WorldWideScience

Sample records for coulomb excitation experiment

  1. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  2. Exclusion of nuclear forces in heavy-ion Coulomb excitation and Coulomb fission experiments

    International Nuclear Information System (INIS)

    Neese, R.E.; Guidry, M.W.

    1982-01-01

    A simple prescription for estimating the energy at which nuclear forces begin to play a role in heavy-ion Coulomb excitation and Coulomb fission experiments is presented. The method differs from most commonly used recipes in accounting for projectile and target nucleus deformation effects. Using a single adjustable parameter the formula reproduces the energy for the onset of Coulomb-nuclear interference effects for a broad range of heavy-ion systems. It is suggested that most Coulomb fission experiments which have been done involve both Coulomb and nuclear excitation processes and should more properly be termed Coulomb-nuclear fission experiments

  3. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  4. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  5. Probing nuclear shell structure beyond the N=40 subshell using multiple Coulomb excitation and transfer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hellgartner, Stefanie Christine

    2015-11-13

    In this work, the N=40 subshell closure is investigated with two complementary methods using a radioactive {sup 72}Zn ISOLDE beam: One- and two-neutron transfer reactions and multiple Coulomb excitation. In the one-neutron transfer reaction, two new levels of {sup 73}Zn were discovered. The two-neutron transfer channel allowed to study the differential cross section of the ground state and the 2{sup +}{sub 1} state of {sup 74}Zn. In the Coulomb excitation experiment, the measured B(E2) values and quadrupole moments of {sup 72}Zn showed that the yrast states 0{sup +}{sub 1}, 2{sup +}{sub 1} and 4{sup +}{sub 1} are moderately collective. Contrary, the 0{sup +}{sub 2} state has a different structure, since it features a stronger closed N=40 configuration compared to the ground state.

  6. Computer experiments of the time-sequence of individual steps in multiple Coulomb-excitation

    International Nuclear Information System (INIS)

    Boer, J. de; Dannhaueser, G.

    1982-01-01

    The way in which the multiple E2 steps in the Coulomb-excitation of a rotational band of a nucleus follow one another is elucidated for selected examples using semiclassical computer experiments. The role a given transition plays for the excitation of a given final state is measured by a quantity named ''importance function''. It is found that these functions, calculated for the highest rotational state, peak at times forming a sequence for the successive E2 transitions starting from the ground state. This sequential behaviour is used to approximately account for the effects on the projectile orbit of the sequential transfer of excitation energy and angular momentum from projectile to target. These orbits lead to similar deflection functions and cross sections as those obtained from a symmetrization procedure approximately accounting for the transfer of angular momentum and energy. (Auth.)

  7. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  8. Coulomb excitation of 189Os

    International Nuclear Information System (INIS)

    Brandao, S.B.

    1987-01-01

    The level structure of 189 Os has been studied by Coulomb excitation using 35 Cl, 28 Si, 16 O beams. GOSIA, a code written to analyze multiple Coulomb excitation, was used to obtain the reduced probabilities of transition B(E2). The results for interband and intraband turned out possible the classification of the states following Nilsson levels. Gamma-rays originating from deexcitation of 216.7 and 219.4 keV have been separated and the reduced probability of transition has been measured. (A.C.A.S.) [pt

  9. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  10. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  11. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  12. Coulomb excitation of radioactive 20, 21Na

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-12-01

    The low-energy structures of the radioactive nuclei 20, 21Na have been examined using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ˜ 5×106 ions/s were accelerated to 1.7MeV/A and Coulomb excited in a 0.5mg/cm^2 natTi target. Two TIGRESS HPGe clover detectors perpendicular to the beam axis were used for γ -ray detection, while scattered nuclei were observed by the Si detector BAMBINO. For 21Na , Coulomb excitation from the 3/2+ ground state to the first excited 5/2+ state was observed, while for 20Na , Coulomb excitation was observed from the 2+ ground state to the first excited 3+ and 4+ states. For both beams, B ( λ L) values were determined using the 2+ rightarrow 0+ de-excitation in 48Ti as a reference. The resulting B( E2) ↓ value for 21Na is 137±9 e^2fm^4, while the resulting B( λ L) ↓ values for 20Na are 55±6 e^2fm^4 for the 3+ rightarrow 2+ , 35.7±5.7 e^2 fm^4 for the 4+ rightarrow 2+ , and 0.154±0.030 μ_ N^2 for the 4+ rightarrow 3+ transitions. This analysis significantly improves the measurement of the 21Na B( E2) value, and provides the first experimental determination of B( λ L) values for the proton dripline nucleus 20Na .-1

  13. Hyperon excitation in nuclear coulomb field

    International Nuclear Information System (INIS)

    Vanyashin, A.V.; Nikitin, Yu.P.; Shan'gin, A.A.

    1981-01-01

    A possibility is studied to measure radiative decay partial widths from the 3/2 + decuplet hyperon resonances by means of the Coulomb excitation method of the octet hyperons. The expected contributions from the strong and electromagnetic interactions in the coherence range to the hyperon excitation cross sections on heavy nuclei and on the 4 He nucleus are estimated. The particle angular distributions in the reactions Σ-+A→Σ-(1385)+A and Λ+A→Σ 0 (1385)+A are analysed in order to determine the energy range where the background conditions are the most favorable to extract the electromagnetic mechanism of the hyperon excitation [ru

  14. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  15. Prospects for coherently driven nuclear radiation by Coulomb excitation

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2006-01-01

    Possible experiments are discussed in which the Coulomb excitation of nuclear isomers would be followed by sequential energy release. The possibility of the coherent Coulomb excitation of nuclei ensconced in a crystal by channeled relativistic heavy projectiles is considered. The phase shift between neighbor-nuclei excitations can be identical to the photon phase shift for emission in forward direction. Thus, the elementary string of atoms can radiate coherently with emission of characteristic nuclear γ rays and the intensity of the radiation could be increased due to the summation of amplitudes. The Moessbauer conditions should be important for this new type of collective radiation that could be promising in the context of the γ-lasing problem

  16. Coulomb excitation of {sup 123}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Hartig, Anna-Lena; Kroell, Thorsten; Ilieva, Stoyanka; Boenig, Sabine; Thuerauf, Michael [IKP, TU Darmstadt (Germany); Simpson, Gary; Drouet, Floriane; Ramdhane, Mourad [LPSC, Grenoble (France); Georgiev, Georgi [CSNSM, Orsay (France); Kesteloot, Nele; Wrzosek-Lipska, Kasia [KU, Leuven (Belgium); Jungclaus, Andrea; Illana Sison, Andres [CSIC, Madrid (Spain); Balabanski, Dimiter [INRNE-BAS, Sofia (Bulgaria); Warr, Nigel [Koeln Univ. (Germany). IKP; Voulot, Didier; Wenander, Fredrik; Marsh, Bruce [CERN, Geneva (Switzerland)

    2013-07-01

    On the neutron-rich side of the valley of stability in the vicinity of the double magic nucleus {sup 132}Sn one can find the {sup 123}Cd isotope. Surprisingly the neutron-rich even-A Cd isotopes in this region are showing signs of collectivity beyond that calculated by modern shell-model predictions. In order to gain a deeper insight in this phenomenon we started to extend these studies to odd-A Cd isotopes. As first isotope the exotic nucleus {sup 123}Cd was produced for safe Coulomb excitation by the ISOLDE facility at CERN and post-accelerated by REX-ISOLDE. The γ-decay from excited states was detected with the MINIBALL array. A report on the status of the ongoing analysis is given.

  17. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  18. Coulomb excitation of $^{110}$Sn using REX-ISOLDE

    CERN Document Server

    Ekström, A; Hurst, A; Fahlander, C; Banu, A; Butler, P; Eberth, J; Górska, M; Habs, D; Huyse, M; Kester, O; Niedermayer, O; Nilsson, T; Pantea, M; Scheit, H; Schwalm, D; Sletten, G; Ushasi, D P; Van Duppen, P; Warr, N; Weisshaar, D

    2006-01-01

    In this paper, we report the preliminary result from the first Coulomb excitation experiment at REX-ISOLDE (Habs et al 1998 Nucl. Instrum. Methods B 139 128) using neutron-deficient Sn-beams. The motivation of the experiment is to deduce the reduced transition probability, B(E2 ; 2$^+\\rightarrow$ 0$^+$) , for the sequence of neutron deficient, unstable, even-even Sn-isotopes from using a radioactive beam opens up a new path to study the lifetime of the first excited 2$^+$ state in these isotopes. The de-excitation path following fusion-evaporation reactions will for the even-even Sn isotopes pass via an isomeric 6$^+$ state, located at higher energy, which thus hampers measurements of the lifetime of the first excited state using, e.g., recoil-distance methods. For this reason the reduced transition probability of the first excited 2$^+$ state has remained unknown in this chain of isotopes although the B(E2) value of the stable isotope $^{112}$Sn was measured approximately 30 years ago (see, e.g., Stelson et...

  19. Coulomb excitation of atoms by fast multicharged ions

    International Nuclear Information System (INIS)

    Yudin, G.L.

    1980-01-01

    Investigated is coulomb eXcitation of discrete levels of a hydrogen-like atom by a fast multicharged ion. Obtained are dependences of probabilities of channels 1S→nS and 1S→nP on the sight parameter in the zero order of sudden excitation theory. 1S-2S transition is considered in detail. Carried out are calculations for excitation of the hydrogen atom by the wholy bare carbon atom. It is shown, that at low values of excitation pr.ocess parameter eta excitation probability is a monotonously decreasing function of the impact parameter. With the growth of eta the situation is changed, and at low impact parameters the probability of 1S-2S transition is decreased. At high impact parameters approximation of sudden excitations is unacceptable, here lagging of coulomb interaction is essential

  20. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)

    2008-07-01

    Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.

  1. Scaling laws and higher-order effects in Coulomb excitation of neutron halo nuclei

    International Nuclear Information System (INIS)

    Typel, S.; Baur, G.

    2008-01-01

    Essential properties of halo nuclei can be described in terms of a few low-energy constants. For neutron halo nuclei, analytical results can be found for wave functions and electromagnetic transition matrix elements in simple but well-adapted models. These wave functions can be used to study nuclear reactions; an especially simple and instructive example is Coulomb excitation. A systematic expansion in terms of small parameters can be given. We present scaling laws for excitation amplitudes and cross-sections. The results can be used to analyze experiments like 11 Be Coulomb excitation. They also serve as benchmark tests for more involved reaction theories. (orig.)

  2. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  3. Semiclassical treatment of nuclear effects in Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Rasmussen, J O; Ring, P; Stoyer, M A [Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.

    1990-09-27

    We introduce the effects of the nuclear potential in the semiclassical Alder-Winther-de Boer method, both in the coupling matrix elements and as corrections to the Rutherford orbit. We compare our results to those of pure Coulomb excitation and to coupled-channel calculations. (orig.).

  4. Study of the N=40 shell by using Coulomb excitation

    International Nuclear Information System (INIS)

    Leenhardt, St.

    2000-01-01

    Two Coulomb excitation experiments on neutron rich exotic nuclei have been performed at GANIL. They allowed the measurement of the reduced transition probability B(E2) (from ground state to first excited state) of some nuclei around N = 40. This number, 40, is a half-magic number in the shell model. For nuclei with an important neutron excess, it is predicted that the shell closure is stronger at N = 40. The B(E2) is a good tool for testing this growing. We have measured, by using the LISE3 spectrometer and a γ multidetector, B(E2) of 68 Ni, 66 Ni and 72 Zn, unknown till now. We have used for the first time segmented germanium 'clovers' detector, for photon detection (v/c∼0.3). Results confirm the strong shell effect for 68 Ni. Indeed 68 Ni was shown to be the Nickel isotope with the lowest value of B(E2), and hence the most rigid isotope. Nevertheless it seems that the shell effect at N = 40 decreases rapidly, for other isotopes very close to 68 Ni(Z = 28) and N = 40). (authors)

  5. Coulomb excitation of the proton-dripline nucleus Na20

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-10-01

    The low-energy structure of the proton dripline nucleus Na20 has been studied using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. A 1.7-MeV/nucleon Na20 beam of ~5×106 ions/s was Coulomb excited by a 0.5-mg/cm2natTi target. Scattered beam and target particles were detected by the BAMBINO segmented Si detector while γ rays were detected by two TIGRESS HPGe clover detectors set perpendicular to the beam axis. Coulomb excitation from the 2+ ground state to the first excited 3+ and 4+ states was observed, and B(λL) values were determined using the 2+→0+ de-excitation in Ti48 as a reference. The resulting B(λL)↓ values are B(E2;3+→2+)=55±6e2fm4 (17.0±1.9 W.u.), B(E2;4+→2+)=35.7±5.7e2fm4 (11.1±1.8 W.u.), and B(M1;4+→3+)=0.154±0.030μN2 (0.086±0.017 W.u.). These measurements provide the first experimental determination of B(λL) values for this proton dripline nucleus of astrophysical interest.

  6. Relativistic Coulomb excitation of giant resonances in the hydrodynamic model

    International Nuclear Information System (INIS)

    Vasconcellos Gomes, Ana Cristina de.

    1990-05-01

    We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy ion collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. This model is used as input to study the characteristics of multiple excitation of giant dipole resonances in nuclei. Possible signatures for the existence of such states are also discussed quantitatively. (author). 52 refs., 14 figs., 3 tabs

  7. On some aspects of Coulomb excitation of nuclear rotational states

    International Nuclear Information System (INIS)

    Massmann, H.; Robotham, H.

    1979-01-01

    The Coulomb excitation of nuclear rotational states is studied with a semiclassical method using classical trajectories and the classical action in order to construct the excitation probabilities. This method allows one to consider the effect on the excitation probabilities of a weak nuclear potential. An explicit expression for the 'safe bombarding energy' that is the largest bombarding energy for which the nuclear force can be neglected, is found. Also the transfer of angular momentum to the projectile's orbit is considered. One finds that the dynamical distortion of the orbit has a measurable effect on the excitation probabilities for the case of very heavy ions. Furthermore, new dimensionless parameters measuring the dynamical distortion and the effect of the adiabaticity of the collision are introduced and discussed. (author)

  8. Coulomb excitation of neutron-deficient polonium isotopes studied at ISOLDE

    CERN Document Server

    Neven, Michiel

    The polonium isotopes represent an interesting region of the nuclear chart having only two protons outside the Z = 82 closed shell. These isotopes have already been extensively studied theoretically and experimentally. The heavier isotopes (A > 200) seem to follow a "regular seniority-type regime" while for the lighter isotopes (A < 200) a more collective behavior is observed. Many questions remain regarding the transition between these two regimes and the configuration mixing between quantum states. Experiments in the lighter polonium isotopes point to the presence of shape coexistence, however the phenomenon is not fully understood. A Coulomb excitation study of the polonium isotopes whereby the dynamic properties are investigated can provide helpful insights in understanding the shape coexistence phenomena. In this thesis $^{202}$Po was studied via Coulomb excitation. The $^{202}$Po isotope was part of an experimental campaign in which the $^{196,198,200,206}$Po isotopes were studied as well via Coulomb...

  9. Electromagnetic excitation with very heavy ions at and above the Coulomb barrier

    International Nuclear Information System (INIS)

    Wollersheim, H.J.

    1988-08-01

    The present report is part of a systematic study of the electromagnetic properties of strongly deformed and shape transitional nuclei carried out at GSI. The high efficiency particle-gamma detector system is described to perform multiple Coulomb excitation experiments with very heavy projectiles. Some results obtained for the shape transitional nucleus 196 Pt will be presented to exemplify the importance of having access to both the level energies and the E2-transition matrix elements when discussing the possible structure of these states. The second part of this paper is devoted to transfer reactions between very heavy nuclei. In contrast to light projectiles heavy ions offer the possibility to study new phenomena which originate in the much larger Coulomb contribution to the total interaction. In particular, heavy deformed nuclei will be Coulomb excited by the strong electromagnetic field to high spin states already at the time when they start interacting through the nuclear forces. The particle transfer therefore takes place mainly between excited collective states and thus should give information about the interplay between single-particle degrees of freedom, pair correlations and collective excitations. In this paper results of experiments will be reported in which nuclei from the rare earth and the actinide region have been bombarded by 206,208 Pb projectiles at incident energies near the Coulomb barrier. (orig./HSI)

  10. Coulomb excitation of neutron-rich $^{134-136}$Sn isotopes

    CERN Multimedia

    We propose to study excited states in the isotopes $^{134,136}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to investigate the evolution of quadrupole collectivity beyond the magic shell closure at N = 82 by the determination of B(E2) values and electric quadrupole moments $\\mathcal{Q}_2$. Recent shell-model calculations using realistic interactions predict possible enhanced collectivity in neutron-rich regions. Evidence for this could be obtained by this experiment. Furthermore, the currently unknown excitation energies of the 2$^+_{1}$ and 4$^+_{1}$ states in $^{136}$Sn will be measured for the first time.

  11. Unsafe Coulomb excitation of $^{240-244}Pu$

    CERN Document Server

    Wiedenhöver, I; Hackman, L; Ahmad, I; Greene, J P; Amro, H; Carpenter, M P; Nisius, D T; Reiter, P; Lauritsen, T; Lister, C J; Khoo, T L; Siem, S; Cizewski, J A; Seweryniak, D; Uusitalo, J; Macchiavelli, A O; Chowdhury, P; Seabury, E H; Cline, D; Wu, C Y

    1999-01-01

    The high spin states of /sup 240/Pu and /sup 244/Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a /sup 208/Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to /sup 242/Pu were obtained as well. In the case of /sup 244/Pu, the yrast band was extended to 34h(cross), revealing the completed pi i/sub 13/2/ alignment, a "first" for actinide nuclei. The yrast sequence of /sup 242/Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of /sup 240/Pu was measured up to the highest rotational frequencies ever reported in the actinide region (~300 keV), no sign of particle alignment was observed. (11 refs).

  12. Coulomb excitations for a short linear chain of metallic shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhemchuzhna, Liubov, E-mail: lzhemchuzhna@unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Gao, Bo [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)

    2015-03-15

    A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.

  13. Coulomb Excitation of the N = 50 nucleus 80Zn

    International Nuclear Information System (INIS)

    Van de Walle, J.; Cocolios, T. E.; Huyse, M.; Ivanov, O.; Mayet, P.; Raabe, R.; Sawicka, M.; Stefanescu, I.; Duppen, P. van; Aksouh, F.; Ames, F.; Habs, D.; Lutter, R.; Behrens, T.; Gernhauser, R.; Kroell, T.; Kruecken, R.; Bildstein, V.; Blazhev, A.; Eberth, J.

    2008-01-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80 Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2 + states. For the first time, an excited state in 80 Zn was observed and the 2 1 + state in 78 Zn was established. The measured B(E2,2 1 + →0 1 + ) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78 Ni

  14. Coulomb excitation of the two proton-hole nucleus $^{206}$Hg

    CERN Multimedia

    We propose to use Coulomb excitation of the single magic two-proton-hole nucleus $^{206}$Hg. In a single-step excitation both the first 2$^{+}$ and the highly collective octupole 3$^{-}$ states will be populated. Thus, information on both quadrupole and octupole collectivity will be gained in this neutron-rich nucleus. Due to the high beam intensity, we will be able to observe multi-step Coulomb excitation as well, providing further test on theoretical calculations. The results will be used to improve the predictive power of the shell model for more exotic nuclei as we move to lighter N=126 nuclei. The experiment will use the new HIE-ISOLDE facility and the MINIBALL array, and will take advantage of the recently developed $^{206}$Hg beam from the molten lead target.

  15. Coulomb and nuclear excitations of narrow resonances in 17Ne

    Directory of Open Access Journals (Sweden)

    J. Marganiec

    2016-08-01

    Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  16. No evidence of reduced collectivity in Coulomb-excited Sn isotopes

    Science.gov (United States)

    Kumar, R.; Saxena, M.; Doornenbal, P.; Jhingan, A.; Banerjee, A.; Bhowmik, R. K.; Dutt, S.; Garg, R.; Joshi, C.; Mishra, V.; Napiorkowski, P. J.; Prajapati, S.; Söderström, P.-A.; Kumar, N.; Wollersheim, H.-J.

    2017-11-01

    In a series of Coulomb excitation experiments the first excited 2+ states in semimagic Sn 112 ,116 ,118 ,120 ,122 ,124 isotopes were excited using a 58Ni beam at safe Coulomb energy. The B (E 2 ; 0+→2+) values were determined with high precision (˜3 %) relative to 58Ni projectile excitation. These results disagree with previously reported B (E 2 ↑) values [A. Jungclaus et al., Phys. Lett. B 695, 110 (2011)., 10.1016/j.physletb.2010.11.012] extracted from Doppler-shift attenuation lifetime measurements, whereas the reported mass dependence of B (E 2 ↑) values is very similar to a recent Coulomb excitation study [J. M. Allmond et al., Phys. Rev. C 92, 041303(R) (2015), 10.1103/PhysRevC.92.041303]. The stable Sn isotopes, key nuclei in nuclear structure, show no evidence of reduced collectivity and we, thus, reconfirm the nonsymmetric behavior of reduced transition probabilities with respect to the midshell A =116 .

  17. JANUS - A setup for low-energy Coulomb excitation at ReA3

    Science.gov (United States)

    Lunderberg, E.; Belarge, J.; Bender, P. C.; Bucher, B.; Cline, D.; Elman, B.; Gade, A.; Liddick, S. N.; Longfellow, B.; Prokop, C.; Weisshaar, D.; Wu, C. Y.

    2018-03-01

    A new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access to observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. In this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm2208Pb target at a beam energy of 3.9 MeV/u.

  18. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others

    2011-10-21

    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  19. Unsafe Coulomb excitation of 240-244Pu

    International Nuclear Information System (INIS)

    Ahmad, I.; Amro, H.; Carpenter, M. P.; Chowdhury, P.; Cizewski, J.; Cline, D.; Greene, J. P.; Hackman, G.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Macchiavelli, A. O.; Nisius, D. T.; Reiter, P.; Seabury, E. H.; Seweryniak, D.; Siem, S.; Uusitalo, J.; Wiedenhoever, I.; Wu, C. Y.

    1999-01-01

    The high spin states of 240 Pu and 244 Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a 208 Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to 242 Pu were obtained as well. In the case of 244 Pu, the yrast band was extended to 34h b ar revealing the completed πi 13/2 alignment, a ''first'' for actinide nuclei. The yrast sequence of 242 Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of 240 Pu was measured up to the highest rotational frequencies ever reported in the actinide region (approximately300 keV), no sign of particle alignment was observed. In this case, several observable such as the large B(E1)/B(E2) branching ratios in the negative parity band, and the vanishing energy staggering between the negative and positive parity bands suggest that the strength of octupole correlations increases with rotational frequency. These stronger correlations may well be responsible for delaying or suppressing the πi 13/2 particle alignment

  20. Probing core polarization around 78Ni: intermediate energy Coulomb excitation of 74Ni

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2013-12-01

    We have recently measured the B(E2; 0+ → 2+ of the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory of the Michigan State University. The 74Ni secondary beam has been produced by fragmentation of 86Kr at 140 AMeV on a thick Be target. Selected radioactive fragments impinged on a secondary 197Au target where the measurement of the emitted γ-rays allows to extract the Coulomb excitation cross section and related structure information. Preliminary B(E2 values do not point towards an enhancement of the transition matrix element and the comparison to what was already measured by Aoi and co-workers in [1] opens new scenarios in the interpretation of the shell evolution of the Z=28 isotopes.

  1. Enhanced population of side band of {sup 155}Gd in heavy-ion Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Masumi; Hayakawa, Takehito; Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    In the Coulomb excitation of {sup 155}Gd with heavy projectiles, {sup 32}S, {sup 58}Ni and {sup 90}Zr, unexpectedly large enhancement of a positive-parity side band has been observed. This enhancement could not be reproduced by a Coulomb-excitation calculation taking into account the recommended upper limits of E1 or E3 transitions, which are compiled in the whole mass region, and is proportional to the electric field accomplished in the Coulomb-scattering process. (author)

  2. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  3. Shape coexistence in the neutron-deficient mercury isotopes studied through Coulomb excitation

    CERN Document Server

    Bree, Nick

    This thesis describes the analysis and results of a series of Coulomb-excitation experiments on even-even neutron-deficient mercury isotopes aimed at obtaining a more detailed description of shape coexistence. Two experimental campaigns have been undertaken in the Summer of 2007 and 2008. Pure beams of 182,184,186,188Hg were produced and accelerated at the REX-ISOLDE radioactive-beam facility, located at CERN (Geneva, Switzerland). The beams were guided to collide with a stable target to induce Coulomb excitation. The scattered particles were registered by a double-sided silicon strip detector, and the emitted gamma rays by the MINIBALL gamma-ray spectrometer. The motivation to study these mercury isotopes, focused around shape coexistence in atomic nuclei, is addressed in chapter 1, as well as an overview of the knowledge in this region of the nuclear chart. A theoretical description of Coulomb excitation is presented in the second chapter, while the third chapter describes the setup employed for the experim...

  4. Shape determination in Coulomb excitation of $^{72}$Kr

    CERN Multimedia

    Reiter, P; Kruecken, R; Paul, E S; Wadsworth, R; Heenen, P

    Nuclei with oblate shapes at low spins are very special in nature because of their rarity. Both theoretical and experimental shape co-existence studies in the mass 70 region for near proton drip-line nuclei suggest $^{72}$Kr to be the unique case with oblate low-lying and prolate high-lying levels. However, there is no direct experimental evidence in the literature to date for the oblate nature predicted for the first 2$^+$ state in $^{72}$Kr. We propose to determine the sign of the spectroscopic quadrupole moment of this state via the re-orientation effect in a low-energy Coulomb excitation measurement. In the inelastic excitation of the 2$^+$ state in $^{72}$Kr beam of 3.1 MeV/u with an intensity of 800 pps at REX-ISOLDE impinging on $^{104}$Pd target, the re-orientation effect plays a significant role. The cross section measurement for the 2$^+$ state should thus allow the model-independent determination of the sign of the quadrupole moment unambiguously and will shed light on the co-existing prolate and o...

  5. Coulomb excitation of 206Hg at relativistic energies

    Science.gov (United States)

    Alexander, Tom

    The region of the nuclear chart surrounding the doubly-magic nucleus 208Pb provides a key area to constrain and develop contemporary nuclear structure models. One aspect of particular interest is the transition strength of the first excited 2+ state in even-even nuclei; this work describes the measurement of this value for the case of 206Hg, where the Z=80 line meets the N=126 shell closure. The nuclei of interest were synthesized using relativistic-energy projectile fragmentation at the GSI facility in Germany. They were produced in the fragmentation of a primary 208Pb beam at an energy of 1 GeV per nucleon, and separated and identifed using the Fragment Separator. The secondary beams with an energy of 140 MeV per nucleon were Coulomb excited on a secondary target of 400 mg/cm. 2 gold. Gamma-rays were detected with the Advanced GAmma Tracking Array (AGATA). The precise scattering angle for Doppler-correction was determined with position information from the Lund-York-Cologne-CAlorimeter(LYCCA). Using the sophisticated tracking algorithm native to AGATA in conjunction with pulse-shape analysis, a precise Doppler-correction is performed on the gamma spectra, and using a complex n-dimensional analysis, the B(E2) value for 206Hg is extracted relative to the known value also measured in 206Pb. A total of 409 million 206Hg particles were measured, and a cross-section of 50 mb was determined for the 2+ state at 1068 keV. The measurement of the B(E2) transition strength was found to be 1.109 W.u. This result is compared to a number of theoretical calculations, including two Gogny forces, and a modified shell model parametrization and is found to be smaller than all calculated estimations, implying that the first excited 2. + state in . {206}Hg is uncollective in nature.

  6. Coulomb interaction in atomic and nuclear physics: Inner-Shell excitation, Coulomb dissociation of nuclei, and nuclear polarizability in electronic atoms

    International Nuclear Information System (INIS)

    Hoffmann, B.

    1984-07-01

    In three chapters different physical situations are described which have commonly the Coulomb interaction as driving force. The first two chapters study the Coulomb interactions in connection with the excitation of inner electron shells and the Coulomb excitation of nuclei in first order. In the third part on effect ofthe Coulomb interaction between electronic shell and nucleus is treated in second order (nuclear polarization), and its effect on the isotopic and isomeric shift is studied. (orig./HSI) [de

  7. On the sequentiality of the multiple Coulomb-excitation process

    International Nuclear Information System (INIS)

    Dannhaeuser, G.; Boer, J. de

    1978-01-01

    This paper describes the results of 'computer experiments' illustrating the meaning of a new concept called 'sequentiality'. This concept applies to processes in which the excitation of a given state is mainly accomplished by a large multiple of steps, and it deals with the question as to what extent a transition close to the ground state occurs before one between the highest excited states. (orig.) [de

  8. Coulomb excitation of $^{182-184}$ Hg: Shape coexistence in the neutron-deficient lead region

    CERN Multimedia

    We put forward a study of the interplay between individual nucleon behavior and collective degrees of freedom in the nucleus, as manifested in shape coexistence in the neutron-deficient lead region. As a first step of this experimental campaign, we propose to perform Coulomb excitation on light mercury isotopes to probe their excited states and determine transitional and diagonal E2 matrix elements, especially reducing the current uncertainties. The results from previous Coulomb excitation measurements in this mass region performed with 2.85 MeV/u beams from REX-ISOLDE have shown the feasibility of these experiments. Based on our past experience and the results obtained, we propose a detailed study of the $^{182-184}$Hg nuclei, that exhibit a pronounced mixing between 2 low-lying excited states of apparently different deformation character, using the higher energy beams from HIE-ISOLDE which are crucial to reach our goal. The higher beam energy should result in an increased sensitivity with respect to the qua...

  9. The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation

    CERN Document Server

    Klintefjord, M.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.P.; Fedosseev, V.; Fink, D.A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.C.; Libert, J.; Lutter, R.; Marsh, B.A.; Molkanov, P.L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M.D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T.G.; Tveten, G.M.; Van Duppen, P.; Vermeulen, M.J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.

    2016-05-02

    The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...

  10. Coulomb excitation of neutron-rich odd-$A$ Cd isotopes

    CERN Multimedia

    Reiter, P; Kruecken, R; Gernhaeuser, R A; Kroell, T; Leske, J; Marginean, N M

    We propose to study excited states in the odd-${A}$ isotopes $^{123,125,127}$Cd by ${\\gamma}$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to determine the B(E2) values connecting excited states with the ground state as well as the long-lived (11/2$^{-}$) isomer. The proposed study profits from the unique capability of ISOLDE to produce beams containing Cd in the ground state or in the isomeric state. Our recent results on the neutron-rich even-A Cd nuclei appear to show that these nuclei may possess some collectivity beyond that calculated by modern shell-model predictions. Beyond-mean-field calculations also predict these nuclei to be weakly deformed. These facets are surprising considering their proximity to the doubly magic $^{132}$Sn. Coulomb-excitation studies of odd-${A}$ Cd isotopes may give a unique insight into the deformation-driving roles played by different orbits in this region. Such studies of the onset of collectivity become especially important in light of recent...

  11. Plunger lifetime measurements in {sup 128}Xe using Coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, Wolfram; Dewald, Alfred; Ilie, Gabriela; Pissulla, Thomas; Melon, Barbara; Jolie, Jan; Pascovici, Gheorghe; Zell, Karl-Oskar [IKP, Universitaet zu Koeln, Koeln (Germany); Julin, Rauno; Jones, Peter; Greenless, Paul; Rahkila, Panu; Scholey, Cath [JYFL, University of Jyvaeskylae, Jyvaeskylae (Finland); Harissopulos, Sotirios; Lagoyannis, Anastasios; Konstantinopoulos, T. [INP, N.C.S.R. ' ' Demokritos' ' , Athens (Greece); Grahn, Tuomas [JYFL, University of Jyvaeskylae, Jyvaeskylae (Finland)]|[Oliver Lodge Lab., University of Liverpool, Liverpool (United Kingdom); Balabanski, Dimiter [INRNE, Sofia (Bulgaria)

    2008-07-01

    We report on an experiment using Coulomb excitation in inverse kinematics in combination with the plunger technique for measuring lifetimes of excited states of the projectile. Aside from the investigation of E(2) features in {sup 128}Xe, the aim was to explore the special features of such experiments which are also suited to be used with radioactive beams. The measurement was performed at the JYFL with the Koeln coincidence plunger device and the JuroGam spectrometer using a {sup 128}Xe beam impinging on a {sup nat}Fe target at a beam energy of 525 MeV. Recoils were detected by means of 32 solar cells placed at extrem forward angles. Recoil-gated {gamma}-singles and {gamma}{gamma}-coincidences were measured at different target-degrader distances. Details of the experiment and first results are presented.

  12. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    CERN Document Server

    Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

  13. Measurements of shape co-existence in $^{182,184}$Hg using Coulomb excitation

    CERN Multimedia

    Voulot, D; Paul, E S; Siem, S; Czosnyka, T; Napiorkowski, P J; Iwanicki, J S

    2007-01-01

    We propose to exploit the unique capability of ISOLDE to provide post-accelerated $^{182,184}$Hg ions from the REX facility to enable the lowest states of these nuclei to be Coulomb excited. By measuring the $\\gamma$-ray yields using the MINIBALL array we can measure the transition and diagonal E2 matrix elements for these states. This will give quantitative information about the nature of the shape coexistence in these nuclei and allow the sign of the quadrupole deformation be determined for the first time. We require 24 shifts to fulfill the aims of the experiment.

  14. Coulomb Excitation of a Neutron-Rich $^{88}$Kr Beam Search for Mixed Symmetry States

    CERN Multimedia

    Andreoiu, C; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    We propose to use the ISOLDE/REX/MINIBALL/CD set-up to perform a Coulomb Excitation experiment with a $^{88}$Kr radioactive beam. The motivation includes a search for $Mixed$ $Symmetry$ states predicted by the IBM-2 model, gathering more spectroscopy data about the $^{88}$Kr nucleus and extending shape coexistence studies (performed previously by the proposers for neutron-deficient Kr isotopes) to the neutron-rich side. The proposed experiment will provide data complementary to the Coulomb Excitation of a relativistic $^{88}$Kr beam proposed by D. Tonev et al. for a RISING experiment. A total of 12 days of beam time is necessary for the experiment, equally divided into two runs. One run with a 2.2 MeV/A beam energy on a $^{48}$Ti target and a second run with the maximum available REX energy of 3.1 MeV/A on a $^{208}$Pb target are requested. Using either a UC$_{x}$ or ThC$_{x}$ fissioning primary target coupled with a plasma source by a cooled transfer line seems to be the best choice for the proposed experime...

  15. Coulomb excitation $^{74}$Zn-$^{80}$Zn (N=50): probing the validity of shell-model descriptions around $^{78}$Ni

    CERN Multimedia

    A study of the evolution of the nuclear structure along the zinc isotopic chain close to the doubly magic nucleus $^{78}$Ni is proposed to probe recent shell-model calculations in this area of the nuclear chart. Excitation energies and connecting B(E2) values will be measured through multiple Coulomb excitation experiment with laser ionized purified beams of $^{74-80}$Zn from HIE ISOLDE. The current proposal request 30 shifts.

  16. Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2014-03-01

    Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.

  17. Use of the Coulomb excitation by light and heavy ions for quantitative analysis

    International Nuclear Information System (INIS)

    Craciun, L.; Racolta, P. M.; Tripadus, V.; Dragulescu, E.; Serbanut, C.

    2001-01-01

    nuclei; b) Coulomb excitation for incident energies below the Coulomb barrier; here the excitations of the nucleus by the interaction of its Coulomb field with that of the bombarding nucleus is a purely electromagnetic process. In the first stage of this project, the theoretical considerations and their consequences for analytical possibilities will be considered. The overwhelming majority of the excitations in the Coulomb excitation are the electric quadrupole transitions (E2). All particularities of this type of transitions will be evaluated. A dedicated beam line with the target chamber and spectrometric setups has been realized and experimented, in order to compete with European standards. The experimental thick-target yields and detection limits for 20 elements in many matrices will be analyzed. Coulomb excitation by different charged particles, like p, 9 Be, 11 B, 14 N, 35 Cl will be investigated. - A special attention will be allocated for CE by heavy ions ( 35 Cl, 55 MeV). For this quantitative analysis, because of the energy range, the used formulae from the Bethe equation for stopping power cannot be applied and then we propose a new methodology after the actual programs; - To test the validity of our approximation, some standard samples from the 'Bureau Communautaire de Reference' in Brussels will be used. The heavy-ion beams will be produced at the IFIN-HH Tandem, 8 MV on terminal. (authors)

  18. The giant-dipole-resonance effect in coulomb excitation of 10B

    International Nuclear Information System (INIS)

    Vermeer, W.J.; Zabel, T.H.; Esat, M.T.; Kuehner, J.A.; Spear, R.H.; Baxter, A.M.

    1982-04-01

    Coulomb excitation of the 0.718-MeV, Jsup(π) = 1 + , first excited state of 10 B has been studied using projectile excitation by 208 Pb and observing the backward scattered particles. The results give a clear indication of the virtual excitation of the giant dipole resonance as a second-order effect. The observed magnitude is consistent with the usual hydrodynamic model estimate and with a recent shell-model calculation

  19. Probing intruder configurations in $^{186, 188}$Pb using Coulomb excitation

    CERN Multimedia

    Columb excitation measurements to study the shape coexistence, mixing and quadrupole collectivity of the low-lying levels in neutron-deficient $^{188}$Pb nuclei are proposed with a view to extending similar studies to the $^{186}$Pb midshell nucleus. The HIE-ISOLDE beam of $^{186,188}$Pb nuclei will be delivered to MINIBALL+SPEDE set-up for simultaneous in-beam $\\gamma$-ray and conversion electron spectroscopy. The proposed experiment will allow the sign of the quadrupole deformation parameter to be extracted for the two lowest 2$^{+}$ states in $^{188}$Pb. Moreover, the advent of SPEDE will allow probing of the bandhead 0$^{+}$ states via direct measurements of E0 transitions. Beam development is requested to provide pure and instense $^{186}$Pb beam.

  20. Experiments on Coulomb ionization by charged particles

    International Nuclear Information System (INIS)

    Andersen, J.U.; Laegsgaard, E.; Lund, M.

    1978-01-01

    Inner-shell ionization by light projectiles, i.e., in very asymmetric collisions, is often denoted 'Coulomb ionization' because it is caused by the Coulomb interaction between the electron and the projectile. Although with little justification, the term is also used to distinquish such processes, in which the projectile Coulomb field is a small perturbation, from ionization in more violent, nearly symmetric ion-atom collisions. A discussion of Coulomb ionization of atomic K shells is given, with emphasis on experimental methods and results. The discussion is not intended as a review of the field but rather as a progress report on the anthor's work on the subject. A more detailed account was recently presented at the ICPEAC meeting in Paris. (Auth.)

  1. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  2. Finite pt contribution to relativistic Coulomb excitation: A possible explanation for the clean fission puzzle

    International Nuclear Information System (INIS)

    Galetti, D.; Kodama, T.; Nemes, M.C.

    1986-10-01

    The quantum relativistic Coulomb excitation process including reccil effects is studied in the plane wave Born approximation. Quantum and relativistic recoil effects allow for relatively large transverse momentum transfers, usually neglected. This specific feature is shown to modify the angular distribution of Coulomb induced fission fragmentation in an essential manner. In contrast with usual treatments it is found that these results compare favourably with recent data. (Authors) [pt

  3. Coulomb excitation of the odd-odd isotopes $^{106, 108}$In

    CERN Document Server

    Ekstrom, A; Blazhev, A; Van de Walle, J; Weisshaar, D; Zielinska, M; Tveten, G M; Marsh, B A; Siem, S; Gorska, M; Engeland, T; Hurst, A M; Cederkall, J; Finke, F; Iwanicki, J; Hjorth-Jensen, M; Davinson, T; Eberth, J; Sletten, G; Mierzejewski, J; Reiter, P; Warr, N; Butler, P A; Fahlander, C; Stefanescu, I; Koester, U; Ivanov, O; Wenander, F; Voulot, D

    2010-01-01

    The low-lying states in the odd-odd and unstable isotopes In-106,In-108 have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the pi g(9/2)(-1) circle times nu d(5/2) and pi g(9/2)(-1) circle times nu g7/2 multiplets have been re-analyzed and are modified compared to previous results. The observed gamma-ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6(+) ground state in In-106. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in In-108 is inverted compared to the shell model prediction. Limits on B(E2) val...

  4. Coulomb excitation of the odd-odd isotopes {sup 106,108}In

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, A.; Fahlander, C. [University of Lund, Physics Department, Box 118, Lund (Sweden); Cederkaell, J. [University of Lund, Physics Department, Box 118, Lund (Sweden); CERN, PH Department, Geneva 23 (Switzerland); Hjorth-Jensen, M.; Engeland, T. [University of Oslo, Physics Department and Center of Mathematics for Applications, Oslo (Norway); Blazhev, A.; Eberth, J.; Finke, F.; Reiter, P.; Warr, N.; Weisshaar, D. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Butler, P.A.; Hurst, A.M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Goergen, A. [Service de Physique Nucleaire, CEA Saclay, Gif-sur-Yvette (France); Gorska, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Ivanov, O.; Stefanescu, I. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven (Belgium); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Koester, U. [CERN, PH Department, Geneva 23 (Switzerland); Institut Laue Langevin, Grenoble (France); Marsh, B.A. [University of Manchester, Department of Physics, Manchester (United Kingdom); CERN, AB Department, Geneva 23 (Switzerland); Mierzejewski, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Siem, S. [University of Oslo, Department of Physics, Oslo (Norway); Sletten, G. [University of Copenhagen, Physics Department, Copenhagen (Denmark); Tveten, G.M. [CERN, PH Department, Geneva 23 (Switzerland); University of Oslo, Department of Physics, Oslo (Norway); Van de Walle, J. [CERN, PH Department, Geneva 23 (Switzerland); Instituut voor Kern- en Stralingsfysica, K.U. Leuven (Belgium); Voulot, D.; Wenander, F. [CERN, AB Department, Geneva 23 (Switzerland)

    2010-06-15

    The low-lying states in the odd-odd and unstable isotopes {sup 106,108}In have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the {pi}g{sub 9/2}{sup -1} x {nu}d{sub 5/2} and {pi}g{sub 9/2}{sup -1} x {nu} g{sub 7/2} multiplets have been re-analyzed and are modified compared to previous results. The observed {gamma} -ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6{sup +} ground state in {sup 106}In. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in {sup 108}In is inverted compared to the shell model prediction. Limits on B(E2) values have been extracted where possible. A previously unknown low-lying state at 367keV in {sup 106}In is also reported. (orig.)

  5. Multiple Coulomb excitation effects in heavy ion compound and fusion cross sections

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hussein, M.S.

    1981-11-01

    A simple model for the average S-matrix that describes heavy ion direct processes in the presence of absorption due to compound nucleus formation is developed. The fluctuation cross section and the fusion cross section are then calculated for deformed heavy ion systems where multiple Coulomb excitation is important. A simple expression for the fusion cross section valid for above-barrier energies is then obtained. The formula clearly displays the modification, due to Coulomb excitation, in the usual geometrical expression. (Author) [pt

  6. Structure studies on 82Kr by means of the multiple Coulomb excitation

    International Nuclear Information System (INIS)

    Bruessermann, S.

    1985-01-01

    With a 82 Kr beam of the energy 4.6 MeV per nucleon a 208 Pb target was irradiated in order to study the Coulomb excitation of 82 Kr. The experiment has been performed at the Society for Heavy Ion Research (GSI) in Darmstadt. The 82 Kr ions backscattered on the 208 Pb target were detected in a position-sensitive parallel-plate avalanche detector. The γ radiation of the excited 82 Kr particles was detected in 4 Ge(Li) detectors in coincidence with the particles. The spectra corrected regarding the Doppler shift contained 16 lines which permitted to determine by means of known mixing and branching ratios 22 electrical quadrupole transition matrix elements. The experimental excitation energies and the transition probabilities determined in this thesis are compared with different nuclear models, like the asymmetric rotator model, the rotational-vibrational model, the harmonic-oscillator model, the nuclear field theory, the SU(5) limit of the IBA-1, and the IBA-2 model. Thereby within the IBA-2 model a criterium for the symmetry of the wavefunction relative to the proton and neutron contributions is elaborated. Because of this criterium to the 2 1 + state a symmetric structure and to the 2 2 + ,3 states an asymmetric structure is assigned. (orig.) [de

  7. Coulomb's Electrical Measurements. Experiment No. 14.

    Science.gov (United States)

    Devons, Samuel

    Presented is information related to the life and work of Charles Coulomb as well as detailed notes of his measurements of the distribution of electricity on conductors. The two methods that he used (the large torsion balance, and the timing of "force" oscillations) are described. (SA)

  8. Coulomb excitation of rotational states in the 162Dy nucleus in the framework of the generalized semiclassical approximation

    International Nuclear Information System (INIS)

    Bolotin, Yu.L.; Gonchar, V.Yu.; Chekanov, N.A.

    1985-01-01

    Coulomb excitation of rotational states induced in heavyion collisions is treated in the framework of the generalized semiclassical approximation. The Hamiltonian of the system under consideration involves not only Coulomb forces (monopole, quadrupole, and hexadecapole) but as well a real nuclear potential in the form of the deformed Woods-Saxon potential. Strong dependence of the excitation probability on the interference between the Coulomb and nuclear interactions is shown. Calculations are carried out for the reaction 40 Ar+ 162 Dy at E=148.6 MeV. The calculated Coulomb excitation probabilities agree satisfactory with the corresponding experimental values

  9. Probing shape coexistence in neutron-deficient $^{72}$Se via low-energy Coulomb excitation

    CERN Multimedia

    We propose to study the evolution of nuclear structure in neutron-­deficient $^{72}$Se by performing a low-­energy Coulomb excitation measurement. Matrix elements will be determined for low-­lying excited states allowing for a full comparison with theoretical predictions. Furthermore, the intrinsic shape of the ground state, and the second 0$^{+}$ state, will be investigated using the quadrupole sum rules method.

  10. Coulomb Excitation of Neutron Deficient Sn-Isotopes using REX-ISOLDE

    CERN Multimedia

    Di julio, D D; Kownacki, J M; Marechal, F; Andreoiu, C; Siem, S; Perrot, F; Van duppen, P L E; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    It is proposed to study the evolution of the reduced transition probabilities, B(E2; 0$^{+} \\rightarrow$ 2$^{+}$), for neutron deficient Sn isotopes by Coulomb excitation in inverse kinematics using REX-ISOLDE and the MINIBALL detector array. Measurements of the reduced transition matrix element for the transition between the ground state and the first excited 2$^{+}$ state in light even-even Sn isotopes provide a means to study e.g. core polarization effects in the $^{100}$Sn core. Previous attempts to measure this quantity have been carried out using the decay of isomeric states populated in fusion evaporation reactions. We thus propose to utilize the unique opportunity provided by REX-ISOLDE, after the energy upgrade to 3.1 MeV/u, to use the more model-independent approach of Coulomb excitation to measure this quantity in a number of isotopes in this region.

  11. Coulomb Interactions in Hanbury Brown-Twiss Experiments with Electrons

    Science.gov (United States)

    Shen, Kan

    2009-01-01

    This dissertation examines the effect of Coulomb interactions in Hanbury Brown-Twiss (HBT) type experiments with electrons. HBT experiments deal with intensity interference, which is related to the second-order correlation function of the particle field. This is an extension of the usual amplitude interference experiment, such as Young's…

  12. Coulomb excitations of low lying levels in 127I and 197Au

    International Nuclear Information System (INIS)

    Singh, K.P.; Tayal, D.C.; Hans, H.S.

    1988-01-01

    The low-lying levels of 127 I and 197 Au were Coulomb excited with 3.54 to 4.2 MeV protons. The reduced quadrupole transition probabilities of the 203, 374.9, 418, 618.4, 628.7, 651.1 and 745.5 keV states of 127 I, and the 268.8, 278.9, 502, and 547.5 keV states of 197 Au was measured from Coulomb excitation by observing the de-excitation gamma rays with a high resolution Ge(Li) detector. The low-energy protons were used for the first time to Coulomb-excite the two levels at 618.4 and 651.1 keV of 127 I and one level at 502 keV of 197 Au. The present experimental results are found in agreement with the existing experimental data except the B(E2) value of the level at 268.8 keV of 197 Au. (author). 4 figs., 4 tabs., 32 refs

  13. Onset of collectivity in $^{96,98}$Sr studied via Coulomb excitation

    CERN Document Server

    Clement, E; Dijon, A; de France, G; Bastin, B; Blazhev, A; Bree, N; Butler, P; Delahaye, P; Ekstrom, A; Georgiev, G; Hasan, N; Iwanicki, J; Jenkins, D; Korten, W; Larsen, A C; Ljungvall, J; Moschner, K; Napiorkowski, P; Pakarinen, J; Petts, A; Renstrom, T; Seidlitz, M; Siem, S; Sotty, C; Srebrny, J; Stefanescu, I; Tveten, G M; Van de Walle, J; Warr, N; Wrzosek-Lipska, K; Zielinska, M; Bauer, C; Bruyneel, B; Butterworth, J; Fitzpatrick, C; Fransen, C; GernhäUser, R; Hess, H; Lutter, R; Marley, P; Reiter, P; Siebeck, B; Vermeulen, M; Wiens, A; De Witte, H

    2014-01-01

    A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N=60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  14. Onset of collectivity in 96,98Sr studied via Coulomb excitation

    Directory of Open Access Journals (Sweden)

    Clément E.

    2014-03-01

    Full Text Available A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N=60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  15. Electron impact excitation of positive ions calculated in the Coulomb-Born approximation

    International Nuclear Information System (INIS)

    Nakazaki, Shinobu; Hashino, Tasuke

    1979-08-01

    Theoretical results on the electron impact excitation of positive ions are surveyed through the end of 1978. As a guide to the available data, a list of references is made. The list shows ion species, transitions, energy range and methods of calculation for the respective data. Based on the literature survey, the validity of the Coulomb-Born approximation is investigated. Comparisons with the results of the close-coupling and the distorted-wave methods are briefly summarized. (author)

  16. Characterising excited states in and around the semi-magic nucleus $^{68}$ Ni using Coulomb excitation and one-neutron transfer

    CERN Multimedia

    It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.

  17. Investigation of beam purity after in-trap decay and Coulomb excitation of $^{62}$Mn-$^{62}$Fe

    CERN Multimedia

    Clement, E; Gernhaeuser, R A; Diriken, J V J; Huyse, M L

    2008-01-01

    The in-trap decay of short lived radioactive ions is not well understood. This poses a problem for Coulomb excitation experiments at MINIBALL, where the normalization of the experiment depends strongly on observed secondary target excitation, which in turn strongly depends on the knowledge of the beam composition. For pure ISOLDE beams of short lived isotopes, the in-trap decay becomes important since a large fraction of the beam is transformed in unwanted daughter isotopes. In this proposal we intend to quantify the production of these daughter products in the REXTRAP accurately by making use of the short lived isotopes $^{61,62}$Mn and the newly installed Bragg ionization chamber at the end of the REX linear accelerator. Apart from the technical interest, the A=62 beam provides as well a good physics case, concerning the development of collectivity in neutron-rich Fe isotopes. Coulomb excitation, utilizing the standard MINIBALL setup, is proposed on both A=62 Mn and Fe. The Fe beam would be the first post-a...

  18. Measurements of octupole collectivity in $^{220,222}$Rn and $^{222,224}$Ra using Coulomb excitation

    CERN Multimedia

    Kruecken, R; Larsen, A; Hurst, A M; Voulot, D; Grahn, T; Clement, E; Wadsworth, R; Gernhaeuser, R A; Siem, S; Huyse, M L; Iwanicki, J S

    2008-01-01

    We propose to exploit the unique capability of ISOLDE to provide post-accelerated $^{220,222}$Rn and $^{222,224}$Ra ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ states in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^{-}$ state using the MINIBALL array we can obtain the transition matrix elements. This will give quantitative information about octupole correlations in these nuclei. We require 22 shifts to fulfil the aims of the experiment.

  19. First Results with TIGRESS and Accelerated Radioactive Ion Beams from ISAC: Coulomb Excitation of 20,21,29Na

    Science.gov (United States)

    Schumaker, M. A.; Hurst, A. M.; Svensson, C. E.; Wu, C. Y.; Becker, J. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Stoyer, M. A.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Barton, C. J.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Colosimo, S. J.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Djongolov, M.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Gray-Jones, C.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Kulp, W. D.; Lisetskiy, A. F.; Lee, G.; Lloyd, S.; Maharaj, R.; Martin, J.-P.; Millar, B. A.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Oxley, D. C.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Rigby, S. V.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Sumithrarachchi, C. S.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Wan, J.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.

    2009-03-01

    The TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer (TIGRESS) is a state-of-the-art γ-ray spectrometer being constructed at the ISAC-II radioactive ion beam facility at TRIUMF. TIGRESS will be comprised of twelve 32-fold segmented high-purity germanium (HPGe) clover-type γ-ray detectors, with BGO/CsI(Tl) Compton-suppression shields, and is currently operational at ISAC-II in an early-implementation configuration of six detectors. Results have been obtained for the first experiments performed using TIGRESS, which examined the A = 20, 21, and 29 isotopes of Na by Coulomb excitation.

  20. Measurements of competing structures in neutron-deficient Pb isotopes by employing Coulomb excitation

    CERN Multimedia

    Bastin, B; Kruecken, R; Larsen, A; Rahkila, P J; Srebrny, J; Clement, E; Wadsworth, R; Syed naeemul, H; Peura, P J; Siem, S; Hadynska-klek, K; Habs, D; Napiorkowski, P J; Diriken, J V J; Iwanicki, J S

    Coulomb excitation measurements to study the shape coexistence and quadrupole collectivity of the low-lying levels in neutron-deficient Pb nuclei are proposed. Even-mass $^{188−192}$Pb nuclei will be post-accelerated at REX-ISOLDE in order to measure transition probabilities and quadrupole moments for the first excited states. In combination with results obtained in lifetime measurements, this will allow the sign of the quadrupole deformation parameter to be extracted for the first time for 2$^{+}$ states in the even-mass $^{188−192}$Pb nuclei.

  1. On alignment of deformed nucleus spins as the result of coulomb excitation

    International Nuclear Information System (INIS)

    Aleshin, V.P.; Ofengenden, S.R.

    1981-01-01

    In the framework of sudden impact approximation excitation probabilities and spiral distributions at Coulomb excitation of rotational levels by means of heavy ions are considered. Considerable attention is given to the accuracy of the qsub(ef)(THETA) approximation being a particular case of impact sudden approximation according to which at Coulomb of the even-even nuclei excitation the I spins of excited states are aligned perpendicularly to the symmetry axis of the Rutherford orbit. The analysis of the problem in the framework of a quasiclassical approximation has shown that the greatest deviations of qsub(ef)(THETA) approximation (at fixed constant of a quadrupole interaction q) occur for average scattering angles. Quanta calculation results are given at THETA=90 deg in the range q=0-10 for I=0-18. It has been found that excitation probabilities for dominating transitions are described in the qsub(ef)(THETA) approximation with an error being not higher than 1-2%. At I>=6 the greatest relative errors of the qsub(ef)(THETA) approximation when describing P 1 excitation probabilities do not exceed 30-40%. The relative errors at the description of spiral distributions may reach values being several times greater than the errors in corresponding excitation probabilities. It has been found that at I>=6 spiral distributions have two symmetrically situated maxima concentrated near h=+-hm, where hm=I cos (THETA/2). In the framework the of qsub(ef)(THETA) approximation in these maxima concentrated are from 50 to 70%, or to he exact - up to 80% of P 1 excitation probability [ru

  2. Coulomb Correlations Intertwined with Spin and Orbital Excitations in LaCoO_{3}.

    Science.gov (United States)

    Tomiyasu, K; Okamoto, J; Huang, H Y; Chen, Z Y; Sinaga, E P; Wu, W B; Chu, Y Y; Singh, A; Wang, R-P; de Groot, F M F; Chainani, A; Ishihara, S; Chen, C T; Huang, D J

    2017-11-10

    We carried out temperature-dependent (20-550 K) measurements of resonant inelastic x-ray scattering on LaCoO_{3} to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantified the renomalized crystal-field excitation energies and spin-state populations. We show that the screening of the effective on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO_{3}. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.

  3. Dynamic polarization by coulomb excitation in the closed formalism for heavy ion scattering

    International Nuclear Information System (INIS)

    Frahn, W.E.; Hill, T.F.

    1978-01-01

    We present a closed-form treatment of the effects of dynamic polarization by Coulomb excitation on the elastic scattering of deformed heavy ions. We assume that this interaction can be represented by an absorptive polarization potential. The relatively long range of this potential entails a relatively slow variation of the associated reflection function in l-space. This feature leads to a simple generalization of the closed formula derived previously for the elastic scattering amplitude of spherical heavy nuclei. We use both the polarization potential of Love et al. and the recent improved potential of Baltz et al. to derive explicit expressions for the associated reflection functions in a Coulomb-distorted eikonal approximation. As an example we analyze the elastic scattering of 90-MeV 18 O ions by 184 W and show that both results give a quantitative description of the data. (orig.) [de

  4. Interference of Coulomb and nuclear excitation in inelastic scattering of 20Ne from 40Ca

    International Nuclear Information System (INIS)

    Ratel, Guy.

    1976-01-01

    Angular distributions at 54 and 63MeV and excitation functions from 35 to 95MeV for the elastic and inelastic scattering of 20 Ne by 40 Ca have been measured. Experimental data for the inelastic scattering leading to the 20 Ne (2 + , 1.63MeV) state show a characteristic minimum for the angular distributions and excitation functions. This phenomenon was explained by an interference effect between Coulomb and nuclear excitation amplitudes with the DWBA and the coupled-channel formalism. The existence of this interference minimum could be explained only by assuming a nuclear deformation stronger than these obtained with light ion scattering. However a small shift between the experimental data and theoretical curves suggests that effects of a stronger complex coupling or nuclear reorientation due to the large quadrupole moment of 20 Ne must be included [fr

  5. Shape coexistence in the neutron-deficient even-even (182-188)Hg isotopes studied via coulomb excitation.

    Science.gov (United States)

    Bree, N; Wrzosek-Lipska, K; Petts, A; Andreyev, A; Bastin, B; Bender, M; Blazhev, A; Bruyneel, B; Butler, P A; Butterworth, J; Carpenter, M P; Cederkäll, J; Clément, E; Cocolios, T E; Deacon, A; Diriken, J; Ekström, A; Fitzpatrick, C; Fraile, L M; Fransen, Ch; Freeman, S J; Gaffney, L P; García-Ramos, J E; Geibel, K; Gernhäuser, R; Grahn, T; Guttormsen, M; Hadinia, B; Hadyńska-Kle K, K; Hass, M; Heenen, P-H; Herzberg, R-D; Hess, H; Heyde, K; Huyse, M; Ivanov, O; Jenkins, D G; Julin, R; Kesteloot, N; Kröll, Th; Krücken, R; Larsen, A C; Lutter, R; Marley, P; Napiorkowski, P J; Orlandi, R; Page, R D; Pakarinen, J; Patronis, N; Peura, P J; Piselli, E; Rahkila, P; Rapisarda, E; Reiter, P; Robinson, A P; Scheck, M; Siem, S; Singh Chakkal, K; Smith, J F; Srebrny, J; Stefanescu, I; Tveten, G M; Van Duppen, P; Van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A; Wood, J L; Zielińska, M

    2014-04-25

    Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85  MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

  6. Coulomb excitation of the 4+1 states of 194Pt, 196Pt and 198Pt

    International Nuclear Information System (INIS)

    Fewell, M.P.; Gyapong, G.J.; Spear, R.H.

    1987-09-01

    Probabilities for the Coulomb excitation of the 4 1 + states of 194 Pt, 196 Pt, 198 Pt by the backscattering of 4 He, 12 C and 16 O ions are reported. Model-independent values of the matrix elements 1 + ; M(E4), 4 1 + > and 1 + , M(E2), 4 1 + > are extracted. Agreement with previous measurements of these matrix elements is good. Values of β 2 and β 4 are determined for 194 Pt and compared with calculations of these quantities

  7. Resonant Coulomb excitation of atomic nuclei propagating through a crystal in the channeling mode

    International Nuclear Information System (INIS)

    Stepanov, A.V.

    1996-01-01

    The Coulomb-excitation total cross section and the distribution of decay products originating from a resonant state of a nucleus interacting with a crystal lattice has been calculated for the case of a single inelastic collision (with respect to internal degrees of freedom in a nucleus). These observables have been expressed in terms of time-dependent correlators which describe thermal oscillations of lattice nuclei and the motion of the center of mass of a nucleus propagating across a crystal target in the channelling mode. An expression generalizing the spectrum of equivalent photons calculated by the Weizsaecker-Williams method is given

  8. Coulomb Excitation of Odd-Mass and Odd-Odd Cu Isotopes using REX-ISOLDE and Miniball

    CERN Multimedia

    Lauer, M; Iwanicki, J S

    2002-01-01

    We propose to study the properties of the odd-mass and the odd-odd neutron-rich Cu nuclei applying the Coulomb excitation technique and using the REX-ISOLDE facility coupled to the Miniball array. The results from the Coulex experiments accomplished at REX-ISOLDE after its upgrade to 3 MeV/u during the last year have shown the power of this method and its importance in order to obtain information on the collective properties of even-even nuclei. Performing an experiment on the odd-mass and on the odd-odd neutron-rich Cu isotopes in the vicinity of N=40 should allow us to determine and interpret the effective proton and neutron charges in the region and to unravel the lowest proton-neutron multiplets in $^{68,70}$Cu. This experiment can take the advantage of the unique opportunity to accelerate isomerically separated beams using the RILIS ion source at ISOLDE.

  9. Coulomb excitation of radioactive Na21 and its stable mirror Ne21

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Morton, A. C.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2008-10-01

    The low-energy structures of the mirror nuclei Ne21 and radioactive Na21 have been examined by using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ~5×106 ions/s were accelerated to 1.7 MeV/A and Coulomb excited in a 0.5 mg/cm2 natTi target. Scattered beam and target particles were detected by the segmented Si detector BAMBINO, while γ rays were observed by using two TIGRESS HPGe clover detectors perpendicular to the beam axis. For each isobar, Coulomb excitation from the (3)/(2)+ ground state to the first excited (5)/(2)+ state was observed and B(E2) values were determined by using the 2+→0+ de-excitation in Ti48 as a reference. The ϕ segmentation of BAMBINO was used to deduce tentative assignments for the signs of the mixing ratios between the E2 and M1 components of the transitions. The resulting B(E2)↑ values are 131±9e2 fm4 (25.4±1.7 W.u.) for Ne21 and 205±14e2 fm4 (39.7±2.7 W.u.) for Na21. The fit to the present data and the known lifetimes determined E2/M1 mixing ratios and B(M1)↓ values of δ=(-)0.0767±0.0027 and 0.1274±0.0025μN2 and δ=(+)0.0832±0.0028 and 0.1513±0.0017μN2 for Ne21 and Na21, respectively (with Krane and Steffen sign convention). By using the effective charges ep=1.5e and en=0.5e, the B(E2) values produced by the p-sd shell model are 30.7 and 36.4 W.u. for Ne21 and Na21, respectively. This analysis resolves a significant discrepancy between a previous experimental result for Na21 and shell-model calculations.

  10. Shape coexistence in krypton and selenium light isotopes studied through Coulomb excitation of radioactive ions beams; Etude de la coexistence de formes dans les isotopes legers du krypton et du selenium par excitation Coulombienne de faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Clement, E

    2006-06-15

    The light krypton isotopes show two minima in their potential energy corresponding to elongated (prolate) and compressed (oblate) quadrupole deformation. Both configuration are almost equally bound and occur within an energy range of less than 1 MeV. Such phenomenon is called shape coexistence. An inversion of the ground state deformation from prolate in Kr{sup 78} to oblate in Kr{sup 72} with strong mixing of the configurations in Kr{sup 74} and Kr{sup 76} was proposed based on the systematic of isotopic chain. Coulomb excitation experiments are sensitive to the quadrupole moment. Coulomb excitation experiments of radioactive Kr{sup 74} and Kr{sup 76} beam were performed at GANIL using the SPIRAL facility and the EXOGAM spectrometer. The analysis of these experiments resulted in a complete description of the transition strength and quadrupole moments of the low-lying states. They establish the prolate character of the ground state and an oblate excited state. A complementary lifetime measurement using a 'plunger' device was also performed. Transition strength in neighboring nuclei were measured using the technique of intermediate energy Coulomb excitation at GANIL. The results on the Se{sup 68} nucleus show a sharp change in structure with respects to heavier neighboring nuclei. (author)

  11. Transfer reactions and multiple Coulomb excitation in the $^{100}$Sn Region

    CERN Multimedia

    It is proposed to continue our REX-ISOLDE program in the $^{100}$Sn region at HIE-ISOLDE at ~5 MeV/u. Earlier measurements, with a precision of 10-20%, at 3 MeV/u with REX-ISOLDE point to a deviation between the measured B(E2) values for the first excited 2$^{+}$ states in $^{110,108,106}$Sn compared to theoretical predictions. In addition, the trend of B(E2) values for the lighter isotopes, in particular $^{106}$Sn, appear to differ between low- and high-energy measurements. In line with our letter-of-intent we aim in a first step to address the electromagnetic properties of the first 2$^{+}$and 4$^{+}$ states in $^{110,108,106}$Sn using Coulomb excitation. In these measurements we will directly access the lifetimes of the first excited 4$^{+}$ states in $^{110,108,106}$Sn for the first time. The yield of $^{104}$Sn from the LaC$_{x}$ target will be revisited to clarify if the new solid state RILIS gives sufficient yield to expand the measurements to this isotope. Following this proposal we plan similar meas...

  12. Analysis of correlation effects in autoionizing doubly excited states of barium using Coulomb Green's function

    International Nuclear Information System (INIS)

    Poirier, M.

    1997-01-01

    Though one would expect that large-angular momentum doubly excited states exhibit weak electronic correlations, it is shown in this paper that a first-order perturbation theory ignoring such correlations may completely fail in predicting correct autoionization probabilities: quadrupolar transitions are poorly described by lowest-order perturbation theory, except for very large angular momenta. Inclusion of second-order dipole-dipole term considerably improves the accuracy of the method. This effect is computed using Coulomb Green's function in its analytical form, probably applied here for the first time to autoionization processes. Examples are given in barium for 5d j 5g [k[ states (j=3/2, 5/2) and for 5d 5/2 nl [k[ states with l > 4. (orig.)

  13. Preparation of actinide targets by molecular plating for Coulomb excitation studies at ATLAS

    International Nuclear Information System (INIS)

    Greene, J. P.

    1998-01-01

    Molecular plating is now routinely used to prepare sources and targets of actinide elements. Although the technique is simple and fairly reproducible, because of the radioactive nature of the target it is very useful to record various parameters in the preparation of such targets. At Argonne, ∼200 microg/cm 2 thick targets of Pu and Cm were required for Coulomb Excitation (COULEX) Studies with the Argonne-Notre Dame BGO gamma ray facility and later with the GAMMASPHERE. These targets were plated on 50 mg/cm 2 Au backing and were covered with 150 microg/cm 2 Au foil. Targets of 239 Pu, 240 Pu, 242 Pu, 244 Pu and 248 Cm were prepared by dissolving the material in isopropyl alcohol and electroplating the actinide ions by applying 600 volts. The amount of these materials on the target was determined by alpha particle counting and gamma ray counting. Details of the molecular plating and counting will be discussed

  14. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states

    International Nuclear Information System (INIS)

    Guichard, R.

    2007-12-01

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when ℎω > I p : it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with ℎω p : new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  15. Coulomb excitation of doubly magic $^{132}$Sn with MINIBALL at HIE-ISOLDE

    CERN Multimedia

    We propose to study the vibrational first 2$^{+}$ and 3$^{-}$ states of the doubly magic nucleus $^{132}$ Sn via Coulomb excitation using the HIE-ISOLDE facility coupled with the highly efficient MINIBALL array. The intense $^{132}$Sn beam at ISOLDE, the high beam energy of HIE-ISOLDE, the high energy resolution and good efficiency of the MINIBALL provide a unique combination and favourable advantages to master this demanding measurement. Reliable B(E2;0$^{+}\\rightarrow$ 2$^{+}$) values for neutron deficient $^{106,108,110}$Sn were obtained with the MINIBALL at REX-ISOLDE. These measurements can be extended up to and beyond the shell closure at the neutron-rich side with $^{132}$Sn. The results on excited collective states in $^{132}$Sn will provide crucial information on 2p-2h cross shell configurations which are expected to be dominated by a strong proton contribution. Predictions are made within various large scale shell model calculations and new mean field calculations within the framework of different a...

  16. Nuclear structure studies of the neutron-rich Rubidium isotopes using Coulomb excitation

    CERN Multimedia

    Reiter, P; Blazhev, A A; Voulot, D; Meot, V H; Simpson, G S; Georgiev, G P; Gaudefroy, L; Roig, O

    We propose to study the properties of odd-mass neutron-rich rubidium isotopes by the Coulomb-excitation technique, using the Miniball array coupled to the REX-ISOLDE facility. The results from similar measurements from the recent years (e.g. for the odd-mass and the odd-odd Cu isotopes, IS435) have shown the strong potential in such measurements for gaining information both for single-particle-like and collective states in exotic nuclei. Since there is practically no experimental information for excited states in the odd-mass Rb isotopes beyond $^{93}$Rb, the present study should be able to provide new data in a region of spherical ($^{93}$Rb and $^{95}$Rb) as well as well-deformed nuclei ($^{97}$Rb and $^{99}$Rb). Of particular interest is the rapid shape change that occurs when going from $^{95}$Rb (${\\varepsilon}_{2}$=0.06) to $^{97}$Rb (${\\varepsilon}_{2}$=0.3). These results should be of significant astrophysical interest as well, due to the close proximity of the r-process path.

  17. Shape coexistence in neutron-rich Sr isotopes : Coulomb excitation of $^{96}$Sr

    CERN Multimedia

    Clement, E; Siem, S; Czosnyka, T

    2007-01-01

    The nuclei in the mass region A $\\cong$ 100 around Sr and Zr show a dramatic change of the nuclear ground-state shape from near spherical for N $\\leq$ 58 to strongly deformed for N $\\geq$ 60. Theoretical calculations predict the coexistence of slightly oblate and strongly prolate deformed configurations in the transitional region. However, excited rotational structures based on the highly deformed configuration, which becomes the ground state at N = 60, are not firmly established in the lighter isotopes, and the earlier interpretation of a very abrupt change of shape has been challenged by recent experimental results in favor of a rather gradual change. We propose to study the electromagnetic properties of the neutron-rich nucleus $_{38}^{96}$Sr$_{58}$ by low-energy Coulomb excitation using the REX-ISOLDE facility and the MINIBALL detector array. Both transitional and diagonal matrix elements will be extracted, resulting in a complete description of the transition strengths and quadrupole moments of the low-l...

  18. Study of the N=40 shell by using Coulomb excitation; Etude par excitation coulombienne de la fermeture de couche N=40

    Energy Technology Data Exchange (ETDEWEB)

    Leenhardt, St

    2000-01-01

    Two Coulomb excitation experiments on neutron rich exotic nuclei have been performed at GANIL. They allowed the measurement of the reduced transition probability B(E2) (from ground state to first excited state) of some nuclei around N = 40. This number, 40, is a half-magic number in the shell model. For nuclei with an important neutron excess, it is predicted that the shell closure is stronger at N = 40. The B(E2) is a good tool for testing this growing. We have measured, by using the LISE3 spectrometer and a {gamma} multidetector, B(E2) of {sup 68}Ni, {sup 66}Ni and {sup 72}Zn, unknown till now. We have used for the first time segmented germanium 'clovers' detector, for photon detection (v/c{approx}0.3). Results confirm the strong shell effect for {sup 68}Ni. Indeed {sup 68}Ni was shown to be the Nickel isotope with the lowest value of B(E2), and hence the most rigid isotope. Nevertheless it seems that the shell effect at N = 40 decreases rapidly, for other isotopes very close to {sup 68}Ni(Z = 28) and N = 40). (authors)

  19. Preparation of actinide targets by molecular plating for coulomb excitation studies at ATLAS

    CERN Document Server

    Greene, J P; Ahmad, I

    1999-01-01

    Molecular plating is now routinely used to prepare sources and targets of actinide elements. Although the technique is simple and fairly reproducible, because of the radioactive nature of the targets, it is very useful to record various parameters in the preparation process. At Argonne, approx 200 mu g/cm sup 2 thick targets of Pu and Cm were required for Coulomb Excitation (COULEX) studies with the Argonne-Notre Dame boron germanate (BGO) gamma-ray facility and later with the GAMMASPHERE. These targets were plated on 50 mg/cm sup 2 Au backings and were covered with 150 mu g/cm sup 2 Au foil. Targets of sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, sup 2 sup 4 sup 2 Pu, sup 2 sup 4 sup 4 Pu and sup 2 sup 4 sup 8 Cm were prepared by dissolving the material in isopropyl alcohol and electroplating the actinide ions by applying 600 V. The amount of these materials on the target was determined by alpha particle counting and gamma-ray counting. Details of the molecular plating and counting will be discussed.

  20. Resistive transition for two-dimensional superconductors: Comparison between experiments and Coulomb-gas-model predictions

    International Nuclear Information System (INIS)

    Minnhagen, P.

    1983-01-01

    The Coulomb-gas model of vortex fluctuations leads to scaling relations for the resistive transition which can be directly tested by experiments. By analyzing published resistance data, it is shown that there is experimental evidence for the Coulomb-gas scaling relation in the absence of a perpendicular magnetic field. It is also shown that there exists some suggestive support for the Coulomb-gas predictions in the presence of a magnetic field

  1. Approximative analytic eigenvalues for orbital excitations in the case of a coulomb potential plus linear and quadratic radial terms

    International Nuclear Information System (INIS)

    Rekab, S.; Zenine, N.

    2006-01-01

    We consider the three dimensional non relativistic eigenvalue problem in the case of a Coulomb potential plus linear and quadratic radial terms. In the framework of the Rayleigh-Schrodinger Perturbation Theory, using a specific choice of the unperturbed Hamiltonian, we obtain approximate analytic expressions for the eigenvalues of orbital excitations. The implications and the range of validity of the obtained analytic expression are discussed

  2. Determination of the B(E3;0$^+\\!\\rightarrow$ 3$^{-}$) strength in the octupole correlated nucleus $^{144}$Ba using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{144}$Ba ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ state in this nucleus. By measuring the $\\gamma$-ray yields of the E1 decay connecting the 3$^{-}$ and 2$^{+}$ states using the MINIBALL array, we can obtain the interesting transition matrix element. The result will give quantitative information about octupole correlations in this nucleus. We require 27 shifts to fulfill the aims of the experiment.

  3. Low-energy Coulomb excitation of $^{62}$Fe and $^{62}$Mn following in-beam decay of $^{62}$Mn

    CERN Document Server

    Gaffney, L P; Bastin, B; Bildstein, V; Blazhev, A; Bree, N; Darby, I; De Witte, H; DiJulio, D; Diriken, J; Fedosseev, V N; Fransen, Ch; Gernhäuser, R; Gustafsson, A; Hess, H; Huyse, M; Kesteloot, N; Kröll, Th; Lutter, R; Marsh, B A; Reiter, P; Seidlitz, M; Van Duppen, P; Voulot, D; Warr, N; Wenander, F; Wimmer, K; Wrzosek-Lipska, K

    2015-01-01

    Sub-barrier Coulomb-excitation was performed on a mixed beam of $^{62}$Mn and $^{62}$Fe, following in-trap $\\beta^{-}$ decay of $^{62}$Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418 keV, which has been tentatively associated to a $2^{(+)},3^{(+)}\\rightarrow1^{+}_{g.s.}$ transition. This fixes the relative positions of the $\\beta$-decaying $4^{(+)}$ and $1^{+}$ states in $^{62}$Mn for the first time. Population of the $2^{+}_{1}$ state was observed in $^{62}$Fe and the cross-section determined by normalisation to the $^{109}$Ag target excitation. Combining this Coulomb-excitation cross-section with previously measured lifetimes of the $2^{+}_{1}$ state, the spectroscopic quadrupole moment, $Q_{s}(2^{+}_{1})$, is extracted, albeit with a large uncertainty.

  4. Coulomb excitation of neutron-rich$^{28,29,30}$Na nuclei with MINIBALL at REX-ISOLDE: Mapping the borders of the island of inversion

    CERN Multimedia

    Butler, P; Cederkall, J A; Reiter, P; Wiens, A; Blazhev, A A; Kruecken, R; Voulot, D; Kalkuehler, M; Wadsworth, R; Gernhaeuser, R A; Hess, H E; Holler, A; Finke, F; Leske, J; Huyse, M L; Seidlitz, M

    We propose to study the properties of neutron-rich nuclei $^{28,29,30}$Na via Coulomb excitation experiments using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Reliable B(E2,0$^{+}$ $\\rightarrow$ 2$^{+}$) values for $^{30,32}$Mg were obtained at ISOLDE. Together with recent new results on $^{31}$Mg, collective and single particle properties are probed for Z=12 at the N=20 neutron closed shell, the 'island of inversion'. We would like to extend this knowledge to the neighbouring $^{28,29,30}$Na isotopes where a different transition from the usual filling of the neutron levels into the region with low lying 2p-2h cross shell configurations is predicted by theory. Detailed theoretical predictions on the transition strength in all three Na nuclei are awaiting experimental verification and are the subject of this proposal. At REX beam energies of 3.0 MeV /nucleon the cross-sections for Coulomb excitation are sufficient. Moreover the results from the close-by $^{30,31,32}$Mg nuclei de...

  5. Coulomb excitation of $^{116}$Te and $^{118}$Te: a study of collectivity above the Z = 50 shell gap

    CERN Multimedia

    Cederkall, J A; Smith, J F; Voulot, D; Rahkila, P J; Darby, I G; Hadinia, B; Grahn, T; Paul, E S; Wadsworth, R; Bree, N C F; Baeck, T M; Julin, R J; Diriken, J V J; Jenkins, D G; Kroell, T; Leske, J; Huyse, M L

    We propose to study the nature and collectivity of low-energy excitations in $^{116}$Te and $^{118}$Te. We aim to measure the transition probability of the 0$^{+}$ $\\rightarrow$ 2$^{+}$ transition by means of Coulomb excitation, employing REX-ISOLDE and MINIBALL. The proposed study probes the systematics of B(E2) values in light Te nuclei, which lie in a region of the nuclear chart where unusual phenomena and evolution of collectivity have been observed. The proposed study will shed light on the role of the residual proton-neutron interactions in the development of collectivity when approaching the N = Z line. This is a resubmission of the P-277 proposal. The suggestions of INTC have been taken into account and the data from the Yale $^{120}$Te study has been included.

  6. Obtaining Empirical Validation of Shape-Coexistence in the Mass 70 Region: Coulomb Excitation of a Radioactive Beam of $^{70}$Se

    CERN Multimedia

    Andreoiu, C; Paul, E S; Czosnyka, T; Hammond, N

    2002-01-01

    We propose to study the Coulomb excitation of a radioactive beam of $^{70}$Se at 2.2 MeV/u obtained from the REX-ISOLDE facility in order to determine the sign of the quadrupole moment and, hence, the sign of the quadrupole deformation. Calculations suggest a 33~\\% sensitivity in Coulomb excitation yield for a nickel target depending on whether the nuclear shape is oblate or prolate. Such a determination would provide compelling evidence for the presence of oblate shapes in the vicinity of N=Z=34.

  7. Coulomb-nuclear interference (CNI) results of the collective quadrupolar excitations in odd and even Ru isotopes

    International Nuclear Information System (INIS)

    Rodrigues, C.L.; Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Hanninger, G.N.; Ukita, G.M.

    2004-01-01

    The study of the odd 99,101 Ru nuclei complements the investigation of the collectivity of the first quadrupolar excitations in 100,102,104 Ru. Angular distributions for the 99,101 Ru(d, d') reactions at 13 MeV were obtained in the Pelletron Laboratory using nuclear emulsion plates on the focal plane of the Enge spectrograph. A Coulomb- Nuclear Interference analysis employing DWBA-DOMP predictions with global optical potential parameters was applied to the excitation of states which could belong to the multiplet built on the first quadrupolar excitation of the core. In the analysis, three states were identified for each of the isotopes and associated, respectively, with adopted levels in the Nuclear Data Sheets Compilation of Jπ = 5=2 + , 7=2 + and 9=2 + . Through the comparison of experimental and predicted cross section angular distributions, the values of (δ L N ) 2 and of the ratio C = δ L C /δ L N were obtained. (author)

  8. Coulomb-nuclear interference (CNI) results of the collective quadrupolar excitations in odd and even Ru isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, C.L.; Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Hanninger, G.N. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia

    2004-09-15

    The study of the odd {sup 99,101}Ru nuclei complements the investigation of the collectivity of the first quadrupolar excitations in {sup 100,102,104}Ru. Angular distributions for the {sup 99,101}Ru(d, d') reactions at 13 MeV were obtained in the Pelletron Laboratory using nuclear emulsion plates on the focal plane of the Enge spectrograph. A Coulomb- Nuclear Interference analysis employing DWBA-DOMP predictions with global optical potential parameters was applied to the excitation of states which could belong to the multiplet built on the first quadrupolar excitation of the core. In the analysis, three states were identified for each of the isotopes and associated, respectively, with adopted levels in the Nuclear Data Sheets Compilation of J{pi} = 5=2{sup +}, 7=2{sup +} and 9=2{sup +}. Through the comparison of experimental and predicted cross section angular distributions, the values of ({delta}{sup L}{sub N}){sup 2} and of the ratio C = {delta}{sub L}{sup C} /{delta}{sub L}{sup N} were obtained. (author)

  9. Excitation functions for deuterium-induced reactions on 194Pt near the coulomb barrier

    Czech Academy of Sciences Publication Activity Database

    Kulko, A. A.; Skobelev, N. K.; Kroha, Václav; Penionzhkevich, Y. E.; Mrázek, Jaromír; Burjan, Václav; Hons, Zdeněk; Šimečková, Eva; Piskoř, Štěpán; Kugler, Andrej; Demekhina, N. A.; Sobolev, Yu. G.; Chuvilskaya, T. V.; Shirokova, K.; Kuterbekov, K.

    2012-01-01

    Roč. 9, 6-7 (2012), s. 502-507 ISSN 1547-4771 R&D Projects: GA MŠk LA08002 Institutional support: RVO:61389005 Keywords : nucelar reactions * excitation functions * charged particle activation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  10. Recent experiments involving highly excited atoms

    International Nuclear Information System (INIS)

    Latimer, C.J.

    1979-01-01

    Very large and fragile atoms may be produced by exciting normal atoms with light or by collisions with other atomic particles. Atoms as large as 10 -6 m are now routinely produced in the laboratory and their properties studied. In this review some of the simpler experimental methods available for the production and detection of such atoms are described including tunable dye laser-excitation and field ionization. A few recent experiments which illustrate the collision properties and the effects of electric and and magnetic fields are also described. The relevance of highly excited atoms in other areas of research including radioastronomy and isotope separation are discussed. (author)

  11. /B(E2) values from low-energy Coulomb excitation at an ISOL facility: the /N=80,82 Te isotopes

    Science.gov (United States)

    Barton, C. J.; Caprio, M. A.; Shapira, D.; Zamfir, N. V.; Brenner, D. S.; Gill, R. L.; Lewis, T. A.; Cooper, J. R.; Casten, R. F.; Beausang, C. W.; Krücken, R.; Novak, J. R.

    2003-01-01

    B(E2;0+1→2+1) values for the unstable, neutron-rich nuclei 132,134Te were determined through Coulomb excitation, in inverse kinematics, of accelerated beams of these nuclei. The systematics of measured B(E2) values from the ground state to the first excited state have been extended to the N=82 shell closure in the Te nuclei and have been compared with the predictions of different theories. The measurements were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) using the GRAFIK detector. The success of this approach, which couples a 5.7% efficient through-well NaI(Tl) γ-ray detector with thin foil microchannel plate beam detectors, also demonstrates the feasibility for Coulomb excitation studies of neutron-rich nuclei even further from the valley of beta stability, both at present-generation ISOL facilities and at the proposed Rare Isotope Accelerator.

  12. Coulomb Excitation of Neutron-Rich $A\\approx$140 Nuclei

    CERN Multimedia

    Van duppen, P L E

    2002-01-01

    Investigating the isospin dependence of the product between the B( E2; 0$_{1}^{+} \\rightarrow 2_{1}^{+}$)-value and the 2$_{1}^{+}$-excitation energy E$_{2^{+}}$ in even-even nuclei around $A\\!\\approx$140 one observes a rather smooth trend close to the valley of stability but clear indication for a reduction from the extrapolated B(E2)-values by one order of magnitude for some very neutron-rich nuclei. While close to the valley of stability the strong neutron-proton interaction results in an equilibration of the neutron and proton deformations with a predominate isoscalar character of the collective 2$^{+}$ excitation, it is conceivable that more loosely bound neutrons cannot polarize a close-to-magic proton core that well any more. This might result in a decoupling of the shape of the outer neutrons from the core and in a strong isovector admixture to the lowest lying 2$^{+}$ level. In this way the 2$^{+}$ -energies could be further lowered in neutron-rich nuclei, while the quadrupole moments of the proton c...

  13. Coulomb-nuclear interference with 6Li: Isospin character of the 21+ excitation in 70,72,74Ge

    International Nuclear Information System (INIS)

    Barbosa, M.D.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Rodrigues, M.R.D.; Ukita, G.M.

    2005-01-01

    Ratios of B(E2) to B(IS2), that is, of the reduced quadrupole transition probabilities related, respectively, to charge and mass were extracted through Coulomb-nuclear interference (CNI) for the excitation of the 2 1 + states in 70,72,74 Ge, with a relative accuracy of less than 4%. For this purpose, the CNI angular distributions associated with the inelastic scattering of 28-MeV incident 6 Li ions accelerated by the Sao Paulo Pelletron, and momentum analyzed by the Enge magnetic spectrograph were interpreted within the DWBA-DOMP approach (distorted wave approximation for the scattering process and deformed optical model for the structure representation) with global 6 Li optical parameters. The present CNI results demonstrate an abrupt change in the B(E2)/B(IS2) ratio for 74 Ge: although for 70,72 Ge, values of the order of 1.0 or slightly higher were obtained, this ratio is 0.66 (7) for 74 Ge. The heavier Ge isotope is thus one of the few nuclei that, so far, have been shown to present clear mixed symmetry components in their ground-state band

  14. Coulomb excitation of $^{94,96}$Kr beam Deformation in the neutron-rich krypton isotopes

    CERN Multimedia

    Hass, M; Cederkall, J A; Di julio, D D; Zamfir, N - V; Srebrny, J; Wadsworth, R; Siem, S; Marginean, R; Iwanicki, J S

    Recently the energy of the 2$_{1}^{+}$ state in the N=60 $^{96}$Kr nucleus was determinated to be 241 keV. This was the first experimental observation of an excited state in this highly exotic nucleus. The 2$_{1}^{+}$ state in $^{94}$Kr is located at 665.5 keV, i.e. E(2$_{1}^{+}$) drops by more than 400 keV at N=60. This lowering of the 2$_{1}^{+}$ energy indicates a sharp shape transition behavior which is somewhat similar to that discovered in the Sr and Zr isotopic chains at N=60. The deformation expected for the 2$_{1}^{+}$ state of $^{96}$Kr, as resulting from the E(2$_{1}^{+}$) energy based on the semi-empirical relation of Raman et al. is $\\beta_{2}$ = 0.31, which is, however, considerably smaller than that for Sr and Zr ($\\geq$0.40). The sudden decrease of E(2$_{1}^{+}$) from N=50 to N=60 does not fully agree with the more gradual change of deformation deduced from laser spectroscopy measurements of mean square charge radii, although for $^{96}$Kr, in particular, these are consistent with a $\\beta_{2}...

  15. Coulomb excitation of neutron-rich nuclei between the N=40 and N=50 shell gaps using REX-ISOLDE and the Ge MINIBALL array

    CERN Multimedia

    2002-01-01

    We propose to perform Coulomb excitation experiments of neutron-rich nuclei in the vicinity of $^{68}$Ni towards $^{78}$Ni using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Major changes in the structure of the atomic nucleus are expected around the N = 40 subshell closure. Recent B(E2) measurements suggested that $^{68}$Ni behaves like a doubly magic nucleus while neutron-rich Zn isotopes with N>38 exhibit a sudden increase of B(E2) values which may be the signature of deformation. We would like to check and test these predictions for neutron-rich nuclei in the vicinity of N = 40 and N = 50 shell closures like $^{72}$Zn, $^{74}$Zn, $^{76}$Zn, $^{68}$Ni, $^{70}$Ni. Our calculations show that an energy upgrade from 2.2 to 3 MeV/nucleon will be of crucial importance for a part of our study while some nuclei can still be very efficiently studied at an energy of 2.2 MeV/nucleon. Therefore, to perform our experiment in an efficient way, we request 21 shifts of beam time before the ene...

  16. Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE, CERN

    Directory of Open Access Journals (Sweden)

    Clément E.

    2013-12-01

    Full Text Available A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N = 60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  17. Determination of the B(E3,0$^{+}$ $\\rightarrow$ 3$^{-}$) strength in the octupole correlated nuclei $^{142,144}$Ba using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{142}$Ba and $^{144}$Ba ion beams from the HIE-ISOLDE facility to enable the Coulomb excitation of the first 3$^-$ state in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^-$ state using the MINIBALL array, we can obtain the interesting transition matrix element. The results will give quantitative information about octupole correlations in these nuclei.

  18. Coulomb excitation of /sup 182/ /sup 184/ /sup 186/W and /sup 166/Er with /sup 4/He and /sup 16/O ions

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, F K; Milner, W T; Sayer, R O; Robinson, R L; Stelson, P H [Oak Ridge National Lab., Tenn. (USA)

    1977-10-10

    The Coulomb excitation reaction induced by /sup 4/He ions selectively excites 2/sup +/ and 3/sup -/ states by direct E2 and E3 Coulomb excitation. In this paper, new results are presented from ..gamma..-ray spectroscopy with 15 MeV /sup 4/He ions on a natural abundance target of W. In particular, a 3/sup -/ state in each isotope, /sup 182/ /sup 184/ /sup 186/W, was observed by direct E3 excitation. In addition to obtaining B(Elambda, 0 ..-->.. J = lambda for excitation of each state, information on the reduced transition probabilities for the different decay modes of these states is given. The Coulomb excitation probabilities of the 2'/sup +/ states at 786 keV in /sup 166/Er and at 737 keV in /sup 186/W were measured with /sup 16/O and /sup 4/He ions by the backscattered particle-gamma coincidence method in order to determine the static electric quadrupole moment Qsub(2'). For /sup 166/Er, Qsub(2')=2.11+-0.37 e.b which is in agreement with (Qsub(2'))sub(rot) and for /sup 186/W, Qsub(2')=1.17+-0.30 e.b which is in agreement with Kumar-Baranger model calculations and is significantly smaller than (Qsub(2'))sub(rot). This deviation of the measured Qsub(2') from (Qsub(2'))sub(rot) implies in the framework of the Kumar-Baranger calculations a strong coupling between ..beta..- and ..gamma..-vibrational bands. On the other hand, the observed upper limit for B(E2, 2'' ..-->.. 2') does not confirm this implication.

  19. Form coexistence in light krypton nuclei. Isomeric spectroscopy of 72,74Kr nuclei and Coulomb excitation of the 76Kr radioactive beam

    International Nuclear Information System (INIS)

    Bouchez, Emmanuelle

    2003-01-01

    The first part of this research thesis proposes an overview of the different theoretical calculations elaborated in the region of light krypton nuclei, and of published experimental results. The second part reports the electron and gamma isomeric spectroscopy of 72,74 Kr nuclei after fragmentation of the projectile by a magnetic separator (experimental installation, experimental results, discussion). The third part reports the study of the Coulomb excitation of the 76 Kr radioactive beam (method and experimental installation, data analysis and results in terms of germanium and silicon spectra, and form of the 76 Kr)

  20. Plane-Wave Implementation and Performance of à-la-Carte Coulomb-Attenuated Exchange-Correlation Functionals for Predicting Optical Excitation Energies in Some Notorious Cases.

    Science.gov (United States)

    Bircher, Martin P; Rothlisberger, Ursula

    2018-06-12

    Linear-response time-dependent density functional theory (LR-TD-DFT) has become a valuable tool in the calculation of excited states of molecules of various sizes. However, standard generalized-gradient approximation and hybrid exchange-correlation (xc) functionals often fail to correctly predict charge-transfer (CT) excitations with low orbital overlap, thus limiting the scope of the method. The Coulomb-attenuation method (CAM) in the form of the CAM-B3LYP functional has been shown to reliably remedy this problem in many CT systems, making accurate predictions possible. However, in spite of a rather consistent performance across different orbital overlap regimes, some pitfalls remain. Here, we present a fully flexible and adaptable implementation of the CAM for Γ-point calculations within the plane-wave pseudopotential molecular dynamics package CPMD and explore how customized xc functionals can improve the optical spectra of some notorious cases. We find that results obtained using plane waves agree well with those from all-electron calculations employing atom-centered bases, and that it is possible to construct a new Coulomb-attenuated xc functional based on simple considerations. We show that such a functional is able to outperform CAM-B3LYP in some cases, while retaining similar accuracy in systems where CAM-B3LYP performs well.

  1. Shape coexistence measurements in even-even neutron-deficient polonium isotopes by Coulomb excitation, using REX-ISOLDE and the Ge MINIBALL array

    CERN Multimedia

    Butler, P; Bastin, B; Kruecken, R; Voulot, D; Rahkila, P J; Orr, N A; Srebrny, J; Grahn, T; Clement, E; Paul, E S; Gernhaeuser, R A; Dorsival, A; Diriken, J V J; Huyse, M L; Iwanicki, J S

    The neutron-deficient polonium isotopes with two protons outside the closed Z=82 shell represent a set of nuclei with a rich spectrum of nucleus structure phenomena. While the onset of the deformation in the light Po isotopes is well established experimentally, questions remain concerning the sign of deformation and the magnitude of the mixing between different configurations. Furthermore, controversy is present with respect to the transition from the vibrational-like character of the heavier Po isotopes to the shape coexistence mode observed in the lighter Po isotopes. We propose to study this transition in the even-mass neutron-deficient $^{198,200,202}$Po isotopes by using post-accelerated beams from REX-ISOLDE and "safe"-energy Coulomb excitation. $\\gamma$- rays will be detected by the MINIBALL array. The measurements of the Coulomb excitation differential cross section will allow us to deduce both the transition and diagonal matrix elements for these nuclei and, combined with lifetime measurements, the s...

  2. Coulomb dissociation of N 20,21

    OpenAIRE

    Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is...

  3. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  4. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  5. Shell structure in the vicinity of the doubly magic {sup 100}Sn via Coulomb excitation at PreSPEC

    Energy Technology Data Exchange (ETDEWEB)

    Guastalla, Giulia

    2014-11-17

    The PreSPEC setup in combination with the high intensity primary beams available at GSI provided unique opportunities for the key nuclear structure studies on exotic nuclei. The experiment performed on the neutron deficient {sup 104}Sn aimed to deduce the reduced transition probability of the first excited 2{sup +} state quantified by the B(E2; 0{sup +} → 2{sup +}) value. This result is the central point in the discussion of the evolution of nuclear structure in proximity of the doubly magic nucleus {sup 100}Sn. As {sup 100}Sn is not yet accessible for such measurements, a series of experiments have been performed for neutron-deficient Sn isotopes over the past few years. These data showed excessive experimental B(E2) strength compared to shell model calculations below neutron number N=64 and they are therefore not excluding a constant or even increasing collectivity below {sup 106}Sn. Hence, the measurement of the B(E2) value in the next even-even isotope toward {sup 100}Sn, i.e. {sup 104}Sn, was a crucial step to verify the robustness of the shell gap of {sup 100}Sn. Moreover, {sup 104}Sn is the heaviest isotope of the Sn isotopic chain for which a shell model calculation without significant truncation of the valence space can be performed and therefore with this experimental value the validity of Large Scale Shell Model (LSSM) calculations could be tested. As a main result of the experiment a B(E2) value corresponding to 0.10(4) e{sup 2}b{sup 2} has been extracted for {sup 104}Sn. The experimental value showed a very good agreement with the predicted one and, despite the large error bar, it clearly established a downward trend of the B(E2) values of the Sn isotopic chain toward A=100. This implied enhanced stability of the N = Z = 50 shell closure against ph-excited quadrupole modes. However, an experiment of this kind is very challenging for several reasons. First, {sup 104}Sn lies in proximity of the proton drip line and has therefore a small production

  6. Mapping the boundaries of the seniority regime and collective motion: Coulomb excitation studies of N = 122 isotones $^{206}$Po and $^{208}$Rn

    CERN Multimedia

    Butler, P; Voulot, D; Rahkila, P J; Darby, I G; Grahn, T; Bree, N C F; Julin, R J; Diriken, J V J; Jenkins, D G; Kroell, T; Huyse, M L

    In regions near magic nuclei, seniority can be regarded as a good quantum number. In the N = 122 isotones above the Z = 82 shell closure relative high-$\\textit{j}\\,$ single-particle proton orbitals dominate the structure and thus levels up to $\\textit{I}$ = 2$\\textit{j}$ - 1 could, in principle, be understood within the seniority scheme. While B(E2) values usually increase within the band with increasing $\\textit{I}$, the seniority scheme can lead to a contrasting result. The present proposal addresses this phenomenon through the measurements of previously unknown B(E2; 0$^{+}\\rightarrow$ 2$^{+}$) values in $^{206}$Po and $^{208}$Rn. The proposed Coulomb excitation measurements of radioactive beams will be carried out at the REX-ISOLDE facility using the MINIBALL $\\gamma$-ray spectrometer.

  7. Contribution to the study of collective states of heavy nuclei by means of coulomb excitation; Contribution a l'etude des etats collectifs des noyaux lourds par excitation coulombienne

    Energy Technology Data Exchange (ETDEWEB)

    Barloutaud, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-06-15

    The following nuclei were excited by protons of 5 MeV maximum energy: {sup 182}W - {sup 184}W - {sup 186}W - {sup 186}Os - {sup 188}Os - {sup 189}Os - {sup 190}Os - {sup 192}Os - {sup 194}Pt - {sup 196}Pt - {sup 198}Pt - {sup 198}Hg - {sup 200}Hg - {sup 202}Hg - {sup 204}Hg - {sup 206}Pb. The reduced probabilities of the various transitions were deduced from the coulomb excitation cross-section measurements. For some even-even nuclei two 2 + levels were excited. The properties of the excited levels are interpreted in terms of the collective model. (author) [French] Au moyen de protons d'energie inferieure a 5 MeV, l'excitation coulombienne des noyaux suivants a ete etudiee: {sup 182}W - {sup 184}W - {sup 186}W - {sup 186}Os - {sup 188}Os - {sup 189}Os - {sup 190}Os - {sup 192}Os - {sup 194}Pt - {sup 196}Pt - {sup 198}Pt - {sup 198}Hg - {sup 200}Hg - {sup 202}Hg - {sup 204}Hg - {sup 206}Pb. La mesure de la section efficace d'excitation coulombienne a permis de deduire les -probabilites reduites des diverses transitions observees. Dans certains noyaux pair-pair, deux niveaux de caractere 2 + ont ete excites. L'interpretation de ces niveaux en termes de niveaux de rotation et de niveaux de vibration a l'aide du modele collectif est discutee. En particulier, la variation des proprietes de ces niveaux avec la deformation nucleaire permet de fixer des limites a la validite des diverses hypotheses entrant dans le modele collectif. (auteur)

  8. Coulomb fission in dielectric dication clusters: experiment and theory on steps that may underpin the electrospray mechanism.

    Science.gov (United States)

    Chen, Xiaojing; Bichoutskaia, Elena; Stace, Anthony J

    2013-05-16

    A series of five molecular dication clusters, (H2O)n(2+), (NH3)n(2+), (CH3CN)n(2+), (C5H5N)n(2+), and (C6H6)n(2+), have been studied for the purpose of identifying patterns of behavior close to the Rayleigh instability limit where the clusters might be expected to exhibit Coulomb fission. Experiments show that the instability limit for each dication covers a range of sizes and that on a time scale of 10(-4) s ions close to the limit can undergo either Coulomb fission or neutral evaporation. The observed fission pathways exhibit considerable asymmetry in the sizes of the charged fragments, and are associated with kinetic (ejection) energies of ~0.9 eV. Coulomb fission has been modeled using a theory recently formulated to describe how charged particles of dielectric materials interact with one another (Bichoutskaia et al. J. Chem. Phys. 2010, 133, 024105). The calculated electrostatic interaction energy between separating fragments accounts for the observed asymmetric fragmentation and for the magnitudes of the measured ejection energies. The close match between theory and experiment suggests that a significant fraction of excess charge resides on the surfaces of the fragment ions. The experiments provided support for a fundamental step in the electrospray ionization (ESI) mechanism, namely the ejection from droplets of small solvated charge carriers. At the same time, the theory shows how water and acetonitrile may behave slightly differently as ESI solvents. However, the theory also reveals deficiencies in the point-charge image-charge model that has previously been used to quantify Coulomb fission in the electrospray process.

  9. 1D experiments with multiply selective excitation

    Indian Academy of Sciences (India)

    Administrator

    solution, leading to the determination of four rate parameters, is presented for proton exchange studies on these systems ... patterns within a single experiment entailing a total time of ca. ..... surements. For the acid–base reaction given in (6).

  10. Selected results on strong and coulomb-induced correlations from the STAR experiment

    International Nuclear Information System (INIS)

    Sumbera, M.

    2007-01-01

    Using recent high-statistics STAR data from Au + Au and Cu + Cu collisions at full RHIC energy I discuss strong and Coulomb-induced final state interaction effects on identical (pi-pi) and non-identical (pi-XI) particle correlations. Analysis of pi-XI correlations reveals the strong and Coulomb-induced FSI effects, allowing for the first time to estimate spatial extension of pi and XI sources and the average shift between them. Source imaging techniques provide clean separation of details of the source function and are applied to the one-dimensional relative momentum correlation function of identical pions. For low momentum pions, and/or non-central collisions, a large departure from a single-Gaussian shape is observed. (author)

  11. Coulomb interaction in multiple scattering theory

    International Nuclear Information System (INIS)

    Ray, L.; Hoffmann, G.W.; Thaler, R.M.

    1980-01-01

    The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+ 208 Pb elastic scattering and compared with experimental data

  12. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  13. Electron induced break-up of helium. Benchmark experiments on a dynamical four-body Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, M.

    2006-07-05

    This work presents an experimental study of fragmentation of helium by electron impact, in which absolute fully differential cross sections for single ionization, ionization-excitation and double ionization were determined. By applying a charged-particle imaging technique, the so-called 'reaction microscope', a large fraction of the final-state momentum space is covered, and the major limitations of previous experimental methods applied in this field could be overcome. Decisive modifications of the previous reaction microscope were undertaken, the most important one being the arrangement of the projectile beam parallel to the imaging-fields. For single ionization on helium an enhanced electron emission outside the projectile scattering plane is observed at both considered impact energies (102 eV and 1 keV), which is similar to the result found for ion-impact (M. Schulz et al., Nature (London) 422, 48 (2003)). The angle resolved cross sections obtained for double ionization at 105 eV impact energy reveal, that the process is dominated by the mutual repulsion of the three final-state continuum electrons. However, signatures of more complex dynamics are also observed. The data provide an ultimate benchmark for recently developed theories treating the dynamical three- and four-body Coulomb problem. (orig.)

  14. Electron induced break-up of helium. Benchmark experiments on a dynamical four-body Coulomb system

    International Nuclear Information System (INIS)

    Duerr, M.

    2006-01-01

    This work presents an experimental study of fragmentation of helium by electron impact, in which absolute fully differential cross sections for single ionization, ionization-excitation and double ionization were determined. By applying a charged-particle imaging technique, the so-called 'reaction microscope', a large fraction of the final-state momentum space is covered, and the major limitations of previous experimental methods applied in this field could be overcome. Decisive modifications of the previous reaction microscope were undertaken, the most important one being the arrangement of the projectile beam parallel to the imaging-fields. For single ionization on helium an enhanced electron emission outside the projectile scattering plane is observed at both considered impact energies (102 eV and 1 keV), which is similar to the result found for ion-impact (M. Schulz et al., Nature (London) 422, 48 (2003)). The angle resolved cross sections obtained for double ionization at 105 eV impact energy reveal, that the process is dominated by the mutual repulsion of the three final-state continuum electrons. However, signatures of more complex dynamics are also observed. The data provide an ultimate benchmark for recently developed theories treating the dynamical three- and four-body Coulomb problem. (orig.)

  15. Coulomb dissociation of 8B at 254 MeV/u

    International Nuclear Information System (INIS)

    Surowka, G.; Iwasa, N.; Boue, F.

    1999-01-01

    As an alternative method to determine the cross section of 7 Be (p, γ) 8 B, the Coulomb dissociation reaction 8 B → 7 Be + p at E inc = 254 MeV/u was measured. Our preliminary results show the dominant role of the dipole excitation in the Coulomb break-up process. The extracted astrophysical S 17 factor is consistent with the lower-value results both of the direct-capture studies, and the RIKEN Coulomb-dissociation experiment at ∼ 50 MeV/u. (author)

  16. Possible modernization of the U-400 cyclotron facilities to perform precise RIB experiments in the vicinity of the Coulomb barrier. (The technical proposal)

    International Nuclear Information System (INIS)

    Majdikov, V.Z.; Bashevoj, V.V.; Mel'nikov, V.N.

    1998-01-01

    An analysis of the ion-optical parameters of the existing facilities for precise nuclear reactions experiments at the U-400 cyclotron swichyard shows that some improvement can be made to perform RIB experiments at the Coulomb barrier of interactions. A change in the position of a dozen of quadrupole lenses at the cyclotron switchyard permits one to obtain parameters of magnetic spectrometers adequate for the modern experiments

  17. Effect of the moment-of-inertia variation on Coulomb-nuclear interference in heavy ion scattering

    International Nuclear Information System (INIS)

    Bolotin, Yu.L.; Gonchar, V.Yu.; Inopin, E.V.; Chekanov, N.A.

    1987-01-01

    Effect of moment-of-inertia (MI) variation on probabilities of the Coulomb excitation of nucleus rotational states (RS) is investigated. The calculation is performed in the generalized quasiclassical approximation. Cillisions with an aimed parameter equal to 0 and recording of scattered ion at angles close to 180 deg were considered. Effect of MI dependence on angular momentum (AM) on the RS Coulomb excitation probability in the 86 Kr+ 238 U process at 400 MeV 86 Kr has been studied. For small AMs (I < 10), when the MI variation can be neglected, the Coulomb-nuclear interference leads to a marked shift of RS excitation probability maxima. However, with increasing transferred AM the convergence of probabilities conditioned with mutual compensation of phases shift related to the MI variation and Coulomb-nucleus interference, is noted. It is also noted that correct parameters of deformed nuclei extracted from experiments on the Coulomb excitation of high-spin states can be obtained only during simultaneous accountancy of both the Coulomb-nuclear interference and the MI variation of excited nuclei

  18. Excitation of autoionizing states of helium by 100 keV proton impact: theory and experiment

    International Nuclear Information System (INIS)

    Godunov, A.L.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Benhenni, M.; Bordenave-Montesquieu, A.

    1997-01-01

    A joint theoretical and experimental study of the excitation of the autoionizing (2s 2 ) 1 S, (2p 2 ) 1 D and (2s2p) 1 P states of helium by 100 keV proton impact is presented for the first time. The role of the three-body Coulomb interaction in the final state between the ejected electron, the scattered proton and the recoil helium ion is emphasized. Calculations have been carried out with inclusion of the three-body Coulomb interaction and within an expansion of a two-electron excitation amplitude in powers of projectile-target interaction up to the second order. A new parametrization is proposed to describe resonance profiles distorted by the Coulomb interaction in the final state (CIFS). New high-resolution (up to 68 meV) measurements of electron emission spectra made it possible to resolve the near-lying (2p 2 ) 1 D and (2s2p) 1 P resonances and reveal an evident distortion of the resonance profiles by CIFS for forward electron ejection angles below 40 o . (author)

  19. Excitation of autoionizing states of helium by 100 keV proton impact: theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Benhenni, M.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Laboratoire Collisions, Agregats, Reactivite; Schipakov, V.A. [Troitsk Institute for Innovation and Fusion Research, Moscow (Russian Federation)

    1997-12-14

    A joint theoretical and experimental study of the excitation of the autoionizing (2s{sup 2}){sup 1}S, (2p{sup 2}){sup 1}D and (2s2p){sup 1}P states of helium by 100 keV proton impact is presented for the first time. The role of the three-body Coulomb interaction in the final state between the ejected electron, the scattered proton and the recoil helium ion is emphasized. Calculations have been carried out with inclusion of the three-body Coulomb interaction and within an expansion of a two-electron excitation amplitude in powers of projectile-target interaction up to the second order. A new parametrization is proposed to describe resonance profiles distorted by the Coulomb interaction in the final state (CIFS). New high-resolution (up to 68 meV) measurements of electron emission spectra made it possible to resolve the near-lying (2p{sup 2}){sup 1}D and (2s2p){sup 1}P resonances and reveal an evident distortion of the resonance profiles by CIFS for forward electron ejection angles below 40{sup o}. (author).

  20. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  1. Interatomic Coulombic electron capture

    International Nuclear Information System (INIS)

    Gokhberg, K.; Cederbaum, L. S.

    2010-01-01

    In a previous publication [K. Gokhberg and L. S. Cederbaum, J. Phys. B 42, 231001 (2009)] we presented the interatomic Coulombic electron capture process--an efficient electron capture mechanism by atoms and ions in the presence of an environment. In the present work we derive and discuss the mechanism in detail. We demonstrate thereby that this mechanism belongs to a family of interatomic electron capture processes driven by electron correlation. In these processes the excess energy released in the capture event is transferred to the environment and used to ionize (or to excite) it. This family includes the processes where the capture is into the lowest or into an excited unoccupied orbital of an atom or ion and proceeds in step with the ionization (or excitation) of the environment, as well as the process where an intermediate autoionizing excited resonance state is formed in the capturing center which subsequently deexcites to a stable state transferring its excess energy to the environment. Detailed derivation of the asymptotic cross sections of these processes is presented. The derived expressions make clear that the environment assisted capture processes can be important for many systems. Illustrative examples are presented for a number of model systems for which the data needed to construct the various capture cross sections are available in the literature.

  2. Coulombic charge ice

    Science.gov (United States)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  3. Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer

    Science.gov (United States)

    Toda, S.; Stein, R.S.; Lin, J.

    2011-01-01

    We report on a broad and unprecedented increase in seismicity rate following the M=9.0 Tohoku mainshock for M ≥ 2 earthquakes over inland Japan, parts of the Japan Sea and Izu islands, at distances of up to 425 km from the locus of high (≥15 m) seismic slip on the megathrust. Such an increase was not seen for the 2004 M=9.1 Sumatra or 2010 M=8.8 Chile earthquakes, but they lacked the seismic networks necessary to detect such small events. Here we explore the possibility that the rate changes are the product of static Coulomb stress transfer to small faults. We use the nodal planes of M ≥ 3.5 earthquakes as proxies for such small active faults, and find that of fifteen regions averaging ~80 by 80 km in size, 11 show a positive association between calculated stress changes and the observed seismicity rate change, 3 show a negative correlation, and for one the changes are too small to assess. This work demonstrates that seismicity can turn on in the nominal stress shadow of a mainshock as long as small geometrically diverse active faults exist there, which is likely quite common.

  4. Recent experiments in novel nuclear excitations at the BNL AGS

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1988-01-01

    Recent experimental work at the AGS dealing with unusual nuclear excitations is summarized. Three examples are given: the deexcitation of Λ hypernuclei by γ transitions, the production of Λ hypernuclei by the (π + ,K + ) reaction, and the search for /eta/-nuclear excitations. The status of each field and the implications of the research for nuclear theory are discussed. 11 refs., 10 figs., 1 tab

  5. D-wave resonances in three-body system Ps- with pure Coulomb and screened Coulomb (Yukawa) potentials

    International Nuclear Information System (INIS)

    Kar, S.; Ho, Y.K.

    2009-01-01

    We have investigated the doubly excited 1 D e resonance states of Ps - interacting with pure Coulomb and screened Coulomb (Yukawa) potentials employing highly correlated wave functions. For pure Coulomb interaction, in the framework of stabilization method and complex coordinate rotation method we have obtained two resonances below the n = 2 threshold of the Ps atom. For screened Coulomb interaction, we employ the stabilization method to extract resonance parameters. Resonance energies and widths for the 1 D e resonance states of Ps - for different screening parameter ranging from infinity (pure Coulomb case) to a small value are also reported. (author)

  6. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  7. Coulomb dissociation of N-20,N-21

    NARCIS (Netherlands)

    Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Kalantar-Nayestanaki, Nasser; Najafi, Mohammad Ali; Rigollet, Catherine; Stoica, V.; Streicher, Branislav; Van de Walle, J.

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a

  8. The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies

    International Nuclear Information System (INIS)

    Hinterberher, F.

    1996-01-01

    The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)

  9. Heavy ion coulomb excitation and gamma decay studies of the one and two phonon giant dipole resonances in 208Pb and 209Bi

    International Nuclear Information System (INIS)

    Mueller, P.E.; Beene, J.R.; Bertrand, F.E.; Halbert, M.L.; Olive, D.H.; Varner, R.L.; Sherrill, B.; Thoennessen, M.; Lautridou, P.; Lefevre, F.; Marques, M.; Matulewicz, T.; Mittig, W.; Ostendorf, R.; Roussel-Chomaz, P.; Schutz, Y.; Pol, J. van; Wilschut, H.W.; Diaz, J.; Ferrero, J.L.; Marin, A.

    1994-01-01

    Projectile - phonon coincidences were measured for the scattering of an 80 MeV/nucleon 64 Zn beam from 208 Pb and 209 Bi targets at the GANIL heavy ion accelerator facility. Projectile-like particles between 0.5 and 4.5 relative to the incident beam direction were detected in the SPEG energy loss spectrometer where their momentum, charge, and mass were determined. Photons were detected in the BaF 2 scintillation detector array TAPS. Light charged particles produced in the reaction were detected in the KVI Forward Wall. The analysis of the data acquired in this experiment is focused on three different phenomena: (1) the two phonon giant dipole resonance, (2) time dependence of the decay of the one phonon giant dipole resonance, and (3) giant resonance strength in projectile nuclei. (orig.)

  10. Signatures of Coulomb fission: a theoretical study

    International Nuclear Information System (INIS)

    Oberacker, V.; Kruse, H.; Pinkston, W.T.; Greiner, W.

    1979-01-01

    Evidence for Coulomb fission (CF) is noted first. Then the Hamiltonian is set down and explained, and an expression for the CF probability of CF is obtained. Results are summarized. Figures show the CF probability of 238 U as a function of projectile charge number and the excitation functions for CF of 238 U by 184 W and 136 Xe. 3 figures

  11. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  12. Franck--Hertz experiment with higher excitation level measurements

    International Nuclear Information System (INIS)

    Liu, F.H.

    1987-01-01

    The measurement of the higher levels of 6 3 P 2 and 6 1 P 1 of the mercury atom in the Franck--Hertz experiment has been introduced into the junior and senior laboratory course by using a homemade tetrode Franck--Hertz tube. The main structure of the tube is described. The optimum operating conditions are in the temperature range between 130 and 150 0 C and the collector currents are of the order of 10 -9 A. The additional observations of the famous Franck--Hertz experiment in the laboratory course will give the students more familiarity with the quantum behavior of atoms

  13. Apprehensive and Excited: Music Education Students' Experience Vernacular Musicianship

    Science.gov (United States)

    Isbell, Daniel S.

    2016-01-01

    The purpose of this study was to examine music education students' experiences (N = 64) in courses designed to develop vernacular musicianship and expand understandings of informal music making. Students participated in one of two classes (undergraduate/graduate), formed their own small ensembles, chose their own music and instruments, led their…

  14. Pulse excitation experiment of a superconducting generator; chodendo hatsudenki no parusu reiki shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyaike, K.; Iimura, T.; Nishimura, M.; Arata, M.; Takabatake, M. [Toshiba Ltd., Tokyo (Japan); Yamada, M.; Kanamori, Y.; Hasegawa, K. [Kansai Electric Power Co., Inc., Osaka (Japan)

    1999-11-10

    Efficiency improvement, improvement in the stability of electric power system it is miniaturization and weight reduction can be expected in comparison with the traditional-model generator superconducting generator. We produce the small superconducting generator for the experiment experimentally, and performance characteristics verification of the generator is carried out experimentally. This time, pulse excitation test of the superconducting generator was carried out, and the ac loss of the conductor by the pulse excitation investigated the effect on the quenching current. (NEDO)

  15. Investigating Coulomb's Law.

    Science.gov (United States)

    Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg

    1998-01-01

    Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)

  16. Diffusion in Coulomb crystals.

    Science.gov (United States)

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  17. Coulomb gap triptych in a periodic array of metal nanocrystals.

    Science.gov (United States)

    Chen, Tianran; Skinner, Brian; Shklovskii, B I

    2012-09-21

    The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-electron interaction in disordered systems with localized electron states. Here we show that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which together form a structure that we call a "Coulomb gap triptych." We calculate the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.

  18. Coulomb effects in particle distributions inclusive

    International Nuclear Information System (INIS)

    Erazmus, B.; Martin, L.; Pluta, J.; Stavinky, A.

    1997-01-01

    Single pion distributions from central 158 A.GeV/c Pb + Pb collisions measured by the NA44 experiment show the effect of Coulomb interaction with the net charge produced during the reaction. Coulomb effects are analyzed with the help of the microscopic model RQMD and a model including the Coulomb interaction. Different sets of kinematical characteristics of the net charge have been used to reproduce the experimental data and a strong sensitivity to the charge value has been found. This study has evidenced the non-negligible influence of a Coulomb charge, present in the region of the central rapidity in heavy ion collisions on the inclusive distributions of the produced particles. A more thorough analysis of the data obtained from the experiment NA44 is now under way to take into account the hyperon decay that can modify the fraction of different particles, particularly at low transverse momenta

  19. Adventures in Coulomb Gauge

    International Nuclear Information System (INIS)

    Greensite, J.; Olejnik, S.

    2003-01-01

    We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.

  20. Ordering in classical Coulombic systems

    International Nuclear Information System (INIS)

    Schiffer, J. P.

    1998-01-01

    The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity Λ (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than approximately175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4

  1. Core polarization and Coulomb displacement energies

    International Nuclear Information System (INIS)

    Shlomo, S.; Love, W.G.

    1982-01-01

    The contributions of core polarization terms (other than the Auerbach-Kahana-Weneser (AKW) effect) to Coulomb displacement energies of mirror nuclei near A = 16 and A = 40 are examined within the particle-vibration coupling model. The parameters of the model are determined using updated data on the locations and strengths of multipole core excitations. In the absence of relevant data an energy-weighted sum rule (EWSR) is exploited. Taking into account multipole excitations up to L = 5 and subtracting the contributions which are due to short-range correlations, significant contributions (1-3%) to ΔEsub(c) are found. These corrections arise from particle coupling to low-lying collective states (long-range correlations). The implications of these results on the Coulomb energy problem are discussed. (Auth.)

  2. Coulomb dissociation reactions on molybdenum isotopes for astrophysics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ershova, Olga

    2012-03-09

    Within the present work, photodissociation reactions on {sup 100}Mo, {sup 93}Mo and {sup 92}Mo isotopes were studied by means of the Coulomb dissociation method at the LAND setup at GSI. As a result of the analysis of the present experiment, integrated Coulomb excitation cross sections of the {sup 100}Mo({gamma},n), {sup 100}Mo({gamma},2n), {sup 93}Mo({gamma},n) and {sup 92}Mo({gamma},n) reactions were determined. A second important topic of the present thesis is the investigation of the efficiency of the CsI gamma detector. The data taken with the gamma calibration sources shortly after the experiment were used for the investigation. In addition, a test experiment in refined conditions was conducted within the framework of this thesis. Numerous GEANT3 simulations of the detector were performed in order to understand various aspects of its performance. As a result, the efficiency of the detector was determined to be approximately a factor of 2 lower than the efficiency expected from the simulation. (orig.)

  3. Spurious Excitations in Semiclassical Scattering Theory.

    Science.gov (United States)

    Gross, D. H. E.; And Others

    1980-01-01

    Shows how through proper handling of the nonuniform motion of semiclassical coordinates spurious excitation terms are eliminated. An application to the problem of nuclear Coulomb excitation is presented as an example. (HM)

  4. Nernst-Planck Based Description of Transport, Coulombic Interactions and Geochemical Reactions in Porous Media: Modeling Approach and Benchmark Experiments

    DEFF Research Database (Denmark)

    Rolle, Massimo; Sprocati, Riccardo; Masi, Matteo

    2018-01-01

    ‐ but also under advection‐dominated flow regimes. To accurately describe charge effects in flow‐through systems, we propose a multidimensional modeling approach based on the Nernst‐Planck formulation of diffusive/dispersive fluxes. The approach is implemented with a COMSOL‐PhreeqcRM coupling allowing us......, and high‐resolution experimental datasets. The latter include flow‐through experiments that have been carried out in this study to explore the effects of electrostatic interactions in fully three‐dimensional setups. The results of the simulations show excellent agreement for all the benchmarks problems...... the quantification and visualization of the specific contributions to the diffusive/dispersive Nernst‐Planck fluxes, including the Fickian component, the term arising from the activity coefficient gradients, and the contribution due to electromigration....

  5. Trinucleon asymptotic normalization constants including Coulomb effects

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.

    1982-01-01

    Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects

  6. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  7. On Coulomb disintegration of relativistic nuclei and hypernuclei

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1989-01-01

    The dependence of the total cross-section of excitation and disintegration of a relativistic nucleus in the Coulomb field on the energy and parameters characterizing nuclear dimensions is investigated. The analogy with the problem of atomic ionization at the passage of charged particles through matter is used. The results are applied to the description of the Coulomb dissociation of nuclei with small binding energies. An explicit expression for the effective cross-section of the Coulomb disintegration of the hypernucleus-Λ 3 H into a deuteron and Λ-particle. 12 refs

  8. Complete and incomplete fusion measurement and analysis of excitation functions in sup 1 sup 2 C + sup 1 sup 2 sup 8 Te system at energies near and above the coulomb barrier

    CERN Document Server

    Sharma, M K; Prasad, R; Gupta, S; Musthafa, M M; Bhardwaj, H D; Sinha, A K

    2003-01-01

    In order to study complete and incomplete fusion in heavy ion induced reactions the experiment has been carried out for measuring excitation functions (EF's) for several reactions in the system sup 1 sup 2 C + sup 1 sup 2 sup 8 Te, in the energy range approx = 42 - 82 MeV, using activation technique. To the best of our knowledge EF's for presently measured reactions are being reported for the first time. The measured EF's have been compared with those calculated theoretically using codes CASCADE and ALICE-91. Effect of variation of parameters, of the codes, on calculated EF's has also been studied. The analysis of the present data indicates presence of contributions from incomplete fusion in some cases. In general, theoretical calculations agree well with the experimental data.

  9. Excitation of giant resonances in heavy ion collisions

    International Nuclear Information System (INIS)

    Kuehn, W.

    1991-01-01

    Introduction: What are Giant Resonances? General Features of Giant Resonances, Macroscopic Description and Classification, Basic Excitation Mechanisms, Decay Modes, Giant Resonances Built on Excited States, Relativistic Coulomb Excitation of Giant Resonances, Experimental Situation. (orig.)

  10. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    Science.gov (United States)

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  11. Coulomb Friction Damper

    Science.gov (United States)

    Appleberry, W. T.

    1983-01-01

    Standard hydraulic shock absorber modified to form coulomb (linear friction) damper. Device damps very small velocities and is well suited for use with large masses mounted on soft springs. Damping force is easily adjusted for different loads. Dampers are more reliable than fluid dampers and also more economical to build and to maintain.

  12. On the Coulomb displacement energy

    International Nuclear Information System (INIS)

    Sato, H.

    1976-01-01

    The Coulomb displacement energies of the T=1/2 mirror nuclei (A=15,17,27,29,31,33,39 and 41) are re-examined with the best available HF wave functions (the DME and the Skyrme II interaction), with the inclusion of all electromagnetic corrections. The results are compared with the experimental s.p. charge dependent energies extracted from the experimental data taking into account admixtures of core-excitation corrections with the help of present shell-model and co-existence model calculations. Although the so-called Nolen-Schiffer anomaly is not removed by these improvements, it is found that the remaining observed anomalies in the ground states of s.p. and s.h. systems can be resolved with the introduction of a simple, phenomenological charge symmetry breaking nucleon-nucleon force. This force can also account for the observed anomalies in the higher excited s.p. states, while those of the deeper s.h. states need further explanation. (Auth.)

  13. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  14. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    This chapter reports on a beam-plasma interaction experiment conducted in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the JIKIKEN satellite. Topics considered include instrumentation, wave excitation, and the charging of the satellite. Various types of wave emission are detected by low frequency and high frequency wave detectors. Waves near upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is observed outside the plasmapause. The main objectives of the Controlled Beam Experiment (CBE) are to control the satellite potential by an electron beam emission, and to study the wave excitation (linear and non-linear wave phenomena due to the beam-plasma interaction). It is concluded that waves excited in the beamplasma interaction are strongly dependent on plasma and other parameters in the magnetosphere so that it will provide important knowledge of the magnetosphere plasma processes

  15. Double excitation of helium by 3 MeV proton impact: experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Gleizes, A.; Moretto-Capelle, P.; Benoit-Cattin, P. (Toulouse-3 Univ., 31 (France). Centre de Physique Atomique); Andriamonje, S. (Bordeaux-1 Univ., 33 -Gradignan (France)); Martin, F. (Universidad Autonoma de Madrid (Spain). Dept. de Quimica); Salin, A. (Bordeaux-1 Univ., 33 - Talence (France))

    1992-08-14

    Doubly differential cross sections for the double excitation of helium by high velocity protons are measured and compared with the predictions of the first-order Born approximation. Preliminary experimental data for the shapes and intensities of the resonances 2s[sup 2] [sup 1]S, 2p[sup 2] [sup 1]D and 2s2p [sup 1]P have been obtained from high resolution electron spectra at 20[sup o], 90[sup o] and 150[sup o] for a proton energy of 3 MeV. Both experiment and theory show that the excitation of the [sup 1]P resonance largely exceeds the [sup 1]D and [sup 1]S ones at this collision velocity. The shape and emission yield of the [sup 1]P line is well described by theory over the whole angular range. The agreement for the other two resonances is not always satisfactory. (author).

  16. The theory and experiment of solute migration caused by excited state absorptions

    International Nuclear Information System (INIS)

    Xiao, Jin; Ying-Lin, Song; Yu-Xiao, Wang; Min, Shui; Chang-Wei, Li; Jun-Yi, Yang; Xue-Ru, Zhang; Kun, Yang

    2010-01-01

    Nonsymmetrical transition from reverse-saturable absorption (RSA) to saturable absorption (SA) caused by excited state absorption induced mass transport of the CuPcTs dissolved in dimethyl sulfoxide is observed in an open aperture Z-scan experiment with a 21-ps laser pulse. The nonsymmetrical transition from RSA to SA is ascribed neither to saturation of excited state absorption nor to thermal induced mass transport, the so-called Soret effect. In our consideration, strong nonlinear absorption causes the rapid accumulation of the non-uniform kinetic energy of the solute molecules. The non-uniform kinetic field in turn causes the migration of the solute molecules. Additionally, an energy-gradient-induced mass transport theory is presented to interpret the experimental results, and the theoretical calculations are also taken to fit our experimental results. (classical areas of phenomenology)

  17. Known-to-Unknown Approach to Teach about Coulomb's Law

    Science.gov (United States)

    Thamburaj, P. K.

    2007-01-01

    Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…

  18. Coulomb-gas scaling, superfluid films, and the XY model

    International Nuclear Information System (INIS)

    Minnhagen, P.; Nylen, M.

    1985-01-01

    Coulomb-gas-scaling ideas are invoked as a link between the superfluid density of two-dimensional 4 He films and the XY model; the Coulomb-gas-scaling function epsilon(X) is extracted from experiments and is compared with Monte Carlo simulations of the XY model. The agreement is found to be excellent

  19. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)

    2016-09-15

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  20. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  1. Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison

    International Nuclear Information System (INIS)

    Khvostenko, O.G.

    2014-01-01

    Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy

  2. Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru

    2014-08-15

    Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy.

  3. Excitation of rare gases in an electron-beam-controlled discharge: report on preliminary experiments

    International Nuclear Information System (INIS)

    Bingham, F.W.

    1976-05-01

    Data from the preliminary phase of a study of rare-gas-excimer production in an electron-beam-controlled discharge are presented. The results indicate that it is possible to maintain an arc-free discharge in preionized Ar and Xe gas for a period of several microseconds at applied external E/p values up to 5 V/cm/Torr. In these experiments ultraviolet radiation emitted during the discharge signaled the presence of excited rare-gas molecules. Application of the external electric field significantly enhanced the ultraviolet intensity from xenon-gas discharges but produced little enhancement from argon-gas discharges

  4. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.

    Science.gov (United States)

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations. Copyright © 2016

  5. Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mycek, M.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1995-12-01

    The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

  6. Coulomb pair-creation

    International Nuclear Information System (INIS)

    Hrasko, P.; Foeldy, L.; Toth, A.

    1986-07-01

    Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)

  7. Dynamics in few body Coulomb problems

    International Nuclear Information System (INIS)

    Ovchinnikov, S.Y.; Macek, J.H.; Tantawi, R.S.; Sabbah, A.S.

    1999-01-01

    We develop the 'positive energy Sturmian technique' for the solution of time-dependent Schroedinger equations which describe few Coulomb centers with scattering initial conditions. The 'positive energy Sturmian technique' is based on the following main steps: (i) time-dependent scaled transformation; (ii) Fourier transformation into the frequency domain; (iii) outgoing wave Sturmian expansions; and (iv) solution of coupled equations. The technique has been applied in electron-atom and ion-atom collisions for calculations of energy and angular distributions of emitted electrons and excitations of atoms. Refs. 2 (author)

  8. Coulomb energy, vortices, and confinement

    International Nuclear Information System (INIS)

    Greensite, Jeff; Olejnik, Stefan

    2003-01-01

    We estimate the Coulomb energy of static quarks from a Monte Carlo calculation of the correlator of timelike link variables in the Coulomb gauge. We find, in agreement with Cucchieri and Zwanziger, that this energy grows linearly with distance at large quark separations. The corresponding string tension, however, is several times greater than the accepted asymptotic string tension, indicating that a state containing only static sources, with no constituent gluons, is not the lowest energy flux tube state. The Coulomb energy is also measured on thermalized lattices with center vortices removed by the de Forcrand-D'Elia procedure. We find that when vortices are removed, the Coulomb string tension vanishes

  9. Generalized ladder operators for the Dirac-Coulomb problem via SUSY QM

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Universidade Federal de Campina Grande, PB

    2003-12-01

    The supersymmetry in quantum mechanics and shape invariance condition are applied as an algebraic method to solving the Dirac-Coulomb problem. The ground state and the excited states are investigated via new generalized ladder operators. (author)

  10. Cross-sections and average angular momenta in fusion reactions near the coulomb barrier

    International Nuclear Information System (INIS)

    Dasgupta, M.

    1992-01-01

    In recent years there has been an increasing interest in the study of heavy ion collisions near the Coulomb barrier. This has been triggered mainly by the observations of enhancements by factors of about one to two order of magnitude in sub-Coulomb barrier fusion (SBF) cross-sections between medium mass nuclei, as compared to predictions based on one-dimensional barrier penetration model (l-d BPM). Though, a considerable amount of work both theoretical and experimental has been done in this field, a complete understanding of the SBF phenomenon has not yet been achieved. The relation between fusion excitation function and angular momentum (l) distribution in SBF reactions is a topic of current interest. It is believed that l-distributions provide a more stringent test of SBF models that the excitation functions alone. Simultaneous measurement of l-distribution (or its moments) and fusion excitation function is expected to lead to a better understanding of the relationship between these two qualities. Such information has been obtained in experiments done at pelletron accelerator facility. In the present talk the measurement of fusion cross-sections and the method of determination of average l from partial evaporation residue cross-section has been elaborated. An analysis of the experimental data on the basis of some of the SBF models has been discussed briefly. (author). 13 refs

  11. Integral equation for Coulomb problem

    International Nuclear Information System (INIS)

    Sasakawa, T.

    1986-01-01

    For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems

  12. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  13. Long-range Coulomb interaction effects on the topological phase transitions between semimetals and insulators

    Science.gov (United States)

    Han, SangEun; Moon, Eun-Gook

    2018-06-01

    Topological states may be protected by a lattice symmetry in a class of topological semimetals. In three spatial dimensions, the Berry flux around gapless excitations in momentum space concretely defines a chirality, so a protecting symmetry may be referred to as a chiral symmetry. Prime examples include a Dirac semimetal (DSM) in a distorted spinel, BiZnSiO4, protected by a mirror symmetry, and a DSM in Na3Bi , protected by a rotational symmetry. In these states, topology and chiral symmetry are intrinsically tied. In this Rapid Communication, the characteristic interplay between a chiral symmetry order parameter and an instantaneous long-range Coulomb interaction is investigated with the standard renormalization group method. We show that a topological transition associated with chiral symmetry is stable under the presence of a Coulomb interaction and the electron velocity always becomes faster than the one of a chiral symmetry order parameter. Thus, the transition must not be relativistic, which implies that supersymmetry is intrinsically forbidden by the long-range Coulomb interaction. Asymptotically exact universal ratios of physical quantities such as the energy gap ratio are obtained, and connections with experiments and recent theoretical proposals are also discussed.

  14. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb₂Ti₂O₇.

    Science.gov (United States)

    Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard

    2012-01-01

    In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb(2)Ti(2)O(7). Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below T(C)~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.

  15. Two-dimensional QCD in the Coulomb gauge

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefed'ev, A.V.

    2002-01-01

    Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru

  16. Coulomb breakup of 31Ne using finite range DWBA

    International Nuclear Information System (INIS)

    Shubhchintak; Chatterjee, R.

    2013-01-01

    Coulomb breakup of nuclei away from the valley of stability have been one of the most successful probes to unravel their structure. However, it is only recently that one is venturing into medium mass nuclei like 23 O and 31 Ne. This is a very new and exciting development which has expanded the field of light exotic nuclei to the deformed medium mass region. In this contribution, an extension of the previously proposed theory of Coulomb breakup within the post-form finite range distorted wave Born approximation to include deformation of the projectile is reported

  17. Coulomb displacement energies in nuclei: a new approach

    International Nuclear Information System (INIS)

    Auerbach, N.; Tel Aviv Univ.; Bernard, V.; Nguyen, V.G.

    1978-04-01

    The neutron core polarization gives rise to an important correction to the direct Coulomb contribution when one calculates the Coulomb displacement energies. In the Hartree-Fock model it is shown that this correction is about 2% to 4.5% in medium and heavy nuclei. The core polarization as well as other higher order effects can be included by using a selfconsistent description of the analog state in a complete proton particle-neutron hole space. The Coulomb displacement energies in 48 Ca, 88 Sr and 208 Pb have been calculated using Skyrme interactions SIII and SIV. A good agreement with experiment is obtained

  18. The Coulomb gap and low energy statistics for Coulomb glasses

    International Nuclear Information System (INIS)

    Glatz, Andreas; Vinokur, Valerii M; Bergli, Joakim; Kirkengen, Martin; Galperin, Yuri M

    2008-01-01

    We study the statistics of local energy minima in the configuration space of two-dimensional lattice Coulomb glasses with site disorder and the behavior of the Coulomb gap depending on the strength of random site energies. At intermediate disorder, i.e., when the typical strength of the disorder is of the same order as the nearest-neighbor Coulomb energy, the high energy tail of the distribution of the local minima is exponential. We furthermore analyze the structure of the local minima and show that most sites of the system have the same occupation numbers in all of these states. The density of states (DOS) shows a transition from the crystalline state at zero disorder (with a hard gap) to an intermediate, probably glassy state with a Coulomb gap. We analyze this Coulomb gap in some detail and show that the DOS deviates slightly from the traditional linear behavior in 2D. For finite systems these intermediate Coulomb gap states disappear for large disorder strengths and only a random localized state in which all electrons are in the minima of the random potential exists. Dedication: This paper is dedicated to Thomas Nattermann, our dearest friend, brilliant colleague, and outstanding teacher

  19. Experiments on vibro-impact dynamics of loosely supported tubes under harmonic excitation

    International Nuclear Information System (INIS)

    Axisa, F.; Izquierdo, P.

    1992-01-01

    Computational methods have been recently developed by the authors and others to predict the working life or the acceptable vibration limit of tubular structures experiencing fretting-wear caused by impact-sliding interaction with loose supports or adjacent structures. This problem is of practical interest in various nuclear and other industrial components. This paper reports an experimental work intended to validate the numerical techniques used to compute the tube non-linear vibration in presence of impact-sliding interaction. Attention is especially focused on the local and time averaged dynamical parameters governing the rate of fretting-wear. The experiments were carried out on a straight tube excited harmonically by a pair of electromagnetic shakers. The tube motion was limited by a loose support situated at about midspan. On the other hand, numerical simulations of the tests were also performed. Comparison between test and computational data resulted in rather satisfactory agreement, based on the averaged impact forces and the wear work rate. Results are also discussed in terms of detailed time histories of tube displacement and impact forces

  20. Excitation of the ionospheric Alfvén resonator from the ground: Theory and experiments

    Science.gov (United States)

    Streltsov, A. V.; Chang, C.-L.; Labenski, J.; Milikh, G.; Vartanyan, A.; Snyder, A. L.

    2011-10-01

    We report results from numerical and experimental studies of the excitation of ULF shear Alfvén waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during the October-November 2010 experimental campaign reveal that the IAR quality is higher during nighttime conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low Earth orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, (1) observations from the ground-based magnetometer at the HAARP site demonstrate no significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and (2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  1. Dual structure in the charge excitation spectrum of electron-doped cuprates

    Science.gov (United States)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  2. Search for excited leptons in the data of the H1 experiment at the HERA collider

    International Nuclear Information System (INIS)

    Delerue, N.

    2002-09-01

    Composite models are one of the possible extensions of the Standard Model. One of their implications, at the energy in the reach of present particles accelerators, would be the excitation of leptons. This PhD. thesis describes the search for excited leptons with the H1 detector installed on the electron-proton collider HERA in Hamburg (Germany). The data used were accumulated between 1994 and 2000 and amount to an integrated luminosity of 120 pb -1 . The analysis of 6 different topologies were done and cover all the branching ratios of desexcitation of excited electron and neutrino. The numbers of candidates found during those analysis is in agreement with the Standard Model expectations. This means that no evidence of excited leptons production was found at HERA. This result was translated in the form of exclusion limits on the coupling of excited leptons (f/A) depending on the mass of the excited lepton. For the first time at HERA we addressed the case were the natural decay width of the excited neutrino is wider than the experimental resolution. For the first time also, a study of the variation of limit depending on the ratio f' / f was carried out. This study lead to the setting of limits independent of this ratio. The limits obtained extend results previously obtained at HERA and also the results of direct searches at LEP. (orig.)

  3. Coulomb repulsion in short polypeptides.

    Science.gov (United States)

    Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M

    2015-01-08

    Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each

  4. Computational assignment of redox states to Coulomb blockade diamonds.

    Science.gov (United States)

    Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V

    2014-09-07

    With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.

  5. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    Science.gov (United States)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  6. Probing wavenumbers of current-induced excitations in point-contact experiments

    Directory of Open Access Journals (Sweden)

    Z Wei

    2010-06-01

    Full Text Available Z Wei, M TsoiDepartment of Physics, Center for Nano and Molecular Science and Technology, and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USAAbstract: We demonstrate how a mechanical point-contact technique can provide information on the wavenumber of spin waves excited by high-density electrical current in magnetic multilayers. By varying the size of point-contacts, we have been able to control the size of the excitation volume and therefore the wavelength of current-induced spin waves. This leads to a technique with in situ sensitivity to wavenumbers of current-induced excitations. Our detailed size-dependent measurements support the prediction that the excited wavelength is determined by the contact size.Keywords: spin transfer torque, giant magnetoresistance, spin waves, point contact

  7. Coulomb Logarithm in Nonideal and Degenerate Plasmas

    Science.gov (United States)

    Filippov, A. V.; Starostin, A. N.; Gryaznov, V. K.

    2018-03-01

    Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein-Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.

  8. Effective temperature in relaxation of Coulomb glasses.

    Science.gov (United States)

    Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M

    2008-08-01

    We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.

  9. Core polarization and the Coulomb energy difference of mirror nuclei

    International Nuclear Information System (INIS)

    Barroso, A.

    1977-01-01

    The effect of the core polarization on the Coulomb displacement energies of mirror nuclei with a LS doubly closed shell plus or minus one nucleon is studied. Using the Kallio-Kolltveit interaction it is found that the first-order configuration mixing including 2p-2h core excitations is too small and sometimes of the wrong sign to explain the Nolen-Schiffer anomaly. (Auth.)

  10. 11Li Breakup on 208 at energies around the Coulomb barrier.

    Science.gov (United States)

    Fernández-García, J P; Cubero, M; Rodríguez-Gallardo, M; Acosta, L; Alcorta, M; Alvarez, M A G; Borge, M J G; Buchmann, L; Diget, C A; Falou, H A; Fulton, B R; Fynbo, H O U; Galaviz, D; Gómez-Camacho, J; Kanungo, R; Lay, J A; Madurga, M; Martel, I; Moro, A M; Mukha, I; Nilsson, T; Sánchez-Benítez, A M; Shotter, A; Tengblad, O; Walden, P

    2013-04-05

    The inclusive breakup for the (11)Li + (208)Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of (9)Li following the (11)Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the (11)Li continuum at low excitation energy.

  11. 11Li Breakup on 208Pb at Energies Around the Coulomb Barrier

    DEFF Research Database (Denmark)

    Fernández-García, J.P.; Cubero, M.; Rodríguez-Gallardo, M.

    2013-01-01

    The inclusive breakup for the 11Li+208Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of 9Li following the 11Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation...... theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear...... and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the 11Li continuum at low excitation energy....

  12. Characterization of ion Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Okada, K.; Takayanagi, T.; Wada, M.; Ohtani, S.; Schuessler, H. A.

    2010-01-01

    We describe a simple and fast method for simulating observed images of ion Coulomb crystals. In doing so, cold elastic collisions between Coulomb crystals and virtual very light atoms are implemented in a molecular dynamics (MD) simulation code. Such an approach reproduces the observed images of Coulomb crystals by obtaining density plots of the statistics of existence of each ion. The simple method has the advantage of short computing time in comparison with previous calculation methods. As a demonstration of the simulation, the formation of a planar Coulomb crystal with a small number of ions has been investigated in detail in a linear ion trap both experimentally and by simulation. However, also large Coulomb crystals including up to 1400 ions have been photographed and simulated to extract the secular temperature and the number of ions. For medium-sized crystals, a comparison between experiments and calculations has been performed. Moreover, an MD simulation of the sympathetic cooling of small molecular ions was performed in order to test the possibility of extracting the temperature and the number of refrigerated molecular ions from crystal images of laser-cooled ions. Such information is basic to studying ultracold ion-molecule reactions using ion Coulomb crystals including sympathetically cooled molecular ions.

  13. Excitation and photon decay of giant resonances excited by intermediate energy heavy ions

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1987-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab

  14. Structure and conformational dynamics of molecules in the excited electronic states: theory and experiment

    International Nuclear Information System (INIS)

    Godunov, I.A.; Bataev, V.A.; Maslov, D.V.; Yakovlev, N.N.

    2017-01-01

    The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.

  15. Coulomb branches with complex singularities

    Science.gov (United States)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  16. Radiative capture versus Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.; Physics

    2006-01-01

    Measurements of the Coulomb dissociation of 8 B have been used to infer the rate of the inverse radiative proton capture on 7 Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  17. Radiative Capture versus Coulomb Dissociation

    International Nuclear Information System (INIS)

    Esbensen, Henning

    2006-01-01

    Measurements of the Coulomb dissociation of 8B have been used to infer the rate of the inverse radiative proton capture on 7Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  18. Characterization of scintillating CaWO{sub 4} crystals for the CRESST experiment using two-photon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Hampf, Raphael; Dandl, Thomas; Muenster, Andrea; Oberauer, Lothar; Roth, Sabine; Schoenert, Stefan; Ulrich, Andreas [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, D-85747 Garching (Germany)

    2016-07-01

    In the CRESST experiment for direct dark matter search, phonon and photon signals from cryogenic CaWO{sub 4} crystals are used to search for WIMP-induced nuclear recoil events. We present a novel table-top setup in which the scintillation of CaWO{sub 4} is induced by 0.7 ns laser pulses of 355 nm wavelength. The excitation occurs via two-photon absorption in the bulk material. The scintillation light is observed by time resolved optical spectroscopy. By varying the focusing of the laser-beam the excitation density can be made high enough to study quenching effects due to exciton-exciton annihilation. This allows to perform experiments to test models for the quenching factors of different ionizing projectiles in CaWO{sub 4} which are used to identify these projectiles on an event by event basis.

  19. On analytical solutions to the problem of the Coulomb and confining potentials

    International Nuclear Information System (INIS)

    Dineykhan, M.; Nazmitdinov, R.G.

    1997-01-01

    The oscillator representation method is presented and applied to calculate the energy spectrum of the superposition of the Coulomb and the power-law potentials, the Coulomb and the Yukawa potentials. The method provides an efficient way to obtain analytical results for arbitrary set of parameters of the considered potentials. The energies of ground and excited states of a quantum system are in good agreement with the exact results

  20. Alpha particles-and 3He inelastic scattering by 124Sn in the coulomb barrier region

    International Nuclear Information System (INIS)

    Appoloni, C.R.

    1976-01-01

    Angular distributions for inelastic scattering of α and 3 He particles in 124 Sn at the incident energies around Coulomb barrier were measured using the 8UD Pelletron Tandem Accelerator of The University of Sao Paulo. The results were analysed by DWBA with a collective form factor including the effects due to the interference between coulomb and nuclear excitations with the code PATIWEN (Ba75). The nuclear deformation parameters for the one phonon levels (2 + and 3 - ) have been obtained. (Author) [pt

  1. Atomic excitation and acceleration in strong laser fields

    International Nuclear Information System (INIS)

    Zimmermann, H; Eichmann, U

    2016-01-01

    Atomic excitation in the tunneling regime of a strong-field laser–matter interaction has been recently observed. It is conveniently explained by the concept of frustrated tunneling ionization (FTI), which naturally evolves from the well-established tunneling picture followed by classical dynamics of the electron in the combined laser field and Coulomb field of the ionic core. Important predictions of the FTI model such as the n distribution of Rydberg states after strong-field excitation and the dependence on the laser polarization have been confirmed in experiments. The model also establishes a sound basis to understand strong-field acceleration of neutral atoms in strong laser fields. The experimental observation has become possible recently and initiated a variety of experiments such as atomic acceleration in an intense standing wave and the survival of Rydberg states in strong laser fields. Furthermore, the experimental investigations on strong-field dissociation of molecules, where neutral excited fragments after the Coulomb explosion of simple molecules have been observed, can be explained. In this review, we introduce the subject and give an overview over relevant experiments supplemented by new results. (paper)

  2. Gauge orbits and the Coulomb potential

    International Nuclear Information System (INIS)

    Greensite, J.

    2009-01-01

    If the color Coulomb potential is confining, then the Coulomb field energy of an isolated color charge is infinite on an infinite lattice, even if the usual UV divergence is lattice regulated. A simple criterion for Coulomb confinement is that the expectation value of timelike link variables vanishes in the Coulomb gauge, but it is unclear how this criterion is related to the spectrum of the corresponding Faddeev-Popov operator, which can be used to formulate a quite different criterion for Coulomb confinement. The purpose of this article is to connect the two seemingly different Coulomb confinement criteria, and explain the geometrical basis of the connection.

  3. Positive streamers in air of varying density : experiments on the scaling of the excitation density

    NARCIS (Netherlands)

    Dubrovin, D.; Nijdam, S.; Clevis, T.T.J.; Heijmans, L.C.J.; Ebert, U.; Yair, Y.; Price, C.

    2015-01-01

    Streamers are rapidly extending ionized finger-like structures that dominate the initial breakdown of large gas volumes in the presence of a sufficiently strong electric field. Their macroscopic parameters are described by simple scaling relations, where the densities of electrons and of excited

  4. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7

    Science.gov (United States)

    Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard

    2012-01-01

    In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose–Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb2Ti2O7. Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below TC~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations. PMID:22871811

  5. Structures and Dynamics of Two-Dimensional Dust Lattices with and without Coulomb Molecules in Plasmas

    International Nuclear Information System (INIS)

    Huang Feng; Wang Xue-Jin; Liu Yan-Hong; Ye Mao-Fu; Wang Long

    2010-01-01

    Structures and dynamics of two-dimensional dust lattices with and without Coulomb molecules in plasmas are investigated. The experimental results show that the lattices have the crystal-like hexagonal structures, i.e. most particles have six nearest-neighboring particles. However, the lattice points can be occupied by the individual particles or by a pair of particles called Coulomb molecules. The pair correlation function is used to compare the structures between the lattices with or without the Coulomb molecules. In the experiments, the Coulomb molecules can also decompose and recombine with another individual particle to form a new molecule. (physics of gases, plasmas, and electric discharges)

  6. (e, 2e) ionization-excitation experiment with fixed-in-space H2 molecules

    International Nuclear Information System (INIS)

    Takahashi, M.; Watanabe, N.; Khajuria, Y.; Udagawa, Y.; Eland, J.H.D.

    2005-01-01

    This report will introduce an electron-electron-fragment ion triple coincidence spectrometer to the readers with our recent collision dynamics study on ionization-excitation processes of the hydrogen molecule. Following a description of the working principle of the spectrometer, results of the study will be discussed; this includes molecular frame (e, 2e) cross sections that have been observed for the first time. (author)

  7. Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Frislev, Martin Thomas; Balling, Peter

    2013-01-01

    Modeling of the interaction between a dielec- tric material and ultrashort laser pulses provides the tem- poral evolution of the electronic excitation and the optical properties of the dielectric. Experimentally determined re- flectances and ablation depths for sapphire are compared...... to the calculations. A decrease in reflectance at high fluences is observed experimentally, which demonstrates the neces- sity of a temperature-dependent electron scattering rate in the model. The comparison thus provides new constraints on the optical parameters of the model....

  8. Nonequilibrium Dynamics in a Quasi-Two-Dimensional Electron Plasma after Ultrafast Intersubband Excitation

    International Nuclear Information System (INIS)

    Lutgen, S.; Kaindl, R.A.; Woerner, M.; Elsaesser, T.; Hase, A.; Kuenzel, H.; Gulia, M.; Meglio, D.; Lugli, P.

    1996-01-01

    The dynamics of electrons in GaInAs/AlInAs quantum wells is studied after excitation from the n=1 to the n=2 conduction subband. Femtosecond pump-probe experiments demonstrate for the first time athermal distributions of n=1 electrons on a surprisingly long time scale of 2ps. Thermalization involves intersubband scattering of excited electrons via optical phonon emission with a time constant of 1ps and intrasubband Coulomb and phonon scattering. Ensemble Monte Carlo simulations show that the slow electron equilibration results from Pauli blocking and screening of carrier-carrier scattering. copyright 1996 The American Physical Society

  9. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  10. Coulomb excitation of Ca-44 and Ar-46

    Czech Academy of Sciences Publication Activity Database

    Calinescu, S.; Caceres, L.; Grévy, S.; Sorlin, O.; Dombradi, Z.; Stanoiu, M.; Astabatyan, R.; Borcea, C.; Borcea, R.; Bowry, M.; Catford, W.; Clement, E.; Franchoo, S.; Garcia, R.; Gillibert, R.; Guerin, I. H.; Kuti, I.; Lukyanov, S.; Lepailleur, A.; Maslov, V.; Morfouace, P.; Mrázek, Jaromír; Negoita, F.; Niikura, M.; Perrot, L.; Podolyak, Z.; Petrone, C.; Penionzhkevich, Y. E.; Roger, T.; Rotaru, F.; Sohler, D.; Stefan, I.; Thomas, J. C.; Vajta, Zs.; Wilson, E.

    2016-01-01

    Roč. 93, č. 4 (2016), s. 044333 ISSN 0556-2813 Institutional support: RVO:61389005 Keywords : neutron rich nuclei * low lying states * scattering Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.820, year: 2016

  11. Product state resolved excitation spectroscopy of He-, Ne-, and Ar-Br2 linear isomers: experiment and theory.

    Science.gov (United States)

    Pio, Jordan M; van der Veer, Wytze E; Bieler, Craig R; Janda, Kenneth C

    2008-04-07

    Valence excitation spectra for the linear isomers of He-, Ne-, and Ar-Br2 are reported and compared to a two-dimensional simulation using the currently available potential energy surfaces. Excitation spectra from the ground electronic state to the region of the inner turning point of the Rg-Br2 (B,nu') stretching coordinate are recorded while probing the asymptotic Br2 (B,nu') state. Each spectrum is a broad continuum extending over hundreds of wavenumbers, becoming broader and more blueshifted as the rare gas atom is changed from He to Ne to Ar. In the case of Ne-Br2, the threshold for producing the asymptotic product state reveals the X-state linear isomer bond energy to be 71+/-3 cm(-1). The qualitative agreement between experiment and theory shows that the spectra can be correctly regarded as revealing the one-atom solvent shifts and also provides new insight into the one-atom cage effect on the halogen vibrational relaxation. The measured spectra provide data to test future ab initio potential energy surfaces in the interaction of rare gas atoms with the halogen valence excited state.

  12. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems.

    Science.gov (United States)

    Badalyan, S M; Shylau, A A; Jauho, A P

    2017-09-22

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q. Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.

  13. Higher-order dynamical effects in Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.

    1994-06-01

    We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)

  14. Coulomb interactions in charged fluids.

    Science.gov (United States)

    Vernizzi, Graziano; Guerrero-García, Guillermo Iván; de la Cruz, Monica Olvera

    2011-07-01

    The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present. Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we propose a simple analytical O(N(2)) method which is based on Gauss's law for computing exactly the Coulomb interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and molecular dynamics simulations.

  15. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  16. Verification of the Rigidity of the Coulomb Field in Motion

    Science.gov (United States)

    Blinov, S. V.; Bulyzhenkov, I. É.

    2018-06-01

    Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.

  17. Inhomogeneous free-electron distribution in InN nanowires: Photoluminescence excitation experiments

    Science.gov (United States)

    Segura-Ruiz, J.; Molina-Sánchez, A.; Garro, N.; García-Cristóbal, A.; Cantarero, A.; Iikawa, F.; Denker, C.; Malindretos, J.; Rizzi, A.

    2010-09-01

    Photoluminescence excitation (PLE) spectra have been measured for a set of self-assembled InN nanowires (NWs) and a high-crystalline quality InN layer grown by molecular-beam epitaxy. The PLE experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN NW. The differences in the PLE spectra can be accounted for the inhomogeneous electron distribution within the NWs caused by a bulk donor concentration (ND+) and a two-dimensional density of ionized surface states (Nss+) . For NW radii larger than 30 nm, ND+ and Nss+ modify the absorption edge and the lineshape, respectively, and can be determined from the comparison with the experimental data.

  18. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored...... for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating......, as was done in a few related studies¿¿unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect...

  19. Mirror symmetry and Coulomb effects in light N ≅ Z nuclei

    International Nuclear Information System (INIS)

    Bentley, M.A.; Williams, S.J.; Joss, D.T.

    2002-01-01

    Some latest results from gamma-ray spectroscopic studies of high spin states of isobaric multiplets are presented. An experimental programme is underway to examine exited states of isobaric multiplets of total isospin T 1/2 and T = 1 and the comparison of energies of excited states can be interpreted in terms of Coulomb effects. Through a systematic study of these Coulomb effects, and through examination of the calculated Coulomb energies from full pf-shell model calculations, it is now becoming clear that measurement of Coulomb energies can yield very detailed information on the evolution of nuclear structure phenomena as a function of energy and angular momentum. In this contribution, latest results of studies of isobaric analogue states at high spin in the A = 50, 51 and 53 systems are presented. (author)

  20. Coulomb disintegration as an information source for relevant processes in nuclear astrophysics

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    1989-01-01

    The possibility of obtaining the photodisintegration cross section using the equivalent-photon number method first deduced and employed for the Coulomb disintegration processes has been suggested. This is very interesting because there exist radioactive capture processes, related to the photodisintegration through time reversal, that are relevant in astrophysics. In this paper, the recent results of the Karlsruhe and the Texas A and M groups on the Coulomb disintegration of 6 Li and 7 Li and the problems of the method are discussed. The ideas developed in a previous paper (Nucl. Phys. A458 (1986) 188) are confirmed qualitatively. To understand the process quantitatively it is necessary to use a quantum treatment that would imply the introduction of Coulomb excitation effects of higher orders. The Coulomb disintegration of exotic secondary beams is also studied. It is particularly interesting the question about what kind of nuclear structure information, as binding energies of momentum distributions, may be obtained. (Author) [es

  1. From fun and excitement to joy and trouble. An explorative study of three Danish father's experiences around birth

    DEFF Research Database (Denmark)

    Hall, Elisabeth

    1995-01-01

    The role of the father has undergone considerable change in the West. Fathers of today are expected to take a more active part in birth preparation, birth and childcare than their predecessors were. The purpose of the present study is to describe some Danish fathers' experiences around birth. Three...... first-time fathers were interviewed at three different times: in the last month of pregnancy, two weeks after the birth of their child, and again three months later. Data were analyzed in several steps using a hermeneutical approach. The fathers' experiences were identified as fun and excitement...... at the end of the pregnancy, love at first sight at the birth, at which they all attended and took an active part, awakening when the new family was united at home and when they came to realize how much effort is needed in caring for an infant, and joy and trouble three months later. It is suggested...

  2. Testing the Predictive Power of Coulomb Stress on Aftershock Sequences

    Science.gov (United States)

    Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.

    2009-12-01

    Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.

  3. Emotionally Excited Eyeblink-Rate Variability Predicts an Experience of Transportation into the Narrative World

    Directory of Open Access Journals (Sweden)

    Ryota eNomura

    2015-04-01

    Full Text Available Collective spectator communications such as oral presentations, movies, and storytelling performances are ubiquitous in human culture. This study investigated the effects of past viewing experiences and differences in expressive performance on an audience’s transportive experience into a created world of a storytelling performance. In the experiment, 60 participants (mean age = 34.12 yrs., SD = 13.18 yrs., range 18–63 yrs. were assigned to watch one of two videotaped performances that were played (1 in an orthodox way for frequent viewers and (2 in a modified way aimed at easier comprehension for first-time viewers. Eyeblink synchronization among participants was quantified by employing distance-based measurements of spike trains, Dspike and Dinterval (Victor & Purpura, 1997. The results indicated that even non-familiar participants’ eyeblinks were synchronized as the story progressed and that the effect of the viewing experience on transportation was weak. Rather, the results of a multiple regression analysis demonstrated that the degrees of transportation could be predicted by a retrospectively reported humor experience and higher real-time variability (i.e., logarithmic transformed standard deviation of inter blink intervals during a performance viewing. The results are discussed from the viewpoint in which the extent of eyeblink synchronization and eyeblink-rate variability acts as an index of the inner experience of audience members.

  4. Coulomb potentials between spherical heavy ions

    International Nuclear Information System (INIS)

    Iwe, H.

    1982-01-01

    The Coulomb interaction between spherical nuclei having arbitrary radial nuclear charge distributions is calculated. All these realistic Coulomb potentials are given in terms of analytical expressions and are available for immediate application. So in no case a numerical computation of the Coulomb integral is required. The parameters of the charge distributions are taken from electron scattering analysis. The Coulomb self-energies of the charge distributions used are also calculated analytically in a closed form. For a number of nucleus-nucleus pairs, the Coulomb potentials derived from realistic charge distributions are compared with those normally used in various nucleus-nucleus optical model calculations. In this connection a detailed discussion of the problem how to choose consistently Coulomb parameters for different approximations is given. (orig.)

  5. Universal monopole scaling near transitions from the Coulomb phase.

    Science.gov (United States)

    Powell, Stephen

    2012-08-10

    Certain frustrated systems, including spin ice and dimer models, exhibit a Coulomb phase at low temperatures, with power-law correlations and fractionalized monopole excitations. Transitions out of this phase, at which the effective gauge theory becomes confining, provide examples of unconventional criticality. This Letter studies the behavior at nonzero monopole density near such transitions, using scaling theory to arrive at universal expressions for the crossover phenomena. For a particular transition in spin ice, quantitative predictions are made by mapping to the XY model and confirmed using Monte Carlo simulations.

  6. Interplay between superconductivity and Coulomb blockade

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke [Universitaet Konstanz (Germany)

    2016-07-01

    Studying the interplay between superconductivity and Coulomb blockade (CB) can be achieved by investigating an all superconducting single electron transistor (SSET) consisting of an island coupled to the leads by two tunneling contacts. The majority of experiments performed so far were using superconducting tunnel contacts made from oxide layers, in which multiple Andreev reflections (MAR) can be excluded. Using a mechanically controlled break junction (MCBJ) made of aluminum enables tuning the contributions of MAR in one junction continuously and thereby addressing different transport regimes within the same sample. Our results offer the possibility to attribute particular features in the transport characteristics to the transmission probabilities of individual modes in the MCBJ contact. We discuss our findings in terms of dynamical CB, SSET behaviour and MAR when continuously opening the MCBJ from the fully closed state to a tunneling contact.

  7. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    Science.gov (United States)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  8. 3D Coulomb balls: experiment and simulation

    International Nuclear Information System (INIS)

    Arp, O; Block, D; Bonitz, M; Fehske, H; Golubnychiy, V; Kosse, S; Ludwig, P; Melzer, A; Piel, A

    2005-01-01

    Spherically symmetric three-dimensional charged particle clusters are analyzed experimentally and theoretically. Based on accurate molecular dynamics simulations ground state configurations and energies with clusters for N ≤ 160 are presented which correct previous results of Hasse and Avilov [Phys. Rev. A 44, 4506 (1991)]. A complete table is given in the appendix. Further, the lowest metastable states are analyzed

  9. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  10. Observations and Measurements of Orbitally Excited L=1 B Mesons at the D0 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mark Richard James [Lancaster Univ. (United Kingdom)

    2008-09-01

    This thesis describes investigations of the first set of orbitally excited (L = 1) states for both the Bd0 and Bs0 meson systems (B**d and B**s). The data sample corresponds to 1.35 fb-1 of integrated luminosity, collected in 2002-2006 by the D0 detector, during the Run IIa operation of the Tevatron p$\\bar{p}$ colliding beam accelerator. The B**d states are fully reconstructed in decays to B(*)+ π-, with B(*)+ → γ J/ΨK+, J/Ψ → μ+μ-, yielding 662 ± 91 events, and providing the first strong evidence for the resolution of two narrow resonances, B1 and B*2. The masses are extracted from a binned Χ2 fit to the invariant mass distribution, giving M(B1) = 5720.7 ± 2.4(stat.) ± 1.3(syst.) ± 0.5 (PDG) MeV/c2 and M(B*2) = 5746.9 ± 2.4(stat.) ± 1.0(syst.) ± 0.5(PDG) MeV/c2. The production rate of narrow B**d → Bπ resonances relative to the B+ meson is determined to be [13.9 ± 1.9(stat.) ± 3.2(syst.)]%. The same B+ sample is also used to reconstruct the analogous states in the Bs0 system, in decays B**s → B(*)+ K-. A single resonance in the invariant mass distribution is found with a statistical significance of 5σ, interpreted as the B*s2 state. The mass is determined to be M(B*s2) = 5839.6 ± 1.1(stat.) ± 0.4(syst.) ± 0.5(PDG) MeV/c 2, and the production rate of B*s2 → BK resonances is measured to be a fraction (2.14 ± 0.43 ± 0.24)% of the corresponding rate for B+ mesons. Alternative fitting hypotheses give inconclusive evidence for the presence of the lighter Bs1 meson.

  11. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  12. Evaluation of the Coulomb logarithm using cutoff and screened Coulomb interaction potentials

    International Nuclear Information System (INIS)

    Ordonez, C.A.; Molina, M.I.

    1994-01-01

    The Coulomb logarithm is a fundamental plasma parameter which is commonly derived within the framework of the binary collision approximation. The conventional formula for the Coulomb logarithm, λ=ln Λ, takes into account a pure Coulomb interaction potential for binary collisions and is not accurate at small values (λ D in place of λ D (the Debye length) in the conventional formula for the Coulomb logarithm

  13. Frozen orientation disorder and rotation excitation in solid mixtures of methane and krypton (neutron diffraction experiments)

    International Nuclear Information System (INIS)

    Grondey, S.

    1986-09-01

    The effect of a statistical replacement of CH 4 molecules by Kr atoms on the rotational states in solid methane has been examined. Obviously the anisotropic molecular interaction (octopole-octopole interaction) is disturbed in a way analogous to magnetic systems with random internal fields. Inelastic neutron scattering experiments on solid mixtures (CH 4 ) 1-x Kr x with 0≤x≤0.35 have been carried out, and simple models have been developed to interpret the spectra. (orig./BHO)

  14. Photoionization of excited states, ions and open-shell atoms: innovative synchrotron experiments

    International Nuclear Information System (INIS)

    Manson, S.T.

    1981-01-01

    The development of synchrotron light sources with increased photon flux in the region 10 eV less than or equal to hν less than or equal to 1000 eV opens the door to many atomic physics investigations which have not been possible up to now. In this paper, three general types of experiments are discussed, each of which offers attractive possibilities for significant advances in our understanding

  15. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    charge carriers were additionally studied at high excitation energies. An efficient multi-exciton emission of the CdSe/CdS tetrapods could be observed, which is to be lead back to the exciton phase-space filling and a reduced Auger effect. The larger volume of the longer tetrapods allows a dual emission from the CdSe and the CdS with comparable intensities. The occuring Coulomb effects between a spatially separated electron-hole pair were studied in CdSe/CdTe tetrapods, which exhibit a type-II transition. A correlation between the tetrapod leg length and the binding energy of the charge-transfer exciton could be established, which is also reproduced in the theoretical simulations.

  16. Elastic Coulomb breakup of 34Na

    Science.gov (United States)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  17. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    Beam-plasma interaction experiment has been made in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the satellite JIKIKEN (EXOS-B). Various types of wave emission are detected by LF and HF wave detectors. Waves near at upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is also observed outside the plasmapause

  18. Dynamics of excited nitrogen molecular states in glow- and afterglow phases of discharge: experiment and modeling

    International Nuclear Information System (INIS)

    Napartovich, A.P.; Akishev, Yu.S.; Dyatko, N.A.; Grushin, M.E.; Filippov, A.V.; Trushkin, N.I.

    2001-01-01

    Population dynamics for a number of levels from N2 ( A 3 Σ + u ), N 2 (B 3 Π g ) and N 2 (C 3 Π u ) manifolds was studied spectroscopically in a long pulse glow discharge in pure nitrogen and in afterglow at pressure 50 Torr. Overshot in time behaviour of N 2 (A 3Σ + u ), N 2 (B 3 Π g ) and N 2 (C 3 Π u ) levels populations was revealed. A rather complete kinetic model is developed for conditions of the experiments. Results of comparison are analyzed

  19. "A little information excites us." Consumer sensory experience of Vermont artisan cheese as active practice.

    Science.gov (United States)

    Lahne, Jacob; Trubek, Amy B

    2014-07-01

    This research is concerned with explaining consumer preference for Vermont artisan cheese and the relationship between that preference and sensory experience. Artisan cheesemaking is increasingly an important part of Vermont's dairy sector, and this tracks a growing trend of artisan agricultural practice in the United States. In popular discourse and academic research into products like artisan cheese, consumers explain their preferences in terms of intrinsic sensory and extrinsic - supposedly nonsensory - food qualities. In laboratory sensory studies, however, the relationship between preference, intrinsic, and extrinsic qualities changes or disappears. In contrast, this study explains this relationship by adopting a social theory of sensory perception as a practice in everyday life. This theory is applied to a series of focus group interviews with Vermont artisan cheese consumers about their everyday perceptions. Based on the data, a conceptual framework for the sensory perception of Vermont artisan cheese is suggested: consumers combine information about producer practice, social context, and the materiality of the product through an active, learned practice of sensory perception. Particular qualities that drive consumer sensory experience and preference are identified from the interview data. Many of these qualities are difficult to categorize as entirely intrinsic or extrinsic, highlighting the need for developing new approaches of sensory evaluation in order to fully capture everyday consumer sensory perception. Thus, this research demonstrates that social theory provides new and valuable insights into consumer sensory preference for Vermont artisan cheese. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Recent advances in the physics of collective excitations in the Paul trap simulator experiment

    International Nuclear Information System (INIS)

    Gilson, E.P.; Chung, M.; Davidson, R.C.; Dorf, M.; Efthimion, P.C.; Godbehere, A.B.; Majeski, R.

    2009-01-01

    The Paul trap simulator experiment (PTSX) is a compact laboratory linear Paul trap that simulates the transverse dynamics of a long charged-particle bunch propagating through a magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in the AG system in the beam's frame-of-reference and those of particles in PTSX are described by the same sets of equations, including all nonlinear space-charge effects. Initial experimental results are presented in which the collective transverse symmetric mode (m=0) and quadrupole mode (m=2) have been observed in pure-barium-ion plasmas in PTSX, with a depressed-tune ν/ν 0 ∼0.9, with the intent of identifying collective modes whose signature will serve as a robust diagnostic for key properties of the beam, such as line density and transverse emittance. The results of particle-in-cell simulations performed with the WARP code are compared to the experimental data.

  1. Intersite Coulomb interaction and Heisenberg exchange

    NARCIS (Netherlands)

    Eder, R; van den Brink, J.; Sawatzky, G.A

    1996-01-01

    Based on exact diagonalization results for small clusters we discuss the effect of intersite Coulomb repulsion in Mott-Hubbard or charge transfers insulators. Whereas the exchange constant J for direct exchange is enhanced by intersite Coulomb interaction, that for superexchange is suppressed. The

  2. Coulomb Effects in Few-Body Reactions

    Directory of Open Access Journals (Sweden)

    Deltuva A.

    2010-04-01

    Full Text Available The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the momentum-space description of three- and four-body nuclear reactions. The necessity for the renormalization of the scattering amplitudes and the reliability of the method is demonstrated. The Coulomb effect on observables is discussed.

  3. Sub-Coulomb heavy ion neutron transfer reactions and neutron orbit sizes

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1976-01-01

    Direct transfer reactions below the Coulomb barrier offer the best means of determining neutron densities near the nuclear surface. This paper describes how heavy ion sub-Coulomb transfer can be used to determine the rms radii of neutron orbits in certain nuclei. The theoretical background is outlined and problems associated with the comparison of experiment and theory are discussed. Experiments performed to calibrate sub-Coulomb heavy ion transfer reactions are presented, and some comments are made on the relative roles of light and heavy ion reactions. Preliminary values for the rms radii of neutron orbits and neutron excesses extracted from recent experiments are given, and some remarks are made concerning the implications of these results for the triton wave function and for the Coulomb energy difference anomaly. (author)

  4. Excited neutral atomic fragments in the strong-field dissociation of N2 molecules

    International Nuclear Information System (INIS)

    Nubbemeyer, T; Eichmann, U; Sandner, W

    2009-01-01

    Excited neutral N* fragments with energies between 3 eV and 15 eV have been observed from the dissociation of N 2 molecules in strong laser fields. The kinetic energy spectrum of the excited neutral atoms corresponds to Coulomb explosion processes involving N + ions. This supports the assumption that the production of excited neutral fragments stems from a process in which one of the participating ions in the Coulomb explosion captures an electron into a Rydberg state.

  5. Coulomb correction calculations of pp Bremsstrahlung

    International Nuclear Information System (INIS)

    Katsogiannis, A.; Amos, K.; Jetter, M.; von Geramb, H.V.

    1994-01-01

    The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs

  6. Multielectron transitions following heavy ion excitation: a comparison of self-consistent field calculations with experiment

    International Nuclear Information System (INIS)

    Hodge, W.L. Jr.

    1976-01-01

    A multielectron transition is an atomic transition in which two or three electrons change their states and a single photon is emitted. Although the mechanism was postulated in the thirties and observed in optical spectra, little research has been done since then. Experiments using heavy ion accelerators have measured satellite lines lower in energy than the Kα 12 energy and higher in energy than the Kβ satellite structure. These transitions are multielectron transitions. Experimental spectra of x-ray transitions induced by heavy ion bombardment are presented, and the experimental energies are compared to Hartree-Fock transition energies. The transitions observed lower in energy than the Kα line are two electron--one photon radiative Auger and three electron--one photon radiative electron rearrangement transitions. Experimental data taken at other laboratories have measured satellite lines higher in energy than the Kβ satellite structure. Relativistic Dirac-Fock transition energies will be compared to the experimental energies and the transitions will be shown to be two electron--one photon x-ray transitions. Heavy ion bombardment creates multiple inner shell vacancies so numerous that the satellite lines can be more intense than the diagram lines. Theoretical transition energies from five different self-consistent field atomic physics computer programs will be compared to the Kα satellite and Kα hypersatellite transitions of calcium. Transition energies from Declaux's relativistic Dirac-Fock program will be compared to the diagram lines of uranium and to other theoretical K x-ray transition energies of Z = 120. A discussion of how to calculate the term energies of a given configuration using the Slater F and G integrals is included

  7. AUGMENTED REALITY AS AN EXCITING ONLINE EXPERIENCE: IS IT REALLY BENEFICIAL FOR BRANDS?

    Directory of Open Access Journals (Sweden)

    Ezgi Eyüboğlu

    2011-01-01

    Full Text Available The present research aims to look at the ways in wh ich Augmented Reality beneficial for brands to create positive brand perc eption, intention of purchase and positive word of mouth. Based on the aims of this r esearch paper and the study of Bluearca and Tamarjan (2010, five measures of perc eived value have been chosen- enhancing convenience, influencing enjoymen t, relevancy of idea, ease of interaction and WOM. Focus group is the method for this study because Augmented Reality application is a very new applica tion in Turkey so there is little prior knowledge and the range of responses l ikely to emerge. Focus groups have the ability to provide us with data not obtain able through paper and pencil self-report measures or observational measures. In areas of study in which little is known, focus groups may be an appropriate place to begin (Byers and Wilcox, 1991: 65. This paper explores the ways how can brands use AR application for their own beneficence. First time exposing this kind of inter active application, consumers’ first impressions, feelings and experiences will be valuable for Turkish brands which might prefer to engage their customers more c losely in future. Banana Flame is the brand chosen for this study because th ere is no Turkish brand using this application properly. Through this study, peop le’s understanding about AR technologies will be able to revealed and those inf ormation will lead Turkish brands developing experiential value and positive a ttitude in minds of their customers. The lack of Turkish brands using this application p roperly caused to choose a foreign brand (Banana Flame which is an Online Fas hion Boutique and first online retailer to integrate Augmented Reality thro ughout entire site in U.S.A. For this reason, it was assumed that Banana Flame has n o brand awareness between young Turkish consumers. Owing to the fact that Ban ana Flame is a women’s fashion brand, focus group included 18-30 years of

  8. Coulomb string tension, asymptotic string tension, and the gluon chain

    OpenAIRE

    Greensite, Jeff; Szczepaniak, Adam P.

    2014-01-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  9. Magnetic Coulomb phase in the spin ice Ho2Ti2O7.

    Science.gov (United States)

    Fennell, T; Deen, P P; Wildes, A R; Schmalzl, K; Prabhakaran, D; Boothroyd, A T; Aldus, R J; McMorrow, D F; Bramwell, S T

    2009-10-16

    Spin-ice materials are magnetic substances in which the spin directions map onto hydrogen positions in water ice. Their low-temperature magnetic state has been predicted to be a phase that obeys a Gauss' law and supports magnetic monopole excitations: in short, a Coulomb phase. We used polarized neutron scattering to show that the spin-ice material Ho2Ti2O7 exhibits an almost perfect Coulomb phase. Our result proves the existence of such phases in magnetic materials and strongly supports the magnetic monopole theory of spin ice.

  10. Observation of a structural transition for coulomb crystals in a linear Paul trap

    DEFF Research Database (Denmark)

    Kjærgaard, N.; Drewsen, M.

    2003-01-01

    A structural transition for laser cooled ion Coulomb crystals in a linear Paul trap just above the stability limit of parametrically resonant excitation of bulk plasma modes has been observed. In contrast to the usual spheroidal shell structures present below the stability limit, the ions arrange...... in a "string-of-disks" configuration. The spheroidal envelopes of the string-of-disks structures are in agreement with results from cold fluid theory usually valid for ion Coulomb crystals if the ion systems are assumed to be rotating collectively....

  11. Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential

    Science.gov (United States)

    Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.

    2018-05-01

    Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.

  12. Observation of a structural transition for Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Kjaergaard, Niels; Drewsen, Michael

    2003-01-01

    A structural transition for laser cooled ion Coulomb crystals in a linear Paul trap just above the stability limit of parametrically resonant excitation of bulk plasma modes has been observed. In contrast to the usual spheroidal shell structures present below the stability limit, the ions arrange in a 'string-of-disks' configuration. The spheroidal envelopes of the string-of-disks structures are in agreement with results from cold fluid theory usually valid for ion Coulomb crystals if the ion systems are assumed to be rotating collectively

  13. Inner shell coulomb ionization by heavy charged particles studied by the SCA model

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1976-06-01

    An outline is given of the development of and some achievements hitherto gained from the semi-classical approximation (SCA) model of atomic Coulomb excitation by heavy charged particles. A few very recent results (1975-1976) are incorporated in the discussion. The SCA model has by now reached a mature state. Hence it seems reasonable to regard the atomic Coulomb excitation phenomenon as part of the extremely complicated excitation mechanism operative in the general ion-atom collision. A clear understanding of the complicated X-ray producing mechanisms in heavy-ion-atom collisions is lacking at present. Despite these facts, the conceptually simple SCA model has furthered our understanding far beyond initial expectations. Moreover, this model has at the same time provided a well-founded starting point for continued researches in this rapidly expanding field of physics. (JIW)

  14. A new analysis technique to measure fusion excitation functions with large beam energy dispersions

    Science.gov (United States)

    Figuera, P.; Di Pietro, A.; Fisichella, M.; Lattuada, M.; Shotter, A. C.; Ruiz, C.; Zadro, M.

    2018-01-01

    Peculiar nuclear structures of two colliding nuclei such has clustering, neutron halo/skin or very low breakup thresholds can affect the reaction dynamics below the Coulomb barrier and this may also have astrophysical consequences. In order to have a better understanding of this topic, in the last decade, several experiments were performed. A typical experimental challenge of such studies is the need to measure excitation functions below the Coulomb barrier, having a strong energy dependence, with rather large beam energy dispersions inside the target. This may easily lead to ambiguities in associating the measured cross section with a proper beam energy. In this paper a discussion on this topic is reported and a new technique to deal with the above problem will be proposed.

  15. Probing Minicharged Particles with Tests of Coulomb's Law

    International Nuclear Information System (INIS)

    Jaeckel, Joerg

    2009-01-01

    Minicharged particles arise in many extensions of the standard model. Their contribution to the vacuum polarization modifies Coulomb's law via the Uehling potential. In this Letter, we argue that tests for electromagnetic fifth forces can therefore be a sensitive probe of minicharged particles. In the low mass range < or approx. μeV existing constraints from Cavendish type experiments provide the best model-independent bounds on minicharged particles.

  16. Multiple Coulomb ordered strings of ions in a storage ring

    International Nuclear Information System (INIS)

    Hasse, Rainer W.

    2002-01-01

    We explain that the anomalous frequency shifts of very close masses measured in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other for many revolutions are captured into a single string if their thermal clouds overlap. They give up their identity and lock into an average frequency

  17. B-13,B-14(n,gamma) via Coulomb Dissociation for Nucleosynthesis towards the r-Process

    NARCIS (Netherlands)

    Altstadt, S. G.; Adachi, T.; Aksyutina, Y.; Alcantara, J.; Alvarez-Pol, H.; Ashwood, N.; Atar, L.; Aumann, T.; Avdeichikov, V.; Barr, M.; Beceiro, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Burgunder, G.; Caamano, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkall, J.; Chakraborty, S.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Pramanik, U. Datta; Fernandez, P. Diaz; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Freudenberger, M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Gernhaeuser, R.; Goebel, K.; Golubev, P.; Gonzalez Diaz, D.; Kalantar-Nayestanaki, N.; Najafi, M. A.; Rigollet, C.; Stoica, V.; Streicher, B.; Van de Walle, J.

    Radioactive beams of B-14,B-15 produced by fragmentation of a primary Ar-40 beam were directed onto a Pb target to investigate the neutron breakup within the Coulomb field. The experiment was performed at the LAND/(RB)-B-3 setup. Preliminary results for the Coulomb dissociation cross sections as

  18. Calculation of nuclear excitation in an electron transition

    Energy Technology Data Exchange (ETDEWEB)

    Pisk, K. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Kaliman, Z. (Rijeka Univ. (Yugoslavia). Faculty of Pedagogics); Logan, B.A. (Ottawa Univ., ON (Canada). Ottawa-Carleton Centre for Physics)

    1989-11-06

    We have made a theoretical investigation of nuclear excitation during an electron transition (NEET). Our approach allows us to express the NEET probabilities in terms of the excited nuclear level width, the energy difference between the nuclear and electron transition, the Coulomb interaction between the initial electron states, and the electron level width. A comparison is made with the available experimental results. (orig.).

  19. Search for excited leptons in the data of the H1 experiment at the HERA collider; Recherche de leptons excites dans les donnees de l'experience H1 aupres du collisionneur HERA

    Energy Technology Data Exchange (ETDEWEB)

    Delerue, N

    2002-05-01

    Composite models are one of the possible extensions of the Standard Model. One of their implications, at the energy in the reach of present particles accelerators, would be the excitation of leptons. This PhD. thesis describes the search for excited leptons with the H1 detector installed on the electron-proton collider HERA in Hamburg (Germany). The data used were accumulated between 1994 and 2000 and amount to an integrated luminosity of 120 pb{sup -1}. The analysis of 6 different topologies were done and cover all the branching ratios of deexcitation of excited electron and neutrino. The numbers of candidates found during those analysis is in agreement with the Standard Model expectations. This means that no evidence of excited leptons production was found at HERA. This result was translated in the form of exclusion limits on the coupling of excited leptons (f/{lambda}) depending on the mass of the excited lepton. For the first time at HERA we addressed the case were the natural decay width of the excited neutrino is wider than the experimental resolution. For the first time also, a study of the variation of limit depending on the ratio f'/f was carried out. This study lead to the setting of limits independent of this ratio. The limits obtained extend results previously obtained at HEA and also the results of direct searches at LEP. (author)

  20. Search for excited leptons in the data of the H1 experiment at the HERA collider; Recherche de leptons excites dans les donnees de l'experience H1 aupres du collisionneur HERA

    Energy Technology Data Exchange (ETDEWEB)

    Delerue, N

    2002-05-01

    Composite models are one of the possible extensions of the Standard Model. One of their implications, at the energy in the reach of present particles accelerators, would be the excitation of leptons. This PhD. thesis describes the search for excited leptons with the H1 detector installed on the electron-proton collider HERA in Hamburg (Germany). The data used were accumulated between 1994 and 2000 and amount to an integrated luminosity of 120 pb{sup -1}. The analysis of 6 different topologies were done and cover all the branching ratios of deexcitation of excited electron and neutrino. The numbers of candidates found during those analysis is in agreement with the Standard Model expectations. This means that no evidence of excited leptons production was found at HERA. This result was translated in the form of exclusion limits on the coupling of excited leptons (f/{lambda}) depending on the mass of the excited lepton. For the first time at HERA we addressed the case were the natural decay width of the excited neutrino is wider than the experimental resolution. For the first time also, a study of the variation of limit depending on the ratio f'/f was carried out. This study lead to the setting of limits independent of this ratio. The limits obtained extend results previously obtained at HEA and also the results of direct searches at LEP. (author)

  1. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    NARCIS (Netherlands)

    Vankan, P.J.W.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.A.H.; Schram, D.C.; Döbele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has

  2. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  3. Coulomb interaction in the supermultiplet basis

    International Nuclear Information System (INIS)

    Ruzha, Ya.Kh.; Guseva, T.V.; Tamberg, Yu.Ya.; Vanagas, V.V.

    1989-01-01

    An approximate expression for the matrix elements of the Coulomb interaction operator in the supermultiplet basis has been derived with the account for the orbitally-nonsymmetric terms. From the general expression a simplified formula for the Coulomb interaction energy has been proposed. On the basis of the expression obtained the contribution of the Coulomb interaction to the framework of a strongly restricted dynamic model in the light (4≤A≤40) and heavy (158≤A≤196) nuclei region has been studied. 19 refs.; 4 tabs

  4. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  5. Selfconsistent theory of Coulomb mixing in nuclei

    International Nuclear Information System (INIS)

    Pyatov, N.I.

    1978-01-01

    The theory of isobaric states is considered according to the Coulomb mixing in nuclei. For a given form of the isovestor potential the separable residual interactions are constructed by means of the isotopic invariance principle. The strength parameter of the force is found from a selfconsistency condition. The charge dependent force is represented by the Coulomb effective potential. The theory of the isobaric states is developed using the random phase approximation. The Coulomb mixing effects in the ground and isobaric 0 + states of even-mass nuclei are investigated

  6. The eikonal phase of supersymmetric Coulomb partners

    CERN Document Server

    Lassaut, M; Lombard, R J

    1998-01-01

    We investigate the eikonal phase and its systematic corrections for the two supersymmetric Coulomb partners V sub 1 and V sub 2 derived by Amado. Apart from a constant shift of -pi for V sub 1 and -2 pi for V sub 2 , the eikonal phase decay to the eikonal phase of the Coulomb potential as 1/kb. For the potential V sub 2 , which is phase equivalent to the Coulomb potential, this result is only valid at b approx =0 and asymptotically; in the intermediate range, it constitutes a lower limit. (author)

  7. Negative differential resistance in nanoscale transport in the Coulomb blockade regime

    International Nuclear Information System (INIS)

    Parida, Prakash; Lakshmi, S; Pati, Swapan K

    2009-01-01

    Motivated by recent experiments, we have studied the transport behavior of coupled quantum dot systems in the Coulomb blockade regime using the master (rate) equation approach. We explore how electron-electron interactions in a donor-acceptor system, resembling weakly coupled quantum dots with varying charging energy, can modify the system's response to an external bias, taking it from normal Coulomb blockade behavior to negative differential resistance (NDR) in the current-voltage characteristics.

  8. Laser wakefield excitation and measurement on a femtosecond time scale: Theory and experiment. Progress report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, T.; Downer, M.

    1995-04-01

    A brief discussion was given for each of the following topics: superluminous wake excitation; photon frequency-shift (photon accelerator) spectroscopy; focusing, diffraction and 2D spectral shift; Raman self-modulation effects; optical preaccelerator; accelerator physics developments; experimental facilities; experimental results--pressure-tunable harmonic generation; experiments in progress--time-domain Rayleigh interferometry; Russian collaboration; and technology transfer.

  9. Laser wakefield excitation and measurement on a femtosecond time scale: Theory and experiment. Progress report, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    Tajima, T.; Downer, M.

    1995-04-01

    A brief discussion was given for each of the following topics: superluminous wake excitation; photon frequency-shift (photon accelerator) spectroscopy; focusing, diffraction and 2D spectral shift; Raman self-modulation effects; optical preaccelerator; accelerator physics developments; experimental facilities; experimental results--pressure-tunable harmonic generation; experiments in progress--time-domain Rayleigh interferometry; Russian collaboration; and technology transfer

  10. Blocage de Coulomb dans une boite quantique laterale contenant un faible nombre d'electrons

    Science.gov (United States)

    Gould, Charles

    Dans ce travail on utilise une nouvelle geometrie pour augmenter le controle sur le nombre d'electrons contenus dans une boite quantique laterale, et ainsi atteindre un regime de petit nombre d'electrons. Ces echantillons permettent une etude du blocage de Coulomb quand les electrons sont injectes a partir d'un gaz electronique a deux dimensions (2DEG). Les mesures a faible champ magnetique demontrent la grande flexibilite des echantillons et montrent que l'on peut faire varier le nombre d'electrons dans une boite quantique a partir de plus de 40 electrons jusqu'a un seul electron, ce qui est assez courant dans les boites quantiques verticales, mais ce qui n'avait jamais ete reussi dans une boite quantique laterale. Nos resultats montrent egalement que dans les boites quantiques laterales il est possible de determiner le spin du niveau qui participe au transport a l'aide du phenomene de blocage de spin. De plus, dans certaines circonstances il est meme possible de determiner le spin total de la boite quantique, ce qui peut avoir des applications pratiques dans des domaines tels l'informatique quantique. Les mesures dans le regime de renversement de spin a un champ magnetique plus eleve montrent l'importance des correlations electrons---electrons dans ces boites quantiques, qui menent a des depolarisations et a des structures de spins qui ont un effet sur le transport. En particulier, ces correlations menent a l'existence de niveaux excites de basse energie qui causent une dependance anormale de l'amplitude des pics de blocage de Coulomb en fonction de la temperature. Nos experiences demontrent egalement la possibilite d'utiliser ces boites quantiques comme sondes pour etudier les proprietes du bord d'un 2DEG. Une voie de recherche a etre exploree.

  11. Coulomb effects in low-energy nuclear fragmentation

    Science.gov (United States)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  12. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  13. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  14. Structure and Spectrum of Dust Coulomb Clusters

    International Nuclear Information System (INIS)

    Cheung, F.M.H.; Ford, C.; Barkby, S.; Samarian, A.A.; Vladimirov, S.V.

    2005-01-01

    In our study, the dynamics of Coulomb cluster systems were simulated for different number of particles. The spectra of energy states of dust Coulomb clusters corresponding to various packing sequences were obtained. The broadening of the spectrum due to inter-ring twist was discovered. It was found that the inter-ring twist will lead to a change in the energy spectrum of Coulomb cluster. This change was accompanied by a distortion of stable shells such that particles are able to compensate for any additional Coulomb energy (owing to the inter-ring twist) by further reducing their radial distance as much as possible. The overall effect is a change in the shape of the outer-shell from circular to elliptical

  15. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  16. Classical- and quantum mechanical Coulomb scattering

    International Nuclear Information System (INIS)

    Gratzl, W.

    1987-01-01

    Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)

  17. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  18. Monotonicity of energy eigenvalues for Coulomb systems

    International Nuclear Information System (INIS)

    Englisch, R.

    1983-01-01

    Generalising results by earlier workers for a large class of Hamiltonians (among others, Hamiltonians of Coulomb systems) which can be written in the form H(α) = H 0 + αH' the present works shows that their eigenvalues decrease with increasing α. This result is applied to Coulomb systems in which the distances between the infinitely heavy particles are varying and also is used to obtain a completion and simplification of proof for the stability of the biexciton. (author)

  19. Coulomb Distortion in the Inelastic Regime

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Solvignon, Dave Gaskell, John Arrington

    2009-09-01

    The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.

  20. Tur\\'an type inequalities for regular Coulomb wave functions

    OpenAIRE

    Baricz, Árpád

    2015-01-01

    Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.

  1. Coulomb interactions in particle beams

    International Nuclear Information System (INIS)

    Jansen, G.H.

    1988-01-01

    This thesis presents a theoretical description of the Coulomb interaction between identical charged particles (electrons or ions) in focussed beam. The charge-density effects as well as the various statistical interaction effects, known as the Boersch effect and the 'trajectory displacement effect', are treated. An introductory literature survey is presented from which the large differences in theoretical approach appear. Subsequently the methods are investigated which are used in studies of comparable problems in plasma physics and stellar dynamics. These turn out to be applicable to particle beams only for certain extreme conditions. The approach finally chosen in this study is twofold. On the one hand use is made of a semi-analytical model in which the statistical and dynamical aspects of the N-particle problem are reduced to two-particle problem. This model results in a number of explicit equations in the experimental parameters, with ties of the beam can be determined directly. On the other hand use has been made of a purely numerical Monte Carlo model in which the kinematical equations of an ensemble interacting particles with 'at random' chosen starting conditions are solved exactly. This model does not lead to general expressions, but yields a specific numerical prediction for each simulated experimental situation. The results of both models appear to agree well mutually. This yields a consistent theory which complements the existing knowledge of particle optics and which allow the description of systems in which the interaction between particles can not be neglected. The predictions of this theory are qualitatively and quantitatively compared with those from some other models, recently reported in literature. (author). 256 refs.; 114 figs.; 1180 schemes; 5 tabs

  2. Electron attraction mediated by Coulomb repulsion.

    Science.gov (United States)

    Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S

    2016-07-21

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  3. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Sarpe, Cristian; Jelzow, Nikolai [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Lillevang, Lasse H. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Götte, Nadine; Zielinski, Bastian [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Balling, Peter [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Senftleben, Arne [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Baumert, Thomas, E-mail: baumert@physik.uni-kassel.de [Institute of Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany)

    2016-06-30

    Highlights: • Temporally asymmetric shaped femtosecond laser pulses lead to excitation over smaller area and larger depth in water. • Transient optical properties are measured radially resolved by spectral interference in an imaging geometry. • Radially resolved spectral interference shows indications of nonlinear propagation effects at high fluences. - Abstract: In this work, laser excitation of water under ambient conditions is investigated by radially resolved common-path spectral interferometry. Water, as a sample system for dielectric materials, is excited by ultrashort bandwidth-limited and temporally asymmetric shaped femtosecond laser pulses, where the latter start with an intense main pulse followed by a decaying pulse sequence, i.e. a temporal Airy pulse. Spectral interference in an imaging geometry allows measurements of the transient optical properties integrated along the propagation through the sample but radially resolved with respect to the transverse beam profile. Since the optical properties reflect the dynamics of the free-electron plasma, such measurements reveal the spatial characteristics of the laser excitation. We conclude that temporally asymmetric shaped laser pulses are a promising tool for high-precision laser material processing, as they reduce the transverse area of excitation, but increase the excitation inside the material along the beam propagation.

  4. Coulomb thermal properties and stability of the Io plasma torus

    Science.gov (United States)

    Barbosa, D. D.; Coroniti, F. V.; Eviatar, A.

    1983-01-01

    Coulomb collisional energy exchange rates are computed for a model of the Io plasma torus consisting of newly created pickup ions, a background of thermally degraded intermediary ions, and a population of cooler electrons. The electrons are collisionally heated by both the pickup ions and background ions and are cooled by electron impact excitation of plasma ions which radiate in the EUV. It is found that a relative concentration of S III pickup ions forbidden S III/electrons = 0.1 with a temperature of 340 eV can deliver energy to the electrons at a rate of 3 x 10 to the -13th erg/cu cm per sec, sufficient to power the EUV emissions in the Io torus. The model predicts a background ion temperature Ti of about 53 eV and an electron temperature Te of about 5.5 eV on the basis of steady-state energy balance relations at Coulomb rates. The model also predicts electron temperature fluctuations at the 30 percent level on a time scale of less than 11 hours, consistent with recent observations of this phenomenon.

  5. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  6. Study of Ground State Wave-function of the Neutron-rich 29,30Na Isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Rahaman A.

    2014-03-01

    Full Text Available Coulomb breakup of unstable neutron rich nuclei 29,30Na around the ‘island of inversion’ has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s⊗νs1/2 and 29Na(g.s⊗νs1/2,respectively.

  7. Coulomb nuclear interference with deuterons in even palladium isotopes

    International Nuclear Information System (INIS)

    Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Ukita, G.M.

    2004-01-01

    Angular distributions for the inelastic scattering of 13.0 MeV deuterons on 104,106,108,110 Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12 0 ≤θ lab ≤64 0 . A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = δ LC /δ LN , the ratio of charge to isoscalar deformation lengths, and of (δ LN ) 2 were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For 104 Pd, and preliminary for 108 Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for 106 Pd, C = 1.06(3) and for 110 Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)

  8. Coulomb nuclear interference with deuterons in even palladium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M. [Sao Paulo Univ., SP (Brazil); Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia

    2004-09-15

    Angular distributions for the inelastic scattering of 13.0 MeV deuterons on {sup 104,106,108,110}Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12{sup 0} {<=}{theta}{sub lab} {<=}64{sup 0}. A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = {delta}{sub LC}/{delta}{sub LN}, the ratio of charge to isoscalar deformation lengths, and of ({delta}{sub LN}){sup 2} were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For {sup 104}Pd, and preliminary for {sup 108}Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for {sup 106}Pd, C = 1.06(3) and for {sup 110}Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)

  9. Influence of Coulomb screening on lateral lasing in VECSELs.

    Science.gov (United States)

    Wang, Chengao; Malloy, Kevin; Sheik-Bahae, Mansoor

    2015-12-14

    Parasitic lateral lasing in certain optically pumped semiconductor disc lasers drains the gain of the vertical mode and thus causes power scaling degradation and premature rollover in surface emitting operation. We have observed this effect in both multiple quantum wells (MQW) (GaInAs/GaAs) and double heterostructures (DHS) (GaInP/GaAs/GaInP) under pulsed excitation even when the gain chip lateral dimensions are much larger than the diameter of the pump laser. Lateral lasing occurs persistently between cleaved facets at a band-tail wavelength much longer than the peak of the gain. We show that the effect of bandgap renormalization due to Coulomb screening explains this phenomena. Exploiting the simple analytical plasma theory of bulk semiconductors (Banyai & Koch, 1986), we can account for such an effect in double heterostructures.

  10. Many-nucleon transfer reactions at the coulomb barrier

    International Nuclear Information System (INIS)

    Wegmann, H.

    1974-01-01

    The aim of the present work was to investigate the many-nucleon transfer with heavy ion radiation near the coulomb barrier. The neutron-rich targets 76 Ge, sup(92,94,96)Zr and 100 Mo were thus irradiated with 32 S and 34 S radiation. By measuring the activity of the back-scattered light reaction products in the transfer, total cross sections were determined for the 3p, 4p, 3pn, 4pn, 3n, 4n and 6n transfer. Excitation functions for the 3p, 4p, 3pn and 4pn transfer were measured for the target-projectile combination 96 Zr- 32 S. Differential cross sections could be determined with 96 Zr and 100 Mo. The results were compared with various theoretical calculations. (orig./LH) [de

  11. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    International Nuclear Information System (INIS)

    Vankan, P.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.; Schram, D.C.; Doebele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has a bandwith of 0.15 cm -1 . The wavelength of the laser radiation is calibrated by simultaneous recording of the two-photon laser induced fluorescence spectrum of nitric oxide. The excited hydrogen populations are calibrated on the basis of coherent anti-Stokes Raman scattering measurements. A population distribution is measured in the shock region of a pure hydrogen plasma expansion. The higher rotational levels (J>5) show overpopulation compared to a Boltzmann distribution determined from the lower rotational levels (J≤5)

  12. Periodicity and chaos in strongly perturbed classical orbitals for Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Klar, H

    1986-01-01

    Within the framework of classical mechanics two prototypes of strongly perturbed orbitals, the diamagnetism in hydrogen and electronic double excitation, are analyzed near critical phase space points (fixed points). The motion of the hydrogen electron under the joint influence of the Coulomb field and the magnetic field is periodic for any field strengths. For a two-electron atom however the author finds a chaotic time evolution of the electron pair correlation, causing presumably irregular spectral patterns. (Auth.).

  13. Double excitation of helium by ion impact. 2: Experiment and theory for 2-3 MeV proton impact

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Gleizes, A. [Toulouse-3 Univ., 31 (France); Andriamonje, S. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires]|[Institut National de Physique Nucleaire et Physique des Particules, 33 - Gradignan (France); Martin, F. [Universidad Autonoma de Madrid (Spain). Dept. de Quimica; Salin, A. [Bordeaux-1 Univ., 33 -Talence (France). Lab. des Collisions Atomiques

    1995-02-28

    Experimental and theoretical studies of the double excitation of helium by 2-3 MeV proton impact are presented. A detailed angular dependence of the lineshapes and intensities of the first 2l2l` resonances is discussed. The resonances are characterized by the Shore parameters A and B and the Fano parameter Q. Calculations within Born-I approximation describe approximately the excitation of the 2s{sup 2} {sup 1}S and 2s2p {sup 1}P resonances whereas they fail to reproduce the experimental findings for the 2p{sup 2} {sup 1}D one. On the other hand, close-coupling calculations improve the description of the excitation of the 2s2p{sup 1}P and explains very nicely the 2p{sup 2} {sup 1}D one. Weak discrepancies in the description of the 2s{sup 2} {sup 1}S and 2s2p {sup 1}P excitation in the forward direction are thought to be the signature of a residual post-collisional effect. It is shown that it does not affect the observed lineshapes in our collision velocity range. The integration of the resonance parameters over the emission angle of the electron allows us to deduce total electron yields and to connect the resulting profile with photoionization data. (author).

  14. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  15. Critical opalescence in the pure Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, V.B., E-mail: vic5907@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Trigger, S.A., E-mail: satron@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)

    2011-04-18

    Highlights: The review of the critical opalescence problem is presented. Light scattering in a two-component electron-nuclear system is studied. The exact relations between the structure factors and compressibility are found. The obtained relations are valid for strong interaction for the Coulomb systems. The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  16. Critical opalescence in the pure Coulomb system

    International Nuclear Information System (INIS)

    Bobrov, V.B.; Trigger, S.A.

    2011-01-01

    Highlights: → The review of the critical opalescence problem is presented. → Light scattering in a two-component electron-nuclear system is studied. → The exact relations between the structure factors and compressibility are found. → The obtained relations are valid for strong interaction for the Coulomb systems. → The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  17. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  18. Coulomb states in atoms and solids

    International Nuclear Information System (INIS)

    Ortalano, D.M.

    1988-05-01

    In this dissertation, an empirical quantum defect approach to describe the valence excitons of the rare gas solids is developed. These Coulomb states are of s-symmetry and form a hydrogen-like series which converges to the bottom of the lowest conduction band. A non-zero quantum defect is found for all of the excitons of neon, argon and xenon. For these systems, then, there exists, in addition to the screened Coulombic component, a non-Coulombic component to the total exciton binding energy. The Wannier formalism is, therefore, inappropriate for the excitons of Ne, Ar and Xe. From the sign of the quantum defect, the non-Coulombic potential is repulsive for Ne and Ar, attractive for Xe, and nearly zero for Kr. This is opposite to that for the Rydberg states of the corresponding rare gas atoms, where the non-Coulombic potential between the electron and the cation is attractive for all of the atoms. The excitons then, are not simply perturbed Rydberg states of the corresponding rare gas atoms (i.e., the excitons do not possess atomic parentage). Interatomic term value/band gap energy correlations and reduced term value/reduced band gap correlations were performed. These correlations were exploited to provide further evidence against both the Wannier formalism and the atomic parentage view point. From these correlations, it was also discovered that the non-Coulombic potential varies smoothly across the valence isoelectronic series of solids, and that it becomes more attractive (or less repulsive) in going from neon to xenon. In order to address the atomic parentage controversy, it was necessary to compare the excitons to the low-n Rydberg states of the rare gas atoms. A review of the quantum defect description of the atomic Rydberg states is, therefore, presented. Also, Rydberg term value/ionization energy correlations are discussed and compared with the analogous exciton correlations. 7 refs., 10 figs., 5 tabs

  19. Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers.

    Science.gov (United States)

    von Keyserlingk, C W; Simon, S H; Rosenow, Bernd

    2015-09-18

    Recent experiments use Fabry-Perot (FP) interferometry to claim that the ν=5/2 quantum Hall state exhibits non-Abelian topological order. We note that the experiments appear inconsistent with a model neglecting bulk-edge Coulomb coupling and Majorana tunneling, so we reexamine the theory of FP devices. Even a moderate Coulomb coupling may strongly affect some fractional plateaus, but very weakly affect others, allowing us to model the data over a wide range of plateaus. While experiments are consistent with the ν=5/2 state harboring Moore-Read topological order, they may have measured Coulomb effects rather than an "even-odd effect" due to non-Abelian braiding.

  20. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  1. Coulomb collisions in the solar wind

    Science.gov (United States)

    Klein, L. W.; Ogilvie, K. W.; Burlaga, L. F.

    1985-01-01

    A major improvement of the present investigation over previous studies of the subject is related to the use of helium temperatures obtained from helium ion measurements uncontaminated by the high-velocity tail of the proton distribution. More observations, covering a large parameter range, were employed, and the effects of interspecies drift were taken into account. It is shown in a more definite way than has been done previously, that Coulomb collisions provide the most important mechanism bringing about equilibrium between helium and protons in the solar wind. Other mechanisms may play some part in restricted regions, but Coulomb collisions are dominant on the macroscale.

  2. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...

  3. Critical behavior in graphene with Coulomb interactions.

    Science.gov (United States)

    Wang, Jianhui; Fertig, H A; Murthy, Ganpathy

    2010-05-07

    We demonstrate that, in the presence of Coulomb interactions, electrons in graphene behave like a critical system, supporting power law correlations with interaction-dependent exponents. An asymptotic analysis shows that the origin of this behavior lies in particle-hole scattering, for which the Coulomb interaction induces anomalously close approaches. With increasing interaction strength the relevant power law changes from real to complex, leading to an unusual instability characterized by a complex-valued susceptibility in the thermodynamic limit. Measurable quantities, as well as the connection to classical two-dimensional systems, are discussed.

  4. Observation of a Coulomb flux tube

    Science.gov (United States)

    Greensite, Jeff; Chung, Kristian

    2018-03-01

    In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.

  5. Perturbative ambiguities in Coulomb gauge QCD

    International Nuclear Information System (INIS)

    Doust, P.

    1987-01-01

    The naive Coulomb gauge Feynman rules in non-abelian gauge theory give rise to ambiguous integrals, in addition to the usual ultraviolet divergences. Generalizing the work of Cheng and Tsai, these ambiguities are resolved to all orders in perturbation theory, by defining a gauge that interpolates smoothly between the Feynman gauge and the Coulomb gauge. The extra terms V 1 +V 2 of Christ and Lee are identified with certain two-loop ambiguous terms. However, there still seem to be unsolved problems connected with renormalisation. copyright 1987 Academic Press, Inc

  6. Critical opalescence in the pure Coulomb system

    Science.gov (United States)

    Bobrov, V. B.; Trigger, S. A.

    2011-04-01

    Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  7. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.

    Science.gov (United States)

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-28

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  8. The rotational temperature of polar molecular ions in Coulomb crystals

    International Nuclear Information System (INIS)

    Bertelsen, Anders; Joergensen, Solvejg; Drewsen, Michael

    2006-01-01

    With MgH + ions as a test case, we investigate to what extent the rotational motion of smaller polar molecular ions sympathetically cooled into Coulomb crystals in linear Paul traps couples to the translational motions of the ion ensemble. By comparing the results obtained from rotational resonance-enhanced multiphoton photo-dissociation experiments with data from theoretical simulations, we conclude that the effective rotational temperature exceeds the translational temperature (<100 mK) by more than two orders of magnitude, indicating a very weak coupling. (letter to the editor)

  9. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".

    Science.gov (United States)

    Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.

  10. A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

    International Nuclear Information System (INIS)

    Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio

    2017-01-01

    We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancellation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude. (author)

  11. H{sub 2} EXCITATION STRUCTURE ON THE SIGHTLINES TO {delta} SCORPII AND {zeta} OPHIUCI: FIRST RESULTS FROM THE SUB-ORBITAL LOCAL INTERSTELLAR CLOUD EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Nell, Nicholas; Kane, Robert; Green, James C. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Burgh, Eric B. [SOFIA/USRA, NASA Ames Research Center, M/S N232-12, Moffett Field, CA 94035 (United States); Beasley, Matthew, E-mail: kevin.france@colorado.edu [Planetary Resources, Inc., 93 S Jackson St 50680, Seattle, WA 98104-2818 (United States)

    2013-07-20

    We present the first science results from the Sub-orbital Local Interstellar Cloud Experiment (SLICE): moderate resolution 1020-1070 A spectroscopy of four sightlines through the local interstellar medium. High signal-to-noise (S/N) spectra of {eta} Uma, {alpha} Vir, {delta} Sco, and {zeta} Oph were obtained during a 2013 April 21 rocket flight. The SLICE observations constrain the density, molecular photoexcitation rates, and physical conditions present in the interstellar material toward {delta} Sco and {zeta} Oph. Our spectra indicate a factor of two lower total N(H{sub 2}) than previously reported for {delta} Sco, which we attribute to higher S/N and better scattered light control in the new SLICE observations. We find N(H{sub 2}) = 1.5 Multiplication-Sign 10{sup 19} cm{sup -2} on the {delta} Sco sightline, with kinetic and excitation temperatures of 67 and 529 K, respectively, and a cloud density of n{sub H} = 56 cm{sup -3}. Our observations of the bulk of the molecular sightline toward {zeta} Oph are consistent with previous measurements (N(H{sub 2}) Almost-Equal-To 3 Multiplication-Sign 10{sup 20} cm{sup -2} at T{sub 01}(H{sub 2}) = 66 K and T{sub exc} = 350 K). However, we detect significantly more rotationally excited H{sub 2} toward {zeta} Oph than previously observed. We infer a cloud density in the rotationally excited component of n{sub H} Almost-Equal-To 7600 cm{sup -3} and suggest that the increased column densities of excited H{sub 2} are a result of the ongoing interaction between {zeta} Oph and its environment; also manifest as the prominent mid-IR bowshock observed by WISE and the presence of vibrationally excited H{sub 2} molecules observed by the Hubble Space Telescope.

  12. Electric quadrupole excitation of the first excited state of 11B

    International Nuclear Information System (INIS)

    Fewell, M.P.; Spear, R.H.; Zabel, T.H.; Baxter, A.M.

    1980-02-01

    The Coulomb excitation of backscattered 11 B projectiles has been used to measure the reduced E2 transition probability B(E2; 3/2 - →1/2 - ) between the 3/2 - ground state and the 1/2 - first excited state of 11 B. It is found that B(E2; 3/2 - →1/2 - ) = 2.1 +- 0.4 e 2 fm 4 , which agrees with shell-model predictions but is a factor of 10 larger than the prediction of the core-excitation model

  13. Simplistic Coulomb Forces in Molecular Dynamics

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.

    2012-01-01

    In this paper we compare the Wolf method to the shifted forces (SF) method for efficient computer simulation of bulk systems with Coulomb forces, taking results from the Ewald summation and particle mesh Ewald methods as representing the true behavior. We find that for the Hansen–McDonald molten...

  14. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  15. Coulomb Coupling Between Quantum Dots and Waveguides

    National Research Council Canada - National Science Library

    Porod, Wolfgang

    2000-01-01

    .... We considered both III-V and Si-based semiconductor systems. In later years, the AASERT award supported work on QCA realizations in Coulomb-blockade metal-dot systems, which were successful in demonstrating the basic QCA switching operation...

  16. Generalized Coulomb gauge without Gribov ambiguity

    Energy Technology Data Exchange (ETDEWEB)

    Fachin, S.; Parrinello, C. (New York Univ., NY (United States). Physics Dept.)

    1992-05-01

    We discuss a global gauge-fixing prescription that is free of the Gribov problem, preserves reflection positivity and contains as a limiting case the (maximal) Coulomb gauge. In such a formalism it is very easy to check that only color singlet states propagate in Euclidean time, for any value of [beta]. (orig.).

  17. Lee-Nauenberg theorem and Coulomb scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, H; Frenkel, J [Sao Paulo Univ. (Brazil). Instituto de Fisica

    1975-08-01

    Lee-Nauenberg analysis is extended to the case of Coulomb scattering, where the diagonal elements of the Hamiltonian interaction are singular functions. It is shown, using a simple argument, that the leading infrared singularities in the cross-section are mutually canceled out.

  18. Monotonicity and concavity in Coulomb systems

    International Nuclear Information System (INIS)

    Englisch, R.; Englisch, H.; Karl-Marx-Universitaet, Leipzig

    1986-01-01

    The eigenvalues of H(α) = H 0 + αH * , where H * is an arbitrary Coulomb potential, decrease with increasing α ≥ 0. Linear and parabolic bounds for the ground state energy are presented. These bounds are applied to the biexciton and the exciton at a neutral donor. (orig.)

  19. Interatomic Coulombic decay in helium nanodroplets

    DEFF Research Database (Denmark)

    Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana

    2017-01-01

    , or in the droplet interior. ICD at the surface gives rise to energetic He+ ions as previously observed for free He dimers. ICD deeper inside leads to the ejection of slow He+ ions due to Coulomb explosion delayed by elastic collisions with neighboring He atoms, and to the formation of Hek+ complexes....

  20. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  1. Coulomb singularity effects in tunnelling spectroscopy of individual impurities

    OpenAIRE

    Arseyev, P. I.; Maslova, N. S.; Panov, V. I.; Savinov, S. V.

    2002-01-01

    Non-equilibrium Coulomb effects in resonant tunnelling processes through deep impurity states are analyzed. It is shown that Coulomb vertex corrections to the tunnelling transfer amplitude lead to a power-law singularity in current- voltage characteristics

  2. Shape isomerism and shape coexistence effects on the Coulomb energy differences in the N=Z nucleus 66As and neighboring T=1 multiplets

    Science.gov (United States)

    de Angelis, G.; Wiedemann, K. T.; Martinez, T.; Orlandi, R.; Petrovici, A.; Sahin, E.; Valiente-Dobón, J. J.; Tonev, D.; Lunardi, S.; Nara Singh, B. S.; Wadsworth, R.; Gadea, A.; Kaneko, K.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Blank, B.; Bracco, A.; Carpenter, M. P.; Chiara, C. J.; Farnea, E.; Gottardo, A.; Greene, J. P.; Lenzi, S. M.; Leoni, S.; Lister, C. J.; Mengoni, D.; Napoli, D. R.; Pechenaya, O. L.; Recchia, F.; Reviol, W.; Sarantites, D. G.; Seweryniak, D.; Ur, C. A.; Zhu, S.

    2012-03-01

    Excited states of the N=Z=33 nucleus 66As have been populated in a fusion-evaporation reaction and studied using γ-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the T=1 states. A new 3+ isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the T=1 states with their analog partners. The unusual behavior of the Coulomb energy differences in the A=70 mass region is explained through different shape components (oblate and prolate) within the members of the same isospin multiplets. This breaking of the isospin symmetry is attributed to the correlations induced by the Coulomb interaction.

  3. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries

    International Nuclear Information System (INIS)

    Ng, Kong Soon; Moo, Chin-Sien; Chen, Yi-Ping; Hsieh, Yao-Ching

    2009-01-01

    The coulomb counting method is expedient for state-of-charge (SOC) estimation of lithium-ion batteries with high charging and discharging efficiencies. The charging and discharging characteristics are investigated and reveal that the coulomb counting method is convenient and accurate for estimating the SOC of lithium-ion batteries. A smart estimation method based on coulomb counting is proposed to improve the estimation accuracy. The corrections are made by considering the charging and operating efficiencies. Furthermore, the state-of-health (SOH) is evaluated by the maximum releasable capacity. Through the experiments that emulate practical operations, the SOC estimation method is verified to demonstrate the effectiveness and accuracy.

  4. Poisson equation in the Kohn-Sham Coulomb problem

    OpenAIRE

    Manby, F. R.; Knowles, Peter James

    2001-01-01

    We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory.

  5. Radio frequency plasma excitation

    International Nuclear Information System (INIS)

    Burden, M.St.J.; Cross, K.B.

    1979-01-01

    An investigation into the use of rf sputtering for ion cleaning of insulating substrates before ion plating is reported. Initial experiments consisted of sputtering metals with rf power followed by the deposition of copper onto glass slides using rf plasma excitation and biasing supply. It was found that good quality films were obtained by rf ion plating onto plastics with excellent adhesion over a wide operating pressure range. A block schematic of the rf plasma excitation system is shown. (UK)

  6. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  7. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-09-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  8. Voiced Excitations

    National Research Council Canada - National Science Library

    Holzricher, John

    2004-01-01

    To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...

  9. Exciting Pools

    Science.gov (United States)

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  10. Electron-impact excitation of molecular ions

    International Nuclear Information System (INIS)

    Neufeld, D.A.; Dalgarno, A.

    1989-01-01

    A simple expression is derived that relates the rate coefficient for dipole-allowed electron-impact excitation of a molecular ion in the Coulomb-Born approximation to the Einstein A coefficient for the corresponding radiative decay. Results are given for several molecular ions of astrophysical interest. A general analytic expression is obtained for the equilibrium rotational level populations in the ground vibrational state of any molecular ion excited by collisions with electrons. The expression depends only upon the electron temperature, the electron density, and the rotational constant of the molecular ion. A similar expression is obtained for neutral polar molecules

  11. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  12. Non linear evolution of plasma waves excited to mode conversion at the vicinity of plasma resonance. Application to experiments of ionosphere modification

    International Nuclear Information System (INIS)

    Cros, Brigitte

    1989-01-01

    This research thesis reports the study of the non linear evolution of plasma waves excited by mode conversion in a non homogeneous, non collisional, and free-of-external-magnetic-field plasma. Experiments performed in the microwave domain in a plasma created by means of a multi-polar device show that the evolution of plasma waves displays a transition between a non linear quasi-steady regime and a stochastic regime when the power of incident electromagnetic waves or plasma gradient length is increased. These regimes are characterized through a numerical resolution of Zakharov equations which describe the coupled evolution of plasma wave envelope and low frequency density perturbations [fr

  13. The Coulomb-nuclear force interference in the system 32S + 60Ni

    International Nuclear Information System (INIS)

    Dannhaeuser, G.

    1980-01-01

    For the reaction 60 Ni( 32 S, 32 S*) 60 Ni* using particle-γ-coincidences the excitation functions of 32 S(2 + 1 ) and 60 Ni(2 + 1 ) for projectile energies of 70-100 MeV as well as with Si single counters the angular distribution of the elastically and inelastically scattered 32 S ions for incident energies of 90, 95, and 100 MeV were measured. A comparison of the measurements with the results of different computer codes led to following results: 1.) At the determination of the static quadrupole moment Q 2 of 32 S using the reorientation effect the influence of the nuclear force can be neglected for projectile energies Esub(P) 32 S the value Q 2 = -0.18 +- 0.04 eb was found. (Hereby destructive interference with the virtual excitation of the 2 + 2 -state is assumed). 3.) For projectile energies Esub(P) >= 72 MeV at which the excitation by nuclear forces was small against the Coulomb excitation, an evaluation of the excitation function of 32 S(2 + 1 ) by the semiclassical code NCL, which regards the influence of the nuclear interaction approximatively, yielded values for the static quadrupole moment, which agree within the measurement errors with the above value. 4.) For the quantitative analysis of the measured angular distributions a quantum mechanical CC-code was required. 5.) Using the semiclassical CC-code NCL an illustrative and detailed interpretation of the excitation functions of 32 S(2 + 1 ) and 60 Ni(2 + 1 ) could be given. 6.) The code NCL allows the study of the influence of the Coulomb-nuclear force interference on the temporal behaviour of the excitation process. 7.) Using the code NCL the angular distribution of the decay γ quanta for a fixed particle-scattering angle theta approx. 0 in dependence on the incident energy was calculated. (orig.) [de

  14. 13,14B(n, γ) via Coulomb Dissociation for Nucleosynthesis towards the r-Process

    International Nuclear Information System (INIS)

    Altstadt, S.G.; Adachi, T.; Aksyutina, Y.; Alcantara, J.; Alvarez-Pol, H.; Ashwood, N.; Atar, L.; Aumann, T.; Avdeichikov, V.; Barr, M.; Beceiro, S.; Bemmerer, D.

    2014-01-01

    Radioactive beams of 14,15 B produced by fragmentation of a primary 40 Ar beam were directed onto a Pb target to investigate the neutron breakup within the Coulomb field. The experiment was performed at the LAND/R 3 B setup. Preliminary results for the Coulomb dissociation cross sections as well as for the astrophysically interesting inverse reactions, 13,14 B(n,γ), are presented

  15. {sup 13,14}B(n, γ) via Coulomb Dissociation for Nucleosynthesis towards the r-Process

    Energy Technology Data Exchange (ETDEWEB)

    Altstadt, S.G., E-mail: s.altstadt@gsi.de [Goethe-Universität Frankfurt am Main, D-60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt (Germany); Adachi, T. [KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen (Netherlands); Aksyutina, Y. [GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Alcantara, J.; Alvarez-Pol, H. [Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela (Spain); Ashwood, N. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Atar, L. [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Aumann, T. [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt (Germany); Avdeichikov, V. [Department of Physics, Lund University, S-22100 Lund (Sweden); Barr, M. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Beceiro, S. [Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela (Spain); Bemmerer, D. [Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden (Germany); and others

    2014-06-15

    Radioactive beams of {sup 14,15}B produced by fragmentation of a primary {sup 40}Ar beam were directed onto a Pb target to investigate the neutron breakup within the Coulomb field. The experiment was performed at the LAND/R{sup 3}B setup. Preliminary results for the Coulomb dissociation cross sections as well as for the astrophysically interesting inverse reactions, {sup 13,14}B(n,γ), are presented.

  16. Coulomb dissociation in relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Mercier, M.T.

    1982-01-01

    Targets of 12 C, 59 Co, 89 Y, 197 Au and 238 U were bombarded by 2.1 GeV/A 1 H, 12 C and 20 Ne projectiles using the SuperHILAC and BEVATRON facilities at Lawrence Berkeley Laboratory (LBL). The beam flux was calculated by monitoring the decay of 11 C produced from the 12 C(projectile,projectile n) 11 C reaction. Residual gamma-ray activity from the Co, Y, Au and U targets was collected in order to trace the decay of several reaction products. The experiment focused on the calculation of cross sections for the formation of products with one neutron removed from the various target nuclei. Corrections to the saturation activity of each product were made for detector efficiency, gamma-ray absorption in the target, gamma-ray branching, beam geometry and secondary reactions. These date are shown to be inconsistent with a geometrical form given by sigma varies as (A/sub p/sup 1/3/ + A/sub t/sup 1/3/ - b) where b is a universal constant. In fact the data indicates the b = A/sub t/sup 1/3/. Instead the data can be fit quite well by a simple empirical relation, sigma/sub emp/ = 12.0 mb A/sub p/sup 1/3/ A/sub t/sup 1/3/. It is demonstrated that an empirical fit which varies as A/sub t/sup 1/3/ is also consistent with projectile fragmentation data measured by a group at LBL. In addition these data are compared to a theoretical prediction which is the sum of a renormalized Glauber term and a term which represents the contribution due to Coulomb or electromagnetic dissociation (ED). The theoretical predictions are quite low for the 12 C projectile data and high for the 20 Ne projectile data. The systematic trends from the comparison seem to indicate that theoretical prediction for the ED contribution is rising too fast as a function of projectile for a given target

  17. Bond alternation in the infinite polyene: effect of long range Coulomb interactions

    International Nuclear Information System (INIS)

    Mazumdar, S.; Campbell, D.K.

    1985-01-01

    We investigate the effects of long-range Coulomb interactions on bond and site dimerizations in a one-dimensional half-filled band. It is shown that the ground state broken symmetry is determined by two sharp inequalities involving the Coulomb parameters. Broken symmetry with periodicity 2k/sub F/ is guaranteed only if the first inequality (downward convexity of the intersite potential) is obeyed, while the second inequality gives the phase boundary between the bond-dimerized and site-dimerized phases. Application of these inequalities to the Pariser-Parr-Pople model for linear polyenes shows that the infinite polyene has enhanced bond alternation for both Ohno and Mataga-Nishimoto parametrizations of the intersite Coulomb terms. The possible role of distant neighbor interactions in photogeneration experiments is discussed. 26 refs., 3 figs

  18. Nuclear sizes and the Coulomb Displacement Energy

    International Nuclear Information System (INIS)

    Van der Werf, S.Y.

    1997-01-01

    Data on Coulomb Displacement Energies in the mass range A = 40 - 240 are analyzed in the deformed Liquid Drop model and in the independent particle model. Reduced half-widths of Woods-Saxon mean-field potential of the resulting neutron-excess distributions are deduced. It is argued that the Nolen-Schiffer anomaly may be lifted by allowing for a slight binding-energy dependence of the mean-field potential geometry. (author)

  19. Chaos near the Coulomb barrier. Nuclear molecules

    International Nuclear Information System (INIS)

    Strayer, M.R.

    1984-01-01

    The present work examines in detail the classical behavior of the α + 14 C and the 12 C + 12 C(O + ) collison at energies near the Coulomb barrier. The long-time motion of the compound nuclear system is identified in terms of its classical quasiperiodic and chaotic behavior. The consequences of this motion are discussed and interpreted in terms of the evolution of the system along a dynamical energy surface. 45 references

  20. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  1. How to calculate the Coulomb scattering amplitude

    International Nuclear Information System (INIS)

    Grosse, H.; Narnhofer, H.; Thirring, W.

    1974-01-01

    The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)

  2. Theory of superconductivity and spin excitations in cuprates

    Science.gov (United States)

    Plakida, Nikolay M.

    2018-06-01

    A microscopic theory of high-temperature superconductivity in strongly correlated systems as cuprates is presented. The two-subband extended Hubbard model is considered where the intersite Coulomb repulsion and electron-phonon interaction are taken into account. The low-energy spin excitations are considered within the t-J model.

  3. Regularization of the Coulomb scattering problem

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.

    2004-01-01

    The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers

  4. Coulomb explosion of large penetrating molecular clusters

    International Nuclear Information System (INIS)

    Wegner, H.E.; Thieberger, P.

    1981-01-01

    The main purpose of these Coulomb explosion measurements is to determine what kind of structure these and other complex molecules may have and also to determine what other special phenomena may come into play as these complex molecules pass through matter. Although the first preliminary measurements involving the Coulomb explosion of these molecules was reported at this workshop last year, the results are briefly summarized before going on to the more recent measurements obtained with a completely new kind of detector system. This new image intensifier detector system, coupled with a microcomputer, has proven to be a valuable tool in the study of the Coulomb explosion of complex molecules that penetrate matter. In the future, with some additional improvements in the system, and much better statistics for most of the molecules studied to date, it is expected that much new information will be gained about the structure of many kinds of complex molecular ions including the special effects that may be encountered when these fast molecular ions penetrate matter

  5. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    Science.gov (United States)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  6. Theory of Coulomb drag for massless Dirac fermions

    International Nuclear Information System (INIS)

    Carrega, M; Principi, A; Polini, M; Tudorovskiy, T; Katsnelson, M I

    2012-01-01

    Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by other authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann-transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the transport scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of ‘thick’ and ‘thin’ spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity for the case when one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical quadratic-in-temperature behavior of the transresistivity. (paper)

  7. Positronium in the AEgIS experiment: study on its emission from nanochanneled samples and design of a new apparatus for Rydberg excitations

    CERN Document Server

    Di Noto, Lea

    This experimental thesis has been done in the framework of AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy), an experiment installed at CERN, whose primary goal is the measurement of the Earth's gravitational acceleration on anti-hydrogen. The antiatoms will be produced by the charge exchange reaction, where a cloud of Ps in Rydberg states interacts with cooled trapped antiprotons. Since the charge exchange cross section depends on Ps velocity and quantum number, the velocity distribution of Ps emitted by a positron-positronium converter as well as its excitation in Rydberg states have to be studied and optimized. In this thesis Ps cooling and emission into vacuum from nanochannelled silicon targets was studied by performing Time of Flight measurements with a dedicated apparatus conceived to receive the slow positron beam as produced at the Trento laboratory or at the NEPOMUC facility at Munich. Measurements were done by varying the positron implantation energy, the sample temperature and ...

  8. Excited fermions

    International Nuclear Information System (INIS)

    Boudjema, F.; Djouadi, A.; Kneur, J.L.

    1992-01-01

    The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs

  9. Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Figueira de Morisson Faria, C.

    2018-06-01

    We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.

  10. Coulomb-Sturmian separable expansion approach: Three-body Faddeev calculations for Coulomb-like interactions

    International Nuclear Information System (INIS)

    Papp, Z.; Plessas, W.

    1996-01-01

    We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society

  11. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.

    Science.gov (United States)

    Yu, Zhizhou; Chen, Jian; Zhang, Lei; Wang, Jian

    2013-12-11

    We report an investigation of Coulomb blockade transport through an endohedral N@C60 weakly coupled with aluminum leads, employing the first-principles method combined with the Keldysh non-equilibrium Green's function derived from the equation of motion beyond the Hartree-Fock approximation. The differential conductance characteristics of the molecular device are calculated within the Coulomb blockade regime, which shows the Coulomb diamond as observed experimentally. When the gate voltage is less than that of the degeneracy point, there are two peaks in the differential conductance with an excited state induced by the change of the exchange interaction between the spin of C60 and the encapsulated nitrogen atom due to the transition from N@C(1-)(60) to N@C(2-)(60), while for a gate voltage larger than that of the degeneracy point, no excited state is available due to the quenching of exchange energy. As a result, there is only one Coulomb blockade peak in the differential conductance from the electron tunneling through the highest energy level below the Fermi level. Our first-principles results are in good agreement with experimental data obtained by an endohedral N@C60 molecular device.

  12. Dynamics of Coulomb correlations in semiconductors in high magnetic fields

    International Nuclear Information System (INIS)

    Fromer, Neil Alan

    2002-01-01

    Current theories have been successful in explaining many nonlinear optical experiments in undoped semiconductors. However, these theories require a ground state which is assumed to be uncorrelated. Strongly correlated systems of current interest, such as a two dimensional electron gas in a high magnetic field, cannot be explained in this manner because the correlations in the ground state and the low energy collective excitations cause a breakdown of the conventional techniques. We perform ultrafast time-resolved four-wave mixing on $n$-modulation doped quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic field, when only a single Landau level is excited and also when two levels are excited together. We find evidence for memory effects and as strong coupling between the Landau levels induced by the electron gas. We compare our results with simulations based on a new microscopic approach capable of treating the collective effects and correlations of the doped electrons, and find a good qualitative agreement. By looking at the individual contributions to the model, we determine that the unusual correlation effects seen in the experiments are caused by the scattering of photo-excited electron-hole pairs with the electron gas, leading to new excited states which are not present in undoped semiconductors, and also by exciton-exciton interactions mediated by the long-lived collective excitations of the electron gas, inter-Landau level magnetoplasmons

  13. Excited state transitions in 2νββ decays of {sup 76}Ge from phase I of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wester, Thomas [IKTP, TU Dresden (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    The Germanium Detector Array GERDA is an experiment searching for the neutrinoless double beta decay in {sup 76}Ge. The observation of such a decay would prove the Majorana character of the neutrino and could provide a hint about the neutrino mass and possibly identify the mass hierarchy scheme. The half life of the neutrino accompanied double beta decay (2νββ) of {sup 76}Ge has been measured by GERDA Phase I with unprecedented precision. The observed spectrum comes mostly from the transition from the 0{sup +} ground state of {sup 76}Ge to the 0{sup +} ground state of {sup 76}Se. However, phase space suppressed 2νββ transitions to excited states of {sup 76}Se exist as well. At current state, the predicted half lives for such decays vary by several orders of magnitude, due to the large uncertainties in the nuclear matrix elements and the available nuclear models. An observation would therefore help to constrain model parameters and decrease those uncertainties. This study investigates the 2νββ decay of {sup 76}Ge into various excited states of {sup 76}Se using the data from GERDA Phase I. An event counting method is performed based on coincident events between two germanium detectors. Several analysis parameters are optimized with the help of Monte Carlo simulations to maximize the sensitivity. The presentation discusses the procedure and results of this analysis.

  14. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.

    Science.gov (United States)

    Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang

    2013-07-12

    We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

  15. Phases and amplitudes for a modified repulsive Coulomb field

    International Nuclear Information System (INIS)

    Chidichimo, M.C.; Davison, T.S.

    1990-01-01

    The asymptotic form of the radial wave function for positive-energy states is calculated for the case of a repulsive Coulomb field. The cases of a pure Coulomb potential and a modified Coulomb potential are considered. Second-order analytic solutions for the amplitudes and phases are obtained when the modifications to the pure Coulombic potential take the form αr -2 +βr -3 +γr -4 , using the Jeffreys or WKB method. For the case of a pure Coulomb field, numerical results obtained from this method were compared with ''exact'' numerical results that were obtained using the analytic properties of the Coulomb wave functions. Tables are presented to show the conditions under which the method is accurate

  16. Ordering transitions induced by Coulomb interactions

    International Nuclear Information System (INIS)

    Rovere, M.; Senatore, G.; Tosi, M.P.

    1988-11-01

    We briefly review recent progress in treating phase transitions to ordered states driven by Coulomb interactions. Wigner crystallization of the one-component plasma, in the degenerate Fermi limit and in the classical limit, is the foremost example and developments in its theory are discussed in some detail. Attention is also given to quasi-twodimensional realizations of the plasma model in the laboratory. The usefulness of these ideas in relation to freezing and ordering transitions is illustrated with reference to alkali metals, elemental and polar semiconductors, and various types of ionic systems (molten salts, colloidal suspensions and astrophysical plasmas). (author). 70 refs, 5 figs

  17. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  18. Resonances in the two centers Coulomb system

    International Nuclear Information System (INIS)

    Seri, Marcello

    2012-01-01

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  19. Damage generation by electronic excitations in crystalline metals

    International Nuclear Information System (INIS)

    Dunlop, A.; Lesueur, D.

    1992-01-01

    This paper will give a rapid overview of the main experimental results concerning the effects of high electronic energy deposition in metallic targets and present a tentative model based on the Coulomb explosion mechanism. More detailed reviews have been made recently concerning both the experiments and the theoretical model. High levels of localized energy deposition in electronic excitation are easily obtained using GeV heavy ions which during their slowing-down typically transfer a few keV/A to the electronic system of the target and a few eV/A in elastic collisions with target nuclei. In insulators and organic materials, it is well-known that both slowing-down processes contribute to damage creation, whereas in metals it has been claimed for a long time that the sole nuclear collisions are involved in damage processes. Although this last assertion remains true for some metals such as Cu, Ag, W, Cu 3 Au...[2], high levels of electronic excitation can induce a partial annealing of the defects resulting from nuclear collisions in Fe, Ni, Nb, Pt..., lead to additional defect creation in Fe, Co, Zr, Ti...[2] or even to phase transformations in NiZr 2 [5], Ni 3 B [6], NiTi [7], Ti [8]... In the following, we shall only focus on the last two effects. (author). 15 refs

  20. Nuclear moments from heavy-ion inelastic scattering above the Coulomb barrier

    International Nuclear Information System (INIS)

    Gross, E.E.

    1981-01-01

    Use of appropriate theoretical techniques allows the study of the moments of the nuclear charge distribution to be extended above the Coulomb barrier. The investigation of nuclear moments through analysis of differential cross sections is discussed with the aid of several examples: 12 C(70.4 MeV) + 144 146 Nd, importance of multistep effects; 20 Ne(131 MeV) + 208 Pb, large hexadecapole deformation; 12 C(78 MeV) + 194 Pt, asymmetric rotor model; and 22 Ne(93.5 MeV) + 126 Te, mutual excitation. 13 figures, 1 table

  1. Bound and resonant states in Coulomb-like potentials

    International Nuclear Information System (INIS)

    Papp, Z.

    1985-12-01

    The potential separable expansion method was generalized for calculating bound and resonant states in Coulomb-like potentials. The complete set of Coulomb-Sturmian functions was taken as the basis to expand the short-range potential. On this basis the matrix elements of the Coulomb-Green functions were given in closed form as functions of the (complex) energy. The feasibility of the method is demonstrated by a numerical example. (author)

  2. 3D Oscillator and Coulomb Systems reduced from Kahler spaces

    OpenAIRE

    Nersessian, Armen; Yeranyan, Armen

    2003-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and ...

  3. Coulomb sum rules in the relativistic Fermi gas model

    International Nuclear Information System (INIS)

    Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.

    1986-11-01

    Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer

  4. Excitation and propagation of electromagnetic fluctuations with ion-cyclotron range of frequency in magnetic reconnection laboratory experiment

    International Nuclear Information System (INIS)

    Inomoto, Michiaki; Tanabe, Hiroshi; Ono, Yasushi; Kuwahata, Akihiro

    2013-01-01

    Large-amplitude electromagnetic fluctuations of ion-cyclotron-frequency range are detected in a laboratory experiment inside the diffusion region of a magnetic reconnection with a guide field. The fluctuations have properties similar to kinetic Alfvén waves propagating obliquely to the guide field. Temporary enhancement of the reconnection rate is observed during the occurrence of the fluctuations, suggesting a relationship between the modification in the local magnetic structure given by these fluctuations and the intermittent fast magnetic reconnection

  5. An exciting experiment for pre-engineering and introductory physics students: creating a DC motor using the Lorentz force

    International Nuclear Information System (INIS)

    Abdul-Razzaq, Wathiq N; Boehm, Manfred H; Bushey, Ryan K

    2008-01-01

    Introductory physics laboratories have been demonstrated in some instances to be difficult or uninteresting to students at the collegiate level. We have developed a laboratory that introduces the concept of the Lorentz force and allows students to build a non-traditional DC motor out of easily acquired materials. Basic electricity and magnetism concepts are joined together in a simple and enjoyable experiment that allows the students to demonstrate physics at first hand and without the use of complex materials

  6. Wave excitation in the experiment with an electron beam at the Dzhajkiken Exos-B Japanese satellite

    International Nuclear Information System (INIS)

    Kavashima, N.

    1985-01-01

    An experiment on investigation of beam-plasma interaction in the magnetosphere is carried out at the ''Dzhajkiken (Exos-B)'' japanese satellite. 100-200 eV and 0.25-1 μA electron beam was injected into the magnetosphere. Using LF and HF detectors in low altitude range waves with the frequencies close to the upper hybrid and electron frequencies are recorded. Beyond the plasmapause the satellite was charged to the potential corresponding to the beam energy

  7. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    International Nuclear Information System (INIS)

    Abramov, D. I.

    2013-01-01

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ρ = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ρ→∞, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  8. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  9. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  10. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  11. Empirical Coulomb matrix elements and the mass of 22Al

    International Nuclear Information System (INIS)

    Whitehead, R.R.; Watt, A.; Kelvin, D.; Rutherford, H.J.

    1976-01-01

    An attempt has been made to obtain a set of Coulomb matrix elements which fit the known Coulomb energy shifts in the nuclei of mass 18 to 22. The interaction obtained fits the data well with only a few exceptions, one of these being the Coulomb shift of the notorious third 0 + state in 18 Ne. These Coulomb matrix elements are used together with the Chung-Wildenthal interaction to obtain a new prediction for the mass excess of 22 Al. The results indicate that 22 Al should be bound against proton emission. (Auth.)

  12. Asymptotic freedom in the axial and Coulomb gauges

    International Nuclear Information System (INIS)

    Frenkel, J.; Taylor, J.C.

    1976-01-01

    The sources of the negative contribution to the charge renormalization factor gsup(B)/g-1 in Yang-Mills theories are investigated in the axial and Coulomb gauges. In the axial gauge, a Kaellen dispersion relation exists but the spectral function is not positive definite because of the prescription that is used to integrate the singular polarization vectors. In the Coulomb gauge, the negative contributions are (to the lowest order) isolated in the Coulomb self-energy corrections to the Coulomb field. (Auth.)

  13. Proton-/sup 90/Zr interaction at sub-Coulomb proton energies

    International Nuclear Information System (INIS)

    Laird, C.E.; Flynn, D.; Hershberger, R.L.; Gabbard, F.

    1987-01-01

    The proton-/sup 90/Zr interaction at sub-Coulomb energies has been investigated in the context of the Lane model, with isospin coupling included, and with alternate decay modes represented with the Hauser-Feshbach model. Scattering and reaction cross sections were accurately measured in order to obtain enough information to constrain the real and absorptive parts of the proton potential. Differential elastic scattering excitation functions were measured at back angles of 135 0 and 165 0 from 2 to 7 MeV, with cross section accuracies of 3%. The energy range was sufficient to go from a region where the backscattering was predominantly Coulomb, enabling additional checks on the cross section accuracies, to a region where the gross structure of the cross sections deviated significantly from Rutherford scattering. Radiative capture cross sections were measured from 1.9 to 5.7 MeV proton energies. The capture cross sections were obtained by summing the measured cross sections for the first two primary gamma rays in addition to some 34 other transitions which terminated on the ground and first excited state. The total inelastic scattering cross section to all /sup 90/Zr excited states (except the first excited state which has been previously measured) was measured at several energies between 3.9 and 5.7 MeV by observing the radiative decay of the residual, excited /sup 90/Zr nuclei. The analysis yielded several model parameters suggestive of large nuclear structure effects. The depth of the absorptive potential was found to vary as W/sub D/ = 2.73+0.70 E/sub p/ in the 2 to 7 MeV proton energy range studied. A real diffuseness of 0.54 fm, significantly smaller than that obtained in neighboring nuclei, was obtained

  14. Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory

    International Nuclear Information System (INIS)

    Nakagawa, Y.; Nakamura, A.; Saito, T.; Toki, H.

    2010-01-01

    We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.

  15. Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures

    Science.gov (United States)

    Sano, Nobuyuki

    2011-03-01

    It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  16. Heat Coulomb blockade of one ballistic channel

    Science.gov (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (laws for thermal transport in nanocircuits.

  17. Pseudo-Coulomb potential in singlet superconductivity

    International Nuclear Information System (INIS)

    Daemen, L.L.; Overhauser, A.W.

    1988-01-01

    Reduction of the screened Coulomb potential parameter μ to μ/sup */ = μ/[1+μ ln(E/sub F//(h/2π)ω/sub D/)] is related to the pair correlation function at r = 0. This correlation function is calculated for both the simple Cooper-pair problem and standard Bardeen-Cooper-Schrieffer (BCS) theory by use of a two-square-well model (with λ and μ describing the attraction and repulsion). Results are compared with values obtained for a one-square-well model (having the suitable net attraction, e.g., λ-μ/sup */ in the BCS case). For the BCS case, the ''true'' pair correlation at r = 0 is reduced by a factor (μ/sup *//μ) 2 relative to the fictitious (one-square-well) value (even though Δ is the same for both models). The reduction factor is typically ≅(1/25. It follows that any short-range attractive contribution to superconducting pairing will suffer a reduction similar to that for the Coulomb repulsion

  18. Excitation and photon decay of giant multipole resonances

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.

    1990-01-01

    A brief review of the excitation of giant multipole resonances via Coulomb excitation is given which emphasizes the very large cross sections that can be realized through this reaction for both isoscalar and isovector resonances. Discussion and results where available, are provide for the measurement of the photon decay of one and two phonon giant resonances. It is pointed out throughout the presentation that the use of E1 photons as a ''tag'' provides a means to observe weakly excited resonances that cannot be observed in the singles spectra. 14 refs., 12 figs., 1 tab

  19. Lifetime measurements of excited states in 196Pt

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Katayama, Ichiro; Sakai, Hideyuki; Fujita, Yoshitaka; Fujiwara, Mamoru

    1979-01-01

    The lifetimes of six excited states in 196 Pt up to an excitation energy of 1525 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20 Ne and 220 MeV 58 Ni ion beams. The measured lifetimes of the 2 1 + , 4 1 + , 6 1 + , 2 2 + , 4 2 + and 0 2 + states and the B(E2) values inferred for the depopulating transitions from these levels are presented. With the exception of the 2 1 + state, the meanlives of all other levels are the first such direct experimental determinations to be reported. (author)

  20. Purification and Quantification of an Isomeric Compound in a Mixture by Collisional Excitation in Multistage Mass Spectrometry Experiments.

    Science.gov (United States)

    Jeanne Dit Fouque, Dany; Maroto, Alicia; Memboeuf, Antony

    2016-11-15

    The differentiation, characterization, and quantification of isomers and/or isobars in mixtures is a recurrent problem in mass spectrometry and more generally in analytical chemistry. Here we present a new strategy to assess the purity of a compound that is susceptible to be contaminated with another isomeric side-product in trace levels. Providing one of the isomers is available as pure sample, this new strategy allows the detection of isomeric contamination. This is done thanks to a "gas-phase collisional purification" inside an ion trap mass spectrometer paving the way for an improved analysis of at least similar samples. This strategy consists in using collision induced dissociation (CID) multistage mass spectrometry (MS 2 and MS 3 ) experiments and the survival yield (SY) technique. It has been successfully applied to mixtures of cyclic poly( L -lactide) (PLA) with increasing amounts of its linear topological isomer. Purification in gas phase of PLA mixtures was established based on SY curves obtained in MS 3 mode: all samples gave rise to the same SY curve corresponding then to the pure cyclic component. This new strategy was sensitive enough to detect traces of linear PLA (<3%) in a sample of cyclic PLA that was supposedly pure according to other characterization techniques ( 1 H NMR, MALDI-HRMS, and size-exclusion chromatography). Moreover, in this case, the presence of linear isomer was undetectable according to MS/MS or MS/MS/MS analysis only as fragment ions are also of the same m/z values. This type of approach could easily be implemented in hyphenated mass spectrometric techniques to improve the structural and quantitative analysis of complex samples.

  1. 4-center STO interelectron repulsion integrals with Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2018-01-01

    Abstract We present a method for evaluating 4-center electron repulsion integrals (ERI) for Slater-type orbitals by way of expansions in terms of Coulomb Sturmians. The ERIs can then be evaluated using our previously published methods for rapid evaluation of Coulomb Sturmians through hyperspherical...

  2. Coulomb corrections in the low-energy scattering

    International Nuclear Information System (INIS)

    Mur, V.D.; Popov, V.S.

    1985-01-01

    Renormalization of the coefficients of the ''effective range expansion'' is considered for the short-range Coulomb problem. The exactly solvable model of the Coulomb plus short range potential is considered. Exact solutions are compared with approximations frequently used in the theory of hadronic atoms

  3. Two-center Coulomb problem with Calogero interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hakobyan, T., E-mail: tigran.hakobyan@ysu.am; Nersessian, A., E-mail: arnerses@ysu.am [Armenia Tomsk Polytechnic University, Yerevan State University (Russian Federation)

    2017-03-15

    We show that the Calogero-type perturbation preserves the integrability and partial separation of variables for the Stark–Coulomb and two-center Coulomb problems, and present the explicit expressions of their constants of motion. We reveal that this perturbation preserves the spectra of initial systems, but leads to the change of degree of degeneracy.

  4. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  5. Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment.

    Science.gov (United States)

    Long, Run; Prezhdo, Oleg V

    2015-07-08

    Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy. QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor-acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong, especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon coupling in the polymer rationalizes why the electron-hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and

  6. Scattering of highly excited atoms

    International Nuclear Information System (INIS)

    Raith, W.

    1980-01-01

    Experimental methods to excite atomic beams into Rydberg states and the first results of collision experiments with such beams are reported. For further information see hints under relevant topics. (orig.) [de

  7. Generalized coherent states for the Coulomb problem in one dimension

    International Nuclear Information System (INIS)

    Nouri, S.

    2002-01-01

    A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension

  8. Separable expansions for local potentials with Coulomb interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1976-01-01

    If two particles are interacting via a short range potential and a repulsive Coulomb potential the t matrix can be written as a sum of the Coulomb and the ''nuclear'' t matrices. In order to solve the three-nucleon problem with Coulomb interactions usually we need a separable representation of this ''nuclear'' t matrix. A recently proposed method for finding a separable expansion for local potentials is here extended to find a rapidly convergent separable expansion, with analytic form factors, for the ''nuclear'' part of the t matrix of a local potential, in the presence of Coulomb interactions. The method is illustrated for a two-term Malfliet-Tjon potential. In each rank the ''nuclear'' phase shift is close to the corresponding phase shift when the Coulomb interaction is switched off

  9. Eikonal representation of N-body Coulomb scattering amplitudes

    International Nuclear Information System (INIS)

    Fried, H.M.; Kang, K.; McKellar, B.H.J.

    1983-01-01

    A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3→(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2) 2 distinct integrands

  10. The Coulomb potential in quantum mechanics and related topics

    International Nuclear Information System (INIS)

    Haeringen, H. van.

    1978-01-01

    This dissertation consists of an analytic study of the Coulomb interaction in nonrelativistic quantum mechanics and some related topics. The author investigates in a number of self-contained articles various interesting and important properties of the Coulomb potential. Some of these properties are shared by other potentials which also play a role in quantum mechanics. For such related interactions a comparative study is made. The principal difficulties in the description of proton-deuteron scattering and break-up reactions, due to the Coulomb interaction, are studied by working out a simple model. The bound states are studied for the Coulomb plus Yamaguchi potential, for the symmetric shifted Coulomb potential, and for local potentials with an inverse-distance-squared asymptotic behaviour. (Auth.)

  11. Role amplification of the coulomb interaction in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok; Soni, S K; Pancholi, S K; Gupta, S L [AN SSSR, Moscow. Radiotekhnicheskij Inst.

    1976-10-01

    The genarally adopted estimate of coulomb interaction in nuclear reactions based on the comparison of relative energies of real particles participating in the reaction with the coulomb barrier has been shown to provide wrong presentation of the role of coulomb interaction in the reaction mechanism. The relative energy of particles participating in virtual processes forming the reaction mechanism and its relation to the coulomb barrier turn out to be tens of per cent less than for the particles in an inlet channel. This is the main reason of increasing the role of coulomb interaction in the reaction mechanism. This increase is particularly significant for nuclei with large charges, in particular, in heavy ion reaction.

  12. Tests of a Coulomb-nuclear polarimeter

    International Nuclear Information System (INIS)

    Pauletta, G.; University of Texas, Austin, TX, 78712)

    1989-01-01

    We report on the development and testing of a polarimeter for the high energy polarized proton and antiproton beam at Fermi National Accelerator Laboratory (FNAL). The polarimeter was designed to make use of a small but well-known analyzing power in the region of Coulomb-nuclear interference (CNI) in order to obtain an absolute measurement of the polarization. Feasibility was established in the course of a brief running period at the end of the last fixed-target period at FNAL and potential for considerable improvement was revealed. Beam-time was insufficient to measure polarization accurately but the data obtained bears out design expectations for the beam-line and confirms polarization-tagging techniques to within uncertainties

  13. The ghost propagator in Coulomb gauge

    International Nuclear Information System (INIS)

    Watson, P.; Reinhardt, H.

    2011-01-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  14. 6d, Coulomb branch anomaly matching

    Science.gov (United States)

    Intriligator, Kenneth

    2014-10-01

    6d QFTs are constrained by the analog of 't Hooft anomaly matching: all anomalies for global symmetries and metric backgrounds are constants of RG flows, and for all vacua in moduli spaces. We discuss an anomaly matching mechanism for 6d theories on their Coulomb branch. It is a global symmetry analog of Green-Schwarz-West-Sagnotti anomaly cancellation, and requires the apparent anomaly mismatch to be a perfect square, . Then Δ I 8 is cancelled by making X 4 an electric/magnetic source for the tensor multiplet, so background gauge field instantons yield charged strings. This requires the coefficients in X 4 to be integrally quantized. We illustrate this for theories. We also consider the SCFTs from N small E8 instantons, verifying that the recent result for its anomaly polynomial fits with the anomaly matching mechanism.

  15. Effective Coulomb interaction in multiorbital system

    International Nuclear Information System (INIS)

    Hase, Izumi; Yanagisawa, Takashi

    2013-01-01

    Transition metal atom generally takes various valences, and sometimes there are some 'missing valences', for example Fe usually takes 2+, 3+ and 5+, but does not take other valences so often. We have calculated the atomic multiplet energies for the high-spin and lowspin configurations within the ligand-field theory and the Hartree-Fock approximation, and found that the Coulomb interaction energy (U eff ) becomes small when the valence is 'missing'. In case U eff B /Fe only when U eff increased in most cases, but in some special cases U eff decreases and falls below the value U − 3J, which is the least value of the undistorted system.

  16. Molecular resonances in sub-Coulomb energy region (12C-12C, 12C-24Mg, 12C-9Be systems)

    International Nuclear Information System (INIS)

    Takimoto, Kiyohiko; Shimomura, Susumu; Tanaka, Makoto; Murakami, Tetsuya; Fukada, Mamoru; Sakaguchi, Atsushi

    1982-01-01

    Molecular resonance in sub-Coulomb energy region was studied on 12 C- 12 C, 12 C- 24 Mg and 12 C- 9 Be systems. The excitation functions and the angular distributions were measured on the reactions 12 C( 12 C, 8 Besub(g,s,)) 16 Osub(g,s,), 24 Mg( 12 C, α) 32 S and 9 Be ( 12 C, 8 Besub(g,s,)) 13 Csub(g,s,). Sub-Coulomb resonances were observed in all systems and the contribution of the 12 Csub(2nd)*(0 + , 7.65 MeV) state is proposed. (author)

  17. Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement

    DEFF Research Database (Denmark)

    Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael

    2002-01-01

    We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...... confinement. The experimentally observed stability conditions for stationary crystals comply remarkably well with current theory of crystalline plasmas and beams.......We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...

  18. pd Scattering Using a Rigorous Coulomb Treatment: Reliability of the Renormalization Method for Screened-Coulomb Potentials

    International Nuclear Information System (INIS)

    Hiratsuka, Y.; Oryu, S.; Gojuki, S.

    2011-01-01

    Reliability of the screened Coulomb renormalization method, which was proposed in an elegant way by Alt-Sandhas-Zankel-Ziegelmann (ASZZ), is discussed on the basis of 'two-potential theory' for the three-body AGS equations with the Coulomb potential. In order to obtain ASZZ's formula, we define the on-shell Moller function, and calculate it by using the Haeringen criterion, i. e. 'the half-shell Coulomb amplitude is zero'. By these two steps, we can finally obtain the ASZZ formula for a small Coulomb phase shift. Furthermore, the reliability of the Haeringen criterion is thoroughly checked by a numerically rigorous calculation for the Coulomb LS-type equation. We find that the Haeringen criterion can be satisfied only in the higher energy region. We conclude that the ASZZ method can be verified in the case that the on-shell approximation to the Moller function is reasonable, and the Haeringen criterion is reliable. (author)

  19. Non local theory of excitations applied to the Hubbard model

    International Nuclear Information System (INIS)

    Kakehashi, Y; Nakamura, T; Fulde, P

    2010-01-01

    We propose a nonlocal theory of single-particle excitations. It is based on an off-diagonal effective medium and the projection operator method for treating the retarded Green function. The theory determines the nonlocal effective medium matrix elements by requiring that they are consistent with those of the self-energy of the Green function. This arrows for a description of long-range intersite correlations with high resolution in momentum space. Numerical study for the half-filled Hubbard model on the simple cubic lattice demonstrates that the theory is applicable to the strong correlation regime as well as the intermediate regime of Coulomb interaction strength. Furthermore the results show that nonlocal excitations cause sub-bands in the strong Coulomb interaction regime due to strong antiferromagnetic correlations, decrease the quasi-particle peak on the Fermi level with increasing Coulomb interaction, and shift the critical Coulomb interaction U C2 for the divergence of effective mass towards higher energies at least by a factor of two as compared with that in the single-site approximation.

  20. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analysed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering, and the effect of zero-point motion on the Coulomb image of a molecule. (orig.)

  1. Some studies in scatering by Coulomb modified nuclear potentials

    International Nuclear Information System (INIS)

    Laha, U.

    1988-01-01

    Recently, there has been a surge of interest in theoretical questions concerning the Coulomb nuclear problems with the main emphasis on their off-shell behaviour. Earlier approaches to the problem made use of a version of the two-potential formula as used by Bajzer. A slightly different point of view is presented here. An expression for the interacting Green's function for motion in the Coulomb plus Graz potential is constructed and used to obtain the half-off-shell T matrix in the ''maximal reduced form''. Similar results were also derived for the off-shell Jost functions. It is explicitly demonstrated that Coulomb and Coulomb-like potentials the half-off-shell T matrix can be expressed in terms of on-and off-shell Jost functions in the same way as one does for a purely short range interaction. In presenting the results for T matrix and other related quantities, the Coulomb effect is included rigorously. Results clearly delineate the branch point singularities originating from the long range nature of the Coulomb interaction and thus provide a better understanding of the off-shell two-body Coulomb-like T matrices. It is hoped that these results will form an adequate starting point for rigorous calculations on few-body systems with charges. (author). 16 refs

  2. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1991-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analyzed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering and the effect of zero-point motion on the Coulomb image of a molecule. 14 refs., 5 figs

  3. Devlopments of components for the detector driving system of the PANDA calorimeter and studies on the photoproduction of excited η mesons with the CB/ELSA experiment

    International Nuclear Information System (INIS)

    Triffterer, Tobias

    2016-01-01

    This PhD thesis (written in German language) consists of two parts: The first part describes developments for the Detector Control System of the electromagnetic calorimeter of the PANDA detector. An alarm and current border regulation system has been developed for this to ensure the correct functioning of the detector and to prevent damages. In addition, a database system (endcap production database) has been created to accompany the construction of the forward endcap and archive the characteristics of the photodetectors. The second part deals with the investigation into excited η mesons using the data measured with the CB/ELSA experiment. The distribution of the η' production angle in the decay channel η'→ ηπ 0 π 0 has been calculated for the first time within the beam photo energy range of 2500 to 2950 MeV. Furthermore, the relative effective cross section of the η(1405) to the η' could be determined to 0.16±0.05 (3.2σ). This shows evidence for a more complex nature of the η(1405).

  4. Disagreement between theory and experiment grows with increasing rotational excitation of HD(v', j') product for the H + D2 reaction.

    Science.gov (United States)

    Jankunas, Justin; Sneha, Mahima; Zare, Richard N; Bouakline, Foudhil; Althorpe, Stuart C

    2013-03-07

    The Photoloc technique has been employed to measure the state-resolved differential cross sections of the HD(v', j(')) product in the reaction H + D2 over a wide range of collision energies and internal states. The experimental results were compared with fully dimensional, time-dependent quantum mechanical calculations on the refined Boothroyd-Keogh-Martin-Peterson potential energy surface. We find nearly perfect agreement between theory and experiment for HD(v', j(')) product states with low to medium rotational excitation, e.g., HD(v' = 1, j(') = 3) at a collision energy, Ecoll, of 1.72 eV, HD(v' = 1, j(') = 3, 5) at Ecoll = 1.97 eV, and HD(v' = 3, j(') = 3) at Ecoll = 1.97 eV. As the rotational angular momentum, j('), of HD(v', j(')) increases, the agreement between theoretical predictions and experimental measurements worsens but not in a simple fashion. A moderate disagreement between theory and experiment has been found for HD(v' = 0, j(') = 12) at Ecoll = 1.76 eV and increased monotonically for HD(v' = 0, j(') = 13) at Ecoll = 1.74 eV, HD(v' = 0, j(') = 14) at Ecoll = 1.72 eV, and HD(v' = 0, j(') = 15) at Ecoll = 1.70 eV. Disagreement was not limited to vibrationless HD(v', j(')) product states: HD(v' = 1, j(') = 12) at Ecoll = 1.60 eV and HD(v' = 3, j(') = 8, 10) at Ecoll = 1.97 eV followed a similar trend. Theoretical calculations suggest more sideways∕forward scattering than has been observed experimentally for high j(') HD(v', j(')) states. The source of this discrepancy is presently unknown but might be the result of inaccuracy in the potential energy surface.

  5. Postgraduate and research programmes in Medicine and Public Health in Rwanda: an exciting experience about training of human resources for health in a limited resources country.

    Science.gov (United States)

    Kakoma, Jean Baptiste

    2016-01-01

    The area of Human Resources for Health (HRH) is the most critical challenge for the achievement of health related development goals in countries with limited resources. This is even exacerbated in a post conflict environment like Rwanda. The aim of this commentary is to report and share the genesis and outcomes of an exciting experience about training of qualified health workers in medicine and public health as well as setting - up of a research culture for the last nine years (2006 - 2014) in Rwanda. Many initiatives have been taken and concerned among others training of qualified health workers in medicine and public health. From 2006 to 2014, achievements were as follows: launching and organization of 8 Master of Medicine programmes (anesthesiology, family and community medicine, internal medicine, obstetrics & gynecology, otorhinolaryngology, pediatrics, psychiatry and surgery) and 4 Master programmes in public health (MPH, MSc Epidemiology, MSc Field Epidemiology & Laboratory Management, and Master in Hospital and Healthcare Administration); training to completion of more than 120 specialists in medicine, and 200 MPH, MSc Epidemiology, and MSc Field Epidemiology holders; revival of the Rwanda Medical Journal; organization of graduate research training (MPhil and PhD); 3 Master programmes in the pipeline (Global Health, Health Financing, and Supply Chain Management); partnerships with research institutions of great renown, which contributed to the reinforcement of the institutional research capacity and visibility towards excellence in leadership, accountability, and self sustainability. Even though there is still more to be achieved, the Rwanda experience about postgraduate and research programmes is inspiring through close interactions between main stakeholders. This is a must and could allow Rwanda to become one of the rare examples to other more well-to-do Sub - Saharan countries, should Rwanda carry on doing that.

  6. Measurement of the 2νββ decay of 100Mo to the excited 01+ state in the NEMO3 experiment

    International Nuclear Information System (INIS)

    Vala, L.

    2003-09-01

    The NEMO3 detector was designed for the study of double beta decay and in particular to search for the neutrinoless double beta decay process (0νββ). The intended sensitivity in terms of a half-life limit for the 0νββ decay is of the order of 10 25 y which corresponds to an effective neutrino mass m ν on the level of (0.3 - 0.1) eV. The 0νββ process is today the most promising test of the Majorana nature of the neutrino. The detector was constructed in the Modane Underground Laboratory (LSM) in France by an international collaboration including France, Russia, the Czech Republic, the USA, the UK, Finland, and Japan. The experiment has been taking data since May 2002. The quantity of 100 Mo in the detector (7 kg) allows an efficient measurement of the two-neutrino double beta decay (2νββ) of 100 Mo to the excited 0 1 + state (eeNγ channel). Monte-Carlo simulations of the effect and of all the relative sources of background have been produced in order to define a set of appropriate selection criteria. Both Monte-Carlo simulations and special runs with sources of 208 Tl and 214 Bi showed that the only significant background in the eeNγ channel comes from radon that penetrated inside the wire chamber of NEMO3. The experimental data acquired from May 2002 to May 2003 have been analysed in order to determine the signal from the 2νββ decay of 100 Mo to the excited 0 1 + state and the corresponding background level. The physical result, which was obtained at the level of four standard deviations, is given in the form of an interval of half-life values at 95% confidence level: [5.84*10 20 , 2.26*10 21 ] y for method A and [5.83*10 20 , 1.71*10 21 ] y for method B. (author)

  7. Measurement of the 2{nu}{beta}{beta} decay of {sup 100}Mo to the excited 0{sub 1}{sup +} state in the NEMO3 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vala, L

    2003-09-01

    The NEMO3 detector was designed for the study of double beta decay and in particular to search for the neutrinoless double beta decay process (0{nu}{beta}{beta}). The intended sensitivity in terms of a half-life limit for the 0{nu}{beta}{beta} decay is of the order of 10{sup 25} y which corresponds to an effective neutrino mass m{sub {nu}} on the level of (0.3 - 0.1) eV. The 0{nu}{beta}{beta} process is today the most promising test of the Majorana nature of the neutrino. The detector was constructed in the Modane Underground Laboratory (LSM) in France by an international collaboration including France, Russia, the Czech Republic, the USA, the UK, Finland, and Japan. The experiment has been taking data since May 2002. The quantity of {sup 100}Mo in the detector (7 kg) allows an efficient measurement of the two-neutrino double beta decay (2{nu}{beta}{beta}) of {sup 100}Mo to the excited 0{sub 1}{sup +} state (eeN{gamma} channel). Monte-Carlo simulations of the effect and of all the relative sources of background have been produced in order to define a set of appropriate selection criteria. Both Monte-Carlo simulations and special runs with sources of {sup 208}Tl and {sup 214}Bi showed that the only significant background in the eeN{gamma} channel comes from radon that penetrated inside the wire chamber of NEMO3. The experimental data acquired from May 2002 to May 2003 have been analysed in order to determine the signal from the 2{nu}{beta}{beta} decay of {sup 100}Mo to the excited 0{sub 1}{sup +} state and the corresponding background level. The physical result, which was obtained at the level of four standard deviations, is given in the form of an interval of half-life values at 95% confidence level: [5.84*10{sup 20}, 2.26*10{sup 21}] y for method A and [5.83*10{sup 20}, 1.71*10{sup 21}] y for method B. (author)

  8. Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics

    International Nuclear Information System (INIS)

    Heckathorn, D.

    1979-01-01

    Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)

  9. On the Emergence of the Coulomb Forces in Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Jan Naudts

    2017-01-01

    Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.

  10. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M.; Lednicky, R.; Pluta, J.; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Akkelin, S.V. [ITP, Kiev (Ukraine)

    1997-09-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective system volumes. The modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For the {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions the analytical calculations of the Coulomb correction are compared with the exact numerical results. (author). 20 refs.

  11. Intergrain Coupling in Dusty-Plasma Coulomb Crystals

    International Nuclear Information System (INIS)

    Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.

    1998-01-01

    We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society

  12. Large degeneracy of excited hadrons and quark models

    International Nuclear Information System (INIS)

    Bicudo, P.

    2007-01-01

    The pattern of a large approximate degeneracy of the excited hadron spectra (larger than the chiral restoration degeneracy) is present in the recent experimental report of Bugg. Here we try to model this degeneracy with state of the art quark models. We review how the Coulomb Gauge chiral invariant and confining Bethe-Salpeter equation simplifies in the case of very excited quark-antiquark mesons, including angular or radial excitations, to a Salpeter equation with an ultrarelativistic kinetic energy with the spin-independent part of the potential. The resulting meson spectrum is solved, and the excited chiral restoration is recovered, for all mesons with J>0. Applying the ultrarelativistic simplification to a linear equal-time potential, linear Regge trajectories are obtained, for both angular and radial excitations. The spectrum is also compared with the semiclassical Bohr-Sommerfeld quantization relation. However, the excited angular and radial spectra do not coincide exactly. We then search, with the classical Bertrand theorem, for central potentials producing always classical closed orbits with the ultrarelativistic kinetic energy. We find that no such potential exists, and this implies that no exact larger degeneracy can be obtained in our equal-time framework, with a single principal quantum number comparable to the nonrelativistic Coulomb or harmonic oscillator potentials. Nevertheless we find it plausible that the large experimental approximate degeneracy will be modeled in the future by quark models beyond the present state of the art

  13. Electron-atom spin asymmetry and two-electron photodetachment - Addenda to the Coulomb-dipole threshold law

    Science.gov (United States)

    Temkin, A.

    1984-01-01

    Temkin (1982) has derived the ionization threshold law based on a Coulomb-dipole theory of the ionization process. The present investigation is concerned with a reexamination of several aspects of the Coulomb-dipole threshold law. Attention is given to the energy scale of the logarithmic denominator, the spin-asymmetry parameter, and an estimate of alpha and the energy range of validity of the threshold law, taking into account the result of the two-electron photodetachment experiment conducted by Donahue et al. (1984).

  14. Coulomb displacement energies and neutron density distributions

    International Nuclear Information System (INIS)

    Shlomo, S.

    1979-01-01

    We present a short review of the present status of the theory of Coulomb displacement energies, ΔEsub(c), discussing the Okamoto-Nolem-Schiffer anomaly and its solution. We emphasize, in particular, that contrary to previous hopes, ΔEsub(c) does not determine rsub(ex), the root-mean square (rms) radius of the excess (valence) neutron density distribution. Instead, ΔEsub(c) is very sensitive to the value of Δr = rsub(n) - rsub(p), the difference between the rms radii of the density distributions of all neutrons and all protons. For neutron rich nuclei, such as 48 Ca and 208 Pb, a value of Δr = 0.1 fm is found to be consistent with ΔEsub(c). This value of Δr, which is considerably smaller than that (of 0.2 - 0.3 fm) predicted by some common Hartree-Fock calculations, seems to be confirmed by very recent experimental results. (orig.)

  15. Correlation functions of Coulomb branch operators

    Energy Technology Data Exchange (ETDEWEB)

    Gerchkovitz, Efrat [Weizmann Institute of Science,Rehovot 76100 (Israel); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Ishtiaque, Nafiz [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics, University of Waterloo,Waterloo, ON N2L 3G1 (Canada); Karasik, Avner; Komargodski, Zohar [Weizmann Institute of Science,Rehovot 76100 (Israel); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2017-01-24

    We consider the correlation functions of Coulomb branch operators in four-dimensional N=2 Superconformal Field Theories (SCFTs) involving exactly one anti-chiral operator. These extremal correlators are the “minimal' non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt{sup ∗} equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N=2 SQCD.

  16. Dielectric susceptibility of classical Coulomb systems. II

    International Nuclear Information System (INIS)

    Choquard, Ph.; Piller, B.; Rentsch, R.

    1987-01-01

    This paper deals with the shape dependence of the dielectric susceptibility (equivalently defined, in a canonical ensemble, by the mean square fluctuation of the electric polarization or by the second moment of the charge-charge correlation function) of classical Coulomb systems. The concept of partial second moment is introduced with the aim of analyzing the contributions to the total susceptibility of pairs of particles of increasing separation. For a disk-shaped one-component plasma with coupling parameter γ=2 it is shown, numerically and algebraically for small and large systems, that (1) the correlation function of two particles close to the edge of the disk decays as the inverse of the square of their distance, and (2) the susceptibility is made up of a bulk contribution, which saturates rapidly toward the Stillinger-Lovett value, and of surface contribution, which varies on the scale of the disk diameter and is described by a new law called the arc sine law. It is also shown that electrostatics and statistical mechanics with shape-dependent thermodynamic limits are consistent for the same model in a strip geometry, whereas the Stillinger-Lovett sum rule is verified for a boundary-free geometry such as the surface of a sphere. Some results of extensive computer simulations of one- and two-component plasmas in circular and elliptic geometries are shown. Anisotropy effects on the susceptibilities are clearly demonstrated and the arc sine law for a circular plasma is well confirmed

  17. Shakeoff Ionization near the Coulomb Barrier Energy

    Science.gov (United States)

    Sharma, Prashant; Nandi, T.

    2017-11-01

    We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.

  18. Optical Trapping of Ion Coulomb Crystals

    Science.gov (United States)

    Schmidt, Julian; Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias

    2018-04-01

    The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  19. Deep inelastic scattering near the Coulomb barrier

    International Nuclear Information System (INIS)

    Gehring, J.; Back, B.; Chan, K.

    1995-01-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems 124,112 Sn + 58,64 Ni by Wolfs et al. We previously extended these measurements to the system 136 Xe + 64 Ni and currently measured the system 124 Xe + 58 Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring

  20. Coulomb scattering in field and photofield emission

    International Nuclear Information System (INIS)

    Donders, P.J.; Lee, M.J.G.

    1987-01-01

    An anomalous high-energy tail has been observed in the measured total energy distribution (TED) in photofield emission from tungsten. The strength of this tail is proportional to the product of the photofield emission current and the total emission current. Similar high- and low-energy tails in the TED's in field emission, which have previously been reported by several workers, are also observed. In any given measurement, the fraction of the total photofield-emission current in the anomalous photofield-emission tail is approximately equal to the fraction of the total field-emission current in the anomalous field-emission tail. Measurements of both the absolute strengths and energy dependences of the anomalous tails are reported. The experimental observations are consistent with the predictions of a classical calculation of the energy transfer that results from the Coulomb interaction between electrons in the vacuum near the field emitter. The various internal mechanisms that have previously been invoked to account for the tails in field-emission TED's do not appear to contribute significantly to the anomalous distributions observed in the present work

  1. Deep inelastic scattering near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, J.; Back, B.; Chan, K. [and others

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  2. Coulomb-interacting billiards in circular cavities

    International Nuclear Information System (INIS)

    Solanpää, J; Räsänen, E; Nokelainen, J; Luukko, P J J

    2013-01-01

    We apply a molecular dynamics scheme to analyze classically chaotic properties of a two-dimensional circular billiard system containing two Coulomb-interacting electrons. As such, the system resembles a prototype model for a semiconductor quantum dot. The interaction strength is varied from the noninteracting limit with zero potential energy up to the strongly interacting regime where the relative kinetic energy approaches zero. At weak interactions the bouncing maps show jumps between quasi-regular orbits. In the strong-interaction limit we find an analytic expression for the bouncing map. Its validity in the general case is assessed by comparison with our numerical data. To obtain a more quantitative view on the dynamics as the interaction strength is varied, we compute and analyze the escape rates of the system. Apart from very weak or strong interactions, the escape rates show consistently exponential behavior, thus suggesting strongly chaotic dynamics and a phase space without significant sticky regions within the considered time scales. (paper)

  3. Study of the effect of shell stabilization of the collective isovector valence-shell excitations along the N=80 isotonic chain

    CERN Multimedia

    It is proposed to investigate the microscopic mechanism which leads to a concentration or a fragmentation of the quadrupole-collective isovector valence-shell excitations, the so-called mixed-symmetry states (MSSs), an effect called shell stabilization of MSSs. This aim will be achieved by identification of MSSs of the unstable nuclei $^{140}$Nd and $^{142}$Sm. The first steps of this program have been undertaken in two subsequent REX-ISOLDE experiments (IS496) in which we have measured the B(E2; 2$^{+}_{1}$$\\rightarrow$ 0$^{+}_{1}$) transition strengths in the radioactive nuclei $^{140}$Nd and $^{142}$Sm. By using these data and the higher beam energy of HIE-ISOLDE we propose now to identify the MSSs of these nuclei by measuring their relative populations with respect to the population of the first 2$^{+}$ states in Coulomb excitation (CE) reactions.

  4. Effect of compound nuclear reaction mechanism in 12C(6Li,d) reaction at sub-Coulomb energy

    Science.gov (United States)

    Mondal, Ashok; Adhikari, S.; Basu, C.

    2017-09-01

    The angular distribution of the 12C(6Li,d) reaction populating the 6.92 and 7.12 MeV states of 16O at sub-Coulomb energy (Ecm=3 MeV) are analysed in the framework of the Distorted Wave Born Approximation (DWBA). Recent results on excitation function measurements and backward angle angular distributions derive ANC for both the states on the basis of an alpha transfer mechanism. In the present work, we show that considering both forward and backward angle data in the analysis, the 7.12 MeV state at sub-Coulomb energy is populated from Compound nuclear process rather than transfer process. The 6.92 MeV state is however produced from direct reaction mechanism.

  5. More about orbitally excited hadrons from lattice QCD

    International Nuclear Information System (INIS)

    DeGrand, T.A.; Hecht, M.W.

    1992-01-01

    This is the second of two papers describing the calculation of spectroscopy for orbitally excited states from lattice simulations of quantum chromodynamics. New features include higher statistics for P-wave systems and first results for the spectroscopy of D-wave mesons and baryons, for relatively heavy-quark masses. We parametrize the Coulomb gauge wave functions for P- and D-wave systems and compare them to those of their corresponding S-wave states

  6. Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.

    Science.gov (United States)

    Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M

    2018-02-13

    Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.

  7. Simbuca, using a graphics card to simulate Coulomb interactions in a penning trap

    CERN Document Server

    Van Gorp, S; Friedag, P; De Leebeeck, V; Tandecki, M; Weinheimer, C; Breitenfeldt, M; Traykov, E; Severijn, N; Mader, J; Soti, G; Iitaka, T; Herlert, A; Wauters, F; Zakoucky, D; Kozlov, V; Roccia, S

    2011-01-01

    In almost all cases, N-body simulations are limited by the computation time available. Coulomb interaction calculations scale with O(N(2)) with N the number of particles. Approximation methods exist already to reduce the computation time to O(NlogN) although calculating the interaction still dominates the total simulation time. We present Simbuca, a simulation package for thousands of ions moving in a Penning trap which will be applied for the WITCH experiment. Simbuca uses the output of the Cunbody-1 library, which calculates the gravitational interaction between entities on a graphics card, and adapts it for Coulomb calculations. Furthermore the program incorporates three realistic buffer gas models, the possibility of importing realistic electric and magnetic fieldmaps and different order integrators with adaptive step size and error control. The software is released under the GNU General Public License and free for use. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

  8. Coulomb effects on the transport properties of quantum dots in strong magnetic field

    International Nuclear Information System (INIS)

    Moldoveanu, V.; Aldea, A.; Manolescu, A.; Nita, M.

    2000-08-01

    We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Buettiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed for strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling. (author)

  9. Coulomb drag in electron-hole bilayer: Mass-asymmetry and exchange correlation effects

    Science.gov (United States)

    Arora, Priya; Singh, Gurvinder; Moudgil, R. K.

    2018-04-01

    Motivated by a recent experiment by Zheng et al. [App. Phys. Lett. 108, 062102 (2016)] on coulomb drag in electron-hole and hole-hole bilayers based on GaAs/AlGaAs semiconductor heterostructure, we investigate theoretically the influence of mass-asymmetry and temperature-dependence of correlations on the drag rate. The correlation effects are dealt with using the Vignale-Singwi effective inter-layer interaction model which includes correlations through local-field corrections to the bare coulomb interactions. However, in this work, we have incorporated only the intra-layer correlations using the temperature-dependent Hubbard approximation. Our results display a reasonably good agreement with the experimental data. However, it is crucial to include both the electron-hole mass-asymmetry and temperature-dependence of correlations. Mass-asymmetry and correlations are found to result in a substantial enhancement of drag resistivity.

  10. Influence of Coulomb effects on the resolving power of multireflection mass-spectrometer systems

    International Nuclear Information System (INIS)

    Skoblin, M G; Kopaev, I A; Monastyrskiy, M A; Alimpiev, S S; Greenfield, D E; Makarov, A A

    2015-01-01

    General theoretical approaches to the modelling of Coulomb effects in short ion bunches, developed previously by the authors, are applied in this paper to the calculation of multireflection mass-spectrometer systems. A separate module of the MASIM 3D applied software package is designed. An adaptive computational procedure for calculating the 'mirror potential' induced by an ion bunch on the surface of field-forming electrodes is proposed. The dynamics of ion bunches in a time-of-flight reflectron-type mass analyser is calculated and the limitations on the resolving power, caused by resonant Coulomb effects of self-bunching and coalescence in the groups of particles with close masses, are revealed on the basis of numerical experiments. (laser applications and other topics in quantum electronics)

  11. Excite City

    DEFF Research Database (Denmark)

    Marling, Gitte; Kiib, Hans; Jensen, Ole B.

    This paper takes its point of departure in the pressure of the experience economy on European cities - a pressure which in recent years has found its expression in a number of comprehensive transformations of the physical and architectural environments, and new eventscapes related to fun and cult...

  12. Letting students discover the power, and the limits, of simple models: Coulomb's law

    Science.gov (United States)

    Bohacek, Peter; Vonk, Matthew; Dill, Joseph; Boehm, Emma

    2017-09-01

    The inverse-square law pops up all over. It's a simplified model of reality that describes light, sound, gravity, and static electricity. But when it's brought up in class, students are often just handed the equations. They rarely have an opportunity to discover Coulomb's law or Newton's law of gravitation for themselves. It's not hard to understand why. A quantitative demonstration of Coulomb's law can be difficult. The forces are smaller than many force sensors can measure and static electricity tends to be finicky. In addition, off-the-shelf units are expensive or difficult to use. As a result, many instructors skip this lab in favor of qualitative demonstrations or simulations. Adolf Cortel sought to remedy this by designing a straightforward experiment for measuring Coulomb's law using charged metalized-glass spheres (Christmas ornaments) and an electronic balance. Building on Cortel's design, we've made a series of video-based experiments that students can use to discover the relationships that underlie electric force.

  13. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.

    Science.gov (United States)

    Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J

    2016-02-19

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  14. Applicability of the molecular dynamics method for the Coulomb plasma

    International Nuclear Information System (INIS)

    Zhidkov, A.G.; Galeev, R.Kh.

    1993-01-01

    Calculations of the local Lyapunov parameter determining the character of movement, n paticle systems, interacting according to the Coulomb law are conducted. The calculations are presented for the most probable states of fully ionized plasma

  15. Analytical evaluation of integrals over Coulomb wave functions

    International Nuclear Information System (INIS)

    Nesbet, R.K.

    1988-01-01

    Indefinite integrals of products of Coulomb wave functions over the interval (r, ∞) can be evaluated by conversion to continued fractions. Examples are given of normalization and dipole transition integrals required in photoionization calculations. (orig.)

  16. The Coulomb Branch of 3d N= 4 Theories

    Science.gov (United States)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide

    2017-09-01

    We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.

  17. Impact of density-dependent symmetry energy and Coulomb ...

    Indian Academy of Sciences (India)

    2014-03-07

    Mar 7, 2014 ... The IMF production increases with the stiffness of symmetry energy. .... to clusterization using minimum spanning tree MST(M) method .... To understand the direct role of Coulomb interactions, we display in figure 4 the mean.

  18. Coulomb Dissociation as a Tool of Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Utsunomiya, H.

    2000-01-01

    My talk will begin with an introduction of the Coulomb dissociation method, proceed to discussions on Coulomb breakup of 7 Li with respect to the big-bang nucleosynthesis and end with the revision of astrophysical S-factors. The methodology based on the virtual photon source will be introduced in view of experimental techniques. The discussion will include the quantum tunnelling effect in non-resonant breakup, the lifetime of continuum states, and Coulomb distortion of relevant cross sections. Roles of multi-step processes and different multipolarities will also be discussed on the basis of solving a time-dependent Schroedinger equation. My talk will present quantitative results. The theoretical framework of the Coulomb dissociation method and a broad scope of its applications are given by G. Baur. Applications to radioactive nuclei which have quickly become vogue are discussed in the related lecture of J. Kiener. (author)

  19. Excited states in biological systems

    International Nuclear Information System (INIS)

    Cilento, G.; Zinner, K.; Bechara, E.J.H.; Duran, N.; Baptista, R.C. de; Shimizu, Y.; Augusto, O.; Faljoni-Alario, A.; Vidigal, C.C.C.; Oliveira, O.M.M.F.; Haun, M.

    1979-01-01

    Some aspects of bioluminescence related to bioenergetics are discussed: 1. chemical generation of excited species, by means of two general processes: electron transference and cyclic - and linear peroxide cleavage; 2. biological systems capable of generating excited states and 3. biological functions of these states, specially the non-emissive ones (tripletes). The production and the role of non-emissive excited states in biological systems are analysed, the main purpose of the study being the search for non-emissive states. Experiences carried out in biological systems are described; results and conclusions are given. (M.A.) [pt

  20. Ultrafast Coulomb explosion of a diiodomethane molecule induced by an X-ray free-electron laser pulse.

    Science.gov (United States)

    Takanashi, Tsukasa; Nakamura, Kosuke; Kukk, Edwin; Motomura, Koji; Fukuzawa, Hironobu; Nagaya, Kiyonobu; Wada, Shin-Ichi; Kumagai, Yoshiaki; Iablonskyi, Denys; Ito, Yuta; Sakakibara, Yuta; You, Daehyun; Nishiyama, Toshiyuki; Asa, Kazuki; Sato, Yuhiro; Umemoto, Takayuki; Kariyazono, Kango; Ochiai, Kohei; Kanno, Manabu; Yamazaki, Kaoru; Kooser, Kuno; Nicolas, Christophe; Miron, Catalin; Asavei, Theodor; Neagu, Liviu; Schöffler, Markus; Kastirke, Gregor; Liu, Xiao-Jing; Rudenko, Artem; Owada, Shigeki; Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Kono, Hirohiko; Ueda, Kiyoshi

    2017-08-02

    Coulomb explosion of diiodomethane CH 2 I 2 molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CH 3 I with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CH 2 I 2 in comparison to CH 3 I. The release of kinetic energy into atomic ion fragments is also studied by comparing SCC-DFTB simulations with the experiment. Compared to earlier simulations, several key enhancements are made, such as the introduction of a bond axis recoil model, where vibrational energy generated during charge creation processes induces only bond stretching or shrinking. We also propose an analytical Coulomb energy partition model to extract the essential mechanism of Coulomb explosion of molecules from the computed and the experimentally measured kinetic energies of fragment atomic ions by partitioning each pair Coulomb interaction energy into two ions of the pair under the constraint of momentum conservation. Effective internuclear distances assigned to individual fragment ions at the critical moment of the Coulomb explosion are then estimated from the average kinetic energies of the ions. We demonstrate, with good agreement between the experiment and the SCC-DFTB simulation, how the more heavily charged iodine fragments and their interplay define the characteristic features of the Coulomb explosion of CH 2 I 2 . The present study also confirms earlier findings concerning the magnitude of bond elongation in the ultrashort X-ray pulse duration, showing that structural damage to all but C-H bonds does not develop to a noticeable degree in the pulse length of ∼10

  1. Fusion and quasi-elastic processes near the Coulomb barrier

    International Nuclear Information System (INIS)

    Abriola, D.

    1987-01-01

    An overview of the fusion phenomenon below Coulomb barrier is presented. The current theoretical descriptions, emphasizing the relations with direct reactions are discussed. The definition and systematic behaviour of the fusion enhancement below the Coulomb barrier are also presented. The role of coupling to surface degrees of freedom, namely permanent deformations of nuclei, inelastic and transfer channels is shown. The importance of studies describing simultaneously quase-elastic processes and fusion are also shown. (M.C.K.) [pt

  2. Coulomb Sturmians as a basis for molecular calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2012-01-01

    mathematical difficulty of evaluating interelectron repulsion integrals when exponential-type orbitals (ETOs) are used. In this paper we show that when many-centre Coulomb Sturmian ETOs are used as a basis, the most important integrals can be evaluated rapidly and accurately by means of the theory...... of hyperspherical harmonics. For the remaining many-centre integrals, Coulomb Sturmians are shown to have advantages over other ETOs. Pilot calculations are performed on N-electron molecules using the Generalized Sturmian Method....

  3. Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.

    Science.gov (United States)

    Patsahan, O

    2013-08-01

    The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.

  4. Regularized friction and continuation: Comparison with Coulomb's law

    OpenAIRE

    Vigué, Pierre; Vergez, Christophe; Karkar, Sami; Cochelin, Bruno

    2016-01-01

    International audience; Periodic solutions of systems with friction are difficult to investigate because of the irregular nature of friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degre-of-freedom system (mass, spring, damper, belt), with Coulomb's friction law, and with a regularized friction law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With Coulomb's law, the stick-slip solution is co...

  5. Absence of Debye screening in the quantum Coulomb system

    International Nuclear Information System (INIS)

    Brydges, D.C.; Keller, G.

    1994-01-01

    We present an approximation to the quantum Coulomb plasma at equilibrium which captures the power-law violations of Debye screening which have been reported in recent papers. The objectives are (1) to produce a simpler model which we will study in forthcoming papers, and (2) to develop a strategy by which the absence of screening can be proven for the low-density quantum Coulomb plasma itself

  6. Trace of a water droplet exerted by coulomb force. 2

    International Nuclear Information System (INIS)

    Sugita, Hideaki; Murakami, Takuro; Nakazawa, Takeshi; Nakasako, Makoto; Yoshimura, Takuma; Osarakawa, Toshihiro

    2002-01-01

    The movement of water droplets in the air-water separator is based on the principle of the electrostatic precipitator with positive and negative poles. The mechanism of separation is that the water droplets charged negative ions or electrons by corona discharge are collected on the positive pole by Coulomb force operating between the both poles. This paper describes the theoretical analyses that how the movement of a water droplet is affected by Coulomb force in the air-water separator. (author)

  7. Unstable system with Coulomb interaction distorted near the origin

    International Nuclear Information System (INIS)

    Kerbikov, B.O.

    1981-01-01

    An unstable system with Coulomb interaction distorted at small distances is considered. The results are applicable to hadronic atoms analysis. A detailed investigation of the model which can be solved exactly is presented. This model contains the separable short-range potential with the Yamaguchi form factor. Closed expressions for the modified effective range function and the Coulomb-modified scattering length ase obtained [ru

  8. The generalized parabolic Coulomb wavefunction in spherical coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Gasaneo, G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Departamento de Fisica, Universidad del Sur, Buenos Aires (Argentina); Colavecchia, F.D.; Garibotti, C.R. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Rio Negro (Argentina); Otranto, S. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Departamento de Fisica, Universidad del Sur, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Rio Negro (Argentina)

    2001-10-19

    In this work we present a detailed study of the recently introduced {delta}{sub m,n} basis for three Coulomb particles. We show that the scattering and generalized Coulomb problems as well as a {phi}{sub 2} approach can be viewed as particular cases of this basis. We derive a partial wave expansion for {delta}{sub m,n} functions and analyse the reduction to some of the precedent cases. (author)

  9. Coulomb interference and bending slope in hadron-hadron scattering

    International Nuclear Information System (INIS)

    Pereira, Flavio I.; Ferreira, Erasmo

    1994-01-01

    With the purpose of testing the results of QCD calculations on the structure of the forward elastic scattering cross-section, we analyse the coulombic-nuclear interference occurring at small values of the momentum transfer. We emphasize the influence of the hadronic structures on the determination of the Coulomb phase and consequently on the t-dependence of the strong interaction slope parameter. (author)

  10. Search for double-beta decay of 136Xe to excited states of 136Ba with the KamLAND-Zen experiment

    Science.gov (United States)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2016-02-01

    A search for double-beta decays of 136Xe to excited states of 136Ba has been performed with the first phase data set of the KamLAND-Zen experiment. The 01+, 21+ and 22+ transitions of 0 νββ decay were evaluated in an exposure of 89.5 kg ṡyr of 136Xe, while the same transitions of 2 νββ decay were evaluated in an exposure of 61.8 kg ṡyr. No excess over background was found for all decay modes. The lower half-life limits of the 21+ state transitions of 0 νββ and 2 νββ decay were improved to T1/20ν (0+ →21+) > 2.6 ×1025 yr and T1/22ν (0+ →21+) > 4.6 ×1023 yr (90% C.L.), respectively. We report on the first experimental lower half-life limits for the transitions to the 01+ state of 136Xe for 0 νββ and 2 νββ decay. They are T1/20ν (0+ →01+) > 2.4 ×1025 yr and T1/22ν (0+ → 01+) > 8.3 ×1023 yr (90% C.L.). The transitions to the 22+ states are also evaluated for the first time to be T1/20ν (0+ →22+) > 2.6 ×1025 yr and T1/22ν (0+ →22+) > 9.0 ×1023 yr (90% C.L.). These results are compared to recent theoretical predictions.

  11. Approximate Coulomb effects in the three-body scattering problem

    International Nuclear Information System (INIS)

    Haftel, M.I.; Zankel, H.

    1981-01-01

    From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles

  12. The Fermi surface of Sr{sub 2}RuO{sub 4}: spin-orbit and anisotropic Coulomb interaction effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva [Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2016-07-01

    The topology of the Fermi surface of Sr{sub 2}RuO{sub 4} is well described by local density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction worsen or does not correct this discrepancy. In order to reproduce experiments, it is essential to include the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and with the isotropic Coulomb term. This mechanism is likely to be at work in other multi-orbital systems. Finally, we find a strong spin-orbital entanglement. This supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr{sub 2}RuO{sub 4}.

  13. Distributional sources for Newman's holomorphic Coulomb field

    International Nuclear Information System (INIS)

    Kaiser, Gerald

    2004-01-01

    Newman (1973 J. Math. Phys. 14 102-3) considered the holomorphic extension E-tilde(z) of the Coulomb field E(x) in R 3 . From an analysis of its multipole expansion, he concluded that the real and imaginary parts E(x+iy)≡Re E-tilde(x+iy), H(x+iy)≡Im E-tilde(x+iy), viewed as functions of x, are the electric and magnetic fields generated by a spinning ring of charge R. This represents the EM part of the Kerr-Newman solution to the Einstein-Maxwell equations (Newman E T and Janis A I 1965 J. Math. Phys. 6 915-7; Newman E T et al 1965 J. Math. Phys. 6 918-9). As already pointed out in Newman and Janis (1965 J. Math. Phys. 6 915-7), this interpretation is somewhat problematic since the fields are double-valued. To make them single-valued, a branch cut must be introduced so that R is replaced by a charged disc D having R as its boundary. In the context of curved spacetime, D becomes a spinning disc of charge and mass representing the singularity of the Kerr-Newman solution. Here we confirm the above interpretation of E and H without resorting to asymptotic expansions, by computing the charge and current densities directly as distributions in R 3 supported in D. This will show that D spins rigidly at the critical rate so that its rim R moves at the speed of light

  14. Optical Trapping of Ion Coulomb Crystals

    Directory of Open Access Journals (Sweden)

    Julian Schmidt

    2018-05-01

    Full Text Available The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  15. Functional theory of extended Coulomb systems

    International Nuclear Information System (INIS)

    Martin, R.M.; Ortiz, G.

    1997-01-01

    A consistent formulation is presented for a functional theory of extended quantum many-particle systems with long-range Coulomb interactions, which extends the density-functional theory of Hohenberg and Kohn to encompass the theory of dielectrics formulated in terms of electric fields and polarization. We show that a complete description of insulators in the thermodynamic limit requires a functional of density and macroscopic polarization; nevertheless, for any insulator the state with zero macroscopic electric field can be considered a reference state that is a functional of the density alone. Dielectric phenomena involve the behavior of the material in the presence of macroscopic electric fields that induce changes of the macroscopic polarization from its equilibrium value in the reference state. In the thermodynamic limit there is strictly no ground state and constraints must be placed upon the electronic wave functions in order to have a well-defined energy functional; within these constrained subspaces the Hohenberg-Kohn theorems can be generalized in terms of the density and the change in the macroscopic polarization. The essential role of the polarization is shown by an explicit example of two potentials that lead to the same periodic density in a crystal, but different macroscopic electric fields and polarization. In the Kohn-Sham approach both the kinetic and the exchange-correlation energy are shown to depend upon the changes in polarization; this leads to generalized Kohn-Sham equations with a nonlocal operator. The effect can be traced to the polarization of the average exchange-correlation hole itself in the presence of macroscopic fields, which is essential for an exact description of static dielectric phenomena. copyright 1997 The American Physical Society

  16. Kinetic theory for strongly coupled Coulomb systems

    Science.gov (United States)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  17. Coulomb blockade and transfer of electrons one by one

    International Nuclear Information System (INIS)

    Pothier, Hugues

    1991-01-01

    Zero point fluctuations of the charge on the capacitance of a tunnel junction connected to a bias circuit are in almost all experimental situations larger than the electron charge. As a consequence, the effects of charge granularity are hidden, but in circuits with 'islands', which are electrodes connected to the rest of the circuit only through tunnel junctions and capacitors. The island charge being quantized, its fluctuations are blocked. If the island capacitance is sufficiently small, no electron can enter the island because of the increase of electrostatic energy that would occur. We have observed this effect, called 'Coulomb blockade', in the 'single electron box', where an island is formed between a tunnel junction and a capacitor. A bias voltage source coupled to the island through the capacitor allows to control the number of electrons. We have designed and operated two devices with nano-scale tunnel junctions based on this principle, the 'turnstile' and the 'pump', through which the current is controlled electron by electron. In our experiments, the precision of the transfer is of the order of one percent. It should be a million time better in versions of these devices with more junctions. One could then use them for a new measurement of the fine structure constant alpha. (author) [fr

  18. Fermi-edge singularity in one-dimensional electron systems with long-range Coulomb interactions

    International Nuclear Information System (INIS)

    Otani, H.; Ogawa, T.

    1996-01-01

    Effects of long-range Coulomb interactions on the Fermi-edge singularity in optical spectra are investigated theoretically for one-dimensional spin-1/2 fermion systems with the use of the Tomonaga-Luttinger bosonization technique. Low-energy excitation spectrum near the Fermi level shows that dispersion of the charge-density fluctuation remains gapless but is nonlinear when the electron-electron (e-e) Coulomb interaction is of the x -1 type (i.e., an infinite force range). Temporal behavior of the current-current correlation function is calculated analytically for arbitrary force ranges, λ e and λ h , of the e-e and the electron-hole (e-h) Coulomb interactions. (i) When both the e-e and the e-h interactions have large but finite force ranges (λ e h max[λ e ,λ h ]/v F . Corresponding optical spectrum near the Fermi edge (within an energy range of ℎv F /max[λ e ,λ h ]) exhibits the power-law divergence or the power-law convergence, which is an ordinary Fermi-edge singularity. (ii) When either the e-e or the e-h interaction is of the x -1 type (i.e., λ e →∞ and/or λ h →∞), an exponent of the correlation function is dependent on time to lead the faster decay than that of any power laws. Then the optical spectra show no power law dependence and always converge (become zero) at the Fermi edge, which is in striking contrast to the ordinary power-law singularity

  19. Measurements of octupole collectivity in Rn and Ra nuclei using Coulomb excitation

    CERN Multimedia

    We propose to exploit the unique capability of HIE-ISOLDE to provide post-accelerated $^{221,222}$Rn and $^{222,226,228}$Ra ion beams for the study of octupole collectivity in these nuclei. We will measure E3 transition moments in $^{222}$Rn and $^{222,226,228}$Ra in order to fully map out the variation in E3 strength in the octupole mass region with Z$\\thicksim$88 and N$\\thicksim$134. This will validate model calculations that predict different behaviour as a function of N. We will also locate the position of the parity doublet partner of the ground state in $^{221}$Rn, in order to test the suitability of odd-A radon isotopes for EDM searches.

  20. Study of the Neutron-rich Isotope Ar-46 Through Intermediate Energy Coulomb Excitation

    Czech Academy of Sciences Publication Activity Database

    Calinescu, S.; Ceceres, L.; Grévy, S.; Sorlin, O.; Sohler, D.; Stanoiu, M.; Negoita, F.; Clement, E.; Astabatyan, R.; Borcea, C.; Borcea, R.; Bowry, M.; Catford, W.; Dombradi, Z.; Franchoo, S.; Garcia, R.; Gillibert, R.; Guerin, H.; Thomas, J. C.; Kuti, I.; Lukyanov, S.; Lepailleur, A.; Maslov, V.; Morfouace, P.; Mrázek, Jaromír; Niikura, M.; Perrot, L.; Podolyak, Z.; Petrone, C.; Peniozhkevich, Y.; Roger, T.; Rotaru, F.; Stefan, I.; Vajta, Zs.; Wilson, E.

    2014-01-01

    Roč. 45, č. 2 (2014), s. 199-204 ISSN 0587-4254 Institutional support: RVO:61389005 Keywords : GANIL * detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.850, year: 2014

  1. Research on the reliability of friction system under combined additive and multiplicative random excitations

    Science.gov (United States)

    Sun, Jiaojiao; Xu, Wei; Lin, Zifei

    2018-01-01

    In this paper, the reliability of a non-linearly damped friction oscillator under combined additive and multiplicative Gaussian white noise excitations is investigated. The stochastic averaging method, which is usually applied to the research of smooth system, has been extended to the study of the reliability of non-smooth friction system. The results indicate that the reliability of friction system can be improved by Coulomb friction and reduced by random excitations. In particular, the effect of the external random excitation on the reliability is larger than the effect of the parametric random excitation. The validity of the analytical results is verified by the numerical results.

  2. Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice.

    Science.gov (United States)

    Perrin, Yann; Canals, Benjamin; Rougemaille, Nicolas

    2016-12-15

    Artificial spin-ice systems are lithographically patterned arrangements of interacting magnetic nanostructures that were introduced as way of investigating the effects of geometric frustration in a controlled manner. This approach has enabled unconventional states of matter to be visualized directly in real space, and has triggered research at the frontier between nanomagnetism, statistical thermodynamics and condensed matter physics. Despite efforts to create an artificial realization of the square-ice model-a two-dimensional geometrically frustrated spin-ice system defined on a square lattice-no simple geometry based on arrays of nanomagnets has successfully captured the macroscopically degenerate ground-state manifold of the model. Instead, square lattices of nanomagnets are characterized by a magnetically ordered ground state that consists of local loop configurations with alternating chirality. Here we show that all of the characteristics of the square-ice model are observed in an artificial square-ice system that consists of two sublattices of nanomagnets that are vertically separated by a small distance. The spin configurations we image after demagnetizing our arrays reveal unambiguous signatures of a Coulomb phase and algebraic spin-spin correlations, which are characterized by the presence of 'pinch' points in the associated magnetic structure factor. Local excitations-the classical analogues of magnetic monopoles-are free to evolve in an extensively degenerate, divergence-free vacuum. We thus provide a protocol that could be used to investigate collective magnetic phenomena, including Coulomb phases and the physics of ice-like materials.

  3. Study of Coulomb effects using the comparison of positrons and electrons elastic scattering on nuclei

    International Nuclear Information System (INIS)

    Breton, Vincent

    1990-01-01

    We have studied Coulomb effects in the electron-nucleus interaction by measuring electron and positron elastic scattering. The Coulomb field of the nucleus acts differently on theses particles because of their opposite charges. The experiment took place at the Accelerateur Lineaire de Saclay, with 450 MeV electrons and positrons. We measured the emittance of the positron and electron beams. We compared electron and positron beams having the same energy, the same emittance and the same intensity. This way, we measured positron scattering cross sections with 2 % systematic error. By comparing positron and electron elastic scattering cross sections for momentum transfers between 1 and 2 fm -1 , on a Lead 208 target, we showed that the calculations of Coulomb effects in elastic scattering are in perfect agreement with experimental results. The comparison of positron and electron elastic scattering cross sections on Carbon showed that dispersive effects are smaller than 2 % outside the diffraction minima. These two results demonstrate in a definitive way that electron scattering allows to measure charge densities in the center of nuclei with an accuracy of the order of 1 %. (author) [fr

  4. Coulomb energy differences in mirror nuclei

    International Nuclear Information System (INIS)

    Lenzi, Silvia M

    2006-01-01

    By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells

  5. Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.

    Science.gov (United States)

    Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R

    2015-12-17

    Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.

  6. On the Zeeman Effect in highly excited atoms: 2. Three-dimensional case

    International Nuclear Information System (INIS)

    Baseia, B.; Medeiros e Silva Filho, J.

    1984-01-01

    A previous result, found in two-dimensional hydrogen-atoms, is extended to the three-dimensional case. A mapping of a four-dimensional space R 4 onto R 3 , that establishes an equivalence between Coulomb and harmonic potentials, is used to show that the exact solution of the Zeeman effect in highly excited atoms, cannot be reached. (Author) [pt

  7. Electron impact excitation of 1'S-2'S transition in helium

    International Nuclear Information System (INIS)

    Mohanty, J.P.; Singh, C.S.

    1989-01-01

    The modified variable-charge Coulomb-projected Born approximation is applied to electron impact excitation of 1 1 S-2 1 S transition in helium. The results are compared with other theoretical and experimental results. (author). 30 refs., 4 figs

  8. Structure of the lowest excited 0/sup +/ rotational band of /sup 16/O

    Energy Technology Data Exchange (ETDEWEB)

    Ikebata, Yasuhiko; Suekane, Shota

    1983-10-01

    The structure of the lowest excited 0/sup +/ rotational band is investigated by using the extended Nilsson model wave functions with angular momentum projection and the B1 interaction, two-body LS-force of the Skyrme type and the Coulomb interaction. The results obtained show good agreement with energy interval in this band.

  9. Muonic molecules as three-body Coulomb problem in adiabatic approximation

    International Nuclear Information System (INIS)

    Decker, M.

    1994-04-01

    The three-body Coulomb problem is treated within the framework of the hyperspherical adiabatic approach. The surface functions are expanded into Faddeev-type components in order to ensure the equivalent representation of all possible two-body contributions. It is shown that this decomposition reduces the numerical effort considerably. The remaining radial equations are solved both in the extreme and the uncoupled adiabatic approximation to determine the binding energies of the systems (dtμ) and (d 3 Heμ). Whereas the ground state is described very well in the uncoupled adiabatic approximation, the excited states should be treated within the coupled adiabatic approximation to obtain good agreement with variational calculations. (orig.)

  10. Storage of optical excitations in colloidal semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Kraus, Robert

    2009-01-01

    In the present theis it is described, how colloidal semiconductor nanocrystals can be used under influence of an electric field to store optical excitation energy at room temperature, to alter, and to supply controlledly. For this the photoluminescence emission of an ensemble of heterogeneous nanocrystals was manipulated and spectroscopically studied. The applied od-shaped particles consist of a spherical core of CdSe, on which an elongated shell of CdS is monocrystallinely be grown. The electron is in such an asymmetric geometry delocalized over the hole nanorod, whereas the hole because of the high potential barrier remains bound in the CdSe core. The wave-function overlap of the charge carriers can therefore be influenced both by the length of the nanorod and by an external electric field. In the regime of prompt fluorescence the manipulation of the charge-carrier separation by an electric field led to a suppression of the radiative recombination. As consequence a fluorescence suppression of about 40% could be observed. After the removal of the electric field the separation was reduced and the stored energy is in an fluorescence increasement directedly liberated again. The strength of the storage efficiency lies with the strength of the electric field in a linear connection. Furthermore in this time range a quantum-confined Stark effect of upt o 14 meV could be detected at room temperature, although the effect is complicated by the different orientations and sizes of the nanorods in the ensemble. Hereby it is of advance to can adress with the applied detection technique a subensemble of nanocrystals. Furthermore a significant storage of the ensmble emission by up to 100 μs conditioned by the electric electric fieldcould be demonstrated, which exceeds the fluorescence lifetime of these particles by the 10 5 fold. As also could be shown by experiments on CdSe/ZnS nanocrystals surface states play a relevent role for the emission dynamics of nanocrystals. The

  11. Coulomb effects in relativistic laser-assisted Mott scattering

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J.M.; Kwato Njock, M.G.; Tetchou Nganso, H.M.

    2004-09-01

    We reconsider the influence of the Coulomb interaction on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. Coulomb effects of the bare nucleus on the laser-dressed electron are treated more completely than in the previous work of Li et al. [J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 653]. To this end we use Coulomb-Dirac-Volkov functions to describe the initial and the final states of the electron. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for circularly and linearly polarized laser light. Numerical calculations are carried out from both polarizations, for various nucleus charge values, three angular configurations and an incident energy in the MeV range. It is found that for parameters used in the present work, incorporating Coulomb effects of the target nucleus either in the initial state or in the final state yields cross sections which are quite similar whatever the scattering geometry and polarization considered. When Coulomb distortions are included in both states, the cross sections are strongly modified with the increase of Z, as compared to the outcome of the prior form of the T-matrix treatment. (author)

  12. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  13. Three-body Coulomb bound states

    Science.gov (United States)

    Bhatia, A. K.; Drachman, Richard J.

    1987-01-01

    The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.

  14. Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil

    2013-01-01

    A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory of hyperspheri......A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory...... of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...

  15. Metal nanoparticle film-based room temperature Coulomb transistor.

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  16. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  17. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... a voltage drop V-2 in another shell by the screened Coulomb interaction between the shells neglecting the intershell tunneling. We provide benchmark results for R-21 = V2/I-1 within the Fermi liquid theory using Boltzmann equations. The band structure gives rise to strongly chirality-dependent suppression...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...

  18. Metal nanoparticle film–based room temperature Coulomb transistor

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-01-01

    Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864

  19. Electron transport in the presence of a Coulomb field

    International Nuclear Information System (INIS)

    Burgdoerfer, J.; Gibbons, J.

    1990-01-01

    We analyze the modifications of the transport behavior of electrons in dense media due to the presence of a strong Coulomb field generated by an ion moving initially in close phase-space correlation with the electrons. These modifications play a profound role in convoy electron emission in ion-solid collisions. The transport behavior is studied within the framework of a classical phase-space master equation. The nonseparable master equation is solved numerically using test-particle discretization and Monte Carlo sampling. In the limit of vanishing Coulomb forces the master equation becomes separable and can be reduced to standard one-dimensional kinetic equations for free-electron transport that can be solved exactly. The comparison to free-electron transport is used to gauge both the reliability of test-particle discretization and the significance of Coulomb distortion of the distribution functions. Applications to convoy-electron emission are discussed

  20. Fusion of 48Ti+58Fe and 58Ni+54Fe below the Coulomb barrier

    Science.gov (United States)

    Stefanini, A. M.; Montagnoli, G.; Corradi, L.; Courtin, S.; Bourgin, D.; Fioretto, E.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Mijatović, T.; Montanari, D.; Pagliaroli, M.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Toniolo, N.; Torresi, D.

    2015-12-01

    Background: No data on the fusion excitation function of 48Ti+58Fe in the energy region near the Coulomb barrier existed prior to the present work, while fusion of 58Ni+54Fe was investigated in detail some years ago, down to very low energies, and clear evidence of fusion hindrance was noticed at relatively high cross sections. 48Ti and 58Fe are soft and have a low-lying quadrupole excitation lying at ≈800 -900 keV only. Instead, 58Ni and 54Fe have a closed shell (protons and neutrons, respectively) and are rather rigid. Purpose: We aim to investigate (1) the possible influence of the different structures of the involved nuclei on the fusion excitation functions far below the barrier and, in particular, (2) whether hindrance is observed in 48Ti+58Fe , and to compare the results with current coupled-channels models. Methods: 48Ti beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used. The experimental setup was based on an electrostatic beam separator, and fusion-evaporation residues (ERs) were detected at very forward angles. Angular distributions of ERs were measured. Results: Fusion cross sections of 48Ti+58Fe have been obtained in a range of nearly six orders of magnitude around the Coulomb barrier, down to σ ≃2 μ b . The sub-barrier cross sections of 48Ti+58Fe are much larger than those of 58Ni+54Fe . Significant differences are also observed in the logarithmic derivatives and astrophysical S factors. No evidence of hindrance is observed, because coupled-channels calculations using a standard Woods-Saxon potential are able to reproduce the data in the whole measured energy range. Analogous calculations for 58Ni+54Fe predict clearly too large cross sections at low energies. The two fusion barrier distributions are wide and display a complex structure that is only qualitatively fit by calculations. Conclusions: It is pointed out that all these different trends originate from the dissimilar low-energy nuclear structures of