WorldWideScience

Sample records for cottonwoods

  1. Cottonwood

    Science.gov (United States)

    R. M. Krinard

    1980-01-01

    Cottonwood is pure or comprises a majority of the stocking, but it is associated with other bottomland hardwoods. Eastern, plains, and swamp cottonwood are included under the type name. The chief associates in the younger stages are black and sandbar willow. Sweetgum !s rare. White or green ash, silver maple, and American elm may occur in the northern extremities of...

  2. Rooting Cuttings of Cottonwood, WilIow, and Sycamore

    Science.gov (United States)

    Charles B. Briscoe

    1963-01-01

    Cuttings of cottonwood, willow, and sycamore were collectd monthly through the year and set in nursery beds. Every species yield an appreciable percentage of rooted cuttings every month. The best month was March; the worst month was June. Willow rooted more cuttings than cottonwood or sycamore, and those which rooted grew faster. Cottonwood grew faster than sycamore....

  3. Cottonwoods of the Midwest: A Community Profile

    Science.gov (United States)

    2008-05-01

    As a component of the floodplain forest, cottonwoods provide habitat for many species of birds to roost, nest, and feed in the branches and bole...in the western United States (Malanson 1993). Cottonwood seedlings are preferred forage for cattle , which also trample young plants. Invasive...Cooper and Van Haverbeke 1990; Taylor 2001) Common Name Scientific Name Eastern Plains Invasive Graminoids Creeping bentgrass Agrostis stolonifera

  4. Cottonwood Tree Rings and Climate in Western North America

    Science.gov (United States)

    Friedman, J. M.; Edmondson, J.; Griffin, E. R.; Meko, D. M.; Merigliano, M. F.; Scott, J. A.; Scott, M. L.; Touchan, R.

    2012-12-01

    In dry landscapes of interior western USA, cottonwood (Populus spp.) seedling establishment often occurs only close to river channels after floods. Where winter is sufficiently cold, cottonwoods also have distinct annual rings and can live up to 370 years, allowing us to reconstruct the long-term history of river flows and channel locations. We have analyzed the annual rate of cottonwood establishment along streams in Montana, Wyoming, Colorado, North Dakota and Idaho. Because the trees germinate next to the river, establishment rates are strongly correlated with the rate of channel migration driven by floods. Along large rivers dominated by snowmelt from the mountains, interannual variation in peak flows and cottonwood establishment is small, and century-scale variation driven by climate change is apparent. The upper Snake, Yellowstone and Green rivers all show a strong decrease in cottonwood establishment beginning in the late 1800s and continuing to the present, indicating a decrease in peak flows prior to flow regulation by large dams. This is consistent with published tree-ring studies of montane conifers showing decreases in snowpack at the same time scale. In contrast, beginning in the late 1800s cottonwood ring widths along the Little Missouri River, North Dakota show an increase in annual growth that continues into the present. Because annual growth is strongly correlated with April-July flows (r=0.69) the ring-width data suggest an increase in April-July flows at the same time tree establishment dates suggest a decrease in peak flows. These results may be reconciled by the hypothesis that increases in low temperatures have decreased snowpack while lengthening the growing season.

  5. Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods.

    Science.gov (United States)

    Meinhardt, Kelley A; Gehring, Catherine A

    2012-03-01

    The disruption of mutualisms between plants and mycorrhizal fungi is a potentially powerful mechanism by which invasives can negatively impact native species, yet our understanding of this mechanism's role in exotic species invasion is still in its infancy. Here, we provide several lines of evidence indicating that invasive tamarisk (Tamarix sp.) negatively affects native cottonwoods (Populus fremontii) by disrupting their associations with arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi. At a field site in the early stages of tamarisk invasion, cottonwoods with tamarisk neighbors had reduced EM colonization and altered EM fungal community composition relative to cottonwoods with native neighbors, leading to reductions in EM propagule abundance in the soil beneath tamarisk. Similarly, AM colonization of cottonwoods was reduced with a tamarisk neighbor, but there were no significant changes in AM fungal spore communities or propagule abundance. Root colonization by nonmycorrhizal fungi, including potential pathogens, was higher in cottonwoods with tamarisk neighbors. A greenhouse experiment in which AM and EM inoculation and plant neighbor were manipulated in a fully factorial design showed that cottonwoods benefited from mycorrhizas, especially EM, in terms of shoot biomass when grown with a conspecific, but shoot biomass was similar to that of nonmycorrhizal controls when cottonwoods were grown with a tamarisk neighbor. These results are partially explained by a reduction in EM but not AM colonization of cottonwoods by a tamarisk neighbor. Tamarisk neighbors negatively affected cottonwood specific leaf area, but not chlorophyll content, in the field. To pinpoint a mechanism for these changes, we measured soil chemistry in the field and the growth response of an EM fungus (Hebeloma crustuliniforme) to salt-amended media in the laboratory. Tamarisk increased both NO3- concentrations and electrical conductivity 2.5-fold beneath neighboring cottonwoods in

  6. Cottonwood Response to Nitrogen Related To Plantation Age and Site

    Science.gov (United States)

    B.G. Blackmon

    1977-01-01

    When applied at plantation age 4,336 kg N/ha increased diameter growth of cottonwood on Sharkey clay by 33 percent over unfertilized controls. Fertilizing at ages 2 and 3 resulted in no response, nor was there any benefit from applying nitrogen fertilizer to cottonwood on Commerce silt loam. On both sites, foliar N levels were increased by fertilization regardless of...

  7. Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers.

    Science.gov (United States)

    Benjankar, Rohan; Burke, Michael; Yager, Elowyn; Tonina, Daniele; Egger, Gregory; Rood, Stewart B; Merz, Norm

    2014-12-01

    Dam operations have altered flood and flow patterns and prevented successful cottonwood seedling recruitment along many rivers. To guide reservoir flow releases to meet cottonwood recruitment needs, we developed a spatially-distributed, GIS-based model that analyzes the hydrophysical requirements for cottonwood recruitment. These requirements are indicated by five physical parameters: (1) annual peak flow timing relative to the interval of seed dispersal, (2) shear stress, which characterizes disturbance, (3) local stage recession after seedling recruitment, (4) recruitment elevation above base flow stage, and (5) duration of winter flooding, which may contribute to seedling mortality. The model categorizes the potential for cottonwood recruitment in four classes and attributes a suitability value at each individual spatial location. The model accuracy was estimated with an error matrix analysis by comparing simulated and field-observed recruitment success. The overall accuracies of this Spatially-Distributed Cottonwood Recruitment model were 47% for a braided reach and 68% for a meander reach along the Kootenai River in Idaho, USA. Model accuracies increased to 64% and 72%, respectively, when fewer favorability classes were considered. The model predicted areas of similarly favorable recruitment potential for 1997 and 2006, two recent years with successful cottonwood recruitment. This model should provide a useful tool to quantify impacts of human activities and climatic variability on cottonwood recruitment, and to prescribe instream flow regimes for the conservation and restoration of riparian woodlands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Biomass productivity improvement for eastern cottonwood

    Science.gov (United States)

    Terry L. Robison; Randy J. Rousseau; Jianwei Zhang

    2006-01-01

    Eastern cottonwood ( Populus deltoides Marsh.) is grown in plantations by MeadWestvaco for use at its Wickliffe Kentucky Fine Papers Mill1. Genetic and productivity research over the past two decades have led to significant increases in biomass yield while reducing production costs.Initially, genetic research identified fast growing...

  9. Field Guide for Evaluating Cottonwood Sites

    Science.gov (United States)

    W.M. Broadfoot

    1960-01-01

    Two field methods have been developed at the Stoneville Research Center for estimating the capability of Midsouth soils to grow eastern cottonwood (Populus deltoides Bartr.). Data for establishing the procedures were collected from 155 plots* at the locations indicated in Figure 1.The methods give site index-that is, tree-growing...

  10. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Cottonwood project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of Cottonwood project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 15 groundwater samples, 79 stream sediment samples, and 85 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from 0.25 to 3.89 ppB. The highest concentrations are from groundwaters from the Little Cottonwood and Ferguson Stocks. Variables that appear to be associated with uranium in groundwater include cobalt, iron, potassium, manganese, nickel, sulfate, and to a lesser extent, molybdenum and strontium. This association is attributed to the Monzonitic Little Cottonwood Stock, granodioritic to granitic and lamprophyric dikes, and known sulfide deposits. Soluble uranium concentrations (U-FL) in stream sediments range from 0.31 to 72.64 ppM. Total uranium concentrations (U-NT) range from 1.80 to 75.20 ppM. Thorium concentrations range from <2 to 48 ppM. Anomalous values for uranium and thorium are concentrated within the area of outcrop of the Little Cottonwood and Ferguson Stocks. Variables which are areally associated with high values of uranium, thorium, and the U-FL:U-NT ratio within the Little Cottonwood Stock are barium, copper, molybdenum, and zinc. High concentrations of these variables are located near sulfide deposits within the Little Cottonwood Stock

  11. Genetic Variation Among Open-Pollinated Progeny of Eastern Cottonwood

    Science.gov (United States)

    R. E. Farmer

    1970-01-01

    Improvement programs in eastern cottonwood (Populus deltoides Bartr.) are most frequently designed to produce genetically superior clones for direct commercial use. This paper describes a progeny test to assess genetic variability on which selection might be based.

  12. Planting Season for Cottonwood Can Be Extended

    Science.gov (United States)

    Harvey E. Kennedy

    1979-01-01

    Cottonwood cuttings planted as early as November and as late as May survive and grow well if sufficient soil moisture is available and cuttings are properly handled. About 6 inches or more of well distributed rainfall is needed in September and October to recharge Commerce soil. If these two months are dry, planting should be delayed. In March or later, cuttings should...

  13. Dendroclimatic potential of plains cottonwood (Populus deltoides subsp. monilifera) from the Northern Great Plains, USA

    Science.gov (United States)

    Edmonson, Jesse; Friedman, Jonathan; Meko, David; Touchan, Ramzi; Scott, Julian; Edmonson, Alan

    2014-01-01

    A new 368-year tree-ring chronology (A.D. 1643–2010) has been developed in western North Dakota using plains cottonwood (Populus deltoides subsp. monilifera) growing on the relatively undisturbed floodplain of the Little Missouri River in the North Unit of Theodore Roosevelt National Park. We document many slow-growing living trees between 150–370 years old that contradict the common understanding that cottonwoods grow fast and die young. In this northern location, cottonwood produces distinct annual rings with dramatic interannual variability that strongly crossdate. The detrended tree-ring chronology is significantly positively correlated with local growing season precipitation and soil moisture conditions (r  =  0.69). This time series shows periods of prolonged low radial tree growth during the known droughts of the instrumental record (e.g. 1931–1939 and 1980–1981) and also during prehistory (e.g. 1816–1823 and 1856–1865) when other paleoclimate studies have documented droughts in this region. Tree rings of cottonwood will be a useful tool to help reconstruct climate, streamflow, and the floodplain history of the Little Missouri River and other northern river systems.

  14. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.

    Science.gov (United States)

    Hultine, K R; Bush, S E; Ehleringer, J R

    2010-03-01

    Riparian cottonwood/willow forest assemblages are highly valued in the southwestern United States for their wildlife habitat, biodiversity, and watershed protection. Yet these forests are under considerable threat from climate change impacts on water resources and land-use activities to support human enterprise. Stream diversions, groundwater pumping, and extended drought have resulted in the decline of cottonwood/willow forests along many riparian corridors in the Southwest and, in many cases, the replacement of these forests with less desirable invasive shrubs and trees. Nevertheless, ecophysiological responses of cottonwood and willow, along with associated ecohydrological feedbacks of soil water depletion, are not well understood. Ecophysiological processes of mature Fremont cottonwood and coyote willow stands were examined over four consecutive growing seasons (2004-2007) near Salt Lake City, Utah, USA. The tree stands occurred near the inlet of a reservoir that was drained in the spring of 2005 and remained empty until mid-summer of 2006, effectively removing the primary water source for most of two growing seasons. Stem sap flux density (Js) in cottonwood was highly correlated with volumetric soil moisture (theta) in the upper 60 cm and decreased sevenfold as soil moisture dropped from 12% to 7% after the reservoir was drained. Conversely, Js in willow was marginally correlated with 0 and decreased by only 25% during the same period. Opposite patterns emerged during the following growing season: willow had a lower whole-plant conductance (kt) in June and higher leaf carbon isotope ratios (delta13C) than cottonwood in August, whereas k(t) and delta13C were otherwise similar between species. Water relations in both species recovered quickly from soil water depletion, with the exception that sapwood area to stem area (As:Ast) was significantly lower in both species after the 2007 growing season compared to 2004. Results suggest that cottonwood has a greater

  15. The Cottonwood Lake study area, a long-term wetland ecosystem monitoring site

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.

    2012-01-01

    The Cottonwood Lake study area is one of only three long-term wetland ecosystem monitoring sites in the prairie pothole region of North America; the other two are Orchid Meadows in South Dakota and St. Denis in Saskatchewan. Of the three, Cottonwood Lake has, by far, the longest continuous data-collection record. Research was initiated at the study area in 1966, and intensive investigations of the hydrology, chemistry, and biology of prairie pothole wetlands continue at the site today. This fact sheet describes the study area, provides an overview of wetland ecology research that has been conducted at the site in the past, and provides an introduction to current work being conducted at the study area by USGS scientists.

  16. Rooting ability of native cottonwoods depends on the clone used

    Science.gov (United States)

    Frank E. Cunningham

    1953-01-01

    Vegetative propagation of eastern cottonwood (Populus deltoides) from dormant cuttings has generally been considered rather easy. Yet test plantings of unrooted cuttings of this species on the Hopkins Memorial Experimental Forest at Williamstown, Mass., showed considerable variation in rooting ability of the clones used.

  17. Nitrogen Fertilization Increases Cottonwood Growth on Old-Field Soil

    Science.gov (United States)

    B. G. Blackmon; E. H. White

    1972-01-01

    Nitrogen (150 lb ./acre as NH4N03 ) applied to a 6-year-old eastern cottonwood plantation in an old field on Commerce silt loam soil increased diameter, basal area, and volume growth by 200 percent over untreated controls. The plantation did not respond to 100 pounds P per acre from concentrated superphosphate.

  18. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    Science.gov (United States)

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  19. Comparison of Cottonwood Dendrochronology and Optically Stimulated Luminescence Geochronometers Along a High Plains Meandering River, Powder River, Montana, USA

    Science.gov (United States)

    Hasse, T. R.; Schook, D. M.

    2017-12-01

    Geochronometers at centennial scales can aid our understanding of process rates in fluvial geomorphology. Plains cottonwood trees (Populus deltoides ssp. Monilifera) in the high plains of the United States are known to germinate on freshly created deposits such as point bars adjacent to rivers. As the trees mature they may be partially buried (up to a few meters) by additional flood deposits. Cottonwood age gives a minimum age estimate of the stratigraphic surface where the tree germinated and a maximum age estimate for overlying sediments, providing quantitative data on rates of river migration and sediment accumulation. Optically Stimulated Luminescence (OSL) of sand grains can be used to estimate the time since the sand grains were last exposed to sunlight, also giving a minimum age estimate of sediment burial. Both methods have disadvantages: Browsing, partial burial, and other damage to young cottonwoods can increase the time required for the tree to reach a height where it can be sampled with a tree corer, making the germination point a few years to a few decades older than the measured tree age; fluvial OSL samples can have inherited age (when the OSL age is older than the burial age) if the sediment was not completely bleached prior to burial. We collected OSL samples at 8 eroding banks of the Powder River Montana, and tree cores at breast height (±1.2 m) from cottonwood trees growing on the floodplain adjacent to the OSL sample locations. Using the Minimum Age Model (MAM) we found that OSL ages appear to be 500 to 1,000 years older than the adjacent cottonwood trees which range in age (at breast height) from 60 to 185 years. Three explanations for this apparent anomaly in ages are explored. Samples for OSL could be below a stratigraphic unconformity relative to the cottonwood germination elevation. Shallow samples for OSL could be affected by anthropogenic mixing of sediments due to plowing and leveling of hay fields. The OSL samples could have

  20. Status and Trend of Cottonwood Forests Along the Missouri River

    Science.gov (United States)

    2010-03-03

    Rhamnus davurica), green ash, chokecherry ( Prunus virginiana ), and some Russian olive (Figure 30a). Younger cottonwood (all sapling stands, and...argentea), common chokecherry ( Prunus virginiana ), service berry (Amelanchier spp.) and rarely, red-osier dogwood (Cornus stolonifera) (Figure 32). In...sagebrush (Artemisia cana), common chokecherry ( Prunus virginiana ), and rarely, red-osier dogwood (Cornus stolonifera) (Ross and Hunter 1976, Scott

  1. Dynamics of Plains Cottonwood ( Populus deltoides) Forests and Historical Landscape Change along Unchannelized Segments of the Missouri River, USA

    Science.gov (United States)

    Dixon, Mark D.; Johnson, W. Carter; Scott, Michael L.; Bowen, Daniel E.; Rabbe, Lisa A.

    2012-05-01

    Construction of six large dams and reservoirs on the Missouri River over the last 50-75 years has resulted in major landscape changes and alterations in flow patterns, with implications for riparian forests dominated by plains cottonwood ( Populus deltoides). We quantified changes in land cover from 1892-1950s and the 1950s-2006 and the current extent and age structure of cottonwood forests on seven segments (two reservoir and five remnant floodplain) comprising 1127 km (53 %) of the unchannelized upper two-thirds of the Missouri River. Riparian forest area declined by 49 %; grassland 61 %; shrubland 52 %; and sandbar habitat 96 %; while agricultural cropland increased six-fold and river/reservoir surface area doubled from 1892 to 2006. Net rates of erosion and accretion declined between the 1892-1950s and 1950s-2006 periods. Accretion exceeded erosion on remnant floodplain segments, resulting in declines in active channel width, particularly in 1950s-2006. Across all study segments in 2006, most cottonwood stands (67 %) were >50 years old, 22 % were 25-50 years old, and only 10 % were <25 years old. Among stands <50 years old, the higher proportion of 25-50 year old stands represents recruitment that accompanied initial post-dam channel narrowing; while declines in sandbar and shrubland area and the low proportion of stands <25 years old suggest declines in geomorphic dynamism and limited recruitment under recent river management. Future conservation and restoration efforts should focus both on limiting further loss of remnant cottonwood stands and developing approaches to restore river dynamics and cottonwood recruitment processes.

  2. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume III (Overview and Tools).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  3. Genetic improvement and evaluation of black cottonwood for short- rotation biomass production. Final report, 1987--1992

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, R.F.; Hinckley, T.M. [Washington Univ., Seattle, WA (United States). Coll. of Forest Resources; Heilman, P.E. [Washington State Univ., Puyallup, WA (United States). Research and Extension Center; Bradshaw, H.D. Jr. [Washington Univ., Seattle, WA (United States). Dept. of Biochemistry

    1993-04-30

    This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.

  4. Estimating Leaf Nitrogen of Eastern Cottonwood Trees with a Chlorophyll Meter

    Science.gov (United States)

    Benoit Moreau; Emile S. Gardiner; John A. Stanturf; Ronald K. Fisher

    2004-01-01

    The utility of the SPAD-502 chlorophyll meter for nondestructive and rapid field determination of leaf nitrogen (N) has been demonstrated in agricultural crops, but this technology has not yet been extended to woody crop applications. Upper canopy leaves from a 5-year-old plantation of two eastern cottonwood (Populus deltoides Bartr. ex Marsh.)...

  5. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume II Yakima (Overview, Report, Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  6. Identifying data gaps and prioritizing restoration strategies for Fremont cottonwood using linked geomorphic and population models

    Science.gov (United States)

    Harper, E. B.; Stella, J. C.; Fremier, A. K.

    2009-12-01

    Fremont cottonwood (Populus fremontii) is an important component of semi-arid riparian ecosystems throughout western North America, but its populations are in decline due to flow regulation. Achieving a balance between human resource needs and riparian ecosystem function requires a mechanistic understanding of the multiple geomorphic and biological factors affecting tree recruitment and survival, including the timing and magnitude of river flows, and the concomitant influence on suitable habitat creation and mortality from scour and sedimentation burial. Despite a great deal of empirical research on some components of the system, such as factors affecting cottonwood recruitment, other key components are less studied. Yet understanding the relative influence of the full suite of physical and life-history drivers is critical to modeling whole-population dynamics under changing environmental conditions. We addressed these issues for the Fremont cottonwood population along the Sacramento River, CA using a sensitivity analysis approach to quantify uncertainty in parameters on the outcomes of a patch-based, dynamic population model. Using a broad range of plausible values for 15 model parameters that represent key physical, biological and climatic components of the ecosystem, we ran 1,000 population simulations that consisted of a subset of 14.3 million possible combinations of parameter estimates to predict the frequency of patch colonization and total forest habitat predicted to occur under current hydrologic conditions after 175 years. Results indicate that Fremont cottonwood populations are highly sensitive to the interactions among flow regime, sedimentation rate and the depth of the capillary fringe (Fig. 1). Estimates of long-term floodplain sedimentation rate would substantially improve model accuracy. Spatial variation in sediment texture was also important to the extent that it determines the depth of the capillary fringe, which regulates the availability of

  7. Evaluating growth effects from an imidacloprid treatment in black willow and eastern cottonwood cuttings

    Science.gov (United States)

    Luciano de Sene Fernandes; Ray A. Souter; Theodor D. Leininger

    2015-01-01

    Black willow (Salix nigra Marsh.) and eastern cottonwood (Populus deltoides Bartram ex Marsh.), two species native in the Lower Mississippi Alluvial Valley, have importance in short rotation woody crop (SRWC) systems for biomass production (Ruark 2006).

  8. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  9. Paraffin dispersant application for cleaning subsea flow lines in the deep water Gulf of Mexico cottonwood development

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, David; White, Jake; Pogoson, Oje [Baker Hughes Inc., Houston, TX (United States); Barros, Dalmo; Ramachandran, Kartik; Bonin, George; Waltrich, Paulo; Shecaira, Farid [PETROBRAS America, Houston, TX (United States); Ziglio, Claudio [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento

    2012-07-01

    This paper discusses a paraffin dispersant (in seawater) application to clean paraffin deposition from a severely restricted 17.4-mile dual subsea flow line system in the Gulf of Mexico Cottonwood development. In principle, dispersant treatments are simple processes requiring effective dispersant packages and agitation to break-up and disperse deposition. Dispersants have been used onshore for treating wax deposition for decades. Implementation of a treatment in a long deep water production system, however, poses numerous challenges. The Cottonwood application was one of the first ever deep water dispersant applications. The application was designed in four separate phases: pre-treatment displacement for hydrate protection, dispersant treatment for paraffin deposition removal, pigging sequence for final flow line cleaning, and post-treatment displacement for hydrate protection. In addition, considerable job planning was performed to ensure the application was executed in a safe and environmentally responsible manner. Two dynamically positioned marine vessels were used for pumping fluids and capturing returns. The application was extremely successful in restoring the deep water flow lines back to near pre-production state. Final pigging operations confirmed the flow lines were cleaned of all restrictions. Significant paraffin deposition was removed in the application. Approximately 900 bbls of paraffin sludge was recovered from the 4000 bbl internal volume flow line loop. Furthermore, the application was completed with zero discharge of fluids. The application provided significant value for the Cottonwood development. It allowed production from wells to be brought on-line at a higher capacity, thereby generating increased revenue. It also allowed resumption of routine pigging operations. As such, the Cottonwood dispersant application illustrates that with proper planning and execution, paraffin dispersant treatments can be highly effective solutions for cleaning

  10. Response of the Cottonwood Leaf Beetle (Coleoptera: Chrysomelidae) to Bacillus thuringiensis var. san diego

    Science.gov (United States)

    Leah S. Bauer

    1990-01-01

    A standardized laboratory bioassay was used to quantify the lethal and sub-lethal responses of larval and adult cottonwood leaf beetles, Chrysomela scripta F., to Bacillus thuringiensis var. san diego, formulated as M-One standard powder (Mycogen Corporation, San Diego). The median lethal concentration (LC

  11. 76 FR 34197 - Anchorage; Change to Cottonwood Island Anchorage, Columbia River, Oregon and Washington

    Science.gov (United States)

    2011-06-13

    ... Cottonwood Island in the vicinity of the spoil area to approximately the Kalama North dock and the previous... litigation, eliminate ambiguity, and reduce burden. Protection of Children We have analyzed this proposed rule under Executive Order 13045, Protection of Children from Environmental Health Risks and Safety...

  12. The Wall-Rock Record of Incremental Emplacement in the Little Cottonwood-Alta Magmatic and Hydrothermal System, Wasatch Mountains, Utah, U.S.A.

    Science.gov (United States)

    Stearns, M.; Callis, S.; Beno, C.; Bowman, J. R.; Bartley, J. M.

    2017-12-01

    Contact aureoles record the cumulative effects on wall rocks of magma emplacement. Like the plutons they surround, contact aureoles have long been regarded to form geologically instantaneously. Protracted incremental emplacement of plutons must be reconciled with the wall-rock record of heat and mass transfer. Fundamental questions include how heat and material move from intrusions into their aureoles and how long that process takes. The Little Cottonwood stock is surrounded by a 2 km-wide contact aureole that contains prograde AFM mineral assemblages in the pelitic layers of the Proterozoic Big Cottonwood Formation. The Alta stock is surrounded by a well characterized 1 km-wide contact aureole containing both prograde AFM and CMS mineral assemblages in Ophir Shale and Mississippian dolostones, respectively. Understanding the petrogenesis of these aureoles requires the timing of magmatism and wall-rock metamorphism to be independently determined. Preliminary petrochronology (U/Th-Pb dates and trace element concentrations collected by LASS-ICP-MS) from the inner aureoles of both intrusions establishes a protracted history of monazite (re)crystallization from 35-25 Ma in the Little Cottonwood aureole and 35 Ma in the Alta aureole. Little Cottonwood aureole monazites are characterized by a positive age correlation with heavy rare earth elements (HREE) and a negative correlation with Eu/Eu*. Alta aureole monazites have a similar range of the HREE concentrations and Eu/Eu* variation. Zircon growth interpreted to record emplacement-level magmatic crystallization of the western Little Cottonwood stock ranges from 33-28 Ma near the contact. Multi-grain U-Pb zircon TIMS dates from the Alta stock range from 35-33 Ma and are interpreted to suggest the full range of emplacement-level magmatism in the Alta stock. Additionally, in situ U-Pb titanite dates from the Alta stock record intermittent high temperature hydrothermal activity in the stock margin from 35-24 Ma. These new

  13. Survival and Growth of Cottonwood Clones After Angle Planting and Base Angle Treatments

    Science.gov (United States)

    W.K. Randall; Harvey E. Kennedy

    1976-01-01

    Presently, commercial cottonwood plantations in the lower Mississippi Valley are established using vertically planted, unrooted cuttings with a flat (90°) base. Neither survival nor first-year growth of a group of six Stoneville clones was improved by angle planting or cutting base angles diagonally. For one clone, survival was significantly better when base angle was...

  14. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota 1982

    Science.gov (United States)

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer evaporation studies, including: water-surface temperature, sediment temperature dry-bulb and wet-bulb air temperatures, vapor pressure at and above the water surface, wind speed, and short- and long-wave radiation. Data were collected at raft and land stations.

  15. Climatic data for the Cottonwood Lake area, Stutsman County, North Dakota, 1983

    Science.gov (United States)

    Sturrock, A.M.; Hanson, B.A.; Scarborough, J.L.; Winter, T.C.

    1987-01-01

    Research on the hydrology of the Cottonwood Lake area, Stutsman County, North Dakota, includes study of evaporation. Climatic data needed for energy-budget and mass-transfer evaporation studies that were collected during 1983 include water-surface temperature, sediment temperature, dry-bulb and wet-bulb air temperature, vapor pressure at and above the water surface, wind speed, and short-and long-wave radiation. Data are collected at raft and land stations. (USGS)

  16. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    Science.gov (United States)

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  17. The Concentration of Nutrients in Tissues of Plantation-Grown Eastern Cottonwood (Populus deltoides Bart.)

    Science.gov (United States)

    M. G. Shelton; L. E. Nelson; G. L. Switzer; B. G. Blackmon

    1981-01-01

    Nutrient concentrations were determined for 10 tissues from each of 24 cottonwood trees that ranged in age from four to 16 years. Highest concentrations occurred in the most physiologically active tissues; i.e., stemtips, current branches and foliage. Tree age had little influence on the variation in nutrient concentration of tissues. Some differences in concentrations...

  18. Inheritance of compartmentalization of wounds in sweetgum (Liquidambar styraciflua L.) and eastern cottonwood (Populus deltoides Bartr.)

    Science.gov (United States)

    P. W. Garrett; W. K. Randall; A. L. Shigo; W. C. Shortle

    1979-01-01

    Studies of half-sib progeny tests of sweetgum (Liquidambar styraciflua) and clonal plantings of eastern cottonwood (Populus deltoides) in Mississippi indicate that rate of wound closure and size of discolored columns associated with the wounds are both heritable traits. Both are independent of stem diameter, which was used as a...

  19. Oldman river dam mitigation program downstream vegetation project report, Volume II: The potential effects of an operating plan for the Oldman River dam on Riparian cottonwood forests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.M.

    1993-01-01

    Extensive cottonwood (poplar) forests exist in the Oldman River valley downstream of the Oldman River dam. Studies of similar forests in nearby river valleys and elsewhere on the western prairies have found significant declines of some riparian forests following river damming. This investigation was initiated to determine the causes of cottonwood forest decline downstream from existing dams in southern Alberta; inventory the existing river valley forests in the Oldman Basin; establish study sites in the Oldman River forests to monitor changes in forest status following commissioning of the Oldman River dam, and evaluate the probable impact of proposed operating plans for the Oldman River dam and associated water control structures on downstream forests. This report summarizes the progress made in the analyses of the probable effects on the survival of the forests, including a discussion of the hydrological conditions essential for cottonwood forest regeneration and an explanation of the effects of altering these characteristics on riparian forests; the hydrological alterations expected along various river reaches in the Oldman Basin with the implementation of the proposed OD05 Oldman Dam operating plan; and preliminary analyses of the problem impacts of the OD05 operating plan on the cottonwood forests along these reaches.

  20. Mechanisms of Cottonwood Establishment in Gravel-Bed Rivers, across Scales from the Bar to the Reach

    Science.gov (United States)

    Meier, C. I.

    2017-12-01

    Riparian cottonwoods are pioneer trees adapted to colonizing fluvial corridors, with strong effects on ecosystem structure and function. As their populations are being affected by flow alterations and invasive species, their recruitment mechanisms need to be understood, to support scientifically-based restoration efforts. I propose new concepts for cottonwood establishment in gravelly streams, from the local to the reach scale. These notions complement the currently-accepted ideas, which apply only to the landscape scale, and whose basic assumptions (existence of an alluvial water table, which is planar, almost horizontal, and linked to the river stage, with a parallel, spatially-uniform capillary fringe) seem to be based on a physical template that is only valid in the case of sand-bed streams. At the local, within-the-bar scale, two concepts drive establishment success. First, a finer matrix material helps retain more capillary water after the yearly snowmelt flood or a precipitation event. Second, the coarse surface layer of clean gravel and cobble acts as rock mulch, strongly decreasing evaporative losses. At the reach scale, we find that the commonly reported arcuate bands of cottonwoods do not depend on groundwater, but are caused by water dispersal (hydrochory). Wind-dispersed seeds fall into the river, are entrained into the drift, and start germinating as they travel under water. Some of the seeds and germinants find their way into the shallow, high relative roughness flow along the cobble shoreline. They are able to deposit in this environment, where they start growing, also under water. As waters recede, during the period of seed availability in the drift, the river seeds its banks and bars. Thus, the boundaries of observed bands and patches with successful seedling recruitment correspond to the location of flow profiles at different dates during the flood recession.

  1. Influence of water table decline on growth allocation and endogenous gibberellins in black cottonwood

    Energy Technology Data Exchange (ETDEWEB)

    Rood, S.B.; Zanewich, K.; Stefura, C. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Mahoney, J.M. [Alberta Environmental Protection, Lethbridge, AB (Canada)

    2000-06-01

    Cottonwoods have shown an adaptation to the riparian zone by coordinating root elongation to maintain contact with the water table, whose depth varies with the elevation of the adjacent river. The rate of water decline on growth allocation and concentrations of endogenous gibberellins (GAs) in black cottonwood saplings were studied at the University of Lethbridge, Alberta. Water declines were achieved by using rhizopods, and root elongation approximately doubled in response whereas leaf area was reduced. At some point, a greater water decline rate led to water stress resulting in reduced growth, increased leaf diffusive resistance, decreased water potential, and leaf senescence and abscission. After extraction of endogenous GAs, they were purified and analysed by gas chromatography-selected ion monitoring with internal ({sup 2}H{sub 2})GA standards. The results showed that GAs were higher in shoot tips and sequentially lower in basal stems, root tips, leaves and upper roots. Noticeable relationships did not appear between GA concentration and growth allocation across the water decline treatments. Only GA{sub 8} showed a consistent reduction in plants experiencing water table decline. This research did not permit the authors to conclude whether endogenous GAs play a primary role in the regulation of root elongation in response to water table decline. 7 figs., 25 refs.

  2. On the irrigation requirements of cottonwood (Populus fremontii and Populus deltoides var. wislizenii) and willow (Salix gooddingii) grown in a desert environment

    Science.gov (United States)

    Hartwell, S.; Morino, K.; Nagler, P.L.; Glenn, E.P.

    2010-01-01

    Native tree plots have been established in river irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the effective irrigation requirements of the target species. Cottonwood (Populus spp.) and willow (Salix gooddingii) trees were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three daily summer irrigation schedules of 6.20??mm??d-1; 8.26??mm??d-1 and 15.7??mm??d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, while willows suffered considerable die-back on this rate in years six and seven. These irrigation rates were applied April 15-September 15, but only 0.88??mm??d-1 was applied during the dormant period of the year. Expressed as a fraction of reference crop evapotranspiration (ETo), recommended annual water applications plus precipitation (and including some deep drainage) were 0.83 ETo for cottonwood and 1.01 ETo for willow. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use. ?? 2010 Elsevier Ltd.

  3. Effects of light regime and IBA concentration on adventitious rooting of an eastern cottonwood (Populus deltoides) clone

    Science.gov (United States)

    Alexander P. Hoffman; Joshua P. Adams; Andrew Nelson

    2016-01-01

    Eastern cottonwood (Populus deltoides) has received a substantial amount of interest from invitro studies within the past decade. The ability to efficiently multiply the stock of established clones such as clone 110412 is a valuable asset for forest endeavors. However, a common problem encountered is initiating adventitious rooting in new micropropagation protocols....

  4. Flow regime effects on mature Populus fremontii (Fremont cottonwood) productivity on two contrasting dryland river floodplains

    Science.gov (United States)

    Andersen, Douglas C.

    2016-01-01

    I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.

  5. The influence of alternative plant propagation and stand establishment techniques on survival and growth of eastern cottonwood (Populus deltoids Bartr.) clones

    Science.gov (United States)

    Donald J. Kaczmarek; Randall Rousseau; Jeff A. Wright; Brian Wachelka

    2014-01-01

    Four eastern cottonwood clones, including standard operational clone ST66 and three advanced clonal selections were produced and included in a test utilizing five different plant propagation methods. Despite relatively large first-year growth differences among clones, all clones demonstrated similar responses to the treatments and clone × cutting treatment interactions...

  6. Flooding Regime Impacts on Radiation, Evapotranspiration, and Latent Energy Fluxes over Groundwater-Dependent Riparian Cottonwood and Saltcedar Forests

    Directory of Open Access Journals (Sweden)

    James Cleverly

    2015-01-01

    Full Text Available Radiation and energy balances are key drivers of ecosystem water and carbon cycling. This study reports on ten years of eddy covariance measurements over groundwater-dependent ecosystems (GDEs in New Mexico, USA, to compare the role of drought and flooding on radiation, water, and energy budgets of forests differing in species composition (native cottonwood versus nonnative saltcedar and flooding regime. After net radiation (700–800 W m−2, latent heat flux was the largest energy flux, with annual values of evapotranspiration exceeding annual precipitation by 250–600%. Evaporative cooling dominated the energy fluxes of both forest types, although cottonwood generated much lower daily values of sensible heat flux (<−5 MJ m−2 d−1. Drought caused a reduction in evaporative cooling, especially in the saltcedar sites where evapotranspiration was also reduced, but without a substantial decline in depth-to-groundwater. Our findings have broad implications on water security and the management of native and nonnative vegetation within semiarid southwestern North America. Specifically, consideration of the energy budgets of GDEs as they respond to fluctuations in climatic conditions can inform the management options for reducing evapotranspiration and maintaining in-stream flow, which is legally mandated as part of interstate and international water resources agreements.

  7. Dendrogeochronologic and Anatomic Analysis of Excavated Plains Cottonwoods Determine Overbank Sedimentation Rates and Historical Channel Positions Along the Interior of a Migrating Meander Bend, Powder River, Montana

    Science.gov (United States)

    Metzger, T. L.; Pizzuto, J. E.; Schook, D. M.; Hasse, T. R.; Affinito, R. A.

    2017-12-01

    Dendrochronological dating of buried trees precisely determines the germination year and identifies the stratigraphic context of germination for the trees. This recently developed application of dendrochronology provides accurate time-averaged sedimentation rates of overbank deposition along floodplains and can be used to identify burial events. Previous studies have demonstrated that tamarisk (Tamarix ramosissima) and sandbar willow (Salix exigua) develop anatomical changes within the tree rings (increased vessel size and decreased ring widths) on burial, but observations of plains cottonwood (Populus deltoides ssp. monilifera) are lacking. In September 2016 and June 2017, five buried plains cottonwoods were excavated along a single transect of the interior of a meander bend of the Powder River, Montana. Sediment samples were obtained near each tree for 210Pb and 137Cs dating, which will allow for comparison between dendrochronological and isotopic dating methods. The plains cottonwood samples collected exhibit anatomical changes associated with burial events that are observed in other species. All trees germinated at the boundary between thinly bedded fine sand and mud and coarse sand underlain by sand and gravel, indicating plains cottonwoods germinate on top of point bars prior to overbank deposition. The precise germination age and depth provide elevations and minimum age constraints for the point bar deposits and maximum ages for the overlying sediment, helping constrain past channel positions and overbank deposition rates. Germination years of the excavated trees, estimated from cores taken 1.5 m above ground level, range from 2014 to 1862. Accurate establishment years determined by cross-dating the buried section of the tree can add an additional 10 years to the cored age. The sedimentation rate and accumulation thickness varied with tree age. The germination year, total sediment accumulation, and average sedimentation rate at the five sampled trees is

  8. Methane Fluxes at the Tree Stem, Soil, and Ecosystem-scales in a Cottonwood Riparian Forest

    Science.gov (United States)

    Flanagan, L. B.; Nikkel, D. J.; Scherloski, L. M.; Tkach, R. E.; Rood, S. B.

    2017-12-01

    Trees can emit methane to the atmosphere that is produced by microbes inside their decaying stems or by taking up and releasing methane that is produced by microbes in adjacent, anoxic soil layers. The significance of these two methane production pathways for possible net release to the atmosphere depends on the magnitude of simultaneous oxidation of atmospheric methane that occurs in well-aerated, shallow soil zones. In order to quantify the significance of these processes, we made methane flux measurements using the eddy covariance technique at the ecosystem-scale and via chamber-based methods applied on the soil surface and on tree stems in a riparian cottonwood ecosystem in southern Alberta that was dominated by Populus tree species and their natural hybrids. Tree stem methane fluxes varied greatly among individual Populus trees and changed seasonally, with peak growing season average values of 4 nmol m-2 s-1 (tree surface area basis). When scaled to the ecosystem, the tree stem methane emissions (0.9 nmol m-2 s-1, ground area basis) were slightly higher than average soil surface methane uptake rates (-0.8 nmol m-2 s-1). In addition, we observed regular nighttime increases in methane concentration within the forest boundary layer (by 300 nmol mol-1 on average at 22 m height during July). The majority of the methane concentration build-up was flushed from the ecosystem to the well-mixed atmosphere, with combined eddy covariance and air column storage fluxes reaching values of 70-80 nmol m-2 s-1 for approximately one hour after sunrise. Daily average net methane emission rates at the ecosystem-scale were 4.4 nmol m-2 s-1 during July. Additional lab studies demonstrated that tree stem methane was produced via the CO2-reduction pathway, as tissue in the central stem of living Populus trees was being decomposed. This study demonstrated net methane emission from an upland, cottonwood forest ecosystem, resulting from microbe methane production in tree stems that

  9. Ambrosia Beetle (Coleoptera: Scolytidae) Species, Flight, and Attack on Living Eastern Cottonwood Trees.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, D R; D.C. Booth: M.S. Wallace

    2005-12-01

    ABSTRACT In spring 2002, ambrosia beetles (Coleoptera: Scolytidae) infested an intensively managed 22-ha tree plantation on the upper coastal plain of South Carolina. Nearly 3,500 scolytids representing 28 species were captured in ethanol-baited traps from 18 June 2002 to 18 April 2004. More than 88% of total captures were exotic species. Five species [Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Pseudopityophthorus minutissimus (Zimmermann), Xyleborus atratus Eichhoff, and Xyleborus impressus Eichhoff]) were collected in South Carolina for the first time. Of four tree species in the plantation, eastern cottonwood, Populus deltoides Bartram, was the only one attacked, with nearly 40% of the trees sustaining ambrosia beetle damage. Clone ST66 sustained more damage than clone S7C15. ST66 trees receiving fertilization were attacked more frequently than trees receiving irrigation, irrigation_fertilization, or controls, although the number of S7C15 trees attacked did not differ among treatments. The study location is near major shipping ports; our results demonstrate the necessity for intensive monitoring programs to determine the arrival, spread, ecology, and impact of exotic scolytids.

  10. Peak discharge, flood frequency, and peak stage of floods on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    Science.gov (United States)

    Kohn, Michael S.; Stevens, Michael R.; Mommandi, Amanullah; Khan, Aziz R.

    2017-12-14

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, determined the peak discharge, annual exceedance probability (flood frequency), and peak stage of two floods that took place on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado (hereafter referred to as “Big Cottonwood Creek site”), on August 23, 2016, and on Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado (hereafter referred to as “Fountain Creek site”), on August 29, 2016. A one-dimensional hydraulic model was used to estimate the peak discharge. To define the flood frequency of each flood, peak-streamflow regional-regression equations or statistical analyses of USGS streamgage records were used to estimate annual exceedance probability of the peak discharge. A survey of the high-water mark profile was used to determine the peak stage, and the limitations and accuracy of each component also are presented in this report. Collection and computation of flood data, such as peak discharge, annual exceedance probability, and peak stage at structures critical to Colorado’s infrastructure are an important addition to the flood data collected annually by the USGS.The peak discharge of the August 23, 2016, flood at the Big Cottonwood Creek site was 917 cubic feet per second (ft3/s) with a measurement quality of poor (uncertainty plus or minus 25 percent or greater). The peak discharge of the August 29, 2016, flood at the Fountain Creek site was 5,970 ft3/s with a measurement quality of poor (uncertainty plus or minus 25 percent or greater).The August 23, 2016, flood at the Big Cottonwood Creek site had an annual exceedance probability of less than 0.01 (return period greater than the 100-year flood) and had an annual exceedance probability of greater than 0.005 (return period less than the 200-year flood). The August 23, 2016, flood event was caused by a precipitation event having an annual exceedance probability of 1.0 (return

  11. Pyrolysis and Combustion Kinetics of Raw and Carbonized Cottonwood and Switchgrass Agroforests

    Directory of Open Access Journals (Sweden)

    Sammy Sadaka

    2015-06-01

    Full Text Available Raw biomass is not commonly suitable as feedstock for existing power plants, mainly because of the substantial required infrastructural changes. As a result, most raw feedstock requires pre-treatment to improve its physical and thermal characteristics. Biomass carbonization is one of the pre-treatments that produces charcoal-like feedstock. This paper explores the effects of the carbonization process on the physiochemical characteristics of biomass produced from two cottonwood clones, S7C20 and ST66, and switchgrass (var. Alamo. Additionally, it studies the thermal degradation kinetics of raw and carbonized agroforestry products in nitrogen and air environments. Feedstock samples were carbonized in a batch reactor at 400 °C in an oxygen-free environment for 2 hours. Carbonization decreased biomass bulk density, moisture content, and volatile solids while increasing fixed carbon, ash content, pH, and heating values. The heating value of S7C20, ST66, and switchgrass increased by 58.6%, 60.3%, and 69.7%, respectively. Carbonization increased the activation energy values under the condition of pyrolysis and decreased these values under the condition of combustion. The carbonization process produced a charcoal-like feedstock that may be processed with coal or even replace it.

  12. Development of a channel classification to evaluate potential for cottonwood restoration, lower segments of the Middle Missouri River, South Dakota and Nebraska

    Science.gov (United States)

    Jacobson, Robert B.; Elliott, Caroline M.; Huhmann, Brittany L.

    2010-01-01

    This report documents development of a spatially explicit river and flood-plain classification to evaluate potential for cottonwood restoration along the Sharpe and Fort Randall segments of the Middle Missouri River. This project involved evaluating existing topographic, water-surface elevation, and soils data to determine if they were sufficient to create a classification similar to the Land Capability Potential Index (LCPI) developed by Jacobson and others (U.S. Geological Survey Scientific Investigations Report 2007–5256) and developing a geomorphically based classification to apply to evaluating restoration potential.Existing topographic, water-surface elevation, and soils data for the Middle Missouri River were not sufficient to replicate the LCPI. The 1/3-arc-second National Elevation Dataset delineated most of the topographic complexity and produced cumulative frequency distributions similar to a high-resolution 5-meter topographic dataset developed for the Lower Missouri River. However, lack of bathymetry in the National Elevation Dataset produces a potentially critical bias in evaluation of frequently flooded surfaces close to the river. High-resolution soils data alone were insufficient to replace the information content of the LCPI. In test reaches in the Lower Missouri River, soil drainage classes from the Soil Survey Geographic Database database correctly classified 0.8–98.9 percent of the flood-plain area at or below the 5-year return interval flood stage depending on state of channel incision; on average for river miles 423–811, soil drainage class correctly classified only 30.2 percent of the flood-plain area at or below the 5-year return interval flood stage. Lack of congruence between soil characteristics and present-day hydrology results from relatively rapid incision and aggradation of segments of the Missouri River resulting from impoundments and engineering. The most sparsely available data in the Middle Missouri River were water

  13. Tree mortality in mature riparian forest: Implications for Fremont cottonwood conservation in the American southwest

    Science.gov (United States)

    Andersen, Douglas

    2015-01-01

    Mature tree mortality rates are poorly documented in desert riparian woodlands. I monitored deaths and calculated annual survivorship probability (Ps) in 2 groups of large (27–114 cm DBH), old (≥40 years old) Fremont cottonwood (Populus fremontii Wats.) in a stand along the free-flowing Yampa River in semiarid northwestern Colorado. Ps = 0.993 year-1 in a group (n = 126) monitored over 2003–2013, whereas Ps = 0.985 year-1 in a group (n = 179) monitored over the same period plus 3 earlier years (2000–2003) that included drought and a defoliating insect outbreak. Assuming Ps was the same for both groups during the 10-year postdrought period, the data indicate that Ps = 0.958 year-1 during the drought. I found no difference in canopy dieback level between male and female survivors. Mortality was equal among size classes, suggesting Ps is independent of age, but published longevity data imply that either Ps eventually declines with age or, as suggested in this study, periods with high Ps are interrupted by episodes of increased mortality. Stochastic population models featuring episodes of low Ps suggest a potential for an abrupt decline in mature tree numbers where recruitment is low. The modeling results have implications for woodland conservation, especially for relictual stands along regulated desert rivers.

  14. Soils and late-Quaternary landscape evolution in the Cottonwood River basin, east-central Kansas: Implications for archaeological research

    Science.gov (United States)

    Beeton, J.M.; Mandel, R.D.

    2011-01-01

    Temporal and spatial patterns of landscape evolution strongly influence the temporal and spatial patterns of the archaeological record in drainage systems. In this geoarchaeological investigation we took a basin-wide approach in assessing the soil stratigraphy, lithostratigraphy, and geochronology of alluvial deposits and associated buried soils in the Cottonwood River basin of east-central Kansas. Patterns of landscape evolution emerge when stratigraphic sequences and radiocarbon chronologies are compared by stream size and landform type. In the valleys of high-order streams (???4th order) the Younger Dryas Chronozone (ca. 11,000-10,000 14C yr B.P.) was characterized by slow aggradation accompanied by pedogenesis, resulting in the development of organic-rich cumulic soils. Between ca. 10,000 and 4900 14C yr B.P., aggradation punctuated by soil formation was the dominant process in those valleys. Alluvial fans formed on the margins of high-order stream valleys during the early and middle Holocene (ca. 9000-5000 14C yr B.P.) and continued to develop slowly until ca. 3000-2000 14C yr B.P. The late-Holocene record of high-order streams is characterized by episodes of entrenchment, rapid aggradation, and slow aggradation punctuated by soil development. By contrast, the early and middle Holocene (ca. 10,000-5000 14C yr B.P.) was a period of net erosion in the valleys of low-order streams. However, during the late Holocene small valleys became zones of net sediment storage. Consideration of the effects of these patterns of landscape evolution on the archaeological record is crucial for accurately interpreting that record and searching for buried archaeological deposits dating to specific cultural periods. ?? 2011 Wiley Periodicals, Inc. ?? 2011 Wiley Periodicals, Inc..

  15. Avian response to bottomland hardwood reforestation: the first 10 years

    Science.gov (United States)

    Twedt, D.J.; Wilson, R.R.; Henne-Kerr, J.L.; Grosshuesch, D.A.

    2002-01-01

    Bttomland hardwood forests were planted on agricultural fields in Mississippi and Louisiana using either predominantly Quercus species (oaks) or Populus deltoides (eastern cottonwood). We assessed avian colonization of these reforested sites between 2 and 10 years after planting. Rapid vertical growth of cottonwoods (circa 2 - 3 m / yr) resulted in sites with forest structure that supported greater species richness of breeding birds, increased Shannon diversity indices, and supported greater territory densities than on sites planted with slower-growing oak species. Grassland birds (Spiza americana [Dickcissel], and Sturnella magna [Eastern Meadowlark]) were indicative of species breeding on oak-dominated reforestation # 10 years old. Agelaius phoeniceus (Red-winged Blackbird) and Colinus virginianus (Northern Bobwhite) characterized cottonwood reforestation # 4 years old, whereas 14 species of shrub-scrub birds (e.g., Passerina cyanea [Indigo Bunting]) and early-successional forest birds (e.g., Vireo gilvus [Warbling Vireo]) typified cottonwood reforestation 5 to 9 years after planting. Rates of daily nest survival did not differ between reforestation strategies. Nest parasitism increased markedly in older cottonwood stands, but was overwhelmed by predation as a cause of nest failure. Based on Partners in Flight prioritization scores and territory densities, the value of cottonwood reforestation for avian conservation was significantly greater than that of oak reforestation during their first 10 years. Because of benefits conferred on breeding birds, we recommend reforestation of bottomland hardwoods include a high proportion of fast-growing, early successional species such as cottonwood.

  16. Red Cedar Invasion Along the Missouri River, South Dakota: Cause and Consequence

    Science.gov (United States)

    Greene, S.; Knox, J. C.

    2012-12-01

    This research evaluates drivers of and ecosystem response to red cedar (Juniperus virginiana) invasion of riparian surfaces downstream of Gavin's Point Dam on the Missouri River. Gavin's Point Dam changed the downstream geomorphology and hydrology of the river and its floodplain by reducing scouring floods and flood-deposited sediment. The native cottonwood species (Populus deltoides) favors cleared surfaces with little to no competitors to establish. Now that there are infrequent erosive floods along the riparian surfaces to remove competitor seeds and seedlings, other vegetation is able to establish. Red cedar is invading the understory of established cottonwood stands and post-dam riparian surfaces. To assess reasons and spatial patterns for the recent invasion of red cedar, a stratified random sampling of soil, tree density and frequency by species, and tree age of 14 forest stands was undertaken along 59 river kilometers of riparian habitat. Soil particle size was determined using laser diffraction and tree ages were estimated from ring counts of tree cores. As an indicator of ecosystem response to invasion, we measured organic matter content in soil collected beneath red cedar and cottonwood trees at three different depths. Of 565 red cedars, only two trees were established before the dam was built. We applied a multiple regression model of red cedar density as a function of cottonwood density and percent sand (63-1000 microns in diameter) in StatPlus© statistical software. Cottonwood density and percent sand are strongly correlated with invasion of red cedar along various riparian surfaces (n = 59, R2 = 0.42, p-values cedar and cottonwood trees (p-value > 0.05 for all depths). These findings suggest that the dam's minimization of downstream high-stage flows opened up new habitat for red cedar to establish. Fluvial geomorphic surfaces reflect soil type and cottonwood density and, in turn, predict susceptibility of a surface to red cedar invasion. Nonetheless

  17. The effect of gamma irradiation on crude fibre NDF, ADF, and ADL of some Syrian agricultural residues

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1992-07-01

    The effects of 150 KGy of gamma irradiation on crude fibre and its main components (cellulose, hemicellulose-cellulose and lignin) and on neutral detergent fibre (NDF), acid detergent lignin (ADL), and acid detergent fibre (ADF) were investigated. The results indicate that gamma irradiation decreased Cf content by 30%, 28%, 29%, and 17% for cottonwood, lentils straw, apple-tree pruning products and olive-oil cake, respectively. NDF values also decreased by 5%, 23%, 13% and 3% for, cottonwood, lentils straw, olive-oil cake and apple-tree pruning products respectively. Gamma irradiation (150 KGy) had no effects on ADF and ADL for lentils straw, apple-tree pruning products and olive-oil cake whereas, ADF decreased by 8.5% and ADL by 8.3 for cottonwood. Hemicellulose content increased by 12% for cottonwood while decreased by 54% for lentils straw and by 33% for apple-tree pruning products with no effects for olive-oil cake. Cellulose content decreased by 8.6% for cottonwood whereas no effects for the remaining residues were seen. Gamma irradiation treatment improved the nutritive value of the agriculture residues examined. The reduction in crude fibre content varies with the residue. (author). 15 refs., 5 tabs

  18. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats.

    Science.gov (United States)

    Harner, Mary J; Crenshaw, Chelsea L; Abelho, Manuela; Stursova, Martina; Shah, Jennifer J Follstad; Sinsabaugh, Robert L

    2009-07-01

    Dynamics of nutrient exchange between floodplains and rivers have been altered by changes in flow management and proliferation of nonnative plants. We tested the hypothesis that the nonnative, actinorhizal tree, Russian olive (Elaeagnus angustifolia), alters dynamics of leaf litter decomposition compared to native cottonwood (Populus deltoides ssp. wislizeni) along the Rio Grande, a river with a modified flow regime, in central New Mexico (U.S.A.). Leaf litter was placed in the river channel and the surface and subsurface horizons of forest soil at seven riparian sites that differed in their hydrologic connection to the river. All sites had a cottonwood canopy with a Russian olive-dominated understory. Mass loss rates, nutrient content, fungal biomass, extracellular enzyme activities (EEA), and macroinvertebrate colonization were followed for three months in the river and one year in forests. Initial nitrogen (N) content of Russian olive litter (2.2%) was more than four times that of cottonwood (0.5%). Mass loss rates (k; in units of d(-1)) were greatest in the river (Russian olive, k = 0.0249; cottonwood, k = 0.0226), intermediate in subsurface soil (Russian olive, k = 0.0072; cottonwood, k = 0.0031), and slowest on the soil surface (Russian olive, k = 0.0034; cottonwood, k = 0.0012) in a ratio of about 10:2:1. Rates of mass loss in the river were indistinguishable between species and proportional to macroinvertebrate colonization. In the riparian forest, Russian olive decayed significantly faster than cottonwood in both soil horizons. Terrestrial decomposition rates were related positively to EEA, fungal biomass, and litter N, whereas differences among floodplain sites were related to hydrologic connectivity with the river. Because nutrient exchanges between riparian forests and the river have been constrained by flow management, Russian olive litter represents a significant annual input of N to riparian forests, which now retain a large portion of slowly

  19. Environmental tolerance of an invasive riparian tree and its potential for continued spread in the southwestern US

    Science.gov (United States)

    Reynolds, L.V.; Cooper, D.J.

    2010-01-01

    Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species-rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species. ?? 2010 International Association for Vegetation Science.

  20. Survival results of a biomass planting in the Missouri River floodplain

    Science.gov (United States)

    W. D. ' Dusty' Walter; John P. Dwyer

    2003-01-01

    A factor essential to successful tree planting in unprotected floodplain environments is survival. Two-year survival results from tree planting in an unprotected floodplain adjacent to the Missouri River are presented. Species planted included silver maple, locally collected cottonwood, and a superior cottonwood selection from Westvaco Corporation. Two spacings, 4 x 4...

  1. Pentimento: Fuels reduction and restoration in the Bosque of the Middle Rio Grande

    Science.gov (United States)

    Deborah M. Finch

    2008-01-01

    The Middle Rio Grande of New Mexico is the most extensive, remaining bosque, or cottonwood forest in the southwest. Alterations caused by humans-damming and channeling the river, controlling floods, and planting non-native trees-have disrupted the cycles of the earlier ecosystem. Without periodic flooding, native cottonwoods cannot regenerate. Invasive exotic plants...

  2. Effect of gamma irradiation on the nutritive value of some Syrian agricultural residues

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, Moutaz

    1992-03-01

    An experiment was carried out to study the effects of doses of gamma irradiation on the nutritive value of cottonwood, wheat straw, barley straw, lentils straw, maize straw, and maize cobs, as an attempt to improve the nutritive value of these residues in order to utilize theme in animal diets. Ground samples of six residues were irradiated by 137 Cs gamma source (Gammator) at doses of 0, 1, 10, 40, 50, and 100 kilo gray (KGy) under identical conditions of temperature and humidity, and analysed for dry matter, crude ash, crude protein, crude fat, crude fibre, Neutral Detergent Fibre (NDF), Acid Detergent Fibre (ADF), and Acid detergent Lignin (ADL). The results indicate that gamma irradiation has no effect on crude protein whereas decreased crude fat content. Gamma irradiation has a pronounced effect on decreasing crude fibre contents especially at the highest dose (100 KGy) reaching (%): 30, 21, 15, 17, 21 and 16 for cottonwood, wheat straw, barley straw, lentils straw, maize straw, and maize cobs respectively with increases in NFE values. NDF decreased by 19.7%, 13%, and 11.5% for wheat straw and maize straw respectively, by 9.3% for maize cobs and barley straw and by 6.6% for cottonwood. The reductions in ADF values were: 8% for cottonwood, 7.3% for maize straw and maize cobs, and 5.7% for wheat straw and barley straw. Gamma irradiation lowered ADL content by 29% for maize cobs, 17.2% for barley straw and by 20.8% and 7.4 for wheat straw and cottonwood respectively. Gamma irradiation (100 KGy) has no effect on ADF, ADL, and cellulose for lentils straw and on hemicellulose for cottonwood. (author). 24 refs., 20 tabs., 2 figs

  3. Lower Mississippi River Environmental Program. Report 2. A Physical Description of Main Stem Levee Borrow Pits along the Lower Mississippi River

    Science.gov (United States)

    1988-02-01

    Eastern cottonwood, green ash, sugarberry. box elder, bald cypress, willow honey locust, slippery elm , overcup oak and bitter pecan. Principle...vines and understory. Woody vegetation surrounds the borrow pit and consists of American and slippery elms , silver maple, black willow, cottonwood, pin...aquatica Water elm Ulmus rubra Slippery elm Urtica dioica Stinging nettle Vaccinium sp. Blueberry Vaccinium spp. Vaccinum Vernonia altissima Ironweed

  4. North End Runway Material Extraction and Transport Environmental Assessment

    Science.gov (United States)

    2006-05-01

    raspberry, currant, bunchberry, horsetail, and high bush cranberry as well as willow, elderberry, rusty menzeiseia, devil’s club, and sapling cottonwood...shrubs and young trees to include paper birch, willow, aspen, cottonwood/balsam poplar, high bush cranberry , Sitka alder, and mountain ash. In winter...the southeast corner of the plot. Standing water appears in small depressions around the vegetated area as well. Vegetation: Table 1, below

  5. Cultural Resources Investigation of a Proposed Flood Control Project along the Sheyenne River, at West Fargo, Cass County, North Dakota. Phase I.

    Science.gov (United States)

    1988-01-15

    cottonwood (Po2ulus salrgenti), sumac (Ehus sp.), peach and sandbar willows (Salix amvdaloides; . terio), and slippery elm (Ulmus rubra). 3.4.2 Bluestem...forest of elm , oak, ash, hackberry, cottonwood, and aspen along the major streams. Archaeological evidence indicates that prehistoric people along the...black willow (Salix nifra), and American elm (Ulmus amicnan). Other components include: boxelder (Acer neaundo), red maple (A. Subrum), silver maple (A

  6. Wind Energy Conversion by Plant-Inspired Designs.

    Science.gov (United States)

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  7. Latitudinal variation in cold hardiness in introduced Tamarix and native Populus

    Science.gov (United States)

    Friedman, Jonathan M.; Roelle, James E.; Gaskin, John F.; Pepper, Alan E.; Manhart, James R.

    2008-01-01

    To investigate the evolution of clinal variation in an invasive plant, we compared cold hardiness in the introduced saltcedar (Tamarix ramosissima, Tamarix chinensis, and hybrids) and the native plains cottonwood (Populus deltoidessubsp. monilifera). In a shadehouse in Colorado (41°N), we grew plants collected along a latitudinal gradient in the central United States (29–48°N). On 17 occasions between September 2005 and June 2006, we determined killing temperatures using freeze-induced electrolyte leakage and direct observation. In midwinter, cottonwood survived cooling to −70°C, while saltcedar was killed at −33 to −47°C. Frost sensitivity, therefore, may limit northward expansion of saltcedar in North America. Both species demonstrated inherited latitudinal variation in cold hardiness. For example, from September through January killing temperatures for saltcedar from 29.18°N were 5–21°C higher than those for saltcedar from 47.60°N, and on September 26 and October 11, killing temperatures for cottonwood from 33.06°N were >43°C higher than those for cottonwood from 47.60°N. Analysis of nine microsatellite loci showed that southern saltcedars are more closely related to T. chinensis while northern plants are more closely related to T. ramosissima. Hybridization may have introduced the genetic variability necessary for rapid evolution of the cline in saltcedar cold hardiness.

  8. River flow and riparian vegetation dynamics - implications for management of the Yampa River through Dinosaur National Monument

    Science.gov (United States)

    Scott, Michael L; Friedman, Jonathan M.

    2018-01-01

    This report addresses the relation between flow of the Yampa River and occurrence of herbaceous and woody riparian vegetation in Dinosaur National Monument (DINO) with the goal of informing management decisions related to potential future water development. The Yampa River in DINO flows through diverse valley settings, from the relatively broad restricted meanders of Deerlodge Park to narrower canyons, including debris fan-affected reaches in the upper Yampa Canyon and entrenched meanders in Harding Hole and Laddie Park. Analysis of occurrence of all plant species measured in 1470 quadrats by multiple authors over the last 24 years shows that riparian vegetation along the Yampa River is strongly related to valley setting and geomorphic surfaces, defined here as active channel, active floodplain, inactive floodplain, and upland. Principal Coordinates Ordination arrayed quadrats and species along gradients of overall cover and moisture availability, from upland and inactive floodplain quadrats and associated xeric species like western wheat grass (Pascopyrum smithii), cheatgrass (Bromus tectorum), and saltgrass (Distichlis spicata) to active channel and active floodplain quadrats supporting more mesic species including sandbar willow (Salix exigua), wild licorice (Glycyrrhiza lepidota), and cordgrass (Spartina spp.). Indicator species analysis identified plants strongly correlated with geomorphic surfaces. These species indicate state changes in geomorphic surfaces, such as the conversion of active channel to floodplain during channel narrowing. The dominant woody riparian species along the Yampa River are invasive tamarisk (Tamarix ramosissima), and native Fremont cottonwood (Populus deltoides ssp. wislizenii), box elder (Acer negundo L. var. interius), and sandbar willow (Salix exigua). These species differ in tolerance of drought, salinity, inundation, flood disturbance and shade, and in seed size, timing of seed dispersal and ability to form root sprouts. These

  9. Modeling Phosphorus Capture by Plants Growing in a Multispecies Riparian Buffer

    Directory of Open Access Journals (Sweden)

    J. M. Kelly

    2012-01-01

    Full Text Available The NST 3.0 mechanistic nutrient uptake model was used to explore P uptake to a depth of 120 cm over a 126 d growing season in simulated buffer communities composed of mixtures of cottonwood (Populus deltoids Bartr., switchgrass (Panicum virgatum L., and smooth brome (Bromus inermis Leyss. Model estimates of P uptake from pure stands of smooth brome and cottonwood were 18.9 and 24.5 kg ha−1, respectively. Uptake estimates for mixed stands of trees and grasses were intermediate to pure stands. A single factor sensitivity analysis of parameters used to calculate P uptake for each cover type indicated that Imax, k, ro, and Lo were consistently the most responsive to changes ranging from −50% to +100%. Model exploration of P uptake as a function of soil depth interval indicated that uptake was highest in the 0–30 cm intervals, with values ranging from 85% of total for cottonwood to 56% for switchgrass.

  10. Phreatophyte influence on reductive dechlorination in a shallow aquifer contaminated with trichloroethene (TCE)

    Science.gov (United States)

    Lee, R.W.; Jones, S.A.; Kuniansky, E.L.; Harvey, G.; Lollar, B.S.; Slater, G.F.

    2000-01-01

    Phytoremediation uses the natural ability of plants to degrade contaminants in groundwater. A field demonstration designed to remediate aerobic shallow groundwater contaminated with trichloroethene began in April 1996 with the planting of cottonwood trees, a short-rotation woody crop, over an approximately 0.2-ha area at the Naval Air Station, Fort Worth, Texas. The project was developed to demonstrate capture of contaminated groundwater and degradation of contaminants by phreatophytes. Analyses from samples of groundwater collected from July 1997 to June 1998 indicate that tree roots have the potential to create anaerobic conditions in the groundwater that will facilitate degradation of trichloroethene by microbially mediated reductive dechlorination. Organic matter from root exudates and decay of tree roots probably stimulate microbial activity, consuming dissolved oxygen. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about 20 years of age and 60 meters southwest of the cottonwood plantings) where degradation products of trichloroethene were measured. Oxidation of organic matter is the primary microbially mediated reaction occurring in the groundwater beneath the planted trees whereas near the mature cottonwood tree, data indicate that methanogenesis is the most probable reaction occurring. Reductive dechlorination in groundwater either is not occurring or is not a primary process away from the mature tree. Carbon-13 isotope values for trichloroethene are nearly identical at locations away from the mature tree, further confirming that dechlorination is not occurring at the site.

  11. Sediment Supply as a Control on Plant-Morphodynamic Interactions

    Science.gov (United States)

    Manners, R.; Wilcox, A. C.; Kui, L.; Stella, J. C.; Lightbody, A.; Sklar, L. S.

    2014-12-01

    The caliber and quantity of sediment delivered to a channel influences its size and shape, yet we know little about how the sediment supply affects rivers whose geomorphic form is influenced by riparian vegetation. We present results from flume experiments that test the impact of sediment supply on plant-morphodynamic interactions. We introduced two sediment supply conditions to a 28-meter long, sand bedded flume (60 cm wide and 71 cm deep) at the UC-Berkeley Richmond Field Station: equilibrium (balance between sediment transport and supply) and deficit (transport exceeds sediment supply). We conducted ten runs with different riparian seedling configurations (individual plants or patches) and species (tamarisk or cottonwood), and stem and leaf density (0.003-0.47 cm2/cm2), under both sediment supply conditions. Plant species, size, and configuration were important in predicting the topographic adjustments that occurred during our experiments. These influences may be attributed to differences in plant morphology; tamarisk is shrubby while cottonwood is more tree-like, with a single stem and leaves concentrated higher on the plant. The plant-morphodynamic relationship, however, differed for the two sediment supply conditions. During sediment equilibrium, only patches of cottonwood served as sediment sinks compared to an unvegetated bed, but tamarisk patches had no impact on the sediment mass balance. During sediment deficit, in contrast, tamarisk patches accumulated more sediment than unvegetated beds. Stem and leaf density also controlled changes in bed elevation. During equilibrium conditions, increasing the density of cottonwood stems and leaves resulted in greater bed degradation. Conversely, aggradation occurred with increases in the density of tamarisk. For sediment deficit conditions, the relationship between stem and leaf density and the rate of bed change was negative for both species (i.e., higher density resulted in faster rate of scour). The shifting

  12. Relations between continuous real-time turbidity data and discrete suspended-sediment concentration samples in the Neosho and Cottonwood Rivers, east-central Kansas, 2009-2012

    Science.gov (United States)

    Foster, Guy M.

    2014-01-01

    The Neosho River and its primary tributary, the Cottonwood River, are the primary sources of inflow to the John Redmond Reservoir in east-central Kansas. Sedimentation rate in the John Redmond Reservoir was estimated as 743 acre-feet per year for 1964–2006. This estimated sedimentation rate is more than 80 percent larger than the projected design sedimentation rate of 404 acre-feet per year, and resulted in a loss of 40 percent of the conservation pool since its construction in 1964. To reduce sediment input into the reservoir, the Kansas Water Office implemented stream bank stabilization techniques along an 8.3 mile reach of the Neosho River during 2010 through 2011. The U.S. Geological Survey, in cooperation with the Kansas Water Office and funded in part through the Kansas State Water Plan Fund, operated continuous real-time water-quality monitors upstream and downstream from stream bank stabilization efforts before, during, and after construction. Continuously measured water-quality properties include streamflow, specific conductance, water temperature, and turbidity. Discrete sediment samples were collected from June 2009 through September 2012 and analyzed for suspended-sediment concentration (SSC), percentage of sediments less than 63 micrometers (sand-fine break), and loss of material on ignition (analogous to amount of organic matter). Regression models were developed to establish relations between discretely measured SSC samples, and turbidity or streamflow to estimate continuously SSC. Continuous water-quality monitors represented between 96 and 99 percent of the cross-sectional variability for turbidity, and had slopes between 0.91 and 0.98. Because consistent bias was not observed, values from continuous water-quality monitors were considered representative of stream conditions. On average, turbidity-based SSC models explained 96 percent of the variance in SSC. Streamflow-based regressions explained 53 to 60 percent of the variance. Mean squared

  13. Stem anatomy variation in cottonwood

    Science.gov (United States)

    A.N. Foulger; J. Hacskaylo

    1968-01-01

    Investigations of mineral nutrient-tree growth relationships have dealt mainly with associations involving foliage composition, root formation, or volume production of wood. Few studies have been concerned with changes in wood anatomy associated with element deficiency. In 1949 Davis reported that calcium deficiency was accompanied by a reduction of primary tissue and...

  14. How do riparian woody seedlings survive seasonal drought?

    Science.gov (United States)

    Stella, John C; Battles, John J

    2010-11-01

    In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.

  15. Variation in experimental flood impacts and ecogeomorphic feedbacks among native and exotic riparian tree seedlings

    Science.gov (United States)

    Kui, L.; Stella, J. C.; Skorko, K.; Lightbody, A.; Wilcox, A. C.; Bywater-Reyes, S.

    2012-12-01

    Flooding interacts with riparian plants on a variety of scales, resulting in coevolution of geomorphic surfaces with plant vegetation communities. Our research aims to develop a mechanistic understanding of riparian seedling damage from small floods, with a focus on differential responses among species (native and non-native), ecogeomorphic feedbacks, and implications for riparian restoration. We tested the effects of controlled flood events on cottonwood (Populus fremontii) and tamarisk (Tamarix spp.) seedlings in an experimental meandering stream channel. We hypothesized that seedling dislodgement and burial would be influenced by individual plant height, species-specific morphology, patch density, and differences in hydraulic forces (as a function of location on the bar). Four experimental floods were tested, with different combinations of plant species and seedling densities. For each flood run, rooted seedlings were installed within a 1.5-m-wide sandbar during low flow conditions and stream discharge was increased to a constant flood level for approximately 8 hours, after which seedling response was assessed. Seedling damage was analyzed within a logistic regression framework that predicted the probability of dislodgement or burial as a function of the explanatory variables. Plant dislodgement depended on root length and the location on the sandbar, whereas burial depended on plant height, species-specific morphology, and location. For every centimeter increase in plant height, the odds of plant burial decreased by 10 percent, illustrating the rate at which plants developed flood resistance as they grow taller. With every meter closer to the thalweg, plant dislodgement was four times more likely, and plant burial was 2.6 times more likely. The probability of burial was twice as great for tamarisk seedlings as for cottonwood. The increased sedimentation within tamarisk patches was associated with a denser foliage and a more compact crown for this species. The

  16. Habitat Erosion Protection Analysis, Missouri National Recreational River, Nebraska and South Dakota

    National Research Council Canada - National Science Library

    2000-01-01

    The Corps was tasked by the National Park Service to determine if erosion protection measures are needed to prevent further decline in cottonwood forest within the Missouri National Recreational River...

  17. Hydraulic and topographic response of sand-bed rivers to woody riparian seedlings: field-scale laboratory methods and results

    Science.gov (United States)

    Lightbody, A.; Skorko, K.; Kui, L.; Stella, J. C.; Wilcox, A. C.

    2012-12-01

    Feedbacks between topography, flow fields and vegetation community structure are fundamental processes in many rivers. In addition, predicting seedling mortality in response to flood events requires a detailed understanding of the influence of flow on seedling scour and burial. As of yet, however, flow and sediment transport in the presence of seedlings are poorly understood. Measurements quantifying the response of topography and flow to the presence of seedlings with differing plant architectures were obtained within a field-scale meandering stream channel with a mobile sand bed (median grain size of 0.7 mm) and full experimental control over sediment and water discharge. Seedlings of Tamarix spp. (tamarisk) and Populus fremontii (cottonwood) with intact roots were installed on a point bar during low flow conditions. Flow rate was then elevated to a constant flood level, while sediment feed rate, plant density, and plant species were varied during each of eight different experimental runs. Flood conditions were maintained long enough for bar topography to reach steady state. The presence of all types of vegetation on the bar decreased the height and lateral extent of dunes migrating across the bar, thereby preventing the development of dunes as the primary mechanism of sediment transport through the bend. Time-averaged bar volume increased from bare-bed conditions when sparse tamarisk, dense tamarisk, or mixed cottonwood and tamarisk seedlings were present on the bar. The presence of dense cottonwood seedlings, however, did not result in an increase in either bar size or height, likely because an increase in steady-state turbulence intensities on the bar when dense cottonwood was present interfered with sediment deposition. Thus, differing plant architecture was an important influence on topographic evolution. In particular, it is possible that the flexibility of tamarisk seedlings causes them to behave analogously to herbaceous vegetation, sheltering the bar

  18. Evaluating the Invasion of Red Cedar (Juniperus viriginiana) Downstream of Gavins Point Dam, Missouri National Recreational River

    Science.gov (United States)

    Greene, S.; Knox, J. C.

    2013-12-01

    Gavins Point Dam, the final dam on the main-stem Missouri River, alters downstream river form and function. Throughout a 59-mile downstream reach, the dam reduces overbank flooding and lowers the water surface by 1-3 meters. Under the dam-created hydro-geomorphic conditions, native cottonwood trees are unable to regenerate. The limited regeneration of native riparian cottonwoods, the lowered water surface, and the reduced overbank flooding creates a terrace environment within the riparian habitat. Consequently, red cedars, a native upland tree, are invading this new terrace-like riparian environment. To this end, we apply Bayesian statistical models to investigate patterns of red cedar riparian invasion and assess ecosystem function patterns along this flow-regulated reach. We set up plots within cottonwood stands along a 59-km reach downstream of Gavins Point Dam. Within each plot, we collected soil samples, litter samples, stem densities of trees, and collected cores of the largest cottonwood and largest red cedar in each plot. To assess influences of red cedar on soil indicators of ecosystem function and general patterns of ecosystem function within the study area, we measured organic carbon, nitrogen, pH, electrical conductivity, and hydrophobicity. To determine drivers and patterns of invasion and ecosystem function we conducted Bayesian linear regressions and means comparison tests. Red cedars existed along the floodplain prior to regulation. However, according to our tree age data and stem density data red cedars existed at a lower population than today. We found that 2 out of 565 red cedars established before the dam was completed. Also, we found no significant difference in soil properties between soils with established red cedar and soils with established cottonwood. By studying soil texture data, and interpreting fluvial geomorphic surfaces in the field and via aerial photography, we found soil texture generally reflects the type of fluvial surface

  19. Environmental Assessment for the Aeromedical Evacuation Formal Training Unit, Wright-Patterson Air Force Base

    Science.gov (United States)

    2012-05-01

    pennsylvanica), White Ash (Fraxinus americana), Shingle Oak (Quercus imbricaria), Northern Red Oak (Quercus rubra), Slippery Elm (Ulmus rubra...American Elm (Ulmus americana), Eastern Cottonwood (Populus deltoides), Silver Maple (Acer saccharinum), Sassafras (Sassafras albidum), Post Oak (Quercus

  20. Analysis of genetic and environmental effects on hybrid poplar rooting in Central and Northern Minnesota, USA

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Don Riemenschneider; Edmund Bauer

    2000-01-01

    We studied genetic and environmental effects on adventitious root initiation and growth because rooting is biologically prerequisite to the establishment of hybrid poplar plantations. Six clones from two pedigrees (pure Populus deltoides "cottonwoods" and P. deltoides x P. maximowiczii hybrids) were...

  1. Coevolution of floodplain and riparian forest dynamics on large, meandering rivers

    Science.gov (United States)

    Stella, J. C.; Riddle, J. D.; Battles, J. J.

    2012-12-01

    On large meandering rivers, riparian forests coevolve with the floodplains that support them. Floodplain characteristics such as local disturbance regime, deposition rates and sediment texture drive plant community dynamics, which in turn feed back to the abiotic processes. We investigated floodplain and riparian forest coevolution along the along the Sacramento River (California, USA), a large, mediterranean-climate river that has been extensively regulated for 70 years, but whose 160-km middle reach (Red Bluff to Colusa) retains some channel mobility and natural forest stands. Guided by maps of floodplain change over time and current vegetation cover, we conducted an extensive forest inventory and chronosequence analysis to quantify how abiotic conditions and forest structural characteristics such as tree density, basal area and biomass vary with floodplain age. We inventoried 285 fixed-area plots distributed across 19 large point bars within vegetation patches ranging in age from 4 to 107 years. Two successional trajectories were evident: (1) shifting species dominance over time within forested areas, from willow to cottonwood to walnut, boxelder and valley oak; and (2) patches of shrub willow (primarily Salix exigua) that maintained dominance throughout time. Sediment accretion was reduced in the persistent willow plots compared to the successional forest stands, suggesting an association between higher flood energy and arrested succession. Forested stands 40-60 years old were the most extensive across the chronosequence in terms of floodplain area, and supported the highest biomass, species diversity, and functional wildlife habitat. These stands were dominated by Fremont cottonwood (Populus fremontii) and reached their maxima in terms of tree size and biomass at age 50 years. The persistent willow stands reached their structural maxima earlier (32 years) and supported lower biomass. Basal area and abundance of large trees decreased in stands >90 years old

  2. Restoration of Emergent Sandbar Habitat Complexes in the Missouri River, Nebraska and South Dakota

    Science.gov (United States)

    2013-04-01

    of smartweeds (Polygonum spp.), cottonwood and willow seedlings, cocklebur (Xanthium strumarium ), beggarticks (Bidens spp.), flatsedges (Cyperus spp...observed on the sandbars during an ESH PDT boat trip in late summer of 2012 included small amounts of cocklebur (Xanthium strumarium ) and sweet clover

  3. 40 CFR 131.33 - Idaho.

    Science.gov (United States)

    2010-07-01

    ... KOOTENAI BASIN: Ball Creek, Boundary Creek, Brush Creek, Cabin Creek, Caribou Creek, Cascade Creek, Cooks...), Setzer Creek, Sherlock Creek, Simmons Creek, Siwash Creek, Skookum Creek, Thomas Creek, Thorn Creek... Creek, Cold Creek, Collie Creek, Colt Creek, Cook Creek, Corley Creek, Cornish Creek, Cottonwood Creek...

  4. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT (CD-ROM)

    Science.gov (United States)

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the tricWoroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were insta...

  5. PHYTOREMEDIATION OF GROUNDWATER AT AIR FORCE PLANT 4, CARSWELL, TEXAS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    Over 600 Cottonwood trees were planted over a shallow groundwater plume in an attempt to detoxify the trichloroethylene (TCE) in a groundwater plume at a former Air Force facility. Two planting techniques were used: rooted stock about two years old, and 18 inch cuttings were inst...

  6. MT and WY Tamarix soil properties influence germination and early growth of three native grass species

    Science.gov (United States)

    As a riparian invader, Tamarix spp. often leads to native species (e.g., plains cottonwood and willows, grasses) decline and lower habitat quality. Since Tamarix excretes excess salt and has high salt tolerance, negative soil feedback via high soil salinity may negatively affect native plants. Howev...

  7. Performance of Asian longhorned beetle among tree species

    Science.gov (United States)

    Kelli Hoover; Scott Ludwig; James Sellmer; Deborah McCullough; Laura Lazarus

    2003-01-01

    Two procedures were evaluated for assessing susceptibility of a variety of tree species to Anoplophora glabripennis. In the first procedure, adult beetles were caged with a section of sugar maple, northern red oak, white oak, honeylocust, eastern cottonwood, sycamore or tulip poplar wood and allowed to oviposit.

  8. Captures of Crawford's gray shrews (Notiosorex crawfordi) along the Rio Grande in central New Mexico

    Science.gov (United States)

    Alice Chung-MacCoubrey; Heather L. Bateman; Deborah M. Finch

    2009-01-01

    We captured >2000 Crawford's gray shrews (Notiosorex crawfordi) in a riparian forest mainly consisting of cottonwoods (Populus deltoides) along the Rio Grande in central New Mexico. Little has been published about abundance and habitat of Crawford's gray shrew throughout its distributional range. During 7 summers, we...

  9. Environmental Assessment for BRAC Facilities and Remote Field Training Site, Wright-Patterson Air Force Base

    Science.gov (United States)

    2008-03-01

    survey (BHE, 2001). Radio tracking of these two bats confirmed the presence of a maternity colony in a dead slippery elm (Ulmus rubra) in a woodlot...The most common trees observed were black walnut (Juglans nigra), elm (Ulmus spp.), eastern cottonwood, willow, ash (Fraxinus americana), sycamore

  10. The effect of gamma irradiation on in vitro digestible energy of some agricultural residues

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    1993-03-01

    Experiments have been carried out on the effect of gamma irradiation on total energy, dry organic matter digestibility and on digestible energy of organic matter for some agricultural residues (maize straw, lentils straw, cottonwood, residues of apple-tree pruning, olive-cake first and second treatment). Sample were irradiated at 0, 50 and 100 KGy. Total energy was estimated by calorimeter. Digestibility was estimated in vitro by the method of Tilly and Terry (1963). Two sheep with rumen fistula were used as rumen liquor donating animals. Irradiation resulted in increasing the digestion of organic and dry matter and also the digestible energy of organic matter in all residues used except lentils straw and olive-cake first treatment. The increase in digestible energy values of organic matter (kJ) at dose of 100 KGy were: 155, 105, 71 and 25 for residue of apple-tree pruning, maize straw, cottonwood and olive-cake second treatment, respectively. (author).28 refs., 10 figs., 5 tabs

  11. Modeling phosphorus capture by plants growing in a multi-species riparian buffer

    Science.gov (United States)

    The NST 3.0 mechanistic nutrient uptake model was used to explore phosphorus (P) uptake to a depth of 120 cm over a 126-d growing season in simulated buffer communities composed of mixtures of cottonwood (Populus deltoids Bartr.), switchgrass (Panicum virgatum L.), and smooth brome (Bromis inermis L...

  12. Flora of the San Pedro Riparian National Conservation Area, Cochise County, Arizona

    Science.gov (United States)

    Elizabeth Makings

    2005-01-01

    The flora of the San Pedro Riparian National Conservation Area (SPRNCA) consists of 618 taxa from 92 families, including a new species of Eriogonum and four new State records. The vegetation communities include Chihuahuan Desertscrub, cottonwood-willow riparian corridors, mesquite terraces, sacaton grasslands, rocky outcrops, and cienegas. Species...

  13. Ethylene and Carbon Monoxide Production by Septoria musiva

    Science.gov (United States)

    S. Brown-Skrobot; L. R. Brown; T. H. Filer

    1984-01-01

    An investigation into the mechanism by which Septoria musiva causes the premature defoliation of cottonwood trees was undertaken. Gas-chromatograpic analysis of the atmosphere overlying the original culture indicated that this fungus produced significant quantities of ethylene and carbon monoxide. Subcultures failed to produce either gas on a variety...

  14. Environmental Assessment for Physical Fitness Center Tinker Air Force Base, Oklahoma

    Science.gov (United States)

    2010-04-01

    Tinker AFB contains such species as American elm (Ulmus Americana), slippery elm (Ulmus rubra), hackberry (Celtis spp.), and cottonwood (Poplus...The other two major drainages on the Base are Elm Creek and Hog Creek, both of which flow south off Base and join the Little River. The on-Base

  15. Wood property variation in Populus

    Science.gov (United States)

    Dean W. Einspahr; Miles K. Benson; John R. Peckham

    1968-01-01

    The use of bigtooth aspen (Populus grandidentata Michx.), quaking aspen (P. tremuloides Michx.), and cottonwood (P. deltoides Bartr.) by the pulp and paper industry has increased greatly during the past decade. This expanded use has stimulated research on the genetic improvement of Populus. For the past 12 years...

  16. Tamarisk and river restoration along the San Pedro and Gila Rivers

    Science.gov (United States)

    Juliet Stromberg; Sharon Lite; Charles Paradzick

    2005-01-01

    The abundance of tamarisk (Tamarix ramosissima and related species) along the San Pedro and Gila River flood plains varies with differences in stream flow regimes. Tamarisk abundance, relative to Fremont cottonwood and Goodding willow, is greater at sites with more intermittent stream flows and deeper and more fluctuating ground-water levels....

  17. 15 CFR Appendix II to Part 921 - Typology of National Estuarine Research Reserves

    Science.gov (United States)

    2010-01-01

    ... woody species with multiple stems and a few centimeters to several meters above the ground developing... cottonwood (Pupulus deltoides.) This area is divided into four regions with the following typical strand... such as a beach strand, a line of barrier islands, reef formations a line of moraine debris, or the...

  18. Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.)

    Science.gov (United States)

    Ramesh Murthy; Greg Barron-Gafford; Philip M. Dougherty; Victor c. Engels; Katie Grieve; Linda Handley; Christie Klimas; Mark J. Postosnaks; Stanley J. Zarnoch; Jianwei Zhang

    2005-01-01

    We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf- and stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed...

  19. 78 FR 26773 - Proposed Information Collection Request; Comment Request; Willingness To Pay Survey for Santa...

    Science.gov (United States)

    2013-05-08

    .... Water scarcity in the region raises periodic debates on the best uses of effluent. All survey responses... cottonwood-willow riparian forest, a rare forest type in the region. The second is an increase in water... effluent water quality, are posed as increases in a yearly household tax. Each choice question allows a...

  20. Black Willow

    Science.gov (United States)

    R. M. Krinard

    1980-01-01

    Black willow and other species of Salix together comprise a majority of the stocking. Cottonwood is the chief associate, particularly in the early stages, but green ash, sycamore, pecan, persimmon, waterlocust, American elm, baldcypress, red maple, sugarberry, box-elder, and in some areas, silver maple are invaders preceding the next successional stage.

  1. Sex and the single Salix: considerations for riparian restoration

    Science.gov (United States)

    Thomas D. Landis; David R. Dreesen; R. Kasten Dumroese

    2003-01-01

    Most restoration projects strive to create a sustain able plant community but exclusive use of vegetatively propagated material may be preventing this goal. The dioecious willows and cottonwoods of the Salicaceae are widely used in riparian restoration projects. Hardwood cuttings have traditionally been used to propagate these species in nurseries, and live stakes,...

  2. First records of the Brown Creeper breeding along the middle Rio Grande in central New Mexico

    Science.gov (United States)

    Jean-Luc E. Cartron; David L. Hawksworth; Deborah M. Finch

    2008-01-01

    In New Mexico, the Brown Creeper (Certhia americana) typically breeds in montane coniferous forests ranging in elevation from 2100 to 3300 m (Ligon 1961, Hubbard 1978). Since 2003, however, we have also noted breeding in the riparian cottonwood forest (hereafter bosque) along the middle Rio Grande, in the south valley of Albuquerque, Bernalillo...

  3. Interactions between fluvial forces and vegetation size, density and morphology influence plant mortality during experimental floods

    Science.gov (United States)

    Stella, J. C.; Kui, L.; Manners, R.; Wilcox, A. C.; Lightbody, A.; Sklar, L. S.

    2015-12-01

    Introduction and methods Fluvial disturbance is a key driver of riparian vegetation dynamics in river corridors. Despite an increasing understanding of ecohydraulic interactions between plants and fluvial forces, the interactive influences of plant morphology and sediment supply on plant mortality, a key demographic factor, are largely unknown. To better understand these processes, we designed and conducted a series of flume experiments to: (1) quantify effects of plant traits that interact with flow and sediment transport on plant loss to scour during floods; and (2) predict plant dislodgement for different species across a range of plant sizes, patch densities, and sediment condition (equilibrium transport versus sediment deficit). We ran ten experimental floods in a 28 m long × 0.6 m wide × 0.71 m tall flume, using live, 1-3 year-old tamarisk and cottonwood seedlings with contrasting morphologies with varied combinations of size and density. Results and discussion Both sediment supply and plant traits (morphology and composition) have significant impacts on plant vulnerability during floods. Sediment deficit resulted in bed degradation and a 35% greater risk of plant loss compared to equilibrium sediment conditions. The probability of plant dislodgement in sparse patches was 4.5 times greater than in dense patches. Tamarisk plants and patches had greater frontal area, basal diameter and longer roots compared to cottonwood across all seedling heights. These traits, as well as its lower crown position reduced tamarisk's vulnerability to scour by 75%. Compared with cottonwood, tamarisk exhibits better resistance to floods, due to its greater root biomass and longer roots that stabilize soil, and its greater frontal area and lower crown that effectively trap sediment. These traits likely contribute to riverscape-scale changes in channel morphology that are evident where tamarisk has invaded native riparian communities, and explain the persistence of tamarisk

  4. Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability

    Science.gov (United States)

    Felipe G. Sanchez; Mark Coleman; Charles T. Garten; Robert J. Luxmoore; John A. Stanturf; Carl Trettin; Stan D. Wullschleger

    2007-01-01

    Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was...

  5. Insertional mutagenesis in Populus: relevance and feasibility

    Science.gov (United States)

    Victor Busov; Matthias Fladung; Andrew Groover; Steven Strauss

    2005-01-01

    The recent sequencing of the first tree genome, that of the black cottonwood (Populus trichocarpa), opens a new chapter in tree functional genomics. While the completion of the genome is a milestone, mobilizing this significant resource for better understanding the growth and development of woody perennials will be an even greater undertaking in the...

  6. Per tree estimates with n-tree distance sampling: an application to increment core data

    Science.gov (United States)

    Thomas B. Lynch; Robert F. Wittwer

    2002-01-01

    Per tree estimates using the n trees nearest a point can be obtained by using a ratio of per unit area estimates from n-tree distance sampling. This ratio was used to estimate average age by d.b.h. classes for cottonwood trees (Populus deltoides Bartr. ex Marsh.) on the Cimarron National Grassland. Increment...

  7. Riparian restoration in the Southwest: Species selection, propagation, planting methods, and case studies

    Science.gov (United States)

    David Dreesen; John Harrington; Tom Subirge; Pete Stewart; Greg Fenchel

    2002-01-01

    Riparian plant communities, though small in overall area, are among the most valuable natural areas in the Southwest. The causes of degradation of southwestern riparian zones range from excessive cattle and elk grazing in montane watersheds to invasive woody exotic species and lack of natural flooding in the cottonwood forests, "bosque," of low elevation...

  8. National uranium resource evaluation: Williams quadrangle, Arizona

    International Nuclear Information System (INIS)

    O'Neill, A.J.; Nystrom, R.J.; Thiede, D.S.

    1981-03-01

    Geologic environments of the Williams Quadrangle, Arizona, were evaluated for uranium favorability by means of literature research, uranium-occurrence investigation and other surface studies, subsurface studies, aerial radiometric data, hydrogeochemical data, and rock-sample analytic data. Favorability criteria are those of the National Uranium Resource Evaluation program. Three geologic environments are favorable for uranium: the Tertiary fluvial rocks of the Colorado Plateau where they unconformably overlie impermeable bed rock (for channel-controlled peneconcordant deposits); collapse breccia pipes in Paleozoic strata of the Colorado Plateau (for vein-type deposits in sedimentary rocks); and Precambrian crystalline rocks of the Hualapai, Peacock, and Aquarius Mountains, and Cottonwood and Grand Wash Cliffs (for magmatic-hydrothermal deposits). Unfavorable geologic environments are: Tertiary and Quaternary volcanic rocks, Tertiary and Quaternary sedimentary rocks of the Colorado Plateau, nearly all Paleozoic and Mesozoic sedimentary rocks, and the Precambrian-Cambrian unconformity of the Grand Wash Cliffs area. Tertiary rocks in Cenozoic basins and Precambrian crystalline rocks in the Grand Canyon region and in parts of the Aquarius Mountains and Cottonwood and Grand Wash Cliffs are unevaluated

  9. Are cicadas (Diceroprocta apache) both a "keystone" and a "critical-link" species in lower Colorado River riparian communities?

    Science.gov (United States)

    Andersen, Douglas C.

    1994-01-01

    Apache cicada (Homoptera: Cicadidae: Diceroprocta apache Davis) densities were estimated to be 10 individuals/m2 within a closed-canopy stand of Fremont cottonwood (Populus fremontii) and Goodding willow (Salix gooddingii) in a revegetated site adjacent to the Colorado River near Parker, Arizona. Coupled with data drawn from the literature, I estimate that up to 1.3 cm (13 1/m2) of water may be added to the upper soil layers annually through the feeding activities of cicada nymphs. This is equivalent to 12% of the annual precipitation received in the study area. Apache cicadas may have significant effects on ecosystem functioning via effects on water transport and thus act as a critical-link species in this southwest desert riverine ecosystem. Cicadas emerged later within the cottonwood-willow stand than in relatively open saltcedar-mesquite stands; this difference in temporal dynamics would affect their availability to several insectivorous bird species and may help explain the birds' recent declines. Resource managers in this region should be sensitive to the multiple and strong effects that Apache cicadas may have on ecosystem structure and functioning.

  10. Multilateral Cooperation on Nonproliferation

    Science.gov (United States)

    2012-10-01

    Nathan E . Busch and Daniel H. Joyner, eds., Combating Weapons of Mass Destruction: The Future of International Nonproliferation Policy (Athens, GA...or the World Bank . These organizations receive contributions from member states but have their own...Opening Reception Jack’s Lounge , Portola Hotel Friday, March 30, 2010 Timeline Content Delivery 7:30-8:30 Breakfast and Registration Cottonwood

  11. Effect of entomopathogenic nematodes on Plectrodera scalator (Fabricius) (Coleoptera: Cerambycidae)

    Science.gov (United States)

    Declan J. Fallon; Leellen F. Solter; Leah S. Bauer; Deborah L. Miller; James R. Cate; Michael L. McManus

    2006-01-01

    Entomopathogenic nematodes were screened for efficacy against the cottonwood borer, Plectrodera scalator (Fabricius). Steinernema feltiae SN and S. carpocapsae All killed 58 and 50% of larvae, respectively, in Wlter paper bioassays but less than 10% in diet cup bioassays. S. glaseri NJ, S. riobrave TX, and H. indica MG-13 killed less than 10% of larvae in both assays....

  12. Arthropods of native and exotic vegetation and their association with willow flycatchers and Wilson's warblers

    Science.gov (United States)

    Linda S. DeLay; Deborah M. Finch; Sandra Brantley; Richard Fagerlund; Michael D. Means; Jeffrey F. Kelly

    1999-01-01

    We compared abundance of migrating Willow Flycatchers and Wilson's Warblers to the abundance of arthropods in exotic and native vegetation at Bosque del Apache National Wildlife Refuge. We trapped arthropods using glue-boards in 1996 and 1997 in the same cottonwood, saltcedar, and willow habitats where we mist-netted birds during spring and fall migration. There...

  13. Fifteen-Year Growth of Six Planted Hardwood Species on Sharkey Clay Soil

    Science.gov (United States)

    Roger M. Krinard; Harvey E. Kennedy

    1987-01-01

    Six hardwood species planted on Sharkey clay soil that had been disked the first 5 years for weed control were significantly taller at age 5 when compared to species grown on mowed sites. By age 15, there were no differences in heights within species except for sweet pecan. Average heights by species at age 15 were: cottonwood (Populus deltoides...

  14. Transpirational water loss in invaded and restored semiarid riparian forests

    Science.gov (United States)

    Georgianne W. Moore; M. Keith Owens

    2011-01-01

    The invasive tree, Tamarix sp., was introduced to the United States in the 1800s to stabilize stream banks. The riparian ecosystem adjacent to the middle Rio Grande River in central NewMexico consists of mature cottonwood (Populus fremontii ) gallery forests with a dense Tamarix understory. We hypothesized that Populus would compensate for reduced competition by...

  15. Grady Highway Extension (Ship Creek Crossing) Elmendorf Air Force Base and Fort Richardson, Alaska

    Science.gov (United States)

    2005-06-01

    appear to have developed in depressions and floodplain channels where water is either shallow or exposed to the surface during periods of high water...Emergent, Persistent, Seasonally Flooded). A narrow depressional area with exposed water demonstration flow characteristics of the hyporheic zone...hyporheic zone. Dominant vegetation includes thin-leaf alder, cottonwood, lady fern, highbush cranberry , tuberous spring beauty and marsh

  16. Nesting ecology and nest success of the Blue Grosbeak along two rivers in New Mexico

    Science.gov (United States)

    Jean-Luc E. Cartron; Deborah M. Finch; David L. Hawksworth; Scott H. Stoleson

    2013-01-01

    From 1997 through 2008, we studied the nesting habits and nest success of the Blue Grosbeak (Passerina cerulean) along the middle Gila River (1997-2001) and the middle Rio Grande (2000-2008) in New Mexico. A riparian forest of cottonwoods grows along both rivers. but the forest along the Rio Grande is a much more intensively managed ecosystem, with an understory...

  17. Illinois' Forests 2010

    Science.gov (United States)

    Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall

    2013-01-01

    The second full annual inventory of Illinois' forests, completed in 2010, reports more than 4.8 million acres of forest land and 97 tree species. Forest land is dominated by oak/hickory and elm/ash/cottonwood forest-type groups, which occupy 93 percent of total forest land area. The volume of growing stock on timberland totals 7.2 billion cubic feet. The average...

  18. Nebraska's Forests 2010

    Science.gov (United States)

    Dacia M Meneguzzo; Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Greg C. Liknes; Andrew J. Lister; Tonya W. Lister; Ronald J. Piva; Barry T. (Ty) Wilson; Christopher W. Woodall

    2012-01-01

    The second full annual inventory of Nebraska's forests reports more than 1.5 million acres of forest land and 39 tree species. Forest land is dominated by the elm/ash/cottonwood and oak/hickory forest types, which occupy nearly half of the total forest land area. The volume of growing stock on timberland currently totals 1.1 billion cubic feet. The average annual...

  19. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0)

    Science.gov (United States)

    2010-05-01

    monophylla or P. edulis), junipers (Juniperus), cottonwoods (e.g., Populus fremontii), willows (Salix), or hardwoods (e.g., Quercus , Platanus...pine in association with incense cedar and California black oak ( Quercus kelloggii) on the western slopes and Jeffrey pine on the eastern slopes...corkbark fir (Abies lasiocarpa var. arizonica ), limber pine (Pinus flexilis), and bristlecone pine (P. aristata) (Bailey 1995). Black Hills (MLRA

  20. Vegetation in the Flood Plain Adjacent to the Mississippi River between Cairo, Illinois, and St. Paul, Minnesota, and in the Flood Plain of the Illinois River between Grafton, Illinois, and Chicago, and the Possible Impacts That Will Result from the Construction of L & D 26 and the Associated Increase in Barge Traffic,

    Science.gov (United States)

    1975-01-20

    and pecan ( Carya illinoensis ). In the southernmost region of the study area (i.e., Alexander and Union counties, Illinois), swamp cottonwood is a...ash (Fraxinus lanceolata), pecan ( Carya illinoensis ), box elder (Acer negundo), and red mulberry (Morus rubra). Shrubs occurring in the Silver Maple...americana), green ash (Fraxinus lanceolata), pecan ( Carya illinoensis ), sugarberry (Celtis laevigata), and red mulberry (Morus rubra). Also

  1. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    Science.gov (United States)

    Cowdery, Timothy K.

    2005-01-01

    Increased water demand in and around Windom led the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, local water suppliers, and Cottonwood County, to study the hydrology of aquifers in the Des Moines River Valley near Windom. The study area is the watershed of a 30-kilometer (19-mile) reach of the Des Moines River upstream from Windom.

  2. Environmental Assessment: Land Acquisition at Whiteman Air Force Base, Missouri

    Science.gov (United States)

    2011-06-01

    Canadian clearweed (Pilea pumila), common duckweed ( Lemna minor ), common rush (Juncus effusus), cottonwood (Populus deltoides), crabgrass...resources, hazardous materials and hazardous waste, and safety. Implementation of the Proposed Action would result in minor , short-term adverse impacts...consumption of petroleum products during fence construction. As a result of implementing the Proposed Action, minor long-term adverse impacts to land use

  3. Lower Mississippi River Environmental Program. Report 3. Bird and Mammal Use of Main Stem Levee Borrow Pits Along the Lower Mississippi River.

    Science.gov (United States)

    1986-02-01

    overcup oak, tupelo gum, Nuttall oak, American elm , slippery elm , i , hickories, persimmon, silver maple, deciduous holly, swamp privet, and rose mallows...cottonwood, green ash, sugarberry, box elder, deciduous holly, osage orange, swamp privet, hickories, overcup oak, water locust, honey locust, slippery elm ...wood, box elder, osage orange, hickories, honey locust, water locust, slippery elm , swamp privet, sugarberry, persimmon, and rose mallows. Where

  4. Where the Rubber Meets the Road; Varied Techniques for Measuring the Land-Atmosphere Exchange of Water and Energy in a California Watershed and the Driving Influences on this Exchange

    Science.gov (United States)

    Kochendorfer, J.; Viers, J.; Niswonger, R.; Paw U, K.; Haas, E.; Reck, R. A.

    2005-12-01

    In conjunction with the Cosumnes Research Group, we performed a field study along the Cosumnes River in California's Central Valley. The study included tower-based evapotranspiration estimates, continuous hydrologic measurements, and analysis of remote sensing data. We estimated the effects of phreatophytic evapotranspiration on groundwater from scales as small as an individual stand of trees to as large as the watershed and explored the climactic and hydrologic controls over riparian evapotranspiration. Tower-based evapotranspiration measurements included one eddy covariance tower within a cottonwood forest (Populus fremontii), and one surface temperature/micrometeorological evapotranspiration tower within a willow stand (Salix lasiolepis). The technique used on the surface temperature/micrometeorological evapotranspiration tower was developed and chosen in preference to eddy covariance for a site where a considerable quantity of the riparian ecosystem to atmosphere exchange is advective. Hydrologic techniques included measurements of groundwater depth and volumetric soil moisture. We also examined multitemporal, multiresolution remotely sensed imagery to correlate evapotranspiration rates for a restored cottonwood forest with derived vegetation indices. These indices were evaluated for applicability to other restored riparian habitats within the Cosumnes River Preserve and to help guide future restoration actions as a function of hydrologic connectivity and water demand.

  5. Environmental and Water Quality Operational Studies. Reservoir Shoreline Revegetation Guidelines.

    Science.gov (United States)

    1986-11-01

    24. Taller trees such as green ash, cottonwood (Populus spp.), red maple (Acer rubrum), and persimmon (Diospyros virginiana ) should be planted in...be left aboveground to prevent moisture loss due to wicking. Any excess should be pruned off. Gray and Leiser (1982) provide the following... pruning , staking woody stems, and installing fencing around individual plants or the entire site to provide protection from animals or humans. Additional

  6. Environmental Impact Assessment Sandia Laboratories, New Mexico.

    Science.gov (United States)

    1977-05-01

    awn (Aristida divaricata) 45. Arizona three-awn (Aristida arizonica ) 46. Purple three-awn (Aristida purpurea) 47. Wright’s three-awn (Aristida wrightii...californica) Willow Family *102. Fremont cottonwood (Populus fremontii) Beech Family *103. Gambel oak ( Quercus gambelii) *104. Gray oak ( Quercus grisea...105. Shrub live oak ( Quercus turbinella) Elm Family *106. Siberian elm or Chinese elm (Ulmus pumila) 107. Netlead hackberry (Celtis reticulata) Nist

  7. Water Resources and Related Land Management, Buffalo Metropolitan Area, New York

    Science.gov (United States)

    1991-04-01

    nettle , Queen Ann’s lace, aster (New England, bushy), beggarstick, cocklebur, chickory, tickseed-sunflower, timothy, teasel, and grasses (quake, orchard...in leaf litter and falling insects off such overhanging trees, that contribute to the fish food chain in the creek. Channelization would disrupt and...alder and eastern cottonwood. Goldenrod, stinging nettle and various grasses are abundant to common. Aquatic vegetation is limited, although spikerush

  8. Study on the Effects of Diverting Water into Upper Burnt Pocket, Navigation Pool Number 18, Illinois and A Field Test of the Regression Simulation Model Previously Developed on Navigation Pool Number 8.

    Science.gov (United States)

    1981-03-01

    latifolia L. Commuon Cattail ULMACEAE Celtis occidentalis L. Hackberry Ulmus rubra Muhl. Slippery Elm Ulmus americana L. American Elm URTICACEAE...Populus deltoides Marsh. Cottonwood Celtis occidentalis L. Hackberry Ulmus rubra Muhl. Slippery Elm Ulmus americana L. American Elm *Dominant or most...Cryptochironomus sn. Tnta - Tanytarsus sp. Phys - Physa sp. Crcl n Crytoclido elm sp. Epio - Epoicocladius sp. Trun - Truncilla sp, Elnf - Einfeldia sp. Eusi

  9. Selection of black poplars for water use efficiency

    OpenAIRE

    Orlović Saša S.; Pajević Slobodanka P.; Krstić Borivoj Đ.

    2002-01-01

    Photosynthesis, transpiration, water use efficiency (WUE) and biomass production have been investigated in nine black poplar clones (section Aigeiros) in three field experiments. Eastern cottonwood clones (Populus deltoides) had the highest net photosynthesis and water use efficiency. European black poplar clones had the highest transpiration intensity. Correlation analysis showed that net photosynthesis was in a high positive correlation with biomass. Medium negative correlations existed bet...

  10. Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river

    Science.gov (United States)

    Cooper, D.J.; Andersen, D.C.

    2012-01-01

    Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment

  11. Reciprocal interactions between fluvial processes and riparian plants at multiple scales: ecogeomorphic feedbacks drive coevolution of floodplain morphology and vegetation communities

    Science.gov (United States)

    Stella, J. C.; Kui, L.; Diehl, R. M.; Bywater-Reyes, S.; Wilcox, A. C.; Shafroth, P. B.; Lightbody, A.

    2017-12-01

    Fluvial forces interact with woody riparian plants in complex ways to influence the coevolution of river morphology and floodplain plant communities. Here, we report on an integrated suite of multi-disciplinary studies that contrast the responses of plants with different morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii) in terms of (1) differences in vulnerability to scour and burial during floods; (2) interactions and feedbacks between plants and river morphodynamics; and (3) long-term coevolution of river floodplains and riparian communities following flow regulation from dams. The focus of these studies is sand-bed rivers in arid-land regions where invasion by tamarisk has strongly influenced riverine plant communities and geomorphic processes. We complemented a suite of field-scale flume experiments using live seedlings to quantify the initial stages of plant-river interactions with an analysis of long-term vegetation and geomorphic changes along the dammed Bill Williams River (AZ, USA) using time-series air photographs. Vegetation-fluvial interactions varied with plant characteristics, river hydraulics and sediment conditions, across the wide range of scales we investigated. In the flume studies, tamarisk's denser crowns and stiffer stems induced greater sedimentation compared to cottonwood. This resulted in tamarisk's greater mortality from burial as small seedlings under sediment equilibrium conditions but higher relative survival in larger floods under sediment deficit scenarios, in which more cottonwoods were lost to root scour. Sediment deficit conditions, as occurs downstream of dams, induced both greater scour and greater plant loss. With larger size and at higher densities, plants' vulnerability diminished due to greater root anchoring and canopy effects on hydraulics. At the corridor scale, we observed a pattern of plant encroachment during five decades of flow regulation, in which channel narrowing and simplification was more

  12. Cottonwood Management Plan / Draft Programmatic Environmental Assessment. Proposed Implementation of a Cottonwood Management Plan Along Six Priority Segments of the Missouri River

    Science.gov (United States)

    2010-02-01

    floodplain ridges, levees, and road embankments), concave-up areas ( depressions , such as river channels, floodplain swales, and drainage ditches), and areas... depressions in dry, open, sandy areas with less than 30 percent vegetative cover and plant heights less than 1 foot (from USFWS 1990b; USFWS, 1990c as...U.S. Department of the Interior, NPS and the U.S. Army Corps of Engineers. National Park Service (NPS). 2007. First Annual Centennial Strategy for

  13. Biological Survey, Buffalo River and Outer Harbor of Buffalo, New York. Volume I.

    Science.gov (United States)

    1982-06-01

    gizzard shad, pumpkin - seeds, rock bass, carp and golden shiner larvae were observed (Tables C1-C3, Volume 2). Figure 5 displays total seasonal...carp, pumpkin - seeds, yellow perch and gizzard shad scattered throughout the samples. From July through September, carp, pumpkinseeds and gizzard...cottonwoods to 9 m in height. In wet pockets, particularly east of the service road which parallels Fuhrmann Boulevard, Phragmites forms an almost pure

  14. Recreational Appendix Report, Elm Fork Flood Control Project, Dallas and Denton Counties, Texas.

    Science.gov (United States)

    1973-05-01

    Juniperus virginiana 2. Willow Salix nigra 3. Cottonwood Populus deltoides 4. Black Walnut Juglans migra 5. Pecan Carya illinoensis 6. Bur Oak...Maclura pomifera 12. Red Mulberry Morus rubra 13. Sycamore Platanus occidentailis 14. Red Haw Crataegus, sps. 15. Wild Plum Prunus mexicana 16. Mesquite...also provides a habitat for a number of mammals including: 1. Opossum Didelphis virginiana 2. Shrews Blarina brevicuada and Cryptotis parva 3. Raccoon

  15. Vegetation Evaluation and Recommendations: Dredge Material Placement Areas and Adjacent Lands, Kaskaskia River Navigation Project, New Athens to Fayetteville.

    Science.gov (United States)

    1981-06-03

    cottonwood), Salix interior (sandbar willow), Salix nigra (black willow), and Ulmus rubra * ( slippery elm ) . Somewhat drier sites with a predominance of fine...Dutch Elm Disease. *Ulmus rubra Muhl. SLIPPERY ELM . Common tree in floodplain woods; also occasional in DMP. *Valerianella radiata (L.) Dufr. CORN... elm ), Carya tomentosa (mocker- nut hickory), and Quercus bicolor (swamp white oak). Shrubs and woody vines play a major role in the ecology of these

  16. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Coyle; J. Blake; K. Britton; M.; R.G. Campbell; J. Cox; B. Cregg; D. Daniels; M. Jacobson; K. Johnsen; T. McDonald; K. McLeod; E.; D. Robison; R. Rummer; F. Sanchez; J.; B. Stokes; C. Trettin; J. Tuskan; L. Wright; S. Wullschleger

    2003-12-31

    Coleman, M.D., et. al. 2003. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses. Report. USDA Forest Service, Savannah River, Aiken, SC. 26 pp. Abstract: Many researchers have studied the productivity potential of intensively managed forest plantations. However, we need to learn more about the effects of fundamental growth processes on forest productivity; especially the influence of aboveground and belowground resource acquisition and allocation. This report presents installation, establishment, and first-year results of four tree species (two cottonwood clones, sycamore, sweetgum, and loblolly pine) grown with fertilizer and irrigation treatments. At this early stage of development, irrigation and fertilization were additive only in cottonwood clone ST66 and sweetgum. Leaf area development was directly related to stem growth, but root production was not always consistent with shoot responses, suggesting that allocation of resources varies among treatments. We will evaluate the consequences of these early responses on resource availability in subsequent growing seasons. This information will be used to: (1) optimize fiber and bioenergy production; (2) understand carbon sequestration; and (3) develop innovative applications such as phytoremediation; municipal, industrial, and agricultural wastes management; and protection of soil, air, and water resources.

  17. Practical breeding of cottonwood in the north-central region

    Science.gov (United States)

    Carl A. Mohn

    1973-01-01

    More than 20 years ago Scott Pauley (1949) designated the genus Populus as the "guinea pig of forest-tree breeding. This designation is still appropriate as evidenced by the steady, almost overwhelming, stream of publications related to the genetics and breeding of poplars. A good indication of the scope and depth of genetic work with poplars...

  18. Production, transport, and metabolism of ethanol in eastern cottonwood

    International Nuclear Information System (INIS)

    MacDonald, R.C.

    1991-01-01

    In plant tissues, the production of acetaldehyde and ethanol are usually thought to occur as a mechanism to allow tolerance of hypoxic conditions. Acetaldehyde and ethanol were found to be common in vascular cambium and the transpiration stream of trees. Ethanol concentrations in the vascular cambium of Populus deltoides were not changed by placing logs from nonflooded trees in a pure oxygen environment for as long as 96 h, but increased by almost 3 orders of magnitude when exposed to low external pO 2 s. Ethanol is present in the xylem sap of flooded and nonflooded trees. Because of the constitutive presence of alcohol dehydrogenase in the mature leaves of woody plants, it was hypothesized that the leaves and shoots of trees had the ability to metabolize ethanol supplied by the transpiration stream. 1-[ 14 C]ethanol was supplied to excised leaves and shoots of Populus deltoides Bartr. in short- and long-term experiments. Greater than 99% of the radiolabel was incorporated into plant tissue in short-term experiments, with more than 95% of the label remaining in plant tissue after 24 h. Very little label reached the leaf mesophyll cells of excised shoots, as revealed by autoradiography. Radiolabel appeared primarily in the water- and chloroform-soluble fractions in short-term experiments, while in long-term experiments, label was also incorporated into protein. When labelled ethanol was supplied to excised petioles in a 5 min pulse, 41% of the label was incorporated into organic acids. Some label was also incorporated into amino acids, protein, and the chloroform-soluble fraction, with very little appearing in neutral sugars, starch, or the insoluble pellet. Labelled organic acids were separated by HPLC, and were comprised of acetate, isocitrate, α-ketoglutarate, and succinate. There was no apparent incorporation of label into phosphorylated compounds

  19. GENETIC ENGINEERING TO ENHANCE MERCURY PHYTOREMEDIATION

    OpenAIRE

    Ruiz, Oscar N.; Daniell, Henry

    2009-01-01

    Most phytoremediation studies utilize merA or merB genes to modify plants via the nuclear or chloroplast genome, expressing organomercurial lyase and/or mercuric ion reductase in the cytoplasm, endoplasmic reticulum or within plastids. Several plant species including Arabidopsis, tobacco, poplar, rice, Eastern cottonwood, peanut, salt marsh grass and Chlorella have been transformed with these genes. Transgenic plants grew exceedingly well in soil contaminated with organic (~400 μM PMA) or ino...

  20. Environmental Impact Analysis Process. Environmental Assessment Proposed SMC Military Family Housing, San Pedro, California

    Science.gov (United States)

    1998-12-01

    catches birds on the wing; eats some insects ; nests on the ground on ledges. Rallus longirostris levipes light-footed clapper rail E E Occupies and...nests in saltmarsh habitats; feeds in shallow water and on mudflats; diet comprised of small fish, crabs, crayfish, insects and some plants; nests in...occidentalis western yellow- billed cuckoo none E Likes to nest in riparian thickets of willows and cottonwoods with understory of nettles , wild grapes or

  1. Impact of native ungulates and beaver on riparian communities in the intermountain west

    OpenAIRE

    Kay, Charles E.

    1994-01-01

    This paper reviews the impact native ungulates, primarily elk and moose, and beaver can have on riparian communities in the Western United States. In Yellowstone National Park and in other areas where ungulates are not managed, repeated browsing has reduced tall willow, aspen, and cottonwood communities by approximately 95 percent since the late 1800's. Native ungulates can also severely reduce or eliminate palatable grasses and forbs from herbaceous riparian communities. By eliminating woody...

  2. Cultural Resources Survey and Testing Along Ditch 19 and Extensive Testing of 23DU289, Dunklin and Stoddard Counties, Missouri.

    Science.gov (United States)

    1988-06-30

    Carya illinoensis ) 1 1 Persimmon (Diospyros virginiana) T 2 2 Pl.um (Prunus sp.) T Red Haw (Crataegus sp.) T 1 11 Red Mulberry (Morus rubra) T...2 Cherry (Prunus sp.) T Cottonwood (Populus sp.) 1 3 Dogwood (Cornus sp.) 1 Hackberry (Celtus occidentalis) 12 9 Hickory, ( Carya sp.) 5 4 Shellhark... Carya laciniosa) T Hornbeam (Ostrya virginiana) 2 Kentucky Coffee Tree( Gymnoeladus dioica)T Locust, T Black (Robinia pseudo-acacia) T Honey

  3. Tradition and Culture Change in the Oklahoma Delaware Big House Community: 1867-1924.

    Science.gov (United States)

    1981-01-01

    sore throat Slippery Elm Ulmus fulva xkwikpi Drink from soaked strips of bark used to relieve chills Wild Black Cherry Prunus scrotina mwmfeli Boiled...Berries used to make dye for baskets Pokeberry Phytolacca americana cAk%.ngwtm Tonic given to chickens made from roots Slippery Elm Ulmus fulva xkwilpi...along drainages, forests of elm , ash, and cottonwood trees. The grasslands extended up the rockier col- luvial slopes where they gave way in places to

  4. Buffalo Metropolitan Area, New York Water Resources Management. Interim Report on Feasibility of Flood Management in Cazenovia Creek Watershed.

    Science.gov (United States)

    1977-03-01

    Ulmus rubra slippery elm Ulmus thomasii rock elm Pinus strobus white pine Juglans cinerea. butternut Juglans nigra black walnut Carya ovata shagbark...West Seneca X : X : X Town of Elm : X X X Town of Aurora : X : Town of Boston X : Town of Colden : X : 5.i, Table 1 (cont’d) Flood Insurance Status for...grandidentata bigtooth aspen Populus deltoides eastern cottonwood Rhus typhina staghorn. sumc Betula alleghaniesis yellow birch Ulmus americana. American elm

  5. Long-term Observations of Ecohydrology, Climate, Energy Fluxes, and Eddy Covariance Error in a Large, Semiarid Floodplain

    Science.gov (United States)

    Cleverly, J. R.; Thibault, J. R.; Dahm, C. N.; Allred Coonrod, J. E.; Slusher, M.; Teet, S.; Schuetz, J.

    2008-12-01

    Some of the highest rates of water and energy fluxes between terrestrial ecosystems and the atmosphere occur over large floodplains in arid and semiarid areas. Often located in high-pressure zones near 35 degrees latitude, abundant radiation and easily accessible groundwater contribute few limitations on growth and production in desert phreatophytes. Desert regions typically undergo cycles of drought and floods, and phreatophytic communities wax or wane in cover, density, and structure with cumulative species responses to timing and severity in these regional weather cycles. The Rio-ET Laboratory at the University of New Mexico has been collecting long-term data from a flux network of riparian monitoring stations, mounted on towers along the Middle Rio Grande. Ongoing measurements of energy, water and carbon dioxide fluxes, groundwater dynamics, meteorology, leaf area index, and community dynamics began at some locations in 1999. Recent reanalysis of the flux dataset was performed in which error correction procedures were compared to each and other and in relation to an irrigated crop under advection. Most riparian sites exhibited stable atmospheric stratification and an energy balance consistent with evaporative cooling. Evaporative cooling was more prominent in the late afternoon and evening, during wet conditions. Reduced latent heat fluxes were observed in a cottonwood forest following restoration and fire, but only in years when the forest floor was not re-vegetated by opportunistic annuals or target removal species. Water use by riparian phreatophytes was 1) non-responsive to drought during the monsoon season (non-native Russian olive and monospecific saltcedar communities), 2) responded negatively to monsoon-season drought (xeroriparian saltcedar and saltgrass mosaic community), or 3) responded positively to monsoon-season drought (cottonwood forests). Water salvage related to ecological restoration is dependent upon restoration strategy, emphasizing the

  6. Climate change and wetland processes in the Southwest United States: Response of riparian communities to rising CO{sub 2} levels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anne M. Hoylman; Andrew Peterson; John V.H. Constable; John B. Picone; J. Timothy Ball

    1998-07-01

    The current impact of Salt Cedar on the riparian areas of the southwestern US are recognized as being negative. If atmospheric levels of CO{sub 2} continue to rise--as seems likely--the results of this study indicate that the Salt Cedar--Cottonwood competitive interaction maybe moved further in the direction of favoring Salt Cedar. Further study confirming these results and elucidating the basis for competitive resource use by Salt Cedar and other riparian species would be prudent.

  7. In Situ Remediation of a TCE-Contaminated Aquifer Using a Short Rotation Woody Crop Groundwater Treatment System

    Science.gov (United States)

    2006-05-01

    eastern cottonwoods, six oaks, two live oak, three cedars, two willows, one hackberry, one pecan , one pine, one American elm, one unidentified...hackberry, 1 pecan , 1 pine, 1 American elm, 1 unidentified elm, and 1 unidentified species. Cores were collected from a height of approximately 1.5 m above...of trees to act as pumps was noted in the late 19th century when eucalyptus trees were planted in Italy and Algeria to dry up marshes (USEPA, 2003

  8. Reactive Capping Mat Development and Evaluation for Sequestering Contaminants in Sediments

    Science.gov (United States)

    2011-08-01

    82  Figure 5.3-30.  Biogas bubble flow/dissipation at Day 0 (left) and Day 12 (right) of the gas permeability test...were carried out at different loading rates of the select contaminants with both bare amendment and amendment preloaded with humic acid to obtain ...0.28 lb/ft2 activated carbon, 0.23 lb/ft2 apatite, 0.28 lb/ft2 organoclay) obtained from the small-scale test mat recovered from Cottonwood Bay

  9. General Reevaluation Report and Environmental Impact Statement for the Blanchard River, Ottawa, Ohio Flood Protection Project

    Science.gov (United States)

    1987-04-01

    Black locust Black willow Honey locust Mulberry Slippery elm Box elder Cottonwood Multiflora rose Green ash Hackberry The U.S. Fish and Wildlife Service...flows in the Blanchard River at Ottawa. The Perry Street bridge was removed in 1951 and replaced by a new bridge at Elm Street that is less restrictive...flood plain. The present tree growth commonly consists of a second growth of spe- cies of elm , maple, and oak. All of the Blanchard River basin lies

  10. Minnesota River at Chaska, Minnesota. Technical Appendixes. Limited Reevaluation Report and Final Supplement to the Final Environmental Impact Statement for Flood Control and Related Purposes.

    Science.gov (United States)

    1982-08-01

    June 12, 1980. 0 rganochlorine and organophosphorus insecticides , PC B’s, and PC N’s were not detected in the sample. 2,4-D was the only chlorinated...within the floodplain of the Minnesota River and is vegetated with silver maple, cottonwood, willow and elm with scattered nettle , jewelweed and grasses...generally leaf litter and plant debris with heavy growth of nettle . The location of the Chaska Lake Unit is ideal for wildlife interpretation. Wildlife

  11. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?

    Science.gov (United States)

    Wilson, Dennis

    1995-08-01

    Fungi are frequently found within insect galls. However, the origin of these fungi, whether they are acting as pathogens, saprophytes invading already dead galls, or fungal inquilines which invade the gall but kill the gall maker by indirect means, is rarely investigated. A pathogenic role for these fungi is usually inferred but never tested. I chose the following leaf-galling-insect/host-plant pairs (1) a cynipid which forms two-chambered galls on the veins of Oregon white oak, (2) a cynipid which forms single-chambered galls on California coast live oak, and (3) an aphid which forms galls on narrowleaf cottonwood leaves. All pairs were reported to have fungi associated with dead insects inside the gall. These fungi were cultured and identified. For the two cynipids, all fungi found inside the galls were also present in the leaves as fungal endophytes. The cottonwood leaves examined did not harbor fungal endophytes. For the cynipid on Oregon white oak, the fungal endophyte grows from the leaf into the gall and infects all gall tissue but does not directly kill the gall maker. The insect dies as a result of the gall tissue dying from fungal infection. Therefore, the fungus acts as an inquiline. Approximately 12.5% of these galls die as a result of invasion by the fungal endophyte.

  12. When do plants modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment supply rates

    Science.gov (United States)

    Manners, Rebecca B.; Wilcox, Andrew C.; Kui, Li; Lightbody, Anne F.; Stella, John C.; Sklar, Leonard S.

    2015-02-01

    Flow and sediment regimes shape alluvial river channels; yet the influence of these abiotic drivers can be strongly mediated by biotic factors such as the size and density of riparian vegetation. We present results from an experiment designed to identify when plants control fluvial processes and to investigate the sensitivity of fluvial processes to changes in plant characteristics versus changes in flow rate or sediment supply. Live seedlings of two species with distinct morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii), were placed in different configurations in a mobile sand-bed flume. We measured the hydraulic and sediment flux responses of the channel at different flow rates and sediment supply conditions representing equilibrium (sediment supply = transport rate) and deficit (sediment supply plant species and configuration. Species-specific traits controlled the hydraulic response: compared to cottonwood, which has a more tree-like morphology, the shrubby morphology of tamarisk resulted in less pronation and greater reductions in near-bed velocities, Reynolds stress, and sediment flux rates. Under sediment-deficit conditions, on the other hand, abiotic factors dampened the effect of variations in plant characteristics on the hydraulic response. We identified scenarios for which the highest stem-density patch, independent of abiotic factors, dominated the fluvial response. These results provide insight into how and when plants influence fluvial processes in natural systems.

  13. Specific Gravity Variation in a Lower Mississippi Valley Cottonwood Population

    Science.gov (United States)

    R. E. Farmer; J. R. Wilcox

    1966-01-01

    Specific gravity varied from 0,32 to 0.46, averaging 0.38. Most of the variation was associated with individual trees; samples within locations accounted for a smaller, but statistically significant, portion of the variation. Variation between locatians was not significant. It was concluded that individual high-density trees' should be sought throughout the...

  14. Overcoming Constraints to High-Yield Plantation-Grown Hardwoods in the Southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-26

    This project was comprised of the following four inter-related tasks: Task 1 Plantation Maintenance and Measurement--Data on dry weight productivity per tree and/or growth as measured by individual tree height and diameter at a specified height on the stem was determined at the end of each of five years corresponding to ages 2 through 6. Measurements of height and diameter were recorded once a month during the growing season on a subsample of four trees per clone per species per treatment combination. Dry biomass in the leaf litter traps during the growing season once the canopy has closed was periodically collected and measured. Foliar nutrient levels were determined once a month by removing LPI 8 on each subsampled measurement tree and completing nutrient analyses. Weather data, including precipitation, minimum and maximum temperature and photosynthetically active radiation on an hourly basis were recorded daily. Information on irrigation rates and fertilization levels were collected. Task 2 Intra- And Interspecific Variation In Osmotic Potential--The specific objectives of this task were: (1) to determine whether limitation in water availability constrains productivity and influences leaf osmotic potential of cottonwood, sycamore, and/or sweetgum growing under short-rotation field conditions, (2) to document the occurrence of osmotic adjustment under varying levels of water availability levels, and (3) to determine the effect of nitrogen fertilization on osmotic potential and response to irrigation. Task 3 Leaf Gas Exchange And Water-Use Efficiency--The specific objectives of this task were: (1) to quantify the contribution of photosynthesis, respiration, and water-use efficiency to the productivity of individual cottonwood, sycamore, and sweetgum trees grown under various levels of water and/or nutrient availability, and (2) to quantify intra- and interspecific variability for photosynthesis, respiration, and water-use efficiency for cottonwood, sycamore, and

  15. Long-term Water Table Monitoring of Rio Grande Riparian Ecosystems for Restoration Potential Amid Hydroclimatic Challenges

    Science.gov (United States)

    Thibault, James R.; Cleverly, James R.; Dahm, Clifford N.

    2017-12-01

    Hydrological processes drive the ecological functioning and sustainability of cottonwood-dominated riparian ecosystems in the arid southwestern USA. Snowmelt runoff elevates groundwater levels and inundates floodplains, which promotes cottonwood germination. Once established, these phreatophytes rely on accessible water tables (WTs). In New Mexico's Middle Rio Grande corridor diminished flooding and deepening WTs threaten native riparian communities. We monitored surface flows and riparian WTs for up to 14 years, which revealed that WTs and surface flows, including peak snowmelt discharge, respond to basin climate conditions and resource management. WT hydrographs influence the composition of riparian communities and can be used to assess if potential restoration sites meet native vegetation tolerances for WT depths, rates of recession, and variability throughout their life stages. WTs were highly variable in some sites, which can preclude native vegetation less adapted to deep drawdowns during extended droughts. Rates of WT recession varied between sites and should be assessed in regard to recruitment potential. Locations with relatively shallow WTs and limited variability are likely to be more viable for successful restoration. Suitable sites have diminished greatly as the once meandering Rio Grande has been constrained and depleted. Increasing demands on water and the presence of invasive vegetation better adapted to the altered hydrologic regime further impact native riparian communities. Long-term monitoring over a range of sites and hydroclimatic extremes reveals attributes that can be evaluated for restoration potential.

  16. Biodiversity and conservation of the Cienega de Saracachi area, Sonora, Mexico

    Science.gov (United States)

    Thomas R. Van Devender; Martin A. Villa-Andrade; Martin Reyes-Juarez; Gonzalo Luna-Salazar; Martin Padres-Contreras; Fernando Padres; Paul S. Martin

    2013-01-01

    The Ciénega de Saracachi area, including Arroyo Santo Domingo and Cañón Quemado, is in the Municipio de Cucurpe in north-central Sonora (30°21’33”N 110°35’29”W), ca. 105 km south of the Arizona border. The vegetation is cottonwood-willow riparian forest in the Ciénega and rocky stream canyons with desert grassland on the slopes above. These upper tributaries of the Río...

  17. Mitochondrial DNA variation and genetic relationships of Populus species.

    Science.gov (United States)

    Barrett, J W; Rajora, O P; Yeh, F C; Dancik, B P; Strobeck, C

    1993-02-01

    We examined variation in and around the region coding for the cytochrome c oxidase I (coxI) and ATPase 6 (atp6) genes in the mitochondrial genomes of four Populus species (P. nigra, P. deltoides, P. maximowiczii, and P. tremuloides) and the natural hybrid P. x canadensis (P. deltoides x P. nigra). Total cellular DNAs of these poplars were digested with 16 restriction endonucleases and probed with maize mtDNA-specific probes (CoxI and Atp6). The only variant observed for Atp6 was interspecific, with P. maximowiczii separated from the other species as revealed by EcoRI digestions. No intraspecific mtDNA variation was observed among individuals of P. nigra, P. maximowiczii, P. x canadensis, or P. tremuloides for the CoxI probe. However, two varieties of P. deltoides were distinct because of a single site change in the KpnI digestions, demonstrating that P. deltoides var. deltoides (eastern cottonwood) and var. occidentalis (plains cottonwood) have distinct mitochondrial genomes in the region of the coxI gene. Populus x canadensis shared the same restriction fragment patterns as its suspected maternal parent P. deltoides. Nucleotide substitutions per base in and around the coxI and atp6 genes among the Populus species and the hybrid ranged from 0.0017 to 0.0077. The interspecific estimates of nucleotide substitution per base suggested that P. tremuloides was furthest removed from P. deltoides and P. x canadensis and least diverged from P. nigra. Populus maximowiczii was placed between these two clusters.

  18. Uprooting force balance for pioneer woody plants: A quantification of the relative contribution of above- and below-ground plant architecture to uprooting susceptibility

    Science.gov (United States)

    Bywater-Reyes, S.; Wilcox, A. C.; Lightbody, A.; Skorko, K.; Stella, J. C.

    2012-12-01

    Cottonwood (Populus), willow (Salix), and tamarisk (Tamarix) populate riparian areas in many dryland regions, and their recruitment depends heavily on hydrogeomorphic conditions. The survival of pioneer woody seedlings depends in part on the establishment of root systems capable of anchoring plants in subsequent floods, and this root system development in turn influences the cohesion that plants provide to bars. The factors influencing the anchoring ability and resistance to scour of woody seedlings include plant frontal area and flexibility, root structure, and water table elevation. This study aims to quantify the factors comprising the force balance to uproot woody seedlings and saplings in two field sites characterized by different hydrologic conditions. The Bill Williams River (AZ) is an impounded river with elevated water table elevations produced by dam-released base flows. The Bitterroot River (MT) is an unimpounded river with a snowmelt hydrograph and seasonal fluctuations in river and water table elevation. We simulate uprooting from flooding events by saturating substrates and applying force near the base of the plant in a lateral, downstream direction until uprooting occurs, for a range of plant sizes but with a focus on small (plants, with cottonwood and tamarisk seedlings showing greater variability than willow. In contrast, root length and stem diameter are only weakly correlated with pull-out force. By combining pull test results with measurements of geomorphic and groundwater conditions, this study provides insights into the relative contribution of a plant's above-ground and below-ground architecture to uprooting potential and into the feedbacks between vegetation and morphodynamics on river bars.

  19. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico

    Science.gov (United States)

    Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

    2009-01-01

    Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

  20. 76 FR 49527 - Supplemental Environmental Impact Statement; Cottonwood and Watonwan Counties, Minnesota

    Science.gov (United States)

    2011-08-10

    ... facility: (1) Just west of the City of St. James to the eastern edge of the City of Butterfield, (2) western edge of the City of Butterfield to just east of the city of Mountain Lake, and (3) just west of... comment period. Public notice will be give for the time and place of the hearing. A final Supplemental EIS...

  1. Quantifying geomorphic controls on riparian forest dynamics using a linked physical-biological model: implications for river corridor conservation

    Science.gov (United States)

    Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.

    2009-12-01

    In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on

  2. Identifying western yellow-billed cuckoo breeding habitat with a dual modelling approach

    Science.gov (United States)

    Johnson, Matthew J.; Hatten, James R.; Holmes, Jennifer A.; Shafroth, Patrick B.

    2017-01-01

    The western population of the yellow-billed cuckoo (Coccyzus americanus) was recently listed as threatened under the federal Endangered Species Act. Yellow-billed cuckoo conservation efforts require the identification of features and area requirements associated with high quality, riparian forest habitat at spatial scales that range from nest microhabitat to landscape, as well as lower-suitability areas that can be enhanced or restored. Spatially explicit models inform conservation efforts by increasing ecological understanding of a target species, especially at landscape scales. Previous yellow-billed cuckoo modelling efforts derived plant-community maps from aerial photography, an expensive and oftentimes inconsistent approach. Satellite models can remotely map vegetation features (e.g., vegetation density, heterogeneity in vegetation density or structure) across large areas with near perfect repeatability, but they usually cannot identify plant communities. We used aerial photos and satellite imagery, and a hierarchical spatial scale approach, to identify yellow-billed cuckoo breeding habitat along the Lower Colorado River and its tributaries. Aerial-photo and satellite models identified several key features associated with yellow-billed cuckoo breeding locations: (1) a 4.5 ha core area of dense cottonwood-willow vegetation, (2) a large native, heterogeneously dense forest (72 ha) around the core area, and (3) moderately rough topography. The odds of yellow-billed cuckoo occurrence decreased rapidly as the amount of tamarisk cover increased or when cottonwood-willow vegetation was limited. We achieved model accuracies of 75–80% in the project area the following year after updating the imagery and location data. The two model types had very similar probability maps, largely predicting the same areas as high quality habitat. While each model provided unique information, a dual-modelling approach provided a more complete picture of yellow-billed cuckoo habitat

  3. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    International Nuclear Information System (INIS)

    Reheis, M.C.

    1991-01-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs

  4. Potential effects of climate change on streamflow for seven watersheds in eastern and central Montana

    Directory of Open Access Journals (Sweden)

    Katherine J. Chase

    2016-09-01

    New hydrological insights for the region: Projected changes in mean annual and mean monthly streamflow vary by the RegCM3 model selected, by watershed, and by future period. Mean annual streamflows for all future periods are projected to increase (11–21% for two of the four central Montana watersheds: Middle Musselshell River and Cottonwood Creek. Mean annual streamflows for all future periods are projected to decrease (changes of −24 to −75% for Redwater River watershed in eastern Montana. Mean annual streamflows are projected to increase slightly (2–15% for the 2030 period and decrease (changes of −16 to −44% for the 2080 period for the four remaining watersheds.

  5. Optimal control applied to native-invasive species competition via a PDE model

    Directory of Open Access Journals (Sweden)

    Wandi Ding

    2012-12-01

    Full Text Available We consider an optimal control problem of a system of parabolic partial differential equations modelling the competition between an invasive and a native species. The motivating example is cottonwood-salt cedar competition, where the effect of disturbance in the system (such as flooding is taken to be a control variable. Flooding being detrimental at low and high levels, and advantageous at medium levels led us to consider the quadratic growth function of the control. The objective is to maximize the native species and minimize the invasive species while minimizing the cost of implementing the control. An existence result for an optimal control is given. Numerical examples are presented to illustrate the results.

  6. Characterization of Suspended-Sediment Loading to and from John Redmond Reservoir, East-Central Kansas, 2007-2008

    Science.gov (United States)

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.

    2008-01-01

    Storage capacity in John Redmond Reservoir is being lost to sedimentation more rapidly than in other federal impoundments in Kansas. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, initiated a study to characterize suspended-sediment loading to and from John Redmond Reservoir from February 21, 2007, through February 21, 2008. Turbidity sensors were installed at two U.S. Geological Survey stream gages upstream (Neosho River near Americus and the Cottonwood River near Plymouth) and one stream gage downstream (Neosho River at Burlington) from the reservoir to compute continuous, real-time (15-minute) measurements of suspended-sediment concentration and loading. About 1,120,000 tons of suspended-sediment were transported to, and 100,700 tons were transported from John Redmond Reservoir during the study period. Dependent on the bulk density of sediment stored in the reservoir, 5.0 to 1.4 percent of the storage in the John Redmond conservation pool was lost during the study period, with an average deposition of 3.4 to 1.0 inches. Nearly all (98-99 percent) of the incoming sediment load was transported during 9 storms which occurred 25 to 27 percent of the time. The largest storm during the study period (peak-flow recurrence interval of about 4.6-4.9 years) transported about 37 percent of the sediment load to the reservoir. Suspended-sediment yield from the unregulated drainage area upstream from the Neosho River near Americus was 530 tons per square mile, compared to 400 tons per square mile upstream from the Cottonwood River near Plymouth. Comparison of historical (1964-78) to current (2007) sediment loading estimates indicate statistically insignificant (99 percent) decrease in sediment loading at the Neosho River at Burlington. Ninety-percent confidence intervals of streamflow-derived estimates of total sediment load were 7 to 21 times larger than turbidity-derived estimates. Results from this study can be used by natural resource

  7. Coupling legacy geomorphic surface facies to riparian vegetation: Assessing red cedar invasion along the Missouri River downstream of Gavins Point dam, South Dakota

    Science.gov (United States)

    Greene, Samantha L.; Knox, James C.

    2014-01-01

    Floods increase fluvial complexity by eroding established surfaces and creating new alluvial surfaces. As dams regulate channel flow, fluvial complexity often decreases and the hydro-eco-geomorphology of the riparian habitat changes. Along the Missouri River, flow regulation resulted in channel incision of 1-3 m within the study area and disconnected the pre-dam floodplain from the channel. Evidence of fluvial complexity along the pre-dam Missouri River floodplain can be observed through the diverse depositional environments represented by areas of varying soil texture. This study evaluates the role of flow regulation and depositional environment along the Missouri River in the riparian invasion of red cedar downstream of Gavins Point dam, the final dam on the Missouri River. We determine whether invasion began before or after flow regulation, determine patterns of invasion using Bayesian t-tests, and construct a Bayesian multivariate linear model of invaded surfaces. We surveyed 59 plots from 14 riparian cottonwood stands for tree age, plot composition, plot stem density, and soil texture. Red cedars existed along the floodplain prior to regulation, but at a much lower density than today. We found 2 out of 565 red cedars established prior to regulation. Our interpretation of depositional environments shows that the coarser, sandy soils reflect higher energy depositional pre-dam surfaces that were geomorphically active islands and point bars prior to flow regulation and channel incision. The finer, clayey soils represent lower energy depositional pre-dam surfaces, such as swales or oxbow depressions. When determining patterns of invasion for use in a predictive statistical model, we found that red cedar primarily establishes on the higher energy depositional pre-dam surfaces. In addition, as cottonwood age and density decrease, red cedar density tends to increase. Our findings indicate that flow regulation caused hydrogeomorphic changes within the study area that

  8. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    Science.gov (United States)

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily

  9. 77 FR 50914 - Anchorage; Change to Cottonwood Island Anchorage, Columbia River, Oregon and Washington

    Science.gov (United States)

    2012-08-23

    ... under Executive Order 13211. 13. Technical Standards The National Technology Transfer and Advancement... of Proposed Rulemaking A. Regulatory History and Information On June 13, 2011, the Coast Guard...'' comprises small businesses, not-for-profit organizations that are independently owned and operated and are...

  10. Biological and Physical Inventory of the Streams within the Nez Perce Reservation; Juvenile Steelhead Survey and Factors that Affect Abundance in Selected Streams in the Lower Clearwater River Basin, Idaho, 1983-1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A.; Johnson, David B. (Nez Perce Tribe, Lapwai, ID)

    1986-08-01

    A biological and physical inventory of selected tributaries in the lower Clearwater River basin was conducted to collect information for the development of alternatives and recommendations for the enhancement of the anadromous fish resources in streams on the Nez Perce Reservation. Five streams within the Reservation were selected for study: Bedrock and Cottonwood Creeks were investigated over a two year period (1983 to 1984) and Big Canyon, Jacks and Mission Creeks were studied for one year (1983). Biological information was collected and analyzed on the density, biomass, production and outmigration of juvenile summer steelhead trout. Physical habitat information was collected on available instream cover, stream discharge, stream velocity, water temperature, bottom substrate, embeddedness and stream width and depth. The report focuses on the relationships between physical stream habitat and juvenile steelhead trout abundance.

  11. Genetic engineering to enhance mercury phytoremediation.

    Science.gov (United States)

    Ruiz, Oscar N; Daniell, Henry

    2009-04-01

    Most phytoremediation studies utilize merA or merB genes to modify plants via the nuclear or chloroplast genome, expressing organomercurial lyase and/or mercuric ion reductase in the cytoplasm, endoplasmic reticulum or within plastids. Several plant species including Arabidopsis, tobacco, poplar, rice, Eastern cottonwood, peanut, salt marsh grass and Chlorella have been transformed with these genes. Transgenic plants grew exceedingly well in soil contaminated with organic (approximately 400 microM PMA) or inorganic mercury (approximately 500 microM HgCl(2)), accumulating Hg in roots surpassing the concentration in soil (approximately 2000 microg/g). However, none of these plants were tested in the field to demonstrate real potential of this approach. Availability of metal transporters, translocators, chelators and the ability to express membrane proteins could further enhance mercury phytoremediation capabilities.

  12. Trees Containing Built-In Pulping Catalysts - Final Report - 08/18/1997 - 08/18/2000

    Energy Technology Data Exchange (ETDEWEB)

    Pullman, G.; Dimmel, D.; Peter, G.

    2000-08-18

    Several hardwood and softwood trees were analyzed for the presence of anthraquinone-type molecules. Low levels of anthraquinone (AQ) and anthrone components were detected using gas chromatography-mass spectroscopy and sensitive selected-ion monitoring techniques. Ten out of seventeen hardwood samples examined contained AQ-type components; however, the levels were typically below {approximately}6 ppm. No AQs were observed in the few softwood samples that were examined. The AQs were more concentrated in the heartwood of teak than in the sapwood. The delignification of pine was enhanced by the addition of teak chips ({approximately}0.7% AQ-equivalence content) to the cook, suggesting that endogenous AQs can be released from wood during pulping and can catalyze delignification reactions. Eastern cottonwood contained AQ, methyl AQ, and dimethyl AQ, all useful for wood pulping. This is the first time unsubstituted AQ has been observed in wood extracts. Due to the presence of these pulping catalysts, rapid growth rates in plantation settings, and the ease of genetic transformation, eastern cottonwood is a suitable candidate for genetic engineering studies to enhance AQ content. To achieve effective catalytic pulping activity, poplar and cottonwood, respectively, require {approximately}100 and 1000 times more for pulping catalysts. A strategy to increase AQ concentration in natural wood was developed and is currently being tested. This strategy involves ''turning up'' isochorismate synthase (ICS) through genetic engineering. Isochorismate synthase is the first enzyme in the AQ pathway branching from the shikimic acid pathway. In general, the level of enzyme activity at the first branch point or committed step controls the flux through a biosynthetic pathway. To test if the level of ICS regulates AQ biosynthesis in plant tissues, we proposed to over-express this synthase in plant cells. A partial cDNA encoding a putative ICS was available from the random

  13. Tamarisk control, water salvage, and wildlife habitat restoration along rivers in the western United States

    Science.gov (United States)

    Shafroth, Patrick B.

    2006-01-01

    In the latter part of the 19th century, species of the nonnative shrub tamarisk (also called saltcedar; for example, Tamarix ramosissima, T. chinensis) were introduced to the United States for use as ornamental plants for erosion control. By 1877, some naturalized populations had become established, and by the 1960s, tamarisk was present along most rivers in the semi-arid and arid parts of the West and was quite abundant along downstream ranches of the major southwest rivers such as the Colorado, Rio Grande, Gila, and Pecos. The principal period of tamarisk invasion coincided with changing physical conditions along western rivers associated with the construction and operation of dams. In many cases, these altered physical conditions appear to have been more favorable for tamarisk than native riparian competitors like cottonwoods and willows (Populus and Salix; Glenn and Nagler, 2005).

  14. 78 FR 13376 - Draft Environmental Impact Statement for the Cottonwood Cove and Katherine Landing Development...

    Science.gov (United States)

    2013-02-27

    ..., enhance the visitor experience, and mitigate flood hazards. The lake management plan established water... Current Management Trends (no action alternative) reflects current management direction and serves as a... flood mitigation. Alternative 3 Enhance Visitor Experience and Park Operations (agency-preferred...

  15. Computer-model analysis of ground-water flow and simulated effects of contaminant remediation at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    Science.gov (United States)

    Barker, Rene A.; Braun, Christopher L.

    2000-01-01

    .005 to 0.15 and average about 0.08. Simulated infiltration rates range from 0 to 2.5 inches per year, depending mostly on local patterns of ground cover.Computer simulation indicates that, as of December 31, 1998, remediation systems at NWIRP were removing 7,375 cubic feet of water per day from the alluvial aquifer, with 3,050 cubic feet per day coming from aquifer storage. The resulting drawdown prevented 1,800 cubic feet per day of ground water from discharging into Cottonwood Bay, as well as inducing another 1,325 cubic feet per day into the aquifer from the bay. An additional 1,200 cubic feet of water per day (compared to pre-remediation conditions) was prevented from discharging into the west lagoon, east lagoon, Mountain Creek Lake, and Mountain Creek swale.Particle-tracking simulations, assuming an aquifer porosity of 0.15, were made to delineate flowpath patterns, or contaminant “capture zones,” resulting from 2.5- and 5-year periods of remediation activity at NWIRP. The resulting flowlines indicate three such zones, or areas from which ground water is simulated to have been removed during July 1996–December 1998, as well as extended areas from which ground water would be removed during the next 2.5 years (January 1999– June 2001).Simulation indicates that, as of December 31, 1998, the recovery trench was intercepting about 827 cubic feet per day of ground water that—without the trench—would have discharged into Cottonwood Bay. During this time, the trench is simulated to have removed about 3,221 cubic feet per day of water from the aquifer, with about 934 cubic feet per day (29 percent) coming from the south (Cottonwood Bay) side of the trench.

  16. Kandungan Komponen Fenolat, Kadar Fenolat Total, dan Aktivitas Antioksidan Madu dari Beberapa Daerah di Jawa dan Sumatera

    Directory of Open Access Journals (Sweden)

    Ichda Chayati

    2015-03-01

    Full Text Available KANDUNGAN KOMPONEN FENOLAT, KADAR FENOLAT TOTAL, DAN AKTIVITAS ANTIOKSIDAN MADU DARI BEBERAPA DAERAH DI JAWA DAN SUMATERA Study of Phenolic Compounts, Total Phenolic, and Antioxidant Activities of Monofloral Honeys from Some Areas in Java and Sumatera ABSTRACT Background. Many diseases resulted from degenerative processess which can be inhibited by antioxidant systems. Honey is one of food with antioxidant activity. Objective. This study aims to investigate antioxidant activities of several types of monofloral honey from Java and Sumatera. Method. A laboratory experimental study, conducted on 4 types of floral honeys: coffee, palm trees, cottonwoods and rambutan. Determination of phenolic compounds was performed with High Performance Liquid Chromatography (HPLC and measurement of total phenolic contents performed with Folin-Ciocalteu’s reagent. Antioxidant activity was conducted in two ways, those were by 2.2-diphenyl-1-picrylhydrasyl (DPPH free radical scavenging method and linoleic acid peroxidation method using butylated hydroxytoluene(BHT as a standard. Data were analyzed using Analysis of varian (Anova and continued with Duncan’s multiple range test (DMRT. Result. Four types of Javanese and Sumateranese honeys contained some phenolic compounds. Those are chlorogenic acid, cafeic acid, ρ-coumaric acid, ferulic acid, pinobanksin, quercetin, luteolin, pinocembrin and chrysin while the dominant fenolic compound varies between honeys. Total phenolic contents from four types of honey were between 2.000 to 4.400 ppm. The highest phenolic content was in honey from cottonwoods, but the best antioxidant activity was found in honey from coffee. Antioxidant activities were found in honey which come from the following order: coffee, cottonwoods, palm trees, and rambutan honey. Antioxidant activities did not correlated with total phenolic content. Conclusion. Javanese and Sumateranese honey contained nine active substances that varies in total

  17. Multi-Year On-Road Emission Factor Trends of Two Heavy-Duty California Fleets

    Science.gov (United States)

    Haugen, M.; Bishop, G.

    2017-12-01

    New heavy-duty vehicle emission regulations have resulted in the development of advanced exhaust after-treatment systems that specifically target particulate matter (PM) and nitrogen oxides (NOx = NO + NO2). This has resulted in significant decreases in the emissions of these species. The University of Denver has collected three data sets of on-road gaseous (CO, HC, NO and NOx) and PM (particle mass, black carbon and particle number) emission measurements from heavy-duty vehicles (HDVs) in the spring of 2013, 2015 and 2017 at two different locations in California. One site is located at the Port of Los Angeles, CA (1,150 HDVs measured in 2017) and the other site is located at a weigh station in Northern California near Cottonwood, CA (780 HDVs measured in 2017). The On-Road Heavy-Duty Measurement Setup measures individual HDV's fuel specific emissions (DOI: 10.1021/acs.est.6b06172). Vehicles drive under a tent-like structure that encapsulates vehicle exhaust and 15 seconds of data collection is integrated to give fuel specific information. The measurements obtained from these campaigns contain real-world emissions affected by different driving modes, after-treatment systems and location. The Port of Los Angeles contributes a fleet that is fully equipped with diesel particulate filters (DPFs) as a result of the San Pedro Ports Clean Air Action Plan enforced since 2010 that allows only vehicles model year 2007 or newer on the premises. This fleet, although comprised with relatively new HDVs with lower PM emissions, has increased PM emissions as it has aged. Cottonwood's fleet contains vehicles with and without after-treatment systems, a result of a gradual turnover rate, and fleet PM has decreased at a slower rate than at the Port of Los Angeles. The decrease in PM emissions is a result of more HDVs being newer model years as well as older model years being retrofit with DPFs. The complimentary fleets, studied over multiple years, have given the University of Denver

  18. Butterfly (Papilionoidea and Hesperioidea) assemblages associated with natural, exotic, and restored riparian habitats along the lower Colorado River, USA

    Science.gov (United States)

    Nelson, S.M.; Andersen, D.C.

    1999-01-01

    Butterfly assemblages were used to compare revegetated and natural riparian areas along the lower Colorado River. Species richness and correspondence analyses of assemblages showed that revegetated sites had fewer biological elements than more natural sites along the Bill Williams River. Data suggest that revegetated sites do not provide resources needed by some members of the butterfly assemblage, especially those species historically associated with the cottonwood/willow ecosystem. Revegetated sites generally lacked nectar resources, larval host plants, and closed canopies. The riparian system along the regulated river segment that contains these small revegetated sites also appears to have diminished habitat heterogeneity and uncoupled riparian corridors.Revegetated sites were static environments without the successional stages caused by flooding disturbance found in more natural systems. We hypothesize that revegetation coupled with a more natural hydrology is important for restoration of butterfly assemblages along the lower Colorado River. 

  19. Hydrogeochemistry of prairie pothole region wetlands: Role of long-term critical zone processes

    Science.gov (United States)

    Goldhaber, Martin B.; Mills, Christopher T.; Morrison, Jean M.; Stricker, Craig A.; Mushet, David M.; LaBaugh, James W.

    2014-01-01

    This study addresses the geologic and hydrogeochemical processes operating at a range of scales within the prairie pothole region (PPR). The PPR is a 750,000 km2portion of north central North America that hosts millions of small wetlands known to be critical habitat for waterfowl and other wildlife. At a local scale, we characterized the geochemical evolution of the 92-ha Cottonwood Lake study area (CWLSA), located in North Dakota, USA. Critical zone processes are the long-term determinant of wetland water and groundwater geochemistry via the interaction of oxygenated groundwater with pyrite in the underlying glacial till. Pyrite oxidation produced a brown, iron oxide-bearing surface layer locally over 13 m thick and an estimated minimum of 1.3 × 1010 g sulfate (SO42 −) at CWLSA. We show that the majority of this SO42− now resides in solid-phase gypsum (CaSO4•2H2O) and gypsum-saturated groundwater.

  20. Forty years of vegetation change on the Missouri River floodplain

    Science.gov (United States)

    Johnson, W. Carter; Dixon, Mark D.; Scott, Michael L.; Rabbe, Lisa; Larson, Gary; Volke, Malia; Werner, Brett

    2012-01-01

    Comparative inventories in 1969 and 1970 and in 2008 of vegetation from 30 forest stands downstream of Garrison Dam on the Missouri River in central North Dakota showed (a) a sharp decline in Cottonwood regeneration; (b) a strong compositional shift toward dominance by green ash; and (c) large increases in invasive understory species, such as smooth brome, reed canary grass, and Canada thistle. These changes, and others discovered during remeasurement, have been caused by a complex of factors, some related to damming (altered hydrologic and sediment regimes, delta formation, and associated wet-dry cycles) and some not (diseases and expansion of invasive plants). Dominance of green ash, however, may be short lived, given the likelihood that the emerald ash borer will arrive in the Dakotas in 5-10 years, with potentially devastating effects. The prospects for recovery of this valuable ecosystem, rich in ecosystem goods and services and in American history, are daunting.

  1. Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

    Science.gov (United States)

    Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; Maddock, T.; Pool, D.; Chehbouni, A.; Cooper, D.I.; Eichinger, W.E.; Shuttleworth, W.J.; Kerr, Y.; Marsett, R.; Ni, W.

    2000-01-01

    In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental Campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20-30 m) and non-uniform linear nature of the forest gallery. Short-term (2-4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman-Monteith model to enable temporal extrapolation between Synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use

  2. Preliminary hydrologic evaluation of the North Horn Mountain coal-resource area, Utah

    Science.gov (United States)

    Graham, M.J.; Tooley, John E.; Price, Don

    1981-01-01

    North Horn Mountain is part of a deeply dissected plateau in central Utah which is characterized by deep, narrow, steep-walled canyons with local relief of more than 1,000 feet. Geologic units exposed in the North Horn Mountain area range in age from Late Cretaceous to Holocene and contain two mineable seams of Cretaceous coal. The area is in the drainage basin of the San Rafael River, in the Colorado River Basin. Runoff from the mountain is ephemeral. This runoff to the San Rafael River is by way of Cottonwood and Perron Creeks and represents less than 10 percent of their average annual runoff. Probable peak discharges (100-year flood) for the ephemeral streams draining North Horn Mountain are estimated to range from 200 to 380 cubic feet per second.The chemical quality of surface water in the area is good. The water is generally of a calcium magnesium bicarbonate type with average dissolved solids less than 500 milligrams per liter. Annual sediment yield in most of the area ranges from 0.1 to 0.2 acre-foot per square mile but locally is as high as 1.0 acre-foot per square mile. Most of the sediment is eroded during cloudbursts.Most of the ground water above the coal on North Horn Mountain probably is in perched aquifers. These aquifers support the flow of small seeps and springs. In some areas, the regional water table appears to extend upward into the coal. The principal source of recharge is precipitation that probably moves to aquifers along faults, joints, or fractures. This movement is apparently quite rapid. The dissolved-solids concentrations of ground water in the North Horn Mountain area range from less than 500 to about 1,000 milligrams per liter.Coal mining on North Horn Mountain should have minor "effects on the quantity and quality of surface water. The maximum predicted decrease in the annual flow of Ferron and Cottonwood Creeks is less than U percent. The sediment loads of affected streams could be significantly increased if construction were to

  3. Effects of Clone, Silvicultural, and Miticide Treatments on Cottonwood Leafcurl Mite (Acari: Eriophyidae) Damage in Plantation Populus

    Science.gov (United States)

    David R. Coyle

    2002-01-01

    Aculops lobuliferus (Keifer) is a little known pest of plantation Populus spp., which is capable of causing substantial damage. This is the First documented occurrence of A. lobuliferus in South Carolina. Previous anecdotal data indicated clonal variation in Populus susceptibility to A...

  4. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  5. Edgemont uranium mill decommissioning, Fall River County, South Dakota (adoption as a final environmental impact statement (EIS) of the Nuclear Regulatory Commission's final EIS of September 1982): final environmental impact statement

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Decommissioning of the existing uranium milling facilities at Edgemont, South Dakota is proposed. In this adoption by the Tennessee Valley Authority of the Nuclear Regulatory Commission's final environmental impact statement on the decommissioning, no significant deviations from that statement are presented. The project would prevent human exposure to radioactive material emitted by the defunct mill and its ancillary facilities. Reclamation of mill and waste impoundment sites would ensure their future usefulness for wildlife habitat and other purposes. Grading operations could result in occasional particulate levels that exceed federal air quality standards. As much as 105 acre-feet of water could be removed from the Pahasapa Aquifer. Disturbance of soils at the sites would degrade the quality of these soils. Approximately 501 acres of land, including 30 acres of land to be used as haul roads, would be denuded; 86 acres of farmland within the disposal site would be lost. All aquatic communities in Cottonwood Creek would be destroyed during cleanup operations, although the creek would be repopulated. Winddown tailings would increase downwind radiation levels during decommissioning activities

  6. Ecological structuring of yeasts associated with trees around Hamilton, Ontario, Canada.

    Science.gov (United States)

    Maganti, Harinad; Bartfai, David; Xu, Jianping

    2012-02-01

    This study seeks to determine the distribution and diversity of yeasts in and around the Hamilton area in Canada. In light of the increasing number of fungal infections along with rising morbidity and mortality rates, especially among the immunocompromised, understanding the diversity and distribution of yeasts in natural environments close to human habitations has become an increasingly relevant topic. In this study, we analyzed 1110 samples obtained from the hollows of trees, shrubs and avian droppings at 8 geographical sites in and around Hamilton, Ontario, Canada. A total of 88 positive yeast strains were isolated and identified belonging to 20 yeast species. Despite the relative proximity of the sampling sites, our DNA fingerprinting results showed that the yeast populations were highly heterogenous. Among the 14 tree species sampled, cedar, cottonwood and basswood hollows had relatively high yeast colonization rates. Interestingly, Candida parapsilosis was isolated almost exclusively from Pine trees only. Our results are consistent with microgeographic and ecological differentiation of yeast species in and around an urban environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Bats of Ouray National Wildlife Refuge

    Science.gov (United States)

    Ellison, Laura E.

    2011-01-01

    Ouray National Wildlife Refuge (NWR) is located in the northeast corner of Utah along the Green River and is part of the Upper Colorado River System and the Colorado Plateau. The Colorado Plateau is home to 19 species of bats, some of which are quite rare. Of those 19 species, a few have a more southern range and would not be expected to be found at Ouray NWR, but it is unknown what species occur at Ouray NWR or their relative abundance. The assumption is that Ouray NWR provides excellent habitat for bats, since the riparian habitat consists of a healthy population of cottonwoods with plenty of older, large trees and snags that would provide foraging and roosting habitat for bats. The more than 4,000 acres of wetland habitat, along with the associated insect population resulting from the wetland habitat, would provide ideal foraging habitat for bats. The overall objective of this project is to conduct a baseline inventory of bat species occurring on the refuge using mist nets and passive acoustic monitoring.

  8. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  9. The Assessment of Toxic Metals in Plants Used in Cosmetics and Cosmetology

    Directory of Open Access Journals (Sweden)

    Agnieszka Fischer

    2017-10-01

    Full Text Available Heavy metals polluting the natural environment are absorbed by plants. The use of herbs as components of cosmetics may pose a health risk for humans. The aim of the study was to determine the concentrations of Pb, Cd and Hg in selected species of herbs (horsetail Equisetum arvense, nettle Urtica dioica, St. John’s wort Hypericum perforatum, wormwood Artemisia absinthium, yarrow Achillea millefolium, cottonwood Solidago virgaurea self-collected from the natural environment in two different locations, and purchased in stores on the territory of Poland. The concentration of the metals studied was: 4.67–23.8 mg/kg Pb, 0.01–1.51 mg/kg Cd, 0.005–0.028 mg/kg Hg. Different concentrations of metals, depending on species and origin of plants, were found. The mean concentration of all studied metals was the lowest in St. John’s wort, and the highest in nettle. In herbs purchased in Polish stores, the concentration of Pb was higher than in plants self-collected in the natural environment.

  10. Leaf water relations and sapflow in eastern cottonwood (Populus deltoides Bartr.) trees planted for phytoremediation of a groundwater pollutant

    Science.gov (United States)

    James M. Vose; Wayne T. Swank; Gregory J. Harvey; Barton D. Clinton; Christine Sobek

    2000-01-01

    Plants that remediate groundwater pollutants may offer a feasible alternative to the traditional and more expensive practices. Because its success depends on water use, this approach requires a complete understanding of species-specific transpiration patterns. The objectives of this study were (1) to quantify tree and stand-level transpiration in two age classes (whips...

  11. Nesting habitat and productivity of Swainson's Hawks in southeastern Arizona

    Science.gov (United States)

    Nishida, Catherine; Boal, Clint W.; DeStefano, Stephen; Hobbs, Royden J.

    2013-01-01

    We studied Swainson's Hawks (Buteo swainsoni) in southeastern Arizona to assess the status of the local breeding population. Nest success (≥1 young fledged) was 44.4% in 1999 with an average of 1.43 ± 0.09 (SE) young produced per successful pair. Productivity was similar in 2000, with 58.2% nesting success and 1.83 ± 0.09 fledglings per successful pair. Mesquite (Prosopis velutina) and cottonwood (Populus fremontii) accounted for >50% of 167 nest trees. Nest trees were taller than surrounding trees and random trees, and overall there was more vegetative cover at nest sites than random sites. This apparent requirement for cover around nest sites could be important for management of the species in Arizona. However, any need for cover at nest sites must be balanced with the need for open areas for foraging. Density of nesting Swainson's Hawks was higher in agriculture than in grasslands and desert scrub. Breeding pairs had similar success in agricultural and nonagricultural areas, but the effect of rapid and widespread land-use change on breeding distribution and productivity continues to be a concern throughout the range of the species.

  12. Rapid continental-scale vegetation response to the Younger Dryas Cool Episode

    Science.gov (United States)

    Peros, M.; Gajewski, K.; Viau, A.

    2006-12-01

    The Younger Dryas Cool Episode had rapid and widespread effects on flora and fauna throughout the Americas. Fossil pollen records document how plant communities responded to this event, although such data are generally only representative of changes at local- to regional-scales. We use a new approach to provide insight into vegetation responses to the Younger Dryas at a continental-scale, by focusing on data extracted for a single taxon (Populus poplar, cottonwood, aspen) from pollen diagrams throughout North America. We show that Populus underwent a rapid and continent-wide decline as the climate rapidly cooled and dried. At the termination of the Younger Dryas, Populus underwent another widespread decline, this time in response to competition from boreal and temperate taxa as the climate abruptly warmed. Late glacial-early Holocene pollen assemblages with high quantities of Populus pollen often lack modern analogues and thus confound quantitative paleoclimatic reconstructions; our results provide a context to interpret these assemblages. Furthermore, while Populus may continue to expand in the future in response to human disturbance and increasing temperatures, its sensitivity to competition may eventually put it at risk as global warming accelerates.

  13. Intron-Mediated Alternative Splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B Regulates Cell Wall Thickening during Fiber Development in Populus Species1[W

    Science.gov (United States)

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-01-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation. PMID:24394777

  14. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

    Science.gov (United States)

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-02-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

  15. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    Science.gov (United States)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  16. Experimental flights using a small unmanned aircraft system for mapping emergent sandbars

    Science.gov (United States)

    Kinzel, Paul J.; Bauer, Mark A.; Feller, Mark R.; Holmquist-Johnson, Christopher; Preston, Todd

    2015-01-01

    The US Geological Survey and Parallel Inc. conducted experimental flights with the Tarantula Hawk (T-Hawk) unmanned aircraft system (UAS ) at the Dyer and Cottonwood Ranch properties located along reaches of the Platte River near Overton, Nebraska, in July 2013. We equipped the T-Hawk UAS platform with a consumer-grade digital camera to collect imagery of emergent sandbars in the reaches and used photogrammetric software and surveyed control points to generate orthophotographs and digital elevation models (DEMS ) of the reaches. To optimize the image alignment process, we retained and/or eliminated tie points based on their relative errors and spatial resolution, whereby minimizing the total error in the project. Additionally, we collected seven transects that traversed emergent sandbars concurrently with global positioning system location data to evaluate the accuracy of the UAS survey methodology. The root mean square errors for the elevation of emergent points along each transect across the DEMS ranged from 0.04 to 0.12 m. If adequate survey control is established, a UAS combined with photogrammetry software shows promise for accurate monitoring of emergent sandbar morphology and river management activities in short (1–2 km) river reaches.

  17. [A review of the genomic and gene cloning studies in trees].

    Science.gov (United States)

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  18. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    Science.gov (United States)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  19. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  20. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  1. Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.

    Science.gov (United States)

    Schnabel, William; Munk, Jens; Byrd, Amanda

    2015-01-01

    Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.

  2. Drip Irrigation Aided Phytoremediation for Removal of TCE FR-om Groundwater

    International Nuclear Information System (INIS)

    Wilde, E.W.

    2003-01-01

    Groundwater in D-Area at the Savannah River Site (SRS) is contaminated with trichloroethylene (TCE) and by-products resulting FR-om discharges of this organic solvent during past disposal practices. This contaminated groundwater occurs primarily at depths of 9 meters to 15 meters below ground surface, well below the depths that are typically penetrated by plant roots. The process investigated in this study involved pumping water FR-om the contaminated aquifer and discharging the water into overlying test plots two inches below the surface using drip irrigation. The field treatability study was conducted FR-om 8/31/00 to 4/18/02 using six 0.08 hectare test plots, two each containing pines, cottonwoods, and no vegetation (controls). The primary objective was to determine the overall effectiveness of the process for TCE removal and to determine the principal biotic and abiotic pathways for its removal. Results demonstrated that the process provides a viable method to remove TCE-contaminated groundwater. The data clearly showed that the presence of trees reduced volatilization of TCE FR-om the drip irrigation system to the atmosphere. Influent groundwater TCE concentrations averaging 89 mg/L were reduced to non-detectable levels (less than 5 mg/L) within the upper two feet of soil (rhizosphere)

  3. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    Science.gov (United States)

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and Darwin Canyon Formations) representing part of a deep-water turbidite basin filled primarily by fine-grained siliciclastic sediment derived from cratonal sources to the east. Deformation and sedimentation along the western part of this basin continued into late Permian time. The culminating phase was part of a regionally extensive late Permian thrust system that included the Marble Canyon thrust fault just west of the present map area.

  4. Geochemical characterization of groundwater discharging from springs north of the Grand Canyon, Arizona, 2009–2016

    Science.gov (United States)

    Beisner, Kimberly R.; Tillman, Fred D.; Anderson, Jessica R.; Antweiler, Ronald C.; Bills, Donald J.

    2017-08-01

    A geochemical study was conducted on 37 springs discharging from the Toroweap Formation, Coconino Sandstone, Hermit Formation, Supai Group, and Redwall Limestone north of the Grand Canyon near areas of breccia-pipe uranium mining. Baseline concentrations were established for the elements As, B, Li, Se, SiO2, Sr, Tl, U, and V. Three springs exceeded U.S. Environmental Protection Agency drinking water standards: Fence Spring for arsenic, Pigeon Spring for selenium and uranium, and Willow (Hack) Spring for selenium. The majority of the spring sites had uranium values of less than 10 micrograms per liter (μg/L), but six springs discharging from all of the geologic units studied that are located stratigraphically above the Redwall Limestone had uranium values greater than 10 μg/L (Cottonwood [Tuckup], Grama, Pigeon, Rock, and Willow [Hack and Snake Gulch] Springs). The geochemical characteristics of these six springs with elevated uranium include Ca-Mg-SO4 water type, circumneutral pH, high specific conductance, correlation and multivariate associations between U, Mo, Sr, Se, Li, and Zn, low 87Sr/86Sr, low 234U/238U activity ratios (1.34–2.31), detectable tritium, and carbon isotopic interpretation indicating they may be a mixture of modern and pre-modern waters. Similar geochemical compositions of spring waters having elevated uranium concentrations are observed at sites located both near and away from sites of uranium-mining activities in the present study. Therefore, mining does not appear to explain the presence of elevated uranium concentrations in groundwater at the six springs noted above. The elevated uranium at the six previously mentioned springs may be influenced by iron mineralization associated with mineralized breccia pipe deposits. Six springs discharging from the Coconino Sandstone (Upper Jumpup, Little, Horse, and Slide Springs) and Redwall Limestone (Kanab and Side Canyon Springs) contained water with corrected radiocarbon ages as much as 9

  5. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant. To advance this mercury phytoremediation strategy, our planned research focuses on the following Specific Aims: (1) to increase the transport of mercury to aboveground tissue; (2) to identify small mercury binding peptides that enhance hyperaccumulation aboveground; (3) to test the ability of multiple genes acting together to enhance resistance and hyperaccumulation; (4) to construct a simple molecular system for creating male/female sterility, allowing engineered grass, shrub, and tree species to be released indefinitely at contaminated sites; (5) to test the ability of transgenic cottonwood and rice plants to detoxify ionic mercury and prevent methylmercury release from contaminated sediment; and (6) to initiate field testing with transgenic cottonwood and rice for the remediation of methylmercury and ionic mercury. The results of these experiments will enable the phytoremediation of methyl- and ionic mercury by a wide spectrum of deep-rooted, fast-growing plants adapted to diverse environments. We have made significant progress on all six of these specific aims as summarized below.

  6. Partitioning of Multivariate Phenotypes using Regression Trees Reveals Complex Patterns of Adaptation to Climate across the Range of Black Cottonwood (Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Regis Wendpouire Oubida

    2015-03-01

    Full Text Available Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13 to 0.32 and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP, and mean annual precipitation (MAP. These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar.

  7. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica.

    Science.gov (United States)

    Immanen, Juha; Nieminen, Kaisa; Duchens Silva, Héctor; Rodríguez Rojas, Fernanda; Meisel, Lee A; Silva, Herman; Albert, Victor A; Hvidsten, Torgeir R; Helariutta, Ykä

    2013-12-16

    Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis.

  8. Wood Colorization through Pressure Treating: The Potential of Extracted Colorants from Spalting Fungi as a Replacement for Woodworkers’ Aniline Dyes

    Directory of Open Access Journals (Sweden)

    Sara C. Robinson

    2014-07-01

    Full Text Available The extracellular colorants produced by Chlorociboria aeruginosa, Scytalidium cuboideum, and Scytalidium ganodermophthorum, three commonly utilized spalting fungi, were tested against a standard woodworker’s aniline dye to determine if the fungal colorants could be utilized in an effort to find a naturally occurring replacement for the synthetic dye. Fungal colorants were delivered in two methods within a pressure treater—the first through solubilization of extracted colorants in dichloromethane, and the second via liquid culture consisting of water, malt, and the actively growing fungus. Visual external evaluation of the wood test blocks showed complete surface coloration of all wood species with all colorants, with the exception of the green colorant (xylindein from C. aeruginosa in liquid culture, which did not produce a visible surface color change. The highest changes in external color came from noble fir, lodgepole pine, port orford cedar and sugar maple with aniline dye, cottonwood with the yellow colorant in liquid culture, lodgepole pine with the red colorant in liquid culture, red alder and Oregon maple with the green colorant in dichloromethane, and sugar maple and port orford cedar with the yellow colorant in dichloromethane. The aniline dye was superior to the fungal colorants in terms of internal coloration, although none of the tested compounds were able to completely visually color the inside of the test blocks.

  9. Initial effects of quinclorac on the survival and growth of high biomass tree species

    Directory of Open Access Journals (Sweden)

    Joshua P. Adams

    2017-07-01

    Full Text Available Increasingly, short rotation woody crops are being planted for biofuel/biomass production on unused lands or marginal agricultural lands. Many of these plantations occur near agriculture land which is intensively managed including yearly herbicide applications. Herbicide drift from these applications may cause tree stress and decreasing yields impacting potential biomass production. Quinclorac, a rice herbicide, is often cited as a potential source of tree damage and is the focal herbicide of this study. Five planting stocks, including three eastern cottonwood clones, a hybrid poplar clone, and American sycamore, were assessed for herbicide affects and deployed at three sites across south Arkansas. Stocks were exposed to a full rate labeled for rice (3.175 L ha-1, two rates simulating drift (1/100th and 1/10th the full rate, and a no-spray control. Survival of all Populus clones decreased drastically as quinclorac rate increased, while there was little observed effect on American sycamore. Some variability in treatment response among poplars occurred below the full herbicide rate; however, direct spraying a full herbicide rate on poplars resulted in survival rates below 65 percent and negative growth rates due to dieback. Conversely, photosynthetic rates of remaining leaves increased as quinclorac rate increased. Survival and damage scores of American sycamore, regardless of herbicide rate, remained nearly constant.

  10. Effects of gamma irradiation on cell-wall constituents of some agricultural residues

    International Nuclear Information System (INIS)

    Al-Masri, M.R.; Zarkawi, M.

    1994-01-01

    The effects of 150 kilogray (kGy) of γ irradiation on cell-wall constituents of cottonwood (CW), lentils straw (LS), apple pruning products (AP) and olive cake (OC) were investigated. Samples were irradiated by γ irradiation at a dose level of 150 kGy under identical conditions of temperature and humidity and analyzed for crude fibre (CF), neutral-detergent fibre (NDF), acid detergent fibre (ADF) and acid-detergent lignin (ADL). The results indicate that γ irradiation decreased CF contents by about 29% for CW, LS and AP and by 17% for OC. NDF values were also decreased by about 4% for CW and OC, and by about 12% for LS and AP. γ irradiation treatment also decreased ADF values only for CW by 8%. ADL contents decreased by 8% for CW and 5% for OC with no effects for LS and AP. The percentage of cellulose (CL):CF ratio increased by 30, 34, 38 and 20% for CW, LS, AP and OC, respectively. Also, the percentage of hemicellulose (HCL):CF increased for 57% for CW and 16% for OC and decreased by 7% for LS and AP. The percentage of HCL:ADL increased by 22% for CW but decreased by 33% for LS and AP with no changes for OC. There were no changes in CL:ADL ratio for all residues. (Author)

  11. Oxidation-reduction phenomena in tabular uranium-vanadium bearing sandstone from the Salt Wash deposits (Upper Jurassic) of the Cottonwood Wash district (Utah, USA)

    International Nuclear Information System (INIS)

    Meunier, J.D.

    1984-02-01

    A braided to meandering fluvial environment has been postulated for this area after a sedimentological study. The mineralization is spatially related with conifer derived organic matter and wood is preserved in these sediments because of the reducing environment of deposition. The degree of maturation of the organic matter has been estimated from chemical analyses. Results show the presence of variable diagenetic oxidation depending on the environment. The organic matter which was least affected by this oxidation have attained a thermal maturation characteristic of the end stage of diagenesis. The high grade ore is situated at the edges of or within the trunks of trees (which remained permeable during diagenesis) and at the boundaries of the carbonaceous beds. Geochemical study shows there to be good correlation between uranium and vanadium. Uranium occurs as pitchblende, coffinite or as impregnations in the vanadiferous clay cement. A detailed study of clays shows an association of chlorite and roscoelite which most probably contain V 3+ . Fluid inclusion study suggests burying temperatures of >= 100 0 C and shows the existance of brines before the mineralization. The following genetical model is proposed. Low Eh uraniferous solutions move through a reduced pyritised environment. The low degree of oxidation of the pyrites propagates the destabilization of the clastic iron-titanium oxides which release vanadium and the dissociation of uranylcarbonates. Then, the deposit of pitchblende, coffinite, montroseite and vanadiferous clays took place in association with a secondary pyrite. When the rocks were uplifted to the subsurface, uranium (IV) and vanadium (III) were remobilised in an oxidising environment to form a secondary mineralization essentially represented by tyuyamunite [fr

  12. Long-term changes in pond permanence, size, and salinity in Prairie Pothole Region wetlands: The role of groundwater-pond interaction

    Science.gov (United States)

    LaBaugh, James W.; Rosenberry, Donald O.; Mushet, David M.; Neff, Brian; Nelson, Richard D.; Euliss, Ned H.

    2018-01-01

    Study RegionCottonwood Lake area wetlands, North Dakota, U.S.A.Study FocusFluctuations in pond permanence, size, and salinity are key features of prairie-pothole wetlands that provide a variety of wetland habitats for waterfowl in the northern prairie of North America. Observation of water-level and salinity fluctuations in a semi-permanent wetland pond over a 20-year period, included periods when the wetland occasionally was dry, as well as wetter years when the pond depth and surface extent doubled while volume increased 10 times.New hydrological insights for the study regionCompared to all other measured budget components, groundwater flow into the pond often contributed the least water (8–28 percent) but the largest amount (>90 percent) of specific solutes to the water and solute budgets of the pond. In drier years flow from the pond into groundwater represented > 10 percent of water loss, and in 1992 was approximately equal to evapotranspiration loss. Also during the drier years, export of calcium, magnesium, sodium, potassium, chloride, and sulfate by flow from the pond to groundwater was substantial compared with previous or subsequent years, a process that would have been undetected if groundwater flux had been calculated as a net value. Independent quantification of water and solute gains and losses were essential to understand controls on water-level and salinity fluctuations in the pond in response to variable climate conditions.

  13. Nesting ecology of Greater Sandhill Cranes (Grus canadensis tabida) in riparian and palustrine wetlands of eastern Idaho

    Science.gov (United States)

    McWethy, D.B.; Austin, J.E.

    2009-01-01

    Little information exists on breeding Greater Sandhill Cranes (Grus canadensis tabida) in riparian wetlands of the Intermountain West. We examined the nesting ecology of Sandhill Cranes associated with riparian and palustrine wetlands in the Henry's Fork Watershed in eastern Idaho in 2003. We located 36 active crane nests, 19 in riparian wetlands and 17 in palustrine wetlands. Nesting sites were dominated by rushes (Juncus spp.), sedges (Carex spp.), Broad-leaved Cattail (Typha latifolia) and willow (Salix spp.), and adjacent foraging areas were primarily composed of sagebrush (Artemisia spp.), cinquefoil (Potentilla spp.),Rabbitbrush (Ericameria bloomeri) bunch grasses, upland forbs, Quaking Aspen (Populus tremuloides) and cottonwood (Populus spp.). Mean water depth surrounding nests was 23 cm (SD = 22). A majority of nests (61%) were surrounded by vegetation between 3060 cm, 23% by vegetation 60 cm in height. We were able to determine the fate of 29 nests, of which 20 were successful (69%). Daily nest survival was 0.986 (95% LCI 0.963, UCI 0.995), equivalent to a Mayfield nest success of 0.654 (95% LCI 0.324, UCI 0.853). Model selection favored models with the covariates vegetation type, vegetation height, and water depth. Nest survival increased with increasing water depth surrounding nest sites. Mean water depth was higher around successful nests (30 cm, SD = 21) than unsuccessful nests (15 cm, SD 22). Further research is needed to evaluate the relative contribution of cranes nesting in palustrine and riparian wetlands distributed widely across the Intermountain West.

  14. Eucalyptus and Populus short rotation woody crops for phosphate mined lands in Florida USA

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, D L; Carter, D R; Langholtz, M H [The School of Forest Resources and Conservation, University of Florida, Box 110410, Gainesville, FL 32611 0410 (United States); Stricker, J A [Polk County Extension Service, University of Florida, Gainesville, FL 32611 (United States)

    2006-08-15

    Our short-rotation woody crops (SRWC) research in central and southern Florida is (1) developing superior Eucalyptus grandis (EG), E. amplifolia (EA), and cottonwood (Populus deltoides, PD) genotypes, (2) determining appropriate management practices for and associated productivities of these genotypes, and (3) assessing their economics and markets. Reclaimed clay settling areas (CSA) and overburden sites in phosphate mined areas in central Florida are a potential land base of over 80,000ha for SRWC production. On CSAs, PD grows well in the absence of cogongrass (Imperata cylindrica) but is not as productive as the non-invasive EG and EA. SRWC establishment on CSAs requires strict implementation of the following cultural practices: thorough site preparation through herbiciding/disking and bedding, superior trees, watering/packing seedlings, fertilization with ammonium nitrate at planting and annually thereafter as feasible, high planting density possibly including double row planting, and winter harvesting so that coppice regeneration suppresses weeds. PD cultural requirements, that may require post-planting weed control to suppress herbaceous competition, exceed those of the eucalypts. EG SRWCs on CSAs are at risk of blowdown 3-4 years after planting or coppicing; younger PD, EG, and EA SRWCs appear much less susceptible to wind damage. Genetic improvement must continue if EG, EA, and PD are to increase in commercial feasibility. SRWC cost competitiveness will depend on establishment success, yield improvements, harvesting costs, and identifying/using incentives. Strong collaboration among public and private partners is necessary for commercializing SRWCs in Florida. (author)

  15. Processes of Terrace Formation on the Piedmont of the Santa Cruz River Valley During Quaternary Time, Green Valley-Tubac Area, Southeastern Arizona

    Science.gov (United States)

    Lindsey, David A.; Van Gosen, Bradley S.

    2010-01-01

    In this report we describe a series of stepped Quaternary terraces on some piedmont tributaries of the Santa Cruz River valley in southeastern Arizona. These terraces began to form in early Pleistocene time, after major basin-and-range faulting ceased, with lateral planation of basin fill and deposition of thin fans of alluvium. At the end of this cycle of erosion and deposition, tributaries of the Santa Cruz River began the process of dissection and terrace formation that continues to the present. Vertical cutting alternated with periods of equilibrium, during which streams cut laterally and left thin deposits of channel fill. The distribution of terraces was mapped and compiled with adjacent mapping to produce a regional picture of piedmont stream history in the middle part of the Santa Cruz River valley. For selected tributaries, the thickness of terrace fill was measured, particle size and lithology of gravel were determined, and sedimentary features were photographed and described. Mapping of terrace stratigraphy revealed that on two tributaries, Madera Canyon Wash and Montosa Canyon Wash, stream piracy has played an important role in piedmont landscape development. On two other tributaries, Cottonwood Canyon Wash and Josephine Canyon Wash, rapid downcutting preempted piracy. Two types of terraces are recognized: erosional and depositional. Gravel in thin erosional terraces has Trask sorting coefficients and sedimentary structures typical of streamflood deposits, replete with bar-and-swale surface topography on young terraces. Erosional-terrace fill represents the channel fill of the stream that cuts the terrace; the thickness of the fill indicates the depth of channel scour. In contrast to erosional terraces, depositional terraces show evidence of repeated deposition and net aggradation, as indicated by their thickness (as much as 20+ m) and weakly bedded structure. Depositional terraces are common below mountain-front canyon mouths where streams drop their

  16. Correlating laser-induced breakdown spectroscopy with neutron activation analysis to determine the elemental concentration in the ionome of the Populus trichocarpa leaf

    Science.gov (United States)

    Martin, Madhavi Z.; Glasgow, David C.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Gunter, Lee E.; Engle, Nancy L.; Wymore, Ann M.; Weston, David J.

    2017-12-01

    The black cottonwood poplar (Populus trichocarpa) leaf ionome (inorganic trace elements and mineral nutrients) is an important aspect for determining the physiological and developmental processes contributing to biomass production. A number of techniques are used to measure the ionome, yet characterizing the leaf spatial heterogeneity remains a challenge, especially in solid samples. Laser-induced breakdown spectroscopy (LIBS) has been used to determine the elemental composition of leaves and is able to raster across solid matrixes at 10 μm resolution. Here, we evaluate the use of LIBS for solid sample leaf elemental characterization in relation to neutron activation. In fact, neutron activation analysis is a laboratory-based technique which is used by the National Institute of Standards and Technology (NIST) to certify trace elements in candidate reference materials including plant leaf matrices. Introduction to the techniques used in this research has been presented in this manuscript. Neutron activation analysis (NAA) data has been correlated to the LIBS spectra to achieve quantification of the elements or ions present within poplar leaves. The regression coefficients of calibration and validation using multivariate analysis (MVA) methodology for six out of seven elements have been determined and vary between 0.810 and 0.998. LIBS and NAA data has been presented for the elements such as, calcium, magnesium, manganese, aluminum, copper, and potassium. Chlorine was also detected but it did not show good correlation between the LIBS and NAA techniques. This research shows that LIBS can be used as a fast, high-spatial resolution technique to quantify elements as part of large-scale field phenotyping projects.

  17. Harvest of woody crops with a bio-baler in eight different environments in Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Current, D. [Minnesota Univ., MN (United States); Savoie, P. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada); Hebert, P.L. [Laval Univ., Quebec City, PQ (Canada). Dept. des sols et de genie agroalimentaire; Robert, F.S. [Laval Univ., Quebec City, PQ (Canada). Sols et environnement; Gillitzdr, P.

    2010-07-01

    The biobaler was originally developed for short-rotation willow plantations, but can currently harvest a wide range of woody crops with a basal diameter up to 150 mm. The biobaler is an alternate approach to harvest woody crops as round bales, generally 1.2 m wide by 1.5 m diameter. In addition to harvesting trees, it can improve management of wild brush, forest understory vegetation and encroaching small trees on abandoned land. It allows easy handling, storage and transportation to sites where the biomass can be used for energy use or other applications. This paper reported on a study that was conducted in the fall of 2009 in which a third generation biobaler was used on 8 different sites across Minnesota, notably Waseca, Madelia, Faribault, Afton, Ogilvie, Hinckley, Aurora and Hibbing. A total of 160 bales were harvested from these sites. The average bale mass was 466 kg and average bale density was 296 kg/m{sup 3}. The moisture content averaged 44.9 per cent and the bale dry matter density averaged 163 kg DM/m{sup 3}. The harvested biomass per unit area ranged from 2.49 t/ha on lightly covered land to 55.24 t/ha on densely covered land. The harvested or recovered biomass was 72.3 per cent of the original cottonwood in Madelia; 75.8 per cent of the original oak and maple shrubs in Afton; and 73.5 per cent of the poplar regeneration in Hibbing. The actual harvest rate averaged 17.40 bales/h.

  18. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species.

    Science.gov (United States)

    Geraldes, A; Difazio, S P; Slavov, G T; Ranjan, P; Muchero, W; Hannemann, J; Gunter, L E; Wymore, A M; Grassa, C J; Farzaneh, N; Porth, I; McKown, A D; Skyba, O; Li, E; Fujita, M; Klápště, J; Martin, J; Schackwitz, W; Pennacchio, C; Rokhsar, D; Friedmann, M C; Wasteneys, G O; Guy, R D; El-Kassaby, Y A; Mansfield, S D; Cronk, Q C B; Ehlting, J; Douglas, C J; Tuskan, G A

    2013-03-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids. © 2013 Blackwell Publishing Ltd.

  19. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    Science.gov (United States)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  20. Efficacy of plastic mesh tubes in reducing herbivory damage by the invasive nutria (Myocastor coypus) in an urban restoration site

    Science.gov (United States)

    Sheffels, Trevor R.; Systma, Mark D.; Carter, Jacoby; Taylor, Jimmy D.

    2014-01-01

    The restoration of stream corridors is becoming an increasingly important component of urban landscape planning, and the high cost of these projects necessitates the need to understand and address potential ecological obstacles to project success. The nutria(Myocastor coypus) is an invasive, semi-aquatic rodent native to South America that causes detrimental ecological impacts in riparian and wetland habitats throughout its introduced range, and techniques are needed to reduce nutria herbivory damage to urban stream restoration projects. We assessed the efficacy of standard Vexar® plastic mesh tubes in reducing nutria herbivory damage to newly established woody plants. The study was conducted in winter-spring 2009 at Delta Ponds, a 60-ha urban waterway in Eugene, Oregon. Woody plants protected by Vexar® tubes demonstrated 100% survival over the 3-month initial establishment period, while only 17% of unprotected plantings survived. Nutria demonstrated a preference for black cottonwood (Populus balsamifera ssp trichocarpa) over red osier dogwood (Cornussericea) and willow (Salix spp). Camera surveillance showed that nutria were more active in unprotected rather than protected treatments. Our results suggest that Vexar® plastic mesh tubing can be an effective short-term herbivory mitigation tool when habitat use by nutria is low. Additionally, planting functionally equivalent woody plant species that are less preferred by nutria, and other herbivores, may be another method for reducing herbivory and improving revegetation success. This study highlights the need to address potential wildlife damage conflicts in the planning process for stream restoration in urban landscapes.

  1. Food habits of rodents inhabiting arid and semi-arid ecosystems of central New Mexico

    Science.gov (United States)

    Hope, Andrew G.; Parmenter, Robert R.

    2007-01-01

    In this study, we describe seasonal dietary composition for 15 species of rodents collected in all major habitats on the Sevilleta National Wildlife Refuge (Socorro County) in central New Mexico. A comprehensive literature review of food habits for these species from throughout their distribution also is provided. We collected rodents in the field during winter, spring and late summer in 1998 from six communities: riparian cottonwood forest; piñon-juniper woodland; juniper-oak savanna; mesquite savanna; short-grass steppe; and Chihuahuan Desert scrubland. Rodents included Spermophilus spilosoma (Spotted Ground Squirrel), Perognathus flavescens (Plains Pocket Mouse), Perognathus flavus (Silky Pocket Mouse), Dipodomys merriami (Merriam’s Kangaroo Rat), Dipodomys ordii (Ord’s Kangaroo Rat), Dipodomys spectabilis (Banner-tailed Kangaroo Rat), Reithrodontomys megalotis (Western Harvest Mouse), Peromyscus boylii (Brush Mouse), Peromyscus eremicus (Cactus Mouse), Peromyscus leucopus (White-footed Mouse), Peromyscus truei (Piñon Mouse), Onychomys arenicola (Mearn’s Grasshopper Mouse), Onychomys leucogaster (Northern Grasshopper Mouse), Neotoma albigula/leucodon (White-throated Woodrats), and Neotoma micropus (Southern Plains Woodrat). We collected stomach contents of all species, and cheek-pouch contents of heteromyids, and quantified them in the laboratory. We determined seasonal diets in each habitat by calculating mean percentage volumes of seeds, arthropods and green vegetation (plant leaves and stems) for each species of rodent. Seeds consumed by each rodent were identified to genus, and often species, and quantified by frequency counts. Comparisons of diets between and among species of rodents, seasons, and ecosystems were also examined. We provide an appendix of all plant taxa documented.

  2. Crayfish impact desert river ecosystem function and litter-dwelling invertebrate communities through association with novel detrital resources.

    Directory of Open Access Journals (Sweden)

    Eric K Moody

    Full Text Available Shifts in plant species distributions due to global change are increasing the availability of novel resources in a variety of ecosystems worldwide. In semiarid riparian areas, hydric pioneer tree species are being replaced by drought-tolerant plant species as water availability decreases. Additionally, introduced omnivorous crayfish, which feed upon primary producers, allochthonous detritus, and benthic invertebrates, can impact communities at multiple levels through both direct and indirect effects mediated by drought-tolerant plants. We tested the impact of both virile crayfish (Orconectes virilis and litter type on benthic invertebrates and the effect of crayfish on detrital resources across a gradient of riparian vegetation drought-tolerance using field cages with leaf litter bags in the San Pedro River in Southeastern Arizona. Virile crayfish increased breakdown rate of novel drought-tolerant saltcedar (Tamarix ramosissima, but did not impact breakdown of drought-tolerant seepwillow (Baccharis salicifolia or hydric Fremont cottonwood (Populus fremontii and Gooding's willow (Salix goodingii. Effects on invertebrate diversity were observed at the litter bag scale, but no effects were found at the cage scale. Crayfish decreased alpha diversity of colonizing macroinvertebrates, but did not affect beta diversity. In contrast, the drought-tolerant litter treatment decreased beta diversity relative to hydric litter. As drought-tolerant species become more abundant in riparian zones, their litter will become a larger component of the organic matter budget of desert streams which may serve to homogenize the litter-dwelling community and support elevated populations of virile crayfish. Through impacts at multiple trophic levels, crayfish have a significant effect on desert stream ecosystems.

  3. From drones to ASO: Using 'Structure-From-Motion' photogrammetry to quantify variations in snow depth at multiple scales

    Science.gov (United States)

    Skiles, M.

    2017-12-01

    The ability to accurately measure and manage the natural snow water reservoir in mountainous regions has its challenges, namely mapping of snowpack depth and snow water equivalent (SWE). Presented here is a scalable method that differentially maps snow depth using Structure from Motion (SfM); a photogrammetric technique that uses 2d images to create a 3D model/Digital Surface Model (DSM). There are challenges with applying SfM to snow, namely, relatively uniform snow brightness can make it difficult to produce quality images needed for processing, and vegetation can limit the ability to `see' through the canopy to map both the ground and snow beneath. New techniques implemented in the method to adapt to these challenges will be demonstrated. Results include a time series at (1) the plot scale, imaged with an unmanned areal vehicle (DJI Phantom 2 adapted with Sony A5100) over the Utah Department of Transportation Atwater Study Plot in Little Cottonwood Canyon, UT, and at (2) the mountain watershed scale, imaged from the RGB camera aboard the Airborne Snow Observatory (ASO), over the headwaters of the Uncompahgre River in the San Juan Mountains, CO. At the plot scale we present comparisons to measured snow depth, and at the watershed scale we present comparisons to the ASO lidar DSM. This method is of interest due to its low cost relative to lidar, making it an accessible tool for snow research and the management of water resources. With advancing unmanned aerial vehicle technology there are implications for scalability to map snow depth, and SWE, across large basins.

  4. Growth CO{sub 2} concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit

    Energy Technology Data Exchange (ETDEWEB)

    Engel, V. C. [South Florida Natural Resources Center, Everglades National Park, Homestead, FL (United States); Griffin, K. L. [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Murthy, R.; Patterson, L.; Klimas, C. [Columbia University, Biosphere 2 Center, Oracle, AZ (United States); Potosnak, M. [National Center for Atmospheric Research, Boulder, CO (United States)

    2004-10-01

    To gain a better understanding of the hydraulic constraints on transpiration, altered canopy water relations in response to elevated carbon dioxide was evaluated in a morphological context. It was expected that by integrating the information gained into predictive models of canopy water balance in elevated carbon dioxide, our understanding of leaf-level responses to drought stresses and evaporative demand will also improve. To achieve these objectives, transpiration rates and leaf-to-sapwood area ratios in clonal stands of cottonwoods grown in near-ambient and elevated carbon dioxide were measured at the Biosphere 2 facility near Oracle, Arizona. Results were interpreted in terms of physical controls versus the direct and indirect effects of growth mediated by morphological changes on transpiration fluxes during periods of drought and high evaporative demand. Leaf-level transpiration rates were found to be nearly equivalent across carbon dioxide treatments when soil water was not limited. However, during drought stress, canopy-level transpiration was roughly equivalent across carbon dioxide treatments, but leaf-level fluxes were reduced in elevated carbon dioxide by a factor equal to the leaf area ratio of the canopies. This shift from equivalent leaf-level transpiration to equivalent canopy-level transpiration with increasing drought stress is taken to mean that maximum water use rates are controlled by atmospheric demand at high soil water content and by soil water availability at low soil water content. Changes in vapor pressure deficits had less pronounced effect on transpiration than changes in soil water content. 37 refs., 3 tabs., 5 figs.

  5. Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit

    International Nuclear Information System (INIS)

    Engel, V. C.; Griffin, K. L.; Murthy, R.; Patterson, L.; Klimas, C.; Potosnak, M.

    2004-01-01

    To gain a better understanding of the hydraulic constraints on transpiration, altered canopy water relations in response to elevated carbon dioxide was evaluated in a morphological context. It was expected that by integrating the information gained into predictive models of canopy water balance in elevated carbon dioxide, our understanding of leaf-level responses to drought stresses and evaporative demand will also improve. To achieve these objectives, transpiration rates and leaf-to-sapwood area ratios in clonal stands of cottonwoods grown in near-ambient and elevated carbon dioxide were measured at the Biosphere 2 facility near Oracle, Arizona. Results were interpreted in terms of physical controls versus the direct and indirect effects of growth mediated by morphological changes on transpiration fluxes during periods of drought and high evaporative demand. Leaf-level transpiration rates were found to be nearly equivalent across carbon dioxide treatments when soil water was not limited. However, during drought stress, canopy-level transpiration was roughly equivalent across carbon dioxide treatments, but leaf-level fluxes were reduced in elevated carbon dioxide by a factor equal to the leaf area ratio of the canopies. This shift from equivalent leaf-level transpiration to equivalent canopy-level transpiration with increasing drought stress is taken to mean that maximum water use rates are controlled by atmospheric demand at high soil water content and by soil water availability at low soil water content. Changes in vapor pressure deficits had less pronounced effect on transpiration than changes in soil water content. 37 refs., 3 tabs., 5 figs

  6. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought.

    Science.gov (United States)

    Gitlin, Alicyn R; Sthultz, Christopher M; Bowker, Matthew A; Stumpf, Stacy; Paxton, Kristina L; Kennedy, Karla; Muñoz, Axhel; Bailey, Joseph K; Whitham, Thomas G

    2006-10-01

    Understanding patterns of plant population mortality during extreme weather events is important to conservation planners because the frequency of such events is expected to increase, creating the need to integrate climatic uncertainty into management. Dominant plants provide habitat and ecosystem structure, so changes in their distribution can be expected to have cascading effects on entire communities. Observing areas that respond quickly to climate fluctuations provides foresight into future ecological changes and will help prioritize conservation efforts. We investigated patterns of mortality in six dominant plant species during a drought in the southwestern United States. We quantified population mortality for each species across its regional distribution and tested hypotheses to identify ecological stress gradients for each species. Our results revealed three major patterns: (1) dominant species from diverse habitat types (i.e., riparian, chaparral, and low- to high-elevation forests) exhibited significant mortality, indicating that the effects of drought were widespread; (2) average mortality differed among dominant species (one-seed juniper[Juniperus monosperma (Engelm.) Sarg.] 3.3%; manzanita[Arctostaphylos pungens Kunth], 14.6%; quaking aspen[Populus tremuloides Michx.], 15.4%; ponderosa pine[Pinus ponderosa P. & C. Lawson], 15.9%; Fremont cottonwood[Populus fremontii S. Wats.], 20.7%; and pinyon pine[Pinus edulis Engelm.], 41.4%); (3) all dominant species showed localized patterns of very high mortality (24-100%) consistent with water stress gradients. Land managers should plan for climatic uncertainty by promoting tree recruitment in rare habitat types, alleviating unnatural levels of competition on dominant plants, and conserving sites across water stress gradients. High-stress sites, such as those we examined, have conservation value as barometers of change and because they may harbor genotypes that are adapted to climatic extremes.

  7. Alternative splicing studies of the reactive oxygen species gene network in Populus reveal two isoforms of high-isoelectric-point superoxide dismutase.

    Science.gov (United States)

    Srivastava, Vaibhav; Srivastava, Manoj Kumar; Chibani, Kamel; Nilsson, Robert; Rouhier, Nicolas; Melzer, Michael; Wingsle, Gunnar

    2009-04-01

    Recent evidence has shown that alternative splicing (AS) is widely involved in the regulation of gene expression, substantially extending the diversity of numerous proteins. In this study, a subset of expressed sequence tags representing members of the reactive oxygen species gene network was selected from the PopulusDB database to investigate AS mechanisms in Populus. Examples of all known types of AS were detected, but intron retention was the most common. Interestingly, the closest Arabidopsis (Arabidopsis thaliana) homologs of half of the AS genes identified in Populus are not reportedly alternatively spliced. Two genes encoding the protein of most interest in our study (high-isoelectric-point superoxide dismutase [hipI-SOD]) have been found in black cottonwood (Populus trichocarpa), designated PthipI-SODC1 and PthipI-SODC2. Analysis of the expressed sequence tag libraries has indicated the presence of two transcripts of PthipI-SODC1 (hipI-SODC1b and hipI-SODC1s). Alignment of these sequences with the PthipI-SODC1 gene showed that hipI-SODC1b was 69 bp longer than hipI-SODC1s due to an AS event involving the use of an alternative donor splice site in the sixth intron. Transcript analysis showed that the splice variant hipI-SODC1b was differentially expressed, being clearly expressed in cambial and xylem, but not phloem, regions. In addition, immunolocalization and mass spectrometric data confirmed the presence of hipI-SOD proteins in vascular tissue. The functionalities of the spliced gene products were assessed by expressing recombinant hipI-SOD proteins and in vitro SOD activity assays.

  8. Alternative Splicing Studies of the Reactive Oxygen Species Gene Network in Populus Reveal Two Isoforms of High-Isoelectric-Point Superoxide Dismutase1[C][W

    Science.gov (United States)

    Srivastava, Vaibhav; Srivastava, Manoj Kumar; Chibani, Kamel; Nilsson, Robert; Rouhier, Nicolas; Melzer, Michael; Wingsle, Gunnar

    2009-01-01

    Recent evidence has shown that alternative splicing (AS) is widely involved in the regulation of gene expression, substantially extending the diversity of numerous proteins. In this study, a subset of expressed sequence tags representing members of the reactive oxygen species gene network was selected from the PopulusDB database to investigate AS mechanisms in Populus. Examples of all known types of AS were detected, but intron retention was the most common. Interestingly, the closest Arabidopsis (Arabidopsis thaliana) homologs of half of the AS genes identified in Populus are not reportedly alternatively spliced. Two genes encoding the protein of most interest in our study (high-isoelectric-point superoxide dismutase [hipI-SOD]) have been found in black cottonwood (Populus trichocarpa), designated PthipI-SODC1 and PthipI-SODC2. Analysis of the expressed sequence tag libraries has indicated the presence of two transcripts of PthipI-SODC1 (hipI-SODC1b and hipI-SODC1s). Alignment of these sequences with the PthipI-SODC1 gene showed that hipI-SODC1b was 69 bp longer than hipI-SODC1s due to an AS event involving the use of an alternative donor splice site in the sixth intron. Transcript analysis showed that the splice variant hipI-SODC1b was differentially expressed, being clearly expressed in cambial and xylem, but not phloem, regions. In addition, immunolocalization and mass spectrometric data confirmed the presence of hipI-SOD proteins in vascular tissue. The functionalities of the spliced gene products were assessed by expressing recombinant hipI-SOD proteins and in vitro SOD activity assays. PMID:19176719

  9. Climate, streamflow, and legacy effects on growth of riparian Populus angustifolia in the arid San Luis Valley, Colorado

    Science.gov (United States)

    Andersen, Douglas

    2016-01-01

    Knowledge of the factors affecting the vigor of desert riparian trees is important for their conservation and management. I used multiple regression to assess effects of streamflow and climate (12–14 years of data) or climate alone (up to 60 years of data) on radial growth of clonal narrowleaf cottonwood (Populus angustifolia), a foundation species in the arid, Closed Basin portion of the San Luis Valley, Colorado. I collected increment cores from trees (14–90 cm DBH) at four sites along each of Sand and Deadman creeks (total N = 85), including both perennial and ephemeral reaches. Analyses on trees conditions was common. Models for trees farther from the channel or over a deep water table explained 23–71% of SGI variability, and 4 of 5 contained a streamflow variable. Analyses using solely climate variables over longer time periods explained 17–85% of SGI variability, and 10 of 12 included a variable indexing summer precipitation. Three large, abrupt shifts in recent decades from wet to dry conditions (indexed by a seasonal Palmer Drought Severity Index) coincided with dramatically reduced radial growth. Each shift was presumably associated with branch dieback that produced a legacy effect apparent in many SGI series: uncharacteristically low SGI in the year following the shift. My results suggest trees in locations distant from the active channel rely on the regional shallow unconfined aquifer, summer rainfall, or both to meet water demands. The landscape-level differences in the water supplies sustaining these trees imply variable effects from shifts in winter-versus monsoon-related precipitation, and from climate change versus streamflow or groundwater management.

  10. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    Directory of Open Access Journals (Sweden)

    Vining Kelly J

    2012-01-01

    Full Text Available Abstract Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem in the reference tree species black cottonwood (Populus trichocarpa. Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq, we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation" had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.

  11. Umatilla Basin natural production monitoring and evaluation. Annual progress report, 1994--1995

    International Nuclear Information System (INIS)

    Contor, C.R.; Hoverson, E.; Kissner, P.; Volkman, J.

    1996-04-01

    This report summarizes the activities of the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME) from September 30, 1994 to September 29, 1995. This program was funded by Bonneville Power Administration and was managed under the Fisheries Program, Department of Natural Resources, Confederated Tribes of the Umatilla Indian Reservation. An estimated 36.7 km (22.6 miles) of stream habitat were inventoried on the Umatilla River, Moonshine, Mission, Cottonwood and Coonskin Creeks. A total of 384 of 3,652 (10.5%) habitat units were electrofished. The number of juvenile fish captured follows: 2,953 natural summer steelhead (including resident rainbow trout; Oncorhynchus mykiss), one hatchery steelhead, 341 natural chinook salmon (O. tshawytscha), 163 natural coho salmon (O. kisutch), five bull trout (Salvelinus confluentus), 185 mountain whitefish (Prosopium williamsoni), and six northern squawfish (Ptychoicheilus oregonensis). The expanded population estimate for the areas surveyed was 73,716 salmonids with a mean density of 0.38 fish/m 2 . Relative salmonid abundance, seasonal distribution and habitat utilization were monitored at index sites throughout the basin. During index site monitoring, the following species were collected in addition to those listed above: american shad (Alosa sapidissima), smallmouth bass (Micropterus dolomieu), carp (Cyprinus carpio) and chiselmouth (Acrocheilus alutaceus). Thirty-nine sites were electrofished during the spring and summer seasons, while 36 sites were sampled in the fall season. A study of the migration movements and homing requirements of adult salmonids in the Umatilla River was conducted during the 1994-95 return years. Radio telemetry was used to evaluate the movements of adult salmonids past diversion dams in the lower Umatilla River and to determine migrational movements of salmonids following upstream transport

  12. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants. Copyright © 2015 Jun et al.

  13. Geomorphic effects of rural-to-urban land use conversion on three streams in the Central Redbed Plains of Oklahoma

    Science.gov (United States)

    Kang, Ranbir S.; Marston, Richard A.

    2006-09-01

    This research evaluates the impact of rural-to-urban land use conversion on channel morphology and riparian vegetation for three streams in the Central Redbed Plains geomorphic province (central Great Plains ecoregion) of Oklahoma. The Deep Fork Creek watershed is largely urbanized; the Skeleton Creek watershed is largely rural; and the Stillwater Creek watershed is experiencing a rapid transition from rural to urban land cover. Each channel was divided into reaches based on tributary junctions, sinuosity, and slope. Field surveys were conducted at transects in a total of 90 reaches, including measurements of channel units, channel cross-section at bankfull stage, and riparian vegetation. Historical aerial photographs were available for only Stillwater Creek watershed, which were used to document land cover in this watershed, especially changes in the extent of urban areas (impervious cover). The three streams have very low gradients (channel banks, but have incised into red Permian shales and sandstone. The riparian vegetation is dominated by cottonwoods, ash, and elm trees that provide a dense root mat on stream banks where the riparian vegetation is intact. Channels increased in width and depth in the downstream direction as is normally expected, but the substrate materials and channel units remained unchanged. Statistical analyses demonstrated that urbanization did not explain spatial patterns of changes in any variables. These three channels in the central Redbed Plains are responding as flumes during peak flows, funneling runoff and the wash-load sediment downstream in major runoff events without any effect on channel dimensions. Therefore, local geological conditions (similar bedrock, cohesive substrates and similar riparian vegetation) are mitigating the effects of urbanization.

  14. There is no temperature dependence of net biochemical fractionation of hydrogen and oxygen isotopes in tree-ring cellulose.

    Science.gov (United States)

    Roden, J S; Ehleringer, J R

    2000-01-01

    The isotopic composition of tree-ring cellulose was obtained over a two-year period from small diameter, riparian zone trees along an elevational transect in Big Cottonwood Canyon, Utah, USA to test for a possible temperature dependence of net biological fractionation during cellulose synthesis. The isotope ratios of stream water varied by only 3.6% and 0.2% in deltaD and delta18O, respectively, over an elevation change of 810m. The similarity in stream water and macroenvironment over the short (13km) transect produced nearly constant stem and leaf water deltaD and delta18O values. In addition, what few seasonal variations observed in the isotopic composition of source water and atmospheric water vapor or in leaf water evaporative enrichment were experienced equally by all sites along the elevational transect. The temperature at each site along the transect spanned a range of > or = 5 degrees C as calculated using the adiabatic lapse rate. Since the deltaD and delta18O values of stem and leaf water varied little for these trees over this elevation/temperature transect, any differences in tree-ring cellulose deltaD and delta18O values should have been associated with temperature effects on net biological fractionation. However, the slopes of the regressions of elevation versus the deltaD and delta18O values of tree-ring cellulose were not significantly different from zero indicating little or no temperature dependence of net biological fractionation. Therefore, cross-site climatic reconstruction studies using the isotope ratios of cellulose need not be concerned that temperatures during the growing season have influenced results.

  15. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  16. Effects of reintroduced beaver (Castor canadensis) on riparian bird community structure along the upper San Pedro River, southeastern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Johnson, Glenn E.; van Riper, Charles

    2014-01-01

    Chapter 1.—We measured bird abundance and richness along the upper San Pedro River in 2005 and 2006, in order to document how beavers (Castor canadensis) may act as ecosystem engineers after their reintroduction to a desert riparian area in the Southwestern United States. In areas where beavers colonized, we found higher bird abundance and richness of bird groups, such as all breeding birds, insectivorous birds, and riparian specialists, and higher relative abundance of many individual species—including several avian species of conservation concern. Chapter 2.—We conducted bird surveys in riparian areas along the upper San Pedro River in southeastern Arizona (United States) and northern Sonora (Mexico) in order to describe factors influencing bird community dynamics and the distribution and abundance of species, particularly those of conservation concern. These surveys were also used to document the effects of the ecosystem-altering activities of a recently reintroduced beavers (Castor canadensis). Chapter 3.—We reviewed Southwestern Willow Flycatcher (Empidonax traillii extimus) nest records and investigated the potential for future breeding along the upper San Pedro River in southeastern Arizona, where in July 2005 we encountered the southernmost verifiable nest attempt for the species. Continued conservation and management of the area’s riparian vegetation and surface water has potential to contribute additional breeding sites for this endangered Willow Flycatcher subspecies. Given the nest record along the upper San Pedro River and the presence of high-density breeding sites to the north, the native cottonwood-willow forests of the upper San Pedro River could become increasingly important to E. t. extimus recovery, especially considering the anticipated effect of the tamarisk leaf beetle (Diorhabda carinulata) on riparian habitat north of the region.

  17. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  18. Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.

    Directory of Open Access Journals (Sweden)

    Rachael V Adams

    Full Text Available Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus, along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart, but also within river systems by large treeless canyons (>100 km. Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic

  19. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1 0 x 2 0 Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains

  20. 3D ground‐motion simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone: Variability of long‐period (T≥1  s) ground motions and sensitivity to kinematic rupture parameters

    Science.gov (United States)

    Moschetti, Morgan P.; Hartzell, Stephen; Ramirez-Guzman, Leonardo; Frankel, Arthur; Angster, Stephen J.; Stephenson, William J.

    2017-01-01

    We examine the variability of long‐period (T≥1  s) earthquake ground motions from 3D simulations of Mw 7 earthquakes on the Salt Lake City segment of the Wasatch fault zone, Utah, from a set of 96 rupture models with varying slip distributions, rupture speeds, slip velocities, and hypocenter locations. Earthquake ruptures were prescribed on a 3D fault representation that satisfies geologic constraints and maintained distinct strands for the Warm Springs and for the East Bench and Cottonwood faults. Response spectral accelerations (SA; 1.5–10 s; 5% damping) were measured, and average distance scaling was well fit by a simple functional form that depends on the near‐source intensity level SA0(T) and a corner distance Rc:SA(R,T)=SA0(T)(1+(R/Rc))−1. Period‐dependent hanging‐wall effects manifested and increased the ground motions by factors of about 2–3, though the effects appeared partially attributable to differences in shallow site response for sites on the hanging wall and footwall of the fault. Comparisons with modern ground‐motion prediction equations (GMPEs) found that the simulated ground motions were generally consistent, except within deep sedimentary basins, where simulated ground motions were greatly underpredicted. Ground‐motion variability exhibited strong lateral variations and, at some sites, exceeded the ground‐motion variability indicated by GMPEs. The effects on the ground motions of changing the values of the five kinematic rupture parameters can largely be explained by three predominant factors: distance to high‐slip subevents, dynamic stress drop, and changes in the contributions from directivity. These results emphasize the need for further characterization of the underlying distributions and covariances of the kinematic rupture parameters used in 3D ground‐motion simulations employed in probabilistic seismic‐hazard analyses.

  1. Feedbacks among Floods, Pioneer Woody Vegetation, and Channel Change in Sand-Bed Rivers: Insights from Field Studies of Controlled Flood Releases and Models

    Science.gov (United States)

    Wilcox, A. C.; Shafroth, P. B.; Lightbody, A.; Stella, J. C.; Bywater-Reyes, S.; Kiu, L.; Skorko, K.

    2012-04-01

    To investigate feedbacks between flow, geomorphic processes, and pioneer riparian vegetation in sand-bed rivers, we are combining field, hydraulic modeling, and laboratory simulations. Field studies have examined the response of woody riparian seedlings and channel morphology to prescribed dam-released floods that have been designed in part to maintain a native riparian woodland system on the Bill Williams River, Arizona, USA. Through monitoring of floods over a 7-year period, we have observed temporal and spatial variations in channel response. Floods have produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach with greater sediment supply. We also have observed that as vegetation grows beyond the seedling stage, its stabilizing effect on bars and its drag effect on flow progressively increases, such that floods of similar sizes but at different times may produce markedly different downstream responses as a function of vegetation characteristics. We also observed greater mortality among nonnative Tamarix spp. (tamarisk) seedlings than among native Salix gooddingii (Goodding's willow) seedlings, likely as a result of the greater first-year growth of willow relative to tamarisk. Combining field observations with modeling predictions of local hydraulics for the flood events we have studied is being used to draw linkages between hydraulics, channel change, and plant response at the patch and bar scale. In addition, mechanistic linkages are being examined using a field-scale laboratory stream channel, where seedlings of Tamarix spp. (tamarisk) and Populus fremontii (cottonwood) were planted and subjected to floods with varying sediment feed rate and plant configurations. The floods conveyed by our model channel were generally insufficient to scour the woody seedlings we planted, but changes in bar size and

  2. Methods for Measuring Effects of Changes in Tamarisk Evapotranspiration on Groundwater at Southwestern Uranium Mill Tailings Sites

    Science.gov (United States)

    Waugh, W.; Nagler, P. L.; Vogel, J.; Glenn, E.; Nguyen, U.; Jarchow, C. J.

    2016-12-01

    Tamarisk (Tamarix spp.) is a non-native tree that competes with native species for water in riparian corridors of the southwestern U.S. The beetle, Diorhabda carinulata, which was released as a biocontrol agent, may be affecting tamarisk health. After several years of defoliation, tamarisk is now coming back along many southwestern rivers because of dwindling beetle numbers. We studied effects of changes in riparian plant communities dominated by tamarisk on evapotranspiration (ET) at uranium mill tailings sites. We used an unmanned aerial system (UAS) to acquire high resolution spectral data needed to estimate spatial and temporal variability in ET in riparian ecosystems at uranium mill tailings sites adjacent to the San Juan River near Shiprock, New Mexico, and the Colorado River near Moab, Utah. UAS imagery allowed us to monitor changes in phenology, fractional greenness, ET, and effects on water resources at these sites. We timed ground data and UAS image acquisition with an August 2016 Landsat image to assist with spatiotemporal scaling techniques. We measured leaf area index (LAI) and sampled biomass on tamarisk, cottonwood (Populus spp.), and willow (Salix spp.) within the UAS acquisition areas to scale leaf area on individual branches to LAI of whole trees. UAS cameras included a Sony Alpha A5100 for species-level vegetation mapping and a MicaSense Red Edge five-band multispectral camera to map Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The UAS products were correlated with satellite imagery. Our goal was to scale plant water use acquired from UAS imagery to Landsat and/or MODIS to provide a time-series documenting long-term trends and relationships of ET and groundwater elevation. NDVI and EVI were calibrated across UAS, MODIS and Landsat images using regression and ET was calculated using NDVI, EVI, ground meteorological data, and an existing empirical algorithm.

  3. Bottomland hardwood establishment and avian colonization of reforested sites in the Mississippi Alluvial Valley

    Science.gov (United States)

    Wilson, R.R.; Twedt, D.J.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.

    2005-01-01

    species (e.g., cottonwood [Populus deltoides], or sycamore [Platanus occidentalis]) in the planting stock to encourage rapid avian colonization.

  4. Changes in composition, structure and aboveground biomass over seventy-six years (1930-2006) in the Black Rock Forest, Hudson Highlands, southeastern New York State.

    Science.gov (United States)

    Schuster, W S F; Griffin, K L; Roth, H; Turnbull, M H; Whitehead, D; Tissue, D T

    2008-04-01

    We sought to quantify changes in tree species composition, forest structure and aboveground forest biomass (AGB) over 76 years (1930-2006) in the deciduous Black Rock Forest in southeastern New York, USA. We used data from periodic forest inventories, published floras and a set of eight long-term plots, along with species-specific allometric equations to estimate AGB and carbon content. Between the early 1930s and 2000, three species were extirpated from the forest (American elm (Ulmus americana L.), paper birch (Betula papyrifera Marsh.) and black spruce (Picea mariana (nigra) (Mill.) BSP)) and seven species invaded the forest (non-natives tree-of-heaven (Ailanthus altissima (Mill.) Swingle) and white poplar (Populus alba L.) and native, generally southerly distributed, southern catalpa (Catalpa bignonioides Walt.), cockspur hawthorn (Crataegus crus-galli L.), red mulberry (Morus rubra L.), eastern cottonwood (Populus deltoides Bartr.) and slippery elm (Ulmus rubra Muhl.)). Forest canopy was dominated by red oak and chestnut oak, but the understory tree community changed substantially from mixed oak-maple to red maple-black birch. Density decreased from an average of 1500 to 735 trees ha(-1), whereas basal area doubled from less than 15 m(2) ha(-1) to almost 30 m(2) ha(-1) by 2000. Forest-wide mean AGB from inventory data increased from about 71 Mg ha(-1) in 1930 to about 145 Mg ha(-1) in 1985, and mean AGB on the long-term plots increased from 75 Mg ha(-1) in 1936 to 218 Mg ha(-1) in 1998. Over 76 years, red oak (Quercus rubra L.) canopy trees stored carbon at about twice the rate of similar-sized canopy trees of other species. However, there has been a significant loss of live tree biomass as a result of canopy tree mortality since 1999. Important constraints on long-term biomass increment have included insect outbreaks and droughts.

  5. Adaptive and active materials: selected papers from the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 13) (Snowbird, UT, USA, 16-18 September 2013)

    Science.gov (United States)

    Johnson, Nancy; Naguib, Hani; Turner, Travis; Anderson, Iain; Bassiri-Gharb, Nazanin; Daqaq, Mohammed; Baba Sundaresan, Vishnu; Sarles, Andy

    2014-10-01

    The sixth annual meeting of the ASME Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) was held in the beautiful mountain encircled Snowbird Resort and Conference Center in Little Cottonwood Canyon near Salt Lake City, Utah. It is the conference's objective to provide an up-to-date overview of research trends in the entire field of smart materials systems in a friendly casual forum conducive to the exchange of ideas and latest results. As each year we strive to grow and offer new experiences, this year we included special focused topic tracks on nanoscale multiferroic materials and origami engineering. The cross-disciplinary emphasis was reflected in keynote speeches by Professor Kaushik Bhattacharya (California Institute of Technology) on 'Cyclic Deformation and the Interplay between Phase Transformation and Plasticity in Shape Memory Alloys', by Professor Alison Flatau (University of Maryland at College Park) on 'Structural Magnetostrictive Alloys: The Other Smart Material', and by Dr Leslie Momoda (Director of the Sensors and Materials Laboratories, HRL Laboratories, LLC, Malibu, CA) on 'Architecturing New Functional Materials: An Industrial Perspective'. SMASIS 2013 was divided into seven symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. SYMP 1. Development and Characterization of Multifunctional Materials. SYMP 2. Mechanics and Behavior of Active Materials. SYMP 3. Modeling, Simulation and Control of Adaptive Systems. SYMP 4. Integrated System Design and Implementation. SYMP 5. Structural Health Monitoring. SYMP 6. Bioinspired Smart Materials and Systems. SYMP 7. Energy Harvesting. Authors of selected papers in the materials areas (symposia 1, 2, and 6) as well as energy harvesting (symposium 7) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart

  6. Evolutionary Quantitative Genomics of Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    Full Text Available Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance was investigated for signatures of selection (comparing QST-FST using clustering of individuals by climate of origin (temperature and precipitation. 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation; 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes were associated with adaptive traits (based on significant QST. Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show

  7. Final Environmental Statement related to the decommissioning of the Edgemont uranium mill. Docket No. 40-1341 Tennessee Valley Authority

    International Nuclear Information System (INIS)

    1982-06-01

    After an assessment of concerns and alternatives and the addition of conditions related to the proposed decommissioning project operations, the proposed action permits the decommissioning of the existing uranium milling facilities at Edgemont, South Dakota, including removal or cleanup of mill buildings, removal of tailings sands and slimes from the mill site, and removal of contaminated soil from the mill site and local environs. It is estimated by TVA that approximately 2.1 x 10 6 MT (2.3 x 10 6 tons) of tailings and an undetermined amount of contaminated soil will be removed from the mill site. It is also proposed that all radioactive materials, removed in the course of carrying out the proposed action, be transported by truck and/or slurry pipeline to an impoundment, located about 3.21 km southeast of the mill site, constructed especially to ensure containment of such material for the foreseeable future. The project area that will undergo major land disturbance consists of 207 ha (including 104 ha at the disposal site, 12 ha for the haul road to be constructed between the mill and disposal site, and the 86-ha mill site), plus the potential removal of at least 17 ha of ponderosa pine and surficial soil east of the mill site and an unestablished, but small, area of surficial soil in the Cottonwood community. The latter two areas have been contaminated by windblown tailings. All disturbed areas will be reclaimed and revegetated. The title to the tailings disposal site will be transferred to state or federal entities so that any future use can be controlled to ensure the health and safety of the public. Chapters are devoted to alternatives including the proposed action; the affected environment; and environmental consequences, monitoring to detect impacts, and mitigation of impacts. Qualifications of the task group are given and agencies receiving the draft environmental statement are listed

  8. Model-based scenario planning to inform climate change adaptation in the Northern Great Plains—Final report

    Science.gov (United States)

    Symstad, Amy J.; Miller, Brian W.; Friedman, Jonathan M.; Fisichelli, Nicholas A.; Ray, Andrea J.; Rowland, Erika; Schuurman, Gregor W.

    2017-12-18

    Public SummaryWe worked with managers in two focal areas to plan for the uncertain future by integrating quantitative climate change scenarios and simulation modeling into scenario planning exercises.In our central North Dakota focal area, centered on Knife River Indian Villages National Historic Site, managers are concerned about how changes in flood severity and growing conditions for native and invasive plants may affect archaeological resources and cultural landscapes associated with the Knife and Missouri Rivers. Climate projections and hydrological modeling based on those projections indicate plausible changes in spring and summer soil moisture ranging from a 7 percent decrease to a 13 percent increase and maximum winter snowpack (important for spring flooding) changes ranging from a 13 percent decrease to a 47 percent increase. Facilitated discussions among managers and scientists exploring the implications of these different climate scenarios for resource management revealed potential conflicts between protecting archeological sites and fostering riparian cottonwood forests. The discussions also indicated the need to prioritize archeological sites for excavation or protection and culturally important plant species for intensive management attention.In our southwestern South Dakota focal area, centered on Badlands National Park, managers are concerned about how changing climate will affect vegetation production, wildlife populations, and erosion of fossils, archeological artifacts, and roads. Climate scenarios explored by managers and scientists in this focal area ranged from a 13 percent decrease to a 33 percent increase in spring precipitation, which is critical to plant growth in the northern Great Plains region, and a slight decrease to a near doubling of intense rain events. Facilitated discussions in this focal area concluded that greater effort should be put into preparing for emergency protection, excavation, and preservation of exposed fossils or

  9. Sixty Years of Geomorphic Change and Restoration Challenges on Two Unchannelized Reaches of the Missouri River

    Science.gov (United States)

    Elliott, C. M.; Jacobson, R. B.; Bulliner, E. A., IV

    2016-12-01

    sandbars to undergo natural cottonwood regeneration. Understanding habitat diversity and variability since dam closure and placing the effects of extreme floods during a larger historical context encompassing the entire post-dam period, and will aid management agencies in restoration decisions on these two segments of the Missouri River.

  10. Modeling Prairie Pothole Lakes: Linking Satellite Observation and Calibration (Invited)

    Science.gov (United States)

    Schwartz, F. W.; Liu, G.; Zhang, B.; Yu, Z.

    2009-12-01

    This paper examines the response of a complex lake wetland system to variations in climate. The focus is on the lakes and wetlands of the Missouri Coteau, which is part of the larger Prairie Pothole Region of the Central Plains of North America. Information on lake size was enumerated from satellite images, and yielded power law relationships for different hydrological conditions. More traditional lake-stage data were made available to us from the USGS Cottonwood Lake Study Site in North Dakota. A Probabilistic Hydrologic Model (PHM) was developed to simulate lake complexes comprised of tens-of-thousands or more individual closed-basin lakes and wetlands. What is new about this model is a calibration scheme that utilizes remotely-sensed data on lake area as well as stage data for individual lakes. Some ¼ million individual data points are used within a Genetic Algorithm to calibrate the model by comparing the simulated results with observed lake area-frequency power law relationships derived from Landsat images and water depths from seven individual lakes and wetlands. The simulated lake behaviors show good agreement with the observations under average, dry, and wet climatic conditions. The calibrated model is used to examine the impact of climate variability on a large lake complex in ND, in particular, the “Dust Bowl Drought” 1930s. This most famous drought of the 20th Century devastated the agricultural economy of the Great Plains with health and social impacts lingering for years afterwards. Interestingly, the drought of 1930s is unremarkable in relation to others of greater intensity and frequency before AD 1200 in the Great Plains. Major droughts and deluges have the ability to create marked variability of the power law function (e.g. up to one and a half orders of magnitude variability from the extreme Dust Bowl Drought to the extreme 1993-2001 deluge). This new probabilistic modeling approach provides a novel tool to examine the response of the

  11. Genotype variation in bark texture drives lichen community assembly across multiple environments.

    Science.gov (United States)

    Lamit, L J; Lau, M K; Naesborg, R Reese; Wojtowicz, T; Whitham, T G; Gehring, C A

    2015-04-01

    A major goal of community genetics is to understand the influence of genetic variation within a species on ecological communities. Although well-documented for some organisms, additional research is necessary to understand the relative and interactive effects of genotype and environment on biodiversity, identify mechanisms through which tree genotype influences communities, and connect this emerging field with existing themes in ecology. We employ an underutilized but ecologically significant group of organisms, epiphytic bark lichens, to understand the relative importance of Populus angustifolia (narrowleaf cottonwood) genotype and environment on associated organisms within the context of community assembly and host ontogeny. Several key findings emerged. (1) In a single common garden, tree genotype explained 18-33% and 51% of the variation in lichen community variables and rough bark cover, respectively. (2) Across replicated common gardens, tree genotype affected lichen species richness, total lichen cover, lichen species composition, and rough bark cover, whereas environment only influenced composition and there were no genotype by environment interactions. (3) Rough bark cover was positively correlated with total lichen cover and richness, and was associated with a shift in species composition; these patterns occurred with variation in rough bark cover among tree genotypes of the same age in common gardens and with increasing rough bark cover along a -40 year tree age gradient in a natural riparian stand. (4) In a common garden, 20-year-old parent trees with smooth bark had poorly developed lichen communities, similar to their 10-year-old ramets (root suckers) growing in close proximity, while parent trees with high rough bark cover had more developed communities than their ramets. These findings indicate that epiphytic lichens are influenced by host genotype, an effect that is robust across divergent environments. Furthermore, the response to tree genotype is

  12. Estimating snow water equivalent (SWE) using interferometric synthetic aperture radar (InSAR)

    Science.gov (United States)

    Deeb, Elias J.

    Since the early 1990s, radar interferometry and interferometric synthetic aperture radar (InSAR) have been used extensively to measure changes in the Earth's surface. Previous research has presented theory for estimating snow properties, including potential for snow water equivalent (SWE) retrieval, using InSAR. The motivation behind using remote sensing to estimate SWE is to provide a more complete, continuous set of "observations" to assist in water management operations, climate change studies, and flood hazard forecasting. The research presented here primarily investigates the feasibility of using the InSAR technique at two different wavelengths (C-Band and L-Band) for SWE retrieval of dry snow within the Kuparuk watershed, North Slope, Alaska. Estimating snow distribution around meteorological towers on the coastal plain using a three-day repeat orbit of C-Band InSAR data was successful (Chapter 2). A longer wavelength L-band SAR is evaluated for SWE retrievals (Chapter 3) showing the ability to resolve larger snow accumulation events over a longer period of time. Comparisons of InSAR estimates and late spring manual sampling of SWE show a R2 = 0.61 when a coherence threshold is used to eliminate noisy SAR data. Qualitative comparisons with a high resolution digital elevation model (DEM) highlight areas of scour on windward slopes and areas of deposition on leeward slopes. When compared to a mid-winter transect of manually sampled snow depths, the InSAR SWE estimates yield a RMSE of 2.21cm when a bulk snow density is used and corrections for bracketing the satellite acquisition timing is performed. In an effort to validate the interaction of radar waves with a snowpack, the importance of the "dry snow" assumption for the estimation of SWE using InSAR is tested with an experiment in Little Cottonwood Canyon, Alta, Utah (Chapter 5). Snow wetness is shown to have a significant effect on the velocity of propagation within the snowpack. Despite the radar

  13. Assessing Ecological Flow Needs and Risks for Springs and Baseflow Streams With Growth and Climate Change

    Science.gov (United States)

    Springer, A. E.; Stevens, L. E.

    2008-12-01

    Ecological flow needs assessments are beginning to become an important part of regulated river management, but are more challenging for unregulated rivers. Water needs for ecosystems are greater than just consumptive use by riparian and aquatic vegetation and include the magnitude, frequency, duration and timing of flows and the depth and annual fluctuations of groundwater levels of baseflow supported streams. An ecological flow needs assessment was adapted and applied to an unregulated, baseflow dependent river in the arid to semi-arid Southwestern U.S. A separate process was developed to determine groundwater sources potentially at risk from climate, land management, or groundwater use changes in a large regional groundwater basin in the same semi-arid region. In 2007 and 2008, workshops with ecological, cultural, and physical experts from agencies, universities, tribes, and other organizations were convened. Flow-ecology response functions were developed with either conceptual or actual information for a baseflow dependent river, and scoring systems were developed to assign values to categories of risks to groundwater sources in a large groundwater basin. A reduction of baseflow to the river was predicted to lead to a decline in cottonwood and willow tree abundance, decreases in riparian forest diversity, and increases in non-native tree species, such as tamarisk. These types of forest vegetation changes would likely cause reductions or loss of some bird species. Loss of riffle habitat through declines in groundwater discharge and the associated river levels would likely lead to declines in native fish and amphibian species. A research agenda was developed to develop techniques to monitor, assess and hopefully better manage the aquifers supporting the baseflow dependent river to prevent potential threshold responses of the ecosystems. The scoring system for categories of risk was applied to four systems (aquifers, springs, standing water bodies, and streams) in

  14. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress

    Directory of Open Access Journals (Sweden)

    Vargas-Ortiz Erandi

    2011-07-01

    stems of Arabidopsis and black cottonwood (Populus trichocarpa. Conclusions This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (abiotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.

  15. Distribution and abundance of Least Bell’s Vireos (Vireo bellii pusillus) and Southwestern Willow Flycatchers (Empidonax traillii extimus) on the Middle San Luis Rey River, San Diego County, southern California—2017 data summary

    Science.gov (United States)

    Allen, Lisa D.; Howell, Scarlett L.; Kus, Barbara E.

    2018-04-20

    We surveyed for Least Bell’s Vireos (LBVI) (Vireo bellii pusillus) and Southwestern Willow Flycatchers (SWFL) (Empidonax traillii extimus) along the San Luis Rey River, between College Boulevard in Oceanside and Interstate 15 in Fallbrook, California (middle San Luis Rey River), in 2017. Surveys were conducted from April 13 to July 11 (LBVI) and from May 16 to July 28 (SWFL). We found 146 LBVI territories, at least 107 of which were occupied by pairs. Five additional transient LBVIs were detected. LBVIs used five different habitat types in the survey area: mixed willow, willow-cottonwood, willow-sycamore, riparian scrub, and upland scrub. Forty-four percent of the LBVIs occurred in habitat characterized as mixed willow and 89 percent of the LBVI territories occurred in areas with greater than 50 percent native plant cover. Of 16 banded LBVIs detected in the survey area, 8 had been given full color-band combinations prior to 2017. Four other LBVIs with single (natal) federal bands were recaptured and banded in 2017. Three LBVIs with single dark blue federal bands indicating that they were banded as nestlings on the lower San Luis Rey River and one LBVI with a single gold federal band indicating that it was banded as a nestling on Marine Corps Base Camp Pendleton (MCBCP) could not be recaptured for identification. One banded LBVI emigrated from the middle San Luis Rey River to the lower San Luis Rey River in 2017.One resident SWFL territory and one transient Willow Flycatcher of unknown subspecies (WIFL) were observed in the survey area in 2017. The resident SWFL territory, which was comprised of mixed willow habitat (5–50 percent native plant cover), was occupied by a single male from May 22 to June 21, 2017. No evidence of pairing or nesting activity was observed. The SWFL male was banded with a full color-combination indicating that he was originally banded as a nestling on the middle San Luis Rey River in 2014 and successfully bred in the survey area in 2016

  16. Recent formation of arroyos in the Little Missouri Badlands of southwestern North Dakota

    Science.gov (United States)

    Gonzalez, M.A.

    2001-01-01

    In the Little Missouri Badlands of southwestern North Dakota, the channels of ephemeral streams are incised 2 to 10 m or more into mid-to-late Holocene alluvium. The objectives of this study were to determine the timing and cause(s) of the most recent episodes of fluvial incision and to develop a process-response model that illustrates the formation and evolution of arroyos in this region. The purpose was to distinguish natural from anthropogenic changes to the landscape and to discriminate allogenic from autogenic causes of incision, thereby gaining a greater sense of how steep, relatively small, ephemeral streams evolve. Dendrochronologic and dendrogeomorphic analyses of riparian cottonwoods provide an inexpensive, high-resolution dating method to constrain the time of incision, thereby permitting determination of the cause(s) of incision by evaluating environmental conditions prior to and at the onset of fluvial incision. An examination of seven small (10 to 100 km2) drainage basins indicated ephemeral streams have undergone a four-stage cycle of change within the past 200 years, comprising(i) an initial period of relative geomorphic stability with pedogenesis on the flood plain and low rates of lateral channel migration, (ii) a period of channel incision with subsequent widening of the flood plain through lateral corrasion along middle and upstream reaches, (iii) a concomitant period of aggradation along downstream reaches and, finally, (iv) a period of downstream incision. Dendrochronologic data and dendrogeomorphic relations indicate there have been three distinct periods of fluvial incision in the past 200 years. The first period of incision began in the 1860s and 1870s prior to the onset of European settlement and intensive grazing by domesticated cattle in the area. This period of incision occurred along the middle reaches of all seven of the streams examined and coincided with a severe, protracted drought, suggesting an allogenic cause. The second period

  17. Joint Applications Pilot of the National Climate Predictions and Projections Platform and the North Central Climate Science Center: Delivering climate projections on regional scales to support adaptation planning

    Science.gov (United States)

    Ray, A. J.; Ojima, D. S.; Morisette, J. T.

    2012-12-01

    The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in

  18. Habitat Evaluation Procedures (HEP) Report; Steigerwald Lake National Wildlife Refuge, Technical Report 2000-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Donna

    2001-09-01

    River Power System Loss Assessments and adopted as part of the Northwest Power Planning Council's Fish and Wildlife Program as a BPA obligation (BPA, 1994). Steigenvald Lake NWR is located in southwest Washington (Clark County), within the Columbia River Gorge National Scenic Area. Historically part of the Columbia River flood plain, the refuge area was disconnected from the river by a series of dikes constructed by the COE for flood control in 1966. An aerial photograph from 1948 portrays this area as an exceedingly complex mosaic of open water, wetlands, sloughs, willow and cottonwood stands, wet meadows, upland pastures, and agricultural fields, which once supported a large assemblage of fish and wildlife populations. Eliminating the threat of periodic inundation by the Columbia River allowed landowners to more completely convert the area into upland pasture and farmland through channelization and removal of standing water. Native pastures were 'improved' for grazing by the introduction of non-native fescues, orchard grass, ryegrass, and numerous clovers. Although efforts to drain the lake were not entirely successful, wetland values were still significantly reduced.

  19. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon

    Science.gov (United States)

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.

    2010-01-01

    dams on Blue River and South Fork McKenzie River likely have had the greatest effect on downstream habitats because these sediment and flood-rich tributaries historically contributed a disproportionate volume of bed material, wood, and peak flows in comparison with the spring-fed tributaries of the upper McKenzie River basin. The ecological effects of the dams were examined by focusing on nine exemplar aquatic and terrestrial species, including spring Chinook salmon, bull trout, Oregon chub, Pacific and western brook lamprey, red-legged frog, western pond turtle, alder, and cottonwood. The changes caused by the dams to streamflow hydrograph affect all these and other species in complex ways, although a few commonalities are apparent. A loss of channel complexity in the McKenzie River basin, which is associated with the reduction in flood events and widespread channel stabilization, is the primary factor related to the observed population declines for all nine exemplar species. The dams also have caused direct ecological effects by blocking access to habitat, changing the amount and timing of available critical habitat, and changing water temperature during important seasons for different life stages.

  20. Bioengineering applied to erosion and stability control in the North Apennines (Emilia-Romagna Region, Italy): a check about critical aspects of the works.

    Science.gov (United States)

    Selli, Lavinia; Cavazza, Claudio; Pavanelli, Donatella

    2013-04-01

    purple willow (Salix purpurea). Only the 25% of the interventions was accomplished by the use of secondary plant species, as tamarisk (Tamarix spp.,) blackthorn (Prunus spinosa) , whitethorn (Crataegus spp.), sea-buckthorn (Hipphopae rhamnoides), wild pear (Pyrus pyraster), cottonwood (Populus nigra), eglantine (Rosa spp.), goat-willow (Salix caprea) and cornel (Cornus sanguinea). Better results were achieved with Spanish Broom, a very rural plant that can effectively colonise even poor soils like badlands; as a matter of fact, more than the 75% of the interventions had positive outcomes The efficacy of the consolidation work by the presence of living structures point out an increase of the stability of those interventions older than 4 years, with taking root species present from 54% to 78%. So far, the construction and the reliability of the works have been monitored, in order to capture critical aspects for the success of works and to build a geo-referenced data base of the existing works and their status.

  1. Landsat investigations of the northern Paradox basin, Utah and Colorado: implications for radioactive waste emplacement

    Science.gov (United States)

    Friedman, Jules D.; Simpson, Shirley L.

    1978-01-01

    The first stages of a remote-sensing project on the Paradox basin, part of the USGS (U.S. Geological Survey) radioactive waste-emplacement program, consisted of a review and selection of the best available satellite scanner images to use in geomorphologic and tectonic investigations of the region. High-quality Landsat images in several spectral bands (E-2260-17124 and E-5165-17030), taken under low sun angle October 9 and 10, 1975, were processed via computer for planimetric rectification, histogram analysis, linear transformation of radiance values, and edge enhancement. A lineament map of the northern Paradox basin was subsequently compiled at 1:400,000 using the enhanced Landsat base. Numerous previously unmapped northeast-trending lineaments between the Green River and Yellowcat dome; confirmatory detail on the structural control of major segments of the Colorado, Gunnison, and Dolores Rivers; and new evidence for late Phanerozoic reactivation of Precambrian basement structures are among the new contributions to the tectonics of the region. Lineament trends appear to be compatible with the postulated Colorado lineament zone, with geophysical potential-field anomalies, and with a northeast-trending basement fault pattern. Combined Landsat, geologic, and geophysical field evidence for this interpretation includes the sinuousity of the composite Salt Valley anticline, the transection of the Moab-Spanish Valley anticline on its southeastern end by northeast-striking faults, and possible transection (?) of the Moab diapir. Similarly, northeast-trending lineaments in Cottonwood Canyon and elsewhere are interpreted as manifestations of structures associated with northeasterly trends in the magnetic and gravity fields of the La Sal Mountains region. Other long northwesterly lineaments near the western termination of the Ryan Creek fault zone. may be associated with the fault zone separating the Uncompahgre horst uplift from the Paradox basin. Implications of the

  2. Water resources of Parowan Valley, Iron County, Utah

    Science.gov (United States)

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  3. Vascular Plant and Vertebrate Inventory of Tumacacori National Historical Park

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Halvorson, William L.; Schmidt, Cecilia A.; Anning, Pamela; Docherty, Kathleen

    2005-01-01

    , and birds for a park of its size. This richness is due in part to the ecotone between ecological provinces (Madrean and Sonoran), the geographic distribution of the three units (23 km separates the most distant units), and their close proximity to the Santa Cruz River. The mesic life zone along the river, including rare cottonwood/willow forests and adjacent mesquite bosque at the Tumacacori unit, is representative of areas that have been destroyed or degraded in many other locations in the region. Additional elements such as the semi-desert grassland vegetation community are also related to high species richness for some taxonomic groups. This report includes lists of species recorded by us (or likely to be recorded with additional effort) and maps of study sites. We also suggest management implications and ways to maintain or enhance the unique biological resources of Tumacacori NHP: limit development adjacent to the park, exclude cattle and off-road vehicles, develop an eradication plan for non-native species, and hire a natural resource specialist. These recommendations are intended to assist park staff with addressing many of the goals set out in their most recent natural resources management plan. This study is the first step in a long-term process of compiling information on the biological resources of Tumacacori NHP and its surrounding areas, and our findings should not be viewed as the final authority on the plants and animals of the park. Therefore, we also recommend additional inventory and monitoring studies and identify components of our effort that could be improved upon, either through the application of new techniques (e.g., use of genetic markers) or by extending the temporal and/or spatial scope of our research.

  4. Streamflow monitoring and statistics for development of water rights claims for Wild and Scenic Rivers, Owyhee Canyonlands Wilderness, Idaho, 2012

    Science.gov (United States)

    Wood, Molly S.; Fosness, Ryan L.

    2013-01-01

    -record method. The synthetic and actual daily mean streamflow records were used to estimate daily mean streamflow that was exceeded 80, 50, and 20 percent of the time (80-, 50-, and 20-percent exceedances) for bimonthly and annual periods. Bankfull streamflow statistics were calculated by fitting the synthetic and actual annual peak streamflow records to a log Pearson Type III distribution using Bulletin 17B guidelines in the U.S. Geological Survey PeakFQ program. The coefficients of determination (R2) for the regressions between the monitoring and index sites ranged from 0.74 for Wickahoney Creek to 0.98 for the West Fork Bruneau River and Deep Creek. Confidence in computed streamflow statistics is highest among other sites for the East Fork Owyhee River and the West Fork Bruneau River on the basis of regression statistics, visual fit of the related data, and the range and number of streamflow measurements. Streamflow statistics for sites with the greatest uncertainty included Big Jacks, Little Jacks, Cottonwood, Wickahoney, and Sheep Creeks. The uncertainty in computed streamflow statistics was due to a number of factors which included the distance of index sites relative to monitoring sites, relatively low streamflow conditions that occurred during the study, and the limited number and range of streamflow measurements. However, the computed streamflow statistics are considered the best possible estimates given available datasets in the remote study area. Streamflow measurements over a wider range of hydrologic and climatic conditions would improve the relations between streamflow characteristics at monitoring and index sites. Additionally, field surveys are needed to verify if the streamflows selected for the water rights claims are sufficient for maintaining outstanding remarkable values in the Wild and Scenic rivers included in the study.

  5. Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Glen; Trump, Jeremy; Gembala, Mike

    2003-09-01

    trutta) had low densities, and limited distribution throughout the basin. A large return of adult spring chinook to the Touchet River drainage in 2001 produced higher densities of juvenile chinook in 2002 than have been seen in recent years, especially in the Wolf Fork. The adult return in 2002 was substantially less than what was seen in 2001. Due to poor water conditions and trouble getting personnel hired, spawning surveys were limited in 2002. Surveyors found only one redd in four Walla Walla River tributaries (Cottonwood Ck., East Little Walla Walla, West Little Walla Walla, and Mill Ck.), and 59 redds in Touchet River tributaries (10 in the North Fork Touchet, 30 in the South Fork Touchet, and 19 in the Wolf Fork). Bull trout spawning surveys in the upper Touchet River tributaries found a total of 125 redds and 150 live fish (92 redds and 75 fish in the Wolf Fork, 2 redds and 1 fish in the Burnt Fork, 0 redds and 1 fish in the South Fork Touchet, 29 redds and 71 fish in the North Fork Touchet, and 2 redds and 2 fish in Lewis Ck.). A preliminary steelhead genetics analysis was completed as part of this project. Results indicate differences between naturally produced steelhead and those produced in the hatchery. There were also apparent genetic differences among the naturally produced fish from different areas of the basin. Detailed results are reported in Bumgarner et al. 2003. Recommendations for assessment activities in 2003 included: (1) continue to monitor the Walla Walla River (focusing from the stateline to McDonald Rd.), the Mill Ck system, and the Little Walla Walla System. (2) reevaluate Whiskey Ck. for abundance and distribution of salmonids, and Lewis Ck. for bull trout density and distribution. (3) select or develop a habitat survey protocol and begin to conduct habitat inventory and assessment surveys. (4) summarize bull trout data for Mill Ck, South Fork Touchet, and Lewis Ck. (5) begin to evaluate temperature and flow data to assess if the habitat

  6. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    Science.gov (United States)

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    be underlain by similar deposits. Delineation of the zones was based on depositional history of the area and the distri- bution of sediments shown on a surficial geologic map. Water levels in wells were measured twice in 1990: during late winter when ground-water with- drawals were the least and water levels the highest, and again in late summer, when ground- water withdrawals were the greatest and water levels the lowest. These water levels were used to construct potentiometric-contour maps and subsequently to determine the variability of the slope in the potentiometric surface in the area. Values for the three properties, derived from the described sources of information, were used to produce a map showing the general distribution of average linear velocity of ground water moving through the principal aquifer of the study area. Velocity derived ranged from 0.06 to 144 feet per day with a median of about 3 feet per day. Values were slightly faster for late summer 1990 than for late winter 1990, mainly because increased with- drawal of water during the summer created slightly steeper hydraulic-head gradients between the recharge area near the mountain front and the well fields farther to the west. The fastest average linear-velocity values were located at the mouth of Little Cottonwood Canyon and south of Dry Creek near the mountain front, where the hydraulic con- ductivity was estimated to be the largest because the drillers described the sediments to be pre- dominantly clean and coarse grained. Both of these areas also had steep slopes in the potentiometric surface. Other areas where average linear velocity was fast included small areas near pumping wells where the slope in the potentiometric surface was locally steepened. No apparent relation between average linear velocity and porosity could be seen in the mapped distributions of these two properties. Calculation of travel time along a flow line to a well in the southwestern part of the study area during the sum

  7. Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002-06

    Science.gov (United States)

    Landon, Matthew K.; Rus, David L.; Dietsch, Benjamin J.; Johnson, Michaela R.; Eggemeyer, Kathleen D.

    2009-01-01

    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable

  8. Habitat Evaluation Procedures (HEP) Report; Precious Lands Wildlife Management Area, Technical Report 2000-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Kozusko, Shana

    2003-12-01

    The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR. The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army Corp of

  9. Characterize and Quantify Residual Steelhead in the Clearwater River, Idaho, 1999-2000 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Brostrom, Jody K. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2006-08-01

    site groups that were mature at tagging rarely migrated downstream. If smolts migrated they did it in the same year they were released, as less than 0.02% were observed migrating the second year. We sampled the Clearwater River, North Fork Clearwater River, Bedrock Creek, Big Canyon Creek, Cottonwood Creek, Jacks Creek and the Dworshak National Fish Hatchery adult ladder to collect residual hatchery steelhead. We PIT-tagged and released 3,651 hatchery steelhead and collected 645 hatchery steelhead for coded wire tags. Most residual hatchery steelhead were caught within 4 rkm of Dworshak National Fish Hatchery. Hatchery steelhead sampled in the North Fork Clearwater River and the Dworshak Hatchery adult ladder were significantly larger than those sampled in the Clearwater River and lower tributaries in all years except 2001 (205 mm, 205 mm, 223 mm and 238 mm North Fork Clearwater River; 190 mm, 182 mm, 226 mm and 189 mm Clearwater River). Of the hatchery steelhead we PIT-tagged, only 12% were observed at downstream observation sites. Most migrants were tagged in the Clearwater River (91%) and were smaller than hatchery steelhead that were tagged but were not detected. Most migrants were detected in the same year they were tagged, but 14% held over and migrated in the second year after tagging. We documented migration outside of the normal window, as one detection occurred on October 31 at Lower Granite Dam. We recaptured 130 individual hatchery steelhead that we had tagged during sampling. Over 77% of the recaptures were within one km of where they were tagged, and 67% of the recaptures were tagged in the North Fork Clearwater River and the Dworshak Hatchery adult ladder. We calculated a mean growth rate of 0.27 mm/day for fish we recaptured. For those hatchery steelhead we PIT-tagged, the proportion of males was 13%, the rest we could not ascertain gender. All the males were precocious. Over 97% of the coded-wire tag recoveries came from hatchery steelhead released at

  10. Climatic Controls on the Porewater Chemistry of Mid-Continental Wetlands

    Science.gov (United States)

    Levy, Zeno Francis

    Wetlands develop where climate and physiography conspire to maintain saturated soils at the land surface, support diverse plant and animal communities, and serve as globally important sinks for atmospheric carbon. The chemistry of wetland porewaters impacts near-surface biological communities and subsurface biogeochemical processes that influence carbon cycling in the environment. Wetland porewater chemistry is a dynamic byproduct of complex hydrogeological processes that cause meteoric waters to enter groundwater systems (recharge) or groundwater to flow to the land surface (discharge). Changes in climate can alter subsurface hydraulic gradients that determine the recharge and discharge functions of wetlands, which in turn control the hydrogeochemical evolution of wetland porewaters. The climate of mid-continental North America is influenced by competing air masses with vastly different temperature and moisture contents originating from the Pacific Coast, the Gulf of Mexico, and the Arctic. The interactions of these air masses result in large dynamic shifts of climate regimes characterized by decadal-scale oscillations between periods of drought and heavy rain. Over the course of the 20th century, a shift occurred towards wetter climate in the mid-continental region. This dissertation examines the impact of this climate shift on the porewater chemistry of two very different wetland systems, located only 350 km apart: the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota and the Cottonwood Lake Study Area (CLSA) of North Dakota. The former study site consists of a large (7,600 km2), circumboreal peatland that developed an extensive blanket of peat over the last 5000 years on a relatively flat glacial lake bed within a sub-humid to semi-arid climate gradient characterized by small annual atmospheric moisture surpluses and frequent droughts. The latter study site consists of a 0.92 km2 complex of small (meter-scale) "prairie pothole" wetlands located on a

  11. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    Science.gov (United States)

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    are now largely stable in response to flow regulation and revetment construction. The upper Willamette and North Santiam Rivers retain some dynamic characteristics, and provide the greatest diversity of aquatic and riparian habitats under the current flow and sediment regime. The McKenzie River has some areas that are more dynamic, whereas other sections are stable due to geology or revetments. Historical reductions in channel dynamism also have implications for ongoing and future recruitment and succession of floodplain forests. For instance, the succession of native plants like black cottonwood is currently limited by (1) fewer low-elevation gravel bars for stand initiation; (2) altered streamflow during seed release, germination, and stand initiation; (3) competition from introduced plant species; and (4) frequent erosion of young vegetation in some locations because scouring flows are concentrated within a narrow channel corridor. Despite past alterations, the Willamette River Basin has many of the physical and ecological building blocks necessary for highly functioning rivers. Management strategies, including environmental flow programs, river and floodplain restoration, revetment modifications, and reclamation of gravel mines, are underway to mitigate some historical changes. However, there are some substantial gaps in the scientific understanding of the modern Willamette basin that is needed to efficiently integrate these blocks and to establish realistic objectives for future conditions. Unanswered questions include: 1. What is the distribution and diversity of landforms and habitats along the Willamette River and its tributaries?