WorldWideScience

Sample records for cotton plants

  1. Using cotton plant residue to produce briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [University of Arizona, Tucson, AZ (United States). Bioresources Research Facility

    2000-07-01

    In Arizona, cotton (Gossypium) plant residue left in the field following harvest must be buried to prevent it from serving as an overwintering site for insects such as the pink bollworm. Most tillage operations employed to incorporate the residue into the soil are energy intensive and often degrade soil structure. Trials showed that cotton plant residue could be incorporated with pecan shells to produce commercially acceptable briquettes. Pecan shell briquettes containing cotton residue rather than waste paper were slightly less durable, when made using equivalent weight mixtures and moisture contents. Proximate and ultimate analyses showed the only difference among briquette samples to be a higher ash content in those made using cotton plant residue. Briquettes made with paper demonstrated longer flame out time, and lower ash percentage, compared to those made with cotton plant residue. (author)

  2. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera, in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  3. Study of mungbean intercropping in cotton planted with different techniques

    International Nuclear Information System (INIS)

    Khan, M.B.; Khaliq, A.

    2004-01-01

    Bio-economic efficiency of different cotton-based intercropping systems was determined at the Agronomic Research Area, University of Agriculture, Faisalabad, (Pakistan) during 1996-1997 and 1997-98. Cotton cultivar NIAB-78 was planted in 80-cm apart single rows and 120-cm spaced double row strips with the help of a single row hand drill. Intercropping systems were cotton alone and cotton + mungbean. Experiment was laid out in a RCBD with split arrangements in four replications. Planting patterns were kept in main plots and intercropping systems in sub-plots. Inter crop was sown in the space between 80-cm apart single rows as well as 120-cm spaced double row strips. Competition functions like relative crowding coefficient, competitive ratio, aggressivity, land equivalent ratio and area time equivalent ratio were calculated for the assessment of the benefits of the intercropping. Partial budget was prepared for determining net field benefits of the systems under study. Growing of cotton in 120-cm spaced double row strips proved superior to 80-cm spaced single rows. Intercropping decreased the seed cotton production significantly in both years, however, inter crop not only covered this loss but also increased overall productivity. Higher net field benefit (NFB) was obtained from cotton + mungbean than sole cropping of cotton. Farmers with small land holdings, seriously constrained by low crop income can adopt the practice of intercropping of mungbean in cotton. (author)

  4. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus

    Directory of Open Access Journals (Sweden)

    Schrago Carlos EG

    2011-08-01

    Full Text Available Abstract Background In response to infection, viral genomes are processed by Dicer-like (DCL ribonuclease proteins into viral small RNAs (vsRNAs of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV, a member of the genus Polerovirus, family Luteoviridae. Results Deep sequencing of small RNAs (sRNAs from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. Conclusions This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  5. Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus.

    Science.gov (United States)

    Silva, Tatiane F; Romanel, Elisson A C; Andrade, Roberto R S; Farinelli, Laurent; Østerås, Magne; Deluen, Cécile; Corrêa, Régis L; Schrago, Carlos E G; Vaslin, Maite F S

    2011-08-24

    In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.

  6. Systems for harvesting and handling cotton plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [Univ. of Arizona, Tucson, AZ (United States)

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at the University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.

  7. APPLICATION OF DRIP IRRIGATION ON COTTON PLANT GROWTH (Gossypium sp.

    Directory of Open Access Journals (Sweden)

    Syahruni Thamrin

    2017-12-01

    Full Text Available The condition of cotton planting in South Sulawesi is always constrained in the fulfillment of water. All plant growth stages are not optimal to increase production, so it is necessary to introduce good water management technology, such as through water supply with drip irrigation system. This study aims to analyze the strategy of irrigation management in cotton plants using drip irrigation system. Model of application by designing drip irrigation system and cotton planting on land prepared as demonstration plot. Observations were made in the germination phase and the vegetative phase of the early plants. Based on the result of drip irrigation design, the emitter droplet rate (EDR was 34.266 mm/hour with an operational time of 4.08 min/day. From the observation of cotton growth, it is known that germination time lasted from 6 to 13 days after planting, the average plant height reached 119.66 cm, with the number of leaves averaging 141.93 pieces and the number of bolls averaging 57.16 boll.

  8. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Zhao, X.; Liu, S.; Werf, van der W.; Zhang, S.; Spiertz, J.H.J.; Li, Z.

    2014-01-01

    Modern cotton cultivation requires high plant densities and compact plants. Here we study planting density and growth regulator effects on plant structure and production of cotton when the cotton is grown in a relay intercrop with wheat, a cultivation system that is widespread in China. Field

  9. Yield components and quality of intercropped cotton in response to mepiquat chloride and plant density

    NARCIS (Netherlands)

    Mao, Lili; Zhang, Lizhen; Evers, J.B.; Werf, van der Wopke; Liu, Shaodong; Zhang, Siping; Wang, Baomin; Li, Zhaohu

    2015-01-01

    Cotton yield is greatly improved by moderately increasing plant density and modifying the cotton plants to have a compact structure, which is also required by the increasing demand for mechanized harvest. However, in cotton strip intercropped with wheat, only limited knowledge on yield response

  10. Effect Of Bird Manure On Cotton Plants Grown On Soils Sampled ...

    African Journals Online (AJOL)

    Cotton plant had a better development and growth when bird manure was only applied to soil or combined with mineral fertilizer and when cotton was grown on a soil where the previous crops were cereals (maize or sorghum). Planting cotton on a soil where the previous crop grown was maize or sorghum had no significant ...

  11. Performance of mashbean intercropped in cotton planted in different planting patterns

    International Nuclear Information System (INIS)

    Khan, M.B.; Ahmad, S.; Khaliq, A.

    2004-01-01

    Performance of mashbean as intercrop in cotton was studied at the Agronomic Research Area University of Agriculture, Faisalabad (Pakistan) during the years 1996-1997 and 1997-98. cotton variety NIAB 78 was planted in 80-cm apart single rows and 120-cm spaced double row strips. Experiment was laid out in a RCBD with four replications. Net plot size was 7 m x 4.8 m. Mashbean was sown as intercrop in the space between 80-cm apart single rows as well as 120-cm spaced double row strips. Mashbean was also sown as a sole crop (P/sub 3/). The inter crops produce substantially smaller yields when grown in association with cotton in either planting pattern compared to the sole crop yields. However, additional produce obtained from intercrop compensated the losses in cotton production. Intercropping of mashbean, in 120-cm apart double row strips of cotton proved to be feasible as well as convenient for farm operations. (author)

  12. Association of Verde plant bug, Creontiades signatus (Hemiptera: Miridae), with cotton boll rot

    Science.gov (United States)

    Cotton along the Gulf Coast of south Texas has experienced loss from cotton boll rot especially during the last 10 to 15 years, and stink bugs and plant bugs (Hemiptera: Pentatomidae and Miridae) that feed on cotton bolls have been suspected in introducing the disease. A replicated grower field surv...

  13. Gamma radiation of cotton seeds pre-planting

    International Nuclear Information System (INIS)

    Gulyamov, M-K.; Atadzhanov, M.; Narimov, S.

    1977-01-01

    The study of pre-planting irradiation of the cotton plant seeds with gamma rays is summed up. It is for the first time that for the industrial grades stimulating doses for preplanting gamma irradiation of seeds have been offered depending on the power of a radiation source, time before planting, reproduction and the site of origin of seeds. In the Tashkent area doses stimulating the growth, development, and productivity of the cotton plant G. hirsutum L. for seeds, resting in the dry condition are 0.5-2 krad by Co 60 gamma-rays. The early maturing kinds of the type C-4727 should be irradiated with slightly lowered doses (0.5-1 krad) while the usual types of the kind 108-F require doses nearer to 2 krad. Time from irradiation of the seed to planting influences not only the character of changes in the plants, but also heredity. Study during the vegetation period shows that at a dose of 1 krad a much earlier maturity (by 2 days) is observed for irradiation 10 days before planting. Irradiation 20 days before planting shows considerable delay in maturing and productivity as compared to controls

  14. Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Magalhães, D M; Borges, M; Laumann, R A; Sujii, E R; Mayon, P; Caulfield, J C; Midega, C A O; Khan, Z R; Pickett, J A; Birkett, M A; Blassioli-Moraes, M C

    2012-12-01

    The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant's phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses

  15. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  16. The improvement of cotton plant in mutation breeding dry climate areas at NTB

    International Nuclear Information System (INIS)

    Lilik Harsanti

    2015-01-01

    The opportunity of cotton plant to become a major crop in Indonesia is widely opened due to its extensive adaptability, productivity, efficiency of nutrient intake, and relatively resistant against pests and plant diseases. Generally, cotton plant is an important industrial crop in textile manufacture. Cotton plant has been known and planted for a long time ago by the local farmer, especially at Java, NTB and NTT. Plant mutation breeding have the mutant lines genetic for plant. The mutant lines of cotton plant, which originally come from embryogenic tissue culture (embryo axis, NIAB-999), were irradiated with dose of 20 Gy. Gamma Chamber 4000-A with source of 60 Cobalt was used for the irradiation treatment. The experiments were done at Citayam by designed by randomized Block design with five replications. Both of mutant lines were planted in the plot with size of 8 × 7 m 2 and 10 × 100 cm of spacing. Kanesia 15 variety was used as a control. The parameters observed were the days of maturity, plant height, number of generative branches, number of fruit/plant, weight of 100 cotton boll per plot. As the results, CN 2A has the biggest productivity, shown by the weight of the cotton fiber per plot, which is 447.510 kg compared to Kanesia 15 and NIAB 999 is control national and control mother. (author)

  17. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms.

    Science.gov (United States)

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control.

  18. Using functional-structural plant modeling to explore the response of cotton to mepiquat chloride application and plant population density

    NARCIS (Netherlands)

    Gu, S.; Evers, J.B.; Zhang, L.; Mao, L.; Vos, J.; Li, Z.

    2013-01-01

    The crop growth regulator Mepiquat Chloride (MC) is widely used in cotton production to optimize the canopy structure in order to maximize the yield and fiber quality. Cotton plasticity in relation to MC and other agronomical practice was quantified using a functional-structural plant model of

  19. Amplicon based RNA interference targeting V2 gene of cotton leaf curl Kokhran virus-Burewala strain can provide resistance in transgenic cotton plants

    Science.gov (United States)

    An RNAi based gene construct designated “C2” was used to target the V2 region of the cotton leaf curl virus (CLCuV) genome which is responsible for virus movement. The construct was transformed into two elite cotton varieties MNH-786 and VH-289. A shoot apex method of plant transformation using Agr...

  20. Physiological characteristics of high yield under cluster planting: photosynthesis and canopy microclimate of cotton

    Directory of Open Access Journals (Sweden)

    Ting-ting Xie

    2016-01-01

    Full Text Available Cotton produces more biomass and economic yield when cluster planting pattern (three plants per hole than in a traditional planting pattern (one plant per hole, even at similar plant densities, indicating that individual plant growth is promoted by cluster planting. The causal factors for this improved growth induced by cluster planting pattern, the light interception, canopy microclimate and photosynthetic rate of cotton were investigated in an arid region of China. The results indicated that the leaf area index and light interception were higher in cluster planting, and significantly different from those in traditional planting during the middle and late growth stages. Cotton canopy humidity at different growth stages was increased but canopy temperatures were reduced by cluster planting. In the later growth stage of cluster planting, the leaf chlorophyll content was higher and the leaf net photosynthetic rate and canopy photosynthetic rate were significantly increased in comparing with traditional planting pattern. We concluded that differences in canopy light interception and photosynthetic rate were the primary factors responsible for increased biomass production and economic yield in cluster planting compared with the traditional planting of cotton.

  1. Verde plant bug associatioin with boll damage including cotton boll rot and potential in-season indicators of damage

    Science.gov (United States)

    Cotton along the Gulf Coast of south Texas has experienced loss from cotton boll rot especially during the last 10 to 15 years, and stink bugs and plant bugs (Hemiptera: Pentatomidae and Miridae) that feed on cotton bolls have been suspected in introducing the disease. A replicated grower field surv...

  2. Vegetative growth response of cotton plants due to growth regulator supply via seeds

    Directory of Open Access Journals (Sweden)

    João Vitor Ferrari

    2015-08-01

    Full Text Available The global cotton industry is distinguished by its numerous industrial uses of the plume as well as by high production costs. Excessive vegetative growth can interfere negatively with productivity, and thus, applying growth regulators is essential for the development of the cotton culture. The objective of this study was to evaluate the development and yield of the cotton cultivar FMT 701 with the application of mepiquat chloride to seeds and leaves. The experimental design used a randomized block design with four replications, arranged in bands.The treatments consisted of mepiquat chloride rates (MC (0, 4, 6, 8 and 10 g a.i. kg-1 of seeds applied directly to the cotton seeds and MC management by foliar spray using a 250 mL ha-1 rates that was administered under the following conditions: divided into four applications (35, 45, 55 and 65 days after emergence; as a single application at 70 days; and without the application of the product. The mepiquat chloride applied to cotton seeds controls the initial plant height and stem diameter, while foliar application reduces the height of the plants. After application to seed, foliar spraying MC promotes increase mass of 20 bolls, however no direct influence amount bolls per plant and yield of cotton seed. Higher cotton seed yield was obtained with a rate of 3.4 g a.i. MC kg-1 seeds.

  3. Economic Injury Level of the Neotropical Brown Stink Bug Euschistus heros (F.) on Cotton Plants.

    Science.gov (United States)

    Soria, M F; Degrande, P E; Panizzi, A R; Toews, M D

    2017-06-01

    In Brazil, the Neotropical brown stink bug, Euschistus heros (F.) (Hemiptera: Pentatomidae), commonly disperses from soybeans to cotton fields. The establishment of an economic treatment threshold for this pest on cotton crops is required. Infestation levels of adults of E. heros were evaluated on cotton plants at preflowering, early flowering, boll filling, and full maturity by assessing external and internal symptoms of injury on bolls, seed cotton/lint production, and fiber quality parameters. A completely randomized experiment was designed to infest cotton plants in a greenhouse with 0, 2, 4, 6, and 8 bugs/plant, except at the full-maturity stage in which only infestation with 8 bugs/plant and uninfested plants were evaluated. Results indicated that the preflowering, early-flowering, and full-maturity stages were not affected by E. heros. A linear regression model showed a significant increase in the number of internal punctures and warts in the boll-filling stage as the population of bugs increased. The average number of loci with mottled immature fibers was significantly higher at 4, 6, and 8 bugs compared with uninfested plants with data following a quadratic regression model. The seed and lint cotton was reduced by 18 and 25% at the maximum level of infestation (ca. 8 bugs/plant) in the boll-filling stage. The micronaire and yellowing indexes were, respectively, reduced and increased with the increase of the infestation levels. The economic injury level of E. heros on cotton plants at the boll-filling stage was determined as 0.5 adult/plant. Based on that, a treatment threshold of 0.1 adult/plant can be recommended to avoid economic losses.

  4. What are farmers really planting? Measuring the presence and effectiveness of Bt cotton in Pakistan.

    Directory of Open Access Journals (Sweden)

    David J Spielman

    Full Text Available Genetically modified, insect-resistant Bacillus thuringiensis (Bt cotton is cultivated extensively in Pakistan. Past studies, however, have raised concerns about the prevalence of Bt cotton varieties possessing weak or nonperforming insect-resistance traits conferred by the cry gene. We examine this issue using data drawn from a representative sample of cotton-growing households that were surveyed in six agroclimatic zones spanning 28 districts in Pakistan in 2013, as well as measurements of Cry protein levels in cotton tissue samples collected from the sampled households' main fields. The resultant dataset combines information from 593 sampled households with corresponding plant tissue diagnostics from 70 days after sowing, as well as information from 589 sampled households with corresponding diagnostics from 120 days after sowing. Our analysis indicates that 11 percent of farmers believed they were cultivating Bt cotton when, in fact, the Cry toxin was not present in the tested tissue at 70 days after sowing (i.e., a Type I error. The analysis further indicates that 5 percent of farmers believed they were cultivating non-Bt cotton when, in fact, the Cry toxin was present in the tested tissue (i.e., a Type II error. In addition, 17 percent of all sampled farmers were uncertain whether or not they were cultivating Bt cotton. Overall, 33 percent of farmers either did not know or were mistaken in their beliefs about the presence of the cry gene in the cotton they cultivated. Results also indicate that toxic protein levels in the plant tissue samples occurred below threshold levels for lethality in a significant percentage of cases, although these measurements may also be affected by factors related to tissue sample collection, handling, storage, and testing procedures. Nonetheless, results strongly suggest wide variability both in farmers' beliefs and in gene expression. Such variability has implications for policy and regulation in Pakistan

  5. Field trials to evaluate effects of continuously planted transgenic insect-resistant cottons on soil invertebrates.

    Science.gov (United States)

    Li, Xiaogang; Liu, Biao; Wang, Xingxiang; Han, Zhengmin; Cui, Jinjie; Luo, Junyu

    2012-03-01

    Impacts on soil invertebrates are an important aspect of environmental risk assessment and post-release monitoring of transgenic insect-resistant plants. The purpose of this study was to research and survey the effects of transgenic insect-resistant cottons that had been planted over 10 years on the abundance and community structure of soil invertebrates under field conditions. During 3 consecutive years (2006-2008), eight common taxa (orders) of soil invertebrates belonging to the phylum Arthropoda were investigated in two different transgenic cotton fields and one non-transgenic cotton field (control). Each year, soil samples were taken at four different growth stages of cotton (seedling, budding, boll forming and boll opening). Animals were extracted from the samples using the improved Tullgren method, counted and determined to the order level. The diversity of the soil fauna communities in the different fields was compared using the Simpson's, Shannon's diversity indices and evenness index. The results showed a significant sampling time variation in the abundance of soil invertebrates monitored in the different fields. However, no difference in soil invertebrate abundance was found between the transgenic cotton fields and the control field. Both sampling time and cotton treatment had a significant effect on the Simpson's, Shannon's diversity indices and evenness index. They were higher in the transgenic fields than the control field at the growth stages of cotton. Long-term cultivation of transgenic insect-resistant cottons had no significant effect on the abundance of soil invertebrates. Collembola, Acarina and Araneae could act as the indicators of soil invertebrate in this region to monitor the environmental impacts of transgenic plants in the future. This journal is © The Royal Society of Chemistry 2012

  6. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    Science.gov (United States)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the

  7. Genotype and planting density effects on rooting traits and yield in cotton (Gossypium hirsutum L.)

    NARCIS (Netherlands)

    Zhang, L.Z.; Li, B.G.; Yan, G.T.; Werf, van der W.; Spiertz, J.H.J.; Zhang, S.P.

    2006-01-01

    Root density distribution of plants is a major indicator of competition between plants and determines resource capture from the soil. This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossypium hirsutum L.) cultivars were

  8. Airborne multispectral identification of individual cotton plants using consumer-grade cameras

    Science.gov (United States)

    Although multispectral remote sensing using consumer-grade cameras has successfully identified fields of small cotton plants, improvements to detection sensitivity are needed to identify individual or small clusters of plants. The imaging sensor of consumer-grade cameras are based on a Bayer patter...

  9. Sustainable cotton production and water economy through different planting methods and mulching techniques

    International Nuclear Information System (INIS)

    Nasrullah, H.M.; Khan, M.B.; Ahmad, R.; Ahmad, S.; Hanif, M.; Nazeer, W

    2011-01-01

    Planting methods and mulching techniques are important factors which affect crop growth, development and yield by conserving soil and plant moisture. A multifactorial experiment was conducted to study the water economy involving different planting methods and mulching techniques in cotton (Gossypium hirsutum L.) for two consecutive years (2004 and 2005) at the Agronomic Research Station, Khanewal. Two moisture stress tolerant cotton varieties (CIM-473 and CIM-499) were planted using four different planting methods i.e. 70c m spaced single row planting, 105 cm spaced double row strip planting, 70 cm spaced ridge planting and 140 cm spaced furrow beds (or bed and furrows) along four mulching practices i.e. cultural, straw, sheet and chemical for their individual and interactive effects on various parameters including water use efficiency. Positive interactive effects of furrow bed planting method (140 cm spaced) with plastic sheet/film mulching were observed for all the parameters i.e., highest seed cotton yield (3009 and 3332 kg ha/sup -1/), maximum water saving (up to 25.62% and 26.53%), highest water use efficiency up to 5.04 and 4.79 [macro mol (CO/sub 2/)/mmol (H/sub 2/O)], highest net income (Rs. 27224.2 and 50927.7 ha/sup -1/) with a cost-benefit ratio of 1.64 and 2.20 followed by maximum net income (Rs. 27382.2 and 47244.5 ha/sup -1/) with 1.64 and 2.10 cost-benefit ratio in case of plastic mulch and 2814 and 3007 kg ha/sup -1/ in ridge planting method during 2004 and 2005, respectively. It is concluded that cotton crop can be grown using bed and furrow planting method with plastic sheet/film mulching technique for sustainable cotton production and better water economy. (author)

  10. Effect of cotton leaf-curl virus on the yield-components and fibre properties of cotton genotypes under varying plant spacing and nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ahmad, S.; Hayat, K.; Ashraf, F.; Sadiq, M.A.

    2008-01-01

    Cotton leaf-curl virus (CLCu VB. Wala strain) is one of the major biotic constraints of cotton production in Punjab. Development of resistant cotton genotype is the most feasible, economical and effective method to combat this hazardous problem, but so far no resistant genotype has been reported. Therefore, the objective of this study was to compare yield and yield-components and fiber traits of different genotypes/varieties under different plant spacing and nitrogen fertilizer as a management strategy to cope with this viral disease. Field experiment was conducted during 2006-07 to evaluate the effect of genotype, plant spacing and nitrogen fertilizer on cotton. Five genotypes (MNH-786, MNH-789, MNH- 6070, CIM- 496, and BH-160), three plant-spacings (15, 30 and 45 cm) and three nitrogen fertilizer-levels (6.5, 8.6 and 11 bags Urea / ha) were studied. Results showed that significant differences exist for plant height, no. of bolls/m/sup -2/, seed-cotton yield (kg/ha) due to genotype, interaction of genotype with plant spacing and nitrogen fertilizer level. Whereas boll weight, ginning out-turn, staple length and fiber fineness were not affected significantly by the plant spacing and nitrogen fertilizer, the effect due to genotype was significant for these traits. CLCuV infestation varied significantly with genotypes, while all other factors, i.e., plant spacing and nitrogen fertilizers, have non-significant effect. As the major objective of cotton cultivation is production of lint for the country and seed- cotton yield for the farmers, it is noted that genotypes grown in narrow plant-spacing (15 cm) and higher nitrogen fertilizer level (11.0 bags of urea/ha) produced maximum seed-cotton yield under higher CLCu V infestation in case of CIM-496, MNH-789 and BH-I60, while the new strain MNH-6070 gave maximum yield under 30cm plant-spacing and 8.6 bags of urea/ha has the 2.3% CLCu V infestation was observed in this variety. From the present study, it is concluded that

  11. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop.

    Science.gov (United States)

    Nehra, Vibha; Saharan, Baljeet Singh; Choudhary, Madhu

    2016-01-01

    The present investigation was undertaken to isolate, screen and evaluate a selected promising PGPR Brevibacillus brevis on cotton crop. Out of 156 bacterial isolates one of the most promising isolate was analyzed for the various PGP traits. A seed germination analysis was conducted with cotton seeds to evaluate the potential of the isolate to promote plant growth. The bacterial isolate was checked for its growth and survival at high temperatures. The isolate was also analyzed for the PGP traits exhibited after the heat treatment. To identify the isolate morphological, biochemical and molecular characterization was performed. The isolate was found positive for many of the PGP attributes like IAA, ARA, anti-fungal activity and ammonia production. Effect of seed bacterization on various plant growth parameters was used as an indicator. The isolate showed significant growth and exhibited various PGP traits at high temperature making it suitable as an inoculant for cotton crop. Isolate was identified as Brevibacillus brevis [SVC(II)14] based on phenotypic as well as genotypic attributes and after conducting this research we propose that the B. brevis which is reported for the first time for its PGP potential in cotton, exerts its beneficial effects on cotton crop through combined modes of actions.

  12. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda and cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Raquel Sampaio Oliveira

    2016-02-01

    Full Text Available Gossypium hirsutum (commercial cooton is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized with PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold. Also, a significant reduction of Anthonomus grandis emerging adults (up to 60% was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda and the Coleopteran (A. grandis insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  13. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis).

    Science.gov (United States)

    de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  14. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis)

    Science.gov (United States)

    de Oliveira, Raquel S.; Oliveira-Neto, Osmundo B.; Moura, Hudson F. N.; de Macedo, Leonardo L. P.; Arraes, Fabrício B. M.; Lucena, Wagner A.; Lourenço-Tessutti, Isabela T.; de Deus Barbosa, Aulus A.; da Silva, Maria C. M.; Grossi-de-Sa, Maria F.

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests. PMID:26925081

  15. Climate optimized planting windows for cotton in the lower Mississippi Delta region

    Science.gov (United States)

    Unique, variable summer climate of the lower Mississippi Delta region poses a critical challenge to cotton producers in deciding when to plant for optimized production. Traditional 2- to 4-year agronomic field trials conducted in this area fail to capture the effects of long-term climate variabiliti...

  16. Verde plant bug is associated with cottong boll rot in South Texas cotton

    Science.gov (United States)

    Verde plant bug was the dominant boll-feeding sucking bug species (>98% of insects collected using a beat bucket) from peak to late bloom in cotton fields near the coast along the Coastal Bend of South Texas, from Port Lavaca to the Lower Rio qrande Valley in 2010 and 2011. It was common in fields w...

  17. Response of AtNPR1-expressing cotton plants to Fusarium oxysporum f. sp. vasinfectum isolates

    Science.gov (United States)

    In our earlier investigation, we had demonstrated that transgenic cotton plants expressing AtNPR1 showed significant tolerance to Fusarium oxysporum f. sp. vasinfectum, isolate 11 (Fov11) and several other pathogens. The current study was designed to further characterize the nature of the protectio...

  18. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR

    OpenAIRE

    Shangpeng Sun; Changying Li; Andrew H. Paterson

    2017-01-01

    A LiDAR-based high-throughput phenotyping (HTP) system was developed for cotton plant phenotyping in the field. The HTP system consists of a 2D LiDAR and an RTK-GPS mounted on a high clearance tractor. The LiDAR scanned three rows of cotton plots simultaneously from the top and the RTK-GPS was used to provide the spatial coordinates of the point cloud during data collection. Configuration parameters of the system were optimized to ensure the best data quality. A height profile for each plot w...

  19. Suppression of jasmonic acid-dependent defense in cotton plant by the mealybug Phenacoccus solenopsis.

    Directory of Open Access Journals (Sweden)

    Pengjun Zhang

    Full Text Available The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA, salicylic acid (SA, and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs.

  20. Characterization of the damage of Spodoptera eridania (Cramer) and Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) to structures of cotton plants

    OpenAIRE

    Santos, Karen B dos; Meneguim, Ana M; Santos, Walter J dos; Neves, Pedro M O J; Santos, Rachel B dos

    2010-01-01

    The cotton plant, Gossypium hirsutum, hosts various pests that damage different structures. Among these pests, Spodoptera cosmioides (Walker) and Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) are considered important. The objectives of this study were to characterize and to quantify the potential damage of S. eridania and S. cosmioides feeding on different structures of cotton plants. For this purpose, newly-hatched larvae were reared on the following plant parts: leaf and flower bud;...

  1. Identification of cotton fleahopper (Hemiptera: Miridae) host plants in central Texas and compendium of reported hosts in the United States.

    Science.gov (United States)

    Esquivel, J F; Esquivel, S V

    2009-06-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an early-season pest of developing cotton in Central Texas and other regions of the Cotton Belt. Cotton fleahopper populations develop on spring weed hosts and move to cotton as weed hosts senesce or if other weed hosts are not readily available. To identify weed hosts that were seasonably available for the cotton fleahopper in Central Texas, blooming weed species were sampled during early-season (17 March-31 May), mid-season (1 June-14 August), late-season (15 August-30 November), and overwintering (1 December-16 March) periods. The leading hosts for cotton fleahopper adults and nymphs were evening primrose (Oenothera speciosa T. Nuttall) and Mexican hat [Ratibida columnifera (T. Nuttall) E. Wooton and P. Standley], respectively, during the early season. During the mid-season, silver-leaf nightshade (Solanum elaeagnifolium A. Cavanilles) was consistently a host for fleahopper nymphs and adults. Woolly croton (Croton capitatus A. Michaux) was a leading host during the late season. Cotton fleahoppers were not collected during the overwintering period. Other suitable hosts were available before previously reported leading hosts became available. Eight previously unreported weed species were documented as temporary hosts. A compendium of reported hosts, which includes >160 plant species representing 35 families, for the cotton fleahopper is provided for future research addressing insect-host plant associations. Leading plant families were Asteraceae, Lamiaceae, and Onagraceae. Results presented here indicate a strong argument for assessing weed species diversity and abundance for the control of the cotton fleahopper in the Cotton Belt.

  2. [Characterization of the damage of Spodoptera eridania (Cramer) and Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) to structures of cotton plants].

    Science.gov (United States)

    Santos, Karen B Dos; Meneguim, Ana M; Santos, Walter J Dos; Neves, Pedro M O J; Santos, Rachel B Dos

    2010-01-01

    The cotton plant, Gossypium hirsutum, hosts various pests that damage different structures. Among these pests, Spodoptera cosmioides (Walker) and Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) are considered important. The objectives of this study were to characterize and to quantify the potential damage of S. eridania and S. cosmioides feeding on different structures of cotton plants. For this purpose, newly-hatched larvae were reared on the following plant parts: leaf and flower bud; leaf and boll; flower bud or boll; and leaf, flower bud and boll. The survival of S. cosmioides and S. eridania was greater than 80% and 70% for larvae fed on cotton plant parts offered separately or together, respectively. One larva of S. eridania damaged 1.7 flower buds, but did not damage bolls, while one larva of S. cosmioides damaged 5.2 flower buds and 3.0 cotton bolls. Spodoptera eridania and S. cosmioides can be considered species with potential to cause economic damage to cotton plants because they can occur throughout cotton developmental stages causing defoliation and losses of reproductive structures. Therefore, the results validate field observations that these two species of Spodoptera are potential pests for cotton.

  3. Feeding habits of Carabidae (Coleoptera associated with herbaceous plants and the phenology of coloured cotton

    Directory of Open Access Journals (Sweden)

    Danilo Henrique da Matta

    2017-04-01

    Full Text Available The carabids (Coleoptera: Carabidae are recognized as polyphagous predators and important natural enemies of insect pests. However, little is known about the feeding habits of these beetles. In this work, we determine the types of food content in the digestive tracts of nine species of Carabidae associated with herbaceous plants and different growth stages of coloured cotton. The food contents were evaluated for beetles associated with the coloured cotton cv. BRS verde, Gossypium hirsutum L. latifolium Hutch., adjacent to weed plants and the flowering herbaceous plants (FHPs Lobularia maritima (L., Tagetes erecta L., and Fagopyrum esculentum Moench. The digestive tract analysis indicated various types of diets and related arthropods for Abaris basistriata, Galerita brasiliensis, Scarites sp., Selenophorus alternans, Selenophorus discopunctatus and Tetracha brasiliensis. The carabids were considered to be polyphagous predators, feeding on different types of prey.

  4. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    Directory of Open Access Journals (Sweden)

    Václav Bajgar

    2016-04-01

    Full Text Available The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

  5. Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton.

    Science.gov (United States)

    Llandres, Ana L; Almohamad, Raki; Brévault, Thierry; Renou, Alain; Téréta, Idrissa; Jean, Janine; Goebel, François-Regis

    2018-04-17

    Enhancing cotton pest management using plant natural defenses has been described as a promising way to improve the management of crop pests. We here reviewed different studies on cotton growing systems to illustrate how an ancient technique called plant training, which includes plant topping and pruning, may contribute to this goal. Based on examples from cotton crops, we show how trained plants could be promoted to a state of enhanced defense that causes faster and more robust activation of their defense responses. We revisit agricultural benefits associated to this technique in cotton crops, with a focus on its potential as a supplementary tool for Integrated Pest Management (IPM). Particularly, we examine its role in mediating plant interactions with conspecific neighboring plants, pests and associated natural enemies. We propose a new IPM tool, plant training for induced defense, which involves inducing plant defense by artificial injuries. Experimental evidence from various studies shows that cotton training is a promising technique, particularly for smallholders, which can be used as part of an IPM program to significantly reduce insecticide use and to improve productivity in cotton farming. This article is protected by copyright. All rights reserved.

  6. Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis.

    Science.gov (United States)

    Alberto Moldes, Carlos; Fontão de Lima Filho, Oscar; Manuel Camiña, José; Gabriela Kiriachek, Soraya; Lia Molas, María; Mui Tsai, Siu

    2013-11-27

    Silicon has been extensively researched in relation to the response of plants to biotic and abiotic stress, as an element triggering defense mechanisms which activate the antioxidant system. Furthermore, in some species, adding silicon to unstressed plants modifies the activity of certain antioxidant enzymes participating in detoxifying processes. Thus, in this study, we analyzed the activity of antioxidant enzymes in leaves and roots of unstressed cotton plants fertilized with silicon (Si). Cotton plants were grown in hydroponic culture and added with increasing doses of potassium silicate; then, the enzymatic activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), and lipid peroxidation were determined. Using multivariate analysis, we found that silicon altered the activity of GPOX, APX, and CAT in roots and leaves of unstressed cotton plants, whereas lipid peroxidation was not affected. The analysis of these four variables in concert showed a clear differentiation among Si treatments. We observed that enzymatic activities in leaves and roots changed as silicon concentration increased, to stabilize at 100 and 200 mg Si L(-1) treatments in leaves and roots, respectively. Those alterations would allow a new biochemical status that could be partially responsible for the beneficial effects of silicon. This study might contribute to adjust the silicon application doses for optimal fertilization, preventing potential toxic effects and unnecessary cost.

  7. Population growth and within-plant distribution of the striped mealybug Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae on cotton

    Directory of Open Access Journals (Sweden)

    Martin D. Oliveira

    2014-03-01

    Full Text Available Population growth and within-plant distribution of the striped mealybug Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae on cotton. The striped mealybug, Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae, is a widely distributed and polyphagous pest species, which naturally occurs on cotton plants in Brazil. This study evaluated the establishment and population growth as well as the within-plant distribution of F. virgata on four cotton cultivars: CNPA 7H (white fibers, BRS Verde, BRS Safira, and BRS Rubi (colored fibers. The experiment was conducted in a complete randomized design with four treatments (cultivars and 18 replications of each. Thus, cotton plants of each cultivar were infested with 100 newly hatched nymphs of F. virgata. The number of adult female mealybugs and the total number of mealybugs per plant were quantified, respectively, at 25 and 50 days after infestation. The developmental and pre-reproductive periods were also determined. Furthermore, we verified the distribution of F. virgata on the plant parts at 25 and 50 days after infestation. Ferrisia virgata showed similar growth of 412-fold in the four cotton cultivars studied. Also, the nymphs were spread on infested leaves; the secondgeneration nymphs were spread and established in all plant parts. Our results characterize F. virgata as having much potential as an important cotton pest in Brazil.

  8. Fitness of Bt-resistant cabbage loopers on Bt cotton plants.

    Science.gov (United States)

    Tetreau, Guillaume; Wang, Ran; Wang, Ping

    2017-10-01

    Development of resistance to the insecticidal toxins from Bacillus thuringiensis (Bt) in insects is the major threat to the continued success of transgenic Bt crops in agriculture. The fitness of Bt-resistant insects on Bt and non-Bt plants is a key parameter that determines the development of Bt resistance in insect populations. In this study, a comprehensive analysis of the fitness of Bt-resistant Trichoplusia ni strains on Bt cotton leaves was conducted. The Bt-resistant T. ni strains carried two genetically independent mechanisms of resistance to Bt toxins Cry1Ac and Cry2Ab. The effects of the two resistance mechanisms, individually and in combination, on the fitness of the T. ni strains on conventional non-Bt cotton and on transgenic Bt cotton leaves expressing a single-toxin Cry1Ac (Bollgard I) or two Bt toxins Cry1Ac and Cry2Ab (Bollgard II) were examined. The presence of Bt toxins in plants reduced the fitness of resistant insects, indicated by decreased net reproductive rate (R 0 ) and intrinsic rate of increase (r). The reduction in fitness in resistant T. ni on Bollgard II leaves was greater than that on Bollgard I leaves. A 12.4-day asynchrony of adult emergence between the susceptible T. ni grown on non-Bt cotton leaves and the dual-toxin-resistant T. ni on Bollgard II leaves was observed. Therefore, multitoxin Bt plants not only reduce the probability for T. ni to develop resistance but also strongly reduce the fitness of resistant insects feeding on the plants. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Lee, Mi-Kyung; Zhang, Yang; Zhang, Meiping; Goebel, Mark; Kim, Hee Jin; Triplett, Barbara A; Stelly, David M; Zhang, Hong-Bin

    2013-03-28

    Cotton, one of the world's leading crops, is important to the world's textile and energy industries, and is a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction of a plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library and comparative genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.) with one of its diploid putative progenitor species, G. raimondii Ulbr. We constructed the cotton BIBAC library in a vector competent for high-molecular-weight DNA transformation in different plant species through either Agrobacterium or particle bombardment. The library contains 76,800 clones with an average insert size of 135 kb, providing an approximate 99% probability of obtaining at least one positive clone from the library using a single-copy probe. The quality and utility of the library were verified by identifying BIBACs containing genes important for fiber development, fiber cellulose biosynthesis, seed fatty acid metabolism, cotton-nematode interaction, and bacterial blight resistance. In order to gain an insight into the Upland cotton genome and its relationship with G. raimondii, we sequenced nearly 10,000 BIBAC ends (BESs) randomly selected from the library, generating approximately one BES for every 250 kb along the Upland cotton genome. The retroelement Gypsy/DIRS1 family predominates in the Upland cotton genome, accounting for over 77% of all transposable elements. From the BESs, we identified 1,269 simple sequence repeats (SSRs), of which 1,006 were new, thus providing additional markers for cotton genome research. Surprisingly, comparative sequence analysis showed that Upland cotton is much more diverged from G. raimondii at the genomic sequence level than expected. There seems to be no significant difference between the relationships of the Upland cotton D- and A-subgenomes with the G. raimondii genome, even though G

  10. Verde plant bug (Hemiptera: Miridae) feeding injury to cotton bolls characterized by boll age, size, and damage ratings.

    Science.gov (United States)

    Armstrong, J Scott; Brewer, Michael J; Parker, Roy D; Adamczyk, J J

    2013-02-01

    The verde plant bug, Creontiades signatus (Distant), has been present in south Texas for several years but has more recently been documented as an economic threat to cultivated cotton, (Gossypium hirsutum L. Our studies over 2 yr (2009 and 2010) and two locations (Weslaco and Corpus Christi, TX) investigated feeding-injury of the verde plant bug to a range of cotton boll age classes defined by boll diameter and accumulated degree-days (anthesis to the time of infesting) for first-position cotton bolls infested with the plant bugs. The most detrimental damage to younger cotton holls from verde plant bug feeding was boll abscission. Cotton bolls verde plant bug injured bolls compared with the controls up to 162 ACDD or a mean boll diameter 2.0 cm. Cotton seed weights were significantly reduced up to 179 ACDD or a boll diameter of 2.0 cm at Weslaco in 2009, and up to 317 ACDD or boll diameter 2.6 cm for Weslaco in 2010 when compared with the noninfested controls. Lint weight per cotton boll for infested and noninfested bolls was significantly reduced up to 262 ACDD or boll diameter 2.5 for Corpus Christi in 2010 and up to 288 ACCD or boll diameter 2.6 cm for Weslaco, TX, in 2010. Damage ratings (dependant variable) regressed against infested and noninfested seed-cotton weights showed that in every instance, the infested cotton bolls had a strong and significant relationship with damage ratings for all age classes of bolls. Damage ratings for the infested cotton bolls that did not abscise by harvest showed visual signs of verde plant bug feeding injury and the subsequent development ofboll rot; however, these two forms of injury causing lint and seed mass loss are hard to differentiate from open or boll-locked cotton bolls. Based on the results of both lint and seed loss over 2 yr and four studies cotton bolls should be protected up to approximately 300 ACDD or a boll diameter of 2.5 cm. This equilibrates to bolls that are 12-14 d of age dependent upon daily maximum

  11. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation.

    Science.gov (United States)

    Dong, Y J; Hwang, S Y

    2017-10-01

    The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Additional insights into the adaptation of cotton plants under abiotic ...

    African Journals Online (AJOL)

    Abiotic stress is the primary cause of crop losses worldwide. In addition to protein coding genes, microRNAs (miRNAs) have emerged as important players in plant stress responses. Though miRNAs are key in regulating many aspects of plant developmental plasticity under abiotic stresses, very few information are available ...

  13. Performance evaluation of drip-fertigated cotton grown under different plant densities using nuclear techniques

    International Nuclear Information System (INIS)

    Janat, M.; Kalhout, A.

    2007-04-01

    Field experiment was conducted over two growing seasons to assess different planting densities of cotton variety Aleppo 118 (71.000, 57.000, 48.000, 41.000, 33.500 plants /ha), and two irrigation systems; one irrigation line per one planting row and one irrigation line per two planting rows. Nitrogen fertilizer (120 kg N/ha) as Urea (46% N) was injected through the irrigation system in six equally split applications. A labeled area (1.0 m 2 ) was established for the labeled sub plots and labeled Urea was applied to the labeled sub plots in the same manner as for unlabeled N fertilizer. Irrigation scheduling was accomplished using the direct method of neutron scattering technique. Irrigation was determined when the soil moisture content in the active root depth reached almost 80% of the field capacity. The amount of water applied for one line / one row were 6738 and 9149 m 3 /ha, whereas, for one line/two rows were 7489 and 12653 m 3 / ha for the two growing seasons 2004 and 2005 respectively. The objectives of the experiment were to evaluate the effect of different planting densities and two irrigation system on cotton yield, lint properties, dry matter yield, N-uptake, chlorophyll content and leaf area. The experimental design was randomized block design with 6 replications for each irrigation method. Results revealed that no significant differences between all different plant densities were recorded for all growth parameters tested in this study such as seed cotton yield, dry matter yield, lint properties, chlorophyll content and leaf area.(author)

  14. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity.

    Science.gov (United States)

    Li, Xiao-Jie; Li, Mo; Zhou, Ying; Hu, Shan; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2015-01-01

    RAV (related to ABI3/VP1) protein containing an AP2 domain in the N-terminal region and a B3 domain in the C-terminal region, which belongs to AP2 transcription factor family, is unique in higher plants. In this study, a gene (GhRAV1) encoding a RAV protein of 357 amino acids was identified in cotton (Gossypium hirsutum). Transient expression analysis of the eGFP:GhRAV1 fusion genes in tobacco (Nicotiana tabacum) epidermal cells revealed that GhRAV1 protein was localized in the cell nucleus. Quantitative RT-PCR analysis indicated that expression of GhRAV1 in cotton is induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). Overexpression of GhRAV1 in Arabidopsis resulted in plant sensitive to ABA, NaCl and PEG. With abscisic acid (ABA) treatment, seed germination and green seedling rates of the GhRAV1 transgenic plants were remarkably lower than those of wild type. In the presence of NaCl, the seed germination and seedling growth of the GhRAV1 transgenic lines were inhibited greater than those of wild type. And chlorophyll content and maximum photochemical efficiency of the transgenic plants were significantly lower than those of wild type. Under drought stress, the GhRAV1 transgenic plants displayed more severe wilting than wild type. Furthermore, expressions of the stress-related genes were altered in the GhRAV1 transgenic Arabidopsis plants under high salinity and drought stresses. Collectively, our data suggested that GhRAV1 may be involved in response to high salinity and drought stresses through regulating expressions of the stress-related genes during cotton development.

  15. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR

    Directory of Open Access Journals (Sweden)

    Shangpeng Sun

    2017-04-01

    Full Text Available A LiDAR-based high-throughput phenotyping (HTP system was developed for cotton plant phenotyping in the field. The HTP system consists of a 2D LiDAR and an RTK-GPS mounted on a high clearance tractor. The LiDAR scanned three rows of cotton plots simultaneously from the top and the RTK-GPS was used to provide the spatial coordinates of the point cloud during data collection. Configuration parameters of the system were optimized to ensure the best data quality. A height profile for each plot was extracted from the dense three dimensional point clouds; then the maximum height and height distribution of each plot were derived. In lab tests, single plants were scanned by LiDAR using 0.5° angular resolution and results showed an R2 value of 1.00 (RMSE = 3.46 mm in comparison to manual measurements. In field tests using the same angular resolution; the LiDAR-based HTP system achieved average R2 values of 0.98 (RMSE = 65 mm for cotton plot height estimation; compared to manual measurements. This HTP system is particularly useful for large field application because it provides highly accurate measurements; and the efficiency is greatly improved compared to similar studies using the side view scan.

  16. Response of sunflower to different planting dates in cotton based cropping system

    International Nuclear Information System (INIS)

    Yousaf, M.; Shakoor, A.; Rana, M.A.

    2007-01-01

    A field study on sunflower (Helianthus annuus L) was conducted for three. years (1991-1993) on different planting dates. Two hybrids (Hysun-33 and PI-6480) were sown on five different dates with 15 days interval from January 15 to March 15 at Cotton Research Station, Multan. Significant higher seed yield of 1880 and 2097 kg ha-1 was obtained when the crop was planted on February 1 and 15 than other treatments. The yield significantly decreased when sunflower was planted on January 15 (1264 kg ha-l), March 1 (1382 kg ha-l) and March 15 (927 kg hall. Maturity period was longest (128 days) of early sown (January 15) and shortest of late sown (March 15) sunflower hybrids. Therefore, it can be concluded that sunflower planted on February 1 to 15 gave higher seed yield as well as allowed enough time for land preparation and thereby, planting of cotton crop in the same field during its regular planting time. (author)

  17. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen.

    Science.gov (United States)

    Zhang, Tao; Zhao, Yun-Long; Zhao, Jian-Hua; Wang, Sheng; Jin, Yun; Chen, Zhong-Qi; Fang, Yuan-Yuan; Hua, Chen-Lei; Ding, Shou-Wei; Guo, Hui-Shan

    2016-09-26

    Plant pathogenic fungi represent the largest group of disease-causing agents on crop plants, and are a constant and major threat to agriculture worldwide. Recent studies have shown that engineered production of RNA interference (RNAi)-inducing dsRNA in host plants can trigger specific fungal gene silencing and confer resistance to fungal pathogens 1-7 . Although these findings illustrate efficient uptake of host RNAi triggers by pathogenic fungi, it is unknown whether or not such an uptake mechanism has been evolved for a natural biological function in fungus-host interactions. Here, we show that in response to infection with Verticillium dahliae (a vascular fungal pathogen responsible for devastating wilt diseases in many crops) cotton plants increase production of microRNA 166 (miR166) and miR159 and export both to the fungal hyphae for specific silencing. We found that two V. dahliae genes encoding a Ca 2+ -dependent cysteine protease (Clp-1) and an isotrichodermin C-15 hydroxylase (HiC-15), and targeted by miR166 and miR159, respectively, are both essential for fungal virulence. Notably, V. dahliae strains expressing either Clp-1 or HiC-15 rendered resistant to the respective miRNA exhibited drastically enhanced virulence in cotton plants. Together, our findings identify a novel defence strategy of host plants by exporting specific miRNAs to induce cross-kingdom gene silencing in pathogenic fungi and confer disease resistance.

  18. Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton.

    Science.gov (United States)

    Sato, Daisuke; Awad, Ayman A; Takeuchi, Yasutomo; Yoneyama, Koichi

    2005-01-01

    The germination stimulants for root parasitic plants Striga and Orobanche produced by cotton (Gossypium hirsutum L.) were examined in detail. Seeds of cotton were germinated and grown on glass wool wetted with sterile distilled water in sterile filter units. The root exudate was collected daily and extracted with ethyl acetate. Each of these ethyl acetate extracts was analyzed directly by high-performance liquid chromatography linked with tandem mass spectrometry (LC/MS/MS). The results demonstrate that cotton roots exuded strigol and strigyl acetate, but no other known strigolactones such as orobanchol and alectrol. The production of strigol was detected even in the root exudate collected during the first 24 h of incubation and reached a maximum 5-7 days later. The average exudation of strigol and strigyl acetate during the incubation period was ca. 15 and 2 pg/plant/day, respectively, indicating that strigol mainly contributed to germination stimulation by the cotton root exudate.

  19. Assessing Salinity in Cotton and Tomato Plants by Using Reflectance Spectroscopy

    Science.gov (United States)

    Goldshleger, Naftaly

    2016-04-01

    Irrigated lands in semi-arid and arid areas are subjected to salinization processes. An example of this phenomenon is the Jezreel Valley in northern Israel where soil salinity has increased over the years. The increase in soil salinity results in the deterioration of the soil structure and crops damage. In this experiment we quantified the relation between the chemical and spectral features of cotton and tomato plants and their mutual relationship to soil salinity. The experiment was carried out as part of ongoing research aiming to detect and monitor saline soils and vegetation by combining different remote sensing methods. The aim of this study was to use vegetation reflectance measurements to predict foliar Cl and Na concentration and assess salinity in the soil and in vegetation by their reflectance measurements. The model developed for determining concentrations of chlorine and sodium in tomato and cotton produced good results ( R2 = 0.92 for sodium and 0.85 for chlorine in tomato and R2 = 0.84 for sodium and 0.82 for chlorine in cotton). Lately, we extend the method to calculate vegetation salinity, by doing correlation between the reflectance slopes of the tested crops CL and Na from two research areas. The developed model produced a good results for all the data (R2=0.74) Our method can be implemented to assess vegetation salinity ahead of planting, and developed as a generic tool for broader use for agriculture in semi-arid regions. In our opinion these results show the possibility of monitoring for a threshold level of salinity in tomato and cotton leaves so remedial action can be taken in time to prevent crop damage. Our results strongly suggest that future imaging spectroscopy remote sensing measurements collected by airborne and satellite platforms could measure the salinity of soil and vegetation over larger areas. These results can be the first steps for generic a model which includes more vegetation for salinity measurements.

  20. Effect of late planting and shading on cellulose synthesis during cotton fiber secondary wall development.

    Directory of Open Access Journals (Sweden)

    Ji Chen

    Full Text Available Cotton-rapeseed or cotton-wheat double cropping systems are popular in the Yangtze River Valley and Yellow River Valley of China. Due to the competition of temperature and light resources during the growing season of double cropping system, cotton is generally late-germinating and late-maturing and has to suffer from the coupling of declining temperature and low light especially in the late growth stage. In this study, late planting (LP and shading were used to fit the coupling stress, and the coupling effect on fiber cellulose synthesis was investigated. Two cotton (Gossypium hirsutum L. cultivars were grown in the field in 2010 and 2011 at three planting dates (25 April, 25 May and 10 June each with three shading levels (normal light, declined 20% and 40% PAR. Mean daily minimum temperature was the primary environmental factor affected by LP. The coupling of LP and shading (decreased cellulose content by 7.8%-25.5% produced more severe impacts on cellulose synthesis than either stress alone, and the effect of LP (decreased cellulose content by 6.7%-20.9% was greater than shading (decreased cellulose content by 0.7%-5.6%. The coupling of LP and shading hindered the flux from sucrose to cellulose by affecting the activities of related cellulose synthesis enzymes. Fiber cellulose synthase genes expression were delayed under not only LP but shading, and the coupling of LP and shading markedly postponed and even restrained its expression. The decline of sucrose-phosphate synthase activity and its peak delay may cause cellulose synthesis being more sensitive to the coupling stress during the later stage of fiber secondary wall development (38-45 days post-anthesis. The sensitive difference of cellulose synthesis between two cultivars in response to the coupling of LP and shading may be mainly determined by the sensitiveness of invertase, sucrose-phosphate synthase and cellulose synthase.

  1. Infestation of Anthonomus grandis (Coleoptera: Curculionidae on re-sprout of cotton plants

    Directory of Open Access Journals (Sweden)

    José Fernando Jurca Grigolli

    2015-06-01

    Full Text Available The destruction of cotton crop residues at the end of the crop cycle is a key strategy for the phytosanitary crop management, since its off-season re-sprout can provide sites for feeding and oviposition of pests such as the boll weevil. This study aimed to evaluate the re-sprout capacity of cotton cultivars, as well as their infestation by Anthonomus grandis. A randomized blocks design, in a 3 x 2 factorial arrangement, with three cultivars (FM 910, DeltaOPAL and NuOPAL, two mowing heights (10 cm and 20 cm and four replications, was used. Weekly evaluations were carried out for measuring the percentage of plant re-sprout for both mowing heights, percentage of flower buds infested by the boll weevil and number of adults per re-sprout. Plants mowed at 10 cm presented a lower sprout capacity and consequently less flower buds, reducing the boll weevil population density in the area, while plants mowed at 20 cm showed high re-sprouts rates, seven days after mowing. The FM 910 cultivar had the highest number of re-sprout plants, while the DeltaOPAL cultivar showed the highest number of flower buds and adults per plant, as well as the highest percentage of buds damaged by the boll weevil.

  2. Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton

    Directory of Open Access Journals (Sweden)

    Lianguang Shang

    2016-10-01

    Full Text Available Plant height, which shows dynamic development and heterosis, is a major trait affecting plant architecture and has an indirect influence on economic yield related to biological yield in cotton. In the present study, we carried out dynamic analysis for plant height and its heterosis by quantitative trait loci (QTL mapping at multiple developmental stages using two recombinant inbred lines (RILs and their backcross progeny. At the single-locus level, 47 QTL were identified at five developmental stages in two hybrids. In backcross populations, QTL identified at an early stage mainly showed partial effects and QTL detected at a later stage mostly displayed overdominance effects. At the two-locus level, we found that main effect QTL played a more important role than epistatic QTL in the expression of heterosis in backcross populations. Therefore, this study implies that the genetic basis of plant height heterosis shows dynamic character and main effect QTL with dominance determines heterosis for plant height in Upland cotton.

  3. WEED INTERFERENCE IN COTTON PLANTS GROWN WITH REDUCED SPACING IN THE SECOND HARVEST SEASON

    Directory of Open Access Journals (Sweden)

    MICHEL ALEX RAIMONDI

    2017-01-01

    Full Text Available Changes in row spacing may result in changes in crop and weed behavior and crop-weed competition. A study was performed to determine the periods of weed presence and weed control in cotton sown with 0.76 m spacing between planting rows. Cotton cultivar FM 993 was sown on 01/08/2010 with the aim of reaching a density of 190,000 seeds ha-1. Treatments with either weed presence or weed control during the first 0, 5, 10, 15, 22, 29, 36, 43, 50, 57, 64, 71, and 190 days of cultivation were established to determine the period prior to weed interference (PPI, total period of interference prevention (TPIP and critical period of weed control (CPWC. The weed species with high relative importance were Amaranthus retroflexus, Bidens pilosa, Eleusine indica, Digitaria horizontalis, Alternanthera tenella, and Commelina benghalensis. Considering a maximum yield loss of 5%, the PPI was established 11 days after cotton emergence (DAE, the TPWC at 46 DAE, and the CPWC between 11 and 46 DAE, for a total duration of 35 days. Considering a maximum acceptable yield loss equal to the standard deviation for the weed-free treatment, the PPI was established at 6 DAE, the TPWC at 55 DAE, and the CPWC between 6 and 55 DAE for a total duration of 49 days.

  4. Gamma radiation effect on the mitochondria ultrastructure in different radiosensitive types of cotton plants

    Energy Technology Data Exchange (ETDEWEB)

    Arslanov, S V

    1973-01-01

    When germinated seeds are irradiated with a dose of 10 krad, the mitochondrial ultrastructure is disrupted in the early-ripening 1306-DV and the late-ripening S-1622 varieties of the cotton-plant. The mitochondria exhibited swelling, breakdown of internal structure and vacuolation. In the S-1622 variety the mitochondria shrink owing to their small number and larger size and to the smaller number of cristae. Changes in the ultrafine organization of mitochondria lead to inhibition of carbohydrate oxidation through the Krebs cycle and intensification of oxidation through the pentosophosphate cycle.

  5. Increase of Internal CO2 of Cotton Plants by Methanol Application to Increase Yield

    International Nuclear Information System (INIS)

    Badron Zakaria; Darmawan; Nurlina Kasim; Joseph Saepuddin

    2004-01-01

    A field experiment has been conducted to increase internal CO 2 and Rubisco activity detected by 14 C and to determinate which factors influence this activities. Plant material used was cotton plants which internal CO 2 concentrations and Rubisco activity was observed at 35, 50, 65, 80 days after planting (DAP). Treatments applied were methanol with concentrations of 0%, 10%,20% and 30% at available water (AW) at 25-50% AW, 50-75% AW, 75-100% AW. Results obtained showed that application of methanol at concentration of 20% at 75-100% AW, increase internal CO 2 from 266.60 ppm to 295.10 ppm (11 % increase) and this will also increase Rubisco activity from 3.81 to 14.28 (μmol. CO 2 menit -1 (μmol. Rubisco -1 ). This increase is expected to push photosynthesis rate and result in increase cotton yield. The use of 14 C was satisfactorily detected the amount of carbon. (author)

  6. Verde plant bug, Creontiades signatus (Hemiptera: Miridae) effects of insect density and bloom period of infestation on cotton damage and yield

    Science.gov (United States)

    The verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), has emerged as a threat to cotton in South Texas, causing boll damage similar to boll-feeding stink bugs (Hemiptera: Pentatomidae). Verde plant bugs were released into caged cotton for a one-week period to characterize the effec...

  7. Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal.

    Science.gov (United States)

    Latif, Ayesha; Rao, Abdul Qayyum; Khan, Muhammad Azmat Ullah; Shahid, Naila; Bajwa, Kamran Shehzad; Ashraf, Muhammad Aleem; Abbas, Malik Adil; Azam, Muhammad; Shahid, Ahmad Ali; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-09-17

    Cotton yield has been badly affected by different insects and weed competition. In Past Application of multiple chemicals is required to manage insects and weed control was achieved by different conventional means, such as hand weeding, crop rotation and polyculture, because no synthetic chemicals were available. The control methods shifted towards high input and target-oriented methods after the discovery of synthetic herbicide in the 1930s. To utilise the transgenic approach, cotton plants expressing the codon-optimised CEMB GTGene were produced in the present study. Local cotton variety CEMB-02 containing Cry1Ac and Cry2A in single cassette was transformed by synthetic codon-optimised 5-enolpyruvylshikimate-3-phosphate synthase gene cloned into pCAMBIA 1301 vector under 35S promoter with Agrobacterium tumifaciens. Putative transgenic plants were screened in MS medium containing 120 µmol/L glyphosate. Integration and expression of the gene were evaluated by PCR from genomic DNA and ELISA from protein. A 1.4-kb PCR product for Glyphosate and 167-bp product for Cry2A were obtained by amplification through gene specific primers. Expression level of Glyphosate and Bt proteins in two transgenic lines were recorded to be 0.362, 0.325 µg/g leaf and 0.390, 0.300 µg/g leaf respectively. FISH analysis of transgenic lines demonstrates the presence of one and two copy no. of Cp4 EPSPS transgene respectively. Efficacy of the transgene Cp4 EPSPS was further evaluated by Glyphosate spray (41 %) assay at 1900 ml/acre and insect bioassay which shows 100 %mortality of insect feeding on transgenic lines as compared to control. The present study shows that the transgenic lines produced in this study were resistant not only to insects but also equally good against 1900 ml/acre field spray concentration of glyphosate.

  8. Sequential Sampling Plan of Anthonomus grandis (Coleoptera: Curculionidae) in Cotton Plants.

    Science.gov (United States)

    Grigolli, J F J; Souza, L A; Mota, T A; Fernandes, M G; Busoli, A C

    2017-04-01

    The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is one of the most important pests of cotton production worldwide. The objective of this work was to develop a sequential sampling plan for the boll weevil. The studies were conducted in Maracaju, MS, Brazil, in two seasons with cotton cultivar FM 993. A 10,000-m2 area of cotton was subdivided into 100 of 10- by 10-m plots, and five plants per plot were evaluated weekly, recording the number of squares with feeding + oviposition punctures of A. grandis in each plant. A sequential sampling plan by the maximum likelihood ratio test was developed, using a 10% threshold level of squares attacked. A 5% security level was adopted for the elaboration of the sequential sampling plan. The type I and type II error used was 0.05, recommended for studies with insects. The adjustment of the frequency distributions used were divided into two phases, so that the model that best fit to the data was the negative binomial distribution up to 85 DAE (Phase I), and from there the best fit was Poisson distribution (Phase II). The equations that define the decision-making for Phase I are S0 = -5.1743 + 0.5730N and S1 = 5.1743 + 0.5730N, and for the Phase II are S0 = -4.2479 + 0.5771N and S1 = 4.2479 + 0.5771N. The sequential sampling plan developed indicated the maximum number of sample units expected for decision-making is ∼39 and 31 samples for Phases I and II, respectively. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    Science.gov (United States)

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  10. Bioactivity of indigenous medicinal plants against the cotton whitefly, Bemisia tabaci.

    Science.gov (United States)

    Hammad, E Abou-Fakhr; Zeaiter, A; Saliba, N; Talhouk, S

    2014-01-01

    Forty-one methanol extracts of 28 indigenous medicinal plant species were tested for their insecticidal bioactivity against cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), adults and second nymphal instars under controlled conditions. This study is within a bioprospection context, in the form of utilizing local plant species as an alternative in sustainable agriculture development. Eighteen and nine plant extracts caused a significant decrease in number of live adult and nymphal whiteflies, respectively, compared to the control. This is the first report for the potential effect on survival of insects for 22 out of 28 tested medicinal plant species. Whole plant extracts of Ranunculus myosuroudes Boiss. and Kotschy (Ranunculaceae), Achillea damascena L. (Asteraceae), and Anthemis hebronica Boiss. and Kotschy (Asteraceae) and leaf extracts of Verbascum leptostychum DC. (Scrophulariaceae) and Heliotropium rotundifolium Boiss. (Borangiaceae) caused both repellent and toxic effects against the adult and second nymphal instars, respectively. Extracts of leaves and stems of Anthemis scariosa Boiss. (Asteraceae) and Calendula palestina Pers. (Asteraceae) were found to be more bioactive against the adult and nymphal instars, respectively, than extracts of other plant parts, such as flowers. Thus, the bioactive extracts of these medicinal plants have the potential to lower whitefly populations in a comprehensive pest management program in local communities, pending cultivation of these medicinal plant species.

  11. Bioactivity of indigenous medicinal plants against the cotton whitefly, Bemisia tabaci

    Science.gov (United States)

    Hammad, E. Abou-Fakhr; Zeaiter, A.; Saliba, N.; Talhouk, S.

    2014-01-01

    Abstract Forty-one methanol extracts of 28 indigenous medicinal plant species were tested for their insecticidal bioactivity against cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), adults and second nymphal instars under controlled conditions. This study is within a bioprospection context, in the form of utilizing local plant species as an alternative in sustainable agriculture development. Eighteen and nine plant extracts caused a significant decrease in number of live adult and nymphal whiteflies, respectively, compared to the control. This is the first report for the potential effect on survival of insects for 22 out of 28 tested medicinal plant species. Whole plant extracts of Ranunculus myosuroudes Boiss. and Kotschy (Ranunculaceae), Achillea damascena L. (Asteraceae), and Anthemis hebronica Boiss. and Kotschy (Asteraceae) and leaf extracts of Verbascum leptostychum DC. (Scrophulariaceae) and Heliotropium rotundifolium Boiss. (Borangiaceae) caused both repellent and toxic effects against the adult and second nymphal instars, respectively. Extracts of leaves and stems of Anthemis scariosa Boiss. (Asteraceae) and Calendula palestina Pers. (Asteraceae) were found to be more bioactive against the adult and nymphal instars, respectively, than extracts of other plant parts, such as flowers. Thus, the bioactive extracts of these medicinal plants have the potential to lower whitefly populations in a comprehensive pest management program in local communities, pending cultivation of these medicinal plant species. PMID:25204756

  12. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants.

    Science.gov (United States)

    Mohamed, Heba Ibrahim; Akladious, Samia Ageeb

    2017-10-01

    The use of fungicides for an effective control of plant diseases has become crucial in the last decades in the agriculture system. Seeds of cotton plants were treated with systemic and contact fungicides to study the efficiency of seed dressing fungicides in controlling damping off caused by Rhizoctonia solani under greenhouse conditions and its effect on plant growth and metabolism. The results showed that Mon-cut showed the highest efficiency (67.99%) while each of Tondro and Hemixet showed the lowest efficiency (31.99%) in controlling damping off. Rhizolex T, Mon-cut and Tondro fungicides caused significant decrease in plant height, dry weight of plant, phytohormones, photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids but caused significant increases in total phenols, flavonoids, antioxidant enzymes, ascorbic acid, reduced glutathione, MDA and hydrogen peroxide as compared with untreated plants. On the other hand, the other fungicides (Maxim, Hemixet and Flosan) increased all the above recorded parameters as compared with untreated plants. Our results indicated that the fungicides application could be a potential tool to increase plant growth, the antioxidative defense mechanisms and decreased infection with plant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Impacts of Ridge-Furrow Planting on Salt Stress and Cotton Yield under Drip Irrigation

    Directory of Open Access Journals (Sweden)

    Chitao Sun

    2017-01-01

    Full Text Available Flat (F, mini-ditch (MD, and ridge-furrow (RF are three conventional cotton planting patterns that are usually adopted around the world, yet soil and crop responses to these three patterns are poorly studied, as is their suitability for increasing yield for coastal areas in Eastern China. The effects of three planting methods on water and salt dynamics as well as on growth and lint yield of cotton (Gossypium hirsutum L. were investigated in a saline field in Bohai Rim, China, to select the best planting pattern for cultivating coastal saline fields of Eastern China. Soil moisture in the root zone with RF was 11.9% and 12.1% higher than with F and MD, whereas the electrical conductivity of a saturated soil extract (ECe in the root zone with RF was 18.0% and 13.8% lower than with MD and F, respectively, during the growth period, which indicated that RF could efficiently collect rainfall and leach salt in the root zone. After drip irrigation, the infiltration and salt-leaching depth with RF were both deeper than that with F and MD. The stand establishment of MD was the highest (80.3% due to the greenhouse effect from film mulching, and was 12.8% and 4.6% higher than that with F and RF, respectively. Growth indicators and lint yield demonstrated that RF was superior to F and MD because of the higher soil moisture and lower ECe. The lint yield was significantly higher in RF, suggesting that RF can be an optimal planting pattern for agricultural reclamation in similar saline-alkaline areas around the world.

  14. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Cotton is a world’s leading crop important to the world’s textile and energy industries, and a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction and extensive analysis of a binary bacterial artificial chromosome (BI...

  15. Verde plant bug (Hemiptera: Miridae) feeding injury to cotton bolls charcterized by boll age, size and damage ratings

    Science.gov (United States)

    Our studies over 2 years (2009 and 2010) and 2 locations (Weslaco and Corpus Christi, TX) investigated the relationship of feeding-injury of the verde plant bug, Creontiades signatus Distant, to a range of cotton boll age classes further defined by boll diameter and accumulated degree-days (anthesis...

  16. Comparison of cotton square and boll damage and resulting lint and seed loss caused by verde plant bug, Creontiades signatus

    Science.gov (United States)

    Retention of bolls and squares (referred to as fruit retention), boll damage, and resulting cotton lint and seed weight loss were assessed when two (2010) and three (2011) age classes of sympodial fruiting branches with different ages of squares and bolls where exposed to verde plant bug, Creontiade...

  17. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants

    International Nuclear Information System (INIS)

    Pare, P.W.; Tumlinson, J.H.

    1997-01-01

    In response to insect feeding on the leaves, cotton (Gossypium hirsutum L.) plants release elevated levels of volatiles, which can serve as a chemical signal that attracts natural enemies of the herbivore to the damaged plant. Pulse-labeling experiments with [13C]CO2 demonstrated that many of the volatiles released, including the acyclic terpenes (E,E)-alpha-farnesene, (E)-beta-farnesene, (E)-beta-ocimene, linalool,(E)-4,8-dimethyl-1,3,7-nonatriene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetrane, as well as the shikimate pathway product indole, are biosynthesized de novo following insect damage. However, other volatile constituents, including several cyclic terpenes, butyrates, and green leaf volatiles of the lipoxygenase pathway are released from storage or synthesized from stored intermediates. Analysis of volatiles from artificially damaged plants, with and without beet armyworm (Spodoptera exigua Hubner) oral secretions exogenously applied to the leaves, as well as volatiles from beet armyworm-damaged and -undamaged control plants, demonstrated that the application of caterpillar oral secretions increased both the production and release of several volatiles that are synthesized de novo in response to insect feeding. These results establish that the plant plays an active and dynamic role in mediating the interaction between herbivores and natural enemies of herbivores

  18. Dusky Cotton Bug Oxycarenus spp. (Hemiptera: Lygaeidae: Hibernating Sites and Management by using Plant Extracts under Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Abbas Muneer

    2015-09-01

    Full Text Available The dusky cotton bug, Oxycarenus spp., has now attained the status of a major pest of cotton crops that affects lint as well as the seed quality of cotton. Surveys were conducted to explore the hibernating sites in the districts Faisalabad, Multan and Bahawalpur. The efficacies of six different plant extracts, i.e. Neem (Azadirachta indica, Milkweed (Calotropis procera, Moringa (Moringa oleifera, Citrus (Citrus sinensis, Tobacco (Nicotiana tobacum and Castor (Ricinus communis were tested by using three different concentrations of each plant extract, i.e. 5, 2.5 and 1.5% under laboratory conditions at 25±2°C and 70±5% RH. The data were recorded 24, 48, 72 and 96 hours after treatment application. However, Psidium guajava, Azadirachta indica, Eucalyptus camaldulensis and Mangifera indica were graded as host plants heavily infested by Oxycarenus spp. Results (α≤0.05 indicated that increasing the concentration of extracts also increased the mortality. Nicotiana tobacum and Calotropis procera respectively displayed maximum 72 and 71, 84 and 80, 97 and 89% mortality at all concentrations, i.e. 1.25, 2.50 and 5.00%, after 96 hours of application. Two concentrations (2.5 and 5% are the most suitable for obtaining significant control of the dusky cotton bug.

  19. Plant growth stage-specific injury and economic injury level for verde plant bug, Creontiades signatus (Hemiptera: Miridae), on cotton: effect of bloom period of infestation.

    Science.gov (United States)

    Brewer, Michael J; Anderson, Darwin J; Armstrong, J Scott

    2013-10-01

    Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Cossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10-11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8-9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (verde plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response-insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.

  20. Respiration intensiveness and inclusion of 32P in the composition of phosphorus-organic combinations in radiomutants of cotton plants and their initial forms under salinization of soil

    International Nuclear Information System (INIS)

    Nazirov, N.N.; Tashmatov, N.T.; Vakhabov, A.; Nabiev, A.G.

    1981-01-01

    Salinization of soil affects respiration intensity, 32 P introduction into plants and its inclusion in the content of phosphoric organic compounds as well as their content in tissues of cotton plants. Respiration intensity increases: respiration intensity of weakly-stable plants increases to a greater degree. General character of changes caused by the salinization effect of different cotton sorts, is analogous, differences are only in the destruction degree [ru

  1. Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones.

    Science.gov (United States)

    de Moura, Stéfanie Menezes; Artico, Sinara; Lima, Cássio; Nardeli, Sarah Muniz; Berbel, Ana; Oliveira-Neto, Osmundo Brilhante; Grossi-de-Sá, Maria Fátima; Ferrándiz, Cristina; Madueño, Francisco; Alves-Ferreira, Márcio

    2017-03-01

    Expression analysis of the AG -subfamily members from G. hirsutum during flower and fruit development. Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several studies have reported the identification and expression of the transcription factor family MADS-box members in cotton ovules and fibers; however, their roles are still elusive during the reproductive development in cotton. In this study, we evaluated the expression profiles of five MADS-box genes (GhMADS3, GhMADS4, GhMADS5, GhMADS6 and GhMADS7) belonging to the AGAMOUS-subfamily in Gossypium hirsutum. Phylogenetic and protein sequence analyses were performed using diploid (G. arboreum, G. raimondii) and tetraploid (G. barbadense, G. hirsutum) cotton genomes, as well as the AG-subfamily members from Arabidopsis thaliana, Petunia hybrida and Antirrhinum majus. qPCR analysis showed that the AG-subfamily genes had high expression during flower and fruit development in G. hirsutum. In situ hybridization analysis also substantiates the involvement of AG-subfamily members on reproductive tissues of G. hirsutum, including ovule and ovary. The effect of plant hormones on AG-subfamily genes expression was verified in cotton fruits treated with gibberellin, auxin and brassinosteroid. All the genes were significantly regulated in response to auxin, whereas only GhMADS3, GhMADS4 and GhMADS7 genes were also regulated by brassinosteroid treatment. In addition, we have investigated the GhMADS3 and GhMADS4 overexpression effects in Arabidopsis plants. Interestingly, the transgenic plants from both cotton AG-like genes in Arabidopsis significantly altered the fruit size compared to the control plants. This alteration suggests that cotton AG-like genes might act regulating fruit formation. Our results demonstrate that members of the AG-subfamily in G. hirsutum

  2. Effect of Mowing Cotton Stalks and Preventing Plant Re-Growth on Post-Harvest Reproduction of Meloidogyne incognita

    Science.gov (United States)

    Davis, Richard F.; Kemerait, Robert C.

    2010-01-01

    The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the U.S., and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce nematode population levels in the field, thereby reducing initial nematode population for the next year's crop. The three practices tested were: 1) chemical defoliation before harvest plus cutting cotton stalks after harvest, 2) chemical defoliation plus applying a herbicide to kill plants prior to cutting the stalks, and 3) chemical defoliation without cutting stalks. Experiments were conducted in both the greenhouse and in the field. The greenhouse experiments demonstrated that M. incognita reproduction (measured as egg counts and root gall rating indices) was significantly greater when stalks were not cut. Cutting stalks plus applying herbicide to kill cotton roots did not significantly reduce nematode reproduction compared to cutting stalks alone. In field experiments, cutting stalks reduced egg populations and root galling compared to defoliation without stalk cutting. In a greenhouse bioassay which used soil from the field plots, plants grown in soil from the defoliation only treatment had greater root gall ratings and egg counts than in the stalk cutting plus herbicide treatment. Therefore, we conclude that cutting cotton stalks immediately after harvest effectively reduces M. incognita reproduction, and may lead to a lower initial population density of this nematode in the following year. PMID:22736845

  3. Role of plant biotechnology and genetic engineering in crop-improvement, with special emphases on cotton: A review

    International Nuclear Information System (INIS)

    Akhtar, L.H.; Siddiq, S.Z.; Tariq, A.H.; Arshad, M.; Gorham, J.

    2003-01-01

    Plant biotechnology and genetic engineering offer novel approaches to plant-breeding, production, propagation and preservation of germplasm. In this manuscript, the population and food-requirements of Pakistan, role of biotechnology and genetic engineering in crop-improvement, along with potential uses in cotton, have been discussed. The latest position of plant biotechnology and genetic engineering in Pakistan and the advantages of biotechnology and genetic-engineering techniques over conventional plant-breeding techniques, along with critical views of various scientists have been reviewed. (author)

  4. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR.

    Science.gov (United States)

    Sun, Shangpeng; Li, Changying; Paterson, Andrew H; Jiang, Yu; Xu, Rui; Robertson, Jon S; Snider, John L; Chee, Peng W

    2018-01-01

    Plant breeding programs and a wide range of plant science applications would greatly benefit from the development of in-field high throughput phenotyping technologies. In this study, a terrestrial LiDAR-based high throughput phenotyping system was developed. A 2D LiDAR was applied to scan plants from overhead in the field, and an RTK-GPS was used to provide spatial coordinates. Precise 3D models of scanned plants were reconstructed based on the LiDAR and RTK-GPS data. The ground plane of the 3D model was separated by RANSAC algorithm and a Euclidean clustering algorithm was applied to remove noise generated by weeds. After that, clean 3D surface models of cotton plants were obtained, from which three plot-level morphologic traits including canopy height, projected canopy area, and plant volume were derived. Canopy height ranging from 85th percentile to the maximum height were computed based on the histogram of the z coordinate for all measured points; projected canopy area was derived by projecting all points on a ground plane; and a Trapezoidal rule based algorithm was proposed to estimate plant volume. Results of validation experiments showed good agreement between LiDAR measurements and manual measurements for maximum canopy height, projected canopy area, and plant volume, with R 2 -values of 0.97, 0.97, and 0.98, respectively. The developed system was used to scan the whole field repeatedly over the period from 43 to 109 days after planting. Growth trends and growth rate curves for all three derived morphologic traits were established over the monitoring period for each cultivar. Overall, four different cultivars showed similar growth trends and growth rate patterns. Each cultivar continued to grow until ~88 days after planting, and from then on varied little. However, the actual values were cultivar specific. Correlation analysis between morphologic traits and final yield was conducted over the monitoring period. When considering each cultivar individually

  5. Functional characterization of a strong bi-directional constitutive plant promoter isolated from cotton leaf curl Burewala virus.

    Directory of Open Access Journals (Sweden)

    Zainul A Khan

    Full Text Available Cotton leaf curl Burewala virus (CLCuBuV, belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV were fused with β-glucuronidase (GUS and green fluorescent protein (GFP reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells.

  6. Ion chromatography separation of cotton surface melezitose and raffinose: entomological vs. plant sugars

    Science.gov (United States)

    According to previous studies, certain levels of the carbohydrates melezitose and trehalulose deposited on the surface of cotton are indicative of either whitefly or aphid contamination, which may cause problems during cotton processing. Obtaining reliable IC values for those surface sugars is para...

  7. Cotton fiber quality determined by fruit position, temperature and management

    OpenAIRE

    Wang, X.; Evers, J.B.; Zhang, L.; Mao, L.; Pan, X.; Li, Z.

    2013-01-01

    CottonXL is a tool to explore cotton fiber quality in relation to fruit position, to improve cotton quality by optimizing cotton plant structure, as well as to help farmers understand how the structure of the cotton plant determines crop growth and quality.

  8. Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye

    International Nuclear Information System (INIS)

    Tunc, Ozlem; Tanaci, Hacer; Aksu, Zuemriye

    2009-01-01

    In this study, the potential use of cotton plant wastes - stalk (CS) and hull (CH) - as sorbents for the removal of Remazol Black B (RB5), a vinyl sulfone type reactive dye, was investigated. The results indicated that adsorption was strongly pH-dependent but slightly temperature-dependent for each sorbent-dye system. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich adsorption models were used for the mathematical description of adsorption equilibrium and isotherm constants were evaluated at 25 deg. C. All models except the Freundlich model were applicable for the description of dye adsorption by both sorbents in the concentration range studied. According to the Langmuir model, CS and CH sorbents exhibited the highest RB5 dye uptake capacities of 35.7 and 50.9 mg g -1 , respectively, at an initial pH value of 1.0. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye, and adsorption kinetics followed the pseudo second-order type kinetic model for each sorbent. Using the Langmuir model parameters, thermodynamic constant ΔG o was also evaluated for each sorption system

  9. Effects of temperature on the feeding behavior of Alabama argillacea (Hübner (Lepidoptera: Noctuidae on Bt and non-Bt cotton plants

    Directory of Open Access Journals (Sweden)

    FRANCISCO S. RAMALHO

    2017-12-01

    Full Text Available ABSTRACT The host acceptance behavior and environmental factors as temperature affect the feeding behavior of Lepidoptera pests. Thus, they must be considered in studies about the risk potential of resistance evolution. The current study sets the differences in the feeding behavior of neonate Alabama argillacea (Hübner (Lepidoptera: Noctuidae larvae exposed to Bt and non-Bt cotton plants, under different temperatures and time gap after hatching. Two cotton cultivars were used: the Bt (DP 404 BG - bollgard and the non-transformed isoline, DP 4049. We found that the feeding behavior of neonate A. argillacea is significantly different between Bt and non-Bt cotton. Based on the number of larvae with vegetal tissue in their gut found on the plant and in the organza as well as on the amount of vegetal tissue ingested by the larvae. A. argillacea shows feeding preference for non-Bt cotton plants, in comparison to that on the Bt. However, factors such as temperature and exposure time may affect detection capacity and plant abandonment by the larvae and it results in lower ingestion of vegetal tissue. Such results are relevant to handle the resistance of Bt cotton cultivars to A. argillacea and they also enable determining how the cotton seeds mix will be a feasible handling option to hold back resistance evolution in A. argillacea populations on Bt cotton, when it is compared to other refuge strategies. The results can also be useful to determine which refuge distribution of plants is more effective for handling Bt cotton resistance to A. argillacea.

  10. Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2).

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2004-10-01

    Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6-7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.

  11. Effect of tillage and planting date on seasonal abundance and diversity of predacious ground beetles in cotton.

    Science.gov (United States)

    Shrestha, R B; Parajulee, M N

    2010-01-01

    A 2-year field study was conducted in the southern High Plains region of Texas to evaluate the effect of tillage system and cotton planting date window on seasonal abundance and activity patterns of predacious ground beetles. The experiment was deployed in a split-plot randomized block design with tillage as the main-plot factor and planting date as the subplot factor. There were two levels for each factor. The two tillage systems were conservation tillage (30% or more of the soil surface is covered with crop residue) and conventional tillage. The two cotton planting date window treatments were early May (normal planting) and early June (late planting). Five prevailing predacious ground beetles, Cicindela sexguttata F., Calosoma scrutator Drees, Pasimachus spp., Pterostichus spp., and Megacephala Carolina L. (Coleoptera: Carabidae), were monitored using pitfall traps at 2-week intervals from June 2002 to October 2003. The highest total number of ground beetles (6/trap) was observed on 9 July 2003. Cicindela sexguttata was the dominant ground dwelling predacious beetle among the five species. A significant difference between the two tillage systems was observed in the abundances of Pterostichus spp. and C. sexguttata. In 2002. significantly more Pterostichus spp. were recorded from conventional plots (0.27/trap) than were recorded from conservation tillage plots (0.05/trap). Significantly more C. sexguttata were recorded in 2003 from conservation plots (3.77/trap) than were recorded from conventional tillage plots (1.04/trap). There was a significant interaction between year and tillage treatments. However, there was no significant difference in the abundances of M. Carolina and Pasimachus spp. between the two tillage practices in either of the two years. M. Carolina numbers were significantly higher in late-planted cotton compared with those observed in normal-planted cotton. However, planting date window had no significant influence on the activity patterns of the

  12. Nitrogen, potassium and plant growth retardant effects on oil content and quality of cotton seed

    Directory of Open Access Journals (Sweden)

    Alkassas, A. R.

    2007-09-01

    Full Text Available The aim of this field experiment was to investigate the effect of nitrogen, potassium and a plant growth retardant (PGR on seed yield and protein and oil content of an Egyptian cotton cultivar (Gossypium barbadense Giza 86. Treatments consisted of: soil application of N (95 and 143 kg N ha-1 in the form ammonium nitrate, foliar application of potassium (0, 319, 638 or 957 g K ha-1 as potassium sulfate and foliar application of mepiquat chloride (MC (0 and 48 + 24 g active ingredient ha-1 on seed, protein and oil yields and oil properties of Egyptian cotton cultivar “Giza 86” (Gossypium barbadense. After applying the higher N-rate, foliar application of potassium and plant growth retardant MC significantly increased seed yield and the content of seed protein and oil, seed oil refractive index, unsaponifiable matter and total unsaturated fatty acids (oleic and linoleic. In contrast, oil acid and saponification value as well as total saturated fatty acids were decreased by foliar application of potassium and MC. The seed oil content was decreased with soil application of N.El objetivo de los experimentos de campo fue investigar el efecto del nitrogeno, potasio y retardantes del crecimiento de plantas sobre el contenido en proteínas y aceite de una semilla de algodón cultivada en Egipto (Gossypium barbadense Giza 86. Los tratamientos consistieron en la aplicación en suelo de N (95 and 143 kg N ha-1 en forma de nitrato amónico, aplicación foliar de K (0, 319, 638 or 957 g K ha-1 como sulfato potásico y aplicación foliar de cloruro de m mepiquat (MC (0 and 48 + 24 g de ingrediente activo ha-1 sobre un cultivar de algodón «Giza 86» (Gossypium barbadense. La aplicación de la cantidad más elevada de N, unida a la aplicación de potasio y del retardador MC, aumentó significativamente el rendimiento en semilla, así como el contenido en proteinas y en aceite. Respecto al aceite, aumentó el índice de refracción, la fracci

  13. Effects of domestic wastewater treated by anaerobic stabilization on soil pollution, plant nutrition, and cotton crop yield.

    Science.gov (United States)

    Uzen, Nese; Cetin, Oner; Unlu, Mustafa

    2016-12-01

    This study has aimed to determine the effects of treated wastewater on cotton yield and soil pollution in Southeastern Anatolia Region of Turkey during 2011 and 2012. The treated wastewater was provided from the reservoir operated as anaerobic stabilization. After treatment, suspended solids (28-60 mg/l), biological oxygen demand (29-30 mg/l), and chemical oxygen demand (71-112 mg/l) decreased significantly compared to those in the wastewater. There was no heavy metal pollution in the water used. There were no significant amounts of coliform bacteria, fecal coliform, and Escherichia coli compared to untreated wastewater. The cottonseed yield (31.8 g/plant) in the tanks where no commercial fertilizers were applied was considerably higher compared to the yield (17.2 g/plant) in the fertilized tanks where a common nitrogenous fertilizer was utilized. There were no significant differences between the values of soil pH. Soil electrical conductivity (EC) after the experiment increased from 0.8-1.0 to 0.9-1.8 dS/m. Heavy metal pollution did not occur in the soil and plants, because there were no heavy metals in the treated wastewater. It can be concluded that treated domestic wastewater could be used to grow in a controlled manner crops, such as cotton, that would not be used directly as human nutrients.

  14. How predictable are the behavioral responses of insects to herbivore induced changes in plants? Responses of two congeneric thrips to induced cotton plants.

    Directory of Open Access Journals (Sweden)

    Rehan Silva

    Full Text Available Changes in plants following insect attack are referred to as induced responses. These responses are widely viewed as a form of defence against further insect attack. In the current study we explore whether it is possible to make generalizations about induced plant responses given the unpredictability and variability observed in insect-plant interactions. Experiments were conducted to test for consistency in the responses of two congeneric thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae to cotton seedlings (Gossypium hirsutum Linneaus (Malvales: Malvaceae damaged by various insect herbivores. In dual-choice experiments that compared intact and damaged cotton seedlings, F. schultzei was attracted to seedlings damaged by Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae, Tetranychus urticae (Koch (Trombidiforms: Tetranychidae, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae, F. schultzei and F. occidentalis but not to mechanically damaged seedlings. In similar tests, F. occidentalis was attracted to undamaged cotton seedlings when simultaneously exposed to seedlings damaged by H. armigera, T. molitor or F. occidentalis. However, when exposed to F. schultzei or T. urticae damaged plants, F. occidentalis was more attracted towards damaged plants. A quantitative relationship was also apparent, F. schultzei showed increased attraction to damaged seedlings as the density of T. urticae or F. schultzei increased. In contrast, although F. occidentalis demonstrated increased attraction to plants damaged by higher densities of T. urticae, there was a negative relationship between attraction and the density of damaging conspecifics. Both species showed greater attraction to T. urticae damaged seedlings than to seedlings damaged by conspecifics. Results demonstrate that the responses of both species of thrips were context dependent, making generalizations difficult to formulate.

  15. Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Eliana Alcantra

    2011-06-01

    Full Text Available Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae. The aphid Aphis gossypii is an insect pest that causes damage mainly at the beginning of the cotton plant development. The effect of resistance inductors silicon and acibenzolar-s-methyl (ASM on the development of colored cotton plants were researched in the presence and absence of A. gossypii. Three colored cotton cultivars were sown in pots and individually infested with 25 apterous aphids, 13 days after the application of the inductors. Fifteen days after plant emergence, the silicon was applied at a dosage equivalent to 3 t/ha and acibenzolar-s-methyl in 0.2% solution of the product BION 500®. After 21 days of infestation the following parameters were evaluated: plant height, stem diameter, dry matter of aerial part and root, and total number of aphids replaced. It was verified that the plant height was reduced in the presence of aphids and all variables were negatively affected by the application of ASM. However, silicon did not affect plant development.

  16. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste.

    Science.gov (United States)

    Kim, Sang Yoon; Lee, Sang Yeob; Weon, Hang-Yeon; Sang, Mee Kyung; Song, Jaekyeong

    2017-01-10

    Bacillus species have been widely used as biological control agents in agricultural fields due to their ability to suppress plant pathogens. Bacillus velezensis M75 was isolated from cotton waste used for mushroom cultivation in Korea, and was found to be antagonistic to fungal plant pathogens. Here, we report the complete genome sequence of the M75 strain, which has a 4,007,450-bp single circular chromosome with 3921 genes and a G+C content of 46.60%. The genome contained operons encoding various non-ribosomal peptide synthetases and polyketide synthases, which are responsible for the biosynthesis of secondary metabolites. Our results will provide a better understanding of the genome of B. velezensis strains for their application as biocontrol agents against fungal plant pathogens in agricultural fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy

    Science.gov (United States)

    Cotton is one of the most important and widely grown crops in the world. In addition to natural textile fiber production as a primary purpose, it yields a high grade vegetable oil for human consumption and also carbohydrate fiber and protein byproducts for animal feed. In this work, attenuated total...

  18. Soil moisture and plant canopy temperature sensing for irrigation application in cotton

    Science.gov (United States)

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  19. Evaluation of disease resistance in cotton plants with reduced levels of methylated phytoalexins

    Science.gov (United States)

    The production of sesquiterpenoids in cotton tissues contribute to the plant’s constitutive and inducible defense against pathogens. In roots, gossypol (G), desoxyhemigossypol (dHG), hemigossypol (HG), and their methylated derivatives MG, DMG, dMHG, and MHG are the main defense compounds. dHG is ...

  20. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls.

    Science.gov (United States)

    MacMillan, Colleen P; Birke, Hannah; Chuah, Aaron; Brill, Elizabeth; Tsuji, Yukiko; Ralph, John; Dennis, Elizabeth S; Llewellyn, Danny; Pettolino, Filomena A

    2017-07-18

    Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue's lacking many of the gene transcripts normally associated with lignin biosynthesis. Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for 'typical' plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in

  1. Duration of plant damage by host larvae affects attraction of two parasitoid species (Microplitis croceipes and Cotesia marginiventris) to cotton: implications for interspecific competition.

    Science.gov (United States)

    Morawo, Tolulope; Fadamiro, Henry

    2014-12-01

    Volatile organic compounds (VOCs) released by herbivore-damaged plants can guide parasitoids to their hosts. The quantity and quality of VOC blends emitted by plants may be affected by the duration of plant damage by herbivores, which could have potential ramifications on the recruitment of competing parasitoids. We used two parasitoid species, Microplitis croceipes and Cotesia marginiventris (Hymenoptera: Braconidae), to address the question of whether duration of plant damage affects parasitoid use of plant VOCs for host location. Both wasp species are larval endoparasitoids of Heliothis virescens (Lepidoptera: Noctuidae), an important pest of cotton. Attraction of the two parasitoid species to odors emitted by undamaged (UD), fresh (6 h infestation) damage (FD), and old (24 h infestation) damage (OD) cotton plants infested by H. virescens larvae was investigated using a headspace volatile collection system coupled with four-choice olfactometer bioassay. Both sexes of M. croceipes showed a preference for FD- and OD-plant odors over UD-plants. On the other hand, more C. marginiventris females were attracted to UD- and FD-plants than to OD-plants. GC/MS analyses showed qualitative and quantitative differences in the VOC profiles of UD, FD, and OD-plants, which may explain the observed preferences of the parasitoids. These results suggest a temporal partitioning in the recruitment of M. croceipes and C. marginiventris to H. virescens-damaged cotton, and may have potential implications for interspecific competition between the two parasitoid species.

  2. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants.

    Science.gov (United States)

    Zhou, Li; Wang, Na-Na; Gong, Si-Ying; Lu, Rui; Li, Yang; Li, Xue-Bao

    2015-11-01

    Soil salinity is one of the most serious threats in world agriculture, and often influences cotton growth and development, resulting in a significant loss in cotton crop yield. WRKY transcription factors are involved in plant response to high salinity stress, but little is known about the role of WRKY transcription factors in cotton so far. In this study, a member (GhWRKY34) of cotton WRKY family was functionally characterized. This protein containing a WRKY domain and a zinc-finger motif belongs to group III of cotton WRKY family. Subcellular localization assay indicated that GhWRKY34 is localized to the cell nucleus. Overexpression of GhWRKY34 in Arabidopsis enhanced the transgenic plant tolerance to salt stress. Several parameters (such as seed germination, green cotyledons, root length and chlorophyll content) in the GhWRKY34 transgenic lines were significantly higher than those in wild type under NaCl treatment. On the contrary, the GhWRKY34 transgenic plants exhibited a substantially lower ratio of Na(+)/K(+) in leaves and roots dealing with salt stress, compared with wild type. Growth status of the GhWRKY34 transgenic plants was much better than that of wild type under salt stress. Expressions of the stress-related genes were remarkably up-regulated in the transgenic plants under salt stress, compared with those in wild type. Based on the data presented in this study, we hypothesize that GhWRKY34 as a positive transcription regulator may function in plant response to high salinity stress through maintaining the Na(+)/K(+) homeostasis as well as activating the salt stress-related genes in cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Effects of morning and night application of Beauveria bassiana strains NI8 and GHA against the tarnished plant bug in cotton

    Science.gov (United States)

    The tarnished plant bug, (TPB), Lygus lineolaris (Palisot de Beauvois), (Hemiptera: Miridae) an important pest of cotton (Gosssypium hirsutum L.) found in the Mississippi Delta is naturally attacked by the entomopathogenic fungus Beauveria bassiana (Balsamo) Vueillemin. In this study, two isolates o...

  4. Single and multiple in-season measurements as indicators of at-harvest cotton boll damage caused by verde plant bug (Hemiptera: Miridae).

    Science.gov (United States)

    Brewer, Michael J; Armstrong, J Scott; Parker, Roy D

    2013-06-01

    The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot provided opportunity to assess if single in-season measurements had value in evaluating at-harvest damage to bolls and if multiple in-season measurements enhanced their combined use. One in-season verde plant bug density measurement, three in-season plant injury measurements, and two at-harvest damage measurements were taken in 15 cotton fields in South Texas, 2010. Linear regression selected two measurements as potentially useful indicators of at-harvest damage: verde plant bug density (adjusted r2 = 0.68; P = 0.0004) and internal boll injury of the carpel wall (adjusted r2 = 0.72; P = 0.004). Considering use of multiple measurements, a stepwise multiple regression of the four in-season measurements selected a univariate model (verde plant bug density) using a 0.15 selection criterion (adjusted r2 = 0.74; P = 0.0002) and a bivariate model (verde plant bug density-internal boll injury) using a 0.25 selection criterion (adjusted r2 = 0.76; P = 0.0007) as indicators of at-harvest damage. In a validation using cultivar and water regime treatments experiencing low verde plant bug pressure in 2011 and 2012, the bivariate model performed better than models using verde plant bug density or internal boll injury separately. Overall, verde plant bug damaging cotton bolls exemplified the benefits of using multiple in-season measurements in pest monitoring programs, under the challenging situation when at-harvest damage results from a sequence of plant responses initiated by in-season insect feeding.

  5. The hydroelectric power plant of the Widemann cotton mill (San Germano Chisone, Turin: perspectives of knowledge, conservation and enhancement.

    Directory of Open Access Journals (Sweden)

    Riccardo Rudiero

    2017-12-01

    Full Text Available Alpine valleys Pellice, Chisone and Germanasca, at whose feet lies the town of Pinerolo (TO, were among the first most industrialized areas of the Savoy state, vocation still spotted in the wide network of material evidences, such as production complexes, social facilities built for the working class, water channeling, electrification system. About the latter, there are still many active structures in the production of electricity. Some of them are dismantling, others are in operation, others are in the process of being transformed. This contribution will be focused on the case of the hydroelectric power plant of Widemann cotton mill in San Germano Chisone (TO, where the analysis of the existing structures and a diachronic reading of the archive documents has allowed to reconstruct its history and has provided the basis for some suggestions related to its conservation and enhancement.

  6. Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles.

    Science.gov (United States)

    Sobhy, Islam S; Erb, Matthias; Turlings, Ted C J

    2015-05-01

    Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry.

  7. SELECTIVITY OF INSECTICIDES TO PREDATORS OF PESTS COTTON PLANT SELETIVIDADE DE INSETICIDAS AOS PREDADORES DAS PRAGAS DO ALGODOEIRO

    Directory of Open Access Journals (Sweden)

    Julio Cezar Silveira Nunes

    2007-09-01

    Full Text Available

    The selectivity of insecticides for the complex of predators of the pests of cotton plant was evaluated in field experiment, in Goiânia- Goiás (Brazil, during the crop 1998/99. The experimental design was the randomized blocks with seven treatments and four repetitions (check, clorfluazuron, Bacillus thuringiensis, alanycarb, endosulfan and acephate in two amounts. The samplings were accomplished in beforeapplication, two days, seven and fourteen days after the treatment. For the obtained results (Henderson & Tilton, the products, in the decreasing order of selectivity, were: alanycarb, clorfluazuron, B. thuringiensis, endosulfan e acephate.

    KEY-WORDS: Insecta; insecticides; cotton plant; predators.

    A seletividade de inseticidas para o complexo das pragas do algodoeiro foi avaliada em experimento de campo, em Goiânia (GO, durante a safra 1998/99. O delineamento experimental foi em blocos ao acaso com sete tratamentos testemunha, clorfluazuron, B. thuringiensis, alanycarb, endosulfan e acephate em duas dosagens, em quatro repetições. As amostragens foram realizadas em pré-aplicação; aos dois, sete e quatorze dias após as pulverizações. Pelos resultados obtidos (fórmula de Herderson & Tilton, os produtos, na ordem decrescente de seletividade, foram: alanycarb, clorfluazuron, B. thuringiensis, endosulfan e acephate.

    PALAVRAS-CHAVE: Insecta; inseticidas; algodão; predadores.

  8. Biosorption of hexavalent Chromium by the agricultural wastes of the cotton and barberry plants

    Directory of Open Access Journals (Sweden)

    Najme Boosaeidi

    2017-09-01

    Full Text Available Hexavalent chromium, a highly toxic metal ion employed in industrial activities, is considered as a first priority pollutant. In this study, the capsule walls of the boll of cotton (cotton waste, CW and the waste obtained from pruning barberry bushes (barberry waste, BW were investigated as cheap and locally available adsorbents for Cr (VI removal. The adsorption behavior, equilibrium, and kinetic properties have been studied through batch experiments. Specifically, the sample pH showed a significant effect and an initial pH of 2.0 was most favorable for the effective removal of chromium. The equilibrium adsorption data were well fitted to the Langmuir adsorption equation with the maximum adsorption capacities of 20.7and 15.5mg/gfor CW and BW, respectively. The kinetic evaluations showed a rapid rate of adsorption (within 10 min that followed the pseudo-second order kinetic model. In competitive adsorption tests, Cl̶ had the least effect on the adsorption efficiency of Cr (VI, especially for CW. The results indicate the potential for the application of the studied agricultural wastes as adsorbents to reduce Cr (VI concentration in aqueous samples.

  9. Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Rathore, Keerti S; Campbell, LeAnne M; Sherwood, Shanna; Nunes, Eugenia

    2015-01-01

    Cotton continues to be a crop of great economic importance in many developing and some developed countries. Cotton plants expressing the Bt gene to deter some of the major pests have been enthusiastically and widely accepted by the farmers in three of the major producing countries, i.e., China, India, and the USA. Considering the constraints related to its production and the wide variety of products derived from the cotton plant, it offers several target traits that can be improved through genetic engineering. Thus, there is a great need to accelerate the application of biotechnological tools for cotton improvement. This requires a simple, yet robust gene delivery/transformant recovery system. Recently, a protocol, involving large-scale, mechanical isolation of embryonic axes from germinating cottonseeds followed by direct transformation of the meristematic cells has been developed by an industrial laboratory. However, complexity of the mechanical device and the patent restrictions are likely to keep this method out of reach of most academic laboratories. In this chapter, we describe the method developed in our laboratory that has undergone further refinements and involves Agrobacterium-mediated transformation of cotton cells, selection of stable transgenic callus lines, and recovery of plants via somatic embryogenesis.

  10. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis.

    Directory of Open Access Journals (Sweden)

    Nicolas Durand

    Full Text Available Odorant-Degrading Enzymes (ODEs are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant.Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants.SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.

  11. Estimation of leaf area index for cotton canopies using the LI-COR LAI-2000 plant canopy analyzer

    International Nuclear Information System (INIS)

    Hicks, S.K.; Lascano, R.J.

    1995-01-01

    Measurement of leaf area index (LAI) is useful for understanding cotton (Gossypium hirsutum L.) growth, water use, and canopy light interception. Destructive measurement is time consuming and labor intensive. Our objective was to evaluate sampling procedures using the Li-Cor (Lincoln, NE) LAI 2000 plant canopy analyzer (PCA) for nondestructive estimation of cotton LAI on the southern High Plains of Texas. We evaluated shading as a way to allow PCA measurements in direct sunlight and the influence of solar direction when using this procedure. We also evaluated a test of canopy homogeneity (information required for setting PCA field of view), determined the number of below-canopy measurements required, examined the influence of leaf wilting on PCA LAI determinations, and tested an alternative method (masking the sensor's two outer rings) for calculating LAI from PCA measurements. The best agreement between PCA and destructively measured LAI values was obtained when PCA observations were made either during uniformly overcast conditions or around solar noon using the shading method. Heterogeneous canopies with large gaps between rows required both a restricted (45 degrees) azimuthal field of view and averaging the LAI values for two transects, made with the field of view parallel and then perpendicular to the row direction. This method agreed well (r2 = 0.84) with destructively measured LAI in the range of 0.5 to 3.5 and did not deviate from a 1:1 relationship. The PCA underestimated LAI by greater than or equal 20% when measurements were made on canopies wilted due to water stress. Masking the PCA sensor's outer rings did not improve the relationship between estimated and measured LAI in the range of LAI sampled

  12. Molecular cloning of alpha-amylases from cotton boll weevil, Anthonomus grandis and structural relations to plant inhibitors: an approach to insect resistance.

    Science.gov (United States)

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Franco, Octávio L; Falcão, Rosana; Fragoso, Rodrigo R; Mello, Luciane V; dos Santos, Roseane C; Grossi-de-Sá, Maria F

    2003-01-01

    Anthonomus grandis, the cotton boll weevil, causes severe cotton crop losses in North and South America. Here we demonstrate the presence of starch in the cotton pollen grains and young ovules that are the main A. grandis food source. We further demonstrate the presence of alpha-amylase activity, an essential enzyme of carbohydrate metabolism for many crop pests, in A. grandis midgut. Two alpha-amylase cDNAs from A. grandis larvae were isolated using RT-PCR followed by 5' and 3' RACE techniques. These encode proteins with predicted molecular masses of 50.8 and 52.7kDa, respectively, which share 58% amino acid identity. Expression of both genes is induced upon feeding and concentrated in the midgut of adult insects. Several alpha-amylase inhibitors from plants were assayed against A. grandis alpha-amylases but, unexpectedly, only the BIII inhibitor from rye kernels proved highly effective, with inhibitors generally active against other insect amylases lacking effect. Structural modeling of Amylag1 and Amylag2 showed that different factors seem to be responsible for the lack of effect of 0.19 and alpha-AI1 inhibitors on A. grandis alpha-amylase activity. This work suggests that genetic engineering of cotton to express alpha-amylase inhibitors may offer a novel route to A. grandis resistance.

  13. Cotton regeneration in vitro

    Science.gov (United States)

    H. F. Sakhanokho and K. Rajasekaran Over the years, plant breeders have improved cotton via conventional breeding methods, but these methods are time-consuming. To complement classical breeding and, at times, reduce the time necessary for new cultivar development, breeders have turned to in vitro ...

  14. The change and relationship of several endogenesis hormone in different organs of cotton plant

    International Nuclear Information System (INIS)

    Dong Zhiqiang; Zhang Baoming; Liu Fang; Song Guoqi

    2005-01-01

    The changes of endogenesis hormone in young leaves (02)/functional leaves (04)/old leaves (08)/root tissue and root sap in different developing stages of Bt transgenic cotton GK-12 were investigated in 2002 at CAAS. The results showed that: 1) iPA + iP contents in young leaves/functional leaves/old leaves and root tissue changed with the changes of ZR + Z contents in different developing stages, but the changes trends were in other way round. The function of iPA + iP and ZR + Z were corresponding and complementary. Both the changes trends of iPA + iP and ZR + Z were single apex curves. 2) GA 3 and GA 4 , the two members of gibberellic acid, were also measured in this study. The change trends of GA 3 and GA 4 in young leaves/functional leaves/old leaves and root tissue were same. GA 3 was mainly regulating the construction and function of leaves and roots, GA 4 was mainly regulating consenescence of leaves. 3) The change trends of IAA and ABA in young leaves/functional leaves/old leaves and root tissue were different in different developing stage. The content of IAA and ABA in young leaves/functional leaves increased, and the content of IAA and ABA in old leaves and root tissue decreased with the development. ABA start-up senescence process of leaf and root, and then content of ABA declined. 4) The change trends of iPA + iP/ZR + Z/GA 3 /GA 4 /IAA and ABA content in root sap were single apex curve. (authors)

  15. Weed flora, yield losses and weed control in cotton crop

    OpenAIRE

    Jabran, Khawar

    2016-01-01

    Cotton (Gossypium spp.) is the most important fiber crop of world and provides fiber, oil, and animals meals. Weeds interfere with the growth activities of cotton plants and compete with it for resources. All kinds of weeds (grasses, sedges, and broadleaves) have been noted to infest cotton crop. Weeds can cause more than 30% decrease in cotton productivity. Several methods are available for weed control in cotton. Cultural control carries significance for weed control up to a certain extent....

  16. Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model

    NARCIS (Netherlands)

    Mao, Lili; Zhang, Lizhen; Evers, J.B.; Henke, M.; Werf, van der W.; Liu, Shaodong; Zhang, Siping; Zhao, Xinhua; Wang, Baomin; Li, Zhaohu

    2016-01-01

    One of the key decisions in crop production is the choice of row distance and plant density. The choice of these planting pattern parameters is especially challenging in heterogeneous systems, such as systems containing alternating strips. Here we use functional-structural plant modelling to

  17. Cotton transformation via pollen tube pathway.

    Science.gov (United States)

    Wang, Min; Zhang, Baohong; Wang, Qinglian

    2013-01-01

    Although many gene transfer methods have been employed for successfully obtaining transgenic cotton, the major constraint in cotton improvement is the limitation of genotype because the majority of transgenic methods require plant regeneration from a single transformed cell which is limited by cotton tissue culture. Comparing with other plant species, it is difficult to induce plant regeneration from cotton; currently, only a limited number of cotton cultivars can be cultured for obtaining regenerated plants. Thus, development of a simple and genotype-independent genetic transformation method is particularly important for cotton community. In this chapter, we present a simple, cost-efficient, and genotype-independent cotton transformation method-pollen tube pathway-mediated transformation. This method uses pollen tube pathway to deliver transgene into cotton embryo sacs and then insert foreign genes into cotton genome. There are three major steps for pollen tube pathway-mediated genetic transformation, which include injection of -foreign genes into pollen tube, integration of foreign genes into plant genome, and selection of transgenic plants.

  18. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures.

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2005-10-01

    Highly reproducible and simple protocol for cotton somatic embryogenesis is described here by using different concentrations of maltose, glucose, sucrose and fructose. Maltose (30 g/l) is the best carbon source for embryogenic callus induction and glucose (30 g/l) was suitable for induction, maturation of embryoids and plant regeneration. Creamy white embryogenic calli of hypocotyl explants were formed on medium containing MS basal salts, myo-inositol (100 mg/l), thiamine HCI (0.3 mg/l), picloram (0.3 mg/l), Kin (0.1 mg/l) and maltose (30 g/l). During embryo induction and maturation, accelerated growth was observed in liquid medium containing NH3NO4 (1 g/l), picloram (2.0 mg/l), 2 ip (0.2 mg/l), Kin (0.1 mg/l) and glucose (30 g/l). Before embryoid induction, large clumps of embryogenic tissue were formed. These tissues only produced viable embryoids. Completely matured somatic embryos were germinated successfully on the medium fortified with MS salts, myo-inositol (50 mg/l), thiamine HCl (0.2 mg/l), GA3 (0.2 mg/l), BA (1.0 mg/l) and glucose (30 g/l). Compared with earlier reports, 65% of somatic embryo germination was observed. The abnormal embryo formation was highly reduced by using glucose (30 g/l) compared to other carbon sources. The regenerated plantlets were fertile but smaller in height than the seed derived control plants.

  19. Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response

    Czech Academy of Sciences Publication Activity Database

    Bajgar, V.; Penhaker, M.; Martinková, L.; Pavlovič, A.; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2016-01-01

    Roč. 16, č. 4 (2016), 498_1-498_12 ISSN 1424-8220 R&D Projects: GA TA ČR(CZ) TE01020022 Institutional support: RVO:61389013 Keywords : conducting polymers * plant neurobiology * polyaniline Subject RIV: CG - Electrochemistry Impact factor: 2.677, year: 2016

  20. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    Science.gov (United States)

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  1. A rat pancreatic ribonuclease fused to a late cotton pollen promoter severely reduces pollen viability in tobacco plants

    Directory of Open Access Journals (Sweden)

    R.B. Bernd-Souza

    2000-06-01

    Full Text Available The effects of an animal RNase fused to the late cotton pollen-specific promoter G9 in a plant system were investigated. Expression of the chimeric genes G9-uidA and G9-RNase in tobacco plants showed that the 1.2-kb promoter fragment of the G9 gene was sufficient to maintain tissue and temporal specificity in a heterologous system. GUS (beta-glucuronidase expression was detected only in pollen from anther stage 6 through anthesis, with maximal GUS activity in pollen from stage 10 anthers. Investigating the effects of the rat RNase on pollen viability at stage 10, we found that pollen viability was reduced from 79 to 8% and from 89 to 40%, in pollen germination and fluoresceine diacetate assays, respectively, in one G9-RNase transgenic line, suggesting a lethal effect of the RNase gene. This indicates that the rat RNase produces deleterious effects in this plant system and may be useful for engineering male sterility.Foram investigados os efeitos da expressão de uma ribonuclease de origem animal em um sistema vegetal, ligando-se esta ao promotor do gene pólen-específico G9 de algodão. Examinou-se a expressão dos genes quiméricos G9-uidA e G9-RNase em plantas de tabaco e determinou-se que o fragmento de 1.2 kb do promotor do gene G9 foi suficiente para manter a especificidade temporal e espacial da expressão, em sistema heterólogo. A expressão do gene GUS foi detectada somente em pólen, do estágio 6 do desenvolvimento da antera até a antese, com atividade máxima em pólen de anteras no estágio 10. Estudos neste estágio com linhagens transgênicas contendo G9-RNase mostraram que um clone transgênico apresentava reduções na viabilidade do pólen de 79 para 8% e de 89 para 40% nos testes de germinação e coloração com diacetato de fluoresceína, respectivamente, sugerindo letalidade na expressão do gene de RNase. Estes resultados indicam que a RNase animal apresenta um efeito deletério em planta e oferece possibilidade de uso

  2. Biological and behavior aspects of Chrysoperla externa (Hagen, 1861 on cotton plantsAspectos biológicos e comportamentais de Chrysoperla externa (Hagen, 1861 em algodoeiro

    Directory of Open Access Journals (Sweden)

    Luciano Pacelli Medeiros Macedo

    2010-02-01

    Full Text Available It was aimed to study biological and behavior aspects of larvae and adults of Chrysoperla externa in greenhouse, on cotton plants. Recently hatched larvae were released on the upper third of cotton plants, which were previously infested with Aphis gossypii,. After emergence, adults were separated by sex and packed in cylindrical PVC recipients with cotton plant. We evaluated the duration of each larval, pre-pupal and pupal periods, pre-oviposition, oviposition, effective oviposition and post-oviposition periods, male and female logevity, daily and total oviposition capacity. The behavior of pupal stage was also evaluated, which released three larvae of the 3rd instar per cotton plant and they were put on the lower, medium and upper sections. As treatments, it was used naked soil, dried leaves from cotton plant, crushed rock nº 1; and crushed rock nº 1 + dried leaves. Larvae from different instars were released on the upper section of the cotton plants infested with A. gossypii to verify the search timing that marked the period the prey was exposed to the predator. C. externa larvae passed through all the phases of their biological cycle and there was no significant influence on the type of the soil covering used on pupal stage, since all of them were significantly higher on naked soil. There was no significative difference on the prey search by C. externa larvae.Objetivou-se estudar aspectos biológicos e comportamentais de larvas e adultos de Chrysoperla externa em casa-de-vegetação, em plantas de algodão. Larvas recém eclodidas foram liberadas no terço superior de plantas de algodão previamente infestadas com Aphis gossypii, onde permaneceram até a pupação. Após a emergência, adultos foram separados por sexo, acondicionados em recipientes cilíndricos de PVC contendo uma planta de algodoeiro. Avaliaram-se a duração de cada ínstar, dos períodos larval, pré-pupal e pupal, dos períodos de pré-oviposição, oviposi

  3. Cotton contamination

    CSIR Research Space (South Africa)

    Van der Sluijs, MHJ

    2018-05-01

    Full Text Available This review focusses on physical forms of contaminant including the presence, prevention and/or removal of foreign bodies, stickiness and seed-coat fragments rather than the type and quantity of chemical residues that might be present in cotton...

  4. Changes in cotton gin energy consumption apportioned by ten functions

    Science.gov (United States)

    The public is concerned about air quality and sustainability. Cotton producers, gin owners and plant managers are concerned about rising energy prices. Both have an interest in cotton gin energy consumption trends. Changes in cotton gins’ energy consumption over the past fifty years, a period of ...

  5. Stable integration and expression of a cry1Ia gene conferring resistance to fall armyworm and boll weevil in cotton plants.

    Science.gov (United States)

    Silva, Carliane Rc; Monnerat, Rose; Lima, Liziane M; Martins, Érica S; Melo Filho, Péricles A; Pinheiro, Morganna Pn; Santos, Roseane C

    2016-08-01

    Boll weevil is a serious pest of cotton crop. Effective control involves applications of chemical insecticides, increasing the cost of production and environmental pollution. The current genetically modified Bt crops have allowed great benefits to farmers but show activity limited to lepidopteran pests. This work reports on procedures adopted for integration and expression of a cry transgene conferring resistance to boll weevil and fall armyworm by using molecular tools. Four Brazilian cotton cultivars were microinjected with a minimal linear cassette generating 1248 putative lines. Complete gene integration was found in only one line (T0-34) containing one copy of cry1Ia detected by Southern blot. Protein was expressed in high concentration at 45 days after emergence (dae), decreasing by approximately 50% at 90 dae. Toxicity of the cry protein was demonstrated in feeding bioassays revealing 56.7% mortality to boll weevil fed buds and 88.1% mortality to fall armyworm fed leaves. A binding of cry1Ia antibody was found in the midgut of boll weevils fed on T0-34 buds in an immunodetection assay. The gene introduced into plants confers resistance to boll weevil and fall armyworm. Transmission of the transgene occurred normally to T1 progeny. All plants showed phenotypically normal growth, with fertile flowers and abundant seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Identification of a New Cotton Disease Caused by an Atypical Cotton Leafroll Dwarf Virus in Argentina.

    Science.gov (United States)

    Agrofoglio, Yamila C; Delfosse, Verónica C; Casse, María F; Hopp, Horacio E; Kresic, Iván Bonacic; Distéfano, Ana J

    2017-03-01

    An outbreak of a new disease occurred in cotton (Gossypium hirsutum) fields in northwest Argentina starting in the 2009-10 growing season and is still spreading steadily. The characteristic symptoms of the disease included slight leaf rolling and a bushy phenotype in the upper part of the plant. In this study, we determined the complete nucleotide sequences of two independent virus genomes isolated from cotton blue disease (CBD)-resistant and -susceptible cotton varieties. This virus genome comprised 5,866 nucleotides with an organization similar to that of the genus Polerovirus and was closely related to cotton leafroll dwarf virus, with protein identity ranging from 88 to 98%. The virus was subsequently transmitted to a CBD-resistant cotton variety using Aphis gossypii and symptoms were successfully reproduced. To study the persistence of the virus, we analyzed symptomatic plants from CBD-resistant varieties from different cotton-growing fields between 2013 and 2015 and showed the presence of the same virus strain. In addition, a constructed full-length infectious cDNA clone from the virus caused disease symptoms in systemic leaves of CBD-resistant cotton plants. Altogether, the new leafroll disease in CBD-resistant cotton plants is caused by an atypical cotton leafroll dwarf virus.

  7. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. The control and protection of cotton plants using natural insecticides against the colonization by Aphis gossypii Glover (Hemiptera: Aphididae - doi: 10.4025/actasciagron.v35i2.15764

    Directory of Open Access Journals (Sweden)

    Ezio Santos Pinto

    2012-12-01

    Full Text Available The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae, is a key pest of cotton, irrespective of the use of conventional or organic management. In organic systems, however, the use of synthetic insecticides is not allowed, increasing the difficulty of controlling this pest. This work evaluated aphid control and the ability of products to prevent aphid infestation using natural insecticides compared to a standard synthetic insecticide. The control trial was conducted with four products [Beauveria bassiana (Boveril®, neem oil (Neemseto®, and cotton seed oil compared to thiamethoxam (Actara®], and untreated plants served as the control group. The trial testing the efficacy of these products in preventing aphid infestation was conducted using the same products, excluding Boveril®. The evaluations were conducted 72 and 120h post-treatment for the efficacy and the protection against colonization trials, respectively. The aphid control by cotton seed oil, Neemseto®, and thiamethoxam was similar, with 100% control being achieved on the thiamethoxam-treated plants. Regarding the plant protection against aphid colonization, the insecticide thiamethoxam exhibited a better performance compared to the other tested products with steady results over the evaluation period. The natural products exhibited variable results with low protection against plant colonization throughout the evaluation period.

  9. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line using 18S and ITS rDNA Sequences over Four Seasons

    Directory of Open Access Journals (Sweden)

    Xiemin Qi

    2016-07-01

    Full Text Available Long-term growth of genetically modified plants (GMPs has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S and region II (ITS1, 5.8S and ITS2 rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10 and 15-year plantation of various transgenic cotton cultivars (TC-15mix over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC were also compared. No notable differences were observed in soil fertility variables among CC, TC-10 and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line.

  10. Development and validation of SUCROS-Cotton : A potential crop growth simulation model for cotton

    NARCIS (Netherlands)

    Zhang, L.; Werf, van der W.; Cao, W.; Li, B.; Pan, X.; Spiertz, J.H.J.

    2008-01-01

    A model for the development, growth and potential production of cotton (SUCROS-Cotton) was developed. Particular attention was given to the phenological development of the plant and the plasticity of fruit growth in response to temperature, radiation, daylength, variety traits, and management. The

  11. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  12. Cotton Leaf Curl Multan Betasatellite DNA as a Tool to Deliver and Express the Human B-Cell Lymphoma 2 (Bcl-2) Gene in Plants.

    Science.gov (United States)

    Kharazmi, Sara; Ataie Kachoie, Elham; Behjatnia, Seyed Ali Akbar

    2016-05-01

    The betasatellite DNA associated with Cotton leaf curl Multan virus (CLCuMB) contains a single complementary-sense ORF, βC1, which is a pathogenicity determinant. CLCuMB was able to replicate in plants in the presence of diverse helper geminiviruses, including Tomato leaf curl virus-Australia (TLCV-Au), Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]), and Beet curly top virus (BCTV-Svr), and can be used as a plant gene delivery vector. To test the hypothesis that CLCuMB has the potential to act as an animal gene delivery vector, a specific insertion construct was produced by the introduction of a human B-cell lymphoma 2 (Bcl-2) cDNA into a mutant DNA of CLCuMB in which the βC1 was deleted (β∆C1). The recombinant βΔC1-Bcl-2 construct was successfully replicated in tomato and tobacco plants in the presence of TLCV-Au, BCTV-Svr and TYLCV-[Ab]. Real-time PCR and Western blot analyses of plants containing the replicative forms of recombinant βΔC1-Bcl-2 DNA showed that Bcl-2 gene was expressed in an acceptable level in these plants, indicating that β∆C1 can be used as a tool to deliver and express animal genes in plants. This CLCuMB-based system, having its own promoter activity, offers the possibility of production of animal recombinant proteins in plants.

  13. Intercropping With Fruit Trees Increases Population Abundance and Alters Species Composition of Spider Mites on Cotton.

    Science.gov (United States)

    Li, Haiqiang; Pan, Hongsheng; Wang, Dongmei; Liu, Bing; Liu, Jian; Zhang, Jianping; Lu, Yanhui

    2018-05-05

    With the recent increase in planting of fruit trees in southern Xinjiang, the intercropping of fruit trees and cotton has been widely adopted. From 2014 to 2016, a large-scale study was conducted in Aksu, an important agricultural area in southern Xinjiang, to compare the abundance and species composition of spider mites in cotton fields under jujube-cotton, apple-cotton, and cotton monocrop systems. The abundance of spider mites in cotton fields under both intercropping systems was generally higher than in the cotton monocrop. The species composition of spider mites also differed greatly between cotton intercropped with apple or jujube compared to the cotton monocrop. The relative proportion of Tetranychus truncates Ehara (Acari: Tetranychidae) in the species complex generally increased while that of another spider mite, Tetranychus dunhuangensis Wang (Acari: Tetranychidae), decreased under fruit tree-cotton systems. More attention should be paid to the monitoring and management of spider mites, especially T. truncates in this important region of China.

  14. Effect of nitrates on embryo induction efficiency in cotton (Gossypium ...

    African Journals Online (AJOL)

    Fred

    cotton species (Zhang, 1994b). Somatic embryogenesis and plant regeneration systems have been established from cotton tissue, protoplasts and ovules (Zhang and Li,. 1992; Feng and Zhang, 1994; Zhang, 1995). Regeneration procedures have been used to obtain genetically modified plants after Agrobacterium- ...

  15. Gene cloning: exploring cotton functional genomics and genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Diqiu LIU; Xianlong ZHANG

    2008-01-01

    Cotton is the most important natural fiber plant in the world. The genetic improvement of the quality of the cotton fiber and agricultural productivity is imperative under the situation of increasing consumption and rapid development of textile technology. Recently, the study of cotton molecular biology has progressed greatly. A lot of specifically or preferentially expressed cotton fiber genes were cloned and analyzed. On the other hand, identification of stress response genes expressed in cotton was performed by other research groups. The major stress factors were studied including the wilt pathogens Verticillium dahliae, Fusarium oxy-sporum f. sp. vasinfectum, bacterial blight, root-knot nematode, drought, and salt stress. What is more, a few genes related to the biosynthesis of gossypol, other sesquiterpene phytoalexins and the major seed oil fatty acids were isolated from cotton. In the present review, we focused on the major advances in cotton gene cloning and expression profiling in the recent years.

  16. Study of gene flow from GM cotton (Gossypium hirsutum) varieties in El Espinal (Tolima, Colombia)

    International Nuclear Information System (INIS)

    Rache Cardenal, Leidy Yanira; Mora Oberlaender, Julian; Chaparro Giraldo, Alejandro

    2013-01-01

    In 2009, 4088 hectares of genetically modified (GM) cotton were planted in Tolima (Colombia), however there is some uncertainty about containment measures needed to prevent the flow of pollen and seed from regulated GM fields into adjacent fields. In this study, the gene flow from GM cotton varieties to conventional or feral cotton plants via seed and pollen was evaluated. ImmunostripTM, PCR and ELISA assays were used to detect gene flow. Fifty six refuges, 27 fields with conventional cotton and four feral individuals of the enterprise Remolinos Inc. located in El Espinal (Tolima) were analyzed in the first half of 2010. The results indicated seed mediated gene flow in 45 refuges (80.4 %) and 26 fields with conventional cotton (96 %), besides pollen mediated gene flow in one field with conventional cotton and nine refuges. All fields cultivated with conventional cotton showed gene flow from GM cotton. Two refuges and two feral individuals did not reveal gene flow from GM cotton.

  17. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  18. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change

    Science.gov (United States)

    Huang, Jian; Hao, HongFei

    2018-05-01

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  19. Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change.

    Science.gov (United States)

    Huang, Jian; Hao, HongFei

    2018-05-11

    Current evidence suggests that climate change has directly affected the phenology of many invertebrate species associated with agriculture. Such changes in phenology have the potential to cause temporal mismatches between predators and prey and may lead to a disruption in natural pest control ecosystem. Understanding the synchrony between pest insects and host plant responses to climate change is a key step to improve integrated pest management strategies. Cotton bollworm larvae damage cotton, and thus, data from Magaiti County, China, collected during the period of 1990-2015 were analyzed to assess the effects of climate change on cotton bollworm larvae and cotton flowering. The results showed that a warming climate advanced the phenology of cotton bollworm larvae and cotton flowering. However, the phenological rate of change was faster in cotton bollworm larvae than that in cotton flowering, and the larval period was prolonged, resulting in a great increase of the larval population. The abrupt phenological changes in cotton bollworm larvae occurred earlier than that in cotton, and the abrupt phenological changes in cotton flowering occurred earlier than that in larval abundance. However, the timing of abrupt changes in larval abundance all occurred later than that in temperature. Thus, the abrupt changes that occurred in larvae, cotton flowering and climate were asynchronous. The interval days between the cotton flowering date (CFD) and the half-amount larvae date (HLD) expanded by 3.41 and 4.41 days with a 1 °C increase of T mean in May and June, respectively. The asynchrony between cotton bollworm larvae and cotton flowering will likely broaden as the climate changes. The effective temperature in March and April and the end date of larvae (ED) were the primary factors affecting asynchrony.

  20. Dictionary of Cotton

    Science.gov (United States)

    The Dictionary of Cotton has over 2,000 terms and definitions that were compiled by 33 researchers. It reflects the ongoing commitment of the International Cotton Advisory Committee, through its Technical Information Section, to the spread of knowledge about cotton to all those who have an interest ...

  1. Use of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy in direct, non-destructive, and rapid assessment of developmental cotton fibers grown in planta and in culture

    Science.gov (United States)

    Cotton fibers are routinely harvested from cotton plants (in planta), and their end-use qualities depend on their development stages. Cotton fibers are also cultured at controlled laboratory environments, so that cotton researchers can investigate many aspects of experimental protocols in cotton bre...

  2. Remote sensing techniques for monitoring the Rio Grande Valley cotton stalk destruction program

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A.J.; Gerbermann, A.H.; Summy, K.R.; Anderson, G.L. (Department of Agriculture, Weslaco, TX (United States))

    1993-09-01

    Post harvest cotton (Gossypium hirsutum L.) stalk destruction is a cultural practice used in the Rio Grande Valley to suppress over wintering populations of boll weevils (Anthonomus grandis Boheman) without using chemicals. Consistent application of this practice could substantially reduce insecticide usage, thereby minimizing environmental hazards and increasing cotton production profits. Satellite imagery registered within a geographic information system was used to monitor the cotton stalk destruction program in the Rio Grande Valley. We found that cotton stalk screening procedures based on standard multispectral classification techniques could not reliably distinguish cotton from sorghum. Greenness screening for cotton plant stalks after the stalk destruction deadline was possible only where ground observations locating cotton fields were available. These findings indicate that a successful cotton stalk destruction monitoring program will require satellite images and earth referenced data bases showing cotton field locations.

  3. Environmental interaction, additive and non-additive genetic variability is involved in the expression of tissue and whole-plant heat tolerance in upland cotton (Gossypium hirsutum. L

    Directory of Open Access Journals (Sweden)

    Hafeez-ur-Rahman

    2006-01-01

    Full Text Available Heat tolerance is measured at tissue level by cellular membrane thermostability (CMT and at the whole plant level by the heat tolerance index (HTI. Eight upland cotton cultivars and 15 crosses were used to determine the type and extent of genetic variability associated with the expression of these traits between and within environments. Heat stress and non-stress conditions were used as the CMT environments and years for HTI. The wide variation in heterotic expression and combining ability effects observed for CMT and HTI suggest multigenic inheritance of these traits. Significant genetic variability across environments was evident but the traits were not highly heritable because of substantial environmental interaction. The available genetic variability included both additive and non-additive components, but the proportion of additive genetic variability was high for HTI. The parental cultivars CRIS-19 and CIM-448 were good donor parents for high CMT under heat-stressed conditions, and MNH-552 and N-Karishma under non-stressed conditions. Cultivar FH-634 was a good donor parent for HTI. The results show two types of general combining ability (GCA inheritance among high CMT parents: positive GCA inheritance expressed by CRIS-19 in the presence of heat stress and MNH-552 and N-Karishma in the absence of heat stress; and negative GCA inheritance expressed by FH-900 in the presence of heat stress. It was also evident that genes controlling high CMT in cultivar CRIS-19 were different from those present in the MNH-552, N-Karishma and FH-900 cultivars. Similarly, among high HTI parents, FH-634 showed positive and CIM-443 negative GCA inheritance. No significant relationship due to genetic causes existed between tissue and whole plant heat tolerance, diminishing the likelihood of simultaneous improvement and selection of the two traits.

  4. Alterações anatômicas em plantas de algodoeiro com sintomas de murchamento avermelhado Anatomical alterations in cotton plants with reddish withering symptoms

    Directory of Open Access Journals (Sweden)

    Rachel Benetti Queiroz-Voltan

    1995-01-01

    Full Text Available Estudaram-se as alterações anatômicas em plantas de algodoeiro com sintomas de murchamento avermelhado em dezembro de 1993-fevereiro de 94. Analisaram-se amostras de raiz, caule e folha de Gossypium hirsutum L. 'IAC 20' provenientes de áreas de ocorrência do sintoma. Estimou-se o número de glândulas secretoras das folhas dos cultivares IAC 20 e CNPA ITA 90 (que se tem mostrado resistente. Observou-se que as células parenquimáticas apresentavam, no interior, substâncias insolúveis em água, cuja concentração aumentava à medida do grau do sintoma. As folhas apresentaram uma concentração maior dessas substâncias em relação ao restante do corpo vegetal. Os núcleos das células do parênquima paliçádico encontravam-se aumentados e os cloroplastos do mesofilo, parcialmente destruídos. As plantas com alto grau de sintoma apresentavam também um número maior de glândulas secretoras nas folhas.Anatomical alterations in cotton plants (Gossypium hirsutum L. with reddish withering symptons observated between December/93 to February/94 were studied. Samples of root, stem and leaf of Gossypium hirsutum L. 'IAC 20' collected in several sites with symptoms occurrence were analised. The number of secretory glands in the leaves of cultivar IAC 20, and for the resistent cultivar CNPA ITA 90 was estimated. The parenchyma cells included insoluble substances, and these concentrations increased with the crescent symptoms. The leaves presented higher concentration of these substances than the remaining plant body. The nucleus of palisade parenchyma cells was increased and the chloroplasts partially destroyed. The leave secretory glands number increases proportionally to the advance of the symptoms.

  5. Aplicação seqüencial de cloreto de mepiquat em algodoeiro Sequential applications of mepiquat chloride in cotton plants

    Directory of Open Access Journals (Sweden)

    Manoel Luiz Ferreira Athayde

    1999-03-01

    Full Text Available Com o objetivo de avaliar o efeito de doses de cloreto de mepiquat aplicadas de forma parcelada, foi conduzido, em Jaboticabal, SP, um experimento com a cultivar de algodoeiro IAC 22. O delineamento experimental foi o de blocos casualizados, com 13 tratamentos e 4 repetições. O efeito do cloreto de mepiquat sobre a redução da altura das plantas foi mais evidenciado pela dose total aplicada do que pelo uso do esquema de parcelamento. A menor dose estudada (55 g/ha foi suficiente para que as plantas, por ocasião da colheita, estivessem com altura inferior a 1,30 m. O cloreto de mepiquat proporcionou redução no comprimento dos ramos e um melhor equilíbrio entre as partes reprodutiva e vegetativa. As características peso de capulho, peso de 100 sementes, porcentagem de fibra e produção de algodão em caroço, não foram significativamente afetadas pelos tratamentos.The objective of this work was to evaluate the effect of split dosis of mepiquat chloride on the cotton cultivar IAC 22 at Jaboticabal, SP. The experimental design was in completely randomized blocks constituted by 13 treatments, and four replicates. The effect of dosis on plant height was more pronounced than the splitting effect. The smallest dosis used (55 g/ha was enough to declare plant height to less than 1.30 m, at harvest. The effect of mepiquat chloride reduced branch length and provided better reproductive/vegetative relation. The effects on boll weight, 100 seed weight, percentage of fiber and seed yield were not significant.

  6. Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton

    Science.gov (United States)

    Priyanka, N.; Venkatachalam, P.

    2016-12-01

    This study describes the bioengineering of phycomolecule-coated zinc oxide nanoparticles (ZnO NPs) as a novel type of plant-growth-enhancing micronutrient catalyst aimed at increasing crop productivity. The impact of natural engineered phycomolecule-loaded ZnO NPs on plant growth characteristics and biochemical changes in Gossypium hirsutum L. plants was investigated after 21 days of exposure to a wide range of concentrations (0, 25, 50, 75, 100, and 200 mg l-l). ZnO NP exposure significantly enhanced growth and biomass by 125.4% and 132.8%, respectively, in the treated plants compared to the untreated control. Interestingly, photosynthetic pigments, namely, chlorophyll a (134.7%), chlorophyll b (132.6%), carotenoids (160.1%), and total soluble protein contents (165.4%) increased significantly, but the level of malondialdehyde (MDA) content (73.8%) decreased in the ZnO-NP-exposed plants compared to the control. The results showed that there were significant increases in superoxide dismutase (SOD, 267.8%) and peroxidase (POX, 174.5%) enzyme activity, whereas decreased catalase (CAT, 83.2%) activity was recorded in the NP-treated plants compared to the control. ZnO NP treatment did not show distinct alterations (the presence or absence of DNA) in a random amplified polymorphic DNA (RAPD) banding pattern. These results suggest that bioengineered ZnO NPs coated with natural phycochemicals display different biochemical effects associated with enhanced growth and biomass in G. hirsutum. Our results imply that ZnO NPs have tremendous potential in their use as an effective plant-growth-promoting micronutrient catalyst in agriculture.

  7. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  8. Low-level hydrogen peroxide generation by unbleached cotton nonwovens: implications for wound healing applications

    Science.gov (United States)

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. The compon...

  9. Sequencing of a Cultivated Diploid Cotton Genome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS; Thea; A

    2008-01-01

    Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high degree

  10. Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora

    NARCIS (Netherlands)

    Marek, S.M.; Hansen, K.; Romanish, M.; Thorn, R.G.

    2009-01-01

    Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia

  11. Weed hosts of cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Vennila, S; Prasad, Y G; Prabhakar, M; Agarwal, Meenu; Sreedevi, G; Bambawale, O M

    2013-03-01

    The exotic cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) invaded India during 2006, and caused widespread infestation across all nine cotton growing states. P. solenopsis also infested weeds that aided its faster spread and increased severity across cotton fields. Two year survey carried out to document host plants of P. solenopsis between 2008 and 2010 revealed 27, 83, 59 and 108 weeds belonging to 8, 18, 10 and 32 families serving as alternate hosts at North, Central, South and All India cotton growing zones, respectively. Plant species of four families viz., Asteraceae, Amaranthaceae, Malvaceae and Lamiaceae constituted almost 50% of the weed hosts. While 39 weed species supported P. solenopsis multiplication during the cotton season, 37 were hosts during off season. Higher number of weeds as off season hosts (17) outnumbering cotton season (13) at Central over other zones indicated the strong carryover of the pest aided by weeds between two cotton seasons. Six, two and seven weed hosts had the extreme severity of Grade 4 during cotton, off and cotton + off seasons, respectively. Higher number of weed hosts of P. solenopsis were located at roadside: South (12) > Central (8) > North (3) zones. Commonality of weed hosts was higher between C+S zones, while no weed host was common between N+S zones. Paper furnishes the wide range of weed hosts of P. solenopsis, discusses their significance, and formulated general and specific cultural management strategies for nationwide implementation to prevent its outbreaks.

  12. Indian Bt cotton varieties do not affect the performance of cotton aphids.

    Directory of Open Access Journals (Sweden)

    Nora C Lawo

    Full Text Available Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae when grown on three Indian Bt (Cry1Ac cotton varieties (MECH 12, MECH 162, MECH 184 and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields.

  13. SELECTIVITY OF PESTICIDES OVER PREDATORS OF COTTON PLANT PESTS SELETIVIDADE DE INSETICIDAS SOBRE O COMPLEXO DE PREDADORES DAS PRAGAS DO ALGODOEIRO

    Directory of Open Access Journals (Sweden)

    Izidro dos Santos de Lima Júnior

    2010-08-01

    Full Text Available

    The cotton plant hosts a complex of pests that can damage plant structures. Its supported development, in this agroecosystem, demands the implementation of an integrated pest management (IPM system. The goal of this research was to study the selectivity of pesticides over predators of cotton plant pests. The experimental design was randomized blocks, with 9 treatments (84 days after the emergence and 4 replicates. The sampling involved the beat cloth method, with 5 beats per plot, allowing to identify and count the living predators. Clotianidin 500 WP (200 g ha-1, Carbosulfan 400 SC (400 mL ha-1, Benfuracarb 400 EC (450 mL ha-1, Cartap hydrochloride 500 SP (1,000 g ha-1, Thiamethoxam 250 WG (200 g ha-1, and Acetamiprid 200 SP (150 g ha-1 were not selective for the complex of the predators identified, with mortality percentages ranging from moderately toxic to toxic. Etofenprox 300 EC (450 mL ha-1 was the most toxic pesticide, when compared to the others treatments. The Flonicamid 500 WG (150 g ha-1 treatment was selective, with average of predators

  14. Efeito do manejo da irrigação e de populações de plantas sobre o rendimento do algodoeiro herbáceo Effect of irrigation management and plant population on herbaceous cotton yield

    Directory of Open Access Journals (Sweden)

    Francisco Assis de Oliveira

    1999-12-01

    Full Text Available Objetivou-se estudar, num solo aluvial, franco siltoso, no vale do Açu, no Rio Grande do Norte, o efeito do momento da última irrigação e da população de plantas sobre a altura das plantas e a produtividade do algodoeiro herbáceo (Gossypium hirsutum L.r. latifolium Hutch, cultivar Acala del cerro. Os tratamentos foram definidos pelos momentos da última irrigação aos 65, 80, 95 e 110 dias após a emergência e pela população com 30.000, 60.000, 90.000 e 120.000 plantas/ha. Usou-se o delineamento experimental em blocos ao acaso, com parcelas subdivididas, e quatro repetições. A altura das plantas aumentou com o retardamento da última irrigação e com o tamanho das populações. Houve efeito (P In an alluvial soil, silt loam, of Açu valley, in the state of Rio Grande do Norte, Brazil, a research was carried out to study the effect of time of the last irrigation and plant population on yield and plant height of the herbaceous cotton (Gossypium hirsutum L.r. latifolium Hutch cultivar Acala del cerro. Treatments consisted of times of the last irrigation at 65, 80, 95 and 110 days after emergence and populations with 30,000, 60,000, 90,000 and 120,000 plants/ha. The experimental plan was a randomized complete blocks in a split-plot design, with four replications. Delaying time of last irrigation increased height and plant populations. A significant effect (P <= 0.01 of interaction between time of last irrigation and plant population was found for cotton yield. The highest cotton yield (4,090 kg/ha was obtained with the interaction between time of last irrigation at 95 days and in population of 90,000 plants/ha. Irrigation times at 65 and 80 days were considered too early, and at 110 days too late for cotton yields.

  15. AVALIAÇÃO DE DANOS Spodoptera frugiperda (J. E. Smith, 1797 (Lepidoptera, Noctuidae NO ALGODOEIRO CULTIVAR IAC-17 EVALUATION OF Spodoptera frugiperda (J. E. SMITH, 1797 (LEPIDOPTERA, NOCTUIDAE DAMAGES IN THE COTTON PLANT IAC-17 CULTIVAR

    Directory of Open Access Journals (Sweden)

    Valquíria da Rocha Santos Veloso

    2007-09-01

    Full Text Available

    Com a finalidade de avaliar os danos causados por Spodoptera frugiperda (J. E. Smith, 1797 na produção do algodoeiro, foi conduzido o presente trabalho. Foram utilizados quatro níveis de infestação artificial aos 75 e 95 dias da germinação das plantas. As avaliações foram feitas através da produção de algodão em caroço, por parcela. As diferenças na produção em plantas infestadas aos 75 e 95 dias da germinação, comparadas com a testemunha, foram estatisticamente significativas para as infestações com 1, 2 e 4 lagartas por planta. Aos 75 dias, devido ao fato de existirem poucos órgãos frutíferos, a redução na produção deu-se devido ao ataque das lagartas aos ponteiros e aos caules, com corte parcial ou total. Na infestação aos 95 dias a produção diminuiu linearmente em relação aos diferentes níveis de infestação; nesta época as lagartas mostraram preferência pelas estruturas frutíferas do algodoeiro.

    This work was conducted with the purpose of evaluate the damages provoked by Spodoptera frugiperda (J. E. Smith, 1797 in cotton-plant yield. To evaluate the decrease in the cotton yield four levels of artificial infestation were used at 75 and 95 days from plant germination. The damage was evaluated on cotton seeds per plot. The differences in the yield of infested plants at 75 and 95 days from germination, when compared to the check, were statistically significant for the infestations of 1, 2 and 4 larvae per plant. At 75 days when the plants presented a low number of fruit organs, the yield decrease was due to the attack of larvae cutting partially or totally the shoots and stems. As to the infestation at 95 days the yield decreased linearly in relation to the different levels of infestation; at this time the larvae showed a preference for the fruit

  16. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants.

    Science.gov (United States)

    Farias, Davi F; Peijnenburg, Ad A C M; Grossi-de-Sá, Maria F; Carvalho, Ana F U

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL) than that of the original protein (Cry8Ka1). Cry8Ka5 has been used in breeding programs in order to obtain coleopteran-resistant cotton plants. Nevertheless, there is some concern in relation to the food safety of transgenic crops, especially to the heterologously expressed proteins. In this context, our research group has performed risk assessment studies on Cry8Ka5, using the tests recommended by Codex as well as tests that we proposed as alternative and/or complementary approaches. Our results on the risk analysis of Cry8Ka5 taken together with those of other Cry proteins, point out that there is a high degree of certainty on their food safety. It is reasonable to emphasize that most safety studies on Cry proteins have essentially used the Codex approach. However, other methodologies would potentially provide additional information such as studies on the effects of Cry proteins and derived peptides on the indigenous gastrointestinal microbiota and on intestinal epithelial cells of humans. Additionally, emerging technologies such as toxicogenomics potentially will offer sensitive alternatives for some current approaches or methods.

  17. Field Comparison of Fertigation Vs. Surface Irrigation of Cotton Crop

    International Nuclear Information System (INIS)

    Janat, M.

    2004-01-01

    Based on previous results of the same nature, one nitrogen rate 180 kg N ha -1 was tested under two-irrigation methods, surface irrigation and drip fertigation of cotton (Cultivar Rakka-5) for two consecutive seasons 2000 and 2001. The study aimed to answer various questions regarding the applicability of drip fertigation at farm level and the effect of its employment on yield and growth parameters, compared to surface irrigation. Nitrogen fertilizer was either injected in eight equally split applications for the drip fertigated cotton or divided in four unequally split applications as recommend by Ministry of Agriculture (20% before planting, 40% at thinning, 20% after 60 days from planting and 20% after 75 days after planting). 15 N labeled urea was used to evaluate nitrogen fertilizer efficiency. The experimental design was randomized block design with seven replicates. Results showed that drip fertigation led to water saving exceeding 50% in some cases. Field germination percentage was highly increased under drip- fertigated cotton relative to surface-irrigated cotton. Dry matter and seed cotton yield of surface-irrigated cotton was slightly higher than that of drip-fertigated cotton in the first growing season. The reason for that was due to the hot spill that occurred in the region, which exposed the cotton crop to water stress and consequently pushed the cotton into early flowering. Lint properties were not affected by the introduction of drip-fertigation. Actually some properties were improved relative to the standard properties identified by the cotton Bureau.Nitrogen uptake was slightly increased under drip fertigation whereas nitrogen use efficiencies were not constant along the growing seasons. The reason for that could be lateral leaching and root proliferation into the labeled and unlabeled subplots. Field water use efficiency was highly increased for both growing seasons under drip fertigation practice. The rate of field water use efficiencies

  18. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences.

    Science.gov (United States)

    Hashmi, Jamil A; Zafar, Yusuf; Arshad, Muhammad; Mansoor, Shahid; Asad, Shaheen

    2011-04-01

    Several important biological processes are performed by distinct functional domains found on replication-associated protein (Rep) encoded by AC1 of geminiviruses. Two truncated forms of replicase (tAC1) gene, capable of expressing only the N-terminal 669 bp (5'AC1) and C-terminal 783 bp (3'AC1) nucleotides cloned under transcriptional control of the CaMV35S were introduced into cotton (Gossypium hirsutum L.) using LBA4404 strain of Agrobacterium tumefaciens to make use of an interference strategy for impairing cotton leaf curl virus (CLCuV) infection in transgenic cotton. Compared with nontransformed control, we observed that transgenic cotton plants overexpressing either N-terminal (5'AC1) or C-terminal (3'AC1) sequences confer resistance to CLCuV by inhibiting replication of viral genomic and β satellite DNA components. Molecular analysis by Northern blot hybridization revealed high transgene expression in early and late growth stages associated with inhibition of CLCuV replication. Of the eight T(1) transgenic lines tested, six had delayed and minor symptoms as compared to nontransformed control lines which developed disease symptoms after 2-3 weeks of whitefly-mediated viral delivery. Virus biological assay and growth of T(2) plants proved that transgenic cotton plants overexpressing 5'- and 3'AC1 displayed high resistance level up to 72, 81%, respectively, as compared to non-transformed control plants following inoculation with viruliferous whiteflies giving significantly high cotton seed yield. Progeny analysis of these plants by polymerase chain reaction (PCR), Southern blotting and virus biological assay showed stable transgene, integration, inheritance and cotton leaf curl disease (CLCuD) resistance in two of the eight transgenic lines having single or two transgene insertions. Transgenic cotton expressing partial AC1 gene of CLCuV can be used as virus resistance source in cotton breeding programs aiming to improve virus resistance in cotton crop.

  19. Problems and achievements of cotton (Gossypium Hirsutum L. weeds control

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2017-09-01

    Full Text Available Abstract. Weed control in the cultivation of cotton is critical to the yield and quality of production. The influence of economically important weeds was studied. Chemical control is the most effective method of weed control in cotton but much of the information on it relates to primary weed infestation. Problems with primary weed infestation in cotton have been solved to a significant extent. The question of secondary weed infestation with annual and perennial graminaceous weeds during the period of cotton vegetation is also determined largely by the use of antigraminaceous herbicides. The data related to herbicides to effectively control secondary germinated broadleaf weeds in conventional technology for cotton growing are quite scarce, even globally. We are still seeking effective herbicides for control of these weeds in cotton crops. Studies on their influence on the sowing characteristics of cotton seed and the quality of cotton fiber are still insufficient. In the scientific literature there is not enough information on these questions. The combinations of herbicides, as well as their tank mixtures with fertilizers or plant growth regulators are more efficient than autonomous application. Often during their combined application higher synergistic effect on yield is produced. There is information about cotton cultivars resistant to glyphosate. These cultivars are GMO and they are banned within the European Union, including Bulgaria.

  20. Superoleophobic cotton textiles

    NARCIS (Netherlands)

    Leng, B.; Shao, Z.; With, de G.; Ming, W.

    2009-01-01

    Common cotton textiles are hydrophilic and oleophilic in nature. Superhydrophobic cotton textiles have the potential to be used as self-cleaning fabrics, but they typically are not super oil-repellent. Poor oil repellency may easily compromise the self-cleaning property of these fabrics. Here, we

  1. Cotton trends in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Cotton trends in India. A crop of significant economic importance, valued at over Rs. 15000 Crs. Provides income to 60 million people. Crucial raw material for Rs 83000 Crores textile industry out of which Rs 45754 crores is exports. Approx. 20 Million acres of cotton provides ...

  2. The "Cotton Problem"

    OpenAIRE

    Baffes, John

    2005-01-01

    Cotton is an important cash crop in many developing economies, supporting the livelihoods of millions of poor households. In some countries it contributes as much as 40 percent of merchandise exports and more than 5 percent of gross domestic product (GDP). The global cotton market, however, has been subject to numerous policy interventions, to the detriment of nonsubsidized producers. This ...

  3. Evolution of insect pest and disease resistant, high-yielding and improved quality varieties of cotton by use of ionizing radiation. Part of a coordinated programme on the use of induced mutations for disease resistance in crop plants

    International Nuclear Information System (INIS)

    Vasti, S.M.

    1981-06-01

    Disease resistant, high yielding and higher quality cotton varieties were developed. 42 interspecific hybrid progenies of earlier crosses between Gossypium barbadense and Gossypium tomentosum or Gossypium barbadense and Gossypium hirsutum were included. Out of these, 22 progenies in F 3 generation were irradiated by gamma radiation doses of 20 and 25 kR. A list is given of interspecific hybrid progenies, as are the lists of boll rot susceptible and resistant plants in the irradiated and non-irradiated populations and/or successful crosses made between 1977 and 1978

  4. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus.

    Science.gov (United States)

    Davis, R F; Baird, R E; McNeil, R D

    2000-12-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P rye or wheat cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton.

  5. Assessment of Bollgard II cotton pollen mediated transgenes flow to ...

    African Journals Online (AJOL)

    INERA05

    2013-08-14

    Aug 14, 2013 ... insects such as honey bees, bumble bees and butterflies. Genetic materials ... cotton fields separated from the transgenes source by wide open space. In Boni ..... Breeding: new strategies in plant improvement. International ...

  6. Dictionary of cotton: Picking & ginning

    Science.gov (United States)

    Cotton is an essential commodity for textiles and has long been an important item of trade in the world’s economy. Cotton is currently grown in over 100 countries by an estimated 100 producers. The basic unit of the cotton trade is the cotton bale which consists of approximately 500 pounds of raw c...

  7. Correlations and Correlated Responses in Upland Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Echekwu, CA.

    2001-01-01

    Full Text Available Plant breeders must be concerned with the total array of economic characters in their efforts to develop a crop variety acceptable to farmers. Their selection endeavours must therefore take into consideration how changes in one trait affect, simultaneously changes in other economic attributes. The importance of correlations and correlated responses is therefore self evident in plant breeding endeavours. In this study F3 progenies from a cross between two cotton lines SAMCOT-9 x Y422 were evaluated for two years and performance data were used to obtain correlations between nine agronomic and fibre quality traits in upland cotton. The results indicated that plant helght was significantly and positively correlated with seed cotton yield, number of sympodial and monopodial branches, seed index, fibre length and micronaire index. Positive and significant correlations were also obtained between : seed cotton yield, tint percent and fibre strength and fibre length. Significant negative correlations were obtained between : plant height and lint percent ; number of monopodial branches, sympodial branches and lint percent ; fibre length, fibre strength and micronaire index. The correlated responses in the other eight traits when selection was practiced for seed cotton yield in the present study shows that it might be more profitable to practice direct selection for seed cotton yield compared to selecting for seed cotton yield through any of the other traits.

  8. Airborne multispectral detection of regrowth cotton fields

    Science.gov (United States)

    Regrowth of cotton, Gossypium hirsutum L., can provide boll weevils, Anthonomus grandis Boheman, with an extended opportunity to feed and reproduce beyond the production season. Effective methods for timely areawide detection of these potential host plants are critically needed to achieve eradicati...

  9. Elevated CO2, warmer temperatures and soil water deficit affect plant growth, physiology and water use of cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Changes in temperature, atmospheric [CO2] and precipitation under the scenarios of projected climate change present a challenge to crop production, and may have significant impacts on the physiology, growth and yield of cotton (Gossypium hirsutum L.). A glasshouse experiment explored the early growt...

  10. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton.

    Science.gov (United States)

    Martin, Daniel E; Latheef, Mohamed A

    2018-02-01

    The two-spotted spider mite, Tetranychus urticae Koch, is an important pest of cotton in mid-southern USA and causes yield reduction and deprivation in fiber fitness. Cotton and pinto beans grown in the greenhouse were infested with spider mites at the three-leaf and trifoliate stages, respectively. Spider mite damage on cotton and bean canopies expressed as normalized difference vegetation index indicative of changes in plant health was measured for 27 consecutive days. Plant health decreased incrementally for cotton until day 21 when complete destruction occurred. Thereafter, regrowth reversed decline in plant health. On spider mite treated beans, plant vigor plateaued until day 11 when plant health declined incrementally. Results indicate that pinto beans were better suited as a host plant than cotton for rearing T. urticae in the laboratory.

  11. An experiment using neutron activation analysis and a rare earth element to mark cotton plants and two insects that feed on them

    Energy Technology Data Exchange (ETDEWEB)

    Showler, Allan T. [USDA-ARS IFNRRU, Kika de la Garza Subtropical Agricultural Research Center, 2413 East Highway 83, Weslaco, TX 78596 (United States)]. E-mail: ashowler@weslaco.ars.usda.gov; James, William D. [Elemental Analysis Laboratory, 3144 Texas A and M University, College Station, TX 77843-3144 (United States); Armstrong, John S. [USDA-ARS BIRU, Kika de la Garza Subtropical Agricultural Research Center, 2413 East Highway 83, Weslaco, TX 78596 (United States); Westbrook, John K. [USDA-ARS APMRU, 2771 F and B Road, College Station, TX 77845-4966 (United States)

    2006-08-15

    Studies on insect dispersal and other behaviors can benefit from using markers that will not alter flight and fitness. Rare earth elements, such as samarium (Sm), have been used as ingested markers of some insects and detected using neutron activation analysis (NAA). In this study, samarium nitrate hexahydrate was mixed into artificial diet for boll weevils, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), at different dosages and in water used to irrigate cotton, Gossypium hirsutum L. Samarium was detected in adult boll weevils fed on the samarium-labeled diet, but not after 5 or 10 days of being switched to non-labeled diet, even if the insects were given labeled diet for as long as 7 consecutive days. Introduced in irrigation water, 1% samarium (m/m) was detectable in cotton squares and leaf tissue. However, boll weevil adults fed samarium-labeled squares did not retain detectable levels of samarium, nor did boll weevil adults reared to adulthood from samarium-labeled squares. Fourth instar beet armyworms, Spodoptera exigua (Huebner) (Noctuidae: Lepidoptera), fed on samarium-labeled cotton leaves obtained enough samarium for NAA detection, but adult moths reared from them did not have detectable amounts of samarium. Although samarium can be useful as a marker when insects are presented with a continuous pulse of the label, elements that are assimilated by the insect would be more useful if a continuous infusion of the marker cannot be provided.

  12. Genetic diversity in upland cotton for cotton leaf curl virus disease, earliness and fiber quality

    International Nuclear Information System (INIS)

    Saeed, F.; Farooq, J.; Mahmood, A.; Hussain, T.

    2014-01-01

    In Pakistan during last two decades the major factor limiting cotton production is cotton leaf curl virus disease (CLCuD). For estimation of genetic diversity regarding CLCuD tolerance, fiber quality and some yield contributing traits, 101 cotton genotypes imported from USA were evaluated. Different statistical procedures like cluster, principle components (PC) and correlation analysis were employed to identify the suitable genotypes that can be further exploited in breeding programme. Significant associations were found between yield contributing trait, boll weight and fiber related trait, staple length. Earliness related traits, like days taken to 1 square and days taken to 1 flower had positive correlation with each other and both these traits also showed their positive association with ginning out turn. The negative significant correlation of CLCuD was obtained with monopodial branches, sympodial branches and plant height. Principal component (PC) analysis showed first five PCs having eigen value >1 explaining 67.8% of the total variation with days to st 1 square and flowering along with plant height and sympodia plant which were being the most important characters in PC1. Cluster analysis classified 101 accessions into five divergent groups. The genotypes in st cluster 1 only showed reasonable values for days to 1 square and flower, sympodia per plant, ginning out turn, staple length and fiber fineness and the genotypes in cluster 5 showed promising values for the traits like cotton leaf curl virus, ginning out turn and fiber fineness. The genotypes in cluster 1 and 5 may be combined to obtain desirable traits related to earliness and better disease tolerance. Scatter plot and tree diagrams demonstrated sufficient diversity among the cotton accessions for various traits and some extent of association between various clusters. It is concluded that diversity among the genotypes could be utilized for the development of CLCuD resistant lines with increased seed

  13. Heterosis and correlation in interspecific and intraspecific hybrids of cotton.

    Science.gov (United States)

    Munir, S; Hussain, S B; Manzoor, H; Quereshi, M K; Zubair, M; Nouman, W; Shehzad, A N; Rasul, S; Manzoor, S A

    2016-06-24

    Interspecific and intraspecific hybrids show varying degrees of heterosis for yield and yield components. Yield-component traits have complex genetic relationships with each other. To determine the relationship of yield-component traits and fiber traits with seed cotton yield, six lines (Bt. CIM-599, CIM-573, MNH-786, CIM-554, BH-167, and GIZA-7) and three test lines (MNH-886, V4, and CIM-557) were crossed in a line x tester mating design. Heterosis was observed for seed cotton yield, fiber traits, and for other yield-component traits. Heterosis in interspecific hybrids for seed cotton yield was more prominent than in intraspecific hybrids. The interspecific hybrid Giza-7 x MNH-886 had the highest heterosis (114.77), while among intraspecific hybrids, CIM-554 x CIM-557 had the highest heterosis (61.29) for seed cotton yield. A major trait contributing to seed cotton yield was bolls/plant followed by boll weight. Correlation studies revealed that bolls/plant, boll weight, lint weight/boll, lint index, seed index, lint/seed, staple length, and staple strength were significantly and positively associated with seed cotton yield. Selection based on boll weight, boll number, lint weight/boll, and lint index will be helpful for improving cotton seed yield.

  14. Boll sampling protocols and their impact on measurements of cotton fiber quality

    Science.gov (United States)

    Within plant fiber variability has long contributed to product inconsistency in the cotton industry. Fiber quality uniformity is a primary plant breeding objective related to cotton commodity economic value. The physiological impact of source and sink relationships renders stress on the upper bran...

  15. Effects of nematicides on cotton root mycobiota.

    Science.gov (United States)

    Baird, R E; Carling, D E; Watson, C E; Scruggs, M L; Hightower, P

    2004-02-01

    Baseline information on the diversity and population densities of fungi collected from soil debris and cotton (Gossypium hirsutum L.) roots was determined. Samples were collected from Tifton, GA, and Starkville, MS containing cotton field soil treated with the nematicides 1,3-dichloroproprene (fumigant) and aldicarb (granules). A total of 10,550 and 13,450 fungal isolates were collected from these two study sites, respectively. Of this total, 34 genera of plant pathogenic or saprophytic species were identified. Pathogenic root fungi included Fusarium spp. (40% of all isolations), Macrophomina, Pythium, Rhizoctonia, and Sclerotium. Fusarium and Rhizoctonia were the most common fungal species identified and included F. oxysporum, F. verticillioides and F. solani, the three Fusarium species pathogenic on cotton plants. Population densities of Fusarium were not significantly different among locations or tissue types sampled. Macrophomina was isolated at greater numbers near the end of the growing seasons. Anastomosis groups of R. solani isolated from roots and soil debris included AG-3, -4, -7, 2-2, and -13 and anastomosis groups of binucleate Rhizoctonia included CAG-2, -3, and -5. Occurrences and frequency of isolations among sampling dates were not consistent. Fluctuations in the frequency of isolation of Rhizoctonia did not correspond with changes in frequency of isolation of the biological control fungus, Trichoderma. When individual or pooled frequencies of the mycobiota were compared to nematicide treatments, no specific trends occurred between treatments, application methods or rates. Results from this study show that use of 1,3-D and aldicarb in cotton fields does not significantly impact plant pathogenic fungi or saprophytic fungal populations. Thus cotton producers need not adjust seedling disease control measures when these two nematicides are used.

  16. [Effects of transgenic Bt + CpTI cotton on rhizosphere bacteria and ammonia oxidizing bacteria population].

    Science.gov (United States)

    Dong, Lianhua; Meng, Ying; Wang, Jing

    2014-03-04

    The effect of transgenic cotton on the rhizosphere bacteria can be important to the risk assessment for the genetically modified crops. We studied the rhizosphere microbial community with cultivating genetically modified cotton. The effects of transgenic Bt + CpTI Cotton (SGK321) and its receptor cotton (SY321) on rhizosphere total bacteria and ammonia oxidizing bacteria population size were studied by using droplet digital PCR. We collected rhizosphere soil before cotton planting and along with the cotton growth stage (squaring stage, flowering stage, belling stage and boll opening stage). There was no significant change on the total bacterial population between the transgenic cotton and the receptor cotton along with the growth stage. However, the abundance of ammonia oxidizing bacteria (AOB) in both type of cottons showed significant difference between different growth stages, and the variation tendency was different. In squaring stage, the numbers of AOB in rhizosphere of SY321 and SGK321 increased 4 and 2 times, respectively. In flowering stage, AOB number in rhizosphere of SY321 significantly decreased to be 5.96 x 10(5) copies/g dry soil, however, that of SGK321 increased to be 1.25 x 10(6) copies/g dry soil. In belling stage, AOB number of SY321 greatly increased to be 1.49 x 10(6) copies/g dry soil, but no significant change was observed for AOB number of SGK321. In boll opening stage, both AOB number of SY321 and SGK321 clearly decreased and they were significantly different from each other. Compared to the non-genetically modified cotton, the change in abundance of ammonia oxidizing bacteria was slightly smooth in the transgenic cotton. Not only the cotton growth stage but also the cotton type caused this difference. The transgenic cotton can slow down the speed of ammonia transformation through impacting the number of AOB, which is advantageous for plant growth.

  17. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China.

    Directory of Open Access Journals (Sweden)

    Peng Han

    Full Text Available The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt+CpTI (Cowpea trypsin inhibitor cotton field in 2011. The aphid population growth in the open field (control was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1% and spiders (1.5%. The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma. Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation. The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.

  18. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    Science.gov (United States)

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  19. The natural refuge policy for Bt cotton (Gossypium L. in Pakistan – a situation analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad Ali

    2013-07-01

    Full Text Available Bt cotton (event Cry1Ac was formally commercialized in Pakistan in 2010. However, there has been an increasing trend of planting unauthorized Bt cotton germplasm in farmers' fields since 2003 with a high rate of adoption in the core cotton areas especially in the province Punjab. The transgenic cotton technology has provided the growers with substantial economic benefits and has reduced their dependence on pesticides for pest control, especially against Helicoverpa armigera (Hubner. However, keeping in view the capacity of this insect to develop resistance against novel chemical formulations, it is easily speculated that Bt toxin, too, is no exception. Refuge crop policy for mono transgenic crop events has helped in delaying the rate of resistance evolution in the target pests. Thus, in Pakistan, where planting of structured refuge crops along Bt cotton fields is not mandatory, the effectiveness and durability of Bt cotton technology may decrease due to a number of factors which are discussed in this review.

  20. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls, under elevated CO2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The growth, development and consumption of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls grown under elevated CO2 (double-ambient vs. ambient) in open-top chambers were examined. Significant decreases in protein, total amino acid, water and nitrogen content and increases in free fatty acid were observed in cotton bolls. Changes in quality of cotton bolls affected the growth, development and food utilization of H. armigera. Significantly longer larval development duration in three successive generations and lower pupal weight of the second and third generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower fecundity was also found in successive three generations of H. armigera fed on cotton bolls grown under elevated CO2. The consumption per larva occurred significant increase in successive three generations and frass per larva were also significantly increased during the second and third generations under elevated CO2. Significantly lower relative growth rate, efficiency of conversion of ingested food and significant higher relative consumption rate in successive three generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower potential female fecundity, larval numbers and population consumption were found in the second and third generations of cotton bollworm fed on cotton bolls grown under elevated CO2. The integrative effect of higher larval mortality rate and lower adult fecundity resulted in significant decreases in potential population consumption in the latter two generations. The results show that elevated CO2 adversely affects cotton bolls quality, which indicates the potential population dynamics and potential population consumption of cotton bollworm will alleviate the harm to the plants in the future rising CO2 atmosphere.

  1. Integrated nutrients management for 'desi' cotton

    International Nuclear Information System (INIS)

    Qazi, M.A.; Akram, M.; Ahmad, N.; Khattak, M.A.

    2007-01-01

    Intensive cropping with no return of crop residues and other organic inputs result in the loss of soil organic matter (SOM) and nutrient supply in (Desi) cotton-wheat cropping system in Pakistan. For appraisal of problem and finding solution to sustainability, we evaluated six treatments comprised of two fertilizer doses and three management techniques over a period of three years (2003-05) monitoring their effects on seed cotton yield and soil fertility. The techniques included chemical fertilizers, municipal solid waste manure (MSWM) integrated with chemical fertilizers in 1:4 ratios with, and without pesticides. The results revealed that cotton yields. Were enhanced by 19% due to site-specific fertilizer dose over conventional dose. Ignoring weeds control by means of herbicided application resulted in 5% decrease of seed cotton yield in IPNM technique positive effect of MSWM integration was noted on soil test phosphorus and SOM. Site-specific fertilizer application and integrated plant nutrient management by MSWM proved their suitability as the techniques not only improve soil quality in terms of sustained levels of organic matter and phosphorus but also provide a safe way of waste disposal. (author)

  2. Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil.

    Science.gov (United States)

    Sujii, E R; Togni, P H B; de A Ribeiro, P; de A Bernardes, T; Milane, P V G N; Paula, D P; Pires, C S S; Fontes, E M G

    2013-02-01

    Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.

  3. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  4. Radiation mutagenesis in development of genetic fundamentals of cotton selection

    International Nuclear Information System (INIS)

    Musaev, D.A.; Almatov, A.S.

    1987-01-01

    Some results of investigations on preparation and genetic analysis of mutants in inbreeding lines of genetic collections of cotton plants, as well as problems on mutant application in practical selection are covered. The results show that the scientific authenticity and efficiency of fundamental and applied investigations in the field of experimental mutagenesis of cotton plants,being a facultative self-polinator, depend on keeping necessary methodical requirements. Application of inbreeding lines of genetic collection with marker features as the initial material, isolation of plants usinng self-polination of flowers on all stages of investigation are related to these requirements. Several methodical recommendations on genetic-selective investigations are developed

  5. Cotton phenotyping with lidar from a track-mounted platform

    Science.gov (United States)

    French, Andrew N.; Gore, Michael A.; Thompson, Alison

    2016-05-01

    High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at cotton bolls.

  6. cotton fabric 51

    African Journals Online (AJOL)

    DR. AMINU

    1Department of Chemistry, Federal College of Education, Kano – Nigeria. 2Department of ... its versatility were examined taken into consideration, the molecular structure. ... hemicelluloses, pectin, coloring matter and ash ... temperature for a fixed period of time. These processes rendered the cotton 99% cellulose in nature.

  7. Cotton, Prof. Frank Albert

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Fellowship. Fellow Profile. Elected: 1985 Honorary. Cotton, Prof. Frank Albert. Date of birth: 9 April 1930. Date of death: 20 February 2007. Last known address: Department of Chemistry, Texas A & M University, College Station, TX 77843, U.S.A..

  8. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use.

    Science.gov (United States)

    Meisner, Matthew H; Zaviezo, Tania; Rosenheim, Jay A

    2017-01-01

    Landscape crop composition surrounding agricultural fields is known to affect the density of crop pests, but quantifying these effects, as well as measuring how they translate to changes in yield, is difficult. Using a large dataset consisting of 1498 records of commercial cotton production in California between 1997 and 2008, we explored the relationship between landscape composition and cotton yield, the density of Lygus hesperus (a key cotton pest) at field-level and within-field spatial scales and pesticide use. We found that the crop composition immediately adjacent to a cotton field was associated with substantial differences in cotton yield, L. hesperus density and pesticide use. Furthermore, crops that tended to be associated with increased L. hesperus density also tended to be associated with increased pesticide use and decreased cotton yield. Our results suggest a possible mechanism by which landscape composition can affect cotton yield: by increasing the density of pests which in turn damage cotton plants. Our quantification of how surrounding crops affect pest densities, and in turn yield, in cotton fields has significant impacts for cotton farmers, who can use this information to help optimize crop selection and ranch layout. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Evaluating potassium-use-efficiency of five cotton genotypes of pakistan

    International Nuclear Information System (INIS)

    Hassan, Z.U.; Kubar, K.A.

    2014-01-01

    Potassium (K) deficiency in Pakistani soils has been recently reported as the major limiting factor affecting sustainable cotton production. The present study was conducted to envisage how K nutrition affect the growth, biomass production, yield and K-use-efficiency of five cotton genotypes, NIBGE-3701, NIBGE-1524 (Bt-transgenic), Sadori, Sindh-1 and SAU-2 (non-Bt conventional), commonly grown in Pakistan. All five genotypes were raised at deficient and adequate K levels, i.e. 0 and 60 kg K/sub 2/O ha-1, respectively. The experiment was performed in plastic pots following a completely randomized factorial design with three repeats. Adequate K nutrition significantly increased various plant growth traits and yield of all cotton genotypes under study, viz. number of sympodia (21%), number of leaves (34%), leaf dry biomass (30%), shoot dry biomass (31%), number of bolls (50%) and yield of seed cotton (92%). Substantial variations were observed among cotton genotypes for their K-use-efficiency and K-response-efficiency. Sadori and SAU-2 were screened as most K-use-efficient cotton genotypes, while Sindh-1 and SAU-2 were ranked as the most K-responsive cotton genotypes. Interestingly, Sadori did not respond to K nutrition. Moreover, Bt cotton genotypes accumulated more K as compared to non-Bt genotypes. The cotton genotype SAU-2 was identified as efficient-response genotype for better adaptation for both low- and high-K-input sustainable cotton agriculture systems. (author)

  10. Effects of the irradiation in seeds of cotton

    International Nuclear Information System (INIS)

    Araujo, Ana Leticia; Arthur, Paula Bergamin; Arthur, Valter; Franco, Camilo Flamorion de Oliveira

    2017-01-01

    The experiment aimed to verify if seeds of cotton of variety FiberMax FM 993, irradiated with the doses of 0 (test); 25; 50; 75; 100 Gy can induce the production increase in cotton culture. For all treatments with irradiation, was used a source of cobalt-60, type Gammacell 220. After the irradiation, the seeds were planted in the experimental field of the Department of Plant Production ESALQ-USP, Piracicaba-SP. The experimental design was randomized blocks with four replications and 60 g of seed were used for each repetition, the rows were 5m and the spacing of 0.90m, using randomized blocks and rows of edging. After planting the final height and productivity were evaluated. The obtained data were statistically analyzed in the Tukey test at 5% level of probability. From the results obtained, it was concluded that the dose of 50Gy was the one that induced a greater production of cotton. (author)

  11. Effects of the irradiation in seeds of cotton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Ana Leticia [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Arthur, Paula Bergamin; Arthur, Valter, E-mail: paula.arthur@hotmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Franco, Camilo Flamorion de Oliveira [Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA/EMEPA), João Pessoa, PB (Brazil)

    2017-07-01

    The experiment aimed to verify if seeds of cotton of variety FiberMax FM 993, irradiated with the doses of 0 (test); 25; 50; 75; 100 Gy can induce the production increase in cotton culture. For all treatments with irradiation, was used a source of cobalt-60, type Gammacell 220. After the irradiation, the seeds were planted in the experimental field of the Department of Plant Production ESALQ-USP, Piracicaba-SP. The experimental design was randomized blocks with four replications and 60 g of seed were used for each repetition, the rows were 5m and the spacing of 0.90m, using randomized blocks and rows of edging. After planting the final height and productivity were evaluated. The obtained data were statistically analyzed in the Tukey test at 5% level of probability. From the results obtained, it was concluded that the dose of 50Gy was the one that induced a greater production of cotton. (author)

  12. Cotton: A Massively Underutilized and Often Overlooked Protein and Biomass Resource

    Science.gov (United States)

    Every year the cotton crop on the planet produces about 11 million metric tons of protein. Unfortunately, the cotton plant has also evolved a chemical defense mechanism, a toxin (gossypol) that resides in tiny but visible pigment glands. Having a phenotypic marker for the toxin is unique and has all...

  13. Creating prescription maps from historical imagery for site-specific management of cotton root rot

    Science.gov (United States)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is a severe plant disease that has affected cotton production for over a century. Recent research found that a commercial fungicide, Topguard (flutriafol), was able to control this disease. As a result, Topguard Terra Fungic...

  14. Combining fuzzy set theory and nonlinear stretching enhancement for unsupervised classification of cotton root rot

    Science.gov (United States)

    Cotton root rot is a destructive disease affecting cotton production. Accurate identification of infected areas within fields is useful for cost-effective control of the disease. The uncertainties caused by various infection stages and newly infected plants make it difficult to achieve accurate clas...

  15. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton.

    Science.gov (United States)

    Long, Qin; Yue, Fang; Liu, Ruochen; Song, Shuiqing; Li, Xianbi; Ding, Bo; Yan, Xingying; Pei, Yan

    2018-05-11

    Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.

  16. Saussurea involucrata SiDhn2 gene confers tolerance to drought stress in upland cotton

    International Nuclear Information System (INIS)

    Liu, B.; Zhu, J.; Mu, J.; Zhu, J.; Liang, Z.; Zhang, L.

    2017-01-01

    Severe water shortage has long been acknowledged as one major limiting factor for global cotton production, and cultivation of cotton varieties with strong drought resistance is of important economic and social significances. In this study, the Xinjiang upland cotton variety Xinluzao 42 was transformed with the SiDhn2 gene by optimized agrobacterium transformation system. The integration of SiDhn2 gene into cotton genome was confirmed by PCR and Southern blot hybridization, and the drought resistance of transgenic and corresponding receptor cotton plants and their physiological indexes under drought stress were detailedly analyzed. Multiple physiological and biochemical indexes including soluble sugar content, free proline content, chlorophyll content, relative water content, net photosynthetic rate, transpiration rate, intercellular CO/sub 2/ concentration in transgenic cotton expressing SiDhn2 gene under drought stress were significantly higher than those of receptor cotton. More importantly, the transgenic cotton plants exhibited remarkably decreased boll abscission rate and highly increased seed yield, indicating the significant role of SiDhn2 gene in cotton drought resistance and its great application potential in agricultural production. (author)

  17. Effects of Different Densities of Cotton (Gossypium Hirsutum and Common Lambsquarter (Chenopodium Album on Some Cotton Growth Characteristics in Birjand Condition

    Directory of Open Access Journals (Sweden)

    M. Velayati

    2011-01-01

    Full Text Available Abstract Weeds are problematic plants in agroecosystems as a competitor for crops. In order to evaluate effects of cotton (Gossypium hirsutum and common lambsquarter (Chenopodium album densities on some crop growth indices, a study was conducted during 2006 in Experimental Station of Faculty of Agriculture, The University of Birjand as factorial experiment based on complete randomized block design with four replications. Three densities of cotton (6, 9 and 12 Pl.m-2 and four weed densities (0, 6, 9 and 12 Pl.m-2 were used to provide different weed interference levels. Indeed, three plots in each replication were intended to cultivation of lambsquarter alone at 6, 9 or 12 Pl.m-2. Results showed that crop growth rate (CGR of cotton was influenced by weed density, and its relative growth rate (RGR and net assimilation rate (NAR indicated a declining trend as weed density increased. Dry matter accumulation of cotton also was affected negatively by weed densities, as interference of lambsquarter at 6, 9 and 12 Pl.m-2 resulted to 35, 42 and 48 percent dry matter reduction, respectively, than weed-free treatment. Increasing of cotton density could partly compensate for negative impact of weed attendance on cotton growth. Thus, it seems higher plant densities can be used as a managing tool against weeds in cotton fields to avoid reduction of yield. Keywords: Cotton, Density, Weed, competition, Growth analysis

  18. Screening Pakistani cotton for drought tolerance

    International Nuclear Information System (INIS)

    Soomro, M.H.; Markhand, G.S.

    2011-01-01

    The drought is one of the biggest abiotic stresses for crop production in arid and semi-arid agriculture. Thus it is a challenge for plant scientists to screen and develop the drought tolerant cotton lines. In this study, 31 cotton genotypes/cultivars were evaluated under two irrigation regimes i. e., seven irrigations (Control) and two irrigations (Stress), using split plot design with four replications. The crop growth, yield and some physiological parameters were studied. There were high inter-varietal differences for all the parameters under control as well as drought stress. Although all the varieties for all parameters were significantly affected by drought but however, CRIS-9, MARVI, CRIS-134, CRIS-126, CRIS-337, CRIS-355 and CRIS-377 maintained highest performance for all the parameters studied under high drought conditions. (author)

  19. Evaluation of cotton stalks destroyers

    OpenAIRE

    Bianchini, Aloisio; Borges, Pedro H. de M.

    2013-01-01

    The destruction of the cotton crop residues (cotton stalks) is a mandatory procedure in Brazil for prophylactic issues, but is a subject unexplored by the research and there are few studies that deal with this issue. However, this is not encouraged in recent decades, studies aimed at developing and evaluating equipment for this purpose. The present study had the objective to evaluate six methods for mechanical destruction of cotton crop residues. Each method was defined based on the principle...

  20. Determination of Tolerance Levels of Cotton Genotypes Obtained from F6-F7 Generation against Verticillium Wilt Disease Caused by Verticillium dahliae Kleb.

    OpenAIRE

    Oktay EROĞAN; Emine KARADEMIR; Çetin KARADEMIR; Aydın UNAY

    2013-01-01

    The susceptibility of cotton genotypes obtained from F6 and F7 generations to Verticillium wilt (VW) disease (Verticillium dahliae Kleb.), was studied under artificial and natural infestation during 2009 and 2010 growing seasons at the Cotton Research Institute’s, Nazilli, Aydın, Turkey. In this study, fifteen cotton breeding lines and two control varieties were used as plant material. During the cotton growing season, foliar disease index (FDI), vascular disease index (VDI) and pot disease i...

  1. Asymmetric evolution and domestication in allotetraploid cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Lei Fang

    2017-04-01

    Full Text Available Polyploidy plays a major role in genome evolution, which corresponds to environmental changes over millions of years. The mechanisms of genome evolution, particularly during the process of domestication, are of broad interest in the fields of plant science and crop breeding. Upland cotton is derived from the hybridization and polyploidization of its ancient A and D diploid ancestors. As a result, cotton is a model for polyploid genome evolution and crop domestication. To explore the genomic mysteries of allopolyploid cotton, we investigated asymmetric evolution and domestication in the A and D subgenomes. Interestingly, more structural rearrangements have been characterized in the A subgenome than in the D subgenome. Correspondingly, more transposable elements, a greater number of lost and disrupted genes, and faster evolution have been identified in the A subgenome. In contrast, the centromeric retroelement (RT-domain related sequence of tetraploid cotton derived from the D subgenome progenitor was found to have invaded the A subgenome centromeres after allotetrapolyploid formation. Although there is no genome-wide expression bias between the subgenomes, as with expression-level alterations, gene expression bias of homoeologous gene pairs is widespread and varies from tissue to tissue. Further, there are more positively selected genes for fiber yield and quality in the A subgenome and more for stress tolerance in the D subgenome, indicating asymmetric domestication. This review highlights the asymmetric subgenomic evolution and domestication of allotetraploid cotton, providing valuable genomic resources for cotton research and enhancing our understanding of the basis of many other allopolyploids.

  2. Allelopathic influence of a wheat or rye cover crop on growth and yield of no-till cotton

    Science.gov (United States)

    TECHNICAL ABSTRACT No-till planting cotton into small grain cover crops has many benefits including reducing soil erosion and allelopathic suppression of weeds. It is suggested that the potentials of allelopathy on cotton plants. Nevertheless, little is known about the actual effects of alleloche...

  3. The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae as a new menace to cotton in Egypt and its chemical control

    Directory of Open Access Journals (Sweden)

    El-Zahi El-Zahi Saber

    2016-04-01

    Full Text Available The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae is a polyphagous sap sucking insect with a wide geographical and host range causing severe losses in economically important crops. This study represents the first record of P. solenopsis as a new insect attacking cotton plants (Gossypium barbadense var. Giza 86 in Kafr El-Sheikh governorate, Egypt. The insect was noticed on cotton plants for the first time during its growing season of 2014. The mealybug specimens were collected from infested cotton plants and identified as P. solenopsis. In an attempt to control this pest, eight toxic materials viz., imidacloprid, thiamethoxam, flonicamid, emamectin-benzoate, chlorpyrifos, methomyl, deltamethrin and mineral oil (KZ-oil, belonging to different chemical groups, were tested for their influence against P. solenopsis on cotton under field conditions. Methomyl, imidacloprid, thiamethoxam and chlorpyrifos showed the highest efficacy against P. solenopsis recording 92.3 to 80.4% reduction of the insect population. Flonicamid, emamectin-benzoate and KZ-oil failed to exhibit sufficient P. solenopsis control.

  4. Effects of Elevated Carbon Dioxide on the Growth and Foliar Chemistry of Transgenic Bt Cotton

    Institute of Scientific and Technical Information of China (English)

    Gang Wu; Fa-Jun Chen; Feng Ge; Yu-Cheng Sun

    2007-01-01

    A field study was carried out to quantify plant growth and the foliar chemistry of transgenic Bacillus thuringiensis (Bt)cotton (cv. GK-12) exposed to ambient CO2 and elevated (double-ambient) CO2 for different lengths of time (1, 2 and 3 months) in 2004 and 2005. The results indicated that CO2 levels significantly affected plant height, leaf area per plant and leaf chemistry of transgenic Bt cotton. Significantly, higher plant height and leaf area per plant were observed after cotton plants that were grown in elevated CO2 were compared with plants grown in ambient CO2 for 1, 2 and 3 months in the investigation. Simultaneously, significant interaction between CO2 level x investigating year was observed in leaf area per plant. Moreover, foliar total amino acids were increased by 14%, 13%, 11% and 12%, 14%, 10% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 in 2004 and 2005, respectively. Condensed tannin occurrence increased by 17%, 11%, 9% in 2004 and 12%, 11%, 9% in 2005 in transgenic Bt cotton after being exposed to elevated CO2 for 1, 2 or 3 months compared with ambient CO2 for the same time. However, Bt toxin decreased by 3.0%,2.9%, 3.1% and 2.4%, 2.5%, 2.9% in transgenic Bt cotton after exposed to elevated CO2 for 1, 2 or 3months compared with ambient CO2 for same time in 2004 and 2005, respectively. Furthermore, there was prominent interaction on the foliar total amino acids between the CO2 level and the time of cotton plant being exposed to elevated CO2. It is presumed that elevated CO2 can alter the plant growth and hence ultimately the phenotype allocation to foliar chemistical components of transgenic Bt cotton, which may in turn, affect the plant-herbivore interactions.

  5. Genetic analysis of some agronomic traits (gossypium hamster L.) in cotton

    International Nuclear Information System (INIS)

    Zulqarnain, M.; Khan, I.A.; Shakeel, T.; JAfri, J.S.

    1998-01-01

    Four varieties of cotton were crossed in a complete diallel fashion to evaluate the mode of inheritance of different agronomic traits. Height of main stem, number of bolls per plant, boll weight and yield of seed cotton per plant appeared to be controlled by additive with partial dominance type of gene action. While number of seeds per boll was controlled by over dominance type of gene action. Variety MNH-93 possessed dominant genes for height of main stem, number of bolls per plant number of seeds per boll and yield of seed cotton per plant. AMSI-38 carried dominant genes for boll weight and recessive for number of bolls per plant, number of seeds per boll and boll weight. Height of main stem and yield of seed cotton were controlled by recessive genes in Variety AMSI-38. (author)

  6. Fungitoxicidade de grupos químicos sobre Myrothecium roridum in vitro e sobre a mancha-de-mirotécio em algodoeiro Fungitoxicity of chemical groups on Myrothecium roridum in vitro and on myrothecium leaf spot on cotton plants

    Directory of Open Access Journals (Sweden)

    Juliano César da Silva

    2006-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a fungitoxicidade de produtos pertencentes aos grupos dos benzimidazóis, triazóis, estrobilurinas, isoftalonitrilas e ditiocarbamatos sobre a germinação conidial e o crescimento micelial in vitro de isolados de Myrothecium roridum e, in vivo, sobre a severidade da mancha-de-mirotécio em plantas de algodoeiro. Nos testes in vitro os fungicidas foram solubilizados em meio BDA, utilizando-se as concentrações de 0,1, 1, 10 e 100 mg L-1 de ingrediente ativo. A fungitoxidade dos produtos foi avaliada por meio da ED50 (dose necessária para inibir 50% da germinação conidial ou crescimento micelial. Em casa de vegetação, estimou-se a severidade da mancha-de-mirotécio pela porcentagem de área foliar lesionada nas plantas de algodoeiro tratadas antes (preventivo e depois (curativo da inoculação do patógeno. Os fungicidas tiofanato metílico, carbendazim, metconazol, tiofanato metílico + clorotalonil, piraclostrobina + epoxiconazol, piraclostrobina + metiram, triflostrobina + propiconazol e tebuconazol inibiram com alta eficácia (ED50The objective of this work was to evaluate the toxicity of benzimidazoles, triazoles, strobilurins, isoftalonitrils and ditiocarbamats on Myrothecium roridum conidial germination and micelial growth in vitro, and the myrothecium leaf spot severity on cotton plants. On in vitro tests, fungicides were solubilized in PDA media at the following concentrations: 0.1, 1, 10 and 100 mg L-1. The toxicity of the products were evaluated by the ED50 rate (required for inhibiting 50% of the conidial germination or mycelial growth. In greenhouse tests, the severity of myrothecium leaf spot was quantified by measuring the leaf area affected by the pathogen in cotton plants sprayed before (preventive and after (curative the pathogen inoculation. The fungicides thiophanate methyl, carbendazim, metconazole, thiophanate methyl + chlorothalonil, pyraclostrobin + epoxyconazole, pyraclostrobin

  7. Alterações anatômicas em algodoeiro infectado pelo vírus da doença azul Anatomical alterations in blue disease infected cotton plant

    Directory of Open Access Journals (Sweden)

    Juliana K. Takimoto

    2009-01-01

    Luteoviridae family. Aiming to understand virus-host pathogenesis as well as to contribute with diagnostic and breeding aspects of cotton blue disease, in the present work, structural studies were performed via anatomical comparative analysis of health and infected plant tissues. For the anatomical studies, leaves from infected cotton plants were chosen when showing typical symptoms, such as: stunting, reduced leaf area with chlorotic vein and edges curled downward; clustered leaves, flowers and fruits due to reduced stem internodes. The results revealed that infected tissues present an increase in callose accumulation and calcium oxalate crystals; integrity of chloroplasts, which were distributed on the peripheral mesophyll cells, revealed a chemical alteration in the interior of palisade parenchyma cells. Inclusions in phloem and occasionally also xylem vessels were observed. The callose accumulation and the presence of inclusions in the phloem vessels are indications of a preferential relationship of the virus to these tissues.

  8. Superhydrophobic cotton by fluorosilane modification

    CSIR Research Space (South Africa)

    Erasmus, E

    2009-12-01

    Full Text Available the treatment with fluorinated or silicon compounds)1-4 and by enhancing the surface roughness with a fractal structure5-8. Cotton, a cellulose-based material, that is greatly hydrophilic, is more benefited when made hydrophobic. Modification of cotton...

  9. Spatial and temporal distribution of cotton squares and small cotton bolls fallen on ground after damage by boll weevil and the efficiency of the equipment used to collect them

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Domingues da Silva

    Full Text Available ABSTRACT: In this study, we determined the spatial and temporal distribution of fallen cotton squares and small cotton bolls fallen damaged by boll weevil and the efficiency and time interval of the equipment used to collect cotton samples. Spatial and temporal distribution of cotton squares and small cotton bolls fallen on the soil damaged by boll weevil among cotton rows was determined in an experimental design of randomized blocks in a factorial arrangement of 4x3, represented by soil surface tracks located at 1-11cm, 12-22cm, 23-33cm, and 34-44cm away from the planting row of cotton plants 70, 85, and 100 days of age. Efficiency and collection time interval of the cotton samples fallen on the soil infested by boll weevil by plastic rakes that were straight or fan-shaped, big broom, collector instrument model CNPA and aspirator of leaves ‘Trapp’ were determined in randomized block design with five treatments, 10 repetitions for each. Results demonstrated that the collection of cotton samples must be performed with greater attention to soil strips located below the cotton top projection and aspirator ‘Trapp’ of leaves was more appropriate for the operation as it used less time of collection with similar efficiency to other available equipment.

  10. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2014-04-01

    Full Text Available Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula and cotton bollworm (Helicoverpa armigera. The study aimed to evaluate four packages of integrated pest management (IPM techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012. Four packages of IPM evaluated were cotton varieties, i.e. Kanesia 10 or Kanesia 13, and seed treatment with synthetic insecticide (imidacloprid before sowing or spraying molasses (10 ml L-1 water as food for natural enemies. The cotton plants were intercropped with groundnut and sprayed with neem seed extract (NSE at the action threshold level for pest control. These packages were compared among themselves and also with the methods usually used by farmers, i.e. planting cotton variety Kanesia 8 intercropped with groundnut and pest control using synthetic chemical insecticides. Twenty five plants were sampled randomly per plot and measured for their growth, leafhopper and  bollworm populations, as well as cotton seed yield per plot. Observations were made weekly, starting at 30 days after planting (DAP until 120 DAP. The results showed that the use of Kanesia 10 or Kanesia 13 intercropped with groundnut and spraying molasses to conserve natural enemies was the best  pest management practice and superior to farmers’ practices. Conserving natural enemies is not only profitable (saving production cost of IDR1,150,000 to IDR1,500,000 ha-1 season-1, but also safe for the environment (no need to spray chemical insecticides.

  11. Expression of genes associated with carbohydrate metabolism in cotton stems and roots

    Directory of Open Access Journals (Sweden)

    Scheffler Jodi

    2009-01-01

    Full Text Available Abstract Background Cotton (Gossypium hirsutum L is an important crop worldwide that provides fiber for the textile industry. Cotton is a perennial plant that stores starch in stems and roots to provide carbohydrates for growth in subsequent seasons. Domesticated cotton makes these reserves available to developing seeds which impacts seed yield. The goals of these analyses were to identify genes and physiological pathways that establish cotton stems and roots as physiological sinks and investigate the role these pathways play in cotton development during seed set. Results Analysis of field-grown cotton plants indicated that starch levels peaked about the time of first anthesis and then declined similar to reports in greenhouse-grown cotton plants. Starch accumulated along the length of the stem and the shape and size of the starch grains from stems were easily distinguished from transient starch. Microarray analyses compared gene expression in tissues containing low levels of starch with tissues rapidly accumulating starch. Statistical analysis of differentially expressed genes indicated increased expression among genes associated with starch synthesis, starch degradation, hexose metabolism, raffinose synthesis and trehalose synthesis. The anticipated changes in these sugars were largely confirmed by measuring soluble sugars in selected tissues. Conclusion In domesticated cotton starch stored prior to flowering was available to support seed production. Starch accumulation observed in young field-grown plants was not observed in greenhouse grown plants. A suite of genes associated with starch biosynthesis was identified. The pathway for starch utilization after flowering was associated with an increase in expression of a glucan water dikinase gene as has been implicated in utilization of transient starch. Changes in raffinose levels and levels of expression of genes controlling trehalose and raffinose biosynthesis were also observed in vegetative

  12. Chemical-Free Cotton Defoliation by; Mechanical, Flame and Laser Girdling

    Directory of Open Access Journals (Sweden)

    Mathew G. Pelletier

    2017-01-01

    Full Text Available A novel new way to achieve chemical-free defoliation of cotton is discussed. The research found that by severing the phloem tissue on the main stalk, via a girdling operation, the operation stimulated the cotton plant to alter its growth into an early senescence pathway that resulted in the plant shedding its leaves and opening up all its bolls, leaving the plant in the perfect state for machine harvesting. Even with follow-up rains, zero regrowth occurred in the treated plants, unlike the untreated control plots where significant regrowth did occur. This report compares the results of greenhouse and field trials where the girdling operation was performed by hand, flame, mechanical and via a CO2 laser to achieve phloem tissue severance. Design parameters for a prototype laser girdling system are also provided. Results suggest that for deficit irrigated cotton, girdling can provide an alternative means to defoliate cotton.

  13. GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is ...

    African Journals Online (AJOL)

    EVANS

    especially inhibition of leaf senescence and plant stress responses in cotton. This study provides .... For exogenous application of hormone treatments, leaves of uniformly ...... with incompatible interactions between chili pepper and pathogens.

  14. Asymmetric Evolution and Expansion of the NAC Transcription Factor in Polyploidized Cotton

    Directory of Open Access Journals (Sweden)

    Kai Fan

    2018-01-01

    Full Text Available Polyploidy in Gossypium hirsutum conferred different properties from its diploid ancestors under the regulation of transcription factors. The NAC transcription factor is a plant-specific family that can be related to plant growth and development. So far, little is known about the NAC family in cotton. This study identified 495 NAC genes in three cotton species and investigated the evolution and expansion of different genome-derived NAC genes in cotton. We revealed 15 distinct NAC subfamilies in cotton. Different subfamilies had different gene proportions, expansion rate, gene loss rate, and orthologous exchange rate. Paleohexaploidization (35% and cotton-specific decaploidy (32% might have primarily led to the expansion of the NAC family in cotton. Half of duplication events in G. hirsutum were inherited from its diploid ancestor, and others might have occurred after interspecific hybridization. In addition, NAC genes in the At and Dt subgenomes displayed asymmetric molecular evolution, as evidenced by their different gene loss rates, orthologous exchange, evolutionary rates, and expression levels. The dominant duplication event was different during the cotton evolutionary history. Different genome-derived NACs might have interacted with each other, which ultimately resulted in morphogenetic evolution. This study delineated the expansion and evolutionary history of the NAC family in cotton and illustrated the different fates of NAC genes during polyploidization.

  15. Molecular and Biochemical Characterization of Cotton Epicuticular Wax in Defense Against Cotton Leaf Curl Disease.

    Science.gov (United States)

    Khan, Muhammad Azmat Ullah; Shahid, Ahmad Ali; Rao, Abdul Qayyum; Bajwa, Kamran Shehzad; Samiullah, Tahir Rehman; Muzaffar, Adnan; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-12-01

    Gossypium arboreumis resistant to Cotton leaf curl Burewala virus and its cognate Cotton leaf curl Multan beta satellite ( CLCuBuV and CLCuMB ). However, the G. arboreum wax deficient mutant (GaWM3) is susceptible to CLCuV . Therefore, epicuticular wax was characterized both quantitatively and qualitatively for its role as physical barrier against whitefly mediated viral transmission and co-related with the titer of each viral component (DNA-A, alphasatellite and betasatellite) in plants. The hypothesis was the CLCuV titer in cotton is dependent on the amount of wax laid down on plant surface and the wax composition. Analysis of the presence of viral genes, namely alphasatellite, betasatellite and DNA-A, via real-time PCR in cotton species indicated that these genes are detectable in G. hirsutum , G. harknessii and GaWM3, whereas no particle was detected in G. arboreum . Quantitative wax analysis revealed that G. arboreum contained 183 μg.cm -2 as compared to GaWM3 with only 95 μg.cm -2 . G. hirsutum and G. harknessii had 130 μg.cm -2 and 146 μg.cm -2 , respectively. The GCMS results depicted that Lanceol, cis was 45% in G. harknessii . Heptadecanoic acid was dominant in G. arboreum with 25.6%. GaWM3 had 18% 1,2,-Benenedicarboxylic acid. G. hirsutum contained 25% diisooctyl ester. The whitefly feeding assay with Nile Blue dye showed no color in whiteflies gut fed on G. arboreum . In contrast, color was observed in the rest of whiteflies. From results, it was concluded that reduced quantity as well as absence of (1) 3-trifluoroacetoxytetradecane, (2) 2-piperidinone,n-|4-bromo-n-butyl|, (3) 4-heptafluorobutyroxypentadecane, (4) Silane, trichlorodocosyl-, (5) 6- Octadecenoic acid, methyl ester, and (6) Heptadecanoicacid,16-methyl-,methyl ester in wax could make plants susceptible to CLCuV , infested by whiteflies.

  16. Zero tillage: A potential technology to improve cotton yield

    Directory of Open Access Journals (Sweden)

    Abbas Hafiz Ghazanfar

    2016-01-01

    Full Text Available Zero tillage technology revealed with no use of any soil inverting technique to grow crops. The crop plant seed is planted in the soil directly after irrigation to make the soil soft without any replenishing in soil layers. A study was conducted to evaluate cotton genotypes FH-114 and FH-142 for the consecutive three years of growing seasons from 2013-15. The seed of both genotypes was sown with two date of sowing, 1 March and 1 May of each three years of sowing under three tillage treatments (zero tillage, minimum tillage and conventional tillage in triplicate completely randomized split-split plot design. It was found from results that significant differences were recorded for tillage treatments, date of sowing, genotypes and their interactions. Multivariate analysis was performed to evaluate the yield and it attributed traits for potential of FH-114 and FH-142 cotton genotypes. The genotype FH-142 was found with higher and batter performance as compared to FH-114 under zero tillage, minimum tillage and conventional tillage techniques. The traits bolls per plant, boll weight, fibre fineness, fibre strength, plant height, cotton yield per plant and sympodial branches per plant were found as most contributing traits towards cotton yield and production. It was also found that FH-142 gives higher output in terms of economic gain under zero tillage with 54% increase as compared to conventional tillage technique. It was suggested that zero tillage technology should be adopted to improve cotton yield and quality. It was also recommended that further study to evaluate zero tillage as potential technology should be performed with different regions, climate and timing throughout the world.

  17. Multiple shoot regeneration of cotton (Gossypium hirsutum L.) via ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... Induction of multiple shoots of cotton (Gossypium hirsutum L.) plant in two commercial varieties (Sahel and Varamin) using shoot apex was done. Explants were isolated from 3 - 4 days old seedlings, then they were cultured on a shoot induction media, modified MS nutrient agar with combinations: 1- ...

  18. KUTUN : a morphogenetic model for cotton (Gossypium hirsitum L.)

    NARCIS (Netherlands)

    Mutsaers, H.J.W.

    1982-01-01

    A whole crop model for growth and development of cotton ( Gossypium hirsutum L.) is presented. The model is based on previous extensive studies on plant morphogenesis, growth of fruits and canopy photosynthesis. The crop model basically is a carbohydrate budget, but all

  19. Effect of nitrates on embryo induction efficiency in cotton ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) cv Coker-312 callus culture was assessed in terms of its usefulness as a system for investigating the effect of nitrates from different chemical compounds of nitrogen on embryo induction percentage in calli as the plant growth and cell differentiation mainly based on nitrogen. Both sources and ...

  20. Cotton photosynthetic regulation through nutrient and water availability

    Science.gov (United States)

    Photosynthesis is an extremely complicated process that is fundamental to supporting plant growth. It is regulated by multiple internal and external factors. Three factors regulating photosynthesis over which cotton producers can exert some influence are the levels of nitrogen, potassium, and soil...

  1. Sugar alcohols-induced oxidative metabolism in cotton callus culture

    African Journals Online (AJOL)

    Sugar alcohols (mannitol and sorbitol) may cause oxidative damage in plants if used in higher concentration. Our present experiment was undertaken to study physiological and metabolic responses in cotton (Gossypium hirsutum L.) callus against mannitol and sorbitol higher doses. Both markedly declined mean values of ...

  2. TEST OF COTTON LINES WITH DROUGHT TOLERANT INTERCROPPED WITH MAIZE

    Directory of Open Access Journals (Sweden)

    Kadarwati F.T.

    2017-12-01

    Full Text Available The distribution of cotton cultivation is mostly located in the sub-optimal land due to competition with the field crop. The cotton cultivation in Indonesia is always done through intercropping with pulses. This research aims to test the suitability of cotton lines with drought-tolerant intercropped with maize. The research is conducted in February to August 2016 at Asembagus Experimental Garden, Situbondo. Planting materials used in this research are 6 lines and 2 varieties of drought-tolerant cotton consist of strain 03001/9, 03008/24, 03008/25, 03017/13, 06062/3, 06063/3, kanesia 10 and kanesia 14. The research prepared by the draft randomized group with three replications. The observation parameter consists of plant height, canopy width, number of generative branches, number of fruits, fruits weight, the yield of seed cotton, and corn dry results. The research result shows that the strain 03017/13 and 03008/24 have the highest consecutive acceptance of IDR 17,860,681 and IDR 17,520,879, the increase in revenue compared to monoculture is IDR 6,278,473 and IDR 5,668,191, seed cotton production amounted to 2470.01 kg/ha and 2329.72 kg/ha, maize production amounted to 2001.54 kg/ha and 2112.74 kg/ha, LER 1.68 and 1.60, number of harvested fruit of 12.66 and 11.76 fruits/plant, fruit weight of 4.05 and 4.17 g/fruit.

  3. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  5. The multi-year effects of repeatedly growing cotton with moderate resistance to Meloidogyne incognita

    Science.gov (United States)

    Kemerait, Robert C.

    2009-01-01

    Meloidogyne incognita causes more damage to cotton in the US than any other pathogen. The objective of this study was to document the cumulative effect of moderate resistance on M. incognita population density, root galling, and yield suppression in the southern United States on a moderately resistant cotton genotype grown continuously for three years. Cotton genotypes were Phytogen PH98-3196 (77% suppression of M. incognita), Acala NemX (85% suppression of M. incognita), and Delta and Pine Land DP458 B/R (susceptible standard, 0% suppression). Cotton was grown in fumigated and non-fumigated plots to measure yield loss. Each genotype and nematicide combination was planted in the same place for three years at two sites to document cumulative effects. In 2006, following three years of the different genotypes, all plots at one site were planted with susceptible cotton to document residual effects of planting resistant genotypes. Root galling and nematode population densities in the soil were significantly lower, and percentage yield suppression was numerically lower, when moderately resistant cotton was grown compared to the susceptible standard in both fields in all three years. Differences between susceptible and moderately resistant genotypes are established quickly (after only one season) and then either maintained at similar levels or slightly increased in subsequent years depending on initial nematode levels. However, when susceptible cotton was grown following three years of the moderately resistant genotypes, the nematode suppression provided by moderate resistance was undetectable by the end of the first season. Moderately resistant cotton genotypes are more beneficial than previously reported and should be pursued for nematode management. Rotation of moderately resistant and susceptible cotton could be used along with nematicides to manage root-knot nematodes in a continuous cotton cropping system and reduce selection pressure on the nematodes. PMID:22661787

  6. Studies on the controlled release pesticide formulation for pest control in cotton using isotope technique

    International Nuclear Information System (INIS)

    Jamil, F.F.; Qureshi, M.J.; Naqvi, S.H.M.

    1989-06-01

    Cotton plants were treated with 14C-carbofuran, cold carbofuran formulation and granular carbofuran pesticides. Sampling of soil and formulation pieces from the field was done at the end of experiment. Data for insect attack was also recorded throughout the crop season. Cotton plants treated with cold carbofuran formulation and granular carbofuran, their soil samples and residual cold formulation pieces were analyzed by HPLC. (A.B)

  7. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.

    Science.gov (United States)

    Zhou, Meiliang; Sun, Guoqing; Sun, Zhanmin; Tang, Yixiong; Wu, Yanmin

    2014-06-13

    Cotton fiber is considered as the backbone of the textile industry. The productivity of cotton crop is severely hampered by the occurrence of pathogens, pests, and various environmental factors. Nevertheless, cotton plant has developed sophisticated mechanisms to respond to environment stresses to avoid detrimental effects on its growth and development. Therefore, understanding the mechanisms of cotton fiber development and environment stress response is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in cotton fiber development and abiotic/biotic stress tolerance has increased dramatically in the last 5years as evidenced by the large amount of publications in this area. This review summarizes the work which has been reported for cotton proteomics and evaluates the findings in context of the approaches that are widely employed with the aim to generate novel insight useful for cotton improvement. Cotton (Gossypium spp.) is considered as the foremost commercially important fiber crop grown all over the world and is deemed as the backbone of the textile industry. Cotton is also an important source of edible oil seed and a nutrient-rich food crop as cottonseed contains high-quality protein and oil. The growth and productivity of cotton crop are often hampered by various biotic stress factors, such as insect pests and pathogens. In addition, cotton plants are frequently subjected to unavoidable environmental factors that cause abiotic stress, such as salt, heat and drought. Proteomic techniques provide one of the best options for understanding the gene function and phenotypic changes during cotton fiber development and stress response. This review first summarizes the work which has been reported for cotton proteomics about cotton fiber development and abiotic/biotic stress tolerance, and also evaluates the findings in context of the approaches

  8. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection.

    Science.gov (United States)

    Romanel, Elisson; Silva, Tatiane F; Corrêa, Régis L; Farinelli, Laurent; Hawkins, Jennifer S; Schrago, Carlos E G; Vaslin, Maite F S

    2012-11-01

    Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.

  9. Impact of Bollgard cotton on Indian cotton production and Income of ...

    Indian Academy of Sciences (India)

    Impact of Bollgard cotton on Indian cotton production and Income of cotton farmers. Presentation made in the Seventy Second Annual Meeting Indian Academy of Sciences, Bangalore at Devi Ahilya Vishwavidyalaya Indore 11th November 2006.

  10. Cotton/Wool Printing with Natural Dyes Nano-Particles

    OpenAIRE

    , D Maamoun; , H Osman; , SH Nassar

    2016-01-01

    In the present work, cotton/wool 50/50 blended fabric is printed via three natural dyes nanoparticles namely: turmeric, madder and rhubarb. Dye powder of the three plants was milled for 30 days after which it was exposed to ultrasound for 6 hours. Cotton/wool substrate is mordanted prior to printing process using two mordants separately: tartaric acid and potassium aluminium sulphate (alum). All parameters that are found to inşuence colour intensity as well as fastness levels of the prints ar...

  11. Mechanical damage in cotton buds caused by the boll weevil

    Directory of Open Access Journals (Sweden)

    Santos Roseane Cavalcanti

    2003-01-01

    Full Text Available The boll weevil (Anthonomus grandis Boheman causes high levels of bud abscission in cotton plants due to feeding or oviposition punctures. It has been reported that abscission is mainly due to enzymes present in the insect's saliva, but mechanical damage could also contribute to square abscission. The objective of this paper was to undertake an analysis of the morphological damages caused by the insect in cotton squares using microscopy. Anthers and ovules are the main target of boll weevil feeding. The process initiates by perforation of young sepal and petal tissues and proceeds with subsequent alimentation on stamen and ovary leading to abscission of floral structures.

  12. DeepCotton: in-field cotton segmentation using deep fully convolutional network

    Science.gov (United States)

    Li, Yanan; Cao, Zhiguo; Xiao, Yang; Cremers, Armin B.

    2017-09-01

    Automatic ground-based in-field cotton (IFC) segmentation is a challenging task in precision agriculture, which has not been well addressed. Nearly all the existing methods rely on hand-crafted features. Their limited discriminative power results in unsatisfactory performance. To address this, a coarse-to-fine cotton segmentation method termed "DeepCotton" is proposed. It contains two modules, fully convolutional network (FCN) stream and interference region removal stream. First, FCN is employed to predict initially coarse map in an end-to-end manner. The convolutional networks involved in FCN guarantee powerful feature description capability, simultaneously, the regression analysis ability of neural network assures segmentation accuracy. To our knowledge, we are the first to introduce deep learning to IFC segmentation. Second, our proposed "UP" algorithm composed of unary brightness transformation and pairwise region comparison is used for obtaining interference map, which is executed to refine the coarse map. The experiments on constructed IFC dataset demonstrate that our method outperforms other state-of-the-art approaches, either in different common scenarios or single/multiple plants. More remarkable, the "UP" algorithm greatly improves the property of the coarse result, with the average amplifications of 2.6%, 2.4% on accuracy and 8.1%, 5.5% on intersection over union for common scenarios and multiple plants, separately.

  13. Polyploidization altered gene functions in cotton (Gossypium spp.).

    Science.gov (United States)

    Xu, Zhanyou; Yu, John Z; Cho, Jaemin; Yu, Jing; Kohel, Russell J; Percy, Richard G

    2010-12-16

    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor

  14. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields.

    Directory of Open Access Journals (Sweden)

    Shannon Heuberger

    Full Text Available BACKGROUND: Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt cotton is planted on millions of hectares annually and is a potential source of transgene flow. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L. seed production fields (some transgenic for herbicide resistance, some not for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. CONCLUSIONS/SIGNIFICANCE: A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow.

  15. Effects of nitrogen fertilization in cotton crop on Aphis gossypii Glover (Hemiptera: Aphididae) biology

    International Nuclear Information System (INIS)

    Barros, Ricardo; Degrande, Paulo E.; Fernandes, Marcos G.; Nogueira, Rodrigo F.

    2007-01-01

    The cotton aphid, Aphis gossypii Glove, is one of the pests of cotton crop and its relation with the host seem to depend on the amount of nitrogen available to the plant. The biology of A. gossypii using different cotton nitrogen fertility regimes was studied under greenhouse conditions, in Dourados, MS. A completely randomized design with nine replications in a factorial scheme (2x4x2)+1 was used. Two nitrogen sources (sulphate of ammonium and urea), four doses of nitrogen (50, 100, 150 and 200 kg ha-1), two different times of nitrogen application and one additional treatment without nitrogen were taken as factors. The nymphal phases, the pre-reproductive, reproductive and pos-reproductive periods, longevity, the life cycle and fecundity of the cotton aphid were evaluated. The doses of nitrogen influenced the cotton aphid biology in both sources and times of application, favoring its development and fecundity. (author)

  16. Efeito da época de plantio na produção e na ocorrência de pragas em culturas do algodoeiro (Gossypium hirsutum = Effect of planting date on the production and the occurrence of pests in the cotton (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    José Janduí Soares

    2006-07-01

    Full Text Available O objetivo deste trabalho foi verificar o efeito da época de plantio na produção e ocorrência de pragas em culturas do algodoeiro. Foi analisada a influência da época de plantio no rendimento e na ocorrência de pragas nos cultivares de algodoeiro CNPA 7H e DeltapineAcala 90, em Formosa do Rio Preto, São Desidério e Luiz Eduardo Magalhães, no estado da Bahia, nos campos experimentais da Embrapa, instalados nas fazendas Independência, Mizote e Poletto, respectivamente. Quatro épocas foram avaliadas e os plantios foram feitos nos meses de novembro, dezembro e janeiro, safras 1998/1999 e 1999/2000, com intervalos de 15 dias entre cada plantio. Os dados foram submetidos à análise da variância e as médias comparadas pelo teste de Tukey a 5% de probabilidade. Realizou-se levantamentos semanais de 5 insetos-praga e pulverizações para manter a infestação abaixo dos níveis de controle. Por meio dos resultados obtidos, pode-se inferir que: a a época de plantio tem uma marcante influência na produção do algodoeiro; b a época de plantio do algodoeiro influencia a ocorrência de insetos-praga com reflexos em sua produtividade.The aim of this research was to determine the effect of planting date and the occurrence of pests on the cotton crop. The influence of the planting date on the output of the cotton CNPA 7H and Deltapine Acala 90, at Formosa do Rio Preto, São Desidério and Luiz Eduardo Magalhães, in the experimental fields of the Embrapa, in the state of Bahia, was analyzed. Four planting dates were evaluated. The plantings were in November, December and January, 1998/1999 and 1999/2000 crops, with intervals of 15 days between each planting. The data were submitted to analysis of variance and the averages compared by Tukey’s test at 5% probability. According to the results, the following conclusions can be inferred: a The planting date has a significant influence on the cotton production; b The cotton planting date

  17. Field evaluation on the lethal effect of Beauveria bassiana strains NI8 and GHA against the tarnished plant bug in cotton

    Science.gov (United States)

    The entomopathogenic fungus Beauveria bassiana Delta native strain NI8 have shown great potential for the management of tarnished plant bug adults when compared with the commercial strain GHA. Population of L lineolaris in cages was reduced by 50% 10 days after application of the NI8 native strain a...

  18. The prevalence of byssinosis among cotton workers in the north of Benin.

    Science.gov (United States)

    Hinson, A V; Schlünssen, V; Agodokpessi, G; Sigsgaards, T; Fayomi, B

    2014-10-01

    Cotton is the main agricultural export product in Benin. Cotton dust is thus present in the air during the handling and processing of cotton. This dust contains a mixture of substances including ground up plant matter, fibres, bacteria, fungi, soil, pesticides, noncotton matter, and other contaminants. While cotton processing is decreasing in industrialized countries, it is increasing in developing countries. Cotton processing, particularly in the early processes of spinning, can cause byssinosis. To determine the respiratory effects of cotton dust exposure among cotton mill workers in Benin. In a cross-sectional study, 109 workers exposed to cotton dust and 107 unexposed workers were studied. The International Commission on Occupational Health (ICOH) questionnaire was used for data collection on respiratory symptoms. For each worker, crossshift pulmonary function was performed with a dry spirometer. Based on the severity of respiratory symptoms and spirometry byssinosis was defined and classified according to the criteria of Schilling, et al. The mean ± SD age of the exposed and unexposed workers was 46.3 ± 7.8 and 37.0 ± 8.3 years, respectively (pcotton mill workers in Benin is high and needs prompt attention of health care workers and policymakers.

  19. Radiation Induced F-1 Sterility For The Control Of Cotton Bollworm , Helicoverpa armigera (Huebner) In Pilot Test

    International Nuclear Information System (INIS)

    Segsarnviriya, Suchada; Pransopon, Prapon; Kongratarpon, Titima; Vongcheeree, Satit

    2005-10-01

    Pilot trials of radiation induced F-1 sterility for the control of cotton bollworm Helicoverpa armigera (Hubner) were studied for 3 cotton crop seasons in 3 locations at Amphor Takfa, Nakornsawan province in 2002, 2003 and 2004. Irradiated male pupae at a sub sterilizing dose of 150 Gy were released : approximately 11,170 42,900 and 36,400 pupae from July to December of 2002, 2003 and 2004, respectively. The insecticide plots were maintained as a comparison to determine the efficiency of this method. Checking of larvae on cotton plants by the systematic random sampling method and the cotton yield were used to evaluate the impact of the pupal release. It was found that the releasing plots and the insecticide plots gave similar results in terms of the number of larvae and the cotton yield. Therefore, the F-1 sterility method was a possible method for the control of cotton bollworm

  20. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  1. STUDY OF GENE FLOW FROM GM COTTON (Gossypium hirsutum VARIETIES IN “EL ESPINAL” (TOLIMA, COLOMBIA.

    Directory of Open Access Journals (Sweden)

    Alejandro Chaparro Giraldo

    2013-09-01

    Full Text Available In 2009, 4088 hectares of genetically modified (GM cotton were planted in Tolima (Colombia, however there is some uncertainty about containment measures needed to prevent the flow of pollen and seed from regulated GM fields into adjacent fields. In this study, the gene flow from GM cotton varieties to conventional or feral cotton plants via seed and pollen was evaluated. ImmunostripTM, PCR and ELISA assays were used to detect gene flow. Fifty six refuges, 27 fields with conventional cotton and four feral individuals of the enterprise “Remolinos Inc.” located in El Espinal (Tolima were analyzed in the first half of 2010. The results indicated seeds mediated gene flow in 45 refuges (80,4 % and 26 fields with conventional cotton (96 %, besides a pollen mediated gene flow in one field with conventional cotton and nine refuges. All fields cultivated with conventional cotton showed gene flow from GM cotton. Two refuges and two feral individuals did not reveal gene flow from GM cotton.

  2. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    Science.gov (United States)

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  3. The feeding preferences of Spodoptera frugiperda (J. E. SMITH (Lepidoptera: Noctuidae on cotton plant varieties=Preferência alimentar de Spodoptera frugiperda (J. E. SMITH (Lepidoptera: Noctuidae em variedades de plantas algodoeiras

    Directory of Open Access Journals (Sweden)

    Ostenildo Ribeiro Campos

    2012-04-01

    Full Text Available This work evaluated the attractiveness and the non-preference for feeding of newly hatched fall armyworm larvae on the cotton plant parts and different varieties used in the study. The trials were performed at 27 ± 1ºC, a 70% ± 10% relative humidity and a 14h photoperiod. Leaves, bracts, squares and carpel walls of the BRS Itamarati-90 variety and leaves of Fibermax-966, Fibermax-977, DeltaOpal, DeltaPenta, BRS Acala-90, Coodetec-408, Coodetec-409, Coodetec-410, BRS-Cedro, BRS-Ipê, BRS-Aroeira, IPR-96, IPR-120, BRS-Araçá, IAC-24 and BRS Itamarati-90 varieties were used in attractiveness, multiple-choice and confinement (no-choice non-preference feeding trials. Twenty larvae were released per petri dish test (arena system with 10 repetitions. Attractiveness trials were evaluated by counting feeding caterpillars over 60 min. and by measuring non-preference at 24h. Leaves were the most attractive item and were preferred for feeding. In the multiple-choice arena trials, Coodetec-410 was the most attractive variety, and BRS Acala-90, Fibermax-966 and DeltaPenta were the least attractive to fall armyworm larvae. In the non-preference trial, BRS-Araça was the variety favored for feeding. BRS-Cedro, BRS Itamarati-90, DeltaPenta, Coodetec-408 and BRS-Aroeira were the least-favored varieties. In the 60 min. attractiveness trials, 46 min. proved to be the most suitable time for evaluating the attractiveness of cotton plants to newly hatched fall armyworm larvae.Avaliou-se atratividade e não-preferência alimentar de lagartas recém-eclodidas de Spodoptera frugiperda por partes de plantas e plantas de variedades de algodoeiro. Testes foram realizados a 27 ± 1ºC, UR de 70% ± 10% e fotofase de 14h. Folhas, brácteas, botões florais e cascas de maçãs da variedade BRS Itamarati-90 e folhas de Fibermax-966, Fibermax-977, DeltaOpal, DeltaPenta, BRS Acala-90, Coodetec-408, Coodetec-409, Coodetec-410, BRS-Cedro, BRS-Ipê, BRS-Aroeira, IPR-96, IPR-120

  4. The merging of two dynasties--identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Nouman Tahir

    Full Text Available Cotton leaf curl disease (CLCuD is a severe disease of cotton that occurs in Africa and Pakistan/northwestern India. The disease is caused by begomoviruses in association with specific betasatellites that differ between Africa and Asia. During survey of symptomatic cotton in Sindh (southern Pakistan Cotton leaf curl Gezira virus (CLCuGV, the begomovirus associated with CLCuD in Africa, was identified. However, the cognate African betasatellite (Cotton leaf curl Gezira betasatellite was not found. Instead, two Asian betasatellites, the CLCuD-associated Cotton leaf curl Multan betasatellite (CLCuMB and Chilli leaf curl betasatellite (ChLCB were identified. Inoculation of the experimental plant species Nicotiana benthamiana showed that CLCuGV was competent to maintain both CLCuMB and ChLCB. Interestingly, the enations typical of CLCuD were only induced by CLCuGV in the presence of CLCuMB. Also in infections involving both CLCuMB and ChLCB the enations typical of CLCuMB were less evident. This is the first time an African begomovirus has been identified on the Indian sub-continent, highlight the growing threat of begomoviruses and particularly the threat of CLCuD causing viruses to cotton cultivation in the rest of the world.

  5. Flight attraction of Spodoptera littoralis (Lepidoptera, Noctuidae to cotton headspace and synthetic volatile blends

    Directory of Open Access Journals (Sweden)

    Felipe eBorrero-Echeverry

    2015-06-01

    Full Text Available The insect olfactory system discriminates odor signals of different biological relevance, which drive innate behavior. Identification of stimuli that trigger upwind flight attraction towards host plants is a current challenge, and is essential in developing new, sustainable plant protection methods, and for furthering our understanding of plant-insect interactions. Using behavioral, analytical and electrophysiological studies, we here show that both females and males of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera, Noctuidae, use blends of volatile compounds to locate their host plant, cotton, Gossypium hirsutum (Malvales, Malvaceae. Female S. littoralis were engaged in upwind orientation flight in a wind tunnel when headspace collected from cotton plants was delivered through a piezoelectric sprayer. Although males took off towards cotton headspace significantly fewer males than females flew upwind towards the sprayed headspace. Subsequent assays with antennally active synthetic compounds revealed that a blend of nonanal, (Z-3 hexenyl acetate, (E-β-ocimene, and (R-(+-limonene was as attractive as cotton headspace to females and more attractive to males. DMNT and (R-(--linalool, both known plant defense compounds may have reduced the flight attraction of both females and males; more moths were attracted to blends without these two compounds. Our findings provide a platform for further investigations on host plant signals mediating innate behavior, and for the development of novel insect plant protection strategies against S. littoralis.

  6. Genetic study of various agronomic traits in cotton (Gossypium hirsutum L.)

    International Nuclear Information System (INIS)

    Ashraf, F.; Khan, I.A.; Ahmed, S.

    2009-01-01

    The use of already existing genetic variability in the breeding material, as well as, the creation of new variability along with the genetic understanding of various agronomic traits is of crucial importance, in order to develop potential sources of cotton. For this purpose, 5 X 6 complete diallel cross experiment was conducted during 2003-04, involving 5 strains i.e. VH-55, MNH-516, ACALA-SJ-4, A-8100 and CRIS-420, to evaluate gene-action, general and specific combining ability for number of sympodial branches, number of monopodial branches, plant height, number of bolls per plant, boll weight and yield of seed cotton. Additive type of gene action, with partial dominance for all the traits studied, was observed. Most dominant genes for boll weight, yield of seed-cotton, and number of sympodial branches were observed in CRIS-420, while maximum dominant genes for number of monopodial branches, plant height were observed in ACALA-SJ-4. Variety VH-55 carried maximum dominant genes for number of bolls per plant. Recessive genes for the number of sympodial branches, number of monopodial branches, plant height, number of bolls per plant and yield of seed-cotton, were exhibited by MNH-516. The variety ACAU-SJ-4 showed harmonius combination for bolls per plant and yield of seed-cotton, whereas CRIS- 420 was found a good general combiner for plant height and number of sympodial branches. (author)

  7. Developing Cotton IPM by Conserving Parasitoids and Predators of The Main Pest

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2015-09-01

    Full Text Available On early development of intensive cotton program, insect pests were considered as an important aspect in cotton cultivation, so that it needed to be scheduled sprays. The frequency of sprays was 7 times used 12L of chemical insecticides per hectare per season. Development of cotton IPM was emphasized on non-chemical control methods through optimally utilize natural enemies of the cotton main pests (Amrasca biguttulla (IshidaHelicoverpa armigera (Hübner. Conservation of parasitoids and predators by providing the environment that support their population development is an act of supporting the natural enemies as an effective biotic mortality factor of the insect pests. The conservation could be done by improving the plant matter and cultivation techniques that include the use of resistant variety to leafhopper, intercropping cotton with secondary food plants, mulch utilization, using action threshold that considered the presence of natural enemies, and application of botanical insecticides, if needed. Conservation of parasitoids and predators in cotton IPM could control the insect pests without any insecticide spray in obtaining the production of cotton seed. As such, the use of IPM method would increase farmers’ income.

  8. Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease

    Directory of Open Access Journals (Sweden)

    Silvie P

    2008-10-01

    Full Text Available Abstract Background Cotton blue disease (CBD, an important global cotton crop pathology responsible for major economic losses, is prevalent in the major cotton-producing states of Brazil. Typical CBD symptoms include stunting due to internodal shortening, leaf rolling, intense green foliage, and yellowing veins. Atypical CBD symptoms, including reddish and withered leaves, were also observed in Brazilian cotton fields in 2007. Recently, a Polerovirus named Cotton leafroll dwarf virus (CLRDV was shown to be associated with CBD. Results To understand the distribution and genetic diversity of CLRDV in Brazil, we analyzed 23 CBD-symptomatic plants from susceptible cotton varieties originating from five of the six most important cotton-growing states, from 2004–2007. Here, we report on CLRDV diversity in plants with typical or atypical CBD symptoms by comparing viral coat protein, RNA polymerase (RdRp, and intergenic region genomic sequences. Conclusion The virus had a widespread distribution with a low genetic diversity; however, three divergent isolates were associated with atypical CBD symptoms. These divergent isolates had a CLRDV-related coat protein but a distinct RdRp sequence, and probably arose from recombination events. Based on the taxonomic rules for the family Luteoviridae, we propose that these three isolates represent isolates of a new species in the genus Polerovirus.

  9. Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease.

    Science.gov (United States)

    Silva, T F; Corrêa, R L; Castilho, Y; Silvie, P; Bélot, J-L; Vaslin, M F S

    2008-10-20

    Cotton blue disease (CBD), an important global cotton crop pathology responsible for major economic losses, is prevalent in the major cotton-producing states of Brazil. Typical CBD symptoms include stunting due to internodal shortening, leaf rolling, intense green foliage, and yellowing veins. Atypical CBD symptoms, including reddish and withered leaves, were also observed in Brazilian cotton fields in 2007. Recently, a Polerovirus named Cotton leafroll dwarf virus (CLRDV) was shown to be associated with CBD. To understand the distribution and genetic diversity of CLRDV in Brazil, we analyzed 23 CBD-symptomatic plants from susceptible cotton varieties originating from five of the six most important cotton-growing states, from 2004-2007. Here, we report on CLRDV diversity in plants with typical or atypical CBD symptoms by comparing viral coat protein, RNA polymerase (RdRp), and intergenic region genomic sequences. The virus had a widespread distribution with a low genetic diversity; however, three divergent isolates were associated with atypical CBD symptoms. These divergent isolates had a CLRDV-related coat protein but a distinct RdRp sequence, and probably arose from recombination events. Based on the taxonomic rules for the family Luteoviridae, we propose that these three isolates represent isolates of a new species in the genus Polerovirus.

  10. Analysis Of The Reactivity Of Radpro Solution With Cotton Rags

    International Nuclear Information System (INIS)

    Marusich, R.M.

    2009-01-01

    Rags containing RadPro(reg s ign) solution will be generated during the decontamination of the Plutonium Finishing Plant (PFP). Under normal conditions, the rags will be neutralized with sodium carbonate prior to placing in the drums. The concern with RadPro solutions and cotton rags is that some of the RadPro solutions contain nitric acid. Under the right conditions, nitric acid and cotton rags exothermically react. The concern is, will RadPro solutions react with cotton rags exothermically? The potential for a runaway reaction for any of the RadPro solutions used was studied in Section 5.2 of PNNL-15410, Thermal Stability Studies of Candidate Decontamination Agents for Hanford's Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes. This report shows the thermal behavior of cotton rags having been saturated in one of the various neutralized and non-neutralized RadPro solutions. The thermal analysis was performed using thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and Accelerating Rate Calorimetry (ARC).

  11. Drought coping strategies in cotton: increased crop per drop.

    Science.gov (United States)

    Ullah, Abid; Sun, Heng; Yang, Xiyan; Zhang, Xianlong

    2017-03-01

    The growth and yield of many crops, including cotton, are affected by water deficit. Cotton has evolved drought specific as well as general morpho-physiological, biochemical and molecular responses to drought stress, which are discussed in this review. The key physiological responses against drought stress in cotton, including stomata closing, root development, cellular adaptations, photosynthesis, abscisic acid (ABA) and jasmonic acid (JA) production and reactive oxygen species (ROS) scavenging, have been identified by researchers. Drought stress induces the expression of stress-related transcription factors and genes, such as ROS scavenging, ABA or mitogen-activated protein kinases (MAPK) signalling genes, which activate various drought-related pathways to induce tolerance in the plant. It is crucial to elucidate and induce drought-tolerant traits via quantitative trait loci (QTL) analysis, transgenic approaches and exogenous application of substances. The current review article highlights the natural as well as engineered drought tolerance strategies in cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    Science.gov (United States)

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  13. POTASSIUM FERTILIZATION AND SOIL MANAGEMENT SYSTEMS FOR COTTON CROPS

    Directory of Open Access Journals (Sweden)

    VITOR MARQUES VIDAL

    2017-01-01

    Full Text Available Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O and two soil management systems (no-till and conventional tillage on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201 was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.

  14. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  15. DETERMINATION THE EFFECT OF DEFOLIATION TIMING ON COTTON YIELD AND QUALITY

    Directory of Open Access Journals (Sweden)

    Karademir Emine

    2007-12-01

    Full Text Available This study was carried out for determining the effect of different application times at 40, 50, 60 and 70 % boll opening and untreated plot of the defoliant on cotton yield, earliness and technological properties in Southeast Anatolia Region conditions in Turkey. Maras 92 cotton variety was used as plant material in the experiment field of the Southeast Anatolia Agricultural Research Institute during 2000-2001. Defoliant was including thidiazuron + diuron chemical substance. The result of this study showed that ginning percentage, 100 seed weight, seed germination percentage, fiber fineness, fiber length, fiber strength, reflectance, elongation and seed cotton yield were not affected by the treatment; plant height and first picking percentage in 2001, fiber uniformity in 2000 were 5 % significantly affected. This study showed that application of defoliant didn’t affect significantly yield and technological properties of cotton and after 40 % boll opening the defoliant can be used.

  16. Non-destructive analysis of photosynthetic pigments in cotton plants=Análise não destrutiva dos pigmentos fotossintéticos em plantas de algodoeiro.

    Directory of Open Access Journals (Sweden)

    Dalva Almeida Silva

    2011-10-01

    Full Text Available Analytical techniques used to extract chlorophyll from plant leaves are destructive and based on the use of organic solvents. This study proposes a non-destructive quantification of the photosynthetic pigment concentration in cotton leaves using two portable chlorophyll meters, the SPAD-502 and the CLOROFILOG 1030. After obtaining 200 leaf discs, each with an area of 113 mm2, the greening rate in each disc was determined by the average of five readings from both meters. Immediately after measurement, 5 mL of dimethyl sulfoxide (DMSO was added, and the samples were kept in a water bath at 70ºC for 30 min. After cooling, 3 mL of the liquid extract was used for analyses by spectrophotometry at 470, 646 and 663 nm. Mathematical models were adjusted from analytical results using the reading index obtained from both devices to predict the contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids. Based on these results, it was concluded that both portable chlorophyll meters are an effective way to estimate the concentration of photosynthetic pigments in cotton leaves, thus saving time, space and the resources that are often required for these analyses.Técnicas analíticas empregadas na extração de clorofila em plantas são destrutivas e fundamentam-se no uso de solventes orgânicos. Este estudo propõe a quantificação não destrutiva da concentração de pigmentos fotossintéticos em folhas de algodoeiro utilizando os medidores portáteis de clorofila SPAD-502 e CLOROFILOG 1030. Com as folhas coletadas foram elaborados 200 discos foliares com área de 113 mm2. A determinação do índice de esverdeamento em cada disco foi realizada por meio da média de cinco leituras com ambos clorofilômetros portáteis e imediatamente após a determinação, adicionaram-se 5 mL de Dimetil sulfóxido (DMSO. Os discos foram mantidos em banho-maria a temperatura de 70ºC por um período de 30 min. Após o resfriamento do extrato líquido, uma

  17. Impact of efficient refuge policies for Bt cotton in India on world cotton trade

    OpenAIRE

    Singla, Rohit; Johnson, Phillip N.; Misra, Sukant K.

    2010-01-01

    India is a major cotton producing country in the world along with the U.S. and China. A change in the supply of and demand for cotton in the Indian market has the potential to have an impact on world cotton trade. This study evaluates the implications of efficient Bt cotton refuge policies in India on world and U.S. cotton markets. It can be hypothesized that increased refuge requirements for Bt cotton varieties in India could decrease the world supply of cotton because of the lower yield pot...

  18. Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico

    Directory of Open Access Journals (Sweden)

    Martha G. Rocha-Munive

    2018-06-01

    Full Text Available For more than 20 years cotton has been the most widely sown genetically modified (GM crop in Mexico. Its cultivation has fulfilled all requirements and has gone through the different regulatory stages. During the last 20 years, both research-institutions and biotech-companies have generated scientific and technical information regarding GM cotton cultivation in Mexico. In this work, we collected data in order to analyze the environmental and agronomic effects of the use of GM cotton in Mexico. In 1996, the introduction of Bt cotton made it possible to reactivate this crop, which in previous years was greatly reduced due to pest problems, production costs and environmental concerns. Bt cotton is a widely accepted tool for cotton producers and has proven to be efficient for the control of lepidopteran pests. The economic benefits of its use are variable, and depend on factors such as the international cotton-prices and other costs associated with its inputs. So far, the management strategies used to prevent development of insect resistance to GM cotton has been successful, and there are no reports of insect resistance development to Bt cotton in Mexico. In addition, no effects have been observed on non-target organisms. For herbicide tolerant cotton, the prevention of herbicide resistance has also been successful since unlike other countries, the onset of resistance weeds is still slow, apparently due to cultural practices and rotation of different herbicides. Environmental benefits have been achieved with a reduction in chemical insecticide applications and the subsequent decrease in primary pest populations, so that the inclusion of other technologies—e.g., use of non-Bt cotton- can be explored. Nevertheless, control measures need to be implemented during transport of the bolls and fiber to prevent dispersal of volunteer plants and subsequent gene flow to wild relatives distributed outside the GM cotton growing areas. It is still necessary to

  19. Synthesis of Cotton from Tossa Jute Fiber and Comparison with Original Cotton

    Directory of Open Access Journals (Sweden)

    Md. Mizanur Rahman

    2015-01-01

    Full Text Available Cotton fibers were synthesized from tossa jute and characteristics were compared with original cotton by using FTIR and TGA. The FTIR results indicated that the peak intensity of OH group from jute cotton fibers occurred at 3336 cm−1 whereas the peak intensity of original cotton fibers occurred at 3338 cm−1. This indicated that the synthesized cotton fiber properties were very similar to the original cotton fibers. The TGA result showed that maximum rate of mass loss, the onset of decomposition, end of decomposition, and activation energy of synthesized cotton were higher than original cotton. The activation energy of jute cotton fibers was higher than the original cotton fibers.

  20. The impact of some environmental factors on the fecundity of phenacoccus solenopsis tinsley (hemiptera: pseudococcidae): a serious pest of cotton and other crops

    International Nuclear Information System (INIS)

    Abbas, G.; Arif, M.J.; Aslam, M.

    2010-01-01

    Phenacoccus solenopsis Tinsley (Hemiptera: Sternorrhyncha: Pseudococcidae) was first recorded on cultivated cotton from Texas, USA in 1991. Since 2005, this New World species has emerged as serious pest of cotton in Pakistan and India, and is now a serious threat to cotton in China and other cotton-growing countries worldwide. The species is polyphagous and invasive, and can attack many other economic crops. So far, it has been reported from 173 species in 54 plant families, and from 26 countries in different ecological zones. The study found that host plant species and meteorological conditions had significant effects, whereas locality had no significant effect on the fecundity of the mealybug. (author)

  1. Efeitos do boro em algodoeiro cultivado em condições de casa de vegetação Effects of boron application to cotton plant in a greenhouse study

    Directory of Open Access Journals (Sweden)

    Nelson M. da Silva

    1979-01-01

    Full Text Available Visando obter subsídios para a instalação de futuros ensaios de campo com adubação boratada do algodoeiro, foi conduzido estudo em casa de vegetação, utilizando-se solo comprovadamente carente em boro para essa cultura. Foram usadas doses de 0, 133, 266 e 532mg de bórax por vaso contendo 5,0kg de terra. Em vasos extras, estudaram-se níveis mais elevados do produto. O efeito de boro sobre a altura média das plantas, peso de capulho, peso de sementes e comprimento de fibra foi significativo estatisticamente e de natureza quadrática. A concentração de B na matéria seca da parte aérea da planta ou da folha cresceu em proporção à dose utilizada. No caso da análise de folhas de plantas carentes, a concentração variou de 10 a 39ppm, com média de 19pmm de B, enquanto em plantas com grave sintoma de toxicidade foi obtido índice superior a 590ppm de B. Em plantas com carência de boro foi observado um ou vários dos seguintes sintomas: paralisação de crescimento, superbrotamento, intumescimento de nós com escurecimento de tecido, deformações do limbo e do pecíolo de cotilédones e de folhas verdadeiras, anéis concêntricos com necroses correspondentes da medula de pecíolos foliares e deformações das flores. Como sintoma de toxicidade, observou-se clorose marginal e internerval do cotilédone e/ou da folha verdadeira, que evoluiu ou não para necrose do tecido, permanecendo as nervuras com coloração verde normal.A greenhouse experiment of borax application to cotton cultivated on a boron deficient soil, was conducted in order to obtain data for development of future field trials. Borax was applied to pot containing 5,0kg of soil in amounts of 0, 133, 266 e 532mg. Additional treatments with higher levels of boron was applied to extra pots. The influence of boron on plant height, weight of bolls and seeds and on fiber lenght was statistically significant and of quadratic nature. The content of boron, determined either in

  2. Cotton : Market setting, trade policies, and issues

    OpenAIRE

    Baffes, John

    2004-01-01

    The value of world cotton production in 2000-01 has been estimated at about $20 billion, down from $35 billion in 1996-97 when cotton prices were 50 percent higher. Although cotton's share in world merchandise trade is insignificant (about 0.12 percent), it is very important to a number of developing countries. Cotton accounts for approximately 40 percent of total merchandise export earnin...

  3. Effect of arbuscular mycorrhizal fungi and multi-combination of bioinoculants on regenerated seedlings of cotton

    International Nuclear Information System (INIS)

    Pindi, P.K.; Sultana, T.

    2014-01-01

    Effect of arbuscular mycorrhizal fungi and multi-combination of bioinoculants on regenerated seedlings of cotton Cotton, referred as 'The white gold' is an important commercial crop in India and stands third in the world by means of area of cultivation. Cotton plant regeneration from callus by somatic embryogenesis and its efficiency has been improved significantly in recent times. Our primary investigation was on regenerative studies and multiple shoot induction system focusing mainly on meristematic tissues like seedling cotyledonary nodal explants in RAH-9750 cotton cultivar. An attempt has been made to improve the rate of surveillance and growth of regenerated cotton seedlings by bio-inoculant (mainly AMF) treatment under greenhouse conditions. Out of a total seven pure cultures of AMF fungi, R1-R2 have shown maximum mycorrhizal colonization with RAH-9750 (R) and was identified as Glomus mosseae. This variety was also tested with three different bioinoculants i.e., Rhizobium sp. RHPU-7, Azospirillum sp. PPK-27, Bacillus sp. PU-1, apart from AMF R1-R2 in different combinations. The cotton seedlings have shown the best results in single, dual, triple and multiple combinations i.e R+R1-R2, R+R1-R2+Rhizobium, R+R1-R2+Rhizobium+Azospirillum and R+R1-R2+Rhizobium+Azospirillum+Bacillus respectively. The growth of cotton plants (RAH-9750) generated from meristematic tissue culture was found to be increasing significantly when compared with the normal seeds. Similar results were noticed when the same experiment was subjected to the different soil types of Mahabubnagar district. The investigation clearly infers that better yield of cotton RAH-9750 (R) could be achieved by treating the regenerated cotton seedlings with bioinoculants in different combination in various soil types of Mahabubnagar district. (author)

  4. Bioinspiration and Biomimicry: Possibilities for Cotton Byproducts

    Science.gov (United States)

    The byproducts from cotton gins have commonly been referred to as cotton gin trash or cotton gin waste primarily because the lint and seed were the main focus of the operation and the byproducts were a financial liability that did not have a consistent market. Even though the byproducts were called ...

  5. The water footprint of cotton consumption

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2005-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this report is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  6. Screening cotton genotypes for seedling drought tolerance

    Directory of Open Access Journals (Sweden)

    Penna Julio C. Viglioni

    1998-01-01

    Full Text Available The objectives of this study were to adapt a screening method previously used to assess seedling drought tolerance in cereals for use in cotton (Gossypium hirsutum L. and to identify tolerant accessions among a wide range of genotypes. Ninety genotypes were screened in seven growth chamber experiments. Fifteen-day-old seedlings were subjected to four 4-day drought cycles, and plant survival was evaluated after each cycle. Three cycles are probably the minimum required in cotton work. Significant differences (at the 0.05 level or lower among entries were obtained in four of the seven experiments. A "confirmation test" with entries previously evaluated as "tolerant" (high survival and "susceptible" (low survival was run. A number of entries duplicated their earlier performance, but others did not, which indicates the need to reevaluate selections. Germplasms considered tolerant included: `IAC-13-1', `IAC-RM4-SM5', `Minas Sertaneja', `Acala 1517E-1' and `4521'. In general, the technique is simple, though time-consuming, with practical value for screening a large number of genotypes. Results from the screening tests generally agreed with field information. The screening procedure is suitable to select tolerant accessions from among a large number of entries in germplasm collections as a preliminary step in breeding for drought tolerance. This research also demonstrated the need to characterize the internal lack of uniformity in growth chambers to allow for adequate designs of experiments.

  7. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Science.gov (United States)

    Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A

    2014-01-01

    The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these

  8. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  9. Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton.

    Directory of Open Access Journals (Sweden)

    Liping Ke

    Full Text Available Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel. In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L and bentazon (4.2 µmol. A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.

  10. Thwarting one of cotton's nemeses

    International Nuclear Information System (INIS)

    Senft, D.

    1991-01-01

    There's not much good to be said for the pink bollworm, cotton's most destructive pest, except that it is being controlled to cut crop damage. Scientists have developed strategies, such as increasing native populations of predatory insects and pest-resistant cotton varieties. Thanks to research, growers today can also use cultural practices such as early plowdown of harvested cotton to break up stalks and bury overwintering pink bollworms. And they can disrupt normal mating by releasing sterile insects and using copies of natural compounds, called pheromones, that the pink bollworm uses to attract mates. Such strategies, together with judicious use of insecticides, put together in various combinations, form what is called an integrated pest management system

  11. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and membrane anchoring of F-actin resulting in dwarf, lintless Li1 cotton plants

    Science.gov (United States)

    • Actin polymerizes to form the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hi...

  12. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) shoot apex with a fungal phytase gene improves phosphorus acquisition.

    Science.gov (United States)

    Ma, Zhiying; Liu, Jianfeng; Wang, Xingfen

    2013-01-01

    Cotton is an important world economic crop plant. It is considered that cotton is recalcitrant to in vitro proliferation. Somatic embryogenesis and plant regeneration has been successful by using hypocotyl, whereas it is highly genotype dependent. Here, a genotype-independent cotton regeneration protocol from shoot apices is presented. Shoot apices from 3- to 5-day-old seedlings of cotton are infected with an Agrobacterium strain, EHA105, carrying the binary vector pC-KSA contained phytase gene (phyA) and the marker gene neomycin phosphotransferase (NPTII), and directly regenerated as shoots in vitro. Rooted shoots can be obtained within 6-8 weeks. Plants that survived by leaf painting kanamycin (kan) were -further analyzed by DNA and RNA blottings. The transgenic plants with increased the phosphorus (P) acquisition efficiency were obtained following the transformation method.

  13. Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review.

    Science.gov (United States)

    Khan, Aziz; Tan, Daniel Kean Yuen; Munsif, Fazal; Afridi, Muhammad Zahir; Shah, Farooq; Wei, Fan; Fahad, Shah; Zhou, Ruiyang

    2017-10-01

    Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH 3 ) is a central intermediate in plant N metabolism. NH 3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH 3 to glutamate to form glutamine (Gln), and the second step transfers the NH 3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH 3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic

  14. Nutrient Uptake by High-Yielding Cotton Crop in Brazil

    Directory of Open Access Journals (Sweden)

    José Luís Vilela Vieira

    2018-02-01

    Full Text Available ABSTRACT: Determining nutrient uptake and accumulation rates by cotton crops is important to define management strategies, especially for transgenic varieties, which are cultivated using high-technology approaches that require substantial investment to maximize yield. Currently in Brazil, the states of Bahia and Mato Grosso are responsible for 84.4 % of the total cotton growing area. In the present study, two trials were conducted in 2013, one that involved planting FM 940 GLT, FM 980 GLT, and FM 913 GLT varieties in the state of Bahia and the other which involved FM 940 GLT and FM 980 GLT varieties in the state of Mato Grosso. The aim of the two trials was to represent the two regions that currently encompass the largest areas of cotton cultivation. Tissue samples, consisting of leaves, stems, and reproductive components, were collected eleven times during the crop cycle for determination of nutrient content and shoot dry matter. After weighing, plant tissue samples were dried and ground to determine nutrient contents. Because there were no overall differences in nutrient contents and biomass accumulation of the varieties during the crop cycle, we undertook joint analysis of the data from all varieties at each site. Favorable climatic conditions in Bahia promoted plant biomass production that was twice as much as plants grown in Mato Grosso, with cotton yields of 6.2 and 3.8 t ha−1 of lint and seed, respectively. The maximum nutrient accumulation occurred between 137-150 days after emergence (DAE for N; 143-148 for P; 172-185 for K; 100 for Ca; 144-149 for Mg; and 153-158 for S. Maximum uptake ranged from 218-362 kg ha−1 N; 26-53 kg ha−1 P; 233-506 kg ha−1 K; 91-202 kg ha−1 Ca; 28-44 kg ha−1 Mg; and 19-61 kg ha−1 S. On average, the sites revealed nutrient export of 14, 2, 23, 3, 2, and 2 kg t−1 of lint and seed for N, P, K, Ca, Mg, and S, respectively, with little variation among sites. Extraction of nutrients per area by cotton

  15. Using and development of multi adversity resistance system in cotton

    Directory of Open Access Journals (Sweden)

    Metin Durmuş ÇETİN

    2014-12-01

    Full Text Available The basic approach in plant breeding, make it possible to show the full genetic potential of plant. This methods also protect the health of plant growth over the period, by increasing resistance to diseases and pests is expected to provide. For this purpose, by Bird in 1963, with the name of multi adversity resistance has been initiated in cotton breeding and for many years as a result of the work carried out important varieties and germplasm have been developed. Nowadays, those using for varieties resistant to stress factors such as heat and drought are evaluated. And successful results are obtained.

  16. Survival and preference of cotton boll weevil adults for alternative food sources

    Directory of Open Access Journals (Sweden)

    M. Pimenta

    Full Text Available Abstract Plants that have potential as alternative food source (floral nectar, pollen and plant tissues to the boll weevil during the intercropping season were evaluated considering the prevalent conditions of Cerrado in the Central Brazil. Initially, we tested the nutritional adequacy for the survival of the insect of flower resource (pollen and nectar provided by eight plant species (fennel, mexican sunflower, castor bean, okra, hibiscus, sorghum, pigeonpea and sunn hemp. Subsequently, we tested if the resources provided by the selected plants continued to be exploited by the boll weevil in the presence of cotton plant, its main food source average longevity of boll weevil adults was significantly longer when they were fed on hibiscus’ flowers (166.6 ± 74.4 and okra flowers (34.7 ± 28.9 than when they fed on flowers of other six species. Subsequently, the preference of the boll weevil in the use of resources was compared between okra or hibiscus and cotton plants, in dual choice experiments. Boll weevils preferred plants of the three species in the reproductive stages than those in vegetative stages. Although the cotton plant in the reproductive stage was the most preferred plant of all, boll weevils preferred flowering okra and hibiscus than cotton at the vegetative stage.

  17. China's Cotton Policy and the Impact of China's WTO Accession and Bt Cotton Adoption on the Chinese and U.S. Cotton Sectors

    OpenAIRE

    Cheng Fang; Bruce A. Babcock

    2003-01-01

    In this paper we provide an analysis of China's cotton policy and develop a framework to quantify the impact of both China's World Trade Organization (WTO) accession and Bt (Bacillus thuringiensis) cotton adoption on Chinese and U.S. cotton sectors. We use a Chinese cotton sector model consisting of supply, demand, price linkages, and textiles output equations. A two-stage framework model provides gross cropping area and total area for cotton and major subsitute crops from nine cotton-produci...

  18. Root Development of Transplanted Cotton and Simulation of Soil Water Movement under Different Irrigation Methods

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-07-01

    Full Text Available Winter wheat and cotton are the main crops grown on the North China Plain (NCP. Cotton is often transplanted after the winter wheat harvest to solve the competition for cultivated land between winter wheat and cotton, and to ensure that both crops can be harvested on the NCP. However, the root system of transplanted cotton is distorted due to the restrictions of the seedling aperture disk before transplanting. Therefore, the investigation of the deformed root distribution and water uptake in transplanted cotton is essential for simulating soil water movement under different irrigation methods. Thus, a field experiment and a simulation study were conducted during 2013–2015 to explore the deformed roots of transplanted cotton and soil water movement using border irrigation (BI and surface drip irrigation (SDI. The results showed that SDI was conducive to root growth in the shallow root zone (0–30 cm, and that BI was conducive to root growth in the deeper root zone (below 30 cm. SDI is well suited for producing the optimal soil water distribution pattern for the deformed root system of transplanted cotton, and the root system was more developed under SDI than under BI. Comparisons between experimental data and model simulations showed that the HYDRUS-2D model described the soil water content (SWC under different irrigation methods well, with root mean square errors (RMSEs of 0.023 and 0.029 cm3 cm−3 and model efficiencies (EFs of 0.68 and 0.59 for BI and SDI, respectively. Our findings will be very useful for designing an optimal irrigation plan for BI and SDI in transplanted cotton fields, and for promoting the wider use of this planting pattern for cotton transplantation.

  19. The Prevalence of Byssinosis among Cotton Workers in the North of Benin

    Directory of Open Access Journals (Sweden)

    AV Hinson

    2014-09-01

    Full Text Available Background: Cotton is the main agricultural export product in Benin. Cotton dust is thus present in the air during the handling and processing of cotton. This dust contains a mixture of substances including ground up plant matter, fibres, bacteria, fungi, soil, pesticides, noncotton matter, and other contaminants. While cotton processing is decreasing in industrialized countries, it is increasing in developing countries. Cotton processing, particularly in the early processes of spinning, can cause byssinosis. Objective: To determine the respiratory effects of cotton dust exposure among cotton mill workers in Benin. Methods: In a cross-sectional study, 109 workers exposed to cotton dust and 107 unexposed workers were studied. The International Commission on Occupational Health (ICOH questionnaire was used for data collection on respiratory symptoms. For each worker, crossshift pulmonary function was performed with a dry spirometer. Based on the severity of respiratory symptoms and spirometry byssinosis was defined and classified according to the criteria of Schilling, et al. Results: The mean±SD age of the exposed and unexposed workers was 46.3±7.8 and 37.0±8.3 years, respectively (p<0.001. The mean FEV1 predicted value for the exposed and unexposed workers was 76.3% and 77.3%, respectively. The prevalence of grade 3 byssinosis was 21.1% (95% CI: 13.4–28.9 in exposed workers and 8.4% (95% CI: 3.1–13.7 in unexposed workers (p=0.006. On Mondays, the exposed workers had more respiratory symptoms than unexposed workers; for grade 3 byssinosis, the prevalence was 13.8% in exposed and 4.7% in unexposed workers (p=0.011. Conclusion: The prevalence of respiratory symptoms and byssinosis among cotton mill workers in Benin is high and needs prompt attention of health care workers and policymakers.

  20. Fungal diversity associated with verticillium wilt of cotton

    International Nuclear Information System (INIS)

    Khaskheli, M.I.; Sun, J.L.; Li, F.

    2014-01-01

    The association of fungal diversity with Verticillium wilt is rarely known, which is important to know for the control of this detrimental disease. Our study is the preliminary attempt to find the associations of fungal diversity with Verticillium wilt and provides the baseline information for biological control. About 30 different fungi from soil and 23 from cotton plants were isolated and confirmed through molecular characterization. The colony forming unit (CFU)/g dry soil of fungi before and after planting cotton showed significant variation among all the fungi. The overall frequency of all fungi for soil after sowing was significantly higher than before sowing. A. alternata, F. equiseti, F. concentricum, A. flavus, F. proliferatum, and Chaetomium sp. associated with high resistance (Arcot-1) to Verticillium wilt, whereas, V. dahliae, A.niger and Paecilomyces sp., with high susceptible (Arcot-438) germplasm. However, T. basicola, C. ramotenellum and G. intermedia were isolated from both. Soil plating was comparatively easiest than soil dilution method for the determination of frequency percentage, however, later method is useful for the screening of single spore isolation. Most of the antagonistic species were screened from soil; nevertheless, Paecilomyces and Chaetomium spp. were screened from plant and soil. In vitro test of T. longibrachiatum. T. atroviride, Paecilomyces and T. viride showed the strongest efficacy against V. dahliae. These efficient bio-agents can be used as an effective tool for other future studies regarding to Verticillium wilt of cotton. (author)

  1. Cocoa/Cotton Comparative Genomics

    Science.gov (United States)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  2. Parasitoids of boll weevil Anthonomus grandis and resident predators in kaolin-treated cotton

    Directory of Open Access Journals (Sweden)

    Roberta Leme Santos

    2013-12-01

    Full Text Available Simultaneous use of control methods is essential to reach success in managing arthropod pests. The current study investigated the effect of kaolin application on resident predators in the cotton plant canopy and parasitism of boll weevil on abscised squares in the field, and parasitism of boll weevil in the laboratory. Predators Araneae, Formicidae, Chrysopidae, and Coccinellidae showed similar seasonal densities for kaolin-treated and untreated cotton fields as well as the emergence rate of the parasitoids Bracon vulgaris Ashmead (Hymenoptera: Braconidae and Catolaccus grandis Burks (Hymenoptera: Pteromalidae from abscised field-collected structures. Under laboratory conditions, the parasitism of boll weevil larvae infesting squares was similar when treated and untreated squares with kaolin were offered to the parasitoid under free choice test. Therefore, the results show that spraying cotton fields with kaolin does not affect the natural biological control by parasitoids of boll weevil and pink bollworm and resident predators naturally occurring in cotton fields.

  3. 7 CFR 1205.319 - Cotton-producing region.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton-producing region. 1205.319 Section 1205.319... Cotton Research and Promotion Order Definitions § 1205.319 Cotton-producing region. Cotton-producing region means each of the following groups of cotton-producing States: (a) Southeast Region: Alabama...

  4. Quantitate gossypol enantiomers in cotton flower petals and seed using capillary electrophoresis

    Science.gov (United States)

    Gossypol is a compound that occurs in the cotton plant and in leaves it protects the plant from insect herbivory. The compound also occurs in the seed. In this tissue it renders the seed toxic to non-ruminant animals. However, gossypol exists as a mixture of enantiomers referred to as (+)-gossypo...

  5. Screening of cotton (gossypium hirsutum l.) genotypes for heat tolerance

    International Nuclear Information System (INIS)

    Abro, S.; Khan, M.A.; Sial, M.A.

    2015-01-01

    Cotton yield is highly affected due to biotic (diseases and pests) and abiotic (heat, dought and salinity) Stresses. Among them, high temperature is the main environmental constraint which adversely reduces cotton yield and quality. High temperature above 36 degree C affects plant growth and development especially during reproductive phase. Present studies were carried out to assess the tolerance of fifty-eight newly evolved cotton genotypes to heat stresses, based on agronomic and physiological characteristics. The genotypes were screened in field conditions under two temperature regimes. The studies were conducted at experimental farm of Nuclear Institute of Agriculture, Tando Jam, Pakistan. The results showed that March sown crop experienced high temperature (i.e. > 44 degree C in May and June), which significantly affected crop growth and productivity. The genotypes were identified as heat-tolerant on the basis of relative cell injury percentage (RCI %), heat susceptibility index (HSI) values, boll retention and seed cotton yield (kg/ha). RCI level in cotton genotypes ranged from 39.0 to 86.0%. Out of 58, seventeen genotypes (viz.NIA-80, NIA-81, NIA-83, NIA-84, NIA-M-30, NIA-M31, NIA-HM-48, NIA-HM-327, NIA-H-32, NIA-HM-2-1, NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342, CRIS-134, NIAB-111 and check variety Sadori indicated high level of heat tolerance at both (heat-stressed and non-stressed) temperature regimes; as shown the lowest relative injury level and relatively heat resistant index (HSI<1) values. Such genotypes could be used as heattolerant genotypes under heat-stressed environments. (author)

  6. Artificial neural nets application in the cotton yarn industry

    Directory of Open Access Journals (Sweden)

    Gilberto Clóvis Antoneli

    2016-06-01

    Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.

  7. Transcriptome analysis of cytoplasmic male sterility and restoration in CMS-D8 cotton.

    Science.gov (United States)

    Suzuki, Hideaki; Rodriguez-Uribe, Laura; Xu, Jiannong; Zhang, Jinfa

    2013-10-01

    A global view of differential expression of genes in CMS-D8 of cotton was presented in this study which will facilitate the understanding of cytoplasmic male sterility in cotton. Cytoplasmic male sterility (CMS) is a maternally inherited trait in higher plants which is incapable of producing functional pollen. However, the male fertility can be restored by one or more nuclear-encoded restorer genes. A genome-wide transcriptome analysis of CMS and restoration in cotton is currently lacking. In this study, Affymetrix GeneChips© Cotton Genome Array containing 24,132 transcripts was used to compare differentially expressed (DE) genes of flower buds at the meiosis stage between CMS and its restorer cotton plants conditioned by the D8 cytoplasm. A total of 458 (1.9 %) of DE genes including 127 up-regulated and 331 down-regulated ones were identified in the CMS-D8 line. Quantitative RT-PCR was used to validate 10 DE genes selected from seven functional categories. The most frequent DE gene group was found to encode putative proteins involved in cell wall expansion, such as pectinesterase, pectate lyase, pectin methylesterase, glyoxal oxidase, polygalacturonase, indole-3-acetic acid-amino synthetase, and xyloglucan endo-transglycosylase. Genes in cytoskeleton category including actin, which plays a key role in cell wall expansion, cell elongation and cell division, were also highly differentially expressed between the fertile and CMS plants. This work represents the first study in utilizing microarray to identify CMS-related genes by comparing overall DE genes between fertile and CMS plants in cotton. The results provide evidence that many CMS-associated genes are mainly involved in cell wall expansion. Further analysis will be required to elucidate the molecular mechanisms of male sterility which will facilitate the development of new hybrid cultivars in cotton.

  8. Effect of ecological management of weed control on economical income, yield and yield components of cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    A. Zare Feizabadi

    2016-04-01

    Full Text Available In order to compare of ecological management of weed control on economical income, yield and yield components of cotton (Gossypium hirsutum L., a Randomized Complete Block design with 12 treatments and four replications was conducted in Mahvelat of Khorasan Razavi province, Iran. Treatments consisted of weeding, harrowing, burning, two times weeding, weeding + harrowing, weeding + burning, harrowing + harrowing, harrowing + weeding, harrowing + burning, weeding+ harrowing+ burning, weed free and weedy as a check treatment. Investigated traits were plant height, number of boll in plant, 20 boll weight, 20 boll cotton lint weight, cotton lint yield per plant, cotton yield, number and biomass of weeds, outcome, net and gross income. The result showed that treatments had significant effect (p

  9. Drought tolerance studies through WSSI and stomata in upland cotton

    International Nuclear Information System (INIS)

    Baloch, M.J.; Jatoi, W.A.; Soomro, Z.A.; Khan, N.U.; Hassan, G.; Khakwani, A.A.; Veesar, N.F.

    2011-01-01

    Water stress susceptibility index (WSSI) and stomatal conductance were used to determine the stress tolerance of 10 upland cotton cultivars during 2009 at Sindh Agriculture University, Tandojam, Pakistan. The experiment was conducted in spilt plot design with irrigations as main plots and cultivars as sub-plots. Two irrigation treatments were used i.e. one has two irrigations (water stress) and other has eight irrigations (non-stress). Analysis of variance revealed significant genotypic differences about WSSI for all the traits. Non-significant interaction between irrigations and cultivars for seed cotton yield and boll weight exhibited varietals stability over irrigation regimes, whereas significant interactions between above parameters for plant height and bolls per plant suggested genotypic instability over irrigation treatments for these traits. Overall, cultivars mean performance for all the traits in stress conditions was poor as compared to non-stress conditions, nevertheless some cultivars exhibited nonsignificant mean differences in both irrigation regimes, thus showing higher stress tolerance. The WSSI values of seed cotton yield as displayed in bi plot revealed that cultivars CRIS-477, CRIS-483 and CRIS-486 were found highly susceptible to water stress. Cultivars CRIS-476, CRIS-482, CRIS-487 and NIAB-78 were characterized as highly susceptible with minimum production even under optimum irrigation conditions. Cultivar CRIS-9 was moderately tolerant as produced low production. However, cultivars CRIS-485 and CRIS-484 were found highly stress tolerant because of minimum WSSI value and lower stomatal conductance. Negative correlations between water stress and WSSI for seed cotton yield and plant height revealed that any increase in the degree of stress caused a corresponding decrease in WSSI. (author)

  10. Assessment of Bollgard II cotton pollen mediated transgenes flow to ...

    African Journals Online (AJOL)

    Assessment of Bollgard II cotton pollen mediated transgenes flow to conventional cotton in the farming conditions of Burkina ... This has led to experiment on Bt cotton from 2003 to 2007. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  11. Natural products to agro-ecological pest management and their natural enemies of cotton plant intercropped with maize, cowpea and sesame = Produtos naturais no manejo agroecológico de pragas e seus inimigos naturais do algodoeiro consorciado com milho, feijão-caupi e gergelim

    Directory of Open Access Journals (Sweden)

    Gildo Pereira de Araujo

    2015-06-01

    Full Text Available Cotton was once the main crop grown in the northeast of Brazil; its production boosted the development of many cities and contributed to the development of the semi-arid region. Attacks by pests, low productivity, high production costs and low prices on the international market, coupled with a lack of adequate technical assistance, contributed to the decline of the crop. The aim of this study was to evaluate the natural insecticides: aqueous extract from the malagueta pepper, kaolin, Azamax®, Rotenat® and Pironat®, on the agroecological management of the principal pests, with their natural enemies, of cotton intercropped with maize, cowpea and sesame crops. The studies were carried out at the experimental area of Embrapa Algodão, in Barbalha, in the state of Ceará, Brazil (CE, where an experiment was set up to evaluate these natural products, in an experimental design of randomised blocks with four replications, represented by six treatments: T1-Control (no application, T2-Malagueta pepper, T3-Kaolin, T4-Azamax®, T5-Rotenat® and T6-Pironat®. The products were applied every seven days, followed by weekly assessments, considering the effect of the treatments on the occurrence of insect pests of the cotton plant, and on their natural enemies. Kaolin is the most effective natural product in controlling the boll weevil, Anthonomus grandis. Malagueta pepper is not effective in controlling the principle pests of the cotton plant. Natural products applied by spraying the leaves of the cotton plant every 7 days do not interfere with the presence of natural enemies = O algodão já foi a principal cultura cultivada no Nordeste, a sua produção alavancou o desenvolvimento de muitas cidades e contribuiu para o desenvolvimento da região semiárida. Ataque de pragas, baixas produtividades, alto custo de produção e baixa nos preços no mercado internacional, aliado a falta de assistência técnica adequada, contribuíram para o declínio da cultura

  12. Effect of Iranian Bt cotton on life table of Bemisia tabaci (Hemiptera: Alyrodidae and Cry 1Ab detection in the whitefly honeydew

    Directory of Open Access Journals (Sweden)

    Solmaz Azimi

    2016-09-01

    Full Text Available Transgenic cotton expressing the Cry 1Ab protein of Bacillus thuringiensis developing against Helocoverpa armigera may be affect on secondary pest such as Bemisia tabaci. In this study effects of Bt cotton on demographic parameters of B. tabaci were assessed and the data analyzed using the age specific, two-sex life table parameters. Results showed that getting to the adulthood stage, was faster on non-Bt cotton in comparison with Bt cotton. Also the fecundity was higher on non-Bt cotton than that on Bt cotton. Some of the population parameters (r, R0 and T of B. tabaci were affected by the Bt cotton significantly. The intrinsic rate of increase (r on Bt and non-Bt cotton was 0.07 day-1 and 0.1 day-1 , respectively. The net reproductive rate (R0 was 20.68 and 15.04 offspring/individual on Bt and non-Bt cotton, respectively. Mean generation time (T in non-Bt cotton was 27.22 and 34.62 days in Bt cotton. The results indicated that the life history of B. tabaci in the laboratory condition was influenced by host plant quality and Bt cotton was not a suitable host for B. tabaci. The western immunoblot method showed that the Cry protein detection in honeydew was positive which indicated that the Cry protein was ingested. Results revealed that the transgenic cotton could adversely affect the secondary pest and the natural enemies which feed on such pests as a host or their honeydew as a food source should be considered.

  13. Phosphorus use efficiency in pima cotton (Gossypium barbadense L. genotypes

    Directory of Open Access Journals (Sweden)

    Elcio Santos

    2015-06-01

    Full Text Available In the Brazilian Cerrado, P deficiency restricts cotton production, which requires large amounts of phosphate fertilizer. To improve the yield of cotton crops, genotypes with high P use efficiency must be identified and used. The present study evaluated P uptake and use efficiency of different Gossypium barbadense L. genotypes grown in the Cerrado. The experiment was carried out in a greenhouse with a completely randomized design, 15 x 2 factorial treatment structure (15 genotypes x 2 P levels, and four replicates. The genotypes were MT 69, MT 70, MT 87, MT 91, MT 92, MT 94, MT 101, MT 102, MT 103, MT 105, MT 106, MT 110, MT 112, MT 124, and MT 125; P levels were sufficient (1000 mg pot-1, PS treatment or deficient (PD treatment. Dry matter (DM and P levels were determined in cotton plant parts and used to calculate plant P content and use efficiency. In general, DM and P content were higher in the PS than in the PD treatment, with the exception of root DM and total DM in some genotypes. Genotypes also differed in terms of P uptake and use capacity. In the PS treatment, genotypes MT 92 and MT 102 had the highest response to phosphate fertilization. Genotype MT 69 exhibited the most efficient P uptake in the PD treatment. Genotype MT 124 showed the best shoot physiological efficiency, apparent recovery efficiency, and utilization efficiency, whereas MT 110 exhibited the highest root physiological efficiency.

  14. Efeito repelente de azadiractina e óleos essenciais sobre Aphis gossypii Glover (Hemiptera: Aphididae em algodoeiro Repellent effect of azadirachtin and essential oils on Aphis gossypii Glover (Hemiptera: Aphididae in cotton plants

    Directory of Open Access Journals (Sweden)

    Lígia Helena de Andrade

    2013-09-01

    Full Text Available A repelência de inseticidas botânicos tem se destacado como uma tática promissora no controle alternativo de pragas agrícolas e urbanas, podendo ser um dos componentes do manejo integrado de pragas. Objetivou-se com este trabalho identificar a repelência de inseticidas botânicos sobre fêmeas ápteras de Aphis gossypii Glover. Testes com chance de escolha foram realizados com discos de folha de algodoeiro, imersos nas caldas dos inseticidas e testemunha (água destilada com DMSO a 2%. Utilizou-se azadirachtina (0,075% e os óleos essenciais de Piper hispidinervum CDC, P. aduncum L., Cymbopogon winterianus (L., C. citratus (D.C. Stapf, Foeniculum vulgare Mill, Syzygium aromaticum (L. Merrill e Perry, Cinnamomum zeylanicum Blume, Schinus terebinthifolius Raddi e Chenopodium ambrosioides L. na concentração de 0,05%. C. citratus, C. winterianus, P. aduncum, S. terebinthifolius, azadirachtina e C. zeylanicum apresentaram os maiores percentuais de repelência, 100; 84; 66,67; 64; 60,87 e 48% respectivamente e reduziram a produção de ninfas em 100; 92; 42,9; 87,5; 80,65 e 89,74%, apresentando resultados significativos pelo teste do χ2 ao nível de 10% de probabilidade. Nos testes com F. vulgare (χ2 = 3,66, P = 0,05 as fêmeas de A. gossypii foram atraídas significativamente para os discos tratados e ocorreu um aumento na produção de ninfas nos resultados obtidos para F. vulgare (χ2 = 5,87, P = 0,02 e C. ambrosioides (χ2 = 14,31, P = 0,001.The repellence of botanical insecticides has emerged as a promising technique in the alternative control of urban and agricultural pests, being seen as one component of integrated pest management. The aim of this work was to identify the repellence of botanical insecticides on apterous females of Aphis gossypii Glover. Random-choice tests were carried out with discs from the leaves of cotton plants immersed in insecticide solution and in a control (distilled water with 2% DMSO. Azadirachtin was used

  15. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro; La Mantia, Fabio; Hu, Liangbing; Deshazer, Heather Dawn; Cui, Yi

    2010-01-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  16. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro

    2010-06-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  17. PARASITISM OF BOLL WEEVIL (Anthonomus grandis IN FLOWER BUDS OF COTTON PLANT, IN THE MUNICIPAL DISTRICT OF GOIÂNIA-GO PARASITISMO DO BICUDO DO ALGODOEIRO (Anthonomus grandis EM BOTÕES FLORAIS DO ALGODOEIRO, NO MUNICÍPIO DE GOIÂNIA-GO

    Directory of Open Access Journals (Sweden)

    Paulo Marçal Fernandes

    2007-09-01

    Full Text Available

    This work studied the indexes of parasitism of A. grandis in floral buttons of the cotton plants, collected in the soil and in the plants, in an area not treat with insecticides, located in the School of Agronomy of the Universidade Federal de Goiás, municipal district of Goiânia-GO. Floral buttons were collected with and without sign of oviparousness of the beaked ones. They presented larger parasitism occurrence in those collected in the soil. The parasites were identified as: Chelonus sp. (Microchelonus, Bracon sp. and Pteromalidae.

    KEY-WORDS: Insecta; parasitism; cotton plant; Anthonomus grandis.

    Estudou-se o índice de parasitismo de A. grandis em botões florais de algodoeiro coletados no solo e nas plantas, em uma área não tratada com inseticidas, localizada na Escola de Agronomia da Universidade Federal de Goiás, no município de Goiânia (GO. Foram coletados botões florais com e sem puncturas de oviposição dos bicudos. Verificou-se um maior parasitismo nos botões florais coletados no solo. Os parasitóides foram identificados como Chelonus sp. (Microchelonus, Bracon sp. e Pteromalidae.

    PALAVRAS-CHAVE: Insecta; parasitismo; algodoeiro; Anthonomus grandis.

  18. Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus.

    Science.gov (United States)

    Shweta; Akhter, Yusuf; Khan, Jawaid Ahmad

    2018-01-05

    Cotton leaf curl Burewala virus (CLCuBV, genus Begomovirus) causes devastating cotton leaf curl disease. Among various known virus controlling strategies, RNAi-mediated one has shown potential to protect host crop plants. Micro(mi) RNAs, are the endogenous small RNAs and play a key role in plant development and stress resistance. In the present study we have identified cotton (Gossypium hirsutum)-encoded miRNAs targeting the CLCuBV. Based on threshold free energy and maximum complementarity scores of host miRNA-viral mRNA target pairs, a number of potential miRNAs were annotated. Among them, ghr-miR168 was selected as the most potent candidate, capable of targeting several vital genes namely C1, C3, C4, V1 and V2 of CLCuBV genome. In addition, ghr-miR395a and ghr-miR395d were observed to target the overlapping transcripts of C1 and C4 genes. We have verified the efficacy of these miRNA targets against CLCuBV following suppression of RNAi-mediated virus control through translational inhibition or cleavage of viral mRNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Natural Dyeing and UV Protection of Raw and Bleached/Mercerised Cotton

    Directory of Open Access Journals (Sweden)

    Čuk Nina

    2017-05-01

    Full Text Available Dyeing with natural dyes extracted from curcuma, green tea, avocado seed, pomegranate peel and horse chestnut bark was studied to evaluate the dyeability and ultraviolet (UV blocking properties of raw and bleached/mercerised cotton fabrics. 20 g/l of powdered plant material was extracted in distilled water and used as a dyeing bath. No mordants were used to obtain ecologically friendly finishing. The colour of samples was measured on a refl ectance spectrophotometer, while UV-blocking properties were analysed with UV-Vis spectrophotometer. The results showed that dyeing increased UV protection factor (UPF to all samples, however much higher UPF values were measured for the dyed raw cotton samples. The highest UPF values were obtained on both cotton fabrics dyed with pomegranate peel and green tea extracts, giving them excellent protective properties (UPF 50+. The lowest UPF values were obtained by dyeing cotton with avocado seed extract and curcumin. Dyeing with selected dyes is not stable to washing, so the UV-blocking properties worsen after repetitive washing. However, raw cotton samples retain their very good Uvblocking properties, while bleached/mercerised cotton fabrics do not provide even satisfactory UV-blocking properties. No correlation between CIE L*a*b*, K/S and UPF values were found.

  20. Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers.

    Directory of Open Access Journals (Sweden)

    Wen-Qin Bai

    Full Text Available Bioactive gibberellins (GAs comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression.

  1. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  2. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.K.; Sun, Yuqiang; Dawood, M. [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Hayat, Y. [Institute of Bioinformatics, Zhejiang University, Hangzhou 310029 (China); Variath, M.T.; Wu Yuxiang [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Raziuddin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Plant Breeding and Genetics Department, NWFP Agricultural University Peshawar, Peshawar (Pakistan); Mishkat, Ullah [Zoological Sciences Division, Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad 44000 (Pakistan); Salahuddin [District Agriculture Extension Offices, Bannu Road, Dera Ismail Khan (NWFP) (Pakistan); Najeeb, Ullah [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Zhu, Shuijin [Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)], E-mail: shjzhu@zju.edu.cn

    2009-01-15

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 {mu}M) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 {mu}M) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic

  3. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars

    International Nuclear Information System (INIS)

    Daud, M.K.; Sun, Yuqiang; Dawood, M.; Hayat, Y.; Variath, M.T.; Wu Yuxiang; Raziuddin; Mishkat, Ullah; Salahuddin; Najeeb, Ullah; Zhu, Shuijin

    2009-01-01

    The toxic effect of cadmium (Cd) at increasing concentrations was studied with special attention being given to the root morphological and ultrastructural changes in two transgenic cotton cultivars viz. BR001 and GK30 and their wild relative viz. Coker 312. In comparison to their respective controls, low concentration (10 and 100 μM) of Cd greatly stimulated seed germination, while it was inhibited by highest concentration of Cd (1000 μM) in case of two transgenic cultivars. However, in Coker 312 the seed germination percentage progressively decreased over the control at all Cd levels. Various physiological and morphological parameters of the root and whole plant in both transgenic cotton cultivars and their relative wild cotton genotype respond differently towards the Cd toxicity. Bioavailability of Cd was concentration-dependent where seedling root captured more Cd as compared to shoot. BR001 accumulated more Cd followed by GK30, while Coker 312 was less Cd accumulator. The ultrastructural modifications in the root tip cells of both the transgenic cotton cultivars and their wild relative were also dose-dependent. With the increase in Cd levels, the fine structures of their root cells also invariably changed. Increase in plasmolysis of the plasma membrane, greater number of nucleoli and vacuoles and enlarged vacuoles could be observed in both transgenic cotton cultivars. In comparison to them, Coker 312 showed relatively well developed ultrastructures of the root tips except enlarged vacuoles and greater number of mitochondria. Moreover, the accumulation of Cd in the form of electron dense granules and crystals both in vacuoles and attached to cell walls were visible in both transgenic cotton cultivars and their wild relative. These results suggest that both transgenic cotton cultivars and their wild relative cotton genotype responded positively towards Cd stress at seedling stage, the internal Cd-detoxification might be through apoplastic and symplastic binding

  4. Cadmium (Cd) Localization in Tissues of Cotton (Gossypium hirsutum L.), and Its Phytoremediation Potential for Cd-Contaminated Soils.

    Science.gov (United States)

    Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie

    2015-12-01

    Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.

  5. Infrared thermometry: a remote sensing technique for predicting yield in water-stressed cotton

    International Nuclear Information System (INIS)

    Pinter, P.J.; Fry, K.E.; Guinn, G.; Mauney, J.R.

    1983-01-01

    A crop water stress index (CWSI) was derived from air temperatures, air vapor pressure deficits and the midday radiant leaf temperatures of cotton plants that were exposed to different early-season irrigation treatments at Phoenix, AZ, U.S.A. To calculate the CWSI, an infrared thermometer was used to measure leaf temperatures which were then scaled relative to minimum and maximum temperatures expected for no-stress (CWSI=0) and extreme drought-stress conditions (CWSI=1). Results showed the CWSI behaved as expected, dropping to low levels following an irrigation and increasing gradually as the cotton plants depleted soil moisture reserves. The final yield of seed cotton was significantly inversely correlated with the average CWSI observed over the interval from the appearance of the first square until two weeks following the final irrigation

  6. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Janga, Madhusudhana R; Campbell, LeAnne M; Rathore, Keerti S

    2017-07-01

    The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas)9 protein system has emerged as a simple and efficient tool for genome editing in eukaryotic cells. It has been shown to be functional in several crop species, yet there are no reports on the application of this or any other genome editing technologies in the cotton plant. Cotton is an important crop that is grown mainly for its fiber, but its seed also serves as a useful source of edible oil and feed protein. Most of the commercially-grown cotton is tetraploid, thus making it much more difficult to target both sets of homeologous alleles. Therefore, in order to understand the efficacy of the CRISPR/Cas9 system to target a gene within the genome of cotton, we made use of a transgenic cotton line previously generated in our laboratory that had a single copy of the green fluorescent protein (GFP) gene integrated into its genome. We demonstrate, for the first time, the use of this powerful new tool in targeted knockout of a gene residing in the cotton genome. By following the loss of GFP fluorescence, we were able to observe the cells that had undergone targeted mutations as a result of CRISPR/Cas9 activity. In addition, we provide examples of the different types of indels obtained by Cas9-mediated cleavage of the GFP gene, guided by three independent sgRNAs. The results provide useful information that will help us target important native genes in the cotton plant in future.

  7. Phospholipases Dα and δ are involved in local and systemic wound responses of cotton (G. hirsutum

    Directory of Open Access Journals (Sweden)

    Angeliki Bourtsala

    2017-03-01

    Full Text Available Phospholipases D (PLDs catabolize structural phospholipids to produce phosphatidic acid (PtdOH, a lipid playing central role in signalling pathways in animal, yeast and plant cells. In animal cells two PLD genes have been studied while in model plant Arabidopsis twelve genes exist, classified in six classes (α-ζ. This underlines the role of these enzymes in plant responses to environmental stresses. However, information concerning the PLD involvement in the widely cultivated and economically important cotton plant responses is very limited. The aim of this report was to study the activity of conventional cotton PLD and its participation in plant responses to mechanical wounding, which resembles both biotic and abiotic stresses. PLDα activity was identified and further characterized by transphosphatidylation reaction. Upon wounding, cotton leaf responses consist of an acute in vitro increase of PLDα activity in both wounded and systemic tissue. However, determination of the in vivo PtdOH levels under the same wounding conditions revealed a rapid PtdOH formation only in wounded leaves and a late response of a PtdOH increase in both tissues. Εxpression analysis of PLDα and PLDδ isoforms showed mRNA accumulation of both isoforms in the wounded tissue, but only PLDδ exerts a high and sustainable expression in systemic leaves, indicating that this isoform is mainly responsible for the systemic wound-induced PtdOH production. Therefore, our data suggest that PLDα and PLDδ isoforms are involved in different steps in cotton wound signalling.

  8. Passive and active protection of cotton textiles

    NARCIS (Netherlands)

    Bochove, C. van

    1967-01-01

    In rotproofing of cotton a distinction is made between passive and active protection. In passive protection, the structure of the cotton fibre is modified in such a way that the fibre can longer be attacked. This modification of structure can be effected on different levels: microscopical,

  9. Fiber quality challenges facing the cotton industry

    Science.gov (United States)

    The cotton industry is in the midst of an exciting time with increased domestic consumption, but also facing pressure from other crops and the global marketplace. In order to ensure the US cotton crop remains the fiber of choice for the world it is important to keep an eye on the challenges to fibe...

  10. Within canopy distribution of cotton seed N

    Science.gov (United States)

    Whole cotton seeds can be an important component of dairy rations. Nitrogen content of the seed is an important determinant of the feed value of the seed. Efforts to increase the seed value as feed will be enhanced with knowledge of the range and distribution of seed N within the cotton crop. This s...

  11. Milkweed, stink bugs, and Georgia cotton

    Science.gov (United States)

    In peanut-cotton farmscapes in Georgia, stink bugs, i.e., Nezara viridula (L.)(Say) and Chinavia hilaris (Say), develop in peanut and then disperse at the crop-to-crop interface to feed on fruit in cotton. The main objective of this study was to examine the influence of a habitat of tropical milkwe...

  12. Cotton in Benin: governance and pest management

    NARCIS (Netherlands)

    Togbe, C.E.

    2013-01-01

    Key words: cotton, synthetic pesticides, neem oil (Azadirachta indica), Beauveria bassiana,

    Bacillus thuringiensis, field experiment, farmers’ participation

    Pests are one of the main factors limiting cotton production worldwide. Most of the pest

    control

  13. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    Directory of Open Access Journals (Sweden)

    Jun-Yu Luo

    Full Text Available An increasing area of transgenic Bacillus thuringiensis (Bt cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW Helicoverpa armigera (Hübner in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]. We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  14. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis).

    Science.gov (United States)

    Oliveira, Gustavo R; Silva, Maria C M; Lucena, Wagner A; Nakasu, Erich Y T; Firmino, Alexandre A P; Beneventi, Magda A; Souza, Djair S L; Gomes, José E; de Souza, José D A; Rigden, Daniel J; Ramos, Hudson B; Soccol, Carlos R; Grossi-de-Sa, Maria F

    2011-09-09

    The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  15. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Gomes José E

    2011-09-01

    Full Text Available Abstract Background The cotton boll weevil (Anthonomus grandis is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  16. Carbohydrate production and transport in cotton cultivars grown under boron deficiency

    Directory of Open Access Journals (Sweden)

    Julio Cesar Bogiani

    2013-12-01

    Full Text Available An adequate supply of boron (B is required for the optimal growth and development of cotton (Gossypium hirsutum L. plants, but the low phloem mobility of B limits the possibilities of correcting B deficiency. There are indications that different cotton cultivars could have different responses to B deficiency. The differences in responses of cotton cultivars to B regarding photoassimilate production and transport were studied in a greenhouse experiment with nutrient solution. Treatments consisted of three cotton cultivars (FMT 701, DP 604BG and FMX 993 and five concentrations of B (0.0, 2.5, 5.0, 10.0 and 20.0 µmol L−1. Sampling began at the phenological stage B1 (first square and continued for four weeks. The leaf area and the number of reproductive branches and structures decreased due to B deficiency. A higher level of abortion of reproductive structures was observed under B deficiency. Boron deficiency increased the internal CO2 concentration but decreased the transpiration rate, stomatal conductance and photosynthesis. Despite the decrease in photosynthesis, nonstructural carbohydrates accumulated in the leaves due to decreased export to bolls in B-deficient plants. The response to B deficiency is similar among cotton cultivars, which shows that the variability for this trait is low even for cultivars with different genetic backgrounds.

  17. Strategies for soil-based precision agriculture in cotton

    Science.gov (United States)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  18. Candidate Gene Identification of Flowering Time Genes in Cotton

    Directory of Open Access Journals (Sweden)

    Corrinne E. Grover

    2015-07-01

    Full Text Available Flowering time control is critically important to all sexually reproducing angiosperms in both natural ecological and agronomic settings. Accordingly, there is much interest in defining the genes involved in the complex flowering-time network and how these respond to natural and artificial selection, the latter often entailing transitions in day-length responses. Here we describe a candidate gene analysis in the cotton genus , which uses homologs from the well-described flowering network to bioinformatically and phylogenetically identify orthologs in the published genome sequence from Ulbr., one of the two model diploid progenitors of the commercially important allopolyploid cottons, L. and L. Presence and patterns of expression were evaluated from 13 aboveground tissues related to flowering for each of the candidate genes using allopolyploid as a model. Furthermore, we use a comparative context to determine copy number variability of each key gene family across 10 published angiosperm genomes. Data suggest a pattern of repeated loss of duplicates following ancient whole-genome doubling events in diverse lineages. The data presented here provide a foundation for understanding both the parallel evolution of day-length neutrality in domesticated cottons and the flowering-time network, in general, in this important crop plant.

  19. Cotton for removal of aquatic oil spills

    International Nuclear Information System (INIS)

    Parker, H.W.; Fedler, C.B.; Heintz, C.E.; Nash, P.T.; Carr, D.L.; Lu, M.

    1992-01-01

    Raw cotton has considerable potential for selective removal of spilled oil and oil products from surface waters, since the natural waxes on the raw cotton make it preferentially oil wet. This potential was recognized in the early seventies at Texas Tech University. More recently other research workers have considered cotton as an adsorbent for spilled oil. The adsorbent market is now dominated by synthetic materials, such as air-blown polypropylene fiber, inorganic clays, and recycled paper and paper products. This paper further examines the potential of cotton in relation to these other adsorbents. Emphasis is placed on the potential for complete biodegradation of oil-soaked cotton adsorbents as a means avoiding the expense for incineration and/or the long-term environmental risk associated with placing the used adsorbents in landfills

  20. Conductive Cotton Filters for Affordable and Efficient Water Purification

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-09-01

    Full Text Available It is highly desirable to develop affordable, energy-saving, and highly-effective technologies to alleviate the current water crisis. In this work, we reported a low-cost electrochemical filtration device composing of a conductive cotton filter anode and a Ti foil cathode. The device was operated by gravity feed. The conductive cotton filter anodes were fabricated by a facile dying method to incorporate carbon nanotubes (CNTs as fillers. The CNTs could serve as adsorbents for pollutants adsorption, as electrocatalysts for pollutants electrooxidation, and as conductive additives to render the cotton filters highly conductive. Cellulose-based cotton could serve as low-cost support to ‘host’ these CNTs. Upon application of external potential, the developed filtration device could not only achieve physically adsorption of organic compounds, but also chemically oxide these compounds on site. Three model organic compounds were employed to evaluate the oxidative capability of the device, i.e., ferrocyanide (a model single-electron-transfer electron donor, methyl orange (MO, a common recalcitrant azo-dye found in aqueous environments, and antibiotic tetracycline (TC, a common antibiotic released from the wastewater treatment plants. The devices exhibited a maximum electrooxidation flux of 0.37 mol/h/m2 for 5.0 mmol/L ferrocyanide, of 0.26 mol/h/m2 for 0.06 mmol/L MO, and of 0.9 mol/h/m2 for 0.2 mmol/L TC under given experimental conditions. The effects of several key operational parameters (e.g., total cell potential, CNT amount, and compound concentration on the device performance were also studied. This study could shed some light on the good design of effective and affordable water purification devices for point-of-use applications.

  1. Vulnerabilities and Adapting Irrigated and Rainfed Cotton to Climate Change in the Lower Mississippi Delta Region

    Directory of Open Access Journals (Sweden)

    Saseendran S. Anapalli

    2016-10-01

    about 25% of the cases. As an adaptation measure, planting cotton six weeks earlier than the normal (historical average planting date, in general, was found to boost irrigated cotton yields and compensate for the lost yields in all the CC scenarios. This early planting strategy only partially compensated for the rainfed cotton yield losses under all the CC scenarios, however, supplemental irrigations up to 10 cm compensated for all the yield losses.

  2. Superamphiphobic cotton fabrics with enhanced stability

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bi, E-mail: xubi@dhu.edu.cn [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Ding, Yinyan; Qu, Shaobo [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Cai, Zaisheng, E-mail: zshcai@dhu.edu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-11-30

    Highlights: • Superamphiphobic cotton fabrics were prepared. • Water and hexadecane contact angels reach to 164.4° and 156.3°, respectively. • Nanoporous organically modified silica alcogel particles were synthesized. • The superamphiphobic cotton fabrics exhibit enhanced stability against abrasion, laundering and acid. - Abstract: Superamphiphobic cotton fabrics were prepared by alternately depositing organically modified silica alcogel (ormosil) particles onto chitosan precoated cotton fabrics and subsequent 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) modification. Transmission electron microscopy and scanning electron microscopy images reveal that the ormosil particles display a fluffy, sponge-like nanoporous structure, and the entire cotton fiber surface is covered with highly porous networks. PFOTMS acts as not only a modifier to lower the surface energy of the cotton fabric but also a binder to enhance the coating stability against abrasion and washing. The treated cotton fabrics show highly liquid repellency with the water, cooking oil and hexadecane contact angels reaching to 164.4°, 160.1° and 156.3°, respectively. Meanwhile, the treated cotton fabrics exhibit good abrasion resistance and high laundering durability, which can withstand 10,000 cycles of abrasion and 30 cycles of machine wash without apparently changing the superamphiphobicity. The superamphiphobic cotton fabric also shows high acid stability, and can withstand 98% H{sub 2}SO{sub 4}. Moreover, the superamphiphobic coating has almost no influence on the other physical properties of the cotton fabrics including tensile strength, whiteness and air permeability. This durable non-wetting surface may provide a wide range of new applications in the future.

  3. 7 CFR 27.21 - Preparation of samples of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Preparation of samples of cotton. 27.21 Section 27.21... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.21 Preparation of samples of cotton. The samples from each bale shall be prepared as specified in this section...

  4. Minimization of operational impacts on spectrophotometer color measurements for cotton

    Science.gov (United States)

    A key cotton quality and processing property that is gaining increasing importance is the color of the cotton. Cotton fiber in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), using the parameters Rd and +b. Rd and +b are specific to cotton fiber and are not typical ...

  5. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    Three transgenic cotton varieties (lines) were chosen for the study of inheritance and segregation of foreign Bt (Bacillus thuringiensis toxin) and tfdA genes in cotton. The transformed cotton varieties CCRI 30 and NewCott 33B expressing the Bt cryIA gene, and cotton line TFD expressing the tfdA gene were crossed with ...

  6. Increasing cotton stand establishment in soils prone to soil crusting

    Science.gov (United States)

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  7. (Pleurotus pulmonarius) grown on cotton waste and cassava peel

    African Journals Online (AJOL)

    This work evaluated the yield of Pleurotus pulmonarius on different mixtures of cotton waste and cassava peel. P. pulmonarius demonstrated significantly higher colonization rate on cotton waste substrate (100 g cotton waste) 3 weeks after inoculation of spawn than any other substrate mixtures. Cotton waste had the ...

  8. The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton

    Directory of Open Access Journals (Sweden)

    Nhan eLe Van

    2016-01-01

    Full Text Available As the demands for nanotechnology and nanoparticle (NP applications in agriculture increase, the ecological risk has drawn more attention because of the unpredictable results of interactions between NPs and transgenic crops. In this study, we investigated the effects of various concentrations of Fe2O3 NPs on Bt-transgenic cotton in comparison with conventional cotton for 10 days. Each treatment was conducted in triplicate, and each experiment was repeated three times. Results demonstrated that Fe2O3 nanoparticles (NPs inhibited the plant height and root length of Bt-transgenic cotton and promoted root hairs and biomass of non-transgenic cotton. Nutrients such as Na and K in Bt-transgenic cotton roots increased, while Zn contents decreased with Fe2O3 NPs. Most hormones in the roots of Bt-transgenic cotton increased at low Fe2O3 NP exposure (100 mg·L−1 but decreased at high concentrations of Fe2O3 NPs (1000 mg·L−1. Fe2O3 NPs increased the Bt-toxin in leaves and roots of Bt-transgenic cotton. Fe2O3 NPs were absorbed into roots, then transported to the shoots of both Bt-transgenic and non-transgenic cottons. The bioaccumulation of Fe2O3 NPs in plants might be a potential risk for agricultural crops and affect the environment and human health.

  9. No evidence for change in oviposition behaviour of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) after widespread adoption of transgenic insecticidal cotton.

    Science.gov (United States)

    Zalucki, M P; Cunningham, J P; Downes, S; Ward, P; Lange, C; Meissle, M; Schellhorn, N A; Zalucki, J M

    2012-08-01

    Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.

  10. Genotype-by-sowing date interaction effects on cotton yield and quality in irrigated condition of dera ismail khan, pakistan

    International Nuclear Information System (INIS)

    Usman, K.; Khan, S.; Ayatullah, A.

    2016-01-01

    Cotton is a major export commodity of Pakistan. It is affected by variable environmental conditions throughout the country which limits its production. A 2-year field study was conducted in 2012 and 2013 at Cotton Research Station, Dera Ismail Khan, Pakistan to evaluate the effects of six sowing dates on yield and quality attributes of four cotton genotypes. The experiments were laid out in split-plot within a randomized complete block design with three replications. Main plots treatments were six sowing dates, namely March 20, April 4, April 19, May 4, May 19, and June 3 while subplots treatments were four approved transgenic varieties of cotton (CIM-598, CIM-599, CIM-602, and Ali Akber-703). Results revealed that earlier planting produced more vegetative growth rather than lint yield while late planting induced flowering and boll formation when temperature was much cold that adversely affected cotton yield and quality. The results further indicate that the genotype CIM-599 scored first rank in number of bolls plant-1, boll weight, seed cotton yield, ginning out turn, fiber length, fiber strength, fiber fineness, and fiber uniformity when sown on April 19. CIM-598 was the next suitable genotype after CIM-599 which produced higher yield and quality traits in April 19 sowing. Earlier and later sowing than April 19 resulted in lower cotton yield and quality characters due to unfavorable environmental conditions and shorter growth period, respectively. Thus it is concluded that the genotype, CIM-599 sown on April 19 suits well to the study area and had the potential to optimize cotton yield and quality in irrigated condition of Dera Ismail Khan, Pakistan. (author)

  11. The influence of the temperature at the intensity of the spread of the cotton bollworm (heliothis obsoleta fabr. = helicoverpa armigera hb.) as a pest of the peppers in the Strumica region

    OpenAIRE

    Spasov, Dusan; Spasova, Dragica; Ilievski, Mite; Atanasova, Biljana

    2015-01-01

    H. armigera is typical polyphagous insect which attacks: tomatoes, peppers, tobacco, maize, cotton, garlic, onions, cabbage, soy, beans and many other leguminous and pumpkin crops and various weed plants. The damages from the cotton bollworm have economic importance, especially when the species is in progradation. It is widespread all over the world, especially in warmer climates. The increase in the population of this cotton bollworm is associated with global warming.

  12. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  13. Post harvest fertility status of some cotton based leguminous and non-leguminous intercropping systems

    International Nuclear Information System (INIS)

    Khan, M.B.; Khaliq, A.

    2003-01-01

    Residual effect of different leguminous and non-leguminous intercropping systems on cotton planted in two planting patterns was studied at Agronomic Research Area, Univ. of Agriculture, Faisalabad under irrigated conditions of Central Punjab. Soil samples were collected from 0-15 cm and 15-30 cm depths before planting and after harvesting of each crop, each year to evaluate the impact of leguminous and non-leguminous crops included in this study. Experiment was laid out in randomized complete block design (R.C.B.D.) with split arrangement and four replications. Patterns were randomized in main plots and intercrops in sub plots. Plot size was 4.8 m x 7 m. All the intercrops produced substantially smaller yields when grown in association with cotton in either planting pattern compared to their sole crop yields. Residual nitrogen was improved in leguminous intercropping systems as compared to cotton alone as well non-legume intercropping systems. Similarly organic matter was also improved in all intercropping treatments, and maximum increase was recorded due to cowpeas. Phosphorus was depleted in all intercropping systems during both years under study as well as in relation to cotton alone. The same trend (depletion) was also observed in case of residual soil Potassium.(author)

  14. Categorical likelihood method for combining NDVI and elevation information for cotton precision agricultural applications

    Science.gov (United States)

    This presentation investigates an algorithm to fuse the Normalized Difference Vegetation Index (NDVI) with LiDAR elevation data to produce a map useful for the site-specific scouting and pest management (Willers et al. 1999; 2005; 2009) of the cotton insect pests, the tarnished plant bug (Lygus lin...

  15. Temperature effects on early season cotton growth and development

    International Nuclear Information System (INIS)

    Reddy, K.R.; Hodges, H.F.; Reddy, V.R.

    1992-01-01

    Temperature is a primary environmental factor controlling growth and developmental rates of plants, yet little specific information is available regarding cotton (Gossypium hisutum L.) responses to temperature. Information covering a wide range of temperatures would be useful for predicting both developmental and growth rates in cotton. Therefore, an experiment was conducted in naturally lit, temperature- and CO 2 -controlled cabinets from soon after emergence until 56 d after emergence (DAE). The cabinets were maintained at 20/12, 25/17, 30/22, 35/27, and 40/32C day/night cycles. Plant heights, number of nodes, and leaf areas were determined weekly throughout the experiment, and dry weight measurements were obtained at three intervals. Mainstem elongation, leaf area growth, and biomass accumulation rates were very sensitive to temperature about 3 wk after emergence. Prior to that time, they were relatively insensitive to temperature. The temperature optimum for stem elongation, leaf area expansion, and biomass accumulation was 30/22 C. Developmental rates, as depicted by number of mainstem nodes produced, number of fruiting branches, and fruiting branch nodes, were not as sensitive to temperatures above 30/22 C as were growth rates. Four times as many fruiting branches were produced at 30/22 C as at 20/12 C; whereas more vegetative branches were produced at low temperatures. All flower buds abscised from plants grown at 40/32 C. Essentially, all bolls and squares were retained at 30/22 C while a 10% boll and square loss was observed at 35/27 C during the early reproductive period. Less time was required for this cultivar to produce squares at any temperature, suitable for growing cotton, than was suggested by previous experiments

  16. Comparative genomic analysis of the PKS genes in five species and expression analysis in upland cotton

    Directory of Open Access Journals (Sweden)

    Xueqiang Su

    2017-10-01

    Full Text Available Plant type III polyketide synthase (PKS can catalyse the formation of a series of secondary metabolites with different structures and different biological functions; the enzyme plays an important role in plant growth, development and resistance to stress. At present, the PKS gene has been identified and studied in a variety of plants. Here, we identified 11 PKS genes from upland cotton (Gossypium hirsutum and compared them with 41 PKS genes in Populus tremula, Vitis vinifera, Malus domestica and Arabidopsis thaliana. According to the phylogenetic tree, a total of 52 PKS genes can be divided into four subfamilies (I–IV. The analysis of gene structures and conserved motifs revealed that most of the PKS genes were composed of two exons and one intron and there are two characteristic conserved domains (Chal_sti_synt_N and Chal_sti_synt_C of the PKS gene family. In our study of the five species, gene duplication was found in addition to Arabidopsis thaliana and we determined that purifying selection has been of great significance in maintaining the function of PKS gene family. From qRT-PCR analysis and a combination of the role of the accumulation of proanthocyanidins (PAs in brown cotton fibers, we concluded that five PKS genes are candidate genes involved in brown cotton fiber pigment synthesis. These results are important for the further study of brown cotton PKS genes. It not only reveals the relationship between PKS gene family and pigment in brown cotton, but also creates conditions for improving the quality of brown cotton fiber.

  17. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    Science.gov (United States)

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  18. Separation and recycling of cotton from cotton/PET blends by depolymerization of PET catalyzed by bases and ionic liquids

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit); Brinks, G.J. (Ger); Groeneveld, R.A.J. (Richard); Oelerich, J. (Jens)

    2014-01-01

    The recycling of post consumer cotton textile waste is highly requested, due to the high environmental impact of cotton production. Often cotton is mixed in blends with polyethylene terephthalate (PET). For the generation of high value products from recycled cotton, it essential that PET is

  19. Heterotic studies and inbreeding depression in f/sub 2/populations of upland cotton

    International Nuclear Information System (INIS)

    Panni, M.K.

    2012-01-01

    To study the genetic potential, heterotic effects and inbreeding depression, 8 X 8 F/sub 2/diallel populations with parental lines of upland cotton were grown during crop season 2010 in a randomized complete block design at Khyber Pakhtunkhwa Agricultural University Peshawar, Pakistan. Highly significant ( p = 0.01 ) variations were noticed among parental lines and F/sub 2/ populations for all the traits. According to genotypes mean performance for various traits, plant height varied from 101.60 to 126.30 cm and 98.60 to 140.60 cm, bolls plant/sup -1/ (12.87 to 19.53; 12.13 to 22.60), boll weight (3.80 to 5.01 g; 3.04 to 5.38 g) and seed cotton yield plant/sup -1/ varied from 55.74 to 85.47 g and 45.57 to 96.05 g in parental cultivars and their F/sub 2/ populations, respectively. However, 12 and 7 F/sub 2/ populations manifested significant heterosis over mid and better parents for plant height, 7 and 3 for bolls plant/sup -1/, 13 and 9 for boll weight and 13 and 5 F/sub 2/ populations for seed cotton yield plant/sup -1/, respectively. F/sub 2/ populations i.e. CIM-554 X CIM-473, CIM-554 X CIM-499, CIM-496 X SLH-284, CIM-473 X CIM-446 and CIM-554 X SLH-284 with low mean values for plant height performed better and manifested highly significant heterotic values over mid and better parents for bolls per plant, boll weight and seed cotton yield. By comparing F/sub 2/ mean values with F/sub 1/s, inbreeding depression was observed for plant height (0.66 to 23. 99%), bolls per plant (5.00 to 63.16%), boll weight (0.20 to 23.24%) and seed cotton yield (0.44 to 75.52%). However, 62% of F/sub 2/ populations revealed negative values for inbreeding depression, 14% for bolls per plant, 77% for boll weight and 21% for yield, revealed that these F/sub 2/ populations were more stable and performed better than F/sub 1/s even after segregation. Although, F/sub 2/ populations may display less heterosis as compared to F/sub 1/, but still better than high parents and can be used as

  20. Energy usage for cotton ginning in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, S.A. [MARA Univ. of Technology, Shah Alam (Malaysia). Faculty of Applied Sciences; Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture; Chen, G.; Baillie, C.; Symes, T. [Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture

    2010-07-01

    This paper reported on a study that evaluated the energy consumption of cotton gins used in Australia. The average electricity use is 52.3 kWh per bale. In practicality, the electricity consumption for different gins is correlated linearly with the bale numbers produced. The cost of electricity is therefore important in cotton ginning operations. The power factor in all the gins monitored in this study was greater than 0.85. The study showed that the use of gas dryers was highly influenced by the cotton moisture and regulated drying temperature. In general, electricity and gas consumption comprised 61 and 39 per cent of total energy use respectively. The study showed that 60.38 kg of carbon dioxide are emitted for ginning each bale of cotton. This paper described a newly developed method for monitoring the energy performance in cotton gins. Detailed monitoring and analysis carried out at 2 gin sites revealed that electricity consumption is not influenced much by changes in trash content in the module, degree of moisture and lint quality. However, the cotton variety influences the energy consumption. Cotton handling constituted nearly 50 per cent of the power used in both gins.

  1. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton.

    Science.gov (United States)

    Zeilinger, Adam R; Olson, Dawn M; Andow, David A

    2016-06-01

    The adoption of transgenic Bt cotton has, in some cases, led to environmental and economic benefits through reduced insecticide use. However, the distribution of these benefits and associated risks among cotton growers and cotton-growing regions has been uneven due in part to outbreaks of non-target or secondary pests, thereby requiring the continued use of synthetic insecticides. In the southeastern USA, Bt cotton adoption has resulted in increased abundance of and damage from stink bug pests, Euschistus servus and Nezara viridula (Heteroptera: Pentatomidae). While the impact of increased stink bug abundance has been well-documented, the causes have remained unclear. We hypothesize that release from competition with Bt-susceptible target pests may drive stink bug outbreaks in Bt cotton. We first examined the evidence for competitive release of stink bugs through meta-analysis of previous studies. We then experimentally tested if herbivory by Bt-susceptible Helicoverpa zea increases stink bug leaving rates and deters oviposition on non-Bt cotton. Consistent with previous studies, we found differences in leaving rates only for E servus, but we found that both species strongly avoided ovipositing on H. zea-damaged plants. Considering all available evidence, competitive release of stink bug populations in Bt cotton likely contributes to outbreaks, though the relative importance of competitive release remains an open question. Ecological risk assessments of Bt crops and other transgenic insecticidal crops would benefit from greater understanding of the ecological mechanisms underlying non-target pest outbreaks and greater attention to indirect ecological effects more broadly.

  2. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  3. Transcriptomic Profiling Reveals Complex Molecular Regulation in Cotton Genic Male Sterile Mutant Yu98-8A.

    Directory of Open Access Journals (Sweden)

    Weiping Fang

    Full Text Available Although cotton genic male sterility (GMS plays an important role in the utilization of hybrid vigor, its precise molecular mechanism remains unclear. To characterize the molecular events of pollen abortion, transcriptome analysis, combined with histological observations, was conducted in the cotton GMS line, Yu98-8A. A total of 2,412 genes were identified as significant differentially expressed genes (DEGs before and during the critical pollen abortion stages. Bioinformatics and biochemical analysis showed that the DEGs mainly associated with sugars and starch metabolism, oxidative phosphorylation, and plant endogenous hormones play a critical and complicated role in pollen abortion. These findings extend a better understanding of the molecular events involved in the regulation of pollen abortion in genic male sterile cotton, which may provide a foundation for further research studies on cotton heterosis breeding.

  4. Effect of mutagens on the quality characters and disease resistant genes of diploid cotton (Gossypium arboreum L.)

    International Nuclear Information System (INIS)

    Haidar, S.; Khan, I.A.; Mansoor, S.

    2002-01-01

    In both M1 and M2 plant height decreased with the increase in dose for both the mutagens. The 15 Krad and 0.15M EMS doses increased 122.7 and 128.3 gm seed cotton yield as compared to control respectively while all other doses of both mutagens decreased the yield of seed cotton. The EMS dose 0.10 M drastically decreased 184 gm seed cotton yield as compared to control. There was no larger effect of both mutagens on GOT % whereas staple length was slightly increased and micronaire value decreased as compared to control for all the doses of both mutagens. It was observed in M2 that mutation dose 10 Krad increased 165.6 gm seed cotton yield as compared to control but slight reduction in GOT % was observed. In M2 GOT were increased 3.5 % with 15 Krad and 3.6 % with EMS 0.10 M as compared to control. There were no larger effects for both mutagens in case of staple length, micronaire and uniformity ratio for all the doses as compared to control. respectively. In both M1 and M2 no plant was observed susceptible to cotton leaf curl virus and bacterial blight diseases of cotton

  5. U.S. Cotton Prices and the World Cotton Market: Forecasting and Structural Change

    OpenAIRE

    Isengildina-Massa, Olga; MacDonald, Stephen

    2009-01-01

    The purpose of this study was to analyze structural changes that took place in the cotton industry in recent years and develop a statistical model that reflects the current drivers of U.S. cotton prices. Legislative changes authorized the U.S. Department of Agriculture to resume publishing cotton price forecasts for the first time in 79 years. In addition, systematic problems have become apparent in the forecasting models used by USDA and elsewhere, highlighting the need for an updated review...

  6. Effect of phosphate solubilizing bacteria on the phosphorus availability and yield of cotton (gossypium)

    International Nuclear Information System (INIS)

    Akhtar, N.; Iqbal, A.; Qureshi, M.A.; Khan, K.H

    2010-01-01

    Phosphate solubilizing bacteria (PSB) and plants have symbiotic relationship, as bacteria provide soluble phosphate for the plants and plants supply root borne carbon compounds which can be metabolized for bacterial growth. PSB solubilize the applied and fixed soil phosphorus resulting in higher crop yield. Intensive cropping has resulted in wide spread deficiency of Phosphorus in our soils and situation is becoming more serious because of a drastic increase in the cost of phosphatic fertilizers. Keeping in view the capabilities of microbes (Bacillus sp.), a field experiment was conducted on cotton at farmer field district Faisalabad in 2008. Effect of PSM (Bacillus spp.) was studied at three phosphorus levels i.e.20, 40 and 60 kg ha-l while N was applied at recommended dose (120 kg ha/sup -1/). Bacillus spp. was applied as seed coating to the cotton crop (Var. BT 121). Recommended plant protection measures were adopted. Results revealed that Bacillus spp. significantly increased the seed cotton yield; number of boll plant-I, boll weight, plant height, GOT (%), staple length, plant P and available P in the soil. Maximum seed cotton yield 4250 kg ha/sup -l/ was obtained with Bacillus inoculation along with 60 kg of P followed by 4162 kg ha/sup -1/ with Bacillus inoculation and 40 kg of P compared with their respective controls i.e.4093 and 3962 kg ha/sup -1/ respectively. Soil P was improved from 8.1 to 9.5 ppm by Bacillus inoculation. Phosphorus in plant matter was also higher (0.39%) as compare with control (0.36%). Rhizosphere soil pH was found slightly decreased (8.12 to 8.0) by Bacillus inoculation compare with control. It is concluded that PSB inoculation not only exerts beneficial effect on crop growth but also enhances the phosphorus concentration in the plant and soil. (author)

  7. Development, genetic mapping and QTL association of cotton PHYA, PHYB, and HY5-specific CAPS and dCAPS markers

    Science.gov (United States)

    Among SNP markers that become increasingly valuable in molecular breeding of crop plants are the CAP and dCAP markers derived from the genes of interest. To date, the number of such gene-based markers is small in polyploid crop plants such as tetraploid cotton that has A and D subgenomes. The obje...

  8. Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Dong, Haoran; Snider, John L; Abid, Muhammad; Iqbal, Babar; Zhou, Zhiguo

    2017-10-01

    To investigate whether potassium (K) application enhances the potential of cotton (Gossypium hirsutum L.) plants to maintain physiological functions during drought and recovery, low K-sensitive (Siza 3) and -tolerant (Simian 3) cotton cultivars were exposed to three K rates (0, 150, and 300 K 2 O kg ha -1 ) and either well-watered conditions or severe drought stress followed by a recovery period. Under drought stress, cotton plants showed a substantial decline in leaf water potential, stomatal conductance, photosynthetic rate, and the maximum and actual quantum yield of PSII, resulting in greater non-photochemical quenching and lipid peroxidation as compared to well-watered plants. However, plants under K application not only showed less of a decline in these traits but also displayed greater potential to recover after rewatering as compared to the plants without K application. Plants receiving K application showed lower lipid peroxidation, higher antioxidant enzyme activities, and increased proline accumulation as compared to plants without K application. Significant relationships between rates of photosynthetic recovery and K application were observed. The cultivar Siza 3 exhibited a more positive response to K application than Simian 3. The results suggest that K application enhances the cotton plant's potential to maintain functionality under drought and facilitates recovery after rewatering. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. The behavior of Aphis gossypii and Aphis craccivora (Hemiptera: Aphididae) and of their predator Cycloneda sanguinea (Coleoptera: Coccinellidae) in cotton-cowpea intercropping systems.

    Science.gov (United States)

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Malaquias, José B; Santos, Bárbara D B

    2018-01-01

    The intercropping is an important cultural practice commonly used in pest management. It is based on the principle that increased plant diversity in the agro-ecosystem can lead to reductions of pest populations in the crop. The current study aimed to assess the impact the colored fiber cotton-cowpea intercropped systems on Aphis gossypii and Aphis craccivora and on their predator Cycloneda sanguinea and the losses and the dispersion behavior of these aphids and their predator in these cropping systems. The experiment had a randomized block experimental design with two bioassays and four treatments. The number of apterous and alate aphids (A. gossypii) per cotton plant was 1.46 and 1.73 or 1.97 and 2.19 times highest in the solid cotton system than that found in the cotton-cowpea intercropped systems (S1) and (S2), respectively. On the other hand, the cotton-cowpea intercropped systems (S1 and S2) reduced, respectively, in 43% and 31% the number of apterousA. gossypiiper cotton plant compared to the control. Implementing cotton-cowpea intercropped system in the S1 scheme reduced A. gossypii infestation, favored the multiplication of C. sanguinea, and allowed obtaining heavier open bolls.

  10. Determination of some micro and macro element's concentrations in cotton-cultivated and fallow soils in the rural area of Damascus using neutron activation analysis

    International Nuclear Information System (INIS)

    Khamis, I.; Khalifa, K.; Sarheel, A.; Al-Samel, N.

    2003-12-01

    This study was conducted in the rural area of Damascus in the region where cotton is frequently planted. The aim of the study is to determine the concentration of some trace elements and other important elements for soil such as (Fe, Ca, As, Ba, Co, Cr, Mn, Ni, Sr, V, Zn, Zr). In order to demonstrate the depletion of such elements by absorption in cotton, results are compared between cultivated soils already planted by cotton and others which is considered fallow soil. Results, for four regions under investigation, showed that concentration of most elements in fallow soil is higher than that cultivated by cotton. However, concentration of some elements were close in two different soil samples in each region. on the other side , concentration of some elements were higher in cultivated soil by cotton compared to the one fallow soil. The study has shown that a decrease in the concentration of some elements are noticeable as the location of region is directed towards north-east. Results reveal a clear absorption phenomena of some elements by cotton when compared to fallow soil. It is important to consider the presented results as a first indicator which needs more studies to confirm its results in other regions being planted by cotton in Syria. (author)

  11. Determination of some micro and macro element concentrations in cotton-cultivated and fallow soils in the rural area of Damascus using neutron activation analysis

    International Nuclear Information System (INIS)

    Khamis, I.; Sarheel, A.; Al-Samel, N.; Khalifa, K.

    2004-01-01

    This study was conducted in the rural area of Damascus in the region where cotton is frequently planted. The aim of the study is to determine the concentration of some trace elements and other important elements for soil such as (Fe, Ca, Ba, Co, Cr, Mn, Ni, Sr, V, Zn, Zr). In order to demonstrate the depletion of such elements by absorption in cotton, results are compared with cultivated soils already planted by cotton and others which are considered Fallow soil. Results, for four regions under investigation, showed that concentration of most elements in fallow soil is higher than that cultivated by cotton. However, concentration of some elements were close in two different soil samples in each region. On the other side, concentration of some elements was higher in soil cultivated by cotton compared with the fallow soil. The study has shown that a decrease in the concentration of some elements in the location of region is directed towards northeast. Result reveal a clear absorption phenomena of some elements by cotton when compared with fallow soil. It is important to consider the presented result as a first indicator which needs more studies to confirm its results in other region planted by cotton in Syria. (author)

  12. Genetic and DNA methylation changes in cotton (Gossypium genotypes and tissues.

    Directory of Open Access Journals (Sweden)

    Kenji Osabe

    Full Text Available In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP assays including a methylation insensitive enzyme (BsiSI, and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC. DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  13. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues.

    Science.gov (United States)

    Osabe, Kenji; Clement, Jenny D; Bedon, Frank; Pettolino, Filomena A; Ziolkowski, Lisa; Llewellyn, Danny J; Finnegan, E Jean; Wilson, Iain W

    2014-01-01

    In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  14. Mining and Analysis of SNP in Response to Salinity Stress in Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wang, Xiaoge; Lu, Xuke; Wang, Junjuan; Wang, Delong; Yin, Zujun; Fan, Weili; Wang, Shuai; Ye, Wuwei

    2016-01-01

    Salinity stress is a major abiotic factor that affects crop output, and as a pioneer crop in saline and alkaline land, salt tolerance study of cotton is particularly important. In our experiment, four salt-tolerance varieties with different salt tolerance indexes including CRI35 (65.04%), Kanghuanwei164 (56.19%), Zhong9807 (55.20%) and CRI44 (50.50%), as well as four salt-sensitive cotton varieties including Hengmian3 (48.21%), GK50 (40.20%), Xinyan96-48 (34.90%), ZhongS9612 (24.80%) were used as the materials. These materials were divided into salt-tolerant group (ST) and salt-sensitive group (SS). Illumina Cotton SNP 70K Chip was used to detect SNP in different cotton varieties. SNPv (SNP variation of the same seedling pre- and after- salt stress) in different varieties were screened; polymorphic SNP and SNPr (SNP related to salt tolerance) were obtained. Annotation and analysis of these SNPs showed that (1) the induction efficiency of salinity stress on SNPv of cotton materials with different salt tolerance index was different, in which the induction efficiency on salt-sensitive materials was significantly higher than that on salt-tolerant materials. The induction of salt stress on SNPv was obviously biased. (2) SNPv induced by salt stress may be related to the methylation changes under salt stress. (3) SNPr may influence salt tolerance of plants by affecting the expression of salt-tolerance related genes.

  15. Genomics-enabled analysis of the emergent disease cotton bacterial blight.

    Directory of Open Access Journals (Sweden)

    Anne Z Phillips

    2017-09-01

    Full Text Available Cotton bacterial blight (CBB, an important disease of (Gossypium hirsutum in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars.

  16. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection.

    Science.gov (United States)

    Xu, Rui; Li, Changying; Paterson, Andrew H; Jiang, Yu; Sun, Shangpeng; Robertson, Jon S

    2017-01-01

    Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural network (CNN) was designed and trained to detect cotton blooms in raw images, and their 3D locations were calculated using the dense point cloud constructed from the aerial images with the structure from motion method. The quality of the dense point cloud was analyzed and plots with poor quality were excluded from data analysis. A constrained clustering algorithm was developed to register the same bloom detected from different images based on the 3D location of the bloom. The accuracy and incompleteness of the dense point cloud were analyzed because they affected the accuracy of the 3D location of the blooms and thus the accuracy of the bloom registration result. The constrained clustering algorithm was validated using simulated data, showing good efficiency and accuracy. The bloom count from the proposed method was comparable with the number counted manually with an error of -4 to 3 blooms for the field with a single plant per plot. However, more plots were underestimated in the field with multiple plants per plot due to hidden blooms that were not captured by the aerial images. The proposed methodology provides a high-throughput method to continuously monitor the flowering progress of cotton.

  17. Structure of cells chloroplasts and mitochondria of cotton leaves following gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Arslanova, S V [AN Uzbekskoj SSR, Tashkent. Inst. Ehksperimental' noj Biologii Rastenij

    1975-01-01

    The article investigates the structural changes in the plastides and mitochondria of cotton leaf cells after irradiation. Cotton seeds that had been moistened for 24 hours were irradiated by a gamma source with a dose of 10 kR (intensity: 19 R/s.). For the study of the plastides and mitochondria of the leaf cells samples were taken in the cotyledonous leaf and flowering phases of the cotton. The cells of the cotton leaf mesophillum in the standard consists of chloroplast with developed interior structures. Study of the ultrastructure of the cells of the mesophilic tissue of the cotyledonous leaf in irradiated cotton plants showed that the chloroplastide membranes are not damaged. A change in the form of the chloroplasts, an accumulation of starch and plastic substances in the chloroplasts, and a reduction in the number of inter-grain bonds were noted. It was discovered that gamma irradiation produces an excessive build-up of starch in the chloroplasts. The mitochondria are often located close to the plastides. The optical density is typical of the matrix of the mitochondria in non-irradiated plants. After cotton seeds that have sprouted are irradiated with a dose of 10 kR in the cotyledonous leaf phase, part of the mitochondria swells. The matrix becomes more transparent, and the number of chrysts decreases. Part of the mitochondria remains intact. The optical density and internal membranes of the mitochondria remain the same as in the control group. The disturbances of the chloroplast and the mitochondria are also observed in the budding and flowering phases (under conditions of a natural day). It was noted that a shortened day facilitated to some extent a normalization of metabolism, and this produced in turn a normal development of the chloroplasts, leaf mitochondria and ATF generation, which reduces the final biological effect of the radiation.

  18. Mutagenesis in naturally coloured cotton

    International Nuclear Information System (INIS)

    Khatod, J.P.; Meshram, L.D.; Jain, P.P.

    2000-01-01

    The seeds of naturally coloured cotton were treated with 15 kR, 20 kR doses of gamma rays and 0.5% Ethyl Methane Sulphonate (EMS) and their combinations. The M 1 and M 2 generations were studied for mutagenic effectiveness and efficiency in inducing the useful mutants, spectrum of mutation and their effects on bract characters. Results obtained revealed that 15 kR and 20 kR doses were more effective in inducing the mutations. In G. hirsutum, significant differences were found for bract size and dry weight of bract was noted in 20 kR dose and low in 0.5% EMS in M 1 . In the M 2 generation increased ratio of bract surface area to lint weight per boll was noted in 20 kR + 0.5% EMS. (author)

  19. Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin.

    Science.gov (United States)

    Wegier, A; Piñeyro-Nelson, A; Alarcón, J; Gálvez-Mariscal, A; Alvarez-Buylla, E R; Piñero, D

    2011-10-01

    Over 95% of the currently cultivated cotton was domesticated from Gossypium hirsutum, which originated and diversified in Mexico. Demographic and genetic studies of this species at its centre of origin and diversification are lacking, although they are critical for cotton conservation and breeding. We investigated the actual and potential distribution of wild cotton populations, as well as the contribution of historical and recent gene flow in shaping cotton genetic diversity and structure. We evaluated historical gene flow using chloroplast microsatellites and recent gene flow through the assessment of transgene presence in wild cotton populations, exploiting the fact that genetically modified cotton has been planted in the North of Mexico since 1996. Assessment of geographic structure through Bayesian spatial analysis, BAPS and Genetic Algorithm for Rule-set Production (GARP), suggests that G. hirsutum seems to conform to a metapopulation scheme, with eight distinct metapopulations. Despite evidence for long-distance gene flow, genetic variation among the metapopulations of G. hirsutum is high (He = 0.894 ± 0.01). We identified 46 different haplotypes, 78% of which are unique to a particular metapopulation, in contrast to a single haplotype detected in cotton cultivars. Recent gene flow was also detected (m = 66/270 = 0.24), with four out of eight metapopulations having transgenes. We discuss the implications of the data presented here with respect to the conservation and future breeding of cotton populations and genetic diversity at its centre of crop origin. © 2011 Blackwell Publishing Ltd.

  20. Transcript mapping of Cotton leaf curl Burewala virus and its cognate betasatellite, Cotton leaf curl Multan betasatellite

    Directory of Open Access Journals (Sweden)

    Akbar Fazal

    2012-10-01

    Full Text Available Abstract Background Whitefly-transmitted geminiviruses (family Geminiviridae, genus Begomovirus are major limiting factors for the production of numerous dicotyledonous crops throughout the warmer regions of the world. In the Old World a small number of begomoviruses have genomes consisting of two components whereas the majority have single-component genomes. Most of the monopartite begomoviruses associate with satellite DNA molecules, the most important of which are the betasatellites. Cotton leaf curl disease (CLCuD is one of the major problems for cotton production on the Indian sub-continent. Across Pakistan, CLCuD is currently associated with a single begomovirus (Cotton leaf curl Burewala virus [CLCuBuV] and the cotton-specific betasatellite Cotton leaf curl Multan betasatellite (CLCuMuB, both of which have recombinant origins. Surprisingly, CLCuBuV lacks C2, one of the genes present in all previously characterized begomoviruses. Virus-specific transcripts have only been mapped for few begomoviruses, including one monopartite begomovirus that does not associate with betasatellites. Similarly, the transcripts of only two betasatellites have been mapped so far. The study described has investigated whether the recombination/mutation events involved in the evolution of CLCuBuV and its associated CLCuMuB have affected their transcription strategies. Results The major transcripts of CLCuBuV and its associated betasatellite (CLCuMuB from infected Nicotiana benthamiana plants have been determined. Two complementary-sense transcripts of ~1.7 and ~0.7 kb were identified for CLCuBuV. The ~1.7 kb transcript appears similar in position and size to that of several begomoviruses and likely directs the translation of C1 and C4 proteins. Both complementary-sense transcripts can potentially direct the translation of C2 and C3 proteins. A single virion-sense transcript of ~1 kb, suitable for translation of the V1 and V2 genes was identified. A predominant

  1. Report on intercomparison V-9 of the determination of trace elements in cotton cellulose

    International Nuclear Information System (INIS)

    Pszonicki, L.; Hanna, A.N.; Suschny, O.

    1983-03-01

    Trace elements in plants are being investigated in many laboratories using nuclear techniques, mainly neutron activation analysis. To enable these laboratories to check the accuracy of their work and to provide data needed in the certification of a batch of reference material, the IAEA has organized several intercomparisons of analytical results of plants. This report deals with the comparative evaluations of the results on cotton cellulose powder. A total of 27 laboratories from 19 countries submitted 377 laboratory means on 57 elements

  2. Producing Organic Cotton: A Toolkit - Crop Guide, Projekt guide, Extension tools

    OpenAIRE

    Eyhorn, Frank

    2005-01-01

    The CD compiles the following extension tools on organic cotton: Organic Cotton Crop Guide, Organic Cotton Training Manual, Soil Fertility Training Manual, Organic Cotton Project Guide, Record keeping tools, Video "Organic agriculture in the Nimar region", Photos for illustration.

  3. Cotton Transportation and Logistics: A Dynamic System

    OpenAIRE

    Robinson, John R.; Park, John L.; Fuller, Stephen

    2007-01-01

    The paper reviews the evolution of U.S. cotton transportation and logistics patterns over the last three decades. There have been many forces of change over this time period, with the largest change being a shift from primarily domestic market destinations to the international market. We describe the pre-1999 system and flow patterns when domestic consumption of U.S. cotton was dominant. We contrast this with current flow patterns as measured by available secondary export data and a sample of...

  4. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2006-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this paper is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  5. STIFFNESS MODIFICATION OF COTTON IN CHITOSAN TREATMENT

    Directory of Open Access Journals (Sweden)

    CAMPOS Juan

    2017-05-01

    Full Text Available Chitosan is a biopolymer obtained from chitin, and among their most important aspects highlights its applications in a lot of industrial sectors due to its intrinsic properties, especially in the textile sector. In the last years, chitosan is widely used in the cotton and wool finishing processes due to its bond between them and its properties as an antifungical and antimicrobial properties. In this paper three different molecular weight chitosan are used in the finishing process of cotton to evaluate its influence in the surface properties modification. In order to evaluate the effect of the treatment with chitosan, flexural stiffness test is performed in warp and weft direction, and then the total value is calculated. The cotton fabric is treated with 5 g/L of different types of chitosan in an impregnation bath. This study shows the extent of surface properties modification of the cotton provided by three types of chitosan treatment. The results show that all types of chitosan modify the cotton flexural rigidity properties but the one which modifies it in a relevant manner is chitosan originated from shrimps. Chitosan, textile, flexural stiffnes, chitin, cotton.

  6. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Keyte, Anna L; Percifield, Ryan; Liu, Bao; Wendel, Jonathan F

    2006-01-01

    Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of methylation-polymorphism diversity at CCGG sites within allotetraploid cotton, Gossypium hirsutum, using a methylation-sensitive amplified fragment length polymorphism screen and a selected set of 20 G. hirsutum accessions for which we have information on genetic polymorphism levels and relationships. Methylation and MP exist at high levels within G. hirsutum: of 150 HpaII/MspI sites surveyed, 48 were methylated at the inner cytosine (32%) and 32 of these were polymorphic (67%). Both these values are higher than comparable measures of genetic diversity using restriction fragment length polymorphisms. The high percentage of methylation-polymorphic sites and potential relationship to gene expression underscore the potential significance of MP within and among populations. We speculate that biased correlation of methylation-polymorphic sites and genes in cotton may be a consequence of polyploidy and the attendant doubling of all genes.

  7. Estimating cotton canopy ground cover from remotely sensed scene reflectance

    International Nuclear Information System (INIS)

    Maas, S.J.

    1998-01-01

    Many agricultural applications require spatially distributed information on growth-related crop characteristics that could be supplied through aircraft or satellite remote sensing. A study was conducted to develop and test a methodology for estimating plant canopy ground cover for cotton (Gossypium hirsutum L.) from scene reflectance. Previous studies indicated that a relatively simple relationship between ground cover and scene reflectance could be developed based on linear mixture modeling. Theoretical analysis indicated that the effects of shadows in the scene could be compensated for by averaging the results obtained using scene reflectance in the red and near-infrared wavelengths. The methodology was tested using field data collected over several years from cotton test plots in Texas and California. Results of the study appear to verify the utility of this approach. Since the methodology relies on information that can be obtained solely through remote sensing, it would be particularly useful in applications where other field information, such as plant size, row spacing, and row orientation, is unavailable

  8. Hemispherical photography to estimate biophysical variables of cotton

    Directory of Open Access Journals (Sweden)

    Ziany N. Brandão

    Full Text Available ABSTRACT The Leaf Area Index (LAI is a key parameter to evaluate the vegetation spectral response, estimating plant nutrition and water requirements. However, in large fields is difficult to obtain accurate data to LAI determination. Therefore, the objective of this study was the estimation of LAI, biomass and yield of irrigated cotton through digital hemispherical photography. The treatments consisted of four nitrogen doses (0, 90, 180 and 270 kg ha-1 and four phosphorus doses (0, 120, 240 and 360 kg ha-1. Digital hemispherical photographs were collected under similar sky brightness conditions at 60 and 75 days after emergence (DAE, performed by the Digital Plant Canopy Imager - CI-110® of CID Inc. Biomass and LAI measurements were made on the same dates. LAI was also determined by destructive and non-destructive methods through a leaf area integrator (LI-COR® -LI-3100C model, and by measurements based on the midrib length of all leaves, respectively. The results indicate that the hemispherical images were appropriate to estimate the LAI and biomass production of irrigated cotton, while for the estimation of yield, more research is needed to improve the method.

  9. 75 FR 50847 - Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders

    Science.gov (United States)

    2010-08-18

    ... Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders AGENCY... Assistance Program (EAAP) and clarifying the definition of ``active shipping order.'' DATES: Effective Date... address that matter this rule amends in the payment calculation for semi-processed and reginned motes in 7...

  10. Survival and Development of Spodoptera frugiperda and Chrysodeixis includens (Lepidoptera: Noctuidae) on Bt Cotton and Implications for Resistance Management Strategies in Brazil.

    Science.gov (United States)

    Sorgatto, Rodrigo J; Bernardi, Oderlei; Omoto, Celso

    2015-02-01

    In Brazil, Spodoptera frugiperda (J. E. Smith) and Chrysodeixis includens (Walker) are important cotton pests and target of control of Bollgard II (Cry1Ac/Cry2Ab2) and WideStrike (Cry1Ac/Cry1F) cotton technologies. To subsidize an insect resistance management program, we conducted laboratory studies to evaluate the toxicity of these Bt cotton plants throughout larval development of S. frugiperda and C. includens. In bioassays with leaf disc, the efficacy of both Bt cotton plants against neonates was >80% for S. frugiperda and 100% for C. includens. However, S. frugiperda larvae that survived on Bt cotton had >76% of growth inhibition and stunting. In bioassays with S. frugiperda and C. includens larvae fed on non-Bt near-isoline during different time period (from 3 to 18 d) and then transferred to Bollgard II or WideStrike leaves showed that larval susceptibility decreased as larval age increased. For Bollgard II cotton, in all S. frugiperda instars, there were larvae that reached the pupal and adult stages. In contrast, on WideStrike cotton, a few larvae in fifth and sixth instar completed the biological cycle. For C. includens, some larvae in sixth instar originated adults in both Bt cotton plants. In conclusion, Bollgard II and WideStrike cotton technologies showed high efficacy against neonates of S. frugiperda and C. includens. However, the mortality of these species decreases as larval age increase, allowing insect survival in a possible seed mixture environment and favoring the resistance evolution. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Density and Seasonal Dynamics of Bemisia tabaci (Gennadius) Mediterranean on Common Crops and Weeds around Cotton Fields in Northern China

    DEFF Research Database (Denmark)

    Zhang, Xiao-ming; Yang, Nian-wan; Wan, Fang-hao

    2014-01-01

    theophrasti Medicus), sunflower (Helianthus annuus L.), sweet potato (Ipomoea batatas L.), soybean (Glycine max L.), and maize (Zea mays L.). The whitefly species identity was repeatedly tested and confirmed; seasonal dynamics on the various host plants was standardized by the quartile method. B. tabaci MED......The density seasonal dynamics of Bemisia tabaci MED were evaluated over two-years in a cotton-growing area in Langfang, Hebei Province, northern China on cotton (Gossypium hirsutum L.) and six other, co-occurring common plants: common ragweed (Ambrosia artemisiifolia L.), piemarker (Abutilon...

  12. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Science.gov (United States)

    2011-06-03

    ... ``Any AUP cotton'' and replacing it with the phrase ``Mature AUP cotton'' to clarify the AUP cotton must be mature in order to calculate a conversion factor between AUP cotton and ELS cotton. List of... dividing Price A by 85 percent of Price B. * * * * * (f) Mature AUP cotton harvested or appraised from...

  13. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    Science.gov (United States)

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  14. Seed Treatment Combined with a Spot Application of Clothianidin Granules Prolongs the Efficacy of Controlling Piercing-Sucking Insect Pests in Cotton Fields.

    Science.gov (United States)

    Zhang, Zhengqun; Zhao, Yunhe; Wang, Yao; Li, Beixing; Lin, Jin; Zhang, Xuefeng; Mu, Wei

    2017-09-13

    Seed treatments can directly protect cotton from early season piercing-sucking insect Aphis gossypii Glover but hardly provide long-term protection against Apolygus lucorum (Meyer-Dür). Therefore, the efficacy of clothianidin seed treatments combined with spot applications of clothianidin granules at the bud stage of cotton was evaluated to control piercing-sucking pests during the entire cotton growing season. Clothianidin seed treatments (at the rate of 4 g ai/kg seed) combined with a clothianidin granular treatment (even at low rate of 0.9 kg ai/ha) at the bud stage can effectively suppress A. gossypii and A. lucorum infestations throughout the seedling and blooming stages after planting and can improve cotton yield. The spot application of clothianidin granules also reduced the population densities of Bemisia tabaci (Gennadius). The dynamic changes of clothianidin residues demonstrated that the control efficacy of clothianidin against A. gossypii and A. lucorum might be related to the residues of this neonicotinoid in cotton leaves. This pest management practice provided long-term protection against cotton piercing-sucking pests for the entire growing season of cotton plants and could supplement the short-term control efficiency of clothianidin used as a seed treatment.

  15. The Effect of Rate and Application Method of Potassium on Yield and Yield Components of Cotton in Saline Condition

    Directory of Open Access Journals (Sweden)

    A Ardakani

    2016-12-01

    Full Text Available Introduction Salinity is a major abiotic stress that affects approximately 7% of the world’s total land area. Cotton (Gossypium barbadense L. is considered as one of the most important cash crops which is widely used for agricultural and industrial purposes. Although, cotton is classified as one of the most salt-tolerant major crops but its growth and development are adversely affected by soil or water salinity. Understanding salinity and fertilizer interaction can mitigate salinity stress and improving crop yield. Potassium (K is an essential nutrient that affects most of the biochemical and physiological processes that are involved in plant resistance to biotic and abiotic stresses. Proper management of K fertilizer is especially important in saline soils where K application might reduce the adverse effects of salinity on plant growth and yield. There is a little information about rate and application method of K on yield and yield component of cotton in saline condition. The objective of this study was to determine the effects of rate and application method of K on yield and yield component of cotton in soil and water saline condition. Materials and Methods The experiment was carried out at Sabzevar Agriculture and Natural Resources Research center (Haresabad, 30km southwest of Sabzevar (32◦32N, 51◦23E and 1630 above mean sea level,in 2014.This experiment was conducted as split plot design based on randomized complete block design with three replications. Factors were: K rate (75 and 150kg ha-1 Solopotash (containing 50% K2O and 18% S comprising the main plot and application method (25%at planting+25% at first flowering and 50%at early boll development (25P+25F+50B, 25%at planting+50% at first flowering and 25%at early boll development (25P+50F+25B, 25%at planting+25% at vegetative stage (5-8 leaves stage, 25% at first flowering and 25% at early boll development (25P+25V+25F+50B, 25% at planting+25% at vegetative stage and 50% at first

  16. Investigating Genetic Diversity Among Cotton Genotypes Available in the Iranian Gene Bank (Gossypium sp. Using ISSR Molecular Marker

    Directory of Open Access Journals (Sweden)

    F Shahriari Ahmadi

    2013-04-01

    Full Text Available Cotton is one of the most important world crops and is considered as a major cash crop in the North East of Iran. All selections in plant breeding are based on diversity and an increase in genetic diversity determines the range of selection. In the present study, 24 cultivars of cotton available at the research station for cotton in the East of Iran -Kashmar- were studied using the ISSR marker. A total number of 13 primers, with repeated simple sequences, were used for the amplification of genomic DNA. Overall, 128 bands were obtained, 109 of which showed polymorphism. To evaluate genetic similarity between cultivars, cluster analysis accompanied by the similarity coefficient developed by Jaccard and Nee (1972, were applied using the UPGMA method. Dendrogram analysis showed a high diversity in the cotton cultivars and two main groups with 70 percent genetic similarity dividing the cotton cultivars into two main groups; namely, tetraploid and diploid. The highest polymorphism percentage was related to 5' (CT8RC3' (100% and the lowest belonged to 5' (AG8YA3' and 5' (TC8G3' (25% primers. Based on the similarity matrix, the highest genetic similarity was found in Varamin and Khordad and the lowest in Avangard and Bakhtegan cultivars. Based on the obtained results, ISSR markers can be efficiently used for the investigation of genetic diversity among cotton cultivars.

  17. Genetic diversity/impurity estimation in sources of natural resistance against cotton leaf curl disease in pakistan

    International Nuclear Information System (INIS)

    Sarwar, G.

    2007-01-01

    Cotton accounts for more than 60% of Pakistan's export earnings through the export of both raw cotton and cotton products. An epidemic of cotton leaf curl disease (CLCuD) in Pakistan during the 1990s led to the withdrawal of high yielding cotton cultivars. Due of their susceptibility to the disease. The identification of natural resistance in some genotypes provided a means to manage reduce losses due to the disease. But it has been an adversity that almost all these resistant varieties have ultimately 'lost' their resistance. There are also reports that the original sources of resistance, as well as the varieties developed from them, are now susceptible to the disease when grafted with infected scion. For the present studies. Seed of two resistant varieties (LRA-5166 and (CP-152) was obtained from six different research organizations. Plants raised from these seed were grafted with symptomatic scion and used for morphological comparisons. Our results indicated that the genetic pool of these cultivars is not well maintained and that an unacceptable diversity impurity is present within and among the genetic stock of both these lines. There is thus a requirement for screening of these elite lines at the molecular level to ensure the purity of these varieties for future development. The virus causing CLCuD showed change by recombination making the search for new sources of resistance, as well as the maintenance of established sources, indispensable for the sustainable cotton production in Pakistan. (author)

  18. Preliminary Note on the Use of Radioisotopes to Study Some Cotton-Plant Pests in Africa; Note preliminaire sur l 'utilisation des radioisotopes dans l 'etude des parasites du cotonnier en afrique; Predvaritel'nye zamechaniya o primenenii radioizotopov dlya izucheniya nekotorykh vreditelej khlopchatnika v afrike.; Nota preliminar sobre el empleo de radioisotopos en el estudio de parasitos del algodonero en africa

    Energy Technology Data Exchange (ETDEWEB)

    Delattre, R. [Institut de Recherches du Coton et Textiles, Paris (France)

    1963-09-15

    The larva of Diparopsis watersi Roth is harmful to the cotton-plant, destroying the flower and the boll. This noctuid, which is practically monophagous, passes the quiescent season either in the ground in the chrysalid-at-diapause form (from 10 November onwards) or in continuing generation (polyvoltine) on plants left standing. Laboratory studies have served to elucidate the main mechanisms initiating and terminating diapause. In the field, the rapid multiplication of the pest during the crop period is due both to univoltine individuals hatching out towards April-May and to non-diapause generations. The respective roles played by these two different sources need to be determined fairly accurately in order to decide which methods of control are appropriate: uprooting of the cotton-plant, destruction of the pupae at diapause in the ground, bringing the crop forward, etc. Radioisotope labelling of larvae coming to maturity at critical periods should make it possible to tackle this problem at the practical level. Preliminary experiments for determining simple labelling techniques have been carried out at Tikem (Republic of Chad). In a first trial, P{sup 32} in atomized solution was applied direct to the foliage of young cottonplants. Despite the effects of rain, absorption by the plant reached about 10% in a few hours. Radioactivity is not retained by various phyllophagous larvae (Sylepta derogata, Prodenia litura), but those feeding on the fruit-bearing parts of the plant (Heliothis armigera, Earias insulana, Diparopsis watersi, etc.) are easily detectable three months after the application. In a second trial, P{sup 32} and S{sup 35} were applied to old cotton-plants immediately before the natural time for Diparopsis to enter diapause. The overall findings give hope of being able to distinguish without too much difficulty, among chrysalid populations taken from the ground, those which fed on the cotton-plant before labelling, and hence which underwent a diapause. A

  19. Functional Characterization of a Dihydroflavanol 4-Reductase from the Fiber of Upland Cotton (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Le Wang

    2016-01-01

    Full Text Available Dihydroflavanol 4-reductase (DFR is a key later enzyme involved in two polyphenols’ (anthocyanins and proanthocyanidins (PAs biosynthesis, however it is not characterized in cotton yet. In present reports, a DFR cDNA homolog (designated as GhDFR1 was cloned from developing fibers of upland cotton. Silencing GhDFR1 in cotton by virus-induced gene silencing led to significant decrease in accumulation of anthocyanins and PAs. More interestingly, based on LC-MS analysis, two PA monomers, (–-epicatachin and (–-epigallocatachin, remarkably decreased in content in fibers of GhDFR1-silenced plants, but two new monomers, (–-catachin and (–-gallocatachin were present compared to the control plants infected with empty vector. The ectopic expression of GhDFR1 in an Arabidopsis TT3 mutant allowed for reconstruction of PAs biosynthesis pathway and led to accumulation of PAs in seed coat. Taken together, these data demonstrate that GhDFR1 contributes to the biosynthesis of anthocyanins and PAs in cotton.

  20. Spatio Temporal Expression Pattern of an Insecticidal Gene (cry2A in Transgenic Cotton Lines

    Directory of Open Access Journals (Sweden)

    Allah BAKHSH

    2012-11-01

    Full Text Available The production of transgenic plants with stable, high-level transgene expression is important for the success of crop improvement programs based on genetic engineering. The present study was conducted to evaluate genomic integration and spatio temporal expression of an insecticidal gene (cry2A in pre-existing transgenic lines of cotton. Genomic integration of cry2A was evaluated using various molecular approaches. The expression levels of cry2A were determined at vegetative and reproductive stages of cotton at regular intervals. These lines showed a stable integration of insecticidal gene in advance lines of transgenic cotton whereas gene expression was found variable with at various growth stages as well as in different plant parts throughout the season. The leaves of transgenic cotton were found to have maximum expression of cry2A gene followed by squares, bolls, anthers and petals. The protein level in fruiting part was less as compared to other parts showing inconsistency in gene expression. It was concluded that for culturing of transgenic crops, strategies should be developed to ensure the foreign genes expression efficient, consistent and in a predictable manner.

  1. INDUCING RESISTANCE IN COTTON AGAINST COLLETOTRICHUM GOSSYPII VAR. CEPHALOSPORIOIDES WITH ESSENTIAL OILS

    Directory of Open Access Journals (Sweden)

    B. T. Santos

    2016-11-01

    Full Text Available This study aimed to evaluate the potential of essential oils of rosemary (Rosmarinus officinalis, baccharis (Baccharis trimera, lemon grass (Cymbopogon citratus, basil (Ocimum basilicum and eucalyptus (Corymbia citriodora in inducing resistance in cotton plants against C. gossypii var. cephalosporioides. The inductive effect of the essential oils was evaluated in plants growing in pots in the environment, which were treated with 1% essential oil at 47 days of age. 24 hours after elicitor treatment the plants were inoculated with a suspension of 1.5 x 105 conidia mL-1 of C. gossypii var. cephalosporioides. Five evaluations were performed disease and calculated the area under the disease progress curve. All essential oils showed potential for inducing resistance against cotton C. gossypii var. cephalosporioides.

  2. Green plant bug from South Texas gets a common name - the "verde plant" bug

    Science.gov (United States)

    Some cotton producers from south Texas and the Gulf Coast regions have been unfortunate over the last few years because they have had to deal with a green plant bug, Creontiades signatus, that will feed on cotton fruit. The insect was initially, and erroneously, thought to be Creontiades dilutus, an...

  3. Systematic Analysis and Comparison of Nucleotide-Binding Site Disease Resistance Genes in a Diploid Cotton Gossypium raimondii

    Science.gov (United States)

    Wei, Hengling; Li, Wei; Sun, Xiwei; Zhu, Shuijin; Zhu, Jun

    2013-01-01

    Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes. PMID:23936305

  4. Spatial Distribution of Adult Anthonomus grandis Boheman (Coleoptera: Curculionidae) and Damage to Cotton Flower Buds Due to Feeding and Oviposition.

    Science.gov (United States)

    Grigolli, J F J; Souza, L A; Fernandes, M G; Busoli, A C

    2017-08-01

    The cotton boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae) is the main pest in cotton crop around the world, directly affecting cotton production. In order to establish a sequential sampling plan, it is crucial to understand the spatial distribution of the pest population and the damage it causes to the crop through the different developmental stages of cotton plants. Therefore, this study aimed to investigate the spatial distribution of adults in the cultivation area and their oviposition and feeding behavior throughout the development of the cotton plants. The experiment was conducted in Maracaju, Mato Grosso do Sul, Brazil, in the 2012/2013 and 2013/2014 growing seasons, in an area of 10,000 m 2 , planted with the cotton cultivar FM 993. The experimental area was divided into 100 plots of 100 m 2 (10 × 10 m) each, and five plants per plot were sampled weekly throughout the crop cycle. The number of flower buds with feeding and oviposition punctures and of adult A. grandis was recorded throughout the crop cycle in five plants per plot. After determining the aggregation indices (variance/mean ratio, Morisita's index, exponent k of the negative binomial distribution, and Green's coefficient) and adjusting the frequencies observed in the field to the distribution of frequencies (Poisson, negative binomial, and positive binomial) using the chi-squared test, it was observed that flower buds with punctures derived from feeding, oviposition, and feeding + oviposition showed an aggregated distribution in the cultivation area until 85 days after emergence and a random distribution after this stage. The adults of A. grandis presented a random distribution in the cultivation area.

  5. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization.

    Science.gov (United States)

    Romero-Perdomo, Felipe; Abril, Jorge; Camelo, Mauricio; Moreno-Galván, Andrés; Pastrana, Iván; Rojas-Tapias, Daniel; Bonilla, Ruth

    The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that co-inoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Global gene expression in cotton (Gossypium hirsutum L. leaves to waterlogging stress.

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    Full Text Available Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH, but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.

  7. Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.

    Science.gov (United States)

    Griffin, T W; Zapata, S D

    2016-08-01

    The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the

  8. Diurnal fluctuations in cotton leaf carbon export, carbohydrate content, and sucrose synthesizing enzymes.

    Science.gov (United States)

    Hendrix, D L; Huber, S C

    1986-06-01

    In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.

  9. Response of cotton, alfalfa, and cantaloupe to foliar-deposited salt in an arid environment

    International Nuclear Information System (INIS)

    Hofmann, W.C.; Karpiscak, M.M.; Bartels, P.G.

    1987-01-01

    The cooling towers at the Palo Verde Nuclear Generating Station (PVNGS), located 80 km west of Phoenix, AZ, will release as estimated 2.1 Mg/d of particulates (primarily salts) into the atmosphere when the station is in full operation. The saline drift will disperse and settle onto agricultural fields surrounding the station. Field studies were conducted in 1983 to investigate the influence of foliar-applied saline aerosol on crop growth, foliar injury, and tissue elemental concentration on cotton (Gossypium hirsutum L.), alfalfa (medicago sativa L.), and cantaloupe (Cucumis melo L.) in an arid environment. The treatment aerosol solutions simulated treated wastewater effluent and included all essential plant nutrients and other elements, including trace concentrations of heavy metals. The treatments included unsprayed plots, and plots sprayed with salt solutions at 0 (distilled water), 8, 83, and 415 kg/(ha yr). The alfalfa received an additional 829 kg/(ha yr) treatment. The species were evaluated in separate experiments on Mohave clay loam and Sonoita sandy loam soils (Typic Haplargid) near Marana, AZ. Cotton treated with 415 kg/(ha yr) had significantly less chlorosis and tended to be slightly taller than the cotton in the unsprayed plots. The alfalfa treated at a rate of 829 kg/(ha yr) showed significantly more leaf margin necrosis than did the unsprayed alfalfa. In the cantaloupe, there were no visually apparent differences among salt treatments. Hand-harvested cotton plots had a significant reduction is seed cotton yield at the 415 kg/(ha yr) treatment. A similar though nonsignificant, trend towards reduced yield with increased salt treatment was observed in machine-harvested cotton plots

  10. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    Science.gov (United States)

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations

  11. T-Stimulator effect on cotton protein composition and synthesis in salinization stress

    International Nuclear Information System (INIS)

    Ibragimova, E.A.; Nazirova, E.R.; Samarkhodjaeva, N.R.; Nalbandyan, A.A.; Babaev, T.A.

    2004-01-01

    Full text: T-stimulator was established to possess a wide spectrum of physiological effects, to enhance plant adaptation to thermal stress and to increase plant resistance to pathogens. Plant adaptation to unfavorable conditions manifests in changes in many links of metabolism, that of proteins included. We studied effect of cottonseed treatment with T-stimulator on composition and synthesis of plasma membrane proteins upon chloride salinization by means of the radioisotope method. Electrophoretic fractionation of cottonseed plasma membrane proteins showed absence of more than 40 polypeptides with molecular mass from 10 to more than 100 kDa in the cotton root membranes. Major fractions-polypeptides with molecular mass of 61, 53, 46, 25, 21, 20 and 18 kDa constitute about 50% of the total polypeptide composition. The salinization significantly affects the total membrane protein output, proportion of some polypeptides and their synthesis rate. Analysis of phoreogram radioautographs showed that 2-hour exposition of cotton roots to 35 S methionine suppresses synthesis of major polypeptides with molecular mass of 63, 61 and 53 kDa, that of low molecular polypeptides (46, 20, 18 kDa) increasing. Changes in the proportion of major polypeptides in cotton plasma membranes, reduction in rate of biosynthesis of high molecular fractions with the general suppression of label inclusion in the membrane fraction are the evidence for a disturbance in biosynthesis of some membrane proteins in cotton tissue cells upon salinization. The inhibiting effect of salinization on the protein-synthesizing system was observed in plants treated with T-stimulator, but the rate of synthesis in plasma membranes of the treated plants was found significantly higher. The activation of some plasma membrane proteins under T-stimulator effect suggests an association with the increase in adaptation of the treated plants to the disturbing effect of salinization

  12. Rendimento de feijão e alterações no pH e na matéria orgânica do solo em função de doses de composto de resíduo de algodão Yield of bean plant and changes in pH and soil organic matter as a function of doses of compost cotton waste

    Directory of Open Access Journals (Sweden)

    Sílvio Júnio Ramos

    2009-08-01

    Full Text Available O objetivo do presente trabalho foi avaliar o rendimento de feijão e as alterações no pH e na matéria orgânica do solo após a aplicação do composto de resíduo de algodão. Para tanto, instalou-se o experimento em condições de campo, em um Argissolo Vermelho-Amarelo. O delineamento experimental foi em blocos ao acaso com cinco tratamentos constituídos por doses (0, 20, 40, 60, 80t ha-1 de resíduo de algodão compostado oriundo da indústria têxtil, com cinco repetições. Verificou-se que a aplicação do resíduo de algodão compostado promoveu melhoria nas características produtivas do feijoeiro submetido ao manejo orgânico e elevou os valores de pH e matéria orgânica do solo. Desse modo, o composto utilizado mostrou-se como uma alternativa para a adubação da cultura.The objective of this research was to evaluate the yield of bean plants and changes in pH and soil organic matter after compost cotton waste application. An experiment was carried out in an Acrisol. The experimental design was of randomized blocks with five levels of cotton waste compost (0, 20, 40, 60, 80t ha-1 from the textile factory, in five replications. The application of the cotton waste compost promoted increase in the growth and productive characteristics in bean crop, and increased the pH values and soil organic matter. Thus, the compost showed as an alternative for fertilization of the culture.

  13. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    1Key Laboratory of Cotton Genetic Improvement of the Ministry of Agriculture, Cotton Research Institute, Chinese. Academy of Agricultural Sciences, Anyang Henan 455 112, People's Republic of China. 2Institute ..... Athens, Greece. Xie D. X. ...

  14. Efeitos de misturas de dinitramine e diuron em pré-plantio incorporado na cultura do algodão (Gossypium hirsutum L. Effects of dinitramine and diuron mixtures applied pre-planting incorporated on cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    R. Victoria Filho

    1982-06-01

    dinitramine and diuron mixtures on weed control in cotton at two experiments at Casa Branca - SP on a clay soil (3 ,6% organic matter and Jaboticabal - SP on a clay loam (2,3% organic matter. The cotton variety sowed was IAC-13 -1 at Casa Branca (nov, 05, 1975 and RM-4A at Jaboticabal (dec. 3, 1975. The experiment had a design of randomized blocks with the treatments dinitramine at 0.25 kg; 0.40 kg; 0.50 kg/ha; diuron at 1.20 kg; 1.50 kg; 1.80 kg/ha and ali dinitramine + diuron mixture s with this rates; one treatment with trifluralin + diuron at 1.00 + 1.20 kg/ha, and one hoeded treatment. The best weed control results on the clay soil were obta ined by the mixtures when compared with the dinitramine and diuron appl ication on large crabgrass (Digitaria sanguinallis (L. Scop., go ose gras s (Eleusine indica (L . Gaertn., Paraguay starbur (Acanthospermum australe ( Loef. O. Kuntze, Borreria alata (Aubl. D.C., Brasil callalily (Richardia brasiliensis Gomez and sidas (Sida spp. but on the clay loam soil were the most important weeds we re la r ge c rabg ras s , s outhe rn s andbur (Cenchrus echinatus L. , West Indies pennisetum (Pennisetum setosum (L. Rich. Pers, Paraguay sandbur, Brasil callalily and sidas the be st weed control results were obtained with trifluralin + diuron and with dinitramine at 0.25 kg; 0.40 kg; 0.50 kg in mixture with diuron at 1.80 kg/ha. The treatments used didn't present any phyto toxicity to cotton at the initial development and there wasn't significant difference in the total yield.

  15. Endogenous Ethylene Concentration Is Not a Major Determinant of Fruit Abscission in Heat-Stressed Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Ullah Najeeb

    2017-09-01

    Full Text Available We investigated the role of ethylene in the response of cotton to high temperature using cotton genotypes with genetically interrupted ethylene metabolism. In the first experiment, Sicot 71BRF and 5B (a lintless variant with compromised ethylene metabolism were exposed to 45°C, either by instantaneous heat shock or by ramping temperatures by 3°C daily for 1 week. One day prior to the start of heat treatment, half the plants were sprayed with 0.8 mM of the ethylene synthesis inhibitor, aminoethoxyvinylglycine (AVG. In a subsequent experiment, Sicot 71BRF and a putatively heat-tolerant line, CIM 448, were exposed to 36 or 45°C for 1 week, and half the plants were sprayed with 20 μM of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, (ACC. High temperature exposure of plants in both experiments was performed at the peak reproductive phase (65–68 days after sowing. Elevated temperature (heat shock or ramping to 45°C significantly reduced production and retention of fruits in all cotton lines used in this study. At the termination of heat treatment, cotton plants exposed to 45°C had at least 50% fewer fruits than plants under optimum temperature in all three genotypes, while plants at 36°C remained unaffected. Heat-stressed plants continued producing new squares (fruiting buds after termination of heat stress but these squares did not turn into cotton bolls due to pollen infertility. In vitro inhibition of pollen germination by high temperatures supported this observation. Leaf photosynthesis (Pn of heat-stressed plants (45°C measured at the end of heat treatments remained significantly inhibited, despite an increased leaf stomatal conductance (gs, suggesting that high temperature impairs Pn independently of stomatal behavior. Metabolic injury was supported by high relative cellular injury and low photosystem II yield of the heat-stressed plants, indicating that high temperature impaired photosynthetic electron transport. Both

  16. The chemical recycle of cotton

    Directory of Open Access Journals (Sweden)

    Alice Beyer Schuch

    2016-08-01

    Full Text Available The chemical recycle of cotton textiles and/or other cellulosic materials for the purpose of manufacturing regenerated high quality textiles fibres is a novel process. The objective of related research is based on the forecast of population growth, on resource scarcity predictions, and on the negative environmental impact of the textile industry. These facts lead the need of broadening the scope for long-term textile-to-textile recycle - as the mechanical recycle of natural fibres serve for limited number of cycles, still depends on input of virgin material, and offer a reduced-in-quality output. Critical analysis of scientific papers, relevant related reports, and personal interviews were the base of this study, which shows viable results in laboratorial scale of using low-quality cellulosic materials as input for the development of high-quality regenerated textile fibres though ecological chemical process. Nevertheless, to scale up and implement this innovative recycle method, other peripheral structures are requested, such as recover schemes or appropriate sort, for instance. Further researches should also be considered in regards to colours and impurities.

  17. PREDICTING DEMAND FOR COTTON YARNS

    Directory of Open Access Journals (Sweden)

    SALAS-MOLINA Francisco

    2017-05-01

    Full Text Available Predicting demand for fashion products is crucial for textile manufacturers. In an attempt to both avoid out-of-stocks and minimize holding costs, different forecasting techniques are used by production managers. Both linear and non-linear time-series analysis techniques are suitable options for forecasting purposes. However, demand for fashion products presents a number of particular characteristics such as short life-cycles, short selling seasons, high impulse purchasing, high volatility, low predictability, tremendous product variety and a high number of stock-keeping-units. In this paper, we focus on predicting demand for cotton yarns using a non-linear forecasting technique that has been fruitfully used in many areas, namely, random forests. To this end, we first identify a number of explanatory variables to be used as a key input to forecasting using random forests. We consider explanatory variables usually labeled either as causal variables, when some correlation is expected between them and the forecasted variable, or as time-series features, when extracted from time-related attributes such as seasonality. Next, we evaluate the predictive power of each variable by means of out-of-sample accuracy measurement. We experiment on a real data set from a textile company in Spain. The numerical results show that simple time-series features present more predictive ability than other more sophisticated explanatory variables.

  18. No correlation between the diversity and productivity of assemblages: evidence from the phytophage and predator assemblages in various cotton agroecosystems.

    Science.gov (United States)

    Gao, Feng; Men, XingYuan; Ge, Feng

    2014-09-01

    Biodiversity research has shown that primary productivity increases with plant species number, especially in many experimental grassland systems. Here, we assessed the correlation between productivity and diversity of phytophages and natural enemy assemblages associated with planting date and intercropping in four cotton agroecosystems. Twenty-one pairs of data were used to determine Pearson correlations between species richness, total number of individuals, diversity indices and productivity for each assemblage every five days from 5 June to 15 September 2012. At the same trophic level, the productivity exhibited a significant positive correlation with species richness of the phytophage or predator assemblage. A significant correlation was found between productivity and total number of individuals in most cotton fields. However, no significant correlations were observed between productivity and diversity indices (including indices of energy flow diversity and numerical diversity) in most cotton fields for either the phytophage or the predator assemblages. Species richness of phytophage assemblage and total individual numbers were significantly correlated with primary productivity. Also, species richness of natural enemy assemblage and total number of individuals correlated with phytophage assemblage productivity. A negative but not significant correlation occurred between the indices of numerical diversity and energy flow diversity and lower trophic-level productivity in the cotton-phytophage and phytophage-predator assemblages for most intercropped cotton agroecosystems. Our results clearly showed that there were no correlations between diversity indices and productivity within the same or lower trophic levels within the phytophage and predator assemblages in cotton agroecosystems, and inter-cropped cotton fields had a stronger ability to support the natural enemy assemblage and potentially to reduce phytophages.

  19. [Effects of drought and waterlogging on carbohydrate contents of cotton boll and its relationship with boll biomass accumulation at the flowering and bolling stage].

    Science.gov (United States)

    Yang, Chang-Qin; Liu, Jing-Ran; Zhang, Guo-Wei; Liu, Rui-Xian; Zhou, Zhi-Guo

    2014-08-01

    Cotton cultivar NuCOTN 33B was planted in isolated pools treated with drought or waterlogging for 7 or 14 d to explore their effects on cotton boll carbohydrate content and its relationship with the biomass accumulation. The results showed that the drought treatment reduced the carbohydrate content of cotton boll shell on middle fruit branches, but had a weak effect on cotton boll shells on lower fruit branches. Soluble sugar, starch and sucrose contents of cotton boll shell on upper fruit branches under the drought condition and on whole plant branches under waterlogging treatment changed similarly, namely, the soluble sugar and starch content increased, while the sucrose content went down firstly and then increased later, which indicated that the exportation of sucrose from boll shell was inhibited and became worse with the increase of waterlogging duration. Compared with the boll shell, the carbohydrate contents of cotton seed were less affected by the drought and waterlogging treatments at the flowering and bolling stage. Under the treatments of drought and 7 d-waterlogging, the biomass accumulation of cotton bolls on the middle fruit branches initiated earlier but lasted less days, and the maximum speed at lower and upper fruit branches reduced, while the treatment of waterlogging for 14 d caused the decline of maximum speed of biomass accumulation of bolls on whole branches. On the other side, the correlation analysis showed the significant positive relationships among the boll biomass, the maximum speed and the contents of soluble sugar and sucrose in the boll shell respectively. In conclusion, the treatment of drought and waterlogging at the flowering and bolling stage retarded the outward transportation of sucrose from cotton bolls, changed the boll biomass accumulation characteristics, and therefore were detected as the important cause of cotton boll total biomass reduction.

  20. Fiber sample presentation system for spectrophotometer cotton fiber color measurements

    Science.gov (United States)

    The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...

  1. At-line cotton color measurements by portable color spectrophotometers

    Science.gov (United States)

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  2. IMPROVED SPECTROPHOTOMETER FIBER SAMPLING SYSTEM FOR COTTON FIBER COLOR MEASUREMENTS

    Science.gov (United States)

    Cotton in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), and the parameters Rd and +b are used to designate color grades for cotton fiber. However, Rd and +b are cotton-specific color parameters, and the need existed to demonstrate the relationships of Rd and +b to...

  3. 78 FR 68983 - Cotton Futures Classification: Optional Classification Procedure

    Science.gov (United States)

    2013-11-18

    ...-AD33 Cotton Futures Classification: Optional Classification Procedure AGENCY: Agricultural Marketing... regulations to allow for the addition of an optional cotton futures classification procedure--identified and... response to requests from the U.S. cotton industry and ICE, AMS will offer a futures classification option...

  4. Insecticide use and practices among cotton farmers in northern ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) is an important cash crop in Uganda. Insecticide application practices among cotton growers in northern Uganda were examined to determine the pests targeted and the compliance of control measures with the standards recommended by the Uganda's Cotton Development Organization ...

  5. Genetic transformation of cry1EC gene into cotton ( Gossypium ...

    African Journals Online (AJOL)

    Cotton is the chief fibre crop of global importance. It plays a significant role in the national economy. Cotton crop is vulnerable to a number of insect species, especially to the larvae of lepidopteron pests. 60% insecticides sprayed on cotton are meant to control the damage caused by bollworm complex. Transgenic ...

  6. MicroRNA expression profiling during upland cotton gland forming ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... 2Key Laboratory of Cotton Genetic Improvement, Cotton Research Institute of the Chinese Academy of Agricultural. Sciences, Ministry of ... terpenoid aldehyde biosynthesis pathway, genetic engineering and molecular breeding of cotton. ... toxic to non-ruminant animals and humans, which means that large ...

  7. THE ELASTICITY OF EXPORT DEMAND FOR US COTTON

    OpenAIRE

    Paudel, Laxmi; Houston, Jack E.; Adhikari, Murali; Devkota, Nirmala

    2004-01-01

    There exist conflicting views among the researchers about the magnitudes of US cotton export demand elasticity, ranging from the highly inelastic to highly elastic. An Armington model was used to analyze the export demand elasticity of US Cotton. Our analysis confirms an elastic nature of US cotton export demand.

  8. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Additional samples of cotton; drawing. 27.25 Section... Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore prescribed, separate samples, if desired, may be drawn and furnished to the owner of the cotton. ...

  9. 7 CFR 1427.23 - Cotton loan deficiency payments.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan... intentions to receive a loan deficiency payment on the identified commodity or (ii) A completed request for a... cotton based on a locked-in adjusted world price, provide identifying numbers for modules or other...

  10. CATEGORIZATION OF EXTRANEOUS MATTER IN COTTON USING MACHINE VISION SYSTEMS

    Science.gov (United States)

    The Cotton Trash Identification System (CTIS) was developed at the Southwestern Cotton Ginning Research Laboratory to identify and categorize extraneous matter in cotton. The CTIS bark/grass categorization was evaluated with USDA-Agricultural Marketing Service (AMS) extraneous matter calls assigned ...

  11. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427.174 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION... Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31 following...

  12. farmers' knowledge and perceptions of cotton insect pests and their

    African Journals Online (AJOL)

    Prince Acheampong

    A survey of 337 cotton farmers in the three northern regions of Ghana was ... five applications were made during the season. ... Keywords: cotton, farmer knowledge and perception, insect pest control, Ghana. .... bordered on tests of farmers' knowledge of cotton insect pests, their damage ..... Agricultural Experiment Station.

  13. Zinc comprising coordination compounds as growth stimulants of cotton seeds

    International Nuclear Information System (INIS)

    Yusupov, Z.N.; Nurmatov, T.M.; Rakhimova, M.M.; Dzhafarov, M.I.; Nikolaeva, T.B.

    1991-01-01

    Present article is devoted to zinc comprising coordination compounds as growth stimulants of cotton seeds. The influence of zinc coordination compounds with physiologically active ligands on germinative energy and seed germination of cotton was studied. The biogical activity and effectiveness of zinc comprising coordination compounds at application them for humidification of cotton seeds was studied as well.

  14. 7 CFR 1427.1203 - Eligible ELS cotton.

    Science.gov (United States)

    2010-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Extra Long Staple (ELS) Cotton... must be either: (1) Baled lint, including baled lint classified by USDA's Agricultural Marketing..., under the provisions of this subpart, has been made available; (2) Imported ELS cotton; (3) Raw...

  15. Fourier transform infrared imaging of Cotton trash mixtures

    Science.gov (United States)

    There is much interest in the identification of trash types comingled with cotton lint. A good understanding of the specific trash types present can lead to the fabrication of new equipment which can identify and sort cotton trash found with cotton fiber. Conventional methods, including the High Vo...

  16. Cotton Production in Mali: Subsidies or Sustainable Development?

    Science.gov (United States)

    Moore, Lindsey

    2007-01-01

    Current trade rules concerning cotton subsidies are intricately linked with poverty and hunger in Mali. Over half of Mali's economy and over 30 million people depend directly on cotton. It is the main cash crop and the most important source of export revenue. Cotton also plays a key role in development policies and in the fight against poverty by…

  17. FACE: Free-Air CO[sub 2] Enrichment for plant research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. (ed.)

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO)[sub 2] on cotton plants are described. Biological responses studied include foliage response to CO[sub 2] fluctuations; yield of cotton exposed to CO[sub 2] enrichment; responses of photosynthesis and stomatal conductance to elevated CO[sub 2] in field-grown cotton; cotton leaf and boll temperatures; root response to CO[sub 2] enrichment; and evaluations of cotton response to CO[sub 2] enrichment with canopy reflectance observations.

  18. FACE: Free-Air CO{sub 2} Enrichment for plant research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. [ed.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO){sub 2} on cotton plants are described. Biological responses studied include foliage response to CO{sub 2} fluctuations; yield of cotton exposed to CO{sub 2} enrichment; responses of photosynthesis and stomatal conductance to elevated CO{sub 2} in field-grown cotton; cotton leaf and boll temperatures; root response to CO{sub 2} enrichment; and evaluations of cotton response to CO{sub 2} enrichment with canopy reflectance observations.

  19. Agrobacterium-mediated transformation of verticillium dahliae with gfr gene to study cotton-pathogen interaction using a novel inoculation method

    International Nuclear Information System (INIS)

    Li, F.; Bibi, N.; Fan, K.; Wang, M.

    2016-01-01

    Verticillium dahliae is a soil-born fungal pathogen which causes Verticillium wilt in economically important crops including cotton. We conducted a study to monitor the interaction between the fungus and cotton. V. dahliae was transformed with the gene encoding green fluorescent protein. The gene can be constitutively expressed and fluorescence was clearly visible in both hyphae and spores. Due to heterogeneous gene insertion, the growth rate, colony morphology and pathogenicity of fungus transformants showed differences compared with corresponding wild type. Similarly, quantitative real-time PCR analysis also indicated significant differences in the gene expression among different V. dahliae transformants. To study cotton-pathogen interaction, we devised a novel inoculation method and developed a successful infection by keeping GFP-expressed mycelial plug along with aseptic cotton seedlings. After 6-day inoculation, the LSM microscopic image showed that the fungus rapidly formed a mycelial network on the surface of the stems and colonized into plant tissue, displayed an intercellular infection pattern. The early events during cotton colonization by V. dahliae can be successfully observed in 10 days including the plant growth period. Besides, pathological changes of seedlings like tissue discoloration, wilting, stem dehiscence and necrosis can be clearly observed without the influences of soil and other microbes. This inoculation method provides a rapid, effective and environmental friendly technique for the study of cotton-pathogen interaction and identification of resistant plant cultivars. (author)

  20. Induced mutations for improvement of desi cotton

    International Nuclear Information System (INIS)

    Waghmare, V.N.; Mohan, Punit; Singh, Phundan; Gururajan, K.N.

    2000-01-01

    Desi cotton varieties of Gossypium arboreum have wide adaptability and are relatively tolerant to biotic (insect pests and diseases) and abiotic (moisture and salt) stresses. Desi varieties have got potential to yield even under adverse and low input situations. Most of them are synchronous in maturity and possess consistent fibre properties. Despite such merits, very little attention has been paid for improvement of desi cotton. The present area under arboreum varieties is 17.0% (15.30 lakh ha.) against 65% (35.75 lakh ha) during 1947-48. Deliberate attempts are required to improve G. arboreum for its economic and quality characters to compete with upland varieties in rainfed cotton ecology

  1. Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae.

    Directory of Open Access Journals (Sweden)

    Jennifer L Williams

    Full Text Available Fitness costs of resistance to Bacillus thuringiensis (Bt crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella, resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.

  2. Genetic disparity and relationship among quantitatively inherited yield related traits in diallel crosses of upland cotton

    International Nuclear Information System (INIS)

    Bibi, M.; Khan, N.U.; Mohammad, F.; Gul, R.; Idrees, M.; Sayal, O.U.; Khakwani, A.A.; Khan, I.A.

    2011-01-01

    In quantitative genetics, development of high yielding genotypes from parental cultivars of same ancestry is some what confusing as compared to genetically diverse parents. However, sufficient recombinations through allelic variations in mating of closely-related populations result in superior agronomic performance. Development of improved cotton genotypes is one of the prime objectives of any cotton breeding programmes. Genetic divergence and yield potential of parental cotton genotypes versus their diallel hybrids, relationship of yield with various morpho-yield traits and their heritability were studied in 8 X 8 F/sub 1/ diallel hybrids and their parental cultivars in Gossypium hirsutum L. during 2008-09 at Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan. Highly significant (p less than or equal to 0.01) differences were observed among parental genotypes and F/sub 1/ populations for all the traits. Results revealed that F/sub 1/ hybrids i.e., CIM-506 X CIM-554, CIM-473 X CIM-554, CIM-446 X CIM-496 and CIM-446 X CIM-554 produced significantly higher number of sympodia, bolls per populations showed incredible performance for plant height, locules per boll and seeds plant and seed cotton yield. Some F/sub 1/ per locule. Seed cotton yield manifested positive association with morpho-yield traits which also accounted for greater genetic variations to yield being dependent trait. Heritabilities (broad sense) were moderate to high in magnitude for all populations with larger genetic potential, positive relationship between yield and yield traits. Results revealed that F1 contributing traits and moderate to high heritability can guide intensive selection and improvement per se in segregating populations. (author)

  3. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  4. Radiation degradation of short-cotton linters

    International Nuclear Information System (INIS)

    Ma Zue Teh; Zhou Rui Min

    1984-01-01

    Radiation degradation of short-cotton linters has been studied by using X-ray diffraction, an infrared spectrometer and a viscosimeter. Average molecular weight and crystallinity of short-cotton linters and the change of reducing sugar in γ-radiation degradation were examined. It was found that cellulosic saccharification in hydrolysis was enhanced with preirradiation of linter. This probably resulted from the radiation induced change of cellulosic structure. Sensitizers to promote radiation degradation effect were investigated. Carbon tetrachloride has been found to be effective. (author)

  5. Cotton Wilt and the Environment

    Indian Academy of Sciences (India)

    as well as mature healthy plants growing in diseased soil. (2) Fusarium hyphae may not be present in the wilt-affected plants. (3) Superphosphate ... agencies, such as organic manure, aluminium salts, lime and water-logging. (8) Seedlings in the very first stages of wilt-infection, if transplanted into healthy soil, develop into ...

  6. Stability analysis for yield and some other traits in egyptian cotton genotypes across varying environments

    International Nuclear Information System (INIS)

    Shaheen, A.M.A.; Gomaa, M.A.M.; Khattab, S.A.M.

    1999-01-01

    Data obtained from eight genotypes of cotton grown over two successive seasons each included three nitrogen levels i.e. 45, 60 and 75kg nitrogen/feddan were statistically analysed using stability model. Ten quantitative traits were studied to indicate the performance of genotypes, comprised seed cotton yiel/plant, number of bolls/plant, average boll weight, lint percentage, fiber length (2.5%SL), fiber length (50%SL), uniformity ratio, micronair value, fiber strength and oil percentage. stability parameters (b) and (S 2 d) were used to compare the performance of these ge notypes over environment. Genotypes were ranked according to significance of their stability parameters for studied characters. The best genotype according to stability was the genotype 3/28/1 and the worst one was Giza 81

  7. Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study.

    Science.gov (United States)

    Gargoubi, Sondes; Tolouei, Ranna; Chevallier, Pascale; Levesque, Lucie; Ladhari, Neji; Boudokhane, Chedly; Mantovani, Diego

    2016-08-20

    Recently, antimicrobial and decontaminating textiles, such as cotton a natural carbohydrate polymer, are generating more attention. Plant materials used for natural dyes are expected to impart biofunctional properties and high added valued functional textiles. In the current study, surface modification of cotton to maximize the dye amount on the surface has been investigated. Physical modification using nitrogen-hydrogen plasma, chemical modification using chitosan and chemical modification using dopamine as biopolymers imparting amino groups were explored. Furthermore, dye exhaustion of curcumin, as a natural functional dye has been studied. Dye stability tests were also performed after fabric washing using hospital washing protocol to predict the durability of the functionalizations. The results demonstrated that cotton surfaces treated with dopamine exhibit a high level of dye uptake (78%) and a good washing fastness. The use of non-toxic and natural additives during cotton finishing process could give the opportunity of cradle to cradle design for antimicrobial textile industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton.

    Directory of Open Access Journals (Sweden)

    Hongjie Feng

    Full Text Available BACKGROUND: As a result of changing consumer preferences, cotton (Gossypium Hirsutum L. from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. EXPERIMENTAL DESIGN: Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3'H, and GhF3'5'H were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. RESULT: The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL. The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. CONCLUSIONS: Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers.

  9. Effects of soybean Kunitz trypsin inhibitor on the cotton boll weevil (Anthonomus grandis).

    Science.gov (United States)

    Franco, Octávio L; Dias, Simoni C; Magalhães, Claudio P; Monteiro, Ana C S; Bloch, Carlos; Melo, Francislete R; Oliveira-Neto, Osmundo B; Monnerat, Rose G; Grossi-de-Sá, Maria Fátima

    2004-01-01

    The cotton boll weevil, Anthonomus grandis, is an economically important pest of cotton in tropical and subtropical areas of several countries in the Americas, causing severe losses due to their damage in cotton floral buds. Enzymatic assays using gut extracts from larval and adult boll weevil have demonstrated the presence of digestive serine proteinase-like activities. Furthermore, in vitro assays showed that soybean Kunitz trypsin inhibitor (SKTI) was able to inhibit these enzymes. Previously, in vivo effects of black-eyed pea trypsin chymotrypsin inhibitor (BTCI) have been demonstrated towards the boll weevil pest. Here, when neonate larvae were reared on an artificial diet containing SKTI at three different concentrations, a reduction of larval weight of up to 64% was observed for highest SKTI concentration 500 microM. The presence of SKTI caused an increase in mortality and severe deformities of larvae, pupae and adult insects. This work therefore represents the first observation of a Kunitz trypsin inhibitor active in vivo and in vitro against A. grandis. Bioassays suggested that SKTI could be used as a tool in engineering crop plants, which might exhibit increased resistance against cotton boll weevil.

  10. Clomazone selectivity in cotton seeds treated with dietholate and zinc acetate

    Directory of Open Access Journals (Sweden)

    Miriam Hiroko Inoue

    2014-12-01

    Full Text Available The objective of this study objective was to evaluate the selectivity of pre-emergence applications the herbicide clomazone cotton seeds treated with dietholate and zinc acetate. The 4 x 2 factorial arrangement was adopted (4 seed treatment methods and 2 clomazone dosages, distributed in a randomized block design with 4 repetitions. In treatments where dietholate and zinc acetate were applied, rates of 0.4 kg ha-1 and 8 ml per kg of seeds were used respectively. The clomazone rates used refer to 0.8 and 1.0 kg ha- 1. The cotton cultivar used was the Fiber Max 966 LL. Independent of treatment, all seeds were treated with tiametoxam insecticide and fludioxonil + metalaxyl-M fungicide at rates of 2.24 and 0.08 + 0.03 g per kg of seed, respectively, to control pests early and limit losses caused by pathogens in germination and seedling emergence. Dietholate and zinc acetate treatment had greater initial effect on cotton plants at 21, 30 and 45 days after application. In phytointoxication symptoms were observed for treatment with dietholate and zinc acetate during the evaluation periods. Seeds treated with dietholate, dietholate and zinc acetate or zinc acetate alone provided a higher number of bolls and seed cotton production compared to the control.

  11. Population dynamics of Aphis gossypii Glover and in sole and intercropping systems of cotton and cowpea.

    Science.gov (United States)

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Garcia, Adriano G; Santos, Bárbara D B; Malaquias, José B

    2018-01-01

    Population dynamics of aphids have been studied in sole and intercropping systems. These studies have required the use of more precise analytical tools in order to better understand patterns in quantitative data. Mathematical models are among the most important tools to explain the dynamics of insect populations. This study investigated the population dynamics of aphids Aphis gossypii and Aphis craccivora over time, using mathematical models composed of a set of differential equations as a helpful analytical tool to understand the population dynamics of aphids in arrangements of cotton and cowpea. The treatments were sole cotton, sole cowpea, and three arrangements of cotton intercropped with cowpea (t1, t2 and t3). The plants were infested with two aphid species and were evaluated at 7, 14, 28, 35, 42, and 49 days after the infestations. Mathematical models were used to fit the population dynamics of two aphid species. There were good fits for aphid dynamics by mathematical model over time. The highest population peak of both species A. gossypii and A. craccivora was found in the sole crops, and the lowest population peak was found in crop system t2. These results are important for integrated management programs of aphids in cotton and cowpea.

  12. Genetic diversity and phylogenetic relationship in different genotypes of cotton for future breeding

    Directory of Open Access Journals (Sweden)

    Jehan

    2017-11-01

    Full Text Available Background: To make the plants well adapted and more resistant to diseases and other environmental stresses there is always a need to improve the quality of plant’s genome i.e. to increase its genetic diversity. Methods: In the present study six variety and six lines of cotton were investigated for their genetic diversity and phylogenetic relationship. For this purpose 35 different RAPD primers obtained from the Gene Link Technologies, USA were used. Results: Among 35 RAPD primers, 13 primers produced reproducible PCR bands while the rest failed to show any amplification product. Our results indicated that the total count of the reproducible bands was 670 and polymorphic loci were counted to be 442 which constitute 66% of total loci. Phylogenetic analysis revealed two major groups each consists of 7 and 5 genotypes respectively. Genotypes Lp1 and Tp4 were placed at maximum genetic distance and in separate groups and could be utilized for future cotton breeding. Conclusions: RAPD analysis is a cheaper and time saving technique for the determination of genetic diversity of different cotton genotypes. Cotton genotype Lp1 and Tp4 could be the best candidates for future breeding programs as both genotypes are genetically distant from each other.

  13. Analysis of caustic soda of different manufacturers in pakistan for mercerization of cotton textiles

    International Nuclear Information System (INIS)

    Zahid, B.; Faisal, S.; Siddique, S.H.

    2017-01-01

    Pakistan has sufficient production capacity of caustic soda to cater the needs of the local industry. Presently, Pakistan has four major plants with production capacity around 435,000 mega ton per year of caustic soda of various grades. Textile industry of Pakistan is the major consumer of produced high grade caustic soda; as the presence of any impurities especially dissolved salts and metals is unfavorable for wet processing of cotton. This study investigates the performance of three different local brands of caustic soda intended for use in textile wet processing of cotton fabric specifically for mercerization process. The brands were selected based on their purity grades. The selected caustic soda samples were chemically analyzed for the presence of impurities. Twenty seven cotton fabric samples (nine samples of each brand) were prepared by mercerization in slack state. The cotton fabric samples were tested for changes in surface morphology, tensile strength (warp and weft), tear strength, air permeability and K/S (Colour Strength). The results were analyzed using one-way ANOVA (Analysis of Variance) to ascertain the statistical equivalence within and between the tested brands. The results showed no significant differences across the tested brands at a 95% confidence level except for air permeability and K/S in blue shade. (author)

  14. Expression analysis of fiber related genes in cotton (gossypium hirsutum l.) through real time pcr

    International Nuclear Information System (INIS)

    Iqbal, N.; Khatoon, A.; Asif, M.; Bashir, A.

    2016-01-01

    Cotton fibers are unicellular seed trichomes and the largest known plant cells. Fiber morphogenesis in cotton is a complex process involving a large number of genes expressed throughout fiber development process. The expression profiling of five gene families in various cotton tissues was carried out through real time PCR. Expression analysis revealed that transcripts of expansin, tubulin and E6 were elevated from 5 to 20 days post anthesis (DPA) fibers. Three Lipid transfer proteins (LTPs) including LTP1, LTP3, LTP7 exhibited highest expression in 10 - 20 DPA fibers. Transcripts of LTP3 were detected in fibers and non fiber tissues that of LTP7 were almost negligible in non fiber tissues. Sucrose phosphate synthase gene showed highest expression in 10 DPA fibers while sucrose synthse (susy) expressed at higher rate in 5-20 DPA fibers as well as roots. The results reveal that most of fiber related genes showed high expression in 5-20 DPA fibers. Comprehensive expression study may help to determine tissue and stage specificity of genes under study. The study may also help to explore complex process of fiber development and understand the role of these genes in fiber development process. Highly expressed genes in fibers may be transformed in cotton for improvement of fiber quality traits. Genes that were expressed specifically in fibers or other tissues could be used for isolation of upstream regulatory sequences. (author)

  15. Effect of farm yard manure and nitrogen application on seed cotton yield under arid climatic conditions

    International Nuclear Information System (INIS)

    Anwar, M.M.

    2005-01-01

    The importance of farm yard manure and green manuring is well established for better crop production. The availability of farm yard manure is becoming difficult due to mechanized farming. An experiment was conducted with farm yard manure application in less quantity i.e. 5000 kg per hectare through fermenter with irrigation water as concentrated solution of farm yard manure. Four levels of nitrogen i.e. 0, 50, 100 and 150 kg/ha were applied through soil to Cotton crop planted on bed-furrows. Two years average results indicated that application of FYM at the rate of 5 metric ton per hectare through fermenter with 0, 50, 100 and 150 kgN/ha through soil increased seed cotton by 7 percent, on over all average basis of all fertilizer levels, as compared with no farm yard manure application. There was 6 percent increase with first 50 kgN/ha in the presence of FYM where as 100 kgN/ha gave 15% increase in seed cotton yield over no nitrogen application. It indicated that the efficiency of nitrogen at the rate of 100 kg/ha in the presence of farm yard manure was increased. There was 7, 15 and 20 percent increase in seed cotton with 50, 100 and 150 kgN/ha over no nitrogen on over all average basis of farm yard manure variables. Benefit cost ratio was more with FYM application alone.(author)

  16. Preparation of Microencapsulated Bacillus subtilis SL-13 Seed Coating Agents and Their Effects on the Growth of Cotton Seedlings

    Directory of Open Access Journals (Sweden)

    Liang Tu

    2016-01-01

    Full Text Available Inoculation of the bacterial cells of microbial seed coating agents (SCAs into the environment may result in limited survival and colonization. Therefore, the application efficacy of an encapsulated microbial seed coating agent (ESCA was investigated on potted cotton plants; the agent was prepared with polyvinyl alcohol, sodium dodecyl sulfate, bentonite, and microencapsulated Bacillus subtilis SL-13. Scanning electron micrography revealed that the microcapsules were attached to ESCA membranes. The ESCA film was uniform, bubble-free, and easy to peel. The bacterial contents of seeds coated with each ESCA treatment reached 106 cfu/seed. Results indicated that the germination rate of cotton seeds treated with ESCA4 (1.0% (w/v sodium alginate, 4.0% polyvinyl alcohol, 1.0% sodium dodecyl sulfate, 0.6% acacia, 0.5% bentonite, and 10% (v/v microcapsules increased by 28.74%. Other growth factors of the cotton seedlings, such as plant height, root length, whole plant fresh weight, and whole plant dry weight, increased by 52.70%, 25.13%, 46.47%, and 33.21%, respectively. Further analysis demonstrated that the peroxidase and superoxide dismutase activities of cotton seedlings improved, whereas their malondialdehyde contents decreased. Therefore, the ESCA can efficiently improve seed germination, root length, and growth. The proposed ESCA exhibits great potential as an alternative to traditional SCA in future agricultural applications.

  17. Recent progress in Fourier Transform Infrared (FTIR) spectroscopy study of compositional, structural, and physical attributes of developmental cotton fibers

    Science.gov (United States)

    Cotton fibers are natural plant products and their end-use qualities depend on their stages of development. In general, the quantity of natural fiber cellulose I (ß 1'4 linked glucose residues) increases rapidly, thus it leads to compositional, structural, and physical attribute variations among the...

  18. 40 CFR 174.530 - Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a tolerance. 174.530 Section 174.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS...

  19. 40 CFR 174.504 - Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance. 174.504 Section 174.504 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  20. Estimating the relative water content of leaves in a cotton canopy

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Kupinski, Meredith; Bradley, Christine; French, Andrew; Bronson, Kevin; Chipman, Russell; Dahlgren, Robert

    2017-08-01

    Remotely sensing plant canopy water status remains a long term goal of remote sensing research. Established approaches to estimating canopy water status — the Crop Water Stress Index, the Water Deficit Index and the Equivalent Water Thickness — involve measurements in the thermal or reflective infrared. Here we report plant water status estimates based upon analysis of polarized visible imagery of a cotton canopy measured by ground Multi-Spectral Polarization Imager (MSPI). Such estimators potentially provide access to the plant hydrological photochemistry that manifests scattering and absorption effects in the visible spectral region.

  1. Influence of Tencel/cotton blends on knitted fabric performance

    Directory of Open Access Journals (Sweden)

    Alaa Arafa Badr

    2016-09-01

    Full Text Available The requirements in terms of wearing comfort with sportswear, underwear and outerwear are widely linked to the use of new fibers. Today, Tencel fiber is one of the most important developments in regenerated cellulosic fiber. However, the relation between Tencel fiber properties and fabric characteristics has not been enough studied in the literature especially the influence of fiber materials on mechanical, Ultraviolet Protection Factor (UPF and absorption properties. Therefore, in this study, knitted fabric samples were manufactured with eight different yarns with two fabric types (single jersey and single jersey with Lycra. 30/1-Ne yarns from natural and regenerated cellulosic fibers: 50% Tencel-LF/50% cotton, 67% Tencel-LF/33% cotton, 67% Tencel-STD/33% cotton, 70% bamboo/30% cotton, 100% bamboo, 100% Modal, 100% Micro-Modal and 100% cotton were employed. Then, all the produced fabrics were subjected to five cycles laundering and then flat dried. The results show that 67% Tencel-LF/33% cotton has more flexural rigidity and withdrawing handle force than 67% Tencel-STD/33% cotton fabric, while 67% Tencel-STD/33% cotton has a merit of durability during bursting test. Blending Egyptian cotton fibers with bamboo and Tencel as in 70/30% bamboo/cotton and 50/50% Tencel-LF/cotton improve UPF of the produced fabric.

  2. Performance of cotton crop grown under surface irrigation and drip fertigation. I. seed cotton yield, dry matter production, and lint properties

    International Nuclear Information System (INIS)

    Janat, M.; Somi, G.

    2002-01-01

    Drip fertigation is a key factor in modern irrigated agriculture, where water and fertilizers are the most expensive inputs for this irrigation method. Drip fertigation experiments were carried out a Hama, north of Syria (Tezeen's Irrigation Research Station), for four consecutive years 1995 - 1998. Cotton (Gossypium hirsutim L.) variety Aleppo 33/1 was planted after unfertilized maize in order to deplete as much as possible the available N and reduce the field variability on the corresponding experimental units and irrigated thereafter. Treatments consisted of two irrigation methods (Surface irrigation and drip fertigation) and five N rates within drip fertigated cotton, including the control (N 0 = 0, N 1 = 60, N 2 = 120, N 3 = 180, N 4 240 kg N ha -1 ). The N fertilizer treatment for surface irrigated cotton was 180 kg N ha -1 in accordance with the recommended rate of ministry of Agriculture and Agrarian Reform. The experimental design was randomized block design with six replicates. Fertigation resulted in large water saving, and highly improved field water-use efficiency. Further, increasing N application rates under drip fertigation increased dry matter yield. The principal benefit of drip fertigation was the achievement of higher field water-use efficiencies, which were increased more than three-fold for both dry matter and seed cotton yield, relative to surface irrigation. The highest water-use efficiencies were obtained with the addition of 180 and 240 kg N ha -1 in 1995 and 1996 and 120 kg N ha -1 in 1997 and 1998. Dry matter production and partitioning among different plant parts at physiological maturity stage varied due to N input and irrigation methods. The overall dry matter distribution among different plant structures for drip fertigated-treatments was: Stems, 20.3 - 21.3%; leaves 26.3 - 28.7%; and fruiting forms, 50 - 53.2%. For the surface-irrigated treatment, the partitioning was stems, 23.1%; leaves, 28.3%; and fruiting form, 48.6%. The

  3. Biotechnological applications of pectinases in textile processing and bioscouring of cotton fibers

    OpenAIRE

    Mojsov, Kiro

    2012-01-01

    This work represents a review of applications of alkaline pectinases in textile processing and bioscouring of cotton fibers, the nature of pectin and pectic supstances, and production of alkaline pectinases from various microorganisms. Over the years alkaline pectinases have been used in several industrial processes, such as textile and plant fiber processing, paper and pulp industry, oil extraction, coffee and tea fermentations,poultry feed and treatment of industrial wastewater containing p...

  4. Influence of Soil Temperature on Meloidogyne incognita Resistant and Susceptible Cotton, Gossypium hirsutum

    OpenAIRE

    Carter, William W.

    1982-01-01

    The degree of resistance by a cotton plant to Meloidogyne incognita is affected by soil temperature, particularly in moderately resistant cultivars, The total number of nematodes in the resistant and moderately resistant rools at 35 C was equal to, or greater than, the number in susceptible roots at 20, 25, or 30 C. A shift in numbers to developing and egg-bearing forms of nematodes in the susceptible cultivar as tentperature increased indicates development was affected by temperature rather ...

  5. The Impacts of U.S. Cotton Programs on the West and Central African Countries Cotton Export Earnings

    OpenAIRE

    Fadiga, Mohamadou L.; Mohanty, Samarendu; Pan, Suwen

    2005-01-01

    This study uses a stochastic simulation approach based on a partial equilibrium structural econometric model of the world fiber market to examine the effects of a removal of U.S. cotton programs on the world market. The effects on world cotton prices and African export earnings were analyzed. The results suggest that on average an elimination of U.S. cotton programs would lead to a marginal increase in the world cotton prices thus resulting in minimal gain for cotton exporting countries in Af...

  6. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    OpenAIRE

    H.A., Reddy, K. and Pettigrew, W.T.

    2018-01-01

    The effects of cotton (Gossypium hirsutum L.): soybean [Glycine max (L.) Merr.] rotation on the soil fertility levels are limited. An irrigated soybean: cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, Mississippi, USA. The crop rotation sequences were included continuous cotton (CCCC), continuous soybean (SSSS), cotton-soybean-cotton-soybean (CSCS), cotton-soybean-soybean-cotton (CSSC), soybean-cotton-cotton-soybean (SCCS), soybean-cotton-soybean-cotton (SCSC)....

  7. Suppressing Resistance to Bt Cotton with Sterile Insect Releases

    Energy Technology Data Exchange (ETDEWEB)

    Tabashnik, B E [Department of Entomology, University of Arizona, Tucson, AZ (United States); Sisterson, M S [USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA (United States); Ellsworth, P C [Department of Entomology, University of Arizona, Maricopa Agricultural Center, Maricopa, AZ (United States)

    2011-01-15

    Genetically engineered crops that produce insecticidal toxins from Bacillus thuringiensis (Bt) are grown widely for pest control. However, insect adaptation can reduce the toxins' efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to provide susceptible insects to mate with resistant insects. Variable farmer compliance is one of the limitations of this approach. Here we report the benefits of an alternative strategy where sterile insects are released to mate with resistant insects and refuges are scarce or absent. Computer simulations show that this approach works in principle against pests with recessive or dominant inheritance of resistance. During a largescale, four-year field deployment of this strategy in Arizona, resistance of pink bollworm (Pectinophora gossypiella) to Bt cotton did not increase. A multitactic eradication program that included the release of sterile moths reduced pink bollworm abundance by >99%, while eliminating insecticide sprays against this key invasive pest. (author)

  8. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    He, Qiuling; Zhu, Shuijin; Zhang, Baohong

    2014-09-01

    MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.

  9. Evaluating cotton seed gland initiation by microscopy

    Science.gov (United States)

    Gossypol is a terpenoid aldehyde found in cotton (Gossypium hirsutum L.) glands and helps protect the seed from pests and pathogens. However, gossypol is toxic to many animals, so the seed is used mainly in cattle feed, as ruminants are tolerant to the effects of gossypol. In order to develop strat...

  10. Pilot scale cotton gin trash energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Harp, S.L. [Oklahoma State Univ., Stillwater, OK (United States)

    1993-12-31

    During the summer of 1992 a 520,000 kcal/h (2,064,400 Btu/hr) biomass combustor was installed at a cotton gin in southwestern Oklahoma. The gin has a capacity of approximately 35 bales per hour. Each bale of cotton ginned weighs about 227 kg (500 lb) and produces about 68 kg (150 lb) of trash. Therefore, this gin produces about 52,360 kg (115,500 lb) of trash per day during a typical ginning season. Approximately 2 million kg (4 million lb) of gin trash are produced at this site each year. Cotton must first be dried to about 3-5% moisture content before the ginning process is begun. To accomplish this at this gin, two six million Btu/hour direct fired gas heaters are used to heat air for drying the cotton. The biomass combustor was installed to operate in parallel with one of the heaters to supply heated air for the drying process. A pneumatic conveying system was installed to intercept a portion of the gin trash and divert it to the burner. The burner was operated during the 1992 ginning season, which lasted from September through November, with few problems.

  11. Satellite-based monitoring of cotton evapotranspiration

    Science.gov (United States)

    Dalezios, Nicolas; Dercas, Nicholas; Tarquis, Ana Maria

    2016-04-01

    Water for agricultural use represents the largest share among all water uses. Vulnerability in agriculture is influenced, among others, by extended periods of water shortage in regions exposed to droughts. Advanced technological approaches and methodologies, including remote sensing, are increasingly incorporated for the assessment of irrigation water requirements. In this paper, remote sensing techniques are integrated for the estimation and monitoring of crop evapotranspiration ETc. The study area is Thessaly central Greece, which is a drought-prone agricultural region. Cotton fields in a small agricultural sub-catchment in Thessaly are used as an experimental site. Daily meteorological data and weekly field data are recorded throughout seven (2004-2010) growing seasons for the computation of reference evapotranspiration ETo, crop coefficient Kc and cotton crop ETc based on conventional data. Satellite data (Landsat TM) for the corresponding period are processed to estimate cotton crop coefficient Kc and cotton crop ETc and delineate its spatiotemporal variability. The methodology is applied for monitoring Kc and ETc during the growing season in the selected sub-catchment. Several error statistics are used showing very good agreement with ground-truth observations.

  12. Absolute moisture sensing for cotton bales

    Science.gov (United States)

    With the recent prevalence of moisture restoration systems in cotton gins, more and more gins are putting moisture back into the bales immediately before the packaging operation. There are two main reasons for this recent trend, the first is that it has been found that added moisture at the bale pre...

  13. Cotton genetic resources and crop vulnerability

    Science.gov (United States)

    A report on the genetic vulnerability of cotton was provided to the National Genetic Resources Advisory Council. The report discussed crop vulnerabilities associated with emerging diseases, emerging pests, and a narrowing genetic base. To address these crop vulnerabilities, the report discussed the ...

  14. PESTICIDE CONTAMINATION OF THE DRIDJI COTTON ...

    African Journals Online (AJOL)

    ruud

    pesticide contamination in the Dridji cotton production area poses a risk to public ... the Kiti River as well as bean leaves grown near the river were sampled and ... Sediments were analysed at the Institute of Environmental Studies of the VU .... Empty bottles of pesticides were recycled to buy oil from the market and to bring.

  15. Locally Grown: Examining Attitudes and Perceptions About Organic Cotton Production and Manufacturing Between Mississippi Cotton Growers and Consumers

    Directory of Open Access Journals (Sweden)

    Charles Freeman

    2016-06-01

    Full Text Available The purpose of this study is to examine attitudes and perceptions about organic cotton of Mississippi cotton growers and producers in comparison to fashion-conscious consumers, including advantages/disadvantages of growing and production processes, quality control, consumer preferences, and competitive price structures/profit margins. A sample size of 16 local Mississippi growers and/or producers and 44 undergraduate students at a mid-major Southeastern university were chosen to participate in the study. Instruments were developed based on current research and the definition of organic cotton production defined by the United States Department of Agriculture. Results indicate 75% of growers and producers do not perceive a quality difference between organic and conventionally grown cotton, while 72.7% of the consumers report organically grown cotton is capable of producing a higher quality product compared to conventionally grown cotton. Even with an increase in organic cotton prices (25- 40% higher premium, only 25% of growers and producers would be willing to convert, while a majority (52.3% of consumers would not be willing to spend more than 25% extra for an organically grown cotton product. Consumers indicate the negative effects of conventionally grown cotton, yet many report little knowledge about organic cotton production, while growers/producers immediately dismiss organically grown cotton as a retail marketing strategy.

  16. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  17. Leaf-level carbon isotope discrimination and its relationship with yield components as a tool for cotton phenotyping in unfavorable conditions

    Directory of Open Access Journals (Sweden)

    Giovani Greigh Brito

    2014-07-01

    Full Text Available The initial goal of this study was to measure the efficiency of carbon isotope discrimination (Δ in distinguishing between cotton plant genotypes subjected to two water regimes. In addition, ∆ measurements, leaf water potential and gas exchange ratios were monitored. Using Brazilian breeding lines, this study also tested the usability of ∆ as a proxy for selecting high-performing yield components in cotton plants grown in unfavorable conditions, particularly water deficiency. For these experiments, ∆ and yield components were measured and their correlations analyzed. Differences among cotton genotypes for Δ (p < 0.0001 were verified, and it was found that this variable was significantly correlated with gas exchange. There was a significant positive correlation between Δ and seed cotton yield only in the site experiencing severe water deficiency (Santa Helena de Goiás. However, Δ had a significant negative correlation with fiber percentage. Our results indicate that Δ is a suitable tool for cotton phenotyping, and it may be applied in cotton breeding programs that aim to produce high-performing yield components in unfavorable conditions.

  18. Estimation of Heterosis and Combining Ability in F1 Hybrids of Upland Cotton for Yield and Fiber Traits

    International Nuclear Information System (INIS)

    Arain, B.T.; Baloch, M.J.; Bughio, Q.U.A.; Sial, P.; Arain, M.A.; Baloch, A.

    2015-01-01

    The experimental research was conducted so as to determine the general combining ability (GCA) and specific combining ability (SCA) estimates and heterotic effects for seed cotton yield and fibre traits in 5 x 5 half diallel crosses of upland cotton (Gossypium hirsutum L.). The parental genotypes studied were; CRIS-134, IR-3701, IR-1524, FH-113 and MG-6. The characters such as bolls/plant, sympodial branches/plant, boll weight (g), plant height (cm), fibre length (mm), seed cotton yield/plant (g), seed index (g) and ginning out turn percentage were studied. The experiment was laid-out in a randomized complete block design with four replications at experimental field of the Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojam, Pakistan during 2013. The results revealed that, parents and hybrids differed significantly for their mean performance regarding all the traits studied. The importance of heterotic effects was evident from the significance of parents vs. hybrids performance. The variances due to GCA and SCA were significant for all the traits except that GCA was non-significant for boll weight only whereas, SCA was non-significant for boll weight, seed index and ginning out turn percentage. The significance of GCA indicated the importance of additive genes advocating the traits while, the involvement of non-additive genes was evident from the significance of SCA variances. The GCA variances were greater than SCA for bolls per plant, plant height, seed cotton yield and lint percentage while, SCA variances were higher than GCA for sympodial branches/plant and fibre length. Parents IR-3701, FH-113 and MG-6 displayed higher positive GCA effects for bolls/plant, sympodial branches/plant, fibre length, seed cotton yield, seed index and ginning out turn percentage. The per se performance of these three parents was exactly reflected in their GCA effects and such happenings are exceptional. Such results suggested that, all three parents were

  19. Fruiting branch K+ level affects cotton fibre elongation through osmoregulation

    Directory of Open Access Journals (Sweden)

    Jiashuo eYang

    2016-01-01

    Full Text Available Potassium (K deficiency in cotton plants results in reduced fibre length. As one of the primary osmotica, K+ contributes to an increase in cell turgor pressure during fibre elongation. Therefore, it is hypothesized that fibre length is affected by K deficiency through an osmotic pathway, so in 2012 and 2013, an experiment was conducted to test this hypothesis by imposing three potassium supply regimes (0, 125, 250 kg K ha-1 on a low-K-sensitive cultivar, Siza 3, and a low-K-tolerant cultivar, Simian 3. We found that fibres were longer in the later season bolls than in the earlier ones in cotton plants grown under normal growth conditions, but later season bolls showed a greater sensitivity to low-K stress, especially the low-K sensitive genotype. We also found that the maximum velocity of fibre elongation (Vmax is the parameter that best reflects the change in fibre elongation under K deficiency. This parameter mostly depends on cell turgor, so the content of the osmotically active solutes was analysed accordingly. Statistical analysis showed that K+ was the major osmotic factor affecting fibre length, and malate was likely facilitating K+ accumulation into fibres, which enabled the low-K-tolerant genotype to cope with low-K stress. Moreover, the low-K-tolerant genotype tended to have greater K+ absorptive capacities in the upper fruiting branches. Based on our findings, we suggest a fertilization scheme for Gossypium hirsutum that adds extra potash fertilizer or distributes it during the development of late season bolls to mitigate K deficiency in the second half of the growth season and to enhance fibre length in late season bolls.

  20. Area-wide management approach for tarnished plant bug in the Mississippi Delta

    Science.gov (United States)

    The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is the major insect pest of cotton, Gossypium hirsutum (L.), within the Mid-South region. From 2001 to 2012, the tarnished plant bug has been the number one insect pest of cotton in Louisiana and Mississippi in eleven and nine of those...

  1. Effects of nitrogen fertilization in cotton crop on Aphis gossypii Glover (Hemiptera: Aphididae) biology; Efeitos da adubacao nitrogenada em algodoeiro sobre a biologia de Aphis gossypii Glover (Hemiptera: Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Ricardo; Degrande, Paulo E.; Fernandes, Marcos G.; Nogueira, Rodrigo F. [Universidade Federal da Grande Dourados, MS (Brazil). Faculdade de Ciencias Agrarias]. E-mail: rbarrosufms@yahoo.com.br, degrande@ufgd.edu.br

    2007-09-15

    The cotton aphid, Aphis gossypii Glove, is one of the pests of cotton crop and its relation with the host seem to depend on the amount of nitrogen available to the plant. The biology of A. gossypii using different cotton nitrogen fertility regimes was studied under greenhouse conditions, in Dourados, MS. A completely randomized design with nine replications in a factorial scheme (2x4x2)+1 was used. Two nitrogen sources (sulphate of ammonium and urea), four doses of nitrogen (50, 100, 150 and 200 kg ha-1), two different times of nitrogen application and one additional treatment without nitrogen were taken as factors. The nymphal phases, the pre-reproductive, reproductive and pos-reproductive periods, longevity, the life cycle and fecundity of the cotton aphid were evaluated. The doses of nitrogen influenced the cotton aphid biology in both sources and times of application, favoring its development and fecundity. (author)

  2. Identification of exotic genetic components and DNA methylation pattern analysis of three cotton introgression lines from Gossypium bickii.

    Science.gov (United States)

    He, Shou-Pu; Sun, Jun-Ling; Zhang, Chao; Du, Xiong-Ming

    2011-01-01

    The impact of alien DNA fragments on plant genome has been studied in many species. However, little is known about the introgression lines of Gossypium. To study the consequences of introgression in Gossypium, we investigated 2000 genomic and 800 epigenetic sites in three typical cotton introgression lines, as well as their cultivar (Gossypium hirsutum) and wild parents (Gossypium bickii), by amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP). The results demonstrate that an average of 0.5% of exotic DNA segments from wild cotton is transmitted into the genome of each introgression line, with the addition of other forms of genetic variation. In total, an average of 0.7% of genetic variation sites is identified in introgression lines. Simultaneously, the overall cytosine methylation level in each introgression line is very close to that of the upland cotton parent (an average of 22.6%). Further dividing patterns reveal that both hypomethylation and hypermethylation occurred in introgression lines in comparison with the upland cotton parent. Sequencing of nine methylation polymorphism fragments showed that most (7 of 9) of the methylation alternations occurred in the noncoding sequences. The molecular evidence of introgression from wild cotton into introgression lines in our study is identified by AFLP. Moreover, the causes of petal variation in introgression lines are discussed.

  3. Inter-Simple Sequence Repeat (ISSR Markers to Study Genetic Diversity Among Cotton Cultivars in Associated with Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Ali Akbar ABDI

    2012-11-01

    Full Text Available Developing salt-tolerant crops is very important as a significant proportion of cultivated land is salt-affected. Screening and selection of salt tolerant genotypes of cotton using DNA molecular markers not only introduce tolerant cultivars useful for hybridization and breeding programs but also detect DNA regions involved in mechanism of salinity tolerance. To study this, 28 cotton cultivars, including 8 Iranian cotton varieties were grown in pots under greenhouse condition and three salt treatments were imposed with salt solutions (0, 70 and 140 mM NaCl. Eight agronomic traits including root length, root fresh weight, root dry weight, chlorophyll and fluorescence index, K+ and Na+ contents in shoot (above ground biomass, and K+/Na+ ratio were measured. Cluster analysis of cultivars based on measured agronomic traits, showed �Cindose� and �Ciacra� as the most tolerant cultivars, and �B-557� and �43347� as the most sensitive cultivars of salt damage. A total of 65 polymorphic DNA fragments were generated at 14 inter-simple sequence repeat (ISSR loci. Plants of 28 cultivars of cotton grouped into three clusters based on ISSR markers. Regression analysis of markers in relation with traits data showed that 23, 33 and 30 markers associated with the measured traits in three salt treatments respectively. These markers might help breeders in any marker assisted selection program in order to improving cotton cultivars against salt stress.

  4. Phosphorus use efficiency by cotton measured through 32P isotope technique

    Science.gov (United States)

    Marcante, N. C.; Muraoka, T.; Camacho, M. A.; César, F. R. C. F.; Bruno, I. P.

    2012-04-01

    Deficiency of phosphorus (P) is the major limitation to agricultural production in the Brazilian Savannah (Cerrado), which is naturally poor in this nutrient. Most of the P applied by fertilizer in Cerrado soils are converted into low solubility forms and can not be easily absorbed by plants. This occurs for characteristics of adsorption, conditioned by the predominance of low pH and aluminum and iron oxides in the clay fraction. The development of genotypes and cultivars with greater capacity to grow up in soils with low P availability ('phosphorus efficiency') is interesting to improve the agriculture in these areas in a sustainable way. Cotton (Gossypium spp.) is the main product for the fibers used nationally and globally in the textile chain. This study aim was to evaluate the efficiency of absorption and utilization of P by cotton cultivars/genotypes grown in Cerrado soil by the isotopic dilution technique. The soil classified as Ultisols, was labeled with the radioisotope 32P.The experiment was conducted in a greenhouse in a completely randomized design factorial 2 x 17. Factors were considered two levels of P (insufficient = 20 mg kg-1 and sufficient = 120 mg kg-1) and 17 genetic materials of cotton recommended for Cerrado region. Phosphorus levels influenced significantly the shoots dry matter production, the P content and accumulation, the 32P specific activity, the L value and L value less seed cotton P by cultivars and genotypes. The hierarchical clustering analysis used to verify the similarities between the cultivars and genotypes of cotton, classified them into internally homogeneous groups and heterogeneous between different groups. Cultivars FMT 523, FM 910 and CNPA GO 2043 were the most responsive to phosphate fertilizer in sufficient level of P, while the genotype Barbadense 01 and cultivars FM 966LL, IPR Jataí, BRS Aroeira and BRS Buriti were most efficient absorbing P in soils with insufficient level.

  5. Yields of cotton and other crops as affected by applications of sulfuric acid in irrigation water

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.D.; Lyerly, P.J.

    1954-01-01

    Effects of sulfuric acid on crop yields and on some physical and chemical properties of a calcareous soil were investigated in a field experiment from 1947 through 1952. On cotton plots, the treatments consisted of applications of irrigation water containing no acid (pH 8.3), water acidified to pH 6, and water acidified to pH 2.3. Cotton was grown five seasons followed by sesbania the sixth season. A test on alfalfa was established using irrigation water not acidified and water acidifeid to pH 4. Alfalfa was grown for 3 years. The fourth year the alfalfa was plowed under and a crop of corn was raised. Cotton yields on the acid plots relative to the checks became progressively higher (with two exceptions) from one year to the next; however, in only one year (1950) were differences in yield statistically significant. With sesbania following cotton, highly significant yield increases resulted from the high acid treatment. Alfalfa yields on the acid plots became progressively greater relative to the non-acid plots, but yield differences were not significant. In cotton leaves, the acid treatments resulted in increased uptake of magnesium, sulfur, and phosphorus, but the increases were probably not significant. Uptake of sodium, potassium, calcium, manganese, and iron were not appreciably affected. In sesbania, the acid treatments did not significantly alter the uptake of any of the plant nutrients determined. There was some indication, however, that the uptake of sodium and iron was reduced by the acidification. The results of this study support the view that soil acidification on calcareous soils may improve the soil physical conditions and result in increased yields, particularly in some crops. The application of acid in the irrigation water did not prove to be economically feasible. 12 references, 1 figure, 7 tables.

  6. Toxicity to cotton boll weevil Anthonomus grandis of a trypsin inhibitor from chickpea seeds.

    Science.gov (United States)

    de P G Gomes, Angélica; Dias, Simoni C; Bloch, Carlos; Melo, Francislete R; Furtado, José R; Monnerat, Rose G; Grossi-de-Sá, Maria F; Franco, Octávio L

    2005-02-01

    Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.

  7. Effect of different rates of potassium fertilizer on nitrogen use efficiency and cotton yield using an 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Al-Chamma'a, M.; Al-Ain, F.

    2005-03-01

    A field study was carried out during the 2003 growing season on a loamy to sandy clay loamy soil, located at the Lower Euphrate's Valley, 15 km southeast of Deir - Ezzor city to evaluate the effect of K fertilizer on nitrogen , potassium use efficiency and cotton yield. Three nitrogen ( N1 =120, N2 =180, and N3 = 240 kg N / ha ) and four potassium application rates ( K0 = 0 , K1 = 50, K2 = 100, K3 = 150 kg K2O / ha ) were employed. The cotton variety was Deir 22 sown on April 2003 at a spacing of 70 cm between rows and 20 cm between pits with 5 seeds per pit. The plants were thinned to 2 plants per pit 4 weeks after planting. Representative samples of aboveground portions of cotton plants were harvested from labeled subplots at 108 and 161 days after planting . Dry matter weight , N uptake, N fertilizer yield, N use efficiency, K use efficiency, seed cotton yield, earliness, leaf area, number of bolls / plant, and number of branches / plant were evaluated. The results showed that seed cotton yield increased with increasing K levels applied under each rate of N ( except N120 ). The highest seed cotton yield was obtained with the combined treatment N3K1 ( 6442 kg/ha ). This treatment gave also the optimum potassium use efficiency ( 42 % ). Nitrogen use efficiency (at 180 days of harvest ) increased with the increasing K application rate. Nitrogen use efficiency (NUE) was decreased with increasing N rates . Increasing K application rate ( KUE ) decreased potassium use efficiency. A maximum N use efficiency ( 98% ) was obtained for combined treatment N2 K3. Also the results indicated that dry matter weight and N uptake increased with increasing K rates applied. Nitrogen derived from fertilizer (Ndff ) was higher in combined treatments than the control treatments (K0 ). (Authors)

  8. Within plant distribution of Anthonomus grandis (Coleoptera: Curculionidae feeding and oviposition damages in cotton cultivars Distribuição vertical de botões florais com danos de alimentação e de oviposição de Anthonomus grandis (Coleoptera: Curculionidae em cultivares de algodoeiro

    Directory of Open Access Journals (Sweden)

    José Fernando Jurca Grigolli

    2013-02-01

    Full Text Available The feeding and oviposition behavior of boll weevil in new cotton cultivars is essential for an adequate management. The objective of this study was to evaluate the vertical distribution of squares punctured for feeding and oviposition of the pest in the cultivars NuOPAL, DeltaOPAL, FMT-701, FMX-910 and FMX-993, and record the most and least preferred times of feeding and oviposition. The number of squares used for boll weevil feeding and oviposition were evaluated weekly in three parts of plant canopy. It was observed that, regardless the cultivar, A. grandis preferred to lay eggs in squares located in the upper part and feed on squares in the middle and upper parts. The boll weevil preferred to feed on cultivar FMT-701 in the beginning of the period of cotton flowering and fruiting, and the cultivars NuOPAL, DeltaOPAL, FMX-910 and FMX-993 throughout the whole period of flowering and fruiting. A. grandis preferred to lay eggs on cultivars NuOPAL, FMT-701 and FMX-993 at the beginning and end of flowering and fruiting of plants, while the cultivars DeltaOPAL and FMX-910 are used for oviposition throughout the period of flowering and fruiting.O conhecimento do comportamento de alimentação e de oviposição de Anthonomus grandis em cultivares recentes de algodoeiro é essencial para seu manejo. Neste trabalho, objetivou-se avaliar a distribuição vertical de botões florais com orifícios de alimentação e de oviposição da praga nas cultivares NuOPAL, DeltaOPAL, FMT-701, FMX-910 e FMX-993, bem como registrar as épocas de maior e menor preferência alimentar e de oviposição. O experimento foi conduzido em Jaboticabal, SP, Brasil, safra 2010/2011. Foram realizadas avaliações semanais, baseadas no número de botões florais, utilizados para alimentação e para oviposição pelo bicudo-do-algodoeiro, em três regiões do dossel das plantas. Observou-se que A. grandis preferiu ovipositar em botões florais localizados no terço superior das

  9. Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought.

    Science.gov (United States)

    Kitao, M; Lei, T T

    2007-01-01

    We investigated the patterns of response to a long-term drought in the field in cotton cultivars (genotypes) with known differences in their drought tolerance. Four cotton genotypes with varying physiological and morphological traits, suited to different cropping conditions, were grown in the field and subjected to a long-term moderate drought. In general, cotton leaves developed under drought had significantly higher area-based leaf nitrogen content (N (area)) than those under well irrigation. Droughted plants showed a lower light-saturated net photosynthetic rate (A (sat)) with lower stomatal conductance (g (s)) and intercellular CO (2) concentration (C (i)) than irrigated ones. Based on the responses of A (sat) to g (s) and C (i), there was no decreasing trend in A (sat) at a given g (s) and C (i) in droughted leaves, suggesting that the decline in A (sat) in field-grown cotton plants under a long-term drought can be attributed mainly to stomatal closure, but not to nonstomatal limitations. There was little evidence of an increase in thermal energy dissipation as indicated by the lack of a decrease in the photochemical efficiency of open PSII (F (v)'/F (m)') in droughted plants. On the basis of electron transport (ETR) and photochemical quenching (q (P)), however, we found evidence indicating that droughted cotton plants can circumvent the risk of excessive excitation energy in photosystem (PS) II by maintaining higher electron transport rates associated with higher N (area), even while photosynthetic rates were reduced by stomatal closure.

  10. Processing and properties of PCL/cotton linter compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Elieber Barros; Franca, Danyelle Campos; Morais, Dayanne Diniz de Souza; Araujo, Edcleide Maria [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Rosa, Morsyleide de Freitas; Morais, Joao Paulo Saraiva [Embrapa Tropical Agroindustia, Fortaleza, CE (Brazil); Wellen, Renate Maria Ramos, E-mail: wellen.renate@gmail.com [Universidade Federal da Paraiaba (UFPB), Joao Pessoa, PB (Brazil)

    2017-03-15

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton nanolinter compounds. Adding cotton linter to PCL did not change its crystalline character as showed by XRD; however an increase in degree of crystallinity was observed by means of DSC. From mechanical tests in tension was observed an increase in ductility of PCL, and from mechanical tests in flexion an increase in elastic modulus upon addition of cotton linter, whereas impact strength presented lower values for PCL/cotton linter and PCL/cotton nanolinter compounds. SEM images showed that PCL presents plastic fracture and cotton linter has an interlacing fibril structure with high L/D ratio, which are in agreement with matrix/fibril morphology observed for PCL/cotton linter compounds. PCL/cotton linter compounds made in this work cost less than neat PCL matrix and presented improved properties making feasible its commercial use. (author)

  11. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017

  12. Evaluation of the role of gamma irradiation and/or Red Gum plant extract, eucalyptus close-minded, on some physiological changes of the Cotton Leaf Worm Spodoptera Littorals (Boisd.)

    International Nuclear Information System (INIS)

    Alm EL-Din, M.M.S.

    2005-01-01

    The combined effects of two sub-sterilizing doses (75 and 125 Gy) of gamma irradiation to male full grown pupae of Spodoptera littoralis and / or red gum plant extract, Eucalyptus camaldulensis (Family: Myrtaceae) to the resulting larvae of F1 progeny on the consumption and utilization of food during the fifth and sixth in star larvae were studied. In general, plant extract and gamma irradiation each of them alone or in combination reduced the amount of food consumed and digested by the F1 larvae as compared to the control. The red gum treatment combined with 125 Gy decreased significantly the efficiency of conversion of ingested food (E.C.I.) together with the efficiency of conversion of digested food (E.C.D.) to body substances at the tested treatments when compared with the untreated ones. Also, the food utilization efficiencies decrement led to a significant reduction in weight gain and growth rate. In addition, the deleterious effect of combined treatments on development and growth aspects was recorded

  13. Engineered disease resistance in cotton using RNA-interference to knock down cotton leaf curl kokhran virus-Burewala and cotton leaf curl Multan betasatellite

    Science.gov (United States)

    Cotton Leaf Curl virus Disease (CLCuD) has caused enormous losses in cotton (Gossypium hirsutum) production in Pakistan. RNA interference (RNAi) is an emerging technique that could knock out CLCuD by targeting different regions of the pathogen genome that are important for replication, transcription...

  14. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Science.gov (United States)

    2010-11-19

    ... dividing Price A by 85 percent of Price B. * * * * * (f) Any AUP cotton harvested or appraised from acreage... dividing the price per pound for AUP cotton by the price per pound for ELS cotton. The prices used for AUP...

  15. 77 FR 51867 - Cotton Board Rules and Regulations: Adjusting Supplemental Assessment on Imports

    Science.gov (United States)

    2012-08-28

    ... Advertising, Agricultural research, Cotton, Marketing agreements, Reporting and recordkeeping requirements... supplemental assessments collected for use by the Cotton Research and Promotion Program. An amendment is..., Chief, Research and Promotion Staff, Cotton and Tobacco Programs, AMS, USDA, 100 Riverside Parkway...

  16. Modern trends on development of cotton production and processing chain Uzbekistan

    OpenAIRE

    Abdimumin Alikulov

    2010-01-01

    The cotton production complex of Uzbekistan has high rating comparing other export oriented branches. Cotton fiber value in 2008 share made 12% from total export of the country. The paper observes some trends and policy developments in cotton industry development.

  17. Regulation of auxin on secondary cell wall cellulose biosynthesis in developing cotton fibers

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) fibers are unicellular trichomes that differentiate from epidermal cells of developing cotton ovules. Mature fibers exhibit thickened secondary walls composed of nearly pure cellulose. Cotton fiber development is divided into four overlapping phases, 1) initiation sta...

  18. Genetic engineering of cotton with a novel cry2AX1 gene to impart insect resistance against Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Karunamurthy Dhivya

    2016-09-01

    Full Text Available Embryogenic calli of cotton (Coker310 were cocultivated with the Agrobacterium tumefaciens strain LBA4404 harbouring the codon-optimised, chimeric cry2AX1 gene consisting of sequences from cry2Aa and cry2Ac genes isolated from Indian strains of Bacillus thuringiensis. Forty-eight putative transgenic plants were regenerated, and PCR analysis of these plants revealed the presence of the cry2AX1 gene in 40 plants. Southern blot hybridisation analysis of selected transgenic plants confirmed stable T-DNA integration in the genome of transformed plants. The level of Cry2AX1 protein expression in PCR positive plants ranged from 4.9 to 187.5 ng g-1 of fresh tissue. A transgenic cotton event, TP31, expressing the cry2AX1 gene showed insecticidal activity of 56.66 per cent mortality against Helicoverpa armigera in detached leaf disc bioassay. These results indicate that the chimeric cry2AX1 gene expressed in transgenic cotton has insecticidal activity against H. armigera.

  19. Induced mutation of new cotton lines tolerant to verticillium wilt with improved characters

    International Nuclear Information System (INIS)

    Rastegary, G.; Hoseiny Neghad, Z.

    1998-01-01

    Induction of mutation for genetic variation has been used in crop improvement for many years. The mutant lines can be used either directly or as a new genetic source in cross breeding. In cotton 'eleven' and 'two' mutant varieties as new genetic sources have been evolved directly and indirectly, respectively. One of the major obstacles in cotton production in northern region of Iran, Gorgan and Gonbad (where they are known as the main cultivation area of this crop), is the presence of verticillium wilt fungal disease. Since this fungus is soil-born, and can not be controlled chemically, the most efficient way of combating against the disease is to breed for the tolerance/resistance of the species. For this purpose, a mutation breeding technique was applied using gamma radiation as mutagen. The seeds of four varieties (Shirpan, Tashkand, Bakhtegan, and Sahel) were irradiated after reaching a proper absorbed humidity. The radiation doses of 150 to 350 Gy were applied and the seeds were cultivated in two different locations (Varamin and Kordkuy) as M1 generation. The cotton balls of each individual healthy plant was harvested to attain the seeds of M2 rows. In M2, the plants with different degrees of tolerance to the disease were compared to the selected parents (taking into consideration that the soil was contaminated). The good yielding lines with different level of tolerance were taken up to the 5th generation, yielding 70 lines of superior qualitative and quantitative traits. (author)

  20. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    Science.gov (United States)

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed.

  1. Effects of fluoride and 6 benzylaminopurine on growth and respiration of corn and cotton roots

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C R

    1967-01-01

    Corn and cotton plants exhibit a wide difference in their susceptibility to atmospheric fluoride. Corn shows leaf lesions when 100 ..gamma../gm on a dry weight basis are accumulated but cotton can tolerate 5000 ..gamma../gm without showing leaf necrosis. A comparison of respirational response of potted seedlings of the two species to 10 ..gamma../M/sup 3/ HF caused an increase of about 10%. Addition of 2 x 10/sup 2/M F/sup -/ to solutions for germinating the plants showed that cotton accumulated about twice as much as F/sup -/ in seedling roots. Growth was reduced about one half by 2 x 10/sup -3/M F/sup -/ in both species but respirational rates of root tips from control and fluoride treated tissues were equal. Prolonged treatment of excised root tips with fluoride reduced respiration. Because fluoride causes cellular changes in roots similar to aging and kinetin seems to act to reverse these changes, corn was germinated with 2 x 10/sup -3/M F/sup -/ and increasing levels of 6-benzylaminopurine. Root growth inhibition (63%) was reversed significantly at 0.2 - 0.8..gamma.. ml. Respirational rates of root tips grown in fluoride, fluoride plus 6-benzylaminopurine and controls were equal.

  2. Expression of NCED gene in colored cotton genotypes subjected to water stress

    Directory of Open Access Journals (Sweden)

    Alexandre M. S. de Souza

    Full Text Available ABSTRACT Considering that the NCED gene acts on the biosynthetic cascade of ABA, a hormone involved in the functioning of stomata and consequently in the regulation of transpiration, the aim of this research was to analyze the expression of this gene in colored cotton genotypes subjected to water stress at the beginning of plant growth. Four colored cotton genotypes were used, subjected to two managements, with and without water stress, beginning the treatments when the blade of the first true leaves reached an area that allowed the evaluation of gas exchange. For the studies of the expression of the NCED gene, via RT-qPCR, leaves were collected on three distinct dates: at 4 and 6 days of water stress, and after the plants regained their turgor. The differential expression of NCED was found in all genotypes, with higher levels of expression related to six days of water stress. When the stomatal conductance was around 25%, there was overexpression in the genotype CNPA 2009.13, followed by CNPA 2009.6, BRS SAFIRA and CNPA 2009.11, confirming the data obtained in the semi-quantitative RT-PCR. The NCED gene is involved in the response to water stress in the vegetative phase of colored cotton.

  3. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu

    2013-07-25

    A simple and facile method for fabricating the cotton fabric with superhydrophobicity and flame retardancy is described in the present work. The cotton fabric with the maximal WCA of 160° has been prepared by the covalent deposition of amino-silica nanospheres and the further graft with (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane. The geometric microstructure of silica spheres was measured by transmission electron microscopy (TEM). The cotton textiles before and after treatment were characterized by using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The wetting behavior of cotton samples was investigated by water contact angle measurement. Moreover, diverse performances of superhydrophobic cotton textiles have been evaluated as well. The results exhibited the outstanding superhydrophobicity, excellent waterproofing durability and flame retardancy of the cotton fabric after treatment, offering a good opportunity to accelerate the large-scale production of superhydrophobic textiles materials for new industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Genome Editing in Cotton with the CRISPR/Cas9 System

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2017-08-01

    Full Text Available Genome editing is an important tool for gene functional studies as well as crop improvement. The recent development of the CRISPR/Cas9 system using single guide RNA molecules (sgRNAs to direct precise double strand breaks in the genome has the potential to revolutionize agriculture. Unfortunately, not all sgRNAs are equally efficient and it is difficult to predict their efficiency by bioinformatics. In crops such as cotton (Gossypium hirsutum L., with labor-intensive and lengthy transformation procedures, it is essential to minimize the risk of using an ineffective sgRNA that could result in the production of transgenic plants without the desired CRISPR-induced mutations. In this study, we have developed a fast and efficient method to validate the functionality of sgRNAs in cotton using a transient expression system. We have used this method to validate target sites for three different genes GhPDS, GhCLA1, and GhEF1 and analyzed the nature of the CRISPR/Cas9-induced mutations. In our experiments, the most frequent type of mutations observed in cotton cotyledons were deletions (∼64%. We prove that the CRISPR/Cas9 system can effectively produce mutations in homeologous cotton genes, an important requisite in this allotetraploid crop. We also show that multiple gene targeting can be achieved in cotton with the simultaneous expression of several sgRNAs and have generated mutations in GhPDS and GhEF1 at two target sites. Additionally, we have used the CRISPR/Cas9 system to produce targeted gene fragment deletions in the GhPDS locus. Finally, we obtained transgenic cotton plants containing CRISPR/Cas9-induced gene editing mutations in the GhCLA1 gene. The mutation efficiency was very high, with 80.6% of the transgenic lines containing mutations in the GhCLA1 target site resulting in an intense albino phenotype due to interference with chloroplast biogenesis.

  5. Response of irradiated cotton seeds to different levels of phosphorus fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Janat, M; Khalifa, K [Atomic Energy Commission, P.O.Box 6091, Damasucs, (Syrian Arab Republic)

    1995-10-01

    A two years field experiment 1990, 1991 was conducted over two different locations in order to evaluate the response of cotton seeds exposed to various doses of gamma radiation 0,5, 10 and 20 Gy, to different levels of phosphorous fertilizer, 0,60, 100, 140 and kg P{sub 2} O{sub 5}/ha. Irradiation doses and P. Fertilizer levels arranged in split plot design, where irradiation doses made up the main plots and the P-levels the subplots. Representative soil samples were collected and analyzed before planting. Soil test for P revealed that enough P was available in the top soil. With a few exceptions, results showed no positive response of cotton crop to P-fertilizer and gamma rays stimulation. 8 tabs.

  6. Response of irradiated cotton seeds to different levels of phosphorus fertilizer

    International Nuclear Information System (INIS)

    Janat, M.; Khalifa, K.

    1995-07-01

    A two year field experiments 1990, 1991 was conducted over two different locations in order to evaluate the response of cotton seeds exposed to various doses of gamma radiation 0, 5, 10 and 20 Gy, to different levels of phosphorous fertilizer, 0, 60, 100, 140 and 180 Kg P sub 2 O sub 5 ha- sub 1. Irradiation doses and P-Fertilizer levels were arranged in split plot design, where irradiation doses made up the main plots and the P-levels the sub-plots. Representative soil samples were collected and analyzed before planting and after harvesting. Soil test for P revealed enough P was available in the top soil. With a few exceptions, results showed no positive response of cotton crop to P-fertilizer and gamma rays stimulation. (author). 26 refs., 49 tabs

  7. A comprehensive assessment of the effects of Bt cotton on Coleomegilla maculata demonstrates no detrimental effects by Cry1Ac and Cry2Ab.

    Directory of Open Access Journals (Sweden)

    Yunhe Li

    Full Text Available The ladybird beetle, Coleomegilla maculata (DeGeer, is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt. A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non

  8. Gamma ray induced diversity in restorer line of cotton (Gossypium Hirsutum)

    International Nuclear Information System (INIS)

    Mehetre, S.S.; Patil, V.R.; Surana, P.P.

    2000-01-01

    Looking to the limitation of very few restorers available in cotton a diversification of available restorer line was undertaken by gamma irradiation. The four hundred individual plants selected from individual M 2 families were crossed with CMS lines. Out of which 12 plants restored fertility in CMS lines and their F 1 's with CMS produced more heterotic hybrids than their checks (control). The results indicated that sufficient variability can be induced with the help of gamma rays and the diversification of restorers is possible within a short period with simultaneous improvement in either one or two characters. (author)

  9. An Assessment of Current Policy Initiatives in Zambia's Cotton Sector

    OpenAIRE

    Zulu, Ballard; Tschirley, David L.

    2004-01-01

    This paper assesses three of these policy initiatives: input credit provision for smallholder producers of selected cash crops including cotton, the proposed creation of a Cotton Board, and the emergence in 2003 of District Council levies as a point of conflict between local governments and cotton companies. The purpose of the paper is to provide guidance to public and private decision makers regarding key modifications which may need to be made to these policies to ensure continued healthy d...

  10. Processing and Properties of PCL/Cotton Linter Compounds

    OpenAIRE

    Bezerra,Elieber Barros; França,Danyelle Campos; Morais,Dayanne Diniz de Souza; Rosa,Morsyleide de Freitas; Morais,João Paulo Saraiva; Araújo,Edcleide Maria; Wellen,Renate Maria Ramos

    2017-01-01

    Biodegradable compounds of poly(ε-caprolactone) (PCL)/ cotton linter were melting mixed with filling content ranging from 1% to 5% w/w. Cotton linter is an important byproduct of textile industry; in this work it was used in raw state and after acid hydrolysis. According to the results of torque rheometry no decaying of viscosity took place during compounding, evidencing absence of breaking down in molecular weight. The thermal stability increased by 20% as observed in HDT for PCL/cotton...

  11. THE WORLD TRADE ORGANIZATION AND SOUTHERN AGRICULTURE: THE COTTON PERSPECTIVE

    OpenAIRE

    Hudson, Darren

    2000-01-01

    The World Trade Organization (WTO) negotiations could have important implications for Southern Agriculture. This paper explores some of the issues surrounding the WTO negotiations for cotton. Specifically, this paper examines the impacts of the phase-out of the Multi-Fiber Arrangement (MFA) on the location of textile production and cotton trade flows. Generally, it is believed that the WTO negotiations will have little direct impact on cotton, but will have indirect impacts through textile po...

  12. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    OpenAIRE

    Nurindah Nurindah; Dwi Adi Sunarto

    2014-01-01

    Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula) and cotton bollworm (Helicoverpa armigera). The study aimed to evaluate four packages of integrated pest management (IPM) techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012...

  13. Timing and placement of cattle manure and/or gliricidia affects cotton and sunflower nutrient accumulation and biomass productivity.

    Science.gov (United States)

    Primo, Dário C; Menezes, Rômulo S C; Oliveira, Fabio F DE; Dubeux Júnior, José Carlos B; Sampaio, Everardo V S B

    2018-01-01

    Organic fertilizers are a viable alternative to increase oilseed productivity in family agriculture systems. The study aimed to evaluate the effects of timing and placement of cattle manure and/or gliricidia (Gliricidia sepium Jacq. Walp) prunings on cotton (Gossipium hirsutum L.) and sunflower (Helianthus annuus L.) nutrient accumulation and biomass productivity. Experiments were carried out in 2010 and 2011 in Taperoá, Paraíba, Brazil. The organic fertilization treatments were: GI - gliricidia incorporated before planting; GS - gliricidia applied on surface 45 days after planting (DAP); MI + GI - manure and gliricidia incorporated before planting; MI + GS - manure incorporated before planting and gliricídia applied on the surface 45 DAP; MI - manure incorporated before planting; and T - with no organic fertilization. In 2010, treatment MI + GS increased N, P, and K accumulation in cotton (12 and 7 kg ha-1) as well as in sunflower (20 and 29 kg ha-1). In 2011, GI and GS treatments resulted in higher N, P, K accumulations in both crops. The highest cotton productivity in 2010 was obtained with MI + GS treatment (198 kg ha-1) and in 2011 with GS treatment (594 kg ha-1). For sunflower, MI + GS treatment yielded the highest productivity in 2010 (466 kg ha-1) and GI treatment in 2011 (3542 kg ha-1). GI and MI + GS treatments increased total biomass productivity for cotton and sunflower. The treatment that combined both cattle manure incorporated into the soil before planting and gliricidia applied on the surface 45 days after planting was the most viable management strategy.

  14. Cotton genotypes selection through artificial neural networks.

    Science.gov (United States)

    Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B

    2017-09-27

    Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.

  15. Biosafety assessment of transgenic Bt cotton on model animals

    Directory of Open Access Journals (Sweden)

    Sadia Bano

    2016-05-01

    Full Text Available Abstract Background: To know the effects of transgenic crops on soil microorganisms, animals and other expected hazards due to the introduction of GM crops into the environment is critical both scientifically and environmentally. The work was conducted to study the effect of insecticidal Bt protein on Rats and Earthworms. Methods: For this purpose, animals like rat and soil organisms like Earthworm were selected. Rats were selected on the basis of its 95% homology on genomic, cellular and enzymatic level with human while earthworm were preferred on the basis of their direct contact with soil to evaluate the impact of Bt (Cry1AC crop field soil on earthworm, secreted by root exudates of Bt cotton. Several physical, molecular, biochemical and histological analyses were performed on both Rats/Earthworms fed on standard diet (control group as well containing Bt protein (experimental group. Results: Molecular analyses such as immune Dot blot, SDS-PAGE, ELISA and PCR, confirmed the absence of Cry1Ac protein in blood and urine samples of rats, which were fed with Bt protein in their diet. Furthermore, histological studies showed that there was no difference in cellular architecture in liver, heart, kidney and intestine of Bt and non-Bt diet fed rats. To see the effect of Bt on earthworm two different groups were studied, one with transgenic plant field soil supplemented with grinded leaves of cotton and second group with non-Bt field soil. Conclusions: No lethal effects of transgenic Bt protein on the survival of earthworm and rats were observed. Bradford assay, Dipstick assay ELISA demonstrated the absence of Cry1Ac protein in the mid-gut epithelial tissue of earthworm. The results of present study will be helpful in successful deployment and commercial release of genetically modified crop in Pakistan.

  16. Ecoinformatic