical Measurements. Experiment No. 14.
Devons, Samuel
Presented is information related to the life and work of Charles Coulomb as well as detailed notes of his measurements of the distribution of electricity on conductors. The two methods that he used (the large torsion balance, and the timing of "force" oscillations) are described. (SA)
Coulomb drag in multiwall armchair carbon nanotubes
DEFF Research Database (Denmark)
Lunde, A.M.; Jauho, Antti-Pekka
2004-01-01
surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...
Coulomb Coupling Between Quantum Dots and Waveguides
National Research Council Canada - National Science Library
Porod, Wolfgang
2000-01-01
.... We considered both III-V and Si-based semiconductor systems. In later years, the AASERT award supported work on QCA realizations in Coulomb-blockade metal-dot systems, which were successful in demonstrating the basic QCA switching operation...
Generalized Coulomb gauge without Gribov ambiguity
Energy Technology Data Exchange (ETDEWEB)
Fachin, S.; Parrinello, C. (New York Univ., NY (United States). Physics Dept.)
1992-05-01
We discuss a global gauge-fixing prescription that is free of the Gribov problem, preserves reflection positivity and contains as a limiting case the (maximal) Coulomb gauge. In such a formalism it is very easy to check that only color singlet states propagate in Euclidean time, for any value of [beta]. (orig.).
Lee-Nauenberg theorem and Coulomb scattering
Energy Technology Data Exchange (ETDEWEB)
Fleming, H; Frenkel, J [Sao Paulo Univ. (Brazil). Instituto de Fisica
1975-08-01
Lee-Nauenberg analysis is extended to the case of Coulomb scattering, where the diagonal elements of the Hamiltonian interaction are singular functions. It is shown, using a simple argument, that the leading infrared singularities in the cross-section are mutually canceled out.
Monotonicity and concavity in Coulomb systems
International Nuclear Information System (INIS)
Englisch, R.; Englisch, H.; Karl-Marx-Universitaet, Leipzig
1986-01-01
The eigenvalues of H(α) = H 0 + αH * , where H * is an arbitrary Coulomb potential, decrease with increasing α ≥ 0. Linear and parabolic bounds for the ground state energy are presented. These bounds are applied to the biexciton and the exciton at a neutral donor. (orig.)
Signatures of Coulomb fission: a theoretical study
International Nuclear Information System (INIS)
Oberacker, V.; Kruse, H.; Pinkston, W.T.; Greiner, W.
1979-01-01
Evidence for Coulomb fission (CF) is noted first. Then the Hamiltonian is set down and explained, and an expression for the CF probability of CF is obtained. Results are summarized. Figures show the CF probability of 238 U as a function of projectile charge number and the excitation functions for CF of 238 U by 184 W and 136 Xe. 3 figures
Interatomic Coulombic decay in helium nanodroplets
DEFF Research Database (Denmark)
Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana
2017-01-01
, or in the droplet interior. ICD at the surface gives rise to energetic He+ ions as previously observed for free He dimers. ICD deeper inside leads to the ejection of slow He+ ions due to Coulomb explosion delayed by elastic collisions with neighboring He atoms, and to the formation of Hek+ complexes....
Coulomb Blockade of Tunnel-Coupled Quantum Dots
National Research Council Canada - National Science Library
Golden, John
1997-01-01
.... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...
Coulomb singularity effects in tunnelling spectroscopy of individual impurities
Arseyev, P. I.; Maslova, N. S.; Panov, V. I.; Savinov, S. V.
2002-01-01
Non-equilibrium Coulomb effects in resonant tunnelling processes through deep impurity states are analyzed. It is shown that Coulomb vertex corrections to the tunnelling transfer amplitude lead to a power-law singularity in current- voltage characteristics
Poisson equation in the Kohn-Sham Coulomb problem
Manby, F. R.; Knowles, Peter James
2001-01-01
We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory.
DEFF Research Database (Denmark)
Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro
2014-01-01
Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....
Coulomb Excitation of the N = 50 nucleus 80Zn
International Nuclear Information System (INIS)
Van de Walle, J.; Cocolios, T. E.; Huyse, M.; Ivanov, O.; Mayet, P.; Raabe, R.; Sawicka, M.; Stefanescu, I.; Duppen, P. van; Aksouh, F.; Ames, F.; Habs, D.; Lutter, R.; Behrens, T.; Gernhauser, R.; Kroell, T.; Kruecken, R.; Bildstein, V.; Blazhev, A.; Eberth, J.
2008-01-01
Neutron rich Zinc isotopes, including the N = 50 nucleus 80 Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2 + states. For the first time, an excited state in 80 Zn was observed and the 2 1 + state in 78 Zn was established. The measured B(E2,2 1 + →0 1 + ) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78 Ni
Coulomb gap triptych in a periodic array of metal nanocrystals.
Chen, Tianran; Skinner, Brian; Shklovskii, B I
2012-09-21
The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-electron interaction in disordered systems with localized electron states. Here we show that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which together form a structure that we call a "Coulomb gap triptych." We calculate the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.
Core polarization and Coulomb displacement energies
International Nuclear Information System (INIS)
Shlomo, S.; Love, W.G.
1982-01-01
The contributions of core polarization terms (other than the Auerbach-Kahana-Weneser (AKW) effect) to Coulomb displacement energies of mirror nuclei near A = 16 and A = 40 are examined within the particle-vibration coupling model. The parameters of the model are determined using updated data on the locations and strengths of multipole core excitations. In the absence of relevant data an energy-weighted sum rule (EWSR) is exploited. Taking into account multipole excitations up to L = 5 and subtracting the contributions which are due to short-range correlations, significant contributions (1-3%) to ΔEsub(c) are found. These corrections arise from particle coupling to low-lying collective states (long-range correlations). The implications of these results on the Coulomb energy problem are discussed. (Auth.)
Coulomb excitation of radioactive 20, 21Na
Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.
2009-12-01
The low-energy structures of the radioactive nuclei 20, 21Na have been examined using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ˜ 5×106 ions/s were accelerated to 1.7MeV/A and Coulomb excited in a 0.5mg/cm^2 natTi target. Two TIGRESS HPGe clover detectors perpendicular to the beam axis were used for γ -ray detection, while scattered nuclei were observed by the Si detector BAMBINO. For 21Na , Coulomb excitation from the 3/2+ ground state to the first excited 5/2+ state was observed, while for 20Na , Coulomb excitation was observed from the 2+ ground state to the first excited 3+ and 4+ states. For both beams, B ( λ L) values were determined using the 2+ rightarrow 0+ de-excitation in 48Ti as a reference. The resulting B( E2) ↓ value for 21Na is 137±9 e^2fm^4, while the resulting B( λ L) ↓ values for 20Na are 55±6 e^2fm^4 for the 3+ rightarrow 2+ , 35.7±5.7 e^2 fm^4 for the 4+ rightarrow 2+ , and 0.154±0.030 μ_ N^2 for the 4+ rightarrow 3+ transitions. This analysis significantly improves the measurement of the 21Na B( E2) value, and provides the first experimental determination of B( λ L) values for the proton dripline nucleus 20Na .-1
How to calculate the Coulomb scattering amplitude
International Nuclear Information System (INIS)
Grosse, H.; Narnhofer, H.; Thirring, W.
1974-01-01
The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)
International Nuclear Information System (INIS)
Kar, S.; Ho, Y.K.
2009-01-01
We have investigated the doubly excited 1 D e resonance states of Ps - interacting with pure Coulomb and screened Coulomb (Yukawa) potentials employing highly correlated wave functions. For pure Coulomb interaction, in the framework of stabilization method and complex coordinate rotation method we have obtained two resonances below the n = 2 threshold of the Ps atom. For screened Coulomb interaction, we employ the stabilization method to extract resonance parameters. Resonance energies and widths for the 1 D e resonance states of Ps - for different screening parameter ranging from infinity (pure Coulomb case) to a small value are also reported. (author)
Regularization of the Coulomb scattering problem
International Nuclear Information System (INIS)
Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.
2004-01-01
The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers
Coulomb explosion of large penetrating molecular clusters
International Nuclear Information System (INIS)
Wegner, H.E.; Thieberger, P.
1981-01-01
The main purpose of these Coulomb explosion measurements is to determine what kind of structure these and other complex molecules may have and also to determine what other special phenomena may come into play as these complex molecules pass through matter. Although the first preliminary measurements involving the Coulomb explosion of these molecules was reported at this workshop last year, the results are briefly summarized before going on to the more recent measurements obtained with a completely new kind of detector system. This new image intensifier detector system, coupled with a microcomputer, has proven to be a valuable tool in the study of the Coulomb explosion of complex molecules that penetrate matter. In the future, with some additional improvements in the system, and much better statistics for most of the molecules studied to date, it is expected that much new information will be gained about the structure of many kinds of complex molecular ions including the special effects that may be encountered when these fast molecular ions penetrate matter
Coulomb Logarithm in Nonideal and Degenerate Plasmas
Filippov, A. V.; Starostin, A. N.; Gryaznov, V. K.
2018-03-01
Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein-Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.
Scattering at low energies by potentials containing power-law corrections to the Coulomb interaction
International Nuclear Information System (INIS)
Kuitsinskii, A.A.
1986-01-01
The low-energy asymptotic behavior is found for the phase shifts and scattering amplitudes in the case of central potentials which decrease at infinity as n/r+ar /sup -a/,a 1. In problems of atomic and nuclear physics one is generally interested in collisions of clusters consisting of several charged particles. The effective interaction potential of such clusters contains long-range power law corrections to the Coulomb interaction that is presented
Probing shape coexistence in neutron-deficient $^{72}$Se via low-energy Coulomb excitation
We propose to study the evolution of nuclear structure in neutron-deficient $^{72}$Se by performing a low-energy Coulomb excitation measurement. Matrix elements will be determined for low-lying excited states allowing for a full comparison with theoretical predictions. Furthermore, the intrinsic shape of the ground state, and the second 0$^{+}$ state, will be investigated using the quadrupole sum rules method.
International Nuclear Information System (INIS)
Papp, Z.; Plessas, W.
1996-01-01
We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-12-15
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Electromagnetic excitation with very heavy ions at and above the Coulomb barrier
International Nuclear Information System (INIS)
Wollersheim, H.J.
1988-08-01
The present report is part of a systematic study of the electromagnetic properties of strongly deformed and shape transitional nuclei carried out at GSI. The high efficiency particle-gamma detector system is described to perform multiple Coulomb excitation experiments with very heavy projectiles. Some results obtained for the shape transitional nucleus 196 Pt will be presented to exemplify the importance of having access to both the level energies and the E2-transition matrix elements when discussing the possible structure of these states. The second part of this paper is devoted to transfer reactions between very heavy nuclei. In contrast to light projectiles heavy ions offer the possibility to study new phenomena which originate in the much larger Coulomb contribution to the total interaction. In particular, heavy deformed nuclei will be Coulomb excited by the strong electromagnetic field to high spin states already at the time when they start interacting through the nuclear forces. The particle transfer therefore takes place mainly between excited collective states and thus should give information about the interplay between single-particle degrees of freedom, pair correlations and collective excitations. In this paper results of experiments will be reported in which nuclei from the rare earth and the actinide region have been bombarded by 206,208 Pb projectiles at incident energies near the Coulomb barrier. (orig./HSI)
Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.
Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang
2013-07-12
We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.
Phases and amplitudes for a modified repulsive Coulomb field
International Nuclear Information System (INIS)
Chidichimo, M.C.; Davison, T.S.
1990-01-01
The asymptotic form of the radial wave function for positive-energy states is calculated for the case of a repulsive Coulomb field. The cases of a pure Coulomb potential and a modified Coulomb potential are considered. Second-order analytic solutions for the amplitudes and phases are obtained when the modifications to the pure Coulombic potential take the form αr -2 +βr -3 +γr -4 , using the Jeffreys or WKB method. For the case of a pure Coulomb field, numerical results obtained from this method were compared with ''exact'' numerical results that were obtained using the analytic properties of the Coulomb wave functions. Tables are presented to show the conditions under which the method is accurate
Coulomb excitation of {sup 8}Li
Energy Technology Data Exchange (ETDEWEB)
Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear
2012-07-01
Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)
Ordering transitions induced by Coulomb interactions
International Nuclear Information System (INIS)
Rovere, M.; Senatore, G.; Tosi, M.P.
1988-11-01
We briefly review recent progress in treating phase transitions to ordered states driven by Coulomb interactions. Wigner crystallization of the one-component plasma, in the degenerate Fermi limit and in the classical limit, is the foremost example and developments in its theory are discussed in some detail. Attention is also given to quasi-twodimensional realizations of the plasma model in the laboratory. The usefulness of these ideas in relation to freezing and ordering transitions is illustrated with reference to alkali metals, elemental and polar semiconductors, and various types of ionic systems (molten salts, colloidal suspensions and astrophysical plasmas). (author). 70 refs, 5 figs
Resonances in the two centers Coulomb system
Energy Technology Data Exchange (ETDEWEB)
Seri, Marcello
2012-09-14
In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.
Resonances in the two centers Coulomb system
International Nuclear Information System (INIS)
Seri, Marcello
2012-01-01
In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.
Dynamics in few body Coulomb problems
International Nuclear Information System (INIS)
Ovchinnikov, S.Y.; Macek, J.H.; Tantawi, R.S.; Sabbah, A.S.
1999-01-01
We develop the 'positive energy Sturmian technique' for the solution of time-dependent Schroedinger equations which describe few Coulomb centers with scattering initial conditions. The 'positive energy Sturmian technique' is based on the following main steps: (i) time-dependent scaled transformation; (ii) Fourier transformation into the frequency domain; (iii) outgoing wave Sturmian expansions; and (iv) solution of coupled equations. The technique has been applied in electron-atom and ion-atom collisions for calculations of energy and angular distributions of emitted electrons and excitations of atoms. Refs. 2 (author)
Bound and resonant states in Coulomb-like potentials
International Nuclear Information System (INIS)
Papp, Z.
1985-12-01
The potential separable expansion method was generalized for calculating bound and resonant states in Coulomb-like potentials. The complete set of Coulomb-Sturmian functions was taken as the basis to expand the short-range potential. On this basis the matrix elements of the Coulomb-Green functions were given in closed form as functions of the (complex) energy. The feasibility of the method is demonstrated by a numerical example. (author)
3D Oscillator and Coulomb Systems reduced from Kahler spaces
Nersessian, Armen; Yeranyan, Armen
2003-01-01
We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and ...
Coulomb sum rules in the relativistic Fermi gas model
International Nuclear Information System (INIS)
Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.
1986-11-01
Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer
Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem
International Nuclear Information System (INIS)
Abramov, D. I.
2013-01-01
A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ρ = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ρ→∞, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.
Correlated Coulomb drag in capacitively coupled quantum-dot structures
DEFF Research Database (Denmark)
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-01-01
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....
Empirical Coulomb matrix elements and the mass of 22Al
International Nuclear Information System (INIS)
Whitehead, R.R.; Watt, A.; Kelvin, D.; Rutherford, H.J.
1976-01-01
An attempt has been made to obtain a set of Coulomb matrix elements which fit the known Coulomb energy shifts in the nuclei of mass 18 to 22. The interaction obtained fits the data well with only a few exceptions, one of these being the Coulomb shift of the notorious third 0 + state in 18 Ne. These Coulomb matrix elements are used together with the Chung-Wildenthal interaction to obtain a new prediction for the mass excess of 22 Al. The results indicate that 22 Al should be bound against proton emission. (Auth.)
Asymptotic freedom in the axial and Coulomb gauges
International Nuclear Information System (INIS)
Frenkel, J.; Taylor, J.C.
1976-01-01
The sources of the negative contribution to the charge renormalization factor gsup(B)/g-1 in Yang-Mills theories are investigated in the axial and Coulomb gauges. In the axial gauge, a Kaellen dispersion relation exists but the spectral function is not positive definite because of the prescription that is used to integrate the singular polarization vectors. In the Coulomb gauge, the negative contributions are (to the lowest order) isolated in the Coulomb self-energy corrections to the Coulomb field. (Auth.)
Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory
International Nuclear Information System (INIS)
Nakagawa, Y.; Nakamura, A.; Saito, T.; Toki, H.
2010-01-01
We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.
Heat Coulomb blockade of one ballistic channel
Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.
2018-02-01
Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (laws for thermal transport in nanocircuits.
Pseudo-Coulomb potential in singlet superconductivity
International Nuclear Information System (INIS)
Daemen, L.L.; Overhauser, A.W.
1988-01-01
Reduction of the screened Coulomb potential parameter μ to μ/sup */ = μ/[1+μ ln(E/sub F//(h/2π)ω/sub D/)] is related to the pair correlation function at r = 0. This correlation function is calculated for both the simple Cooper-pair problem and standard Bardeen-Cooper-Schrieffer (BCS) theory by use of a two-square-well model (with λ and μ describing the attraction and repulsion). Results are compared with values obtained for a one-square-well model (having the suitable net attraction, e.g., λ-μ/sup */ in the BCS case). For the BCS case, the ''true'' pair correlation at r = 0 is reduced by a factor (μ/sup *//μ) 2 relative to the fictitious (one-square-well) value (even though Δ is the same for both models). The reduction factor is typically ≅(1/25. It follows that any short-range attractive contribution to superconducting pairing will suffer a reduction similar to that for the Coulomb repulsion
Coulomb excitation of radioactive {sup 79}Pb
Energy Technology Data Exchange (ETDEWEB)
Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others
1995-08-01
The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.
A study of the evolution of the nuclear structure along the zinc isotopic chain close to the doubly magic nucleus $^{78}$Ni is proposed to probe recent shell-model calculations in this area of the nuclear chart. Excitation energies and connecting B(E2) values will be measured through multiple Coulomb excitation experiment with laser ionized purified beams of $^{74-80}$Zn from HIE ISOLDE. The current proposal request 30 shifts.
Nuclear physics for nuclear fusion
International Nuclear Information System (INIS)
Li Xingzhong; Liu Bin; Wei Qingming; Ren Xianzhe
2004-01-01
The D-T fusion cross-section is calculated using quantum mechanics with the model of square nuclear potential well and Coulomb potential barrier. The agreement between ENDF data and the theoretically calculated results is well in the range of 0.2-280 keV. It shows that the application of Breit-Wigner formula is not suitable for the case of the light nuclei fusion reaction. When this model is applied to the nuclear reaction between the charged particles confined in a lattice, it explains the 'abnormal phenomena'. It implies a prospect of nuclear fusion energy without strong nuclear radiations
Energy Technology Data Exchange (ETDEWEB)
Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru [Ioffe Institute (Russian Federation); Chaikina, E. I. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Division de Fisica Aplicada (Mexico); Danilovskii, E. Yu.; Gets, D. S.; Klyachkin, L. E.; L’vova, T. V.; Malyarenko, A. M. [Ioffe Institute (Russian Federation)
2016-04-15
The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The results obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.
The parametrization of Coulomb barrier heights and positions using the double folding model
International Nuclear Information System (INIS)
Qu, W.W.; Zhang, G.L.; Le, X.Y.
2011-01-01
The Coulomb barrier heights and positions are systematically shown with mass numbers and charge radii of the interacting nuclei. The nuclear potential is calculated by using the double folding model with the density-dependence nucleon-nucleon interaction (CDM3Y6). The pocket formulas are obtained for the Coulomb barrier heights and positions by analyzing several hundreds of heavy-ion systems with mass numbers from light nuclei to heavy nuclei. The parameterized formulas can reproduce the calculated barrier heights and positions by using the double folding model within the accuracy of ±1%. Moreover, the results are agreeable with the experimental data. The relation between the barrier height and the barrier position is also studied.
Dependence of Coulomb Sum Rule on the Short Range Correlation by Using Av18 Potential
Modarres, M.; Moeini, H.; Moshfegh, H. R.
The Coulomb sum rule (CSR) and structure factor are calculated for inelastic electron scattering from nuclear matter at zero and finite temperature in the nonrelativistic limit. The effect of short-range correlation (SRC) is presented by using lowest order constrained variational (LOCV) method and the Argonne Av18 and Δ-Reid soft-core potentials. The effects of different potentials as well as temperature are investigated. It is found that the nonrelativistic version of Bjorken scaling approximately sets in at the momentum transfer of about 1.1 to 1.2 GeV/c and the increase of temperature makes it to decrease. While different potentials do not significantly change CSR, the SRC improves the Coulomb sum rule and we get reasonably close results to both experimental data and others theoretical predictions.
Elastic Coulomb breakup of 34Na
Singh, G.; Shubhchintak, Chatterjee, R.
2016-08-01
Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our
4-center STO interelectron repulsion integrals with Coulomb Sturmians
DEFF Research Database (Denmark)
Avery, James Emil; Avery, John Scales
2018-01-01
Abstract We present a method for evaluating 4-center electron repulsion integrals (ERI) for Slater-type orbitals by way of expansions in terms of Coulomb Sturmians. The ERIs can then be evaluated using our previously published methods for rapid evaluation of Coulomb Sturmians through hyperspherical...
Coulomb corrections in the low-energy scattering
International Nuclear Information System (INIS)
Mur, V.D.; Popov, V.S.
1985-01-01
Renormalization of the coefficients of the ''effective range expansion'' is considered for the short-range Coulomb problem. The exactly solvable model of the Coulomb plus short range potential is considered. Exact solutions are compared with approximations frequently used in the theory of hadronic atoms
Two-center Coulomb problem with Calogero interaction
Energy Technology Data Exchange (ETDEWEB)
Hakobyan, T., E-mail: tigran.hakobyan@ysu.am; Nersessian, A., E-mail: arnerses@ysu.am [Armenia Tomsk Polytechnic University, Yerevan State University (Russian Federation)
2017-03-15
We show that the Calogero-type perturbation preserves the integrability and partial separation of variables for the Stark–Coulomb and two-center Coulomb problems, and present the explicit expressions of their constants of motion. We reveal that this perturbation preserves the spectra of initial systems, but leads to the change of degree of degeneracy.
Known-to-Unknown Approach to Teach about Coulomb's Law
Thamburaj, P. K.
2007-01-01
Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…
Coulomb-gas scaling, superfluid films, and the XY model
International Nuclear Information System (INIS)
Minnhagen, P.; Nylen, M.
1985-01-01
Coulomb-gas-scaling ideas are invoked as a link between the superfluid density of two-dimensional 4 He films and the XY model; the Coulomb-gas-scaling function epsilon(X) is extracted from experiments and is compared with Monte Carlo simulations of the XY model. The agreement is found to be excellent
Antilocalization of Coulomb Blockade in a Ge-Si Nanowire
DEFF Research Database (Denmark)
Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum
2014-01-01
The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...
Generalized coherent states for the Coulomb problem in one dimension
International Nuclear Information System (INIS)
Nouri, S.
2002-01-01
A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension
Eikonal representation of N-body Coulomb scattering amplitudes
International Nuclear Information System (INIS)
Fried, H.M.; Kang, K.; McKellar, B.H.J.
1983-01-01
A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3→(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2) 2 distinct integrands
The Coulomb potential in quantum mechanics and related topics
International Nuclear Information System (INIS)
Haeringen, H. van.
1978-01-01
This dissertation consists of an analytic study of the Coulomb interaction in nonrelativistic quantum mechanics and some related topics. The author investigates in a number of self-contained articles various interesting and important properties of the Coulomb potential. Some of these properties are shared by other potentials which also play a role in quantum mechanics. For such related interactions a comparative study is made. The principal difficulties in the description of proton-deuteron scattering and break-up reactions, due to the Coulomb interaction, are studied by working out a simple model. The bound states are studied for the Coulomb plus Yamaguchi potential, for the symmetric shifted Coulomb potential, and for local potentials with an inverse-distance-squared asymptotic behaviour. (Auth.)
Interplay between superconductivity and Coulomb blockade
Energy Technology Data Exchange (ETDEWEB)
Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke [Universitaet Konstanz (Germany)
2016-07-01
Studying the interplay between superconductivity and Coulomb blockade (CB) can be achieved by investigating an all superconducting single electron transistor (SSET) consisting of an island coupled to the leads by two tunneling contacts. The majority of experiments performed so far were using superconducting tunnel contacts made from oxide layers, in which multiple Andreev reflections (MAR) can be excluded. Using a mechanically controlled break junction (MCBJ) made of aluminum enables tuning the contributions of MAR in one junction continuously and thereby addressing different transport regimes within the same sample. Our results offer the possibility to attribute particular features in the transport characteristics to the transmission probabilities of individual modes in the MCBJ contact. We discuss our findings in terms of dynamical CB, SSET behaviour and MAR when continuously opening the MCBJ from the fully closed state to a tunneling contact.
Coulomb excitation of {sup 123}Cd
Energy Technology Data Exchange (ETDEWEB)
Hartig, Anna-Lena; Kroell, Thorsten; Ilieva, Stoyanka; Boenig, Sabine; Thuerauf, Michael [IKP, TU Darmstadt (Germany); Simpson, Gary; Drouet, Floriane; Ramdhane, Mourad [LPSC, Grenoble (France); Georgiev, Georgi [CSNSM, Orsay (France); Kesteloot, Nele; Wrzosek-Lipska, Kasia [KU, Leuven (Belgium); Jungclaus, Andrea; Illana Sison, Andres [CSIC, Madrid (Spain); Balabanski, Dimiter [INRNE-BAS, Sofia (Bulgaria); Warr, Nigel [Koeln Univ. (Germany). IKP; Voulot, Didier; Wenander, Fredrik; Marsh, Bruce [CERN, Geneva (Switzerland)
2013-07-01
On the neutron-rich side of the valley of stability in the vicinity of the double magic nucleus {sup 132}Sn one can find the {sup 123}Cd isotope. Surprisingly the neutron-rich even-A Cd isotopes in this region are showing signs of collectivity beyond that calculated by modern shell-model predictions. In order to gain a deeper insight in this phenomenon we started to extend these studies to odd-A Cd isotopes. As first isotope the exotic nucleus {sup 123}Cd was produced for safe Coulomb excitation by the ISOLDE facility at CERN and post-accelerated by REX-ISOLDE. The γ-decay from excited states was detected with the MINIBALL array. A report on the status of the ongoing analysis is given.
The ghost propagator in Coulomb gauge
International Nuclear Information System (INIS)
Watson, P.; Reinhardt, H.
2011-01-01
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
6d, Coulomb branch anomaly matching
Intriligator, Kenneth
2014-10-01
6d QFTs are constrained by the analog of 't Hooft anomaly matching: all anomalies for global symmetries and metric backgrounds are constants of RG flows, and for all vacua in moduli spaces. We discuss an anomaly matching mechanism for 6d theories on their Coulomb branch. It is a global symmetry analog of Green-Schwarz-West-Sagnotti anomaly cancellation, and requires the apparent anomaly mismatch to be a perfect square, . Then Δ I 8 is cancelled by making X 4 an electric/magnetic source for the tensor multiplet, so background gauge field instantons yield charged strings. This requires the coefficients in X 4 to be integrally quantized. We illustrate this for theories. We also consider the SCFTs from N small E8 instantons, verifying that the recent result for its anomaly polynomial fits with the anomaly matching mechanism.
Effective temperature in relaxation of Coulomb glasses.
Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M
2008-08-01
We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.
Effective Coulomb interaction in multiorbital system
International Nuclear Information System (INIS)
Hase, Izumi; Yanagisawa, Takashi
2013-01-01
Transition metal atom generally takes various valences, and sometimes there are some 'missing valences', for example Fe usually takes 2+, 3+ and 5+, but does not take other valences so often. We have calculated the atomic multiplet energies for the high-spin and lowspin configurations within the ligand-field theory and the Hartree-Fock approximation, and found that the Coulomb interaction energy (U eff ) becomes small when the valence is 'missing'. In case U eff B /Fe only when U eff increased in most cases, but in some special cases U eff decreases and falls below the value U − 3J, which is the least value of the undistorted system.
Coulomb excitation of {sup 107}Sn
Energy Technology Data Exchange (ETDEWEB)
DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)
2012-07-15
The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)
DEFF Research Database (Denmark)
Del Nobile, Eugenio; Kouvaris, Christoforos; Sannino, Francesco
2012-01-01
We study different patterns of interference in WIMP-nuclei elastic scattering that can accommodate the DAMA and CoGeNT experiments via an isospin violating ratio $f_n/f_p=-0.71$. We study interference between the following pairs of mediators: Z and Z', Z' and Higgs, and two Higgs fields. We show ...
International Nuclear Information System (INIS)
Hiratsuka, Y.; Oryu, S.; Gojuki, S.
2011-01-01
Reliability of the screened Coulomb renormalization method, which was proposed in an elegant way by Alt-Sandhas-Zankel-Ziegelmann (ASZZ), is discussed on the basis of 'two-potential theory' for the three-body AGS equations with the Coulomb potential. In order to obtain ASZZ's formula, we define the on-shell Moller function, and calculate it by using the Haeringen criterion, i. e. 'the half-shell Coulomb amplitude is zero'. By these two steps, we can finally obtain the ASZZ formula for a small Coulomb phase shift. Furthermore, the reliability of the Haeringen criterion is thoroughly checked by a numerically rigorous calculation for the Coulomb LS-type equation. We find that the Haeringen criterion can be satisfied only in the higher energy region. We conclude that the ASZZ method can be verified in the case that the on-shell approximation to the Moller function is reasonable, and the Haeringen criterion is reliable. (author)
Scattering and stopping of swift diatomic molecules under Coulomb explosion
International Nuclear Information System (INIS)
Sigmund, P.
1992-01-01
The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analysed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering, and the effect of zero-point motion on the Coulomb image of a molecule. (orig.)
Scattering and stopping of swift diatomic molecules under Coulomb explosion
International Nuclear Information System (INIS)
Sigmund, P.
1991-01-01
The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analyzed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering and the effect of zero-point motion on the Coulomb image of a molecule. 14 refs., 5 figs
No evidence of reduced collectivity in Coulomb-excited Sn isotopes
Kumar, R.; Saxena, M.; Doornenbal, P.; Jhingan, A.; Banerjee, A.; Bhowmik, R. K.; Dutt, S.; Garg, R.; Joshi, C.; Mishra, V.; Napiorkowski, P. J.; Prajapati, S.; Söderström, P.-A.; Kumar, N.; Wollersheim, H.-J.
2017-11-01
In a series of Coulomb excitation experiments the first excited 2+ states in semimagic Sn 112 ,116 ,118 ,120 ,122 ,124 isotopes were excited using a 58Ni beam at safe Coulomb energy. The B (E 2 ; 0+→2+) values were determined with high precision (˜3 %) relative to 58Ni projectile excitation. These results disagree with previously reported B (E 2 ↑) values [A. Jungclaus et al., Phys. Lett. B 695, 110 (2011)., 10.1016/j.physletb.2010.11.012] extracted from Doppler-shift attenuation lifetime measurements, whereas the reported mass dependence of B (E 2 ↑) values is very similar to a recent Coulomb excitation study [J. M. Allmond et al., Phys. Rev. C 92, 041303(R) (2015), 10.1103/PhysRevC.92.041303]. The stable Sn isotopes, key nuclei in nuclear structure, show no evidence of reduced collectivity and we, thus, reconfirm the nonsymmetric behavior of reduced transition probabilities with respect to the midshell A =116 .
Techniques for heavy-ion coupled-channels calculations. I. Long-range Coulomb coupling
International Nuclear Information System (INIS)
Rhoades-Brown, M.; Macfarlane, M.H.; Pieper, S.C.
1980-01-01
Direct-reaction calculations for heavy ions require special computational techniques that take advantage of the physical peculiarities of heavy-ion systems. This paper is the first of a series on quantum-mechanical coupled-channels calculations for heavy ions. It deals with the problems posed by the long range of the Coulomb coupling interaction. Our approach is to use the Alder-Pauli factorization whereby the channel wave functions are expressed as products of Coulomb functions and modulating amplitudes. The equations for the modulating amplitudes are used to integrate inwards from infinity to a nuclear matching radius ( approx. = 20 fm). To adequate accuracy, the equations for the amplitudes can be reduced to first order and solved in first Born approximation. The use of the Born approximation leads to rapid recursion relations for the solutions of the Alder-Pauli equations and hence to a great reduction in computational labor. The resulting coupled-channels Coulomb functions can then be matched in the usual way to solutions of the coupled radial equations in the interior region of r space. Numerical studies demonstrate the reliability of the various techniques introduced
Shape coexistence in the neutron-deficient mercury isotopes studied through Coulomb excitation
Bree, Nick
This thesis describes the analysis and results of a series of Coulomb-excitation experiments on even-even neutron-deficient mercury isotopes aimed at obtaining a more detailed description of shape coexistence. Two experimental campaigns have been undertaken in the Summer of 2007 and 2008. Pure beams of 182,184,186,188Hg were produced and accelerated at the REX-ISOLDE radioactive-beam facility, located at CERN (Geneva, Switzerland). The beams were guided to collide with a stable target to induce Coulomb excitation. The scattered particles were registered by a double-sided silicon strip detector, and the emitted gamma rays by the MINIBALL gamma-ray spectrometer. The motivation to study these mercury isotopes, focused around shape coexistence in atomic nuclei, is addressed in chapter 1, as well as an overview of the knowledge in this region of the nuclear chart. A theoretical description of Coulomb excitation is presented in the second chapter, while the third chapter describes the setup employed for the experim...
Coulomb excitation of 206Hg at relativistic energies
Alexander, Tom
The region of the nuclear chart surrounding the doubly-magic nucleus 208Pb provides a key area to constrain and develop contemporary nuclear structure models. One aspect of particular interest is the transition strength of the first excited 2+ state in even-even nuclei; this work describes the measurement of this value for the case of 206Hg, where the Z=80 line meets the N=126 shell closure. The nuclei of interest were synthesized using relativistic-energy projectile fragmentation at the GSI facility in Germany. They were produced in the fragmentation of a primary 208Pb beam at an energy of 1 GeV per nucleon, and separated and identifed using the Fragment Separator. The secondary beams with an energy of 140 MeV per nucleon were Coulomb excited on a secondary target of 400 mg/cm. 2 gold. Gamma-rays were detected with the Advanced GAmma Tracking Array (AGATA). The precise scattering angle for Doppler-correction was determined with position information from the Lund-York-Cologne-CAlorimeter(LYCCA). Using the sophisticated tracking algorithm native to AGATA in conjunction with pulse-shape analysis, a precise Doppler-correction is performed on the gamma spectra, and using a complex n-dimensional analysis, the B(E2) value for 206Hg is extracted relative to the known value also measured in 206Pb. A total of 409 million 206Hg particles were measured, and a cross-section of 50 mb was determined for the 2+ state at 1068 keV. The measurement of the B(E2) transition strength was found to be 1.109 W.u. This result is compared to a number of theoretical calculations, including two Gogny forces, and a modified shell model parametrization and is found to be smaller than all calculated estimations, implying that the first excited 2. + state in . {206}Hg is uncollective in nature.
Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics
International Nuclear Information System (INIS)
Heckathorn, D.
1979-01-01
Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)
On the Emergence of the Coulomb Forces in Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Jan Naudts
2017-01-01
Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.
Coulomb corrections for interferometry analysis of expanding hadron systems
Energy Technology Data Exchange (ETDEWEB)
Sinyukov, Yu.M.; Lednicky, R.; Pluta, J.; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Akkelin, S.V. [ITP, Kiev (Ukraine)
1997-09-01
The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective system volumes. The modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For the {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions the analytical calculations of the Coulomb correction are compared with the exact numerical results. (author). 20 refs.
Coulomb displacement energies in nuclei: a new approach
International Nuclear Information System (INIS)
Auerbach, N.; Tel Aviv Univ.; Bernard, V.; Nguyen, V.G.
1978-04-01
The neutron core polarization gives rise to an important correction to the direct Coulomb contribution when one calculates the Coulomb displacement energies. In the Hartree-Fock model it is shown that this correction is about 2% to 4.5% in medium and heavy nuclei. The core polarization as well as other higher order effects can be included by using a selfconsistent description of the analog state in a complete proton particle-neutron hole space. The Coulomb displacement energies in 48 Ca, 88 Sr and 208 Pb have been calculated using Skyrme interactions SIII and SIV. A good agreement with experiment is obtained
Intergrain Coupling in Dusty-Plasma Coulomb Crystals
International Nuclear Information System (INIS)
Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.
1998-01-01
We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society
Takanashi, Tsukasa; Nakamura, Kosuke; Kukk, Edwin; Motomura, Koji; Fukuzawa, Hironobu; Nagaya, Kiyonobu; Wada, Shin-Ichi; Kumagai, Yoshiaki; Iablonskyi, Denys; Ito, Yuta; Sakakibara, Yuta; You, Daehyun; Nishiyama, Toshiyuki; Asa, Kazuki; Sato, Yuhiro; Umemoto, Takayuki; Kariyazono, Kango; Ochiai, Kohei; Kanno, Manabu; Yamazaki, Kaoru; Kooser, Kuno; Nicolas, Christophe; Miron, Catalin; Asavei, Theodor; Neagu, Liviu; Schöffler, Markus; Kastirke, Gregor; Liu, Xiao-Jing; Rudenko, Artem; Owada, Shigeki; Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Kono, Hirohiko; Ueda, Kiyoshi
2017-08-02
Coulomb explosion of diiodomethane CH 2 I 2 molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CH 3 I with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CH 2 I 2 in comparison to CH 3 I. The release of kinetic energy into atomic ion fragments is also studied by comparing SCC-DFTB simulations with the experiment. Compared to earlier simulations, several key enhancements are made, such as the introduction of a bond axis recoil model, where vibrational energy generated during charge creation processes induces only bond stretching or shrinking. We also propose an analytical Coulomb energy partition model to extract the essential mechanism of Coulomb explosion of molecules from the computed and the experimentally measured kinetic energies of fragment atomic ions by partitioning each pair Coulomb interaction energy into two ions of the pair under the constraint of momentum conservation. Effective internuclear distances assigned to individual fragment ions at the critical moment of the Coulomb explosion are then estimated from the average kinetic energies of the ions. We demonstrate, with good agreement between the experiment and the SCC-DFTB simulation, how the more heavily charged iodine fragments and their interplay define the characteristic features of the Coulomb explosion of CH 2 I 2 . The present study also confirms earlier findings concerning the magnitude of bond elongation in the ultrashort X-ray pulse duration, showing that structural damage to all but C-H bonds does not develop to a noticeable degree in the pulse length of ∼10
Gebremedhin, Daniel H; Weatherford, Charles A
2015-02-01
This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.
Coulomb displacement energies and neutron density distributions
International Nuclear Information System (INIS)
Shlomo, S.
1979-01-01
We present a short review of the present status of the theory of Coulomb displacement energies, ΔEsub(c), discussing the Okamoto-Nolem-Schiffer anomaly and its solution. We emphasize, in particular, that contrary to previous hopes, ΔEsub(c) does not determine rsub(ex), the root-mean square (rms) radius of the excess (valence) neutron density distribution. Instead, ΔEsub(c) is very sensitive to the value of Δr = rsub(n) - rsub(p), the difference between the rms radii of the density distributions of all neutrons and all protons. For neutron rich nuclei, such as 48 Ca and 208 Pb, a value of Δr = 0.1 fm is found to be consistent with ΔEsub(c). This value of Δr, which is considerably smaller than that (of 0.2 - 0.3 fm) predicted by some common Hartree-Fock calculations, seems to be confirmed by very recent experimental results. (orig.)
Correlation functions of Coulomb branch operators
Energy Technology Data Exchange (ETDEWEB)
Gerchkovitz, Efrat [Weizmann Institute of Science,Rehovot 76100 (Israel); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Ishtiaque, Nafiz [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics, University of Waterloo,Waterloo, ON N2L 3G1 (Canada); Karasik, Avner; Komargodski, Zohar [Weizmann Institute of Science,Rehovot 76100 (Israel); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)
2017-01-24
We consider the correlation functions of Coulomb branch operators in four-dimensional N=2 Superconformal Field Theories (SCFTs) involving exactly one anti-chiral operator. These extremal correlators are the “minimal' non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt{sup ∗} equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N=2 SQCD.
Dielectric susceptibility of classical Coulomb systems. II
International Nuclear Information System (INIS)
Choquard, Ph.; Piller, B.; Rentsch, R.
1987-01-01
This paper deals with the shape dependence of the dielectric susceptibility (equivalently defined, in a canonical ensemble, by the mean square fluctuation of the electric polarization or by the second moment of the charge-charge correlation function) of classical Coulomb systems. The concept of partial second moment is introduced with the aim of analyzing the contributions to the total susceptibility of pairs of particles of increasing separation. For a disk-shaped one-component plasma with coupling parameter γ=2 it is shown, numerically and algebraically for small and large systems, that (1) the correlation function of two particles close to the edge of the disk decays as the inverse of the square of their distance, and (2) the susceptibility is made up of a bulk contribution, which saturates rapidly toward the Stillinger-Lovett value, and of surface contribution, which varies on the scale of the disk diameter and is described by a new law called the arc sine law. It is also shown that electrostatics and statistical mechanics with shape-dependent thermodynamic limits are consistent for the same model in a strip geometry, whereas the Stillinger-Lovett sum rule is verified for a boundary-free geometry such as the surface of a sphere. Some results of extensive computer simulations of one- and two-component plasmas in circular and elliptic geometries are shown. Anisotropy effects on the susceptibilities are clearly demonstrated and the arc sine law for a circular plasma is well confirmed
Electron attraction mediated by Coulomb repulsion.
Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S
2016-07-21
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.
Optical Trapping of Ion Coulomb Crystals
Schmidt, Julian; Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias
2018-04-01
The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.
Coulomb scattering in field and photofield emission
International Nuclear Information System (INIS)
Donders, P.J.; Lee, M.J.G.
1987-01-01
An anomalous high-energy tail has been observed in the measured total energy distribution (TED) in photofield emission from tungsten. The strength of this tail is proportional to the product of the photofield emission current and the total emission current. Similar high- and low-energy tails in the TED's in field emission, which have previously been reported by several workers, are also observed. In any given measurement, the fraction of the total photofield-emission current in the anomalous photofield-emission tail is approximately equal to the fraction of the total field-emission current in the anomalous field-emission tail. Measurements of both the absolute strengths and energy dependences of the anomalous tails are reported. The experimental observations are consistent with the predictions of a classical calculation of the energy transfer that results from the Coulomb interaction between electrons in the vacuum near the field emitter. The various internal mechanisms that have previously been invoked to account for the tails in field-emission TED's do not appear to contribute significantly to the anomalous distributions observed in the present work
Coulomb-interacting billiards in circular cavities
International Nuclear Information System (INIS)
Solanpää, J; Räsänen, E; Nokelainen, J; Luukko, P J J
2013-01-01
We apply a molecular dynamics scheme to analyze classically chaotic properties of a two-dimensional circular billiard system containing two Coulomb-interacting electrons. As such, the system resembles a prototype model for a semiconductor quantum dot. The interaction strength is varied from the noninteracting limit with zero potential energy up to the strongly interacting regime where the relative kinetic energy approaches zero. At weak interactions the bouncing maps show jumps between quasi-regular orbits. In the strong-interaction limit we find an analytic expression for the bouncing map. Its validity in the general case is assessed by comparison with our numerical data. To obtain a more quantitative view on the dynamics as the interaction strength is varied, we compute and analyze the escape rates of the system. Apart from very weak or strong interactions, the escape rates show consistently exponential behavior, thus suggesting strongly chaotic dynamics and a phase space without significant sticky regions within the considered time scales. (paper)
International Nuclear Information System (INIS)
Madsen, V.A.; Landau, R.H.
1985-12-01
Research on microscopic optical potentials, multistep processes, neutron-proton differences in nuclear vibrations, and exact calculations of Coulomb plus nuclear bound states of exotic systems is reported. 21 refs
Phases, quantum interferences and effective vector meson masses in nuclei
Energy Technology Data Exchange (ETDEWEB)
Soyeur, M.
1996-12-31
We discuss the prospects for observing the mass of {rho}- and {omega}-mesons around nuclear matter density by studying their coherent photoproduction in nuclear targets and subsequent in-medium decay into e{sup +}e{sup -}pairs. The quantum interference of {rho} and {omega}-mesons in the e{sup +}e{sup -}channel and the interference between Bethe-Heitler pairs and dielectrons from vector meson decays are of particular interest. (author). 21 refs.
Computational assignment of redox states to Coulomb blockade diamonds.
Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V
2014-09-07
With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.
Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.
Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J
2016-02-19
We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.
Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-05-13
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.
Applicability of the molecular dynamics method for the Coulomb plasma
International Nuclear Information System (INIS)
Zhidkov, A.G.; Galeev, R.Kh.
1993-01-01
Calculations of the local Lyapunov parameter determining the character of movement, n paticle systems, interacting according to the Coulomb law are conducted. The calculations are presented for the most probable states of fully ionized plasma
Analytical evaluation of integrals over Coulomb wave functions
International Nuclear Information System (INIS)
Nesbet, R.K.
1988-01-01
Indefinite integrals of products of Coulomb wave functions over the interval (r, ∞) can be evaluated by conversion to continued fractions. Examples are given of normalization and dipole transition integrals required in photoionization calculations. (orig.)
The Coulomb Branch of 3d N= 4 Theories
Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide
2017-09-01
We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.
Impact of density-dependent symmetry energy and Coulomb ...
Indian Academy of Sciences (India)
2014-03-07
Mar 7, 2014 ... The IMF production increases with the stiffness of symmetry energy. .... to clusterization using minimum spanning tree MST(M) method .... To understand the direct role of Coulomb interactions, we display in figure 4 the mean.
Fusion and quasi-elastic processes near the Coulomb barrier
International Nuclear Information System (INIS)
Abriola, D.
1987-01-01
An overview of the fusion phenomenon below Coulomb barrier is presented. The current theoretical descriptions, emphasizing the relations with direct reactions are discussed. The definition and systematic behaviour of the fusion enhancement below the Coulomb barrier are also presented. The role of coupling to surface degrees of freedom, namely permanent deformations of nuclei, inelastic and transfer channels is shown. The importance of studies describing simultaneously quase-elastic processes and fusion are also shown. (M.C.K.) [pt
Coulomb Sturmians as a basis for molecular calculations
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2012-01-01
mathematical difficulty of evaluating interelectron repulsion integrals when exponential-type orbitals (ETOs) are used. In this paper we show that when many-centre Coulomb Sturmian ETOs are used as a basis, the most important integrals can be evaluated rapidly and accurately by means of the theory...... of hyperspherical harmonics. For the remaining many-centre integrals, Coulomb Sturmians are shown to have advantages over other ETOs. Pilot calculations are performed on N-electron molecules using the Generalized Sturmian Method....
Optically induced structural phase transitions in ion Coulomb crystals
DEFF Research Database (Denmark)
Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael
2012-01-01
We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...
Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.
Patsahan, O
2013-08-01
The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.
Regularized friction and continuation: Comparison with Coulomb's law
Vigué, Pierre; Vergez, Christophe; Karkar, Sami; Cochelin, Bruno
2016-01-01
International audience; Periodic solutions of systems with friction are difficult to investigate because of the irregular nature of friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degre-of-freedom system (mass, spring, damper, belt), with Coulomb's friction law, and with a regularized friction law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With Coulomb's law, the stick-slip solution is co...
Absence of Debye screening in the quantum Coulomb system
International Nuclear Information System (INIS)
Brydges, D.C.; Keller, G.
1994-01-01
We present an approximation to the quantum Coulomb plasma at equilibrium which captures the power-law violations of Debye screening which have been reported in recent papers. The objectives are (1) to produce a simpler model which we will study in forthcoming papers, and (2) to develop a strategy by which the absence of screening can be proven for the low-density quantum Coulomb plasma itself
Trace of a water droplet exerted by coulomb force. 2
International Nuclear Information System (INIS)
Sugita, Hideaki; Murakami, Takuro; Nakazawa, Takeshi; Nakasako, Makoto; Yoshimura, Takuma; Osarakawa, Toshihiro
2002-01-01
The movement of water droplets in the air-water separator is based on the principle of the electrostatic precipitator with positive and negative poles. The mechanism of separation is that the water droplets charged negative ions or electrons by corona discharge are collected on the positive pole by Coulomb force operating between the both poles. This paper describes the theoretical analyses that how the movement of a water droplet is affected by Coulomb force in the air-water separator. (author)
Unstable system with Coulomb interaction distorted near the origin
International Nuclear Information System (INIS)
Kerbikov, B.O.
1981-01-01
An unstable system with Coulomb interaction distorted at small distances is considered. The results are applicable to hadronic atoms analysis. A detailed investigation of the model which can be solved exactly is presented. This model contains the separable short-range potential with the Yamaguchi form factor. Closed expressions for the modified effective range function and the Coulomb-modified scattering length ase obtained [ru
The generalized parabolic Coulomb wavefunction in spherical coordinates
Energy Technology Data Exchange (ETDEWEB)
Gasaneo, G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Departamento de Fisica, Universidad del Sur, Buenos Aires (Argentina); Colavecchia, F.D.; Garibotti, C.R. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Rio Negro (Argentina); Otranto, S. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Departamento de Fisica, Universidad del Sur, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Rio Negro (Argentina)
2001-10-19
In this work we present a detailed study of the recently introduced {delta}{sub m,n} basis for three Coulomb particles. We show that the scattering and generalized Coulomb problems as well as a {phi}{sub 2} approach can be viewed as particular cases of this basis. We derive a partial wave expansion for {delta}{sub m,n} functions and analyse the reduction to some of the precedent cases. (author)
Characterization of ion Coulomb crystals in a linear Paul trap
International Nuclear Information System (INIS)
Okada, K.; Takayanagi, T.; Wada, M.; Ohtani, S.; Schuessler, H. A.
2010-01-01
We describe a simple and fast method for simulating observed images of ion Coulomb crystals. In doing so, cold elastic collisions between Coulomb crystals and virtual very light atoms are implemented in a molecular dynamics (MD) simulation code. Such an approach reproduces the observed images of Coulomb crystals by obtaining density plots of the statistics of existence of each ion. The simple method has the advantage of short computing time in comparison with previous calculation methods. As a demonstration of the simulation, the formation of a planar Coulomb crystal with a small number of ions has been investigated in detail in a linear ion trap both experimentally and by simulation. However, also large Coulomb crystals including up to 1400 ions have been photographed and simulated to extract the secular temperature and the number of ions. For medium-sized crystals, a comparison between experiments and calculations has been performed. Moreover, an MD simulation of the sympathetic cooling of small molecular ions was performed in order to test the possibility of extracting the temperature and the number of refrigerated molecular ions from crystal images of laser-cooled ions. Such information is basic to studying ultracold ion-molecule reactions using ion Coulomb crystals including sympathetically cooled molecular ions.
Distributional sources for Newman's holomorphic Coulomb field
International Nuclear Information System (INIS)
Kaiser, Gerald
2004-01-01
Newman (1973 J. Math. Phys. 14 102-3) considered the holomorphic extension E-tilde(z) of the Coulomb field E(x) in R 3 . From an analysis of its multipole expansion, he concluded that the real and imaginary parts E(x+iy)≡Re E-tilde(x+iy), H(x+iy)≡Im E-tilde(x+iy), viewed as functions of x, are the electric and magnetic fields generated by a spinning ring of charge R. This represents the EM part of the Kerr-Newman solution to the Einstein-Maxwell equations (Newman E T and Janis A I 1965 J. Math. Phys. 6 915-7; Newman E T et al 1965 J. Math. Phys. 6 918-9). As already pointed out in Newman and Janis (1965 J. Math. Phys. 6 915-7), this interpretation is somewhat problematic since the fields are double-valued. To make them single-valued, a branch cut must be introduced so that R is replaced by a charged disc D having R as its boundary. In the context of curved spacetime, D becomes a spinning disc of charge and mass representing the singularity of the Kerr-Newman solution. Here we confirm the above interpretation of E and H without resorting to asymptotic expansions, by computing the charge and current densities directly as distributions in R 3 supported in D. This will show that D spins rigidly at the critical rate so that its rim R moves at the speed of light
Optical Trapping of Ion Coulomb Crystals
Directory of Open Access Journals (Sweden)
Julian Schmidt
2018-05-01
Full Text Available The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.
Functional theory of extended Coulomb systems
International Nuclear Information System (INIS)
Martin, R.M.; Ortiz, G.
1997-01-01
A consistent formulation is presented for a functional theory of extended quantum many-particle systems with long-range Coulomb interactions, which extends the density-functional theory of Hohenberg and Kohn to encompass the theory of dielectrics formulated in terms of electric fields and polarization. We show that a complete description of insulators in the thermodynamic limit requires a functional of density and macroscopic polarization; nevertheless, for any insulator the state with zero macroscopic electric field can be considered a reference state that is a functional of the density alone. Dielectric phenomena involve the behavior of the material in the presence of macroscopic electric fields that induce changes of the macroscopic polarization from its equilibrium value in the reference state. In the thermodynamic limit there is strictly no ground state and constraints must be placed upon the electronic wave functions in order to have a well-defined energy functional; within these constrained subspaces the Hohenberg-Kohn theorems can be generalized in terms of the density and the change in the macroscopic polarization. The essential role of the polarization is shown by an explicit example of two potentials that lead to the same periodic density in a crystal, but different macroscopic electric fields and polarization. In the Kohn-Sham approach both the kinetic and the exchange-correlation energy are shown to depend upon the changes in polarization; this leads to generalized Kohn-Sham equations with a nonlocal operator. The effect can be traced to the polarization of the average exchange-correlation hole itself in the presence of macroscopic fields, which is essential for an exact description of static dielectric phenomena. copyright 1997 The American Physical Society
Kinetic theory for strongly coupled Coulomb systems
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Interference and Sensitivity Analysis.
VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J; Halloran, M Elizabeth
2014-11-01
Causal inference with interference is a rapidly growing area. The literature has begun to relax the "no-interference" assumption that the treatment received by one individual does not affect the outcomes of other individuals. In this paper we briefly review the literature on causal inference in the presence of interference when treatments have been randomized. We then consider settings in which causal effects in the presence of interference are not identified, either because randomization alone does not suffice for identification, or because treatment is not randomized and there may be unmeasured confounders of the treatment-outcome relationship. We develop sensitivity analysis techniques for these settings. We describe several sensitivity analysis techniques for the infectiousness effect which, in a vaccine trial, captures the effect of the vaccine of one person on protecting a second person from infection even if the first is infected. We also develop two sensitivity analysis techniques for causal effects in the presence of unmeasured confounding which generalize analogous techniques when interference is absent. These two techniques for unmeasured confounding are compared and contrasted.
Binaural Interference: Quo Vadis?
Jerger, James; Silman, Shlomo; Silverman, Carol; Emmer, Michele
2017-04-01
The reality of the phenomenon of binaural interference with speech recognition has been debated for two decades. Research has taken one of two avenues; group studies or case reports. In group studies, a sample of the elderly population is tested on speech recognition under three conditions; binaural, monaural right and monaural left. The aim is to determine the percent of the sample in which the expected outcome (binaural score-better-than-either-monaural score) is reversed (i.e., one of the monaural scores is better than the binaural score). This outcome has been commonly used to define binaural interference. The object of group studies is to answer the "how many" question, what is the prevalence of binaural interference in the sample. In case reports the binaural interference conclusion suggested by the speech recognition tests is not accepted until it has been corroborated by other independent diagnostic audiological measures. The aim is to attempt to determine the basis for the findings, to answer the "why" question. This article is at once tutorial, editorial and a case report. We argue that it is time to accept the reality of the phenomenon of binaural interference, to eschew group statistical approaches in search of an answer to the "how many" question, and to focus on individual case reports in search of an answer to the "why" question. American Academy of Audiology.
Tricriticality for dimeric Coulomb molecular crystals in ground state
Travěnec, Igor; Šamaj, Ladislav
2017-12-01
We study the ground-state properties of a system of dimers. Each dimer consists in a pair of equivalent charges at a fixed distance, immersed in a neutralizing homogeneous background. All charges interact pairwisely by Coulomb potential. The dimer centers form a two-dimensional rectangular lattice with the aspect ratio α\\in [0, 1] and each dimer is allowed to rotate around its center. The previous numerical simulations, made for the more general Yukawa interaction, indicate that only two basic dimer configurations can appear: either all dimers are parallel or they have two different angle orientations within alternating (checkerboard) sublattices. As the dimer size increases, two second-order phase transitions, related to two kinds of the symmetry breaking in dimer’s orientations, were reported. In this paper, we use a recent analytic method based on an expansion of the interaction energy in Misra functions which converges quickly and provides an analytic derivation of the critical behaviour. Our main result is that there exists a specific aspect ratio of the rectangular lattice α^*=0.714 106 840 000 71\\ldots which divides the space of model’s phases onto two distinct regions. If the lattice aspect ratio α>α* , we recover both types of the second-order phase transitions and find that they are of mean-field type with the critical exponent β = 1/2 . If 0.711 535≤slantα<α* , the phase transition associated with the discontinuity of dimer’s angles on alternating sublattices becomes of first order. For α=α* , the first- and second-order phase transitions meet at the tricritical point, characterized by the different critical index β = 1/4 . Such phenomenon is known from literature about the Landau theory of one-component fields, but in our two-component version the scenario is more complicated: the component which is already in the symmetry-broken state at the tricritical point also interferes and exhibits unexpectedly the mean-field singular
Immunizing digital systems against electromagnetic interference
International Nuclear Information System (INIS)
Ewing, P.D.; Korsah, K.; Antonescu, C.
1993-01-01
This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced
Immunizing digital systems against electromagnetic interference
International Nuclear Information System (INIS)
Ewing, P.D.; Korsah, K.; Antonescu, C.
1993-01-01
This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced
Generalized Multiphoton Quantum Interference
Directory of Open Access Journals (Sweden)
Max Tillmann
2015-10-01
Full Text Available Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.
International Nuclear Information System (INIS)
Chapman, R.S.
1998-01-01
Interfering factors are evident in both limited reagent (radioimmunoassay) and excess reagent (immunometric assay) technologies and should be suspected whenever there is a discrepancy between analytical results and clinical findings in the investigation of particular diseases. The overall effect of interference in immunoassay is analytical bias in result, either positive or negative of variable magnitude. The interference maybe caused by a wide spectrum of factors from poor sample collection and handling to physiological factors e.g. lipaemia, heparin treatment, binding protein abnormalities, autoimmunity and drug treatments. The range of interfering factors is extensive and difficult to discuss effectively in a short review
Coulomb energy differences in mirror nuclei
International Nuclear Information System (INIS)
Lenzi, Silvia M
2006-01-01
By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells
Coulomb dissociation in relativistic heavy ion reactions
International Nuclear Information System (INIS)
Mercier, M.T.
1982-01-01
Targets of 12 C, 59 Co, 89 Y, 197 Au and 238 U were bombarded by 2.1 GeV/A 1 H, 12 C and 20 Ne projectiles using the SuperHILAC and BEVATRON facilities at Lawrence Berkeley Laboratory (LBL). The beam flux was calculated by monitoring the decay of 11 C produced from the 12 C(projectile,projectile n) 11 C reaction. Residual gamma-ray activity from the Co, Y, Au and U targets was collected in order to trace the decay of several reaction products. The experiment focused on the calculation of cross sections for the formation of products with one neutron removed from the various target nuclei. Corrections to the saturation activity of each product were made for detector efficiency, gamma-ray absorption in the target, gamma-ray branching, beam geometry and secondary reactions. These date are shown to be inconsistent with a geometrical form given by sigma varies as (A/sub p/sup 1/3/ + A/sub t/sup 1/3/ - b) where b is a universal constant. In fact the data indicates the b = A/sub t/sup 1/3/. Instead the data can be fit quite well by a simple empirical relation, sigma/sub emp/ = 12.0 mb A/sub p/sup 1/3/ A/sub t/sup 1/3/. It is demonstrated that an empirical fit which varies as A/sub t/sup 1/3/ is also consistent with projectile fragmentation data measured by a group at LBL. In addition these data are compared to a theoretical prediction which is the sum of a renormalized Glauber term and a term which represents the contribution due to Coulomb or electromagnetic dissociation (ED). The theoretical predictions are quite low for the 12 C projectile data and high for the 20 Ne projectile data. The systematic trends from the comparison seem to indicate that theoretical prediction for the ED contribution is rising too fast as a function of projectile for a given target
Laser Interference Lithography
van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.
In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the
Czech Academy of Sciences Publication Activity Database
Peřina, Jan
2003-01-01
Roč. 48, č. 4 (2003), s. 99-103 ISSN 0447-6441 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : interference * quantum cryptography * quantum computing * quantum teleportation Subject RIV: BH - Optics, Masers, Lasers
Coulomb effects in relativistic laser-assisted Mott scattering
International Nuclear Information System (INIS)
Ngoko Djiokap, J.M.; Kwato Njock, M.G.; Tetchou Nganso, H.M.
2004-09-01
We reconsider the influence of the Coulomb interaction on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. Coulomb effects of the bare nucleus on the laser-dressed electron are treated more completely than in the previous work of Li et al. [J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 653]. To this end we use Coulomb-Dirac-Volkov functions to describe the initial and the final states of the electron. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for circularly and linearly polarized laser light. Numerical calculations are carried out from both polarizations, for various nucleus charge values, three angular configurations and an incident energy in the MeV range. It is found that for parameters used in the present work, incorporating Coulomb effects of the target nucleus either in the initial state or in the final state yields cross sections which are quite similar whatever the scattering geometry and polarization considered. When Coulomb distortions are included in both states, the cross sections are strongly modified with the increase of Z, as compared to the outcome of the prior form of the T-matrix treatment. (author)
Andreoiu, C; Paul, E S; Czosnyka, T; Hammond, N
2002-01-01
We propose to study the Coulomb excitation of a radioactive beam of $^{70}$Se at 2.2 MeV/u obtained from the REX-ISOLDE facility in order to determine the sign of the quadrupole moment and, hence, the sign of the quadrupole deformation. Calculations suggest a 33~\\% sensitivity in Coulomb excitation yield for a nickel target depending on whether the nuclear shape is oblate or prolate. Such a determination would provide compelling evidence for the presence of oblate shapes in the vicinity of N=Z=34.
International Nuclear Information System (INIS)
2014-01-01
This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)
Codebook-based interference alignment for uplink MIMO interference channels
Lee, Hyun Ho; Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim
2014-01-01
In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multipleoutput (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base
International Nuclear Information System (INIS)
1996-01-01
An operating permit for a nuclear power plant is to be granted only if the applicant and facility operator presents evidence guaranteeing the legally required physical protection and other security measures for protection from human instrusion and other type of interference. As a basis for review and licensing, the competent authorities in 1987 have issued a directive specifying the requirements to be met for physical protection of nuclear power plant equipped with PWR-type reactors, and in 1994 followed a second, analogous directive relating to nuclear power plant with BWR-type reactors. The directive now announced for physical protection of nuclear power plant equipped with LWR-type reactors combines and replaces the two former ones, and from the date of the announcement is the only applicable directive. The text of the directive is not reproduced for reasons of secrecy protection. (orig./CB) [de
Verification of the Rigidity of the Coulomb Field in Motion
Blinov, S. V.; Bulyzhenkov, I. É.
2018-06-01
Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.
Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians
DEFF Research Database (Denmark)
Avery, James Emil
2013-01-01
A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory of hyperspheri......A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory...... of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...
Metal nanoparticle film-based room temperature Coulomb transistor.
Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian
2017-07-01
Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study
DEFF Research Database (Denmark)
Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka
2005-01-01
We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... a voltage drop V-2 in another shell by the screened Coulomb interaction between the shells neglecting the intershell tunneling. We provide benchmark results for R-21 = V2/I-1 within the Fermi liquid theory using Boltzmann equations. The band structure gives rise to strongly chirality-dependent suppression...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...
Metal nanoparticle film–based room temperature Coulomb transistor
Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian
2017-01-01
Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864
Electron transport in the presence of a Coulomb field
International Nuclear Information System (INIS)
Burgdoerfer, J.; Gibbons, J.
1990-01-01
We analyze the modifications of the transport behavior of electrons in dense media due to the presence of a strong Coulomb field generated by an ion moving initially in close phase-space correlation with the electrons. These modifications play a profound role in convoy electron emission in ion-solid collisions. The transport behavior is studied within the framework of a classical phase-space master equation. The nonseparable master equation is solved numerically using test-particle discretization and Monte Carlo sampling. In the limit of vanishing Coulomb forces the master equation becomes separable and can be reduced to standard one-dimensional kinetic equations for free-electron transport that can be solved exactly. The comparison to free-electron transport is used to gauge both the reliability of test-particle discretization and the significance of Coulomb distortion of the distribution functions. Applications to convoy-electron emission are discussed
Testing the Predictive Power of Coulomb Stress on Aftershock Sequences
Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.
2009-12-01
Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems.
Badalyan, S M; Shylau, A A; Jauho, A P
2017-09-22
We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q. Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.
Physics of the Non-Abelian Coulomb Phase
DEFF Research Database (Denmark)
Ryttov, Thomas A.; Shrock, Robert
2018-01-01
are applied to obtain further estimates of $\\gamma_{\\bar\\psi\\psi,IR}$ and $\\beta'_{IR}$ for several SU($N_c$) groups and representations $R$, and comparisons are made with lattice measurements. We apply our results to obtain new estimates of the extent of the respective non-Abelian Coulomb phases in several....... It is shown that an expansion of $\\gamma_{\\bar\\psi\\psi,IR}$ to $O(\\Delta_f^4)$ is quite accurate throughout the entire non-Abelian Coulomb phase of this supersymmetric theory....
On rate-state and Coulomb failure models
Gomberg, J.; Beeler, N.; Blanpied, M.
2000-01-01
We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified
Two-dimensional QCD in the Coulomb gauge
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefed'ev, A.V.
2002-01-01
Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru
Coulomb Final State Interactions for Gaussian Wave Packets
Wiedemann, Urs Achim; Heinz, Ulrich W
1999-01-01
Two-particle like-sign and unlike-sign correlations including Coulomb final state interactions are calculated for Gaussian wave packets emitted from a Gaussian source. We show that the width of the wave packets can be fully absorbed into the spatial and momentum space widths of an effective emission function for plane wave states, and that Coulomb final state interaction effects are sensitive only to the latter, but not to the wave packet width itself. Results from analytical and numerical calculations are compared with recently published work by other authors.
Coulomb corrections for interferometry analysis of expanding hadron systems
Energy Technology Data Exchange (ETDEWEB)
Sinyukov, Yu.M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute for Theoretical Physics of National Acad. Sci., Kiev (Ukraine); Lednicky, R. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute of Physics, Prague (Czech Republic); Akkelin, S.V. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Teoreticheskoj Fiziki; Pluta, J. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Warsaw Univ. (Poland). Inst. of Physics; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees
1998-10-01
The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective volumes predicted in the realistic evolution scenarios taking into account the collective flows. A simple modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions this approximate analytical approach is compared with the exact numerical results and a good agreement is found for typical conditions at SPS, RHIC and even LHC energies. (author) 21 refs.
Role of Coulomb repulsion in multilayer cuprate superconductor
International Nuclear Information System (INIS)
Singh Chauhan, Ekta; Singh, Vipul; Masih, Piyush
2012-01-01
Although BCS theory completely neglects coulomb repulsion; Anderson and Morel showed very early that it plays a central role in superconductivity. Since all high T c superconductors are based on the structure of closely spaced square planner CuO 2 layers and role of interlayer interaction plays important role in enhancement of T c . Therefore the work has been dealt with 'Role of Coulomb repulsion in Multilayer Cuprate Superconductors'. An expression for transition temperature T c is obtained by using simple integration technique and is numerically solved. It has found that T c decreases with electronic repulsion. (author)
Coulomb breakup of 31Ne using finite range DWBA
International Nuclear Information System (INIS)
Shubhchintak; Chatterjee, R.
2013-01-01
Coulomb breakup of nuclei away from the valley of stability have been one of the most successful probes to unravel their structure. However, it is only recently that one is venturing into medium mass nuclei like 23 O and 31 Ne. This is a very new and exciting development which has expanded the field of light exotic nuclei to the deformed medium mass region. In this contribution, an extension of the previously proposed theory of Coulomb breakup within the post-form finite range distorted wave Born approximation to include deformation of the projectile is reported
Higher-order dynamical effects in Coulomb dissociation
International Nuclear Information System (INIS)
Esbensen, H.
1994-06-01
We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)
Electron capture by alpha particles from helium atoms in a Coulomb-Born distorted-wave approximation
International Nuclear Information System (INIS)
Ghanbari-Adivi, E; Ghavaminia, H
2012-01-01
A three-body Coulomb-Born continuum distorted-wave approximation is applied to calculate the differential and total cross sections for single-electron exchange in the collision of fast alpha particles with helium atoms in their ground states. The applied first-order distorted wave theory satisfies correct Coulomb boundary conditions. Both post and prior forms of the transition amplitude are calculated. The nuclear-screening effect of the passive electron on the differential and total cross sections is investigated. The results are compared with those of other theories and with the available experimental data. For differential cross sections, the comparisons show a reasonable agreement with empirical measurements at higher impact energies. The agreement between experimental data and the present calculations for total cross sections with the average of the post and prior forms of the transition amplitude is reasonable at all the specified energies.
Electromagnetic interference: a radiant future!
Leferink, Frank Bernardus Johannes
2015-01-01
Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the
Sub-Coulomb fusion with halo nuclei
International Nuclear Information System (INIS)
Fekou-Youmbi, V.; Sida, J.L.; Alamanos, N.; Auger, F.; Bazin, D.; Borcea, C.; Cabot, C.; Cunsolo, A.; Foti, A.; Gillibert, A.; Lepine, A.; Lewitowicz, M.; Liguori-Neto, R.; Mittig, W.; Pollacco, E.; Roussel-Chomaz, P.; Volant, C.; Yong Feng, Y.
1995-01-01
The nuclear structure of halo nuclei may have strong influence on the fusion cross section at sub-barrier energies. The actual theoretical debate is briefly reviewed and sub-barrier fusion calculations for the system 11 Be+ 238 U are presented. An experimental program on sub-barrier fusion for the systems 7,9,10,11 Be+ 238 U is underway at GANIL. First results with 9 Be and 11 Be beams were obtained using the F.U.S.ION detector. Relative fission cross sections are presented. ((orig.))
International Nuclear Information System (INIS)
Lin, C.Y.; Ho, Y.K.
2010-01-01
The screening effects due to the exponential-cosine-screened Coulomb and screened Coulomb (Yukawa) potentials on photoionization processes are explored within the framework of complex coordinate rotation method. The energy levels of H and He + in both screened potentials shifted with various Debye screening lengths are presented. The photoionization cross sections illustrate the considerable screening effects on photoionization processes in low energy region. The shape resonances can be found near ionization thresholds for certain of Debye screening lengths. The relations between the appearance of resonances and the existence of quasi-bound states under shielding conditions are discussed. (authors)
Yangian Y(sl(2)) in Coulomb problem
International Nuclear Information System (INIS)
Zhang Shengli
1998-01-01
In this paper, the Yangian Y(sl(2)) is shown existing in the system that a particle moves in Coulomb field. The generators of Y(sl(2)) are constructed in terms of the angular momentum operators and so-called Yangian Runge-Lenz vector. The selection rule and matrix element of Y(sl(2)) generators are calculated. (orig.)
Renormalizable Non-Covariant Gauges and Coulomb Gauge Limit
Baulieu, L
1999-01-01
To study ``physical'' gauges such as the Coulomb, light-cone, axial or temporal gauge, we consider ``interpolating'' gauges which interpolate linearly between a covariant gauge, such as the Feynman or Landau gauge, and a physical gauge. Lorentz breaking by the gauge-fixing term of interpolating gauges is controlled by extending the BRST method to include not only the local gauge group, but also the global Lorentz group. We enumerate the possible divergences of interpolating gauges, and show that they are renormalizable, and we show that the expectation value of physical observables is the same as in a covariant gauge. In the second part of the article we study the Coulomb-gauge as the singular limit of the Landau-Coulomb interpolating gauge. We find that unrenormalized and renormalized correlation functions are finite in this limit. We also find that there are finite two-loop diagrams of ``unphysical'' particles that are not present in formal canonical quantization in the Coulomb gauge. We verify that in the ...
Asymptotic coulombic conditions in the electron capture process
International Nuclear Information System (INIS)
Corchs, S.E.; Maidagan, J.M.; Rivarola, R.D.
1990-01-01
Several first order perturbative approximations of the transition amplitude for electronic capture are studied. Different models in which the long range Coulomb potential is represented by different internuclear dependent phases, in the initial and final wave functions, are analysed and compared. (Author). 8 refs., 2 figs
Molecular integrals for slater type orbitals using coulomb sturmians
DEFF Research Database (Denmark)
Avery, James Emil; Avery, John Scales
2014-01-01
The use of Slater type orbitals in molecular calculations is hindered by the slowness of integral evaluation. In the present paper, we introduce a method for overcoming this problem by expanding STO's in terms of Coulomb Sturmians, for which the problem of evaluating molecular integrals rapidly has...
Imaging of Coulomb-Driven Quantum Hall Edge States
Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun; Shabani, Javad; Shayegan, Mansour
2011-01-01
The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb
Using the Screened Coulomb Potential to Illustrate the Variational Method
Zuniga, Jose; Bastida, Adolfo; Requena, Alberto
2012-01-01
The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…
Plasmon-mediated Coulomb drag between graphene waveguides
DEFF Research Database (Denmark)
Shylau, Artsem A.; Jauho, Antti-Pekka
2014-01-01
We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...
Coulomb energy of uniformly charged spheroidal shell systems.
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.
A conceivable lattice structure of the Coulomb law
International Nuclear Information System (INIS)
Papp, E.; Santilli, R.M.
1983-01-01
A few heuristic remarks on recent extensions of the Coulomb law via effective potentials and other means, which appear to admit a lattice structure in time and space whose spacing are given by the characteristic period of the elctron and its Compton wave-length, respectively, are presented
Chaos in a coulombic muffin-tin potential
International Nuclear Information System (INIS)
Brandis, S.
1994-04-01
We study the two-dimensional classical scattering dynamics by a Muffin-Tin potential with 3 Coulomb singularities. A complete symbolic dynamics for the periodic orbits is derivd. The classical trajectories are shown to be hyperbolic everywhere in phase space and to carry no conjugate points. (orig.)
Generalized second-order Coulomb phase shift functions
International Nuclear Information System (INIS)
Rosendorff, S.
1982-01-01
Some specific properties and the evaluation of the generalized second-order Coulomb phase shift functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The dependence on the three momenta k 1 ,k-bar,k 2 , corresponding to the final, intermediate, and initial states is illustrated
Coulomb plus strong interaction bound states - momentum space numerical solutions
International Nuclear Information System (INIS)
Heddle, D.P.; Tabakin, F.
1985-01-01
The levels and widths of hadronic atoms are calculated in momentum space using an inverse algorithm for the eigenvalue problem. The Coulomb singularity is handled by the Lande substraction method. Relativistic, nonlocal, complex hadron-nucleus interactions are incorporated as well as vacuum polarization and finite size effects. Coordinate space wavefunctions are obtained by employing a Fourier Bessel transformation. (orig.)
Coulomb displacement energies between analog levels for 44 < = A < = 239
International Nuclear Information System (INIS)
Antony, M.S.; Britz, J.; Pape, A.
1985-08-01
Experimental Coulomb displacement energie ΔEsub(C) between isobaric analog levels are tabulated for 44 <- A <- 239, extending recent work in which similar data were presented for 3 <- A <- 45. An overall parametrization in anti-Z/A sup(1/3) and uniform radius parameters rsub(o) are given
Structure of light neutron-rich nuclei through Coulomb dissociation
Indian Academy of Sciences (India)
The data analysis for Coulomb breakup of. ½ .... C (605 MeV/u) breaking up into a neutron and a .... direct break up model delivers a cross section of 107 mb for a ... separation energy for the last neutron in the even isotopes = 20 to 24 is 7 to 8 ...
COULN, a program for evaluating negative energy Coulomb functions
International Nuclear Information System (INIS)
Noble, C.J.; Thompson, I.J.
1984-01-01
Program COULN calculates exponentially decaying Whittaker functions, Wsub(K,μ)(z) corresponding to negative energy Coulomb functions. The method employed is most appropriate for parameter ranges which commonly occur in atomic and molecular asymptotic scattering problems using a close-coupling approximation in the presence of closed channels. (orig.)
Analytic structure of many-body Coulombic wave functions
DEFF Research Database (Denmark)
Fournais, Søren; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas
2009-01-01
We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coal...
On the role of coulomb forces in atomic radiative emission
International Nuclear Information System (INIS)
Yngstroem, S.
1988-10-01
It is shown how the generalized Coulomb interaction (electric and magnetic fields of force) competes with the radiative interaction causing overall inhibition of the radiative capability of atoms and ions in a gaseous sample of matter. Basic quantum mechanical aspects of the electromagnetic interaction are discussed in a heuristic introduction followed by a more precise treatment in the formalism of relativistic quantum electrodynamics. (author)
Exact solution of the N-dimensional generalized Dirac-Coulomb equation
International Nuclear Information System (INIS)
Tutik, R.S.
1992-01-01
An exact solution to the bound state problem for the N-dimensional generalized Dirac-Coulomb equation, whose potential contains both the Lorentz-vector and Lorentz-scalar terms of the Coulomb form, is obtained. 24 refs. (author)
Leakage radiation interference microscopy.
Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter
2013-09-01
We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.
Use of the Coulomb excitation by light and heavy ions for quantitative analysis
International Nuclear Information System (INIS)
Craciun, L.; Racolta, P. M.; Tripadus, V.; Dragulescu, E.; Serbanut, C.
2001-01-01
It is well known that in many cases thin layers with specific properties fulfil the same demands as former bulk materials and, although they seem to be more expensive, the general tendency has proven them to be cheaper. Therefore it might be a permanent task for physicists to develop methods, so far only applied in scientific laboratories, to a standard that might be feasible and economically justified to use them to a much larger extent. The reason for the very slow introduction of new analytical techniques is certainly the fear that instruments and apparatus used in basic research do not fulfil the standards of reliability, permanent availability and easy handling, which are important requirements for industrial applications. The knowledge of the slowing down of ions in crossing matter is of fundamental importance in methods of materials analysis using beams of charged atomic particles, Depth determination is based directly on the energy lost by the probing particles. The energy loss affects both quantitative and qualitative analyses. The physics of energy loss phenomena is very complex, involving many kinds of interactions between the projectile ion, target nuclei, and target electrons. Because of their significance in many fields of physics, these phenomena have been subject to intense studies since the beginning of the century. The theoretical treatment has been reviewed, among others, by Bohr (1948), Whaling (1958), Fano (1963), Jackson (1962,1975), Bichel (1970), Sigmund (1975), Ahlen (1980), Littmark and Ziegler (1980), Ziegler (1977, 1980), Ziegler et al. (1985). The experimental methods have been reviewed and investigated by, e.g., Chu (1979), Brauer (1987), Mertens (1987), Powers (1989). - Two well known phenomena can be used for the production of gamma-rays in bombardments with charged projectiles: a) nuclear reactions involving incident energies near and above the Coulomb barrier; in this case gamma-rays arise from the de-excitation of the product
Representation of the Coulomb Matrix Elements by Means of Appell Hypergeometric Function F 2
Bentalha, Zine el abidine
2018-06-01
Exact analytical representation for the Coulomb matrix elements by means of Appell's double series F 2 is derived. The finite sum obtained for the Appell function F 2 allows us to evaluate explicitly the matrix elements of the two-body Coulomb interaction in the lowest Landau level. An application requiring the matrix elements of Coulomb potential in quantum Hall effect regime is presented.
The intention interference effect.
Cohen, Anna-Lisa; Kantner, Justin; Dixon, Roger A; Lindsay, D Stephen
2011-01-01
Intentions have been shown to be more accessible (e.g., more quickly and accurately recalled) compared to other sorts of to-be-remembered information; a result termed an intention superiority effect (Goschke & Kuhl, 1993). In the current study, we demonstrate an intention interference effect (IIE) in which color-naming performance in a Stroop task was slower for words belonging to an intention that participants had to remember to carry out (Do-the-Task condition) versus an intention that did not have to be executed (Ignore-the-Task condition). In previous work (e.g., Cohen et al., 2005), having a prospective intention in mind was confounded with carrying a memory load. In Experiment 1, we added a digit-retention task to control for effects of cognitive load. In Experiment 2, we eliminated the memory confound in a new way, by comparing intention-related and control words within each trial. Results from both Experiments 1 and 2 revealed an IIE suggesting that interference is very specific to the intention, not just to a memory load.
Beamforming design with proactive interference cancelation in MISO interference channels
Li, Yang; Tian, Yafei; Yang, Chenyang
2015-12-01
In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.
Recent developments in heavy-ion fusion reactions around the Coulomb barrier
Directory of Open Access Journals (Sweden)
Hagino K.
2016-01-01
Full Text Available The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.
Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier
International Nuclear Information System (INIS)
Tavares, O.A.P.; Medeiros, E.L.; Morcelle, V.
2010-06-01
Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range 6 Li- 238 U, and 158 projectile nuclei from 2 H up to 84 Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)
Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica
2010-06-15
Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)
Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.
Directory of Open Access Journals (Sweden)
Marchi T.
2014-03-01
Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.
Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods
International Nuclear Information System (INIS)
Mauser, Christian
2011-01-01
In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the
Graphene quantum interference photodetector
Directory of Open Access Journals (Sweden)
Mahbub Alam
2015-03-01
Full Text Available In this work, a graphene quantum interference (QI photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI, which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector, low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.
Substation electromagnetic interference
International Nuclear Information System (INIS)
Felic, G.; Shihab, S.
1997-01-01
The electric and magnetic transients in high voltage substations were studied. The electric field measurements were carried out in a 66 kV switchyard of a 500/220/66 kV substation in Melbourne, Australia. The measured waveforms make up a database to be used for reference in the testing of substation control and protection equipment. The objective of this study was to characterize the radiated interference caused by the operation of disconnect switches and circuit breakers. Disconnect switch transients can be a serious hazard for substations because the slow moving contacts during opening and closing can result in arcing events of several seconds duration. Circuit breaker transients were considered to be less hazardous. Transient magnetic fields of at least several tens of A/m can occur during the energization of the capacitor bank. Substation electronic equipment should be tested and protected against the coupling of these transients in order to avoid breakdowns. 5 refs., 4 figs
Directory of Open Access Journals (Sweden)
Robert A Gatenby
2010-08-01
Full Text Available Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM. While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length.Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions.This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger
International Nuclear Information System (INIS)
Anon.
2000-01-01
The first text deals with a new circular concerning the collect of the medicine radioactive wastes, containing radium. This campaign wants to incite people to let go their radioactive wastes (needles, tubes) in order to suppress any danger. The second text presents a decree of the 31 december 1999, relative to the limitations of noise and external risks resulting from the nuclear facilities exploitation: noise, atmospheric pollution, water pollution, wastes management and fire prevention. (A.L.B.)
Spherical harmonic expansion of short-range screened Coulomb interactions
Energy Technology Data Exchange (ETDEWEB)
Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)
2006-07-07
Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.
Coulomb repulsion in (TMTSF)2X and (TMTTF)2X
DEFF Research Database (Denmark)
Mortensen, Kell; Engler, E. M.
1985-01-01
On the basis of studies of transport properties of (TMTSF)2 X, (TMTTF)2X and their binary alloys the authors discuss the role of on-site Coulomb repulsion relative to the transfer integrals. In TMTTF-salts U/ta are believed to be large, resulting in a Hubbard gap, whereas U/ta in TMTSF-salts are ......On the basis of studies of transport properties of (TMTSF)2 X, (TMTTF)2X and their binary alloys the authors discuss the role of on-site Coulomb repulsion relative to the transfer integrals. In TMTTF-salts U/ta are believed to be large, resulting in a Hubbard gap, whereas U/ta in TMTSF...
Static and dynamic properties of two-dimensional Coulomb clusters.
Ash, Biswarup; Chakrabarti, J; Ghosal, Amit
2017-10-01
We study the temperature dependence of static and dynamic responses of Coulomb interacting particles in two-dimensional confinements across the crossover from solid- to liquid-like behaviors. While static correlations that investigate the translational and bond orientational order in the confinements show the footprints of hexatic-like phase at low temperatures, dynamics of the particles slow down considerably in this phase, reminiscent of a supercooled liquid. Using density correlations, we probe long-lived heterogeneities arising from the interplay of the irregularity in the confinement and long-range Coulomb interactions. The relaxation at multiple time scales show stretched-exponential decay of spatial correlations in irregular traps. Temperature dependence of characteristic time scales, depicting the structural relaxation of the system, show striking similarities with those observed for the glassy systems, indicating that some of the key signatures of supercooled liquids emerge in confinements with lower spatial symmetries.
Stability of Dirac Liquids with Strong Coulomb Interaction.
Tupitsyn, Igor S; Prokof'ev, Nikolay V
2017-01-13
We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.
A Coulomb collision algorithm for weighted particle simulations
Miller, Ronald H.; Combi, Michael R.
1994-01-01
A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.
Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.
2015-01-01
In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955
Coulomb artifacts and bottomonium hyperfine splitting in lattice NRQCD
Energy Technology Data Exchange (ETDEWEB)
Liu, T. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Penin, A.A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Wolfgang-Gaede-Strasse 1, 76128 Karlsruhe (Germany); Rayyan, A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada)
2017-02-16
We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a “naïve” perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD (DOI: 10.1103/PhysRevD.92.054502; Arxiv:1309.5797). We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives M{sub Υ(1S)}−M{sub η{sub b(1S)}}=52.9±5.5 MeV (DOI: 10.1103/PhysRevD.92.054502).
Coulomb excitation of atoms by fast multicharged ions
International Nuclear Information System (INIS)
Yudin, G.L.
1980-01-01
Investigated is coulomb eXcitation of discrete levels of a hydrogen-like atom by a fast multicharged ion. Obtained are dependences of probabilities of channels 1S→nS and 1S→nP on the sight parameter in the zero order of sudden excitation theory. 1S-2S transition is considered in detail. Carried out are calculations for excitation of the hydrogen atom by the wholy bare carbon atom. It is shown, that at low values of excitation pr.ocess parameter eta excitation probability is a monotonously decreasing function of the impact parameter. With the growth of eta the situation is changed, and at low impact parameters the probability of 1S-2S transition is decreased. At high impact parameters approximation of sudden excitations is unacceptable, here lagging of coulomb interaction is essential
Simulation of Coulomb interaction effects in electron sources
International Nuclear Information System (INIS)
Rouse, John; Zhu Xieqing; Liu Haoning; Munro, Eric
2011-01-01
Over many years, we have developed electron source simulation software that has been used widely in the electron optics community to aid the development of rotationally symmetric electron and ion guns. The simulation includes the modelling of cathode emission and the effects of volumetric space charge. In the present paper we describe the existing software and explain how we have extended this software to include the effects of discrete Coulomb interactions between the electrons as they travel from the cathode surface to the exit of the gun. In the paper, we will describe the numerical models we have employed, the techniques we have used to maximize the speed of the Coulomb force computation and present several illustrative examples of cases analyzed using the new software, including thermal field emitters, LaB 6 guns and flat dispenser-type cathodes.
An entropic form for NLFP with coulombic-like potential
International Nuclear Information System (INIS)
Grassi, A.
2012-01-01
Here it is proposed a new entropy form for which it is possible to obtain a stationary solution of the Non-Linear Fokker–Planck equation (NLFP) with coulombic-like potentials. The general properties of this new entropy form are shown and the results are compared with those obtained by other entropy forms. Finally, the behavior of the stationary solution in presence of two point charges is also shown. -- Highlights: ► In this Letter we have proposed a new form of entropy. ► Starting from this new entropy form a Non-Linear Fokker–Planck equation has been derived. ► The stationary solution of the Non-Linear Fokker–Planck equation is obtained by using an external coulombic-like potential. ► A comparison with other forms of entropies has been proposed in the case of a single or two point charges.
International Nuclear Information System (INIS)
Macdonald, E.W.; Shotter, A.C.; Branford, D.; Rahighi, J.; Davinson, T.; Davis, N.J.
1992-01-01
Kinematically complete data is presented on the break-up reaction 120 Sn( 9 Be, 8 Be g.s +n) 120 Sn g.s. at E beam =90 MeV for several scattering angles inside the grazing angle. These data are compared with the predictions of a Coulomb break-up model. It is shown that the data can be understood in terms of the Coulomb model provided some account is taken of the interactions of the break-up fragments with the target. Analysis of the 9 Be break-up data, using radio-isotope measurements of the 9 Be(γ, n) cross-section, indicates that for this photo-disintegration reaction there is probably a significant direct component to the threshold cross-section, in addition to a threshold resonance at 1.69 MeV. (orig.)
Coulomb oscillations in three-layer graphene nanostructures
International Nuclear Information System (INIS)
Guettinger, J; Stampfer, C; Molitor, F; Graf, D; Ihn, T; Ensslin, K
2008-01-01
We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as a function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of ∼0.6 meV is extracted.
Is the ground state of Yang-Mills theory Coulombic?
Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.
2008-08-01
We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.
An infinite family of superintegrable deformations of the Coulomb potential
International Nuclear Information System (INIS)
Post, Sarah; Winternitz, Pavel
2010-01-01
We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)
An infinite family of superintegrable deformations of the Coulomb potential
Energy Technology Data Exchange (ETDEWEB)
Post, Sarah [Centre de recherches mathematiques, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada); Winternitz, Pavel, E-mail: post@CRM.UMontreal.C, E-mail: wintern@CRM.UMontreal.C [Centre de recherches mathematiques and Departement de mathematiques et de statistique, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada)
2010-06-04
We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)
Unsafe Coulomb excitation of $^{240-244}Pu$
Wiedenhöver, I; Hackman, L; Ahmad, I; Greene, J P; Amro, H; Carpenter, M P; Nisius, D T; Reiter, P; Lauritsen, T; Lister, C J; Khoo, T L; Siem, S; Cizewski, J A; Seweryniak, D; Uusitalo, J; Macchiavelli, A O; Chowdhury, P; Seabury, E H; Cline, D; Wu, C Y
1999-01-01
The high spin states of /sup 240/Pu and /sup 244/Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a /sup 208/Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to /sup 242/Pu were obtained as well. In the case of /sup 244/Pu, the yrast band was extended to 34h(cross), revealing the completed pi i/sub 13/2/ alignment, a "first" for actinide nuclei. The yrast sequence of /sup 242/Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of /sup 240/Pu was measured up to the highest rotational frequencies ever reported in the actinide region (~300 keV), no sign of particle alignment was observed. (11 refs).
Unified approach to probing Coulomb effects in tunnel ionization for any ellipticity of laser light.
Landsman, A S; Hofmann, C; Pfeiffer, A N; Cirelli, C; Keller, U
2013-12-27
We present experimental data that show significant deviations from theoretical predictions for the location of the center of the electron momenta distribution at low values of ellipticity ε of laser light. We show that these deviations are caused by significant Coulomb focusing along the minor axis of polarization, something that is normally neglected in the analysis of electron dynamics, even in cases where the Coulomb correction is otherwise taken into account. By investigating ellipticity-resolved electron momenta distributions in the plane of polarization, we show that Coulomb focusing predominates at lower values of ellipticity of laser light, while Coulomb asymmetry becomes important at higher values, showing that these two complementary phenomena can be used to probe long-range Coulomb interaction at all polarizations of laser light. Our results suggest that both the breakdown of Coulomb focusing and the onset of Coulomb asymmetry are linked to the disappearance of Rydberg states with increasing ellipticity.
Energy Technology Data Exchange (ETDEWEB)
Vasan, S S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics
1976-04-19
The poles and the associated residues in the ..pi..N P/sub 33/ amplitude corresponding to the resonances ..delta../sup + +/ and ..delta../sup 0/ are determined by fitting the ..pi../sup +/p and ..pi../sup -/p hadronic phase shifts from the Carter 73 analysis. The ..delta../sup + +/ and ..delta../sup 0/ pole positions are determined also from the nuclear phase shifts, these being the phase shifts made up of the hadronic phase shifts plus the Coulomb corrections. The pole positions obtained from the two sets of phase shifts are different, the differences being larger in the case of the ..delta../sup + +/.
On Coulomb collisions in bi-Maxwellian plasmas
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Trávníček, Pavel M.
2009-01-01
Roč. 16, č. 5 (2009), 054501/1-054501/4 ISSN 1070-664X R&D Projects: GA AV ČR IAA300420702 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Coulomb collisions * transport coefficients * bi-Maxwellian distribution function Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009 http://link.aip.org/link/?PHPAEN/16/054501/1
Core polarization and the Coulomb energy difference of mirror nuclei
International Nuclear Information System (INIS)
Barroso, A.
1977-01-01
The effect of the core polarization on the Coulomb displacement energies of mirror nuclei with a LS doubly closed shell plus or minus one nucleon is studied. Using the Kallio-Kolltveit interaction it is found that the first-order configuration mixing including 2p-2h core excitations is too small and sometimes of the wrong sign to explain the Nolen-Schiffer anomaly. (Auth.)
Extended Kepler–Coulomb quantum superintegrable systems in three dimensions
International Nuclear Information System (INIS)
Kalnins, E G; Kress, J M; Miller, W Jr
2013-01-01
The quantum Kepler–Coulomb system in three dimensions is well known to be second order superintegrable, with a symmetry algebra that closes polynomially under commutators. This polynomial closure is also typical for second order superintegrable systems in 2D and for second order systems in 3D with nondegenerate (four-parameter) potentials. However, the degenerate three-parameter potential for the 3D Kepler–Coulomb system (also second order superintegrable) is an exception, as its symmetry algebra does not close polynomially. The 3D four-parameter potential for the extended Kepler–Coulomb system is not even second order superintegrable, but Verrier and Evans (2008 J. Math. Phys. 49 022902) showed it was fourth order superintegrable, and Tanoudis and Daskaloyannis (2011 arXiv:11020397v1) showed that, if a second fourth order symmetry is added to the generators, the symmetry algebra closes polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of quantum extended Kepler–Coulomb three- and four-parameter systems indexed by a pair of rational numbers (k 1 , k 2 ) and reducing to the usual systems when k 1 = k 2 = 1. We show these systems to be superintegrable of arbitrarily high order and determine the structure of their symmetry algebras. We demonstrate that the symmetry algebras close algebraically; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering operators, not themselves symmetry operators or even defined independent of basis, that can be employed to construct the symmetry operators and their structure relations. (paper)
Coulomb interaction rules timescales in potassium ion channel tunneling
De March, N.; Prado, S. D.; Brunnet, L. G.
2018-06-01
Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.
Coulomb ionization of inner shells by heavy charged particles
International Nuclear Information System (INIS)
Lapicki, G.
1975-01-01
The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles
Space charge-limited emission studies using Coulomb's Law
Carr, Christopher G.
2004-01-01
Approved for Public Release; Distribution is Unlimited Child and Langmuir introduced a solution to space charge limited emission in an infinite area planar diode. The solution follows from starting with Poisson's equation, and requires solving a non-linear differential equation. This approach can also be applied to cylindrical and spherical geometries, but only for one-dimensional cases. By approaching the problem from Coulomb's law and applying the effect of an assumed charge distribution...
Existence for viscoplastic contact with Coulomb friction problems
Directory of Open Access Journals (Sweden)
Amina Amassad
2002-01-01
frictional contact between an elastic-viscoplastic body and a rigid obstacle. We model the frictional contact both by a Tresca's friction law and a regularized Coulomb's law. We assume, in a first part, that the contact is bilateral and that no separation takes place. In a second part, we consider the Signorini unilateral contact conditions. Proofs are based on a time-discretization method, Banach and Schauder fixed point theorems.
Probing Minicharged Particles with Tests of Coulomb's Law
International Nuclear Information System (INIS)
Jaeckel, Joerg
2009-01-01
Minicharged particles arise in many extensions of the standard model. Their contribution to the vacuum polarization modifies Coulomb's law via the Uehling potential. In this Letter, we argue that tests for electromagnetic fifth forces can therefore be a sensitive probe of minicharged particles. In the low mass range < or approx. μeV existing constraints from Cavendish type experiments provide the best model-independent bounds on minicharged particles.
Many-Body Coulomb Gauge Exotic and Charmed Hybrids
Llanes-Estrada, Felipe J.; Cotanch, Stephen R.
2000-01-01
Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasipa...
Superheavy Elements and Beyond: - Supercritical Coulomb Field and Giant Quasiatoms
International Nuclear Information System (INIS)
Greiner, Walter
2007-01-01
The status of theory of Superheavy Nuclei is reviewed. Based with the Two-Center Shell Model Potential Energy Surfaces are calculated. Fusion, fission, quasifission and other processes are discussed. I particular time-delay during the formation of giant quasi atoms/molecules will be crucial for observing the change of the Dirac vacuum in supercritical Coulomb fields by spontaneous positron emission. It will be shown how the various phenomena are interrelated
An Algorithm for Computing Screened Coulomb Scattering in Geant4
Mendenhall, Marcus H.; Weller, Robert A.
2004-01-01
An algorithm has been developed for the Geant4 Monte-Carlo package for the efficient computation of screened Coulomb interatomic scattering. It explicitly integrates the classical equations of motion for scattering events, resulting in precise tracking of both the projectile and the recoil target nucleus. The algorithm permits the user to plug in an arbitrary screening function, such as Lens-Jensen screening, which is good for backscattering calculations, or Ziegler-Biersack-Littmark screenin...
Coulomb two-body problem with internal structure
International Nuclear Information System (INIS)
Kuperin, Yu.A.; Makarov, K.A.; Mel'nikov, Yu.B.
1988-01-01
The methods of the theory of extensions to an enlarged Hilbert space are used to construct a model of the interaction of the external (Coulomb) and internal (quark) channels in the two-body problem. The mutual influence of the spectra of the corresponding channel Hamiltonians is studied: it leads, in particular, to a rearrangement of the spectra of hadronic atoms. An explicit representation is obtained for the S matrix, and its singularities on the energy shell are studied
Sine-Gordon mean field theory of a Coulomb gas
Energy Technology Data Exchange (ETDEWEB)
Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan
1997-12-31
Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)
Multiple Coulomb ordered strings of ions in a storage ring
International Nuclear Information System (INIS)
Hasse, Rainer W.
2002-01-01
We explain that the anomalous frequency shifts of very close masses measured in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other for many revolutions are captured into a single string if their thermal clouds overlap. They give up their identity and lock into an average frequency
Coulomb excitations for a short linear chain of metallic shells
Energy Technology Data Exchange (ETDEWEB)
Zhemchuzhna, Liubov, E-mail: lzhemchuzhna@unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Gao, Bo [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)
2015-03-15
A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.
Coulomb effects in the deuteron-nucleus interaction
International Nuclear Information System (INIS)
Kuz'michev, V.E.; Peresypkin, V.V.
1990-01-01
The authors develop a consistent theory for calculation of the potential of the deuteron interaction with the Coulomb field of a nucleus. They study the properties of this potential at large distances and give its explicit form at the deuteron-breakup threshold. In the limit of low energies they derive the potential, which includes intermediate off-energy-shell states, and explain the physical nature of its constants. The accuracy of the transition to the polarization interaction is estimated
Engineering drag currents in Coulomb coupled quantum dots
Lim, Jong Soo; Sánchez, David; López, Rosa
2018-02-01
The Coulomb drag phenomenon in a Coulomb-coupled double quantum dot system is revisited with a simple model that highlights the importance of simultaneous tunneling of electrons. Previously, cotunneling effects on the drag current in mesoscopic setups have been reported both theoretically and experimentally. However, in both cases the sequential tunneling contribution to the drag current was always present unless the drag level position were too far away from resonance. Here, we consider the case of very large Coulomb interaction between the dots, whereby the drag current needs to be assisted by cotunneling events. As a consequence, a quantum coherent drag effect takes place. Further, we demonstrate that by properly engineering the tunneling probabilities using band tailoring it is possible to control the sign of the drag and drive currents, allowing them to flow in parallel or antiparallel directions. We also show that the drag current can be manipulated by varying the drag gate potential and is thus governed by electron- or hole-like transport.
Effect of Coulomb stress on the Gutenberg-Richter law
Navas-Portella, V.; Corral, A.; Jimenez, A.
2017-12-01
Coulomb stress theory has been used for years in seismology to understand how earthquakes trigger each other. Whenever an earthquake occurs, the stress field changes in its neighbourhood, with places with positive values brought closer to failure, whereas negative values distance away that location from failure. Earthquake models that relate rate changes and Coulomb stress after a main event, such as the rate-and-state model, assume negative and positive stress values affect rate changes according to the same functional form. As a first order approximation, under uniform background seismicity before the main event, different values of the b-exponent in the Gutenberg-Richter law would indicate different behaviour for positive and negative stress. In this work, we study the Gutenberg-Richter law in the aftershock sequence of the Landers earthquake (California, 1992, MW=7.3). By using a statistically based fitting method, we discuss whether the sign of Coulomb stresses and the distance to the fault have a significant effect on the value of the b-exponent.
Quasi-exactly solvable relativistic soft-core Coulomb models
Energy Technology Data Exchange (ETDEWEB)
Agboola, Davids, E-mail: davagboola@gmail.com; Zhang, Yao-Zhong, E-mail: yzz@maths.uq.edu.au
2012-09-15
By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.
The Yang-Mills vacuum wave functional in Coulomb gauge
International Nuclear Information System (INIS)
Campagnari, Davide R.
2011-01-01
Yang-Mills theories are the building blocks of today's Standard Model of elementary particle physics. Besides methods based on a discretization of space-time (lattice gauge theory), also analytic methods are feasible, either in the Lagrangian or in the Hamiltonian formulation of the theory. This thesis focuses on the Hamiltonian approach to Yang-Mills theories in Coulomb gauge. The thesis is presented in cumulative form. After an introduction into the general formulation of Yang-Mills theories, the Hamilton operator in Coulomb gauge is derived. Chap. 1 deals with the heat-kernel expansion of the Faddeev-Popov determinant. In Chapters 2 and 3, the high-energy behaviour of the theory is investigated. To this purpose, perturbative methods are applied, and the results are compared with the ones stemming from functional methods in Coulomb and Landau gauge. Chap. 4 is devoted to the variational approach. Variational ansatzes going beyond the Gaussian form for the vacuum wave functional are considered and treated using Dyson-Schwinger techniques. Equations for the higher-order variational kernels are derived and their effects are estimated. Chap. 5 presents an application of the previously obtained propagators, namely the evaluation of the topological susceptibility, which is related to the mass of the η meson. Finally, a short overview of the perturbative treatment of dynamical fermion fields is presented.
Coulomb excitation of the proton-dripline nucleus Na20
Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.
2009-10-01
The low-energy structure of the proton dripline nucleus Na20 has been studied using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. A 1.7-MeV/nucleon Na20 beam of ~5×106 ions/s was Coulomb excited by a 0.5-mg/cm2natTi target. Scattered beam and target particles were detected by the BAMBINO segmented Si detector while γ rays were detected by two TIGRESS HPGe clover detectors set perpendicular to the beam axis. Coulomb excitation from the 2+ ground state to the first excited 3+ and 4+ states was observed, and B(λL) values were determined using the 2+→0+ de-excitation in Ti48 as a reference. The resulting B(λL)↓ values are B(E2;3+→2+)=55±6e2fm4 (17.0±1.9 W.u.), B(E2;4+→2+)=35.7±5.7e2fm4 (11.1±1.8 W.u.), and B(M1;4+→3+)=0.154±0.030μN2 (0.086±0.017 W.u.). These measurements provide the first experimental determination of B(λL) values for this proton dripline nucleus of astrophysical interest.
Heavy ion collisions at energies near the Coulomb barrier 1990
International Nuclear Information System (INIS)
Nagarajan, M.A.
1991-01-01
During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)
A complex angular momentum theory of modified Coulomb scattering
International Nuclear Information System (INIS)
Thylwe, K.E.; Connor, J.N.L.
1985-01-01
The paper develops an exact complex angular momentum (CAM) theory of elastic scattering for a complex optical potential with a Coulombic tail. The present CAM theory avoids complications due to the long range nature of the Coulombic potential in a straightforward way. The Sommerfeld-Watson transformation together with a travelling wave (near-side far-side) decomposition, is used to obtain an exact representation for the scattering amplitude f(theta) in terms of a background integral fsub(B)(theta) and a series of subamplitudes fsup((+-))sub(n)(theta). New exact representations are derived for fsub(B)(theta) when the scattering matrix element S(lambda) possesses local symmetries of the type S(-lambda)=S(lambda)exp(+-2iπlambda) and S(-lambda)=S(lambda). The exact results obtained in this paper unify the CAM theory of scattering for Coulombic and short range potentials and are especially suitable for the introduction of semiclassical approximations. (author)
Interaction of charged 3D soliton with Coulomb center
International Nuclear Information System (INIS)
Rybakov, Yu.P.
1996-03-01
The Einstein - de Broglie particle-soliton concept is applied to simulate stationary states of an electron in a hydrogen atom. According to this concept, the electron is described by the localized regular solutions to some nonlinear equations. In the framework of Synge model for interacting scalar and electromagnetic fields a system of integral equations has been obtained, which describes the interaction between charged 3D soliton and Coulomb center. The asymptotic expressions for physical fields, describing soliton moving around the fixed Coulomb center, have been obtained with the help of integral equations. It is shown that the electron-soliton center travels along some stationary orbit around the Coulomb center. The electromagnetic radiation is absent as the Poynting vector has non-wave asymptote O(r -3 ) after averaging over angles, i.e. the existence of spherical surface corresponding to null Poynting vector stream, has been proved. Vector lines for Poynting vector are constructed in asymptotical area. (author). 22 refs, 2 figs
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Average Nuclear properties based on statistical model
International Nuclear Information System (INIS)
El-Jaick, L.J.
1974-01-01
The rough properties of nuclei were investigated by statistical model, in systems with the same and different number of protons and neutrons, separately, considering the Coulomb energy in the last system. Some average nuclear properties were calculated based on the energy density of nuclear matter, from Weizsscker-Beth mass semiempiric formulae, generalized for compressible nuclei. In the study of a s surface energy coefficient, the great influence exercised by Coulomb energy and nuclear compressibility was verified. For a good adjust of beta stability lines and mass excess, the surface symmetry energy were established. (M.C.K.) [pt
Developmental Change in Proactive Interference.
Kail, Robert
2002-01-01
Two studies examined age-related change in proactive interference from previously learned material. The meta-analysis of 26 studies indicated that proactive interference decreased with age. The cross-sectional study found that third through sixth graders' and college students' recall was accurate on Trial 1, but became less so over Trials 2…
Sleep can reduce proactive interference.
Abel, Magdalena; Bäuml, Karl-Heinz T
2014-01-01
Sleep has repeatedly been connected to processes of memory consolidation. While extensive research indeed documents beneficial effects of sleep on memory, little is yet known about the role of sleep for interference effects in episodic memory. Although two prior studies reported sleep to reduce retroactive interference, no sleep effect has previously been found for proactive interference. Here we applied a study format differing from that employed by the prior studies to induce a high degree of proactive interference, and asked participants to encode a single list or two interfering lists of paired associates via pure study cycles. Testing occurred after 12 hours of diurnal wakefulness or nocturnal sleep. Consistent with the prior work, we found sleep in comparison to wake did not affect memory for the single list, but reduced retroactive interference. In addition we found sleep reduced proactive interference, and reduced retroactive and proactive interference to the same extent. The finding is consistent with the view that arising benefits of sleep are caused by the reactivation of memory contents during sleep, which has been suggested to strengthen and stabilise memories. Such stabilisation may make memories less susceptible to competition from interfering memories at test and thus reduce interference effects.
Output Interference in Recognition Memory
Criss, Amy H.; Malmberg, Kenneth J.; Shiffrin, Richard M.
2011-01-01
Dennis and Humphreys (2001) proposed that interference in recognition memory arises solely from the prior contexts of the test word: Interference does not arise from memory traces of other words (from events prior to the study list or on the study list, and regardless of similarity to the test item). We evaluate this model using output…
Interference Phenomenon with Mobile Displays
Trantham, Kenneth
2015-01-01
A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…
Jackson, M I; Hiley, M J; Yeadon, M R
2011-10-13
In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. Copyright © 2011 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Majdikov, V.Z.; Bashevoj, V.V.; Mel'nikov, V.N.
1998-01-01
An analysis of the ion-optical parameters of the existing facilities for precise nuclear reactions experiments at the U-400 cyclotron swichyard shows that some improvement can be made to perform RIB experiments at the Coulomb barrier of interactions. A change in the position of a dozen of quadrupole lenses at the cyclotron switchyard permits one to obtain parameters of magnetic spectrometers adequate for the modern experiments
Communications in interference limited networks
2016-01-01
This book offers means to handle interference as a central problem of operating wireless networks. It investigates centralized and decentralized methods to avoid and handle interference as well as approaches that resolve interference constructively. The latter type of approach tries to solve the joint detection and estimation problem of several data streams that share a common medium. In fact, an exciting insight into the operation of networks is that it may be beneficial, in terms of an overall throughput, to actively create and manage interference. Thus, when handled properly, "mixing" of data in networks becomes a useful tool of operation rather than the nuisance as which it has been treated traditionally. With the development of mobile, robust, ubiquitous, reliable and instantaneous communication being a driving and enabling factor of an information centric economy, the understanding, mitigation and exploitation of interference in networks must be seen as a centrally important task.
Interference effects in Moessbauer spectra of M1-transitions
International Nuclear Information System (INIS)
Peregudov, V.N.
1980-01-01
The purpose of the study is the calculation of interference effects in Moessbauer spectra of the (γ, e) reaction. Two channels of the inelastic (γ, e) reaction are considered: resonance gamma radiation absorption by nucleus accompanied by internal conversion and photo absorption by atomic electrons. The case of M1 nuclear transition multipolarity is considered. The expression for angular dependence coefficients of interference member is obtained. General expression for (γ, e) reaction cross section is obtained in a long-wave approximation for the case when the specimen is placed in longitudinal magnetic field involving superfine nuclear level splitting. The results of disperse amplitudes calculation for 93 Kr, 119 Sn, 129 I, 149 Sm, 151 Eu, 169 Tm, 183 W, 193 Ir, 197 Au nuclei are verified. The calculations show that maximum interference effect in the (γ, e) reaction should be expected for 169 Tm isotope [ru
Interference between light and heavy neutrinos for 0νββ decay in the left–right symmetric model
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Fahim, E-mail: ahmed1f@cmich.edu; Neacsu, Andrei, E-mail: neacs1a@cmich.edu; Horoi, Mihai, E-mail: mihai.horoi@cmich.edu
2017-06-10
Neutrinoless double-beta decay is proposed as an important low energy phenomenon that could test beyond the Standard Model physics. There are several potentially competing beyond the Standard Model mechanisms that can induce the process. It thus becomes important to disentangle the different processes. In the present study we consider the interference effect between the light left-handed and heavy right-handed Majorana neutrino exchange mechanisms. The decay rate, and consequently, the phase-space factors for the interference term are derived, based on the left–right symmetric model. The numerical values for the interference phase-space factors for several nuclides are calculated, taking into consideration the relativistic Coulomb distortion of the electron wave function and finite-size of the nucleus. The variation of the interference effect with the Q-value of the process is studied.
Energy Technology Data Exchange (ETDEWEB)
RodrIguez, V D [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Macri, P [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones CientIficas y Tecnicas, 1428 Buenos Aires (Argentina); Gayet, R [CELIA, Centre Lasers Intenses et Applications, UMR 5107, Unite Mixte de Recherche CNRS-CEA-Universite Bordeaux 1, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France)
2005-08-14
The sudden Coulomb-Volkov theoretical approximation has been shown to well describe atomic ionization by intense and ultra-short electromagnetic pulses, such as pulses generated by very fast highly-charged ions. This approach is extended here to investigate single ionization of homonuclear diatomic molecules by such pulses in the framework of one-active electron. Under particular conditions, a Young-like interference formula can approximately be factored out. Present calculations show interference effects originating from the molecular two-centre structure. Fivefold differential angular distributions of the ejected electron are studied as a function of the molecular orientation and internuclear distance. Both non-perturbative and perturbative regimes are examined. In the non-perturbative case, an interference pattern is visible but a main lobe, opposite to the electric field polarization direction, dominates the angular distribution. In contrast, in perturbation conditions the structure of interferences shows analogies to the Young-like interference pattern obtained in ionization of molecules by fast electron impacts. Finally, the strong dependence of these Young-like angular distributions on the internuclear distance is addressed.
Radio Frequency Interference Mitigation
An, T.; Chen, X.; Mohan, P.; Lao, B. Q.
2017-09-01
The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.
Indirect methods in nuclear astrophysics
International Nuclear Information System (INIS)
Bertulani, C.A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.
2016-01-01
We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions. (paper)
Proton-/sup 90/Zr interaction at sub-Coulomb proton energies
International Nuclear Information System (INIS)
Laird, C.E.; Flynn, D.; Hershberger, R.L.; Gabbard, F.
1987-01-01
The proton-/sup 90/Zr interaction at sub-Coulomb energies has been investigated in the context of the Lane model, with isospin coupling included, and with alternate decay modes represented with the Hauser-Feshbach model. Scattering and reaction cross sections were accurately measured in order to obtain enough information to constrain the real and absorptive parts of the proton potential. Differential elastic scattering excitation functions were measured at back angles of 135 0 and 165 0 from 2 to 7 MeV, with cross section accuracies of 3%. The energy range was sufficient to go from a region where the backscattering was predominantly Coulomb, enabling additional checks on the cross section accuracies, to a region where the gross structure of the cross sections deviated significantly from Rutherford scattering. Radiative capture cross sections were measured from 1.9 to 5.7 MeV proton energies. The capture cross sections were obtained by summing the measured cross sections for the first two primary gamma rays in addition to some 34 other transitions which terminated on the ground and first excited state. The total inelastic scattering cross section to all /sup 90/Zr excited states (except the first excited state which has been previously measured) was measured at several energies between 3.9 and 5.7 MeV by observing the radiative decay of the residual, excited /sup 90/Zr nuclei. The analysis yielded several model parameters suggestive of large nuclear structure effects. The depth of the absorptive potential was found to vary as W/sub D/ = 2.73+0.70 E/sub p/ in the 2 to 7 MeV proton energy range studied. A real diffuseness of 0.54 fm, significantly smaller than that obtained in neighboring nuclei, was obtained
International Nuclear Information System (INIS)
Magno, C.; Milazzo, M.; Pizzi, C.; Porro, F.; Rota, A.; Riccobono, G.
1979-01-01
A critical survey has been made of the currently accepted BEA theory for inner-shell atomic-ionization processes. This review has led to the introduction of an effective ion energy which accounts for the slowing-down of the ion in the nuclear Coulomb field. The effect of the ion deflection, also due to the nuclear Coulomb field, is analyzed. Relativistic effects in the collision of ions with K-shell electrons have been taken into account. A tentative qualitative explanation for the experimentally observed nonexistence of a threshold energy for ionization is given in the framework of the BEA theory. Ionization cross-sections for Rb, Sr, Zr, Cd, In, Sb, W by protons in the energy range from 500 keV to 3 MeV have been measured. Also measurements of ionization cross-sections by deuterons in the energy range from 800 keV to 2.6 MeV on Rb, Sr, Zr, Cd, Sb and by He ions in the energy range from 1.4 MeV to 2.8 MeV on Cd and Sb have been performed. Results are compared with those of other authors and in the context of the corrections introduced in the BEA theory. (author)
Coulomb stress analysis of the 21 February 2008 Mw= 6.0 Wells, Nevada, earthquake
Sevilgen, Volkan
2011-01-01
Static Coulomb stress changes imparted by the February 21, 2008 Wells, Nevada earthquake are calculated, using an 8 x 6 km rectangular patch with a uniform slip as a source fault. Stress changes are resolved on nearby active faults using their rake, dip, and strike direction, assuming a fault friction of 0.4. The largest Coulomb stress increase (0.2 bars) imparted to surrounding major active faults from the Wells earthquake occurs on the Clover Hill fault, which may be the southern continuation of the ruptured fault. A 0.1 bar Coulomb stress increase is calculated on the western Snake Mountains fault. Coulomb stress decreases of 0.5 bars are calculated for the northern parts of the Independence and Ruby Mountains faults. The Coulomb stress change is calculated on relocated aftershocks assuming that they have the same strike, dip, and rake, as the source fault. Under this assumption, 75% of the aftershocks received a Coulomb stress increase.
Calculation of nuclear excitation in an electron transition
Energy Technology Data Exchange (ETDEWEB)
Pisk, K. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Kaliman, Z. (Rijeka Univ. (Yugoslavia). Faculty of Pedagogics); Logan, B.A. (Ottawa Univ., ON (Canada). Ottawa-Carleton Centre for Physics)
1989-11-06
We have made a theoretical investigation of nuclear excitation during an electron transition (NEET). Our approach allows us to express the NEET probabilities in terms of the excited nuclear level width, the energy difference between the nuclear and electron transition, the Coulomb interaction between the initial electron states, and the electron level width. A comparison is made with the available experimental results. (orig.).
A unitarized meson model including color Coulomb interaction
International Nuclear Information System (INIS)
Metzger, Kees.
1990-01-01
Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs
A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors
Energy Technology Data Exchange (ETDEWEB)
Nia, Iman Hassani; Mohseni, Hooman, E-mail: hmohseni@ece.northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering, Northwestern University, Evanston, Illinois 60208 (United States)
2014-07-28
Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.
Universal monopole scaling near transitions from the Coulomb phase.
Powell, Stephen
2012-08-10
Certain frustrated systems, including spin ice and dimer models, exhibit a Coulomb phase at low temperatures, with power-law correlations and fractionalized monopole excitations. Transitions out of this phase, at which the effective gauge theory becomes confining, provide examples of unconventional criticality. This Letter studies the behavior at nonzero monopole density near such transitions, using scaling theory to arrive at universal expressions for the crossover phenomena. For a particular transition in spin ice, quantitative predictions are made by mapping to the XY model and confirmed using Monte Carlo simulations.
Ice limit of Coulomb gauge Yang-Mills theory
International Nuclear Information System (INIS)
Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.
2008-01-01
In this paper we describe gauge invariant multiquark states generalizing the path integral framework developed by Parrinello, Jona-Lasinio, and Zwanziger to amend the Faddeev-Popov approach. This allows us to produce states such that, in a limit which we call the ice limit, fermions are dressed with glue exclusively from the fundamental modular region associated with Coulomb gauge. The limit can be taken analytically without difficulties, avoiding the Gribov problem. This is illustrated by an unambiguous construction of gauge invariant mesonic states for which we simulate the static quark-antiquark potential.
Coulomb interactions via local dynamics: a molecular-dynamics algorithm
International Nuclear Information System (INIS)
Pasichnyk, Igor; Duenweg, Burkhard
2004-01-01
We derive and describe in detail a recently proposed method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. We focus on the molecular dynamics version of the method and show that it is intimately related to the Car-Parrinello approach, while being equivalent to solving Maxwell's equations with a freely adjustable speed of light. Unphysical self-energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green function. The method can be straightforwardly parallelized using standard domain decomposition. Some preliminary benchmark results are presented
The rotational temperature of polar molecular ions in Coulomb crystals
International Nuclear Information System (INIS)
Bertelsen, Anders; Joergensen, Solvejg; Drewsen, Michael
2006-01-01
With MgH + ions as a test case, we investigate to what extent the rotational motion of smaller polar molecular ions sympathetically cooled into Coulomb crystals in linear Paul traps couples to the translational motions of the ion ensemble. By comparing the results obtained from rotational resonance-enhanced multiphoton photo-dissociation experiments with data from theoretical simulations, we conclude that the effective rotational temperature exceeds the translational temperature (<100 mK) by more than two orders of magnitude, indicating a very weak coupling. (letter to the editor)
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
Marshall, J. R.
1999-01-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
Coulomb interaction from the interplay between confinement and screening
International Nuclear Information System (INIS)
Gaete, P.; Guendelman, E.I.
2004-01-01
It has been noticed that confinement effects can be described by the addition of a √(-F μν a F aμν ) term in the Lagrangian density. We now study the combined effect of such 'confinement term' and that of a mass term. The surprising result is that the interplay between these two terms gives rise to a Coulomb interaction. Our picture has a certain correspondence with the quasiconfinement picture described by Giles, Jaffe and de Rujula for QCD with symmetry breaking
Coulomb scattering and η-η' the mixing angle
International Nuclear Information System (INIS)
Kleefeld, F.
2006-01-01
The fascinating physics underlying η and η ' mesons can be studied theoretically and experimentally in various contexts. In this presentation we want to turn our attention to two important uncorrelated aspects of this vivid research field which provide yet unexpected challenges or surprises. First we discuss open questions in the theoretical treatment of Coulomb-interaction in the context of reaction processes like pp → ppη. Then we review η-η ' and σ (600) - F 0 (980) mixing in the U (3) x U (3) Linear Sigma Model and extract information on η-η ' mixing and K 0 (800) resonance from meson-meson scattering (Author)
Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.
Sahin, Buyukdagli; Ralf, Blossey
2014-07-16
We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.
The thermodynamics of a strictly non-ideal Coulomb system
International Nuclear Information System (INIS)
Krikorian V, R.
1982-01-01
Using the equation of state for a symmetric quantum Coulomb system with strong interactions, the phase transition and the existence of the plasma state are analyzed. With a reduction potential which includes quantum effects, a generalization of Saha's formula is obtained. The thermodynamics stability of the system is demonstrated analytically. The isotherms for equilibrium ionization are presented and the stability of the system is studied. The electrical conductivity is analyzed in a region of critical values, and the predictions are compared with experimental data for which one observes a quantitative change in the conductivity. (L.C.) [pt
Is the ground state of Yang-Mills theory Coulombic?
Heinzl, Thomas; Ilderton, Anton; Langfeld, Kurt; Lavelle, Martin; Lutz, Wolfgang; McMullan, David
2008-01-01
We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-abelian Coulomb fields is found to have a good overlap with the ground state for all ch...
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
Marshall, J. R.
1999-09-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
International Nuclear Information System (INIS)
Minnhagen, P.
1983-01-01
The Coulomb-gas model of vortex fluctuations leads to scaling relations for the resistive transition which can be directly tested by experiments. By analyzing published resistance data, it is shown that there is experimental evidence for the Coulomb-gas scaling relation in the absence of a perpendicular magnetic field. It is also shown that there exists some suggestive support for the Coulomb-gas predictions in the presence of a magnetic field
Enhanced population of side band of {sup 155}Gd in heavy-ion Coulomb excitation
Energy Technology Data Exchange (ETDEWEB)
Oshima, Masumi; Hayakawa, Takehito; Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others
1998-03-01
In the Coulomb excitation of {sup 155}Gd with heavy projectiles, {sup 32}S, {sup 58}Ni and {sup 90}Zr, unexpectedly large enhancement of a positive-parity side band has been observed. This enhancement could not be reproduced by a Coulomb-excitation calculation taking into account the recommended upper limits of E1 or E3 transitions, which are compiled in the whole mass region, and is proportional to the electric field accomplished in the Coulomb-scattering process. (author)
Interference management using direct sequence spread spectrum ...
African Journals Online (AJOL)
Interference management using direct sequence spread spectrum (DSSS) technique ... Journal of Fundamental and Applied Sciences ... Keywords: DSSS, LTE network; Wi-Fi network; SINR; interference management and interference power.
Optical interference with noncoherent states
International Nuclear Information System (INIS)
Sagi, Yoav; Firstenberg, Ofer; Fisher, Amnon; Ron, Amiram
2003-01-01
We examine a typical two-source optical interference apparatus consisting of two cavities, a beam splitter, and two detectors. We show that field-field interference occurs even when the cavities are not initially in coherent states but rather in other nonclassical states. However, we find that the visibility of the second-order interference, that is, the expectation values of the detectors' readings, changes from 100%, when the cavities are prepared in coherent states, to zero visibility when they are initially in single Fock states. We calculate the fourth-order interference, and for the latter case find that it corresponds to a case where the currents oscillate with 100% visibility, but with a random phase for every experiment. Finally, we suggest an experimental realization of the apparatus with nonclassical sources
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
Structure studies on 82Kr by means of the multiple Coulomb excitation
International Nuclear Information System (INIS)
Bruessermann, S.
1985-01-01
With a 82 Kr beam of the energy 4.6 MeV per nucleon a 208 Pb target was irradiated in order to study the Coulomb excitation of 82 Kr. The experiment has been performed at the Society for Heavy Ion Research (GSI) in Darmstadt. The 82 Kr ions backscattered on the 208 Pb target were detected in a position-sensitive parallel-plate avalanche detector. The γ radiation of the excited 82 Kr particles was detected in 4 Ge(Li) detectors in coincidence with the particles. The spectra corrected regarding the Doppler shift contained 16 lines which permitted to determine by means of known mixing and branching ratios 22 electrical quadrupole transition matrix elements. The experimental excitation energies and the transition probabilities determined in this thesis are compared with different nuclear models, like the asymmetric rotator model, the rotational-vibrational model, the harmonic-oscillator model, the nuclear field theory, the SU(5) limit of the IBA-1, and the IBA-2 model. Thereby within the IBA-2 model a criterium for the symmetry of the wavefunction relative to the proton and neutron contributions is elaborated. Because of this criterium to the 2 1 + state a symmetric structure and to the 2 2 + ,3 states an asymmetric structure is assigned. (orig.) [de
Interference, reduced action, and trajectories
Floyd, Edward R.
2006-01-01
Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichroma...
Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.
Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui
2013-11-07
We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.
International Nuclear Information System (INIS)
Huang Feng; Wang Xue-Jin; Liu Yan-Hong; Ye Mao-Fu; Wang Long
2010-01-01
Structures and dynamics of two-dimensional dust lattices with and without Coulomb molecules in plasmas are investigated. The experimental results show that the lattices have the crystal-like hexagonal structures, i.e. most particles have six nearest-neighboring particles. However, the lattice points can be occupied by the individual particles or by a pair of particles called Coulomb molecules. The pair correlation function is used to compare the structures between the lattices with or without the Coulomb molecules. In the experiments, the Coulomb molecules can also decompose and recombine with another individual particle to form a new molecule. (physics of gases, plasmas, and electric discharges)
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems
8B + 208Pb Elastic Scattering at Coulomb Barrier Energies
La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.
2018-02-01
The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (Sp = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.
Coulomb thermal properties and stability of the Io plasma torus
Barbosa, D. D.; Coroniti, F. V.; Eviatar, A.
1983-01-01
Coulomb collisional energy exchange rates are computed for a model of the Io plasma torus consisting of newly created pickup ions, a background of thermally degraded intermediary ions, and a population of cooler electrons. The electrons are collisionally heated by both the pickup ions and background ions and are cooled by electron impact excitation of plasma ions which radiate in the EUV. It is found that a relative concentration of S III pickup ions forbidden S III/electrons = 0.1 with a temperature of 340 eV can deliver energy to the electrons at a rate of 3 x 10 to the -13th erg/cu cm per sec, sufficient to power the EUV emissions in the Io torus. The model predicts a background ion temperature Ti of about 53 eV and an electron temperature Te of about 5.5 eV on the basis of steady-state energy balance relations at Coulomb rates. The model also predicts electron temperature fluctuations at the 30 percent level on a time scale of less than 11 hours, consistent with recent observations of this phenomenon.
Coulomb Stress Accumulation along the San Andreas Fault System
Smith, Bridget; Sandwell, David
2003-01-01
Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.
Laser-Driven Recollisions under the Coulomb Barrier.
Keil, Th; Popruzhenko, S V; Bauer, D
2016-12-09
Photoelectron spectra obtained from the ab initio solution of the time-dependent Schrödinger equation can be in striking disagreement with predictions by the strong-field approximation (SFA), not only at low energy but also around twice the ponderomotive energy where the transition from the direct to the rescattered electrons is expected. In fact, the relative enhancement of the ionization probability compared to the SFA in this regime can be several orders of magnitude. We show for which laser and target parameters such an enhancement occurs and for which the SFA prediction is qualitatively good. The enhancement is analyzed in terms of the Coulomb-corrected action along analytic quantum orbits in the complex-time plane, taking soft recollisions under the Coulomb barrier into account. These recollisions in complex time and space prevent a separation into sub-barrier motion up to the "tunnel exit" and subsequent classical dynamics. Instead, the entire quantum path up to the detector determines the ionization probability.
Pairing from dynamically screened Coulomb repulsion in bismuth
Ruhman, Jonathan; Lee, Patrick A.
2017-12-01
Recently, Prakash et al. have discovered bulk superconductivity in single crystals of bismuth, which is a semimetal with extremely low carrier density. At such low density, we argue that conventional electron-phonon coupling is too weak to be responsible for the binding of electrons into Cooper pairs. We study a dynamically screened Coulomb interaction with effective attraction generated on the scale of the collective plasma modes. We model the electronic states in bismuth to include three Dirac pockets with high velocity and one hole pocket with a significantly smaller velocity. We find a weak-coupling instability, which is greatly enhanced by the presence of the hole pocket. Therefore we argue that bismuth is the first material to exhibit superconductivity driven by retardation effects of Coulomb repulsion alone. By using realistic parameters for bismuth we find that the acoustic plasma mode does not play the central role in pairing. We also discuss a matrix element effect, resulting from the Dirac nature of the conduction band, which may affect Tc in the s -wave channel without breaking time-reversal symmetry.
Adaptive time-stepping Monte Carlo integration of Coulomb collisions
Särkimäki, K.; Hirvijoki, E.; Terävä, J.
2018-01-01
We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.
Coulomb dissociation reactions on molybdenum isotopes for astrophysics applications
Energy Technology Data Exchange (ETDEWEB)
Ershova, Olga
2012-03-09
Within the present work, photodissociation reactions on {sup 100}Mo, {sup 93}Mo and {sup 92}Mo isotopes were studied by means of the Coulomb dissociation method at the LAND setup at GSI. As a result of the analysis of the present experiment, integrated Coulomb excitation cross sections of the {sup 100}Mo({gamma},n), {sup 100}Mo({gamma},2n), {sup 93}Mo({gamma},n) and {sup 92}Mo({gamma},n) reactions were determined. A second important topic of the present thesis is the investigation of the efficiency of the CsI gamma detector. The data taken with the gamma calibration sources shortly after the experiment were used for the investigation. In addition, a test experiment in refined conditions was conducted within the framework of this thesis. Numerous GEANT3 simulations of the detector were performed in order to understand various aspects of its performance. As a result, the efficiency of the detector was determined to be approximately a factor of 2 lower than the efficiency expected from the simulation. (orig.)
Theory of Coulomb drag for massless Dirac fermions
International Nuclear Information System (INIS)
Carrega, M; Principi, A; Polini, M; Tudorovskiy, T; Katsnelson, M I
2012-01-01
Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by other authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann-transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the transport scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of ‘thick’ and ‘thin’ spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity for the case when one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical quadratic-in-temperature behavior of the transresistivity. (paper)
Super-Coulombic atom-atom interactions in hyperbolic media
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.
Coulomb holes and correlation potentials in the helium atom
International Nuclear Information System (INIS)
Slamet, M.; Sahni, V.
1995-01-01
Thus, the asymptotic structure of the exchange-correlation potential W xc (r) of the work formalism is that of W x (r) which is (-1/r). We also detemine via the Kinoshita wave function the correlation potential μ c (r) of Kohn-Sham theory, which differs from W c (r) in that it also incorporates the effects of the correlation contribution to the kinetic energy. Consequently, it is less attractive than W c (r), but also has zero slope at the nucleus. However, as is known, the potential μ c (r) is nonmonotonic, since it goes positive within the atom, then becomes negative in the classically forbidden region, finally vanishing asymptotically as a negative function. Since the exchange potentials of the work formalism and Kohn-Sham theory are the same for this atom, and because W c (r) is strictly representative of Coulomb correlations, we attribute the nonmonotonicity and positiveness of the Kohn-Sham potential μ c (r) to the correlation kinetic energy. This conclusion is consistent with the result that the difference between the correlation energies determined within the work formalism from the dynamic Coulomb hole and Kohn-Sham theory is equal to the correlation contribution to the kinetic energy
Unsafe Coulomb excitation of 240-244Pu
International Nuclear Information System (INIS)
Ahmad, I.; Amro, H.; Carpenter, M. P.; Chowdhury, P.; Cizewski, J.; Cline, D.; Greene, J. P.; Hackman, G.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Macchiavelli, A. O.; Nisius, D. T.; Reiter, P.; Seabury, E. H.; Seweryniak, D.; Siem, S.; Uusitalo, J.; Wiedenhoever, I.; Wu, C. Y.
1999-01-01
The high spin states of 240 Pu and 244 Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a 208 Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to 242 Pu were obtained as well. In the case of 244 Pu, the yrast band was extended to 34h b ar revealing the completed πi 13/2 alignment, a ''first'' for actinide nuclei. The yrast sequence of 242 Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of 240 Pu was measured up to the highest rotational frequencies ever reported in the actinide region (approximately300 keV), no sign of particle alignment was observed. In this case, several observable such as the large B(E1)/B(E2) branching ratios in the negative parity band, and the vanishing energy staggering between the negative and positive parity bands suggest that the strength of octupole correlations increases with rotational frequency. These stronger correlations may well be responsible for delaying or suppressing the πi 13/2 particle alignment
International Nuclear Information System (INIS)
Kiener, J.; Gils, H.J.; Rebel, H.; Zagromski, S.; Gsottschneider, G.; Heide, N.; Jelitto, H.; Wentz, J.; Baur, G.
1991-04-01
Coulomb dissociation of light nuclear projectiles in the electric field of heavy target nuclei has been experimentally investigated as an alternative access to radiative capture cross sections at low relative energies of the fragments, which are of astrophysical interest. As a pilot experiment the breakup of 156 MeV 6 Li-projectiles at 208 Pb with small emission angles of the a particle and deuteron fragments has been studied. Both fragments were coincidentally detected in the focal plane of a magnetic spectrograph at several reaction angles well below the grazing angle and with relative angles between the fragments of 0deg-2deg. The experimental cross sections have been analyzed on the basis of the Coulomb breakup theory. The results for the resonant breakup give evidence for the strong dominance of the Coulomb dissociation mechanism and the absence of nuclear distortions, while the cross section for the nonresonant breakup follow theoretical predictions of the astrophysical S-factor and extrapolations of corresponding radiative capture reaction cross section to very low c. m. energies of the a particle and deuterons. Various implications of the approach are discussed. (orig.) [de
Collective nuclear dynamics. Proceedings
International Nuclear Information System (INIS)
Ivanyuk, F.A.
1994-01-01
The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities
Collective nuclear dynamics. Abstracts
International Nuclear Information System (INIS)
Abrosimov, V.I.; Kolomietz, V.M.
1994-01-01
The fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects: liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities
Collective nuclear dynamics. Proceedings.
Energy Technology Data Exchange (ETDEWEB)
Ivanyuk, F A [eds.
1994-12-31
The Fourth International school on nuclear physics was help on 29 Aug - 7 Sep, 1994 in Ukraine. The specialists discussed following subjects:liquid drop and the shell correction method; nuclear deformation energy and fission; nuclear structure at high spins, superdeformed states, structure of excited and exotic nuclei; nuclear fluid dynamics and large scale collective motion; order and chaos as they relate to the collective motion; quantum and interference phenomena in nuclear collisions; quasi-fission and multinucleon fragmentation effects; shell effects in non-nuclear systems; new nuclear facilities.
Interference in motor learning - is motor interference sensory?
DEFF Research Database (Denmark)
Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C
mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...... was disrupted by subsequent learning of a precision tracking task with the same agonist muscle group, but not by learning involving antagonist muscles or by voluntary agonist contractions that did not require learning. If the competing task was learned with the same agonist muscle group 4 hours following...
Experimental research for γ-ray interference threshold effect of high electromagnetic pulse sensor
International Nuclear Information System (INIS)
Meng Cui; Chen Xiangyue; Nie Xin; Xiang Hui; Guo Xiaoqiang; Mao Congguang; Cheng Jianping; Ni Jianping
2007-01-01
The high electromagnetic pulse (EMP) sensor using optical-fiber to transmit signal can restrain electromagnetic interference. The Compton electrons scattered by γ-ray irradiated from nuclear explosion or nuclear explosion simulator can generate high EMP, γ-ray can penetrate the shielding box and irradiate the integrated circuit directly. The γ-ray irradiation effect includes interference, latch up and burn out, these will make the measurement result unbelievable. In this paper, the experimental method researching the γ-ray irradiation effect of high electromagnetic pulse sensor on Qiangguang-I accelerator is introduced. The γ-ray dose rate interference threshold is 2 x 10 6 Gy/s. (authors)
WEED INTERFERENCE IN EGGPLANT CROPS
Directory of Open Access Journals (Sweden)
LUIZ JUNIOR PEREIRA MARQUES
2017-01-01
Full Text Available Uncontrolled weed growth interferes with the growth eggplants and crop yields. To control weeds, the main weed species must be identified in crop growing areas and during weed control periods, as weed species might vary in relation to management practices. Therefore, this study aimed to identify the main weed species and determine the periods of weed interference in the eggplant cultivar Nápoli when grown under certain cultural practices, including plant staking and sprout thinning. The experiment was carried out in 2014 using a randomized complete block design, with 3 replications. The treatments consisted of 11 periods of (1 increasing weed control and (2 increasing coexistence of eggplant with weeds from the first day of transplanting (0-14, 0-28, 0-42, 0-56, 0-70, 0-84, 0-98, 0-112, 0-126, 0-140, and up do day 154. Eggplant staking and sprout thinning were performed 42 days after transplanting (DAT. Weed identification and crop yield assessments were performed to determine the Period Before Interference (PBI, Total Period of Interference Prevention (TPIP, and the Critical Period of Interference Prevention (CPIP. The major weeds found in the eggplant cultivar Nápoli were Eleusine indica, Portulaca oleracea, and Cyperus rotundus. Coexistence between the weed community and the eggplant throughout the entire crop production cycle reduced eggplant fruit yield by 78%. The PBI was 29 DAT and the TPIP was 48 DAT, resulting in 19 days of CPIP.
Addressing the susceptibility of digital systems to electromagnetic interference
International Nuclear Information System (INIS)
Ewing, P.D.; Korsah, K.; Antonescu, C.
1993-01-01
This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Second, a verification and validation (V ampersand V) program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate acceptance criteria to ensure that the circuit or system under test meets the recommended guidelines. V ampersand V should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation susceptibility attributable to EMI will be greatly reduced