WorldWideScience

Sample records for cotton gossypium hirsutum

  1. Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Rathore, Keerti S; Campbell, LeAnne M; Sherwood, Shanna; Nunes, Eugenia

    2015-01-01

    Cotton continues to be a crop of great economic importance in many developing and some developed countries. Cotton plants expressing the Bt gene to deter some of the major pests have been enthusiastically and widely accepted by the farmers in three of the major producing countries, i.e., China, India, and the USA. Considering the constraints related to its production and the wide variety of products derived from the cotton plant, it offers several target traits that can be improved through genetic engineering. Thus, there is a great need to accelerate the application of biotechnological tools for cotton improvement. This requires a simple, yet robust gene delivery/transformant recovery system. Recently, a protocol, involving large-scale, mechanical isolation of embryonic axes from germinating cottonseeds followed by direct transformation of the meristematic cells has been developed by an industrial laboratory. However, complexity of the mechanical device and the patent restrictions are likely to keep this method out of reach of most academic laboratories. In this chapter, we describe the method developed in our laboratory that has undergone further refinements and involves Agrobacterium-mediated transformation of cotton cells, selection of stable transgenic callus lines, and recovery of plants via somatic embryogenesis.

  2. Sequencing of the Cultivated Tetraploid Cotton Genome-Gossypium hirsutum

    Institute of Scientific and Technical Information of China (English)

    KOHEL; Russell; J; PERCY; Richard; G; YU; John; Z

    2008-01-01

    Cotton is an important cash crop in the world,and it plays an irreplaceable role in China's national economy.Cultivated upland cotton(Gossypium hirsutum L.) represents 95% of the world's cotton production,but it has a complex allotetraploid genome that contains at least 30000 genes in 2500 Mb

  3. Sequencing of the Cultivated Tetraploid CottonGenome-Gossypium hirsutum

    Institute of Scientific and Technical Information of China (English)

    YU Shu-xun; WANG Kun-bo; LI Fu-guang; KOHEL Russell J; PERCY Richard G; YU John Z

    2008-01-01

    @@ Cotton is an important cash crop in the world,and it plays an irreplaceable role in China's nationaleconomy.Cultivated upland cotton (Gossypium hirsutum L.) represents 95% of the world's cottonproduction,but it has a complex allotetraploid genome that contains at least 30000 genes in 2500 MbDNA.

  4. Rapid plant regeneration from cotton(Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A simple and rapid regeneration method of cotton (Gossypium hirsutum L.cv.Xinluzao 4) is described.The proper use of phytohormone KT and IBA validly promoted the survival rate of test-tube plants and shortened the period of culture in combination with the techniques of micro-propagation and graft.

  5. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  6. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement

    Science.gov (United States)

    Cotton is the world’s most important natural textile fibre and a significant oilseed crop. Upland cotton (Gossypium hirsutum L.), an allotetraploid derived from A- and D-genome progenitors, accounts for >95% of world production. Here, we sequenced and assembled 88% of the 2.5-gigabase genome of the ...

  7. Spatial and Temporal Variation in Fungal Endophyte Communities Isolated from Cultivated Cotton (Gossypium hirsutum)

    OpenAIRE

    María J Ek-Ramos; Wenqing Zhou; Valencia, César U.; Antwi, Josephine B.; Kalns, Lauren L.; Gaylon D Morgan; David L. Kerns; Sword, Gregory A.

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in f...

  8. Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii.

    Science.gov (United States)

    Hegde, Mahabaleshwar; Oliveira, Janser N; da Costa, Joao G; Bleicher, Ervino; Santana, Antonio E G; Bruce, Toby J A; Caulfield, John; Dewhirst, Sarah Y; Woodcock, Christine M; Pickett, John A; Birkett, Michael A

    2011-07-01

    The cotton aphid, Aphis gossypii (Homoptera: Aphididae), is increasing in importance as a pest worldwide since the introduction of Bt-cotton, which controls lepidopteran but not homopteran pests. The chemical ecology of interactions between cotton, Gossypium hirsutum (Malvaceae), A. gossypii, and the predatory lacewing Chrysoperla lucasina (Neuroptera: Chrysopidae), was investigated with a view to providing new pest management strategies. Behavioral tests using a four-arm (Pettersson) olfactometer showed that alate A. gossypii spent significantly more time in the presence of odor from uninfested cotton seedlings compared to clean air, but significantly less time in the presence of odor from A. gossypii infested plants. A. gossypii also spent significantly more time in the presence of headspace samples of volatile organic compounds (VOCs) obtained from uninfested cotton seedlings, but significantly less time with those from A. gossypii infested plants. VOCs from uninfested and A. gossypii infested cotton seedlings were analyzed by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS), leading to the identification of (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), which were produced in larger amounts from A. gossypii infested plants compared to uninfested plants. In behavioral tests, A. gossypii spent significantly more time in the control (solvent) arms when presented with a synthetic blend of these four compounds, with and without the presence of VOCs from uninfested cotton. Coupled GC-electroantennogram (EAG) recordings with the lacewing C. lucasina showed significant antennal responses to VOCs from A. gossypii infested cotton, suggesting they have a role in indirect defense and indicating a likely behavioral role for these compounds for the predator as well as the aphid.

  9. Cytogenetic Characteristics of New Monosomic Stocks of Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Marina F. Sanamyan

    2011-01-01

    Full Text Available The use of aneuploid lines significantly increases the effectiveness of molecular-genetic analysis and the development of superior quality breeding lines via substitutions by alien chromosomes. To date, however, a complete set of aneuploid series for each cotton chromosome is not available. Here, we present the development of a monosomic stock collection of cotton (Gossypium hirsutum L. from Uzbekistan, including the origin of 92 primary monosomics, meiotic metaphase-I analysis, study of tetrads of microspores, pollen fertility, and monosomic transmission rates for some monosomic lines. We report desynaptic effects of some monosomes detected both in parental and daughter monosomics, a positive role of interchanges in translocation heterozygous monosomics due to selective advantages of gametes with deficiency and a simultaneous interchange, pollen fertility variation, and strong differences in transmission rates. This monosomic cotton collection, developed using single genome background, will be useful for future breeding, genetic, cytogenetic, and molecular-genetic investigations of the cotton genome.

  10. Cytogenetic Characteristics of New Monosomic Stocks of Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Sanamyan, Marina F; Petlyakova, Julia E; Sharipova, Elnora A; Abdurakhmonov, Ibrokhim Y

    2011-01-01

    The use of aneuploid lines significantly increases the effectiveness of molecular-genetic analysis and the development of superior quality breeding lines via substitutions by alien chromosomes. To date, however, a complete set of aneuploid series for each cotton chromosome is not available. Here, we present the development of a monosomic stock collection of cotton (Gossypium hirsutum L.) from Uzbekistan, including the origin of 92 primary monosomics, meiotic metaphase-I analysis, study of tetrads of microspores, pollen fertility, and monosomic transmission rates for some monosomic lines. We report desynaptic effects of some monosomes detected both in parental and daughter monosomics, a positive role of interchanges in translocation heterozygous monosomics due to selective advantages of gametes with deficiency and a simultaneous interchange, pollen fertility variation, and strong differences in transmission rates. This monosomic cotton collection, developed using single genome background, will be useful for future breeding, genetic, cytogenetic, and molecular-genetic investigations of the cotton genome.

  11. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum fiber transcriptome.

    Directory of Open Access Journals (Sweden)

    Mi-Jeong Yoo

    2014-01-01

    Full Text Available The single-celled cotton (Gossypium hirsutum fiber provides an excellent model to investigate how human selection affects phenotypic evolution. To gain insight into the evolutionary genomics of cotton domestication, we conducted comparative transcriptome profiling of developing cotton fibers using RNA-Seq. Analysis of single-celled fiber transcriptomes from four wild and five domesticated accessions from two developmental time points revealed that at least one-third and likely one-half of the genes in the genome are expressed at any one stage during cotton fiber development. Among these, ~5,000 genes are differentially expressed during primary and secondary cell wall synthesis between wild and domesticated cottons, with a biased distribution among chromosomes. Transcriptome data implicate a number of biological processes affected by human selection, and suggest that the domestication process has prolonged the duration of fiber elongation in modern cultivated forms. Functional analysis suggested that wild cottons allocate greater resources to stress response pathways, while domestication led to reprogrammed resource allocation toward increased fiber growth, possibly through modulating stress-response networks. This first global transcriptomic analysis using multiple accessions of wild and domesticated cottons is an important step toward a more comprehensive systems perspective on cotton fiber evolution. The understanding that human selection over the past 5,000+ years has dramatically re-wired the cotton fiber transcriptome sets the stage for a deeper understanding of the genetic architecture underlying cotton fiber synthesis and phenotypic evolution.

  12. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system

    Science.gov (United States)

    Chen, Xiugui; Lu, Xuke; Shu, Na; Wang, Shuai; Wang, Junjuan; Wang, Delong; Guo, Lixue; Ye, Wuwei

    2017-01-01

    The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system has been widely used for genome editing in various plants because of its simplicity, high efficiency and design flexibility. However, to our knowledge, there is no report on the application of CRISPR/Cas9-mediated targeted mutagenesis in cotton. Here, we report the genome editing and targeted mutagenesis in upland cotton (Gossypium hirsutum L., hereafter cotton) using the CRISPR/Cas9 system. We designed two guide RNAs to target distinct sites of the cotton Cloroplastos alterados 1 (GhCLA1) and vacuolar H+-pyrophosphatase (GhVP) genes. Mutations in these two genes were detected in cotton protoplasts. Most of the mutations were nucleotide substitutions, with one nucleotide insertion and one substitution found in GhCLA1 and one deletion found in GhVP in cotton protoplasts. Subsequently, the two vectors were transformed into cotton shoot apexes through Agrobacterium-mediated transformation, resulting in efficient target gene editing. Most of the mutations were nucleotide deletions, and the mutation efficiencies were 47.6–81.8% in transgenic cotton plants. Evaluation using restriction-enzyme-PCR assay and sequence analysis detected no off-target mutations. Our results indicated that the CRISPR/Cas9 system was an efficient and specific tool for targeted mutagenesis of the cotton genome. PMID:28287154

  13. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    OpenAIRE

    Patil, Chandrashekhar D; Hemant P Borase; Salunkhe, Rahul B; Rahul K Suryawanshi; Narkhade, Chandrakant P; Salunke, Bipinchandra K.; Satish V Patil

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, etha...

  14. Cotton (Gossypium hirsutum L.) boll rotting bacteria vectored by the brown stink bug, Euschistus servus (Say) (Hemiptera: Pentatomidea)

    Science.gov (United States)

    Determine the capacity of the brown stink bug (Euschistus servus) to transmit an infective Pantoea agglomerans into cotton (Gossypium hirsutum, L.) bolls. A laboratory colony of the brown stink bug (BSB) was maintained on fresh green beans. The P. agglomerans mutant strain Sc 1-R that holds rifamp...

  15. Selection and Characterization of a Novel Glyphosate Tolerant Upland Cotton(Gossypium hirsutum L.) Mutant(R1098)

    Institute of Scientific and Technical Information of China (English)

    DAUD; M; K

    2008-01-01

    Stepwise selection approach was adopted to obtain glyphosate-tolerant upland cotton mutant(R1098) from the embryogenic calli of Coker 312(Gossypium hirsutum L.).The calli were transferred to selection medium and multi-step selection pressure process was carried out until the calli

  16. Goosegrass (Eleusine indica) density effects on cotton (Gossypium hirsutum)

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-yan; WU Han-wen; JIANG Wei-li; MA Ya-jie; MA Yan

    2015-01-01

    Goosegrass is one of the worst agricultural weeds on a worldwide basis. Understanding of its interference impact in crop ifeld wil provide useful information for weed control programs. Field experiments were conducted during 2010–2012 to determine the inlfuence of goosegrass density on cotton growth at the weed densities of 0, 0.125, 0.25, 0.5, 1, 2, and 4 plants m–1 of row. Seed cotton yield tended to decrease with the increase in weed density, and goosegrass at a density of 4 plants m–1 of row signiifcantly reduced cotton yields by 20 to 27%. A density of 11.6–19.2 goosegrass plant m–1 of row would result in a 50%cotton yield loss from the maximum yield according to the hyperbolic decay regression model. Bol production was not affected in the early growing season. But bol numbers per plant were reduced about 25%at the den-sity of 4 plants m–1 of row in the late growing season. Both cotton bol weight and seed numbers per bol were signiifcantly reduced (8%) at 4 goosegrass plants m–1 of row. Cotton plant height, stem diameter and sympodial branch number were not affected as much as cotton yields by goosegrass competition. Seed index, lint percentage and lint ifber properties were unaffected by weed competition. Intraspeciifc competition resulted in density-dependent effects on weed biomass per plant, 142–387 g dry weight by harvest. Goosegrass biomass m–2 tended to increase with increasing weed density as indicated by a quadratic response. The adverse impact of goosegrass on cotton yield identiifed in this study has indicated the need of effective goosegrass management.

  17. Constitutively overexpressing a tomato fructokinase gene (lefrk1) in cotton (Gossypium hirsutum L. cv. coker 312) positively affects plant vegetative growth, boll number and seed cotton yield.

    Science.gov (United States)

    Increasing fructokinase (FRK) activity in cotton (Gossypium hirsutum L.) plants may reduce fructose inhibition of sucrose synthase (Sus) and lead to improved fibre yield and quality. Cotton was transformed with a tomato (Solanum lycopersicum L.) fructokinase gene (LeFRK1) under the control of the C...

  18. Dominant Gene cplsr1 Corresponding to Premature Leaf Senescence Resistance in Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Jingqing Zhao; Tengfei Jiang; Zhi Liu; Wenwei Zhang; Guiliang Jian; Fangjun Qi

    2012-01-01

    Cotton (Gossypium hirsutum L.) premature leaf senescence-resistant inbred XLZ33 and senescencesusceptible inbred lines XLZ13 were selected and crossed to produce F1,F1-reciprocal,F2 and BC1 generations for evaluation of leaf senescence process and inheritance.The results showed that leaf senescence processes for XLZ13 and XLZ33 were obviously different and leaf senescence traits could be distinguished between the two parents at particular periods of cotton growth.Inheritance anlysis for the cotton premature leaf senescence resistant trait further showed that the segregation in the F2 fit a 3:1 ratio inheritance pattern,with resistance being dominant.The backcross of F1 to the susceptible parent produced a 1:1 ratio,confirming that cotton premature leaf senescence resistant trait was from a single gene.The single dominant gene controlling cotton premature leaf senescence resistance in XLZ33 was named as cotton premature leaf senescence resistance 1,with the symbol cplsr1.

  19. Genome physical mapping of polyploids: a BIBAC physical map of cultivated tetraploid cotton, Gossypium hirsutum L.

    Science.gov (United States)

    Zhang, Meiping; Zhang, Yang; Huang, James J; Zhang, Xiaojun; Lee, Mi-Kyung; Stelly, David M; Zhang, Hong-Bin

    2012-01-01

    Polyploids account for approximately 70% of flowering plants, including many field, horticulture and forage crops. Cottons are a world-leading fiber and important oilseed crop, and a model species for study of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. This study has addressed the concerns of physical mapping of polyploids with BACs and/or BIBACs by constructing a physical map of the tetraploid cotton, Gossypium hirsutum L. The physical map consists of 3,450 BIBAC contigs with an N50 contig size of 863 kb, collectively spanning 2,244 Mb. We sorted the map contigs according to their origin of subgenome, showing that we assembled physical maps for the A- and D-subgenomes of the tetraploid cotton, separately. We also identified the BIBACs in the map minimal tilling path, which consists of 15,277 clones. Moreover, we have marked the physical map with nearly 10,000 BIBAC ends (BESs), making one BES in approximately 250 kb. This physical map provides a line of evidence and a strategy for physical mapping of polyploids, and a platform for advanced research of the tetraploid cotton genome, particularly fine mapping and cloning the cotton agronomic genes and QTLs, and sequencing and assembling the cotton genome using the modern next-generation sequencing technology.

  20. 陆地棉抗虫遗传工程%Genetic Engineering of Cotton (Gossypium hirsutum L. ) for Insect-resistance

    Institute of Scientific and Technical Information of China (English)

    Shengwei ZHU; Jingsan SUN; Yinchuan TIAN

    2002-01-01

    @@ In order to improve insect-resistance of cotton and cultivate new cotton varieties ,tissue culture and plant regeneration of cotton (Gossypium hirsutum L. ) were studied with Xinluzao 4,Xi 550,Jizi 492,Hengwu 89-30,Han 93-2 and Jizi 123 . A system of cotton tissue culture for rapid plant regeneration was developed.

  1. Urease from cotton (Gossypium hirsutum) seeds: isolation, physicochemical characterization, and antifungal properties of the protein.

    Science.gov (United States)

    Menegassi, Angela; Wassermann, German E; Olivera-Severo, Deiber; Becker-Ritt, Arlete B; Martinelli, Anne Helene S; Feder, Vanessa; Carlini, Celia R

    2008-06-25

    Ureases (EC 3.5.1.5) are metalloenzymes that hydrolyze urea to produce ammonia and carbon dioxide These enzymes, which are found in fungi, bacteria, and plants, show very similar structures. Despite an abundance of urease in vegetal tissues, the physiological role of this enzyme in plants is still poorly understood. It has been previously described that ureases from the legumes jackbean ( Canavalia ensiformis) and soybean ( Glycine max) have insecticidal activity and antifungal properties. This work presents the physicochemical purification and characterization of a urease from cotton ( Gossypium hirsutum) seeds, the first description of this enzyme in Malvaceae. The urease content varied among different cotton cultivars. Cotton seed urease (98.3 kDa) displayed low ureolytic activity but exhibited potent antifungal properties at sub-micromolar concentrations against different phytopathogenic fungi. As described for other ureases, the antifungal effect of cotton urease persisted after treatment with an irreversible inhibitor of its enzyme activity. The data suggest an important role of these proteins in plant defense.

  2. Quantitative trait loci mapping and genetic dissection for lint percentage in upland cotton (Gossypium hirsutum)

    Indian Academy of Sciences (India)

    Min Wang; Chengqi Li; Qinglian Wang

    2014-08-01

    Lint percentage is an important character of cotton yield components and it is also correlated with cotton fibre development. In this study, we used a high lint percentage variety, Baimian1, and a low lint percentage, TM-1 genetic standard for Gossypium hirsutum, as parents to construct a mapping populations in upland cotton (G. hirsutum). A quantitative trait locus/loci (QTL) analysis of lint percentage was performed by using two mapping procedures; composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and the F2:3 populations in 2 years. Six main-effect QTL (M-QTL) for lint percentage (four significant and two suggestive) were detected in both years by CIM, and were located on chr. 3, chr. 19, chr. 26 and chr. 5 /chr. 19. Of the six QTL, marker intervals and favourable gene sources of the significant M-QTL, qLP-3(2010) and qLP-3(2011) were consistent. These QTL were also detected by ICIM, and therefore, should preferentially be used for marker-assisted selection (MAS) of lint percentage. Another M-QTL, qLP-19(2010), was detected by two mapping procedures, and it could also be a candidate for MAS. We detected the interaction between two M-QTL and environment, and 11 epistatic QTL (E-QTL) and their interaction with environment by using ICIM. The study also found two EST-SSRs, NAU1187 and NAU1255, linked to M-QTL for lint percentage that could be candidate markers affecting cotton fibre development.

  3. Quantitative trait loci mapping and genetic dissection for lint percentage in upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Min; Li, Chengqi; Wang, Qinglian

    2014-08-01

    Lint percentage is an important character of cotton yield components and it is also correlated with cotton fibre development. In this study, we used a high lint percentage variety, Baimian1, and a low lint percentage, TM-1 genetic standard for Gossypium hirsutum, as parents to construct a mapping populations in upland cotton (G. hirsutum). A quantitative trait locus/loci (QTL) analysis of lint percentage was performed by using two mapping procedures; composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and the F2:3 populations in 2 years. Six main-effect QTL (M-QTL) for lint percentage (four significant and two suggestive) were detected in both years by CIM, and were located on chr. 3, chr. 19, chr. 26 and chr. 5/chr. 19. Of the six QTL, marker intervals and favourable gene sources of the significant M-QTL, qLP-3(2010) and qLP-3(2011) were consistent. These QTL were also detected by ICIM, and therefore, should preferentially be used for markerassisted selection (MAS) of lint percentage. Another M-QTL, qLP-19(2010), was detected by two mapping procedures, and it could also be a candidate for MAS. We detected the interaction between two M-QTL and environment, and 11 epistatic QTL (E-QTL) and their interaction with environment by using ICIM. The study also found two EST-SSRs, NAU1187 and NAU1255, linked to M-QTL for lint percentage that could be candidate markers affecting cotton fibre development.

  4. Biochemical Genetic Mechanism and QTLs of Early Maturing without Yield Loss in Short-season Upland Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    SONG Mei-zhen; YU Shu-xun; FAN Shu-li

    2008-01-01

    @@ The short season cotton (SSC) was important Upland plant ecotype (Gossypium hirsutum L.).The growth of SSC was very short that is 105~110 days (after planting).SSC could increase plant index and farmer incomes on the same soil in one year.However,there was a contradiction between the early maturing and high-yield potential of SSC varieties that restrict SSC development.The SSC varieties often exhibited premature senescence.

  5. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  6. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum).

    Science.gov (United States)

    Ek-Ramos, María J; Zhou, Wenqing; Valencia, César U; Antwi, Josephine B; Kalns, Lauren L; Morgan, Gaylon D; Kerns, David L; Sword, Gregory A

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides

  7. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    Science.gov (United States)

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-07-28

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  8. Períodos de interferência das plantas daninhas na cultura do algodoeiro (Gossypium hirsutum Weed interference periods in cotton crop (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    T.P. Salgado

    2002-12-01

    Full Text Available Com o objetivo de determinar os efeitos de períodos de controle e de convivência das plantas daninhas na produtividade da cultura do algodoeiro (Gossypium hirsutum, cultivar Delta-Opal, realizou-se um experimento que constou de dois grupos de tratamentos. No primeiro, a cultura permaneceu livre da competição das plantas daninhas desde a emergência até 7, 14, 21, 28, 35, 42, 49, 56, 63 dias e colheita (159 dias. No segundo, a cultura permaneceu em competição com a comunidade infestante desde a emergência até os mesmos períodos descritos para a primeira série de tratamentos. Dentre as espécies de plantas daninhas encontradas na área experimental, destacaram-se a tiririca (Cyperus rotundus, o fedegoso (Senna obtusifolia, a anileira (Indigofera hirsuta e o capim-carrapicho (Cenchrus echinatus. Pelas condições edáficas, climáticas e florísticas sob as quais foi conduzida a cultura de algodão, o Período Anterior à Interferência (PAI dessa comunidade que reduziu em 5% a produtividade da cultura foi de oito dias após a emergência da cultura (DAE; o Período Total de Prevenção da Interferência (PTPI foi de 66 DAE; e o Período Crítico de Prevenção da Interferência (PCPI foi dos 8 aos 66 DAE.In order to evaluate the effects of weed control and weed coexistence periods on cotton (Gossypium hirsutum cultivar Delta Opal yield, an experiment was carried out consisting of two treatment groups. In the first, the crop was weed free from from emergence until 7, 14, 21, 28, 35, 42, 49, 56, 63 days, and harvest (159 days respectively. In the second group, the crop was in competition with the weed community from emergence until the same period, as described for the first series of treatment, respectively. Among the weed species found in the experimental area, the most important were purple nutsedge (Cyperus rotundus, sicklepod (Senna obtusifolia, indigo (Indigofera hirsuta and sandbur (Cenchrus echinatus. The period after cotton plant

  9. An Integrated Genetic,Physical and Transcript Map of Homoeologous Chromosomes 12 and 26 in Upland Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    XU Zhang-you; KOHEL Russell J; SONG Guo-li; CHO Jaemin; YU Jing; YU Shu-xun; TOMKINS Jeffrey; YU John Z

    2008-01-01

    @@ While Upland cotton (Gossypium hirsutum L.) represents 95% of the world production,its genetic improvement is hindered by the shortage of effective genomic tools and resources.The complex allotetraploid genome of the Upland cotton presents a unique challenge to such research efforts including integrated genome mapping and sequencing,which are considered highly experimental.Here,we report an integrated genetic,physical,and transcript map of homoeologous chromosomes 12 and 26 based on BAC/BIBAC clones,DNA markers,and EST unigenes.

  10. Analyses of Fusarium wilt race 3 resistance in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Abdullaev, Alisher A; Salakhutdinov, Ilkhom B; Egamberdiev, Sharof Sh; Kuryazov, Zarif; Glukhova, Ludmila A; Adilova, Azoda T; Rizaeva, Sofiya M; Ulloa, Mauricio; Abdurakhmonov, Ibrokhim Y

    2015-06-01

    Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represents a serious threat to cotton (Gossypium spp.) production. For the last few decades, the FOV pathogen has become a significant problem in Uzbekistan causing severe wilt disease and yield losses of G. hirsutum L. cultivars. We present the first genetic analyses of FOV race 3 resistance on Uzbek Cotton Germplasm with a series of field and greenhouse artificial inoculation-evaluations and inheritance studies. The field experiments were conducted in two different sites: the experimental station in Zangiota region-Environment (Env) 1 and the Institute of Cotton Breeding (Env-2, Tashkent province). The Env-1 was known to be free of FOV while the Env-2 was known to be a heavily FOV infested soil. In both (Env-1 and Env-2) of these sites, field soil was inoculated with FOV race 3. F2 and an F3 Upland populations ("Mebane B1" × "11970") were observed with a large phenotypic variance for plant survival and FOV disease severity within populations and among control or check Upland accessions. Wilt symptoms among studied F2 individuals and F3 families significantly differed depending on test type and evaluation site. Distribution of Mendelian rations of susceptible (S) and resistant (R) phenotypes were 1S:1R field Env-1 and 3S:1R field Env-2 in the F2 population, and 1S:3R greenhouse site in the F3 population. The different segregation distribution of the Uzbek populations may be explained by differences in FOV inoculum level and environmental conditions during assays. However, genetic analysis indicated a recessive single gene action under high inoculum levels or disease pressure for FOV race 3 resistance. Uzbek germplasm may be more susceptible than expected to FOV race 3, and sources of resistance to FOV may be limited under the FOV inoculum levels present in highly-infested fields making the breeding process more complex.

  11. Performance of cotton (Gossypium hirsutum L.) lines selected for high productivity in three environments.

    Science.gov (United States)

    Turner, J H; Ferguson, D

    1975-01-01

    Three groups of cotton (Gossypium hirsutum L.) selections that had been screened in separate climatic zones within the San Joaquin Valley were tested for a 2-year period. Selection pressure had been applied solely upon productivity.Seven production attributes and eight fiber properties were influenced by the selection pressure on this material. The increase in number of bolls per m(2) virtually account for the genetic gains in yield.Environmental influences accounted for the larger part of the variability with both production and quality attributes. Years (seasons) and years x zone mean square values were highly significant for all production attributes except boll size. Fiber length was increased for one group of selections and decreased for the other two groups. Coarser fiber (micronaire increase) resulted from the selection effort with two groups.Genetic x environmental interactions encountered with major fiber properties have significant implications. The cryptic variability revealed indicates breeding procedures could be modified to exploit more fully the genetic potential of breeding material. Identifying and utilizing the "optimum selection enviroment" for specific attributes is suggested.

  12. Characteristics of Photosystem II Behavior in Cotton (Gossypium hirsutum L.) Bract and Capsule Wall

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-li; LUO Hong-hai; HU Yuan-yuan; Reto J. Strasser; ZHANG Wang-feng

    2013-01-01

    Though bract and capsule wall of boll in cotton (Gossypium hirsutum L.) have different photosynthetic capacities, the features of photosystem II (PS II) in these organs are scarce. In this paper, chlorophyll a lfuorescence emission was measured to investigate the difference in the photosynthetic apparatus of dark-acclimated (JIP-test) and light-acclimated (light-saturation pulse method) bract and capsule wall. Compared with leaves, the oxygen evolving system of non-foliar organs had lower efifciency. The pool size of PS II electron acceptor of non-foliar organs was small, and the photochemical activity of leaves was higher than that of the bract and capsule wall. In regard to the photosystem I (PS I) electron acceptor side, the pool size of end electron acceptors of leaves was larger, and the quantum yield of electron transport from QA (PS II primary plastoquinone acceptor) further than the PS I electron acceptors of leaves was higher than that of bract and capsule wall. In all green organs, the actual quantum yield of photochemistry decreased with light. The thermal dissipation fraction of light absorbed by the PS II antennae was the highest in bract and the lowest in capsule wall relative to leaves. Compared with leaves, capsule wall was characterized by less constitutive thermal dissipation and via dissipation as lfuorescence emission. These results suggested that lower PS II photochemical activity in non-foliar organs may be result from limitations at the donor side of PS II and the acceptor sides of both photosystems.

  13. Salt Tolerance Evaluation in Cotton (Gossypium hirsutum L. Using RAPD Marker

    Directory of Open Access Journals (Sweden)

    Basel Saleh

    2015-12-01

    Full Text Available The aim of this study was to evaluate four upland cotton (Gossypium hirsutum L. [Niab78 (N78, Deir-Ezzor22 (DE22, Deltapine50 (DP50 and Aleppo118 (A118] varieties towards salt stress (0 and 200 mM NaCl for 7 weeks based on RAPD marker. Our data showed that the highest total polymorphic bands identified by the 26 RAPD tested primers were 150 bands generated by N78 variety, while the lowest ones were recorded for DP50 (29 bands. Otherwise, unique (negative and positive markers characterized the two tolerant varieties (N78 and DE22 were 22 and 29 markers, respectively. Our data indicated that the highest polymorphism level was detected in N78 variety (68.5% followed by DE22 (60.9%, whereas, the lowest one was recorded for DP50 (21.3%. Our data obtained herein indicates that RAPD marker provided molecular markers for salinity tolerance screening in early stage in genetic improvement programs.

  14. QTL analysis for early-maturing traits in cotton using two upland cotton (Gossypium hirsutum L.) crosses.

    Science.gov (United States)

    Li, Chengqi; Wang, Xiaoyun; Dong, Na; Zhao, Haihong; Xia, Zhe; Wang, Rui; Converse, Richard L; Wang, Qinglian

    2013-06-01

    Making use of the markers linked closely to QTL for early-maturing traits for MAS (Marker-assisted selection) is an effective method for the simultaneous improvement of early maturity and other properties in cotton. In this study, two F2 populations and their F2:3 families were generated from the two upland cotton (Gossypium hirsutum L.) crosses, Baimian2 × TM-1 and Baimian2 × CIR12. QTL for early-maturing traits were analyzed using F2:3 families. A total of 54 QTL (31 suggestive and 23 significant) were detected. Fourteen significant QTL had the LOD scores not only > 3 but also exceeding permutation threshold. At least four common QTL, qBP-17 for bud period (BP), qGP-17a/qGP-17b (qGP-17) for growth period (GP), qYPBF-17a/qYPBF-17b (qYPBF-17) for yield percentage before frost (YPBF) and qHFFBN-17 for height of first fruiting branch node (HFFBN), were found in both populations. These common QTL should be reliable and could be used for MAS to facilitate early maturity. The common QTL, qBP-17, had a LOD score not only > 3 but also exceeding permutation threshold, explaining 12.6% of the phenotypic variation. This QTL should be considered preferentially in MAS. Early-maturing traits of cotton are primarily controlled by dominant and over-dominant effects.

  15. The damaging effects of nitrogen ion beam implantation on upland cotton ( Gossypium hirsutum L.) pollen grains

    Science.gov (United States)

    Yu, Yanjie; Wu, Lijun; Wu, Yuejin; Wang, Qingya; Tang, Canming

    2008-09-01

    With the aim to study the effects of an ion beam on plant cells, upland cotton (Gossypium hirsutum L.) cultivar "Sumian 22" pollen grains were irradiated in vacuum (7.8 × 10-3 Pa) by low-energy nitrogen ions with an energy of 20 keV at various fluences ranging from 0.26 × 1016 to 0.78 × 1016 N+/cm2. The irradiation effects on pollen grains were tested, considering the ultrastructural changes in the exine and interior walls of pollen grains, their germination rate, the growth speed of the pollen tubes in the style, fertilization and boll development after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. Nitrogen ions entered the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. A greater percentage of the pollen grains were destroyed as the fluence of N+ ions increased. Obviously, the nitrogen ion beam penetrated the exine and interior walls of the pollen grains and produced holes of different sizes. As the ion fluence increased, the amount and the density of pollen grain inclusions decreased and the size of the lacuna and starch granules increased. Pollen grain germination rates decreased with increasing ion fluence. The number of pollen tubes in the style declined with increased ion implantation into pollen grains, but the growth speed of the tubes did not change. All of the pollen tubes reached the end of the style at 13 h after pollination. This result was consistent with that of the control. Also, the weight and the diameter of the ovary decreased and shortened with increased ion beam implantation fluence. No evident change in the fecundation time of the ovule was observed. These results indicate that nitrogen ions can enter pollen grains and cause a series of biological changes in pollen grains of upland cotton.

  16. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali

    2010-12-01

    A Cotton leaf crumple virus (CLCrV)-based gene silencing vector containing a fragment of the Gossypium hirsutum Magnesium chelatase subunit I was used to establish endogenous gene silencing in cotton of varied genetic backgrounds. Biolistic inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor the in planta distribution of the vector, indicating successful phloem invasion in all cultivars tested. Acala SJ-1, one of the cotton cultivars, was identified as a particularly optimal candidate for CLCrV-VIGS-based cotton reverse-genetics. © 2010 Elsevier Ltd.

  17. Effect of ecological management of weed control on economical income, yield and yield components of cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    A. Zare Feizabadi

    2016-04-01

    Full Text Available In order to compare of ecological management of weed control on economical income, yield and yield components of cotton (Gossypium hirsutum L., a Randomized Complete Block design with 12 treatments and four replications was conducted in Mahvelat of Khorasan Razavi province, Iran. Treatments consisted of weeding, harrowing, burning, two times weeding, weeding + harrowing, weeding + burning, harrowing + harrowing, harrowing + weeding, harrowing + burning, weeding+ harrowing+ burning, weed free and weedy as a check treatment. Investigated traits were plant height, number of boll in plant, 20 boll weight, 20 boll cotton lint weight, cotton lint yield per plant, cotton yield, number and biomass of weeds, outcome, net and gross income. The result showed that treatments had significant effect (p

  18. Introgression of Gossypium klotzschianum Genome into Cultivated Cotton,G.hirsutum

    Institute of Scientific and Technical Information of China (English)

    SHEN Xin-lian; ZHANG Xiang-gui; YANG Yu-wen; CAO Zhi-bin; NI Wan-chao

    2008-01-01

    @@ Exotic Gossypium germplasm is a rich source of useful agronomic traits for improvement programs of cultivated cotton.Efficient use of genetic variation available in the wild relatives depends on the ability to identify and introgress desirable DNA segments from wild species into cultivated cotton.

  19. Measuring diversity in Gossypium hirsutum using the CottonSNP63K Array

    Science.gov (United States)

    A CottonSNP63K array and accompanying cluster file has been developed and includes 45,104 intra-specific SNPs and 17,954 inter-specific SNPs for automated genotyping of cotton (Gossypium spp.) samples. Development of the cluster file included genotyping of 1,156 samples, a subset of which were iden...

  20. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres

    Science.gov (United States)

    Some naturally-coloured brown cotton fibres from accessions of Gossypium hirsutum can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have yet to be identified, and the mechan...

  1. The GhTT2_A07 gene is linked to the brown color and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibers

    Science.gov (United States)

    Some naturally-colored brown cotton fibers from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fiber loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the me...

  2. Transcriptome Analysis of Cotton (Gossypium hirsutum L. Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis.

    Directory of Open Access Journals (Sweden)

    Ruijuan Li

    Full Text Available Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.. An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747, resistant (BARBREN-713, and hypersensitive (LONREN-1 genotypes of cotton (Gossypium hirsutum L. with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.

  3. Genotype and Planting Density Effects on Rooting Traits and Yield in Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Li-Zhen Zhang; Bao-Guo Li; Gen-Tu Yan; Wopke van der Werf; JHJ Spiertz; Si-Ping Zhang

    2006-01-01

    Root density distribution of plants is a major indicator of competition between plants and determines resource capture from the soil. This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossypium hirsutum L.) cultivars were chosen: hybrid Bt-cultivar CRI46, conventional Bt-cultivars CRI44 and CRI45. Six planting densities were designed, ranging from 1.5 to 12.0 plants/m2. Root parameters such as surface area, diameter and length were analyzed by using the DT-SCAN image analysis method. The root length density (RLD), root average diameter and root area index (RAI), root surface area per unit land area, were studied. The results showed that RLD and RAI differed between genotypes; hybrid CRI46 had significantly higher (P < 0.05) RLD and RAI values than conventional cultivars, especially under low planting densities, less than 3.0 plants/m2. The root area index (RAI) of hybrid CRI46 was 61% higher than of CRI44 and CRI45 at the flowering stage. The RLD and RAI were also significantly different (P= 0.000) between planting densities. The depth distribution of RAI showed that at increasing planting densities RAI was increasingly distributed in the soil layers below 50 cm. The RAI of hybrid CRI46 was for all planting densities, obviously higher than other cultivars during the flowering and boll stages. It was concluded that the hybrid had a strong advantage in root maintenance preventing premature senescence of roots. The root diameter of hybrid CRI46 had a genetically higher root diameter at planting densities lower than 6.0 plants/m2. Good associations were found between yield and RAI in different stages. The optimum planting density ranged from 4.50 plants/m2 to 6.75 plants/m2 for conventional cultivars and around 4.0-5.0 plants/m2 for hybrids.

  4. Effect of Different Hormone Combinations on Somatic Embryogenesis in Cotton Cultivar Xinluzao 33(Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Panpan MA; Zongming XIE; Quansheng LI; Yousheng TIAN; Youzhong LI

    2015-01-01

    Objective] This study was conducted to evaluate the efficiency of somatic embryogenesis and plant regeneration for an upland cotton cultivar Xinluzao33 under the induction of different hormone combinations and thus to determine the optimal hormone combination. [Method] Cal i of Xinluzao33 (Gossypium hirsutum L.) were in-duced from seedling hypocotyl tissue by a range of DK and BK combinations. Em-bryogenic cal i and embryos were induced on cal us-inducing medium (CIM) without any hormones. Cal us appearance and quality were compared to determine which medium was the optimal for cal us induction. Embryogenesis ratio was calculated to determine which medium was the best for somatic embryogenesis and plant regen-eration. [Result] Cal us induction rate was 100% in al the 12 hormone combinations. The cal i were yel ow or kel y, and their texture was loose or soft under low con-centrations of DK combinations, green or white, variably compact under high con-centrations of DK combinations. The cal i induced by BK combinations were kel y or green, covering creamy white substance. The best medium for cal us induction was DK6 (0.05 mg/L 2, 4-D and 0.10 mg/L KT). Embryogenic cal i were successful y in-duced from al the combinations. The efficiency of embryogenic cal us induction, embryogenesis, and plantlet regeneration were significantly different among the 12 combinations. The result showed that the embryogenesis ratio was the highest in BK3 combination (0.50 mg/L IBA and 0.50 mg/L KT), 72.86% of embryogenic cal i differentiated into somatic embryos after being cultured on CIM for 80 d, and 80.93% of the somatic embryos final y regenerated into plants on SEM (somatic em-bryo induction medium). [Conclusion] These results indicate that hormone combina-tion BK3 (0.50 mg/LIBA and 0.50 mg/L KT) was the best medium for somatic em-bryogenesis and plant regeneration from Xinluzao33.

  5. Effects of several Plant Growth Regulators on the Yield and Fiber Quality of Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Osman ÇOPUR

    2010-12-01

    Full Text Available Plant growth regulators (PGR are used in cotton (Gossypium hirsutum L. production to balance vegetative and reproductive growth, as well as to increase seed cotton yield and lint quality. Field experiments were conducted with some PGRs to determine their effects on yield and yield components of cotton cultivar Stoneville 453. The study was conducted in 2004 and 2005 at the Agricultural Research and Application Centre of Harran University located in Şanlıurfa, Turkey. During the study, seven commercial PGRs (MC, NAP, BIGIB, KH, MCROP and BIGIBER were sprayed at recommended doses and appropriate application periods. Experiments were arranged as randomized complete block design with three replications. Experimental plots consisted of six rows, each having 12 m length, row spacing was 0.70 and intra-row spacing was 0.20 m. The results showed that PGRs (except PC had statistically significant positive effects on the seed cotton yield, plant height, number of open boll, number of sympodia, boll weight, lint percentage and seed index and that they decreased the earliness index. However, fibre length, fibre fineness, fibre strength and fibre uniformity were not affected by the applications. Higher yields were obtained in MCROP, BIGIB and BIGIBER treated plots. Therefore, PGRs might be considered a component of cotton growth management, which is effective on providing higher seed cotton yields.

  6. Genetic studies of quantitative traits in interspecific hybrids of tetraploid cotton (Gossypium hirsutum L. X Gossypium barbadense L.

    Directory of Open Access Journals (Sweden)

    B. N. Patel, N. A. Patel, N. V. Soni and V. D. Dave

    2014-12-01

    Full Text Available Forty five inter specific hybrids between tetraploid species, G. hirsutum x G. barbadense derived involving nine diverse female parents of G.hirsutum and five pollen parents of G.barbadense were evaluated to study heterosis and combining ability for seed cotton yield and other characters viz., days to 50% flowering, number of monopodia/plant, number of sympodia/plant, seed index, lint index and oil content. The hybrid G. 67 x GSB 19 exhibited positively significant standard heterosis for seed cotton yield/plant, seed and lint index. Combining ability analysis suggested preponderance of non-additive gene action for all the characters under study except for days to 50% flowering. The female parent,G. 67 and male parent GSB 19 depicted positive significant gca effects for seed cotton yield/plant, seed and lint index; while, hybrid G. 247 x Suvin had significant positive sca effects for seed cotton yield/plant, number of monopodia/plant, number of sympodia/plant and oil content.

  7. Reniform nematode (Rotylenchulus reniformis) resistance locus from Gossypium aridum identified and introgressed into upland cotton (G. hirsutum)

    Science.gov (United States)

    SSR markers associated with reniform nematode (Rotylenchulus reniformis) resistance were identified and mapped using progeny from a cross between a tri-species hybrid [Gossypium arboreum × (G 371 - G. hirsutum × G. aridum -)] and G. hirsutum MD51ne. The 50 most resistant and 26 most susceptible prog...

  8. Genes expressed in cotton (Gossypium hirsutum) buds isolated with a subtractive library.

    Science.gov (United States)

    Pinheiro, M P N; Batista, V G L; Martins, N F; Santos, R C; Melo Filho, P A; Silva, C R C; Lima, L M

    2013-01-16

    A subtractive cDNA library from cotton buds was constructed to prospect for differentially expressed genes related to early bud development. A library was constructed and 768 cDNA sequences were obtained, comprising 168 clusters, with 126 contigs and 42 singlets. Both the Gossypium as well as Arabidopsis databases were utilized for the in silico analysis, since some genes identified in cotton have not yet been studied for functionality, although they have homology with genes from other species. The transcriptome revealed a large number of transcripts, some of them with unknown function, and others related to pollen development, pollen tubes, ovules, and fibers at different stages. The most populated contig was identified as fiber from 0-10 days after anthesis, with 12 reads. The success and novelty rates generated from the library were 67 and 51%, respectively. The information obtained here will provide a framework for research on functional cotton genomics.

  9. Effects of Different Densities of Cotton (Gossypium Hirsutum and Common Lambsquarter (Chenopodium Album on Some Cotton Growth Characteristics in Birjand Condition

    Directory of Open Access Journals (Sweden)

    M. Velayati

    2011-01-01

    Full Text Available Abstract Weeds are problematic plants in agroecosystems as a competitor for crops. In order to evaluate effects of cotton (Gossypium hirsutum and common lambsquarter (Chenopodium album densities on some crop growth indices, a study was conducted during 2006 in Experimental Station of Faculty of Agriculture, The University of Birjand as factorial experiment based on complete randomized block design with four replications. Three densities of cotton (6, 9 and 12 Pl.m-2 and four weed densities (0, 6, 9 and 12 Pl.m-2 were used to provide different weed interference levels. Indeed, three plots in each replication were intended to cultivation of lambsquarter alone at 6, 9 or 12 Pl.m-2. Results showed that crop growth rate (CGR of cotton was influenced by weed density, and its relative growth rate (RGR and net assimilation rate (NAR indicated a declining trend as weed density increased. Dry matter accumulation of cotton also was affected negatively by weed densities, as interference of lambsquarter at 6, 9 and 12 Pl.m-2 resulted to 35, 42 and 48 percent dry matter reduction, respectively, than weed-free treatment. Increasing of cotton density could partly compensate for negative impact of weed attendance on cotton growth. Thus, it seems higher plant densities can be used as a managing tool against weeds in cotton fields to avoid reduction of yield. Keywords: Cotton, Density, Weed, competition, Growth analysis

  10. Comparison of ionomic and metabolites response under alkali stress in old and young leaves of cotton (Gossypium hirsutum L. seedlings

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2016-11-01

    Full Text Available Soil salinization is an important agriculture-related environmental problem. Alkali stress and salt stress strongly influence the metabolic balance in plants. Salt and alkali stresses exert varied effects on old and young tissues, which display different adaptive strategies. In this study, we used cotton (Gossypium hirsutum L. plants as experimental material to investigate whether alkali stress exerts varied effects on ion balance and metabolism in old and young leaves of cotton plants exposed to alkali stress. Moreover, we compared the functions of young and old leaves in alkali tolerance. Results showed that alkali stress exerted a considerably stronger growth inhibition on old leaves than on young leaves. Under alkali stress, young leaves can maintain low Na and high K contents and retain relatively stable pigment accumulation and tricarboxylic acid cycle (TCA, resulting in greater accumulation of photosynthetic metabolites. In terms of metabolic response, the young and old leaves clearly displayed different mechanisms of osmotic regulation. The amounts of inositol and mannose significantly increased in both old and young leaves of cotton exposed to alkali stress, and the extent of increase was higher in young leaves than in old leaves. In old leaves, synthesis of amino acids, such as GABA, valine, and serine, was dramatically enhanced, and this phenomenon is favorable for osmotic adjustment and membrane stability. Organs at different developmental stages possibly display different mechanisms of metabolic regulation under stress condition. Thus, we propose that future investigations on alkali stress should use more organs obtained at different developmental stages.

  11. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L

    Science.gov (United States)

    Abdurakhmonov, Ibrokhim Y.; Buriev, Zabardast T.; Saha, Sukumar; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2014-01-01

    Simultaneous improvement of fibre quality, early-flowering, early-maturity and productivity in Upland cotton (G. hirsutum) is a challenging task for conventional breeding. The influence of red/far-red light ratio on the fibre length prompted us to examine the phenotypic effects of RNA interference (RNAi) of the cotton PHYA1 gene. Here we show a suppression of up to ~70% for the PHYA1 transcript, and compensatory overexpression of up to ~20-fold in the remaining phytochromes in somatically regenerated PHYA1 RNAi cotton plants. Two independent transformants of three generations exhibited vigorous root and vegetative growth, early-flowering, significantly improved upper half mean fibre length and an improvement in other major fibre characteristics. Small decreases in lint traits were observed but seed cotton yield was increased an average 10-17% compared with controls. RNAi-associated phenotypes were heritable and transferable via sexual hybridization. These results should aid in the development of early-maturing and productive Upland cultivars with superior fibre quality.

  12. New red flower germplasm lines of cotton selected from hybrid of Gossypium hirsutum × G. bickii

    Institute of Scientific and Technical Information of China (English)

    梁正兰; 姜茹琴; 钟文南

    1997-01-01

    By means of dropping GA3 (50 ppm) and NAA (40 ppm) on the hybrid boll-embryo culture in vitro, one F1 plant of G. hirsutum G. bickii was obtained; when F1 branches were grafted on upland cotton and then back-crossed with upland cotton under short-day and cooler-night condition, some BC1 seeds could be harvested. The characteristic segregation was very violent in early generation. Through 3 times of back-crossing and selecting, ten stable hybrid lines with the character of both male parent (viz. red petal-purple spot and strong fibre) and female par-ent (plant type, earliness, white fibre, lint length, etc. ) were established. These lines were assigned as HB red flow-er lines (HBRL). Transference of character of G. bickii to upland cotton was proved to be successful for the first time. These new germplasms may play an important role in both the genetic research and new cotton variety breeding.

  13. Association analysis of fiber quality traits and exploration of elite alleles in Upland cotton cultivars/accessions (Gossypium hirsutum L.).

    Science.gov (United States)

    Cai, Caiping; Ye, Wenxue; Zhang, Tianzhen; Guo, Wangzhen

    2014-01-01

    Exploring the elite alleles and germplasm accessions related to fiber quality traits will accelerate the breeding of cotton for fiber quality improvement. In this study, 99 Gossypium hirsutum L. accessions with diverse origins were used to perform association analysis of fiber quality traits using 97 polymorphic microsatellite marker primer pairs. A total of 107 significant marker-trait associations were detected for three fiber quality traits under three different environments, with 70 detected in two or three environments and 37 detected in only one environment. Among the 70 significant marker-trait associations, 52.86% were reported previously, implying that these are stable loci for target traits. Furthermore, we detected a large number of elite alleles associated simultaneously with two or three traits. These elite alleles were mainly from accessions collected in China, introduced to China from the United States, or rare alleles with a frequency of less than 5%. No one cultivar contained more than half of the elite alleles, but 10 accessions were collected from China and the two introduced from the United States did contain more than half of these alleles. Therefore, there is great potential for mining elite alleles from germplasm accessions for use in fiber quality improvement in modern cotton breeding.

  14. Salt-induced effects on some key morpho-physiological attributes of cotton (Gossypium hirsutum L. at various growth stages

    Directory of Open Access Journals (Sweden)

    Huma Lubna Shaheen and Muhammad Shahbaz

    2012-11-01

    Full Text Available Salinity is a multidimensional stress affecting crop yield and productivity at various levels of plant organization. To assess salt induced adverse effects on cotton (Gossypium hirsutum L., ten cultivars were grown in sand culture supplemented with full strength Hoagland’s nutrients solutions and different salt concentrations (0, 50, 100 and 200 mM NaCl. Salt stress markedly reduced growth attributes, relative water contents, efficiency of photosystem II, net CO2 assimilation rate (A, transpiration rate (E and stomatal conductance in all cultivars. Reduction was maximum at the highest level of salt stress i.e. 200 mM. However, response of cotton cultivars was variable to various levels of salinity and even at various developmental stages. Cultivars RH-510, BH-118 and MNH-770 were ranked as relatively salt tolerant on the basis of their better growth performance and net CO2 assimilation rate whereas cvs. CIM-496, CIM-473 and FH-901 were relatively salt sensitive. Cultivars RH-510, BH-118 and MNH-770 exhibited high shoot fresh and dry weights, photosynthetic rate (A, and Photosystem II (Fv/Fm efficiency at both seedling and maturity growth stages. Results suggest that selection of plants having high photosynthetic rate and biomass at seedling stage may be a good source of high yield at mature stage of growth.

  15. A new interspecific, Gossypium hirsutum x G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton.

    Science.gov (United States)

    Lacape, Jean-Marc; Jacobs, J; Arioli, T; Derijcker, R; Forestier-Chiron, N; Llewellyn, D; Jean, J; Thomas, E; Viot, C

    2009-07-01

    We report the development of a new interspecific cotton recombinant inbred line (RIL) population of 140 lines deriving from an interspecific cross between Gossypium hirsutum (Gh) and G. barbadense (Gb), using the same two parents that have served for the construction of a BC(1) map and for the marker-assisted backcross selection program underway at CIRAD. Two marker systems, microsatellites and AFLPs, were used. An important feature of the RIL population was its marked segregation distortion with a genome-wide bias to Gh alleles (parental genome ratio is 71/29). The RIL map displays an excellent colinearity with the BC(1) map, although it is severely contracted in terms of map size. Existence of 255 loci in common (between 6 and 14 per chromosome) allowed the integration of the two data sets. A consensus BC(1)-RIL map based upon 215 individuals (75 BC1 + 140 RIL) was built. It consisted of 1,745 loci, spanned 3,637 cM, intermediate between the sizes of the two component maps, and constituted a solid framework to cross align cotton maps using common markers. The new RIL population will be further exploited for fiber property QTL mapping and eQTL mapping.

  16. Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population.

    Science.gov (United States)

    Zhao, Yunlei; Wang, Hongmei; Chen, Wei; Li, Yunhai

    2014-01-01

    Understanding the population structure and linkage disequilibrium in an association panel can effectively avoid spurious associations and improve the accuracy in association mapping. In this study, one hundred and fifty eight elite cotton (Gossypium hirsutum L.) germplasm from all over the world, which were genotyped with 212 whole genome-wide marker loci and phenotyped with an disease nursery and greenhouse screening method, were assayed for population structure, linkage disequilibrium, and association mapping of Verticillium wilt resistance. A total of 480 alleles ranging from 2 to 4 per locus were identified from all collections. Model-based analysis identified two groups (G1 and G2) and seven subgroups (G1a-c, G2a-d), and differentiation analysis showed that subgroup having a single origin or pedigree was apt to differentiate with those having a mixed origin. Only 8.12% linked marker pairs showed significant LD (Pmapping, which widely were distributed among 15 chromosomes. Among which 10 marker loci were found to be consistent with previously identified QTLs and 32 were new unreported marker loci, and QTL clusters for Verticillium wilt resistanc on Chr.16 were also proved in our study, which was consistent with the strong linkage in this chromosome. Our results would contribute to association mapping and supply the marker candidates for marker-assisted selection of Verticillium wilt resistance in cotton.

  17. Fine mapping of the red plant gene R1 in upland cotton(Gossypium hirsutum)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; CAI CaiPing; ZHANG TianZhen; GUO WangZhen

    2009-01-01

    Sub 16 is a substitution line with G. hirsutum cv. TM-1 genetic background except that the 16th chro-mosome (Chr. 16) is replaced by the corresponding homozygous chromosome of G. barbadense cv. 3-79, and T586 is a G. hirsutum multiple gene marker line with 8 dominant mutation genes. The R1 gene for anthocyanin pigmentation was tagged in Chr. 16 in T586. The objective of this research was to screen SSR markers tightly linked with R1 by using the F2 segregating population containing 1259 plants derived from the cross of Sub 16 and T586 and the backbone genetic linkage map from G. hir-sutumxG, barbadense BC1 newly updated by our laboratory. Genetic analysis suggested that the se-gregation ratio of red plants in the F2 population fit Mendelian 1:2:1 inheritance, confirming that the red plant trait was controlled by an incomplete dominance gene. Preliminary mapping of R1 was conducted using 237 randomLy selected F2 individuals and JoinMap v3.0 software. Then, a fine map of R1 was constructed using the F2 segregating population containing 1259 plants, and R1 was located between NAU4956 and NAU6752, with only 0.49 cM to the nearest maker loci (NAU6752). These results pro-vided a foundation for map-based cloning of R1 and further development of cotton cultivars with red fibers by transgenic technology.

  18. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Wang, Yumei; Hua, Jinping

    2015-01-01

    Determination of genetic basis of heterosis may promote hybrid production in Upland cotton (Gossypium hirsutum L.). This study was designed to explore the genetic mechanism of heterosis for yield and yield components in F2: 3 and F2: 4 populations derived from a hybrid ‘Xinza No. 1’. Replicated yield field trials of the progenies were conducted in 2008 and 2009. Phenotypic data analyses indicated overdominance in F1 for yield and yield components. Additive and dominance effects at single-locus level and digenic epistatic interactions at two-locus level were analyzed by 421 marker loci spanning 3814 cM of the genome. A total of 38 and 49 QTLs controlling yield and yield components were identified in F2: 3 and F2: 4 populations, respectively. Analyses of these QTLs indicated that the effects of partial dominance and overdominance contributed to heterosis in Upland cotton simultaneously. Most of the QTLs showed partial dominance whereas 13 QTLs showing overdominance in F2:3 population, and 19 QTLs showed overdominance in F2:4. Among them, 21 QTLs were common in both F2: 3 and F2: 4 populations. A large number of two-locus interactions for yield and yield components were detected in both generations. AA (additive × additive) epistasis accounted for majority portion of epistatic effects. Thirty three complementary two-locus homozygotes (11/22 and 22/11) were the best genotypes for AA interactions in terms of bolls per plant. Genotypes of double homozygotes, 11/22, 22/11 and 22/22, performed best for AD/DA interactions, while genotype of 11/12 performed best for DD interactions. These results indicated that (1) partial dominance and overdominance effects at single-locus level and (2) epistasis at two-locus level elucidated the genetic basis of heterosis in Upland cotton. PMID:26618635

  19. Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2).

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2004-10-01

    Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6-7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.

  20. Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Bipinchandra B. Kalbande

    2016-06-01

    Full Text Available A new method of transgenic development called “In-planta” transformation method, where Agrobacterium is used to infect the plantlets but the steps of in vitro regeneration of plants is totally avoided. In this study, we have reported a simple In-planta method for efficient transformation of diploid cotton Gossypium hirsutum cv LRK-516 Anjali using Agrobacterium tumefaciens EHA-105 harbouring recombinant binary vector plasmid pBinAR with Arabidopsis At-NPR1 gene. Four day old plantlets were used for transformation. A vertical cut was made at the junction of cotyledonary leaves, moderately bisecting the shoot tip and exposing meristem cells at apical meristem. This site was infected with Agrobacterium inoculum. The transgenic events obtained were tested positive for the presence of At-NPR1 gene with promoter nptII gene. They are also tested negative for vector backbone integration and Agrobacterium contamination in T0 events. With this method a transformation frequency of 6.89% was reported for the cv LRK-516.

  1. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    Directory of Open Access Journals (Sweden)

    Chandrashekhar D Patil

    2014-06-01

    Full Text Available We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi.Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay.LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4(th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2(nd and 3(rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2(nd and 3(rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi, respectively.Leaves extracts of Go. hirsutum (Bt is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management.

  2. ACQUIREMENT OF TRANSGENIC COTTON (GOSSYPIUM HIRSUTUM L. RESISTANT TO HERBICIDE AND INSECT USING GLYPHOSATE-TOLERANT aroAM12 GENE AS A SELECTABLE MARKER

    Directory of Open Access Journals (Sweden)

    Xie Longxu

    2005-08-01

    , was used as a dominant selectable marker for cotton plant transformation. The genes were introduced into commercial cultivar Zhongmian12 of cotton (Gossypium hirsutum L. by Agrobacterium-mediated transformation. The transformants were directly selected on medium supplemented with 80μmol/L glyphosate. In this research, 40 regenerative cotton plantlets were obtained through screening. Integration of aroAM12 and Bts1m genes was confirmed by PCR and Southern blot, the results indicated that all the 40 plants possessed the aroAM12 gene, 28 of which possessed both the aroAM12 and BtS1m genes. Expression of both the genes was established by Western blots. Insect bioassay and glyphosate resistance assay indicated that the transgenic cotton plants obtained were highly resistant to glyphosate and insect. The results of glyphosate resistance and insect bioassay of T1 generation showed that the numbers of resistance and sensitive phenotypes showed Mendelian segregation ratio.

  3. [Glyphosate-resistant cotton (Gossypium hirsutum L.) Transformed with aroAM12 gene via Agrobacterium tumefaciens].

    Science.gov (United States)

    Xie, Long-Xu; Li, Yun-Feng; Xu, Pei-Lin

    2004-04-01

    A mutant, aroAM12, exhibiting resistance to glyphosate produced in a previous study using the staggered extension process with aroA genes from Salmonella typhimurium and Eschrichia coli. In this paper, we constructed a vector pGRA1300 carrying aroAM12 gene, comprising transit peptide of Arabidopsis EPSPS, under the control of the CaMV35S promoter and used as selectable marker for cotton plant (Gossypium hirsutum L.) transformation. Transgenic cottons with increased resistance to glyphosate were obtained by cotransformtion of hypocotyl segments with Agrobacterium tumefaciens and selected directly on medium containing glyphosate. Regeneration of glyphosate-resistant calli was carried out on a MS basic medium containing 2,4-D 0.1 mg/L, KT 0.1 mg/L, cefotaxime 500 mg/L and glyphosate 60 micromol/L. Globular embryos were induced and then developed by culturing on MSB (MS salts+B(5) vitamins) medium supplemented with asparagine 1 g/L and glutamine 2 g/L, but not containing hormone, for 40 d. The developed plantlets were then removed and cultured on an MS medium. After about 20 d, the deeply-rooted shoots were in soil. PCR analysis showed that the aroAM12 gene was present in all T(0) transgenic plants. The integration of the aroAM12 gene in the genomic DNA of cotton was further confirmed by Southern blot, which showed that the transgenic plants carried one or two copies of the aroAM12 genes. Western blot analysis showed that a 48-kD band of was detected in all T(0) transgenic plants. There was no apparent corelation between copy numbers and the expression level of the aroAM12 gene. Greenhouse screening for glyphosate resistance was performed to test 65 independent T(0) plants by spraying (three times) with an aqueous suspension at a dose corresponding to 9.317 kg/ha of Roundup (once every 5 d). After 15 d, phenotype examination was carried out of the plants in comparison with untransformed control plants. Under these conditions, it was observed that the plants transformed

  4. Molecular confirmation of Gossypium hirsutum chromosome substitution lines

    Science.gov (United States)

    The primary gene pool for tetraploid cotton species includes G. hirsutum L., as well as the other four 2n=52 species of Gossypium (G. barbadense, G. mustellinum, G. tomentosum and G. darwinii). To help overcome barriers to effective introgression, we have developed a number of alien chromosome subst...

  5. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    Science.gov (United States)

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  6. Next Generation Genetic Mapping of the Ligon-lintless-2 (Li2) Locus in Upland Cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Next generation sequencing offers new ways to identify the genetic mechanisms that underlie mutant phenotypes. The release of a reference diploid Gossypium raimondii (D5) genome and bioinformatics tools to sort tetraploid reads into subgenomes has brought cotton genetic mapping into the genomics er...

  7. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  8. SELETIVIDADE DE INSETICIDAS AO COMPLEXO DE INIMIGOS NATURAIS NA CULTURA DO ALGODÃO (Gossypium hirsutum L. SELECTIVITY OF INSECTICIDES ON THE COMPLEX OF NATURAL ENEMIES IN COTTON CROP (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Fábio Shigeo Takatsuka

    2007-09-01

    ="justify">The selectivity of insecticides was evaluated in the complex of natural enemies of the cotton (Gossypium hirsutum L. crop. The cultivar Deltapine was used in a randomized block experimental design, with seven treatments and four replications. The treatments, all in their commercial formulation, were: control; thiamethoxam (300 g.ha-1; lufenuron (300 mL.ha-1; betacyflutrin (800 mL.ha-1; imidacloprid (70g.ha-1; diflubenzuron (6,0 g.ha-1; and endosulfan (1500 mL.ha-1. The insecticides were sprayed at 45 days after germination. Besides the initial evaluation, other evaluations were performed three and seven days after insecticide application. Each plot was sampled by the fabric beating method, with two random beatings per plot. Natural enemies were identified and counted. Three days after application, the insecticides thiamethoxam (300 g.ha-1, lufenuron (300 mL.ha-1, and diflubenzuron (60 g.ha-1 did not showed negative effect on the complex of predators present in the cotton. However, seven days after application, only the lufenuron treatment maintained the selective effect over predator complex.

    KEY-WORDS: Insecticide; biological control; Gossypium.

  9. MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development

    Science.gov (United States)

    Wang, Min; Sun, Runrun; Li, Chao; Wang, Qinglian; Zhang, Baohong

    2017-01-01

    The role of microRNAs (miRNAs) during cotton fiber development remains unclear. Here, a total of 54 miRNAs belonging to 39 families were selected to characterize miRNA regulatory mechanism in eight different fiber development stages in upland cotton cv BM-1. Among 54 miRNAs, 18 miRNAs were involved in cotton fiber initiation and eight miRNAs were related to fiber elongation and secondary wall biosynthesis. Additionally, 3,576 protein-coding genes were candidate target genes of these miRNAs, which are potentially involved in cotton fiber development. We also investigated the regulatory network of miRNAs and corresponding targets in fiber initiation and elongation, and secondary wall formation. Our Gene Ontology-based term classification and KEGG-based pathway enrichment analyses showed that the miRNA targets covered 220 biological processes, 67 molecular functions, 45 cellular components, and 10 KEGG pathways. Three of ten KEGG pathways were involved in lignan synthesis, cell elongation, and fatty acid biosynthesis, all of which have important roles in fiber development. Overall, our study shows the potential regulatory roles of miRNAs in cotton fiber development and the importance of miRNAs in regulating different cell types. This is helpful to design miRNA-based biotechnology for improving fiber quality and yield. PMID:28327647

  10. Cell synchrony and chromosomal protocols for somatic cells of cotton gossypium hirsutum

    Energy Technology Data Exchange (ETDEWEB)

    Van`t Hof, J.; Lamm, S.S.

    1994-10-10

    The intent of this pamphlet is to share information with others who are interested in useful protocols for cotton cytogenetics and cytology. The protocols described are a beginning effort and they are expected to be improved. All methods, results and data given pertain to cultivar MD 51ne. We are not satisfied with our results of in situ hybridization.

  11. Glufosinate does not affect floral morphology and pollen viability in glufosinate-resistant cotton (Gossypium hirsutum)

    Science.gov (United States)

    Studies were conducted to determine whether glufosinate treatments to glufosinate-resistant cotton caused changes in floral morphology, pollen viability, and seed set. Four glufosinate treatments were included: (1) glufosinate applied postemergence over the top (POST) at the four-leaf stage, (2) glu...

  12. Effect of Implantation Machine Parameters on N+ ion Implantation for Upland Cotton (Gossypium hirsutum L.) Pollen

    Institute of Scientific and Technical Information of China (English)

    YUE Jieyu; YU Lixiang; WU Yuejin; TANG Canming

    2008-01-01

    Effect of parameters of ion implantation machine,including ion energy,total dose,dose rate,impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied.The best parameters were screened out.The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.

  13. Isolation and Expression Analysis of Two Genes Encoding Cinnamate 4-Hydroxylase from Cotton (Gossypium hirsutum)

    Institute of Scientific and Technical Information of China (English)

    NI Zhi-yong; LI Bo; Neumann MPeter; L Meng; FAN Ling

    2014-01-01

    Two genes (GhC4H1 and GhC4H2) that encode putative cotton cinnamate 4-hydroxylases that catalyze the second step in the phenylpropanoid pathway were isolated from developing cotton ifbers. GhC4H1 and GhC4H2 each contain open reading frames of 1 518 base pairs (bp) in length and both encode proteins consisting of 505 amino acid residues. They are 90.89%identical to each other at the amino acid sequence level and belong to class I of plant C4Hs. GhC4H1 and GhC4H2 genomic DNA are 2 247 and 2 161 bp long, respectively, and contain two introns located at conserved positions relative to the coding sequence. GhC4H1 and GhC4H2 promoters were isolated and found to contain many cis-elements (boxes P, L and AC-I element) previously identiifed in the promoters of other phenylpropanoid pathway genes. Histochemical staining showed GUS expression driven by the GhC4H1 and GhC4H2 promoters in ovules and ifbers tissues. GhC4H1 and GhC4H2 were also widely expressed in other cotton tissues. GhC4H2 expression reached its highest level during the elongation stage of ifber development, whereas GhC4H1 expression increased during the secondary wall development period in cotton ifbers. Our results contribute to a better understanding of the biochemical role of GhC4H1 and GhC4H2 in cotton ifber development.

  14. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress.

    Science.gov (United States)

    Zhang, Yanjun; Kong, Xiangqiang; Dai, Jianlong; Luo, Zhen; Li, Zhenhuai; Lu, Hequan; Xu, Shizhen; Tang, Wei; Zhang, Dongmei; Li, Weijiang; Xin, Chengsong; Dong, Hezhong

    2017-01-01

    Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.

  15. Influence of Soil Temperature on Meloidogyne incognita Resistant and Susceptible Cotton, Gossypium hirsutum

    OpenAIRE

    Carter, William W.

    1982-01-01

    The degree of resistance by a cotton plant to Meloidogyne incognita is affected by soil temperature, particularly in moderately resistant cultivars, The total number of nematodes in the resistant and moderately resistant rools at 35 C was equal to, or greater than, the number in susceptible roots at 20, 25, or 30 C. A shift in numbers to developing and egg-bearing forms of nematodes in the susceptible cultivar as tentperature increased indicates development was affected by temperature rather ...

  16. Response and Tolerance Mechanism of Cotton Gossypium hirsutum L. to Elevated Temperature Stress: A Review

    Science.gov (United States)

    Zahid, Kashif Rafiq; Ali, Farhan; Shah, Farooq; Younas, Muhammad; Shah, Tariq; Shahwar, Durri; Hassan, Waseem; Ahmad, Zahoor; Qi, Chao; Lu, Yanli; Iqbal, Amjad; Wu, Wei

    2016-01-01

    Cotton is an important multipurpose crop which is highly sensitive to both biotic and abiotic stresses. Proper management of this cash crop requires systematic understanding of various environmental conditions that are vital to yield and quality. High temperature stress can severely affect the viability of pollens and anther indehiscence, which leads to significant yield losses. Cotton can respond to withstand adverse environmental condition in several phases among which the accumulation of chemicals is extremely vital. Calcium, kinases, reactive oxygen species, carbohydrate, transcription factors, gene expression regulation, and plant hormones signaling pathways are playing a handy role in activating the major genes responsible to encounter and defend elevated temperature stress. The production of heat shock proteins is up-regulated when crops are unleashed to high temperature stress. Molecular breeding can play a functional role to identify superior genes for all the important attributes as well as provide breeder ready markers for developing ideotypes. The development of high-temperature resistant transgenic cultivars of cotton can grant a stability benefit and can also ameliorate the production capacity in response to elevated temperature. PMID:27446165

  17. Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean.

    Science.gov (United States)

    Coppens d'Eeckenbrugge, Geo; Lacape, Jean-Marc

    2014-01-01

    Perennial forms of Gossypium hirsutum are classified under seven races. Five Mesoamerican races would have been derived from the wild race 'yucatanense' from northern Yucatán. 'Marie-Galante', the main race in the Caribbean, would have developed from introgression with G. barbadense. The racial status of coastal populations from the Caribbean has not been clearly defined. We combined Ecological Niche Modeling with an analysis of SSR marker diversity, to elucidate the relationships among cultivated, feral and wild populations of perennial cottons. Out of 954 records of occurrence in Mesoamerica and the Caribbean, 630 were classified into four categories cultivated, feral (disturbed and secondary habitats), wild/feral (protected habitats), and truly wild cotton (TWC) populations. The widely distributed three first categories cannot be differentiated on ecological grounds, indicating they mostly belong to the domesticated pool. In contrast, TWC are restricted to the driest and hottest littoral habitats, in northern Yucatán and in the Caribbean (from Venezuela to Florida), as confirmed by their climatic envelope in the factorial analysis. Extrapolating this TWC climatic model to South America and the Pacific Ocean points towards places where other wild representatives of tetraploid Gossypium species have been encountered. The genetic analysis sample comprised 42 TWC accessions from 12 sites and 68 feral accessions from 18 sites; at nine sites, wild and feral accessions were collected in close vicinity. Principal coordinate analysis, neighbor joining, and STRUCTURE consistently showed a primary divergence between TWC and feral cottons, and a secondary divergence separating 'Marie-Galante' from all other feral accessions. This strong genetic structure contrasts strikingly with the absence of geographic differentiation. Our results show that TWC populations of Mesoamerica and the Caribbean constitute a homogenous gene pool. Furthermore, the relatively low genetic

  18. Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L. in Mesoamerica and the Caribbean.

    Directory of Open Access Journals (Sweden)

    Geo Coppens d'Eeckenbrugge

    Full Text Available Perennial forms of Gossypium hirsutum are classified under seven races. Five Mesoamerican races would have been derived from the wild race 'yucatanense' from northern Yucatán. 'Marie-Galante', the main race in the Caribbean, would have developed from introgression with G. barbadense. The racial status of coastal populations from the Caribbean has not been clearly defined. We combined Ecological Niche Modeling with an analysis of SSR marker diversity, to elucidate the relationships among cultivated, feral and wild populations of perennial cottons. Out of 954 records of occurrence in Mesoamerica and the Caribbean, 630 were classified into four categories cultivated, feral (disturbed and secondary habitats, wild/feral (protected habitats, and truly wild cotton (TWC populations. The widely distributed three first categories cannot be differentiated on ecological grounds, indicating they mostly belong to the domesticated pool. In contrast, TWC are restricted to the driest and hottest littoral habitats, in northern Yucatán and in the Caribbean (from Venezuela to Florida, as confirmed by their climatic envelope in the factorial analysis. Extrapolating this TWC climatic model to South America and the Pacific Ocean points towards places where other wild representatives of tetraploid Gossypium species have been encountered. The genetic analysis sample comprised 42 TWC accessions from 12 sites and 68 feral accessions from 18 sites; at nine sites, wild and feral accessions were collected in close vicinity. Principal coordinate analysis, neighbor joining, and STRUCTURE consistently showed a primary divergence between TWC and feral cottons, and a secondary divergence separating 'Marie-Galante' from all other feral accessions. This strong genetic structure contrasts strikingly with the absence of geographic differentiation. Our results show that TWC populations of Mesoamerica and the Caribbean constitute a homogenous gene pool. Furthermore, the relatively

  19. Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum)

    Indian Academy of Sciences (India)

    Ashok Badigannavar; Gerald O. Myers

    2015-03-01

    Cottonseed contains 16% seed oil and 23% seed protein by weight. High levels of palmitic acid provides a degree of stability to the oil, while the presence of bound gossypol in proteins considerably changes their properties, including their biological value. This study uses genetic principles to identify genomic regions associated with seed oil, protein and fibre content in upland cotton cultivars. Cotton association mapping panel representing the US germplasm were genotyped using amplified fragment length polymorphism markers, yielding 234 polymorphic DNA fragments. Phenotypic analysis showed high genetic variability for the seed traits, seed oil range from 6.47–25.16%, protein from 1.85–28.45% and fibre content from 15.88–37.12%. There were negative correlations between seed oil and protein content. With reference to genetic diversity, the average estimate of ST was 8.852 indicating a low level of genetic differentiation among subpopulations. The AMOVA test revealed that variation was 94% within and 6% among subpopulations. Bayesian population structure identified five subpopulations and was in agreement with their geographical distribution. Among the mixed models analysed, mixed linear model (MLM) identified 21 quantitative trait loci for lint percentage and seed quality traits, such as seed protein and oil. Establishing genetic diversity, population structure and marker trait associations for the seed quality traits could be valuable in understanding the genetic relationships and their utilization in breeding programmes.

  20. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs.

    Science.gov (United States)

    McGarry, Roisin C; Prewitt, Sarah F; Culpepper, Samantha; Eshed, Yuval; Lifschitz, Eliezer; Ayre, Brian G

    2016-10-01

    Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization.

  1. Confamiliar transferability of simple sequence repeat (SSR) markers from cotton (Gossypium hirsutum L.) and jute (Corchorus olitorius L.) to twenty two Malvaceous species.

    Science.gov (United States)

    Satya, Pratik; Paswan, Pramod Kumar; Ghosh, Swagata; Majumdar, Snehalata; Ali, Nasim

    2016-06-01

    Cross-species transferability is a quick and economic method to enrich SSR database, particularly for minor crops where little genomic information is available. However, transferability of SSR markers varies greatly between species, genera and families of plant species. We assessed confamiliar transferability of SSR markers from cotton (Gossypium hirsutum) and jute (Corchorus olitorius) to 22 species distributed in different taxonomic groups of Malvaceae. All the species selected were potential industrial crop species having little or no genomic resources or SSR database. Of the 14 cotton SSR loci tested, 13 (92.86 %) amplified in G. arboreum and 71.43 % exhibited cross-genera transferability. Nine out of 11 jute SSRs (81.81 %) showed cross-transferability across genera. SSRs from both the species exhibited high polymorphism and resolving power in other species. The correlation between transferability of cotton and jute SSRs were highly significant (r = 0.813). The difference in transferability among species was also significant for both the marker groups. High transferability was observed at genus, tribe and subfamily level. At tribe level, transferability of jute SSRs (41.04 %) was higher than that of cotton SSRs (33.74 %). The tribe Byttnerieae exhibited highest SSR transferability (48.7 %). The high level of cross-genera transferability (>50 %) in ten species of Malvaceae, where no SSR resource is available, calls for large scale transferability testing from the enriched SSR databases of cotton and jute.

  2. Influence of Soil Temperature on Meloidogyne incognita Resistant and Susceptible Cotton, Gossypium hirsutum.

    Science.gov (United States)

    Carter, W W

    1982-07-01

    The degree of resistance by a cotton plant to Meloidogyne incognita is affected by soil temperature, particularly in moderately resistant cultivars, The total number of nematodes in the resistant and moderately resistant rools at 35 C was equal to, or greater than, the number in susceptible roots at 20, 25, or 30 C. A shift in numbers to developing and egg-bearing forms of nematodes in the susceptible cultivar as tentperature increased indicates development was affected by temperature rather than by genetic resistance mechanisms. However, the nematode resistant cultivar did not support maturation of nematodes until a soil tempurature of 35 C was attained. This indicated that resistance mechanisms are partially repressed at 35 C and differences in nematode development cannot be explained in terms of accumulated heat units. The moderately resistant cultivar was significantly more sensitive to the effects of high temperature than was the resistant cultivar.

  3. In-ovulo embryo culture and seedling development of cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Stewart, J M; Hsu, C L

    1977-01-01

    A convenient and reliable method for culturing cotton embryos is needed to obtain interspecific hybrids of this genus. C.A. Beasley and I.P. Ting (Amer. J. Bot. 60, 130, 1973) developed a phytohormone-supplemented medium (BTP) upon which the growth of ovules was similar that of in situ ovules. This medium was examined for in-ovulo embryo culture. Although good ovule growth occurred on BTP no embryos developed to maturity. However, when the medium was supplemented with NH 4 (+) , more than 50% of the ovules produced mature embryos, and many of these germinated precociously after 8-10 weeks of culture. After germination seedlings were established on a separate medium designed to give balanced root and shoot growth. Subsequently young plants could be transferred to pots for greenhouse culture.

  4. An opportunistic Pantoea sp. isolated from a cotton fleahopper that is capable of causing cotton (Gossypium hirsutum L.) bud rot

    Science.gov (United States)

    Pantoea ananatis (Serano) representatives are known to have a broad host range including both humans and plants. The cotton fleahopper (Pseudatomoscelis seriatus, Reuter) is a significant pest that causes cotton bud damage that may result in significant yield losses. In this study, cotton fleahopp...

  5. Bemisia tabaci (Hemiptera: Aleyrodidae) nymphal feeding in cotton (Gossypium hirsutum) leaves

    Institute of Scientific and Technical Information of China (English)

    CHANG-CHI CHU; DENNIS A. MARGOSAN; JAMES S. BUCKNER; THOMAS P. FREEMAN; THOMAS J. HENNEBERRY

    2007-01-01

    We used brightfield electron microscopy (BEM), differential interference contrast microscopy (DICM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM) to investigate the stylet pathways of Bemisia tabaci during nymphal feeding behavior in cotton leaves beginning with penetration of the abaxial leaf surface and ending with stylers in sieve tubes in phloem tissues. Most nymphal stylets within salivary sheaths penetrating leaf tissues made complex turns and developed more than one salivary sheath branch before ending in sieve tubes. The external morphology of the salivary sheaths and their routes between and through leaf cells are described during the present study. Results showed the presence of the stylet within the sieve tubes. B. tabaci nymphs may remove stylets and feed in different sieve tubes.Ten short movies showing the progression of the stylet penetrations from adaxial surface to the sieve tubes are attached to Figures 8-15. The report and movies can be viewed from the internet. Download the movies to a local drive in your compute rfirs tfor fast upload. The movies are posted on theweb sitehttp ://www.ars.usda.gov/Services/docs.htm? docid= 14629.The movies can be used as a teaching aid in biology classes.

  6. Combining ability analysis in intraspecific F1 diallel cross of upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    K.S. Usharani*, P. Vindhiyavarman and P. Amala Balu

    2014-09-01

    Full Text Available Diallel analysis was carried out by involving nine parents and their 72 cross combinations in upland cotton for assessing their combining ability for yield and its component characters. Variance due to parents and hybrids showed significant differences between all the characters studied except number of bolls, boll weight, single plant yield, lint index and seed index. Significance of variance in parents versus hybrids interaction provides adequacy for comparing the heterotic expression for all the characters except boll weight, ginning per cent, lint index and seed index. The GCA variances were larger than those of SCA for all the traits except number of bolls per plant, indicating the preponderance of additive action. The parents MCU 5 and MCU 7 were proved to be good general combiners for single plant yield and other economic traits and hence need to be included in the yield improvement programmes. The hybrid combinations viz., MCU 5 x MCU 7, Khandwa 2 x Suraj, KC 2 x MCU 5, Anjali x MCU 7 and Anjali x Suraj recorded superior per se performance for number of bolls, boll weight and single plant yield and other characters. Among these crosses KC 2 x MCU 5, Anjali x Suraj and Anjali x MCU 7 exhibited additive type gene action with one good general combining ability parent for number of bolls, boll weight and lint index respectively. Hence, selection can be made in these crosses in early generation itself.

  7. Modeling Fiber Fineness, Maturity, and Micronaire in Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen-qing; ZHOU Zhi-guo; MENG Ya-li; CHEN Bing-lin; WANG You-hua

    2013-01-01

    Crop performance is determined by the combined effects of the genotype of the crop and the environmental conditions of the production system. This study was undertaken to develop a dynamic model for simulating environmental (temperature and solar radiation) and N supply effects on fiber fineness, maturity and micronaire. Three different experiments involving genotypes, sowing dates, and N fertilization rates were conducted to support model development and model evaluation. The growth and development duration of fiber fineness, maturity, and micronaire were scaled by using physiological development time of secondary wall synthesis (PDTSWSP), which was determined based on the constant ratio of SWSP/BMP. PTP (product of relative thermal effectiveness (RTE) and photosynthetically active radiation (PAR), MJ m-2) and subtending leaf N content per unit area (NA, g m-2) and critical subtending leaf N content per unit area (CNA, g m-2) of cotton boll were calculated or simulated to evaluate effects of temperature and radiation, and N supply. Besides, the interactions among temperature, radiation and N supply were also explained by piecewise function. The overall performance of the model was calibrated and validated with independent data sets from three field experiments with two sowing dates, three or five flowering dates and three or four N fertilization rates for three subsequent years (2005, 2007, and 2009) at three ecological locations. The average RMSE and RE for fiber fineness, maturity, and micronaire predictions were 372 m g-1 and 5.0%, 0.11 m g-1 and 11.4%, 0.3 m g-1 and 12.3%, respectively, indicating a good fit between the simulated and observed data. It appears that the model can give a reliable prediction for fiber fineness, maturity and micronaire formation under various growing conditions.

  8. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    Directory of Open Access Journals (Sweden)

    Gregory N. Thyssen

    2016-06-01

    Full Text Available Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes.

  9. Polyamine and its metabolite H2O2 play a key role in the conversion of embryogenic callus into somatic embryos in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Wen-Han eCheng

    2015-12-01

    Full Text Available The objective of this study was to increase understanding about the mechanism by which polyamines (PAs promote the conversion of embryogenic calli (EC into somatic embryos in cotton (Gossypium hirsutum L.. We measured the levels of endogenous PAs and H2O2, quantified the expression levels of genes involved in the PAs pathway at various stages of cotton somatic embryogenesis (SE, and investigated the effects of exogenous PAs and H2O2 on differentiation and development of embryogenic calli. Putrescine (Put, spermidine (Spd and spermine (Spm significantly increased from the EC stage to the early phase of embryo differentiation. The levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained nearly the same. The expression profiles of GhADC genes were consistent with changes in Put during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage, during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was significantly increased. Exogenous Put, Spd, Spm and H2O2 not only enhanced embryogenic callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-diamino-octane, which are inhibitors of polyamine synthesis and PAO activity. Overall, the results suggest that both PAs and their metabolic product H2O2 are essential for the conversion of EC into somatic embryos in cotton.

  10. Genomic Differentiation Between Gossypium barbadense and G.hirsutum

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tian-zhen

    2008-01-01

    @@ Sea Island cotton (Gossypium barbadense L.) has superior fiber quality properties,while Uplandcotton (G.hirsutum L.) is characterized by its high yield.Although these two species are easilycrossed,it is difficult to integrate their superior genes.It will be very helpful to molecular breedingand evolution study in Gossypium to reveal genomic differentiation between G.barbadense and G.hir-suture.An enhanced genetic map consisting of 2247 loci and covering 3514.6 cM,with an average in-ter-marker distance of 1.5 cM has been developed.

  11. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Yuange Wang

    2015-08-01

    Full Text Available Allene oxide cyclase (AOC, E 5.3.99.6 is an essential enzyme in the jasmonic acid (JA biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5 were cloned from upland cotton (Gossypium hirsutum L., sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  12. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene,GhA OC1, in upland cotton(Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Yuange; Wang; Huaihua; Liu; Qingguo; Xin

    2015-01-01

    Allene oxide cyclase(AOC, E 5.3.99.6) is an essential enzyme in the jasmonic acid(JA)biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes(Gh AOC1–Gh AOC5) were cloned from upland cotton(Gossypium hirsutum L.),sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of Gh AOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate(Me JA) and Cu Cl2 stresses. To investigate the role of Gh AOC under copper stress, transgenic Arabidopsis plants overexpressing cotton Gh AOC1 under control of the Cauliflower mosaic virus 35S(Ca MV 35S) promoter were generated. Compared to untransformed plants, Gh AOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress.This study provides the first evidence that Gh AOC1 plays an important role in copper stress tolerance.

  13. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Yuange Wang; Huaihua Liu; Qingguo Xin

    2015-01-01

    Allene oxide cyclase (AOC, E 5.3.99.6) is an essential enzyme in the jasmonic acid (JA) biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5) were cloned from upland cotton (Gossypium hirsutum L.), sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA) and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  14. Efeito de tratamentos com fungicidas na conservação de sementes de algodoeiro (Gossypium hirsutum L. Fungicides treatment and storage of cotton seed (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Edivaldo Cia

    1980-01-01

    Full Text Available Foi feito um estudo sobre a germinação de sementes das variedades comerciais de algodoeiro IAC 13-1 e IAC 17, mantendo-se as sementes em condições de labo-ratório durante dois anos e utilizando-se os seguintes tratamentos com fungicidas: 1 PCNB + thiram; 2 Benomyl; 3 deslintamento mecânico (testemunha; 4 deslintamento ácido (D.A.; 5 PCNB + thiram + D.A.; e 6 mercúrio metálico. A semeadura foi efetuada em canteiros de casa de vegetação, com três repetições, utilizando-se cinqüenta sementes por parcela. A avaliação dos dados foi feita através de índices de emergência (relação entre o stand inicial e o número de sementes utilizadas e de resistência a fungos do tombamento (relação entre a média ponderada das notas das plantas 25 dias após a emergência e o stand inicial. As notas variaram de 1 a 3 de acordo com a lesão de tombamento na altura do colo da planta. Pelos isolados obtidos de plantas com lesão, constatou-se maior incidência de Rhyzoctonia solani Kuhn. Nas condições do ensaio, os fungicidas à base de mercúrio metálico, PCNB + thiram e Benomyl apresentaram um bom efeito aos sete meses de tratamento, o qual foi mantido até os dezesseis meses com os mesmos tratamentos, exceção feita para Benomyl. O deslintamento com ácido deu bom resultado somente até os sete meses, pois aos dezesseis meses o poder germinativo piorou relativamente, sendo que esse efeito negativo foi diminuído com tratamento de PCNB + thiram.An experiment was carried out for two years in a greenhouse to study the effect of fungicides treatment on the germination of seeds of São Paulo cotton varieties, IAC 13-1 and IAC 17. Treated seeds were stored in uncontrolled conditions and germination was tested yearly. For each variety, the following treatments were applied: 1 PCNB + thiram, 2 Benomyl, 3 Check (mechanically delinted seed, 4 Acid delinted seed (D.A., 5 D.A. + PCNB + thiram, 6 Metallic mercury. For treatments 1, 2 and 6

  15. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    Science.gov (United States)

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research.

  16. Breeding Potential of Introgression Lines Developed from Interspecific Crossing between Upland Cotton (Gossypium hirsutum and Gossypium barbadense: Heterosis, Combining Ability and Genetic Effects.

    Directory of Open Access Journals (Sweden)

    Jinfa Zhang

    Full Text Available Upland cotton (Gossypium hirstum L., which produces more than 95% of the world natural cotton fibers, has a narrow genetic base which hinders progress in cotton breeding. Introducing germplasm from exotic sources especially from another cultivated tetraploid G. barbadense L. can broaden the genetic base of Upland cotton. However, the breeding potential of introgression lines (ILs in Upland cotton with G. barbadense germplasm integration has not been well addressed. This study involved six ILs developed from an interspecific crossing and backcrossing between Upland cotton and G. barbadense and represented one of the first studies to investigate breeding potentials of a set of ILs using a full diallel analysis. High mid-parent heterosis was detected in several hybrids between ILs and a commercial cultivar, which also out-yielded the high-yielding cultivar parent in F1, F2 and F3 generations. A further analysis indicated that general ability (GCA variance was predominant for all the traits, while specific combining ability (SCA variance was either non-existent or much lower than GCA. The estimated GCA effects and predicted additive effects for parents in each trait were positively correlated (at P<0.01. Furthermore, GCA and additive effects for each trait were also positively correlated among generations (at P<0.05, suggesting that F2 and F3 generations can be used as a proxy to F1 in analyzing combining abilities and estimating genetic parameters. In addition, differences between reciprocal crosses in F1 and F2 were not significant for yield, yield components and fiber quality traits. But maternal effects appeared to be present for seed oil and protein contents in F3. This study identified introgression lines as good general combiners for yield and fiber quality improvement and hybrids with high heterotic vigor in yield, and therefore provided useful information for further utilization of introgression lines in cotton breeding.

  17. Molecular markers associated with the immature fiber (im) gene affecting the degree of fiber cell wall thickening in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Kim, Hee Jin; Moon, Hong S; Delhom, Christopher D; Zeng, Linghe; Fang, David D

    2013-01-01

    Cotton fiber fineness and maturity measured indirectly as micronaire (MIC) are important properties of determining fiber grades in the textile market. To understand the genetic control and molecular mechanisms of fiber fineness and maturity, we studied two near isogenic lines, Gossypium hirsutum, Texas Marker-1 wild type (TM-1) and immature fiber (im) mutant showing a significant difference in MIC values. The fibers from im mutant plants were finer and less mature with lower MIC values than those from the recurrent parent, TM-1. A comprehensive fiber property analysis of TM-1 and im mutant showed that the lower MIC of fibers in im mutant was due to the lower degree of fiber cell wall thickening as compared to the TM-1 fibers. Using an F(2) population comprising 366 progenies derived from a cross between TM-1 and im mutant, we confirmed that the immature fiber phenotype present in a mutant plant was controlled by one single recessive gene im. Furthermore, we identified 13 simple sequence repeat markers that were closely linked to the im gene located on chromosome 3. Molecular markers associated with the im gene will lay the foundation to further investigate genetic information required for improving cotton fiber fineness and maturity.

  18. Slow desiccation leads to high-frequency shoot recovery from transformed somatic embryos of cotton (Gossypium hirsutum L. cv. Coker 310 FR).

    Science.gov (United States)

    Chaudhary, B; Kumar, S; Prasad, K V S K; Oinam, G S; Burma, P K; Pental, D

    2003-06-01

    In Agrobacterium-mediated genetic transformation of cotton (Gossypium hirsutum L. cv. Coker 310FR) the frequency at which somatic embryos were converted to plantlets was significantly improved by subjecting the embryos to slow physical desiccation. We used Agrobacterium strain GV3101 containing the binary vector pGSFR with the nos-nptII gene for in vitro selection and the 35S gus-int fragment as a reporter to optimize the transformation protocol. Although the concentration of kanamycin was reduced during embryogenesis and embryo maturation, even at the lower levels somatic embryos were predominantly abnormal, showing hypertrophy and reduced or fused cotyledons or poor radicle ends. A majority of these embryos (more than 75%) were beta-glucuronidase (GUS)-positive. Embryos with an abnormal appearance showed a very poor conversion to plantlets. However, these embryos, when subjected to slow physical desiccation followed by transfer to fresh medium, regenerated single or multiple shoots from the cotyledonary end. These shoots could be grafted on wild-type seedling stocks in vitro, which, following their transfer to soil, developed normally and set seeds. Regenerated plants tested positive for the transgene by Southern analysis. An overall scheme for the high-frequency production of cotton transgenics from both normal and abnormal appearing somatic embryos is presented.

  19. Identification of early salt-stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L. employing iTRAQ-based proteomic technique

    Directory of Open Access Journals (Sweden)

    Wu eLi

    2015-09-01

    Full Text Available Soil salinity is a major abiotic stress that limits plant growth and agricultural productivity. Upland cotton (Gossypium hirsutum L. is highly tolerant to salinity; however, large-scale proteomic data of cotton in response to salt-stress are still scanty. Here, an iTRAQ-based proteomic technique was employed to identify the early differentially expressed proteins (DEPs from salt-treated cotton roots. 77 up-regulated and 52 down-regulated proteins were identified. The majority of the proteins have functions related to carbohydrate and energy metabolism, transcription related, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction, as well as stress and defense. It is worth emphasizing that some novel salt-responsive proteins were identified, which involved in cell cytoskeleton metabolism(ARP2 and FLAs), membrane transport(TIPs and PIPs), signal transduction(LRR-RLKs)and stress responses(TLP, USP, DIR,desiccation-related protein PCC13-62. High positive correlation was evaluated between the abundance of some altered proteins (SOD, POD, GST, MDAR and MDH and their enzyme activity. The results demonstrate the iTRAQ-based proteomic technique is reliable for identifying and quantifying a large number of cotton root proteins. qRT-PCR was used to study the gene expression levels of five above-mentioned proteins, four patterns are consistent with those of induced protein. These results showed that cotton’s proteome to NaCl stress is complex, and that the comparative protein profiles of roots under salinity vs control improve the understanding of the molecular mechanisms involved in the tolerance of plants to salt stress. It provides a good starting point for further functional elucidation of these DEPs using genetic and/or other approaches, and thereby candidate genes for genetic engineering to improve crop salt tolerance.

  20. Peliculização e tratamento químico de sementes de algodoeiro (Gossypium hirsutum L. Film-coating and chemical treatment of cotton seeds (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Liana Baptista de Lima

    2006-12-01

    Full Text Available O estabelecimento ideal de plantas no campo é determinado, dentre outros fatores, pela qualidade fisiológica e sanitária das sementes utilizadas. Neste sentido, o tratamento químico de sementes torna-se essencial, pois proporciona melhor desempenho das mesmas no campo. Atualmente, em associação com o tratamento químico, a fim de aumentar a aderência dos produtos químicos nas sementes, dentre outros objetivos, tem sido estudada a utilização de películas de revestimento. Com este trabalho, objetivou-se avaliar a qualidade fisiológica e sanitária de sementes de algodoeiro de quatro lotes, tratadas quimicamente e peliculizadas com 2 tipos de películas comerciais. Utilizou-se dois lotes da cultivar Delta Opal, dois da cultivar Sure Grow, e dois tipos de películas, denominadas AG201 e TGBP1080. As sementes foram submetidas ao tratamento com a mistura dos fungicidas carboxin+thiram com o inseticida imidacloprid, na dosagem 5 mL/Kg + 5 mL/Kg de sementes e na dosagem 2,5 mL/Kg + 2,5 mL/Kg de sementes. Os tratamentos foram avaliados por teste de germinação, teste de emergência de plântulas, índice de velocidade de emergência, teste de frio e de sanidade. O tratamento químico com a mistura de carboxin+thiram com imidacloprid, na dosagem 5 mL/Kg + 5 mL/Kg de sementes promove melhor desempenho das sementes, sendo eficaz no controle de fungos. O uso da peliculização não possibilita redução da dosagem do tratamento químico. A peliculização não afeta a germinação, emergência e índice de velocidade de emergência de lotes de alta qualidade.Physiological and healthy quality of cotton seeds (Gossypium hirsutum L. are decisive factor to establish an ideal stand in the field. The chemical seed treatment is necessary to preserve the healthy quality and to obtain a better development performance of the seeds in the field. Actually, researches on chemical treatment are liberally conducted, which film-coating technique has been used

  1. A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2011-09-01

    Full Text Available Abstract Background Cotton fiber length is an important quality attribute to the textile industry and longer fibers can be more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields. The cotton (Gossypium hirsutum L. fiber mutation Ligon lintless-2 is controlled by a single dominant gene (Li2 that results in significantly shorter fibers than a wild-type. In a near-isogenic state with a wild-type cotton line, Li2 is a model system with which to study fiber elongation. Results Two near-isogenic lines of Ligon lintless-2 (Li2 cotton, one mutant and one wild-type, were developed through five generations of backcrosses (BC5. An F2 population was developed from a cross between the two Li2 near-isogenic lines and used to develop a linkage map of the Li2 locus on chromosome 18. Five simple sequence repeat (SSR markers were closely mapped around the Li2 locus region with two of the markers flanking the Li2 locus at 0.87 and 0.52 centimorgan. No apparent differences in fiber initiation and early fiber elongation were observed between the mutant ovules and the wild-type ones. Gene expression profiling using microarrays suggested roles of reactive oxygen species (ROS homeostasis and cytokinin regulation in the Li2 mutant phenotype. Microarray gene expression data led to successful identification of an EST-SSR marker (NAU3991 that displayed complete linkage to the Li2 locus. Conclusions In the field of cotton genomics, we report the first successful conversion of gene expression data into an SSR marker that is associated with a genomic region harboring a gene responsible for a fiber trait. The EST-derived SSR marker NAU3991 displayed complete linkage to the Li2 locus on

  2. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage.

    Science.gov (United States)

    Hu, Wei; Zhao, Wenqing; Yang, Jiashuo; Oosterhuis, Derrick M; Loka, Dimitra A; Zhou, Zhiguo

    2016-04-01

    The nitrogen (N) metabolism of the leaf subtending the cotton boll (LSCB) was studied with two cotton (Gossypium hirsutum L.) cultivars (Simian 3, low-K tolerant; Siza 3, low-K sensitive) under three levels of potassium (K) fertilization (K0: 0 g K2O plant(-1), K1: 4.5 K2O plant(-1) and K2: 9.0 g K2O plant(-1)). The results showed that total dry matter increased by 13.1-27.4% and 11.2-18.5% under K supply for Simian 3 and Siza 3. Boll biomass and boll weight also increased significantly in K1 and K2 treatments. Leaf K content, leaf N content and nitrate (NO3(-)) content increased with increasing K rates, and leaf N content or NO3(-) content had a significant positive correlation with leaf K content. Free amino acid content increased in the K0 treatment for both cultivars, due to increased protein degradation caused by higher protease and peptidase activities, resulting in lower protein content in the K0 treatment. The critical leaf K content for free amino acid and soluble protein content were 14 mg g(-1) and 15 mg g(-1) in Simian 3, and 17 mg g(-1) and 18 mg g(-1) in Siza 3, respectively. Nitrate reductase (NR), glutamic-oxaloace transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities increased in the K1 and K2 treatments for both cultivars, while glutamine synthetase (GS) and glutamate synthase (GOGAT) activities increased under K supply treatments only for Siza 3, and were not affected in Simian 3, indicating that this was the primary difference in nitrogen-metabolizing enzymes activities for the two cultivars with different sensitivity to low-K.

  3. Controle de plantas daninhas com cyanazine aplicado em mistura com outros herbicidas, na cultura do algodão (Gossypium hirsutum L. Weed control in cotton (Gossypium hirsutum L. with cyanazine and other herbicides

    Directory of Open Access Journals (Sweden)

    Julio Pedro Laca-Buendia

    1985-12-01

    Full Text Available Com a finalidade de estudar a mistura de tanque mais eficiente com cyanazine em aplicação de pré-emergência na cultura algodoeira (Gossypium hirsutum L. , foram estudados os seguintes tratamentos: cyanazine + diuron nas doses de 0,8 + 0,8 kg i.a/ha e 1,0 + 1,0 kg i.a/ha; cyanazine+ oryzalin , nas do sés de 1,2 + 0,8 kg i.a/ha e 1,6 + 1,2 kg i.a/h a; cyanazyne + metol a chlor, nas doses de 1,4 + 2,0 kg i.a/ha e 1,75 + 2,52 kg i.a/ ha;cianazine na dose de 1,75 kg i.a /ha; oryzalin na dose de 1,12 kg i.a/ha; metol achlor na dose de 2,52 kg i.a /ha e diuron na dose de 1,6 kg i.a /ha. Para efeito de comparação, utilizou-se uma testemunha sem capina e outra com capina manual. Nenhum tratamento apresentou injúria para as plantas de algodão e não houve diferenças significativas para o "stand" inicial. Já no "stand" final, a testemunha sem capina apresentou o menor número de plantas, sendo que não houve diferenças significativas dos outros tratamentos com a testemunha capinada. Para o rendimento, a mistura cyanazine + metolachior em ambas as doses estudadas, não apresentaram diferenças significativas da testemunha capinada. Quanto à altura da planta, peso de 100 sementes, porcentagem e índice de fibras não houve diferenças significativas entre os tratamentos estudados, somente o peso do capulho foi afetado pelo oryzalin. Pela avaliação visual (EWRC 1 a 9*, os herbicidas apres entaram um controle satisfatório somente até os 30 dias após aplicação, sendo que a mistura cyanazine + metolachlor foi efici ente quanto a testemunha capinada. No controle da Portulaca oleracea , a mistura cyanazine + oryzalin na maior dose e oryzalin apresentaram 71,4% de controle ate os 30 dias e 79,4% e 82,4%, respectivamente, até 45 dias da aplicação. Para Amaranthus sp., à exceção da cyanazine e cyanazine + diuron nas doses menores, não apresentaram nenhum controle, sendo que os outros herbicidas controlaram com eficiência superior a 70

  4. Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L. under NaCl stress

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf

    2017-05-01

    Full Text Available Cotton (Gossypium hirsutum L. being moderately tolerant to salinity has been extensively grown in arid and semiarid regions where soil salinization is a major threat to plant growth and soil productivity. Excess salts in the growth medium may interfere with growth processes of cotton, leading to a severe decline in yield and fiber quality characteristics. Adequate mineral nutrient status of plants can provide an important strategy to improve plant tolerance to salinity. A pot experiment was planned to evaluate the ameliorative effects of additional potassium (K applied at 50 and 100 mg K2O kg-1 soil as potassium sulfate against NaCl stress of 100 and 180 mM in cotton. The experiment was conducted according to completely randomized design with five replications. NaCl caused a significant (P ≤ 0.05 increase in shoot sodium (Na+ and chloride (Cl- with a corresponding decrease in shoot K+, K+: Na+ ratio, calcium (Ca2+ and magnesium (Mg2+. Plant growth, yield and fiber quality characteristics were also declined significantly by increasing external NaCl concentration. Additional K reduced shoot Na + while increased K+, K+: Na+ ratio, Ca2+ and Mg2+ with the consequent improvement in plant growth, lint yield and yield attributes as well as fiber quality characteristics at both levels of NaCl. Results revealed that K nutrition improved shoot K+: Na+ ratio by 116 and 246% at NaCl100 while 188 and 294% at NaCl180 with K50 and K100, respectively as compared to NaCl treated plants without additional K. Likewise, lint yield was improved by 38.27 and 60.49% at NaCl100 while 75.12 and 136% at NaCl180 with K50 and K100, respectively compared to NaCl stressed plants without additional K. Ameliorative effects of K against NaCl stress were relatively more prominent at higher K application at both NaCl levels. In conclusion, K-induced decrease in Na+, increase in Ca2+, K+, K+: Na+ ratio, relative water content and membrane stability index provide protective

  5. Site of clomazone action in tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures. [Glycine max (L. ); Gossypium hirsutum

    Energy Technology Data Exchange (ETDEWEB)

    Norman, M.A.; Liebl, R.A.; Widholm, J.M. (Univ. of Illinois, Urbana (USA))

    1990-10-01

    Studies were conducted to determine the herbicidal site of clomazone action in tolerant-soybean (Glycine max (L.) Merr. cv Corsoy) (SB-M) and susceptible-cotton (Gossypium hirsutum (L.) cv Stoneville 825) (COT-M) photomixotrophic cell suspension cultures. Although a 10 micromolar clomazone treatment did not significantly reduce the terpene or mixed terpenoid content (microgram per gram fresh weight) of the SB-M cell line, there was over a 70% reduction in the chlorophyll (Chl), carotenoid (CAR), and plastoquinone (PQ) content of the COT-M cell line. The tocopherol (TOC) content was reduced only 35.6%. Reductions in the levels of Chl, CAR, TOC, and PQ indicate that the site of clomazone action in COT-M cells is prior to geranylgeranyl pyrophosphate (GGPP). The clomazone treatment did not significantly reduce the flow of ({sup 14}C)mevalonate (({sup 14}C)MEV) (nanocuries per gram fresh weight) into CAR and the three mixed terpenoid compounds of SB-M cells. Conversely, ({sup 14}C)MEV incorporation into CAR and the terpene moieties of Chl, PQ, and TOC in COT-M cells was reduced at least 73%, indicating that the site of clomazone action must be after MEV. Sequestration of clomazone away from the chloroplast cannot account for soybean tolerance to clomazone since chloroplasts isolated from both cell lines incubated with ({sup 14}C)clomazone contained a similar amount of radioactivity (disintegrations per minute per microgram of Chl). The possible site(s) of clomazone inhibition include mevalonate kinase, phosphomevalonate kinase, pyrophosphomevalonate decarboxylase, isopentenyl pyrophosphate isomerase, and/or a prenyl transferase.

  6. Characterization of an Organ Specific and Pathogen Responsive CC-NBS-LRR Gene from Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-long; NI Wan-chao; YANG Yu-wen; SHEN Xin-lian

    2008-01-01

    @@ Cotton diseases represent a major challenge to cotton growth.Cloning of a cotton pathogen response gene and promoter is of great importance to improve disease resistance.In this study,a full length CC-NBS-LRR gene (GHNBS) and its 5L flanking sequence have been cloned by race and tail PCR and further studied.

  7. Biological control of Cucurbita pepo var texana (Texas gourd) in cotton (Gossypium hirsutum) with the fungus Fusarium solani f sp Cucurbitae

    Science.gov (United States)

    Experiments were conducted to evaluate various formulations and application methods of the fungus Fusarium solani f. sp. cucurbitae (FSC) for controlling Texas gourd (Cucurbita pepo var. texana) in cotton (Gosssypium hirsutum). In greenhouse tests, Texas gourd was controlled 93% and 96%, respective...

  8. STUDY OF GENE FLOW FROM GM COTTON (Gossypium hirsutum VARIETIES IN “EL ESPINAL” (TOLIMA, COLOMBIA.

    Directory of Open Access Journals (Sweden)

    Alejandro Chaparro Giraldo

    2013-10-01

    Full Text Available In 2009, 4088 hectares of genetically modified (GM cotton were planted in Tolima (Colombia, however there is some uncertainty about containment measures needed to prevent the flow of pollen and seed from regulated GM fields into adjacent fields. In this study, the gene flow from GM cotton varieties to conventional or feral cotton plants via seed and pollen was evaluated. ImmunostripTM, PCR and ELISA assays were used to detect gene flow. Fifty six refuges, 27 fields with conventional cotton and four feral individuals of the enterprise “Remolinos Inc.” located in El Espinal (Tolima were analyzed in the first half of 2010. The results indicated seeds mediated gene flow in 45 refuges (80,4 % and 26 fields with conventional cotton (96 %, besides a pollen mediated gene flow in one field with conventional cotton and nine refuges. All fields cultivated with conventional cotton showed gene flow from GM cotton. Two refuges and two feral individuals did not reveal gene flow from GM cotton

  9. Clustering, haplotype diversity and locations of MIC-3: a unique root-specific defense-related gene family in upland cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    MIC-3-related genes of cotton (Gossypium spp.) were identified and shown to have root-specific expression, associated with pathogen defense-related function and specifically increased expression in root-knot nematode (RKN) resistant plants after nematode infection. Here we cloned and sequenced MIC-...

  10. Cadmium (Cd) Localization in Tissues of Cotton (Gossypium hirsutum L.), and Its Phytoremediation Potential for Cd-Contaminated Soils.

    Science.gov (United States)

    Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie

    2015-12-01

    Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.

  11. Effects of pigment glands andgossypol on somatic cell cul-ture of upland cotton (Gos-sypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of pigment glands and gossypol on the somatic cell culture of upland cotton were studied, using the materials as follows: three pairs of glanded and glandless upland cotton near isogenic lines, TM-1, and Coker 312. The results showed that the pigment glands and gossypol contents in the explants had great inhibiting effect on the induction and growth of callus in somatic cell culture of upland cotton, and the induction rate of callus and the single callus weight of glandless cotton were much higher than those of their glanded near isogenic lines. It was easier to obtain regeneration plants from glandless cotton than from their glanded near isogenic lines. There was a significant inverse correlation between the gossypol contents in the explants and callus induction rate, with the correlation coefficient of ?0.84. The vitro gossypol in the medium had some inhibiting effect on the induction and growth of callus, especially for the glandless cotton. However, a certain concentration of vitro gossypol in the medium (0.1 mg/L) was an aid to the steadiness growth of callus in glandless cotton somatic cell culture, with a high rate of embryogenic cells which was in favor of plant regeneration, and it was also relatively easy to obtain regeneration plants when they were transferred into differentiation medium with 0.1 mg/L of vitro gossypol, even for some cultivars which are difficult in somatic cell culture. In addition, the gossypol content and its variation in the seedlings and callus during culture of Coker 312 were discussed, as well as the relationship between gossypol variation in the explants and its somatic cell culture. The probability of vitro gossypol used in cotton somatic cell culture for the improvement of somatic cell culture was suggested.

  12. Assessment of Tolerance Level of some Cotton (Gossypium hirsutum L. Varieties against Verticillium wilt (Verticillium dahliae Kleb. Disease

    Directory of Open Access Journals (Sweden)

    Emine KARADEMIR

    2010-06-01

    Full Text Available The objective of this study was to assess the tolerance level of some cotton varieties against Verticillium wilt (Verticillium dahliae Kleb. disease. Verticillium wilt is one of the major constraint diseases of cotton production worldwide and also in Turkey. The study was carried out at the Southeastern Anatolia Agricultural Research Institute’s naturally infected experimental area during 2004-2006. In this study, 10 different commercial cotton varieties were used as plant material. The experimental design was a randomized complete-block with four replications. During the cotton growing season, foliar disease index (FDI, vascular disease index (VDI and vascular disease rate (VDR were observed in addition to seed cotton yield and some fiber quality characteristics. According to the results, it was determined that with regards to FDI, VDI and VDR, the most tolerant varieties were ‘GW-Teks’, ‘GW-Golda’ and ‘Carmen’, while the most sensitive varieties were ‘Maraş 92’, ‘Sayar 314’ and ‘Stoneville 453’. The other varieties had moderate tolerance levels. The highest seed cotton yield and lint yield were obtained from ‘DP-Deltaopal’ and ‘Stoneville 453’. These results showed that some sensitive varieties had high yield; the reason for this situation may be related with early or late occurrence of the disease. The result of this study indicated that ‘GW-Teks’, ‘GW-Golda’ and ‘Carmen’ varieties must be preferred for infected areas; on the other hand, ‘DP-Deltaopal’ and ‘Stoneville 453’ can be recommended and grown in uninfected areas. Additionally, ‘Carmen’, ‘GW-Teks’ and ‘GW-Golda’ varieties can be used as material for improving disease resistance in cotton breeding programs.

  13. Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera.

    Science.gov (United States)

    Huang, Xin-Zheng; Chen, Jie-Yin; Xiao, Hai-Jun; Xiao, Yu-Tao; Wu, Juan; Wu, Jun-Xiang; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-07-07

    In response to insect herbivory, plants emit elevated levels of volatile organic compounds for direct and indirect resistance. However, little is known about the molecular and genomic basis of defense response that insect herbivory trigger in cotton plants and how defense mechanisms are orchestrated in the context of other biological processes. Here we monitored the transcriptome changes and volatile characteristics of cotton plants in response to cotton bollworm (CBW; Helicoverpa armigera) larvae infestation. Analysis of samples revealed that 1,969 transcripts were differentially expressed (log2|Ratio| ≥ 2; q ≤ 0.05) after CBW infestation. Cluster analysis identified several distinct temporal patterns of transcriptome changes. Among CBW-induced genes, those associated with indirect defense and jasmonic acid pathway were clearly over-represented, indicating that these genes play important roles in CBW-induced defenses. The gas chromatography-mass spectrometry (GC-MS) analyses revealed that CBW infestation could induce cotton plants to release volatile compounds comprised lipoxygenase-derived green leaf volatiles and a number of terpenoid volatiles. Responding to CBW larvae infestation, cotton plants undergo drastic reprogramming of the transcriptome and the volatile profile. The present results increase our knowledge about insect herbivory-induced metabolic and biochemical processes in plants, which may help improve future studies on genes governing processes.

  14. Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum)

    Institute of Scientific and Technical Information of China (English)

    Abdul Qayyum RAO; Muhammad IRFAN; Zafar SALEEM; Idrees Ahmad NASIR; Sheikh RIAZUDDIN; Tayyab HUSNAIN

    2011-01-01

    The phytochrome B (PHYB) gene of Arabidopsis thaliana was introduced into cotton through Agrobacterium tumefaciens. Integration and expression of PHYB gene in cotton plants were confirmed by molecular evidence.Messenger RNA (mRNA) expression in one of the transgenic lines, QCC11, was much higher than those of control and other transgenic lines. Transgenic cotton plants showed more than a two-fold increase in photosynthetic rate and more than a four-fold increase in transpiration rate and stomatal conductance. The increase in photosynthetic rate led to a 46% increase in relative growth rate and an 18% increase in net assimilation rate. Data recorded up to two generations,both in the greenhouse and in the field, revealed that overexpression ofArabidopsis thaliana PHYB gene in transgeniccotton plants resulted in an increase in the production of cotton by improving the cotton plant growth, with 35% more yield. Moreover, the presence of the Arabidopsis thaliana PHYB gene caused pleiotropic effects like semi-dwarfism,decrease in apical dominance, and increase in boll size.

  15. [Arachnofauna (araneae: Araneae) in transgenic and conventional cotton crops (Gossypium hirsutum) in the North of Santa Fe, Argentina].

    Science.gov (United States)

    Almada, Melina Soledad; Sosa, María Ana; González, Alda

    2012-06-01

    Spiders have considerable potential importance for their role as predators to some pests in agricultural systems. The composition of spiders in transgenic and conventional cotton at the Research Station of INTA Reconquista (Santa Fe) was studied during the 2005-2006 season. The experiment was a complete randomized block design with three replications and three treatments: transgenic Bt cotton (ALBt), conventional cotton without chemical control (ALCSC), and conventional cotton with chemical control (ALCCC). Weekly, spiders were collected using nets, vertical cloth and pitfall-traps. A total of 1255 specimens (16 families, and 32 species) were collected. Seven families were found in all the treatments, mainly Thomisidae (n=1 51, 84.04%) and Araneidae (n=83, 6.64%). The Hunting spiders guild ambushers (n=1053, 83.91%), "Orb weavers" (n=85, 6.77%) and "Stalkers" (n=53, 4.22%) were more abundant. There were no significant differences in the indexes diversity between treatments. Spiders were presented during the whole crop season, with peaks about flowering and boll maturity, with the highest abundance in ALBt. This work is part of the first set of data registered in Argentina about spider's community in cotton crops.

  16. Quantification of Cry1Ac protein at different stages of plant growth in cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Muhammad Idrees Khan

    2012-12-01

    Full Text Available The present study was conducted at Central Cotton Research Institute, Multan, Pakistan during cotton growing season 2009-10. Nine cotton cultivars with Cry 1 Ac gene (Mon 531 event selected for current experiment to characterize the toxin level of Cry1Ac protein in different Bt cotton cultivars and to record the variation in Cry1Ac protein at various plant growth stages. It was found that age of plant was having an influence on the expression of gene. Maximum level of endotoxin (0.373g/g was observed in genotype CIM-595 at 100 days of planting. While minimum value (0.166g/g was observed in genotype V-1 at 160 days of planting. Similarly different cotton genotypes showed different boll worm damage % at different growth stages. CEMB-2 was found to be most susceptible genotype showing 93.33 % boll worm damage at 160 days after planting. While V-5 proved to be most resistant showing no boll worm damage at 70 and 100 days after planting.

  17. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Li, Chao; Unver, Turgay; Zhang, Baohong

    2017-01-01

    The complex allotetraploid genome is one of major challenges in cotton for repressing gene expression. Developing site-specific DNA mutation is the long-term dream for cotton breeding scientists. The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is emerging as a robust biotechnology for targeted-DNA mutation. In this study, two sgRNAs, GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2, were designed in the identical genomic regions of GhMYB25-like A and GhMYB25-like D, which were encoded by cotton A subgenome and the D subgenome, respectively, was assembled to direct Cas9-mediated allotetraploid cotton genome editing. High proportion (14.2–21.4%) CRISPR/Cas9-induced specific truncation events, either from GhMYB25-like A DNA site or from GhMYB25-like D DNA site, were detected in 50% examined transgenic cotton through PCR amplification assay and sequencing analyses. Sequencing results also demonstrated that 100% and 98.8% mutation frequency were occurred on GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2 target site respectively. The off-target effect was evaluated by sequencing two putative off-target sites, which have 3 and 1 mismatched nucleotides with GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2, respectively; all the examined samples were not detected any off-target-caused mutation events. Thus, these results demonstrated that CRISPR/Cas9 is qualified for generating DNA level mutations on allotetraploid cotton genome with high-efficiency and high-specificity. PMID:28256588

  18. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization.

    Science.gov (United States)

    Romero-Perdomo, Felipe; Abril, Jorge; Camelo, Mauricio; Moreno-Galván, Andrés; Pastrana, Iván; Rojas-Tapias, Daniel; Bonilla, Ruth

    2017-08-29

    The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that co-inoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To investigate the response of key enzymes to nitrogen (N) rates in cotton fiber and its relationship with fiber strength, experiments were conducted in 2005 and 2006 with cotton cultivars in Nanjing. Three N rates 0, 240 and 480 kgN/hm2, signifying optimum and excessive nitrogen application levels were applied.The activities and the gene expressions of the key enzymes were affected by N, and the characteristics of cellulose accumulation and fiber strength changed as the N rate varied. Beta-1,3-glucanase activity in cotton fiber declined from 9 DPA till boll opening, and the beta-1, 3-glucanase coding gene expression also followed a unimodal curve in 12—24 DPA. In 240 kgN/hm2 condition, the characteristics of enzyme activity and gene expression manner for sucrose synthase and beta-1,3-glucanase in developing cotton fiber were more favorable for forming a longer and more steady cellulose accumulation process, and for high strength fiber development.

  20. Transmission of the opportunistic cotton (Gossypium hirsutum L.) boll pathogen Pantoea agglomerans by the brown stink bug (Euschistus servus Say)

    Science.gov (United States)

    Damage to developing cotton bolls by piercing-sucking insects such as stink bugs has traditionally been attributed solely to pest feeding. Previously, we showed clear differences in severity of boll damage resulting from southern green stink bug (Nezara viridula L.) fed sterile food compared to thos...

  1. Effect of Implantation Machine Parameters on N+ ion Implantation for Upland Cotton(Gossypium hirsutum L.) Pollen

    Science.gov (United States)

    Yue, Jieyu; Yu, Lixiang; Wu, Yuejin; Tang, Canming

    2008-10-01

    Effect of parameters of ion implantation machine, including ion energy, total dose, dose rate, impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied. The best parameters were screened out. The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.

  2. Environmental effect of conventional and GM crops of cotton (Gossypium hirsutum L. and corn (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Chaparro Giraldo Alejandro

    2011-12-01

    Full Text Available

    In the corn belt of Valle de San Juan and in the cotton zone of El Espinal, municipalities in the department of Tolima (Colombia, 10 conventional corn producers, 10 producers of genetically modified corn, five producers of conventional cotton and 15 producers of transgenic cotton were surveyed in the first half of 2009 to contrast the differences in the environmental impact associated with use of insecticides and herbicides, which were evaluated by estimating the environmental index quotient-EIQ. In the case of maize, an EIQ of 42 was found in the conventional type, while transgenic technology had an EIQ of 3.03. In the cultivation of cotton, an EIQ of 263.59 was found for the conventional type while for transgenic technology this value varied between 335.75 (Nuopal BG/RR and 324.79 (DP 455 BG/RR. These data showed a lower environmental impact using GM technology in the cultivation of maize when compared to the conventional counterpart, in connection with the use of insecticides and herbicides, in the context of time, space and genotypic analysis. This effect was not observed in the case of cotton, where environmental impacts were similar.

  3. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L. and Intraspecific Single Nucleotide Polymorphism Discovery

    Directory of Open Access Journals (Sweden)

    Hamid Ashrafi

    2015-07-01

    Full Text Available Upland cotton ( L. has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1, a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.

  4. Introduction of rol Genes into Cotton (Gossypium hirsutum L.) Genome and Effects of Transgene Expression on the Plant Development

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-yan; YANG Ye-hua; WU Zheng-bin; WANG Xue-kui; YAO Ming-jin

    2004-01-01

    The rol genes cloned from Agrobacterium rhizogenes were transferred to the cotton genome via Agrobacterium-mediated transformation. Molecular analyses and developmental identification of the putative transgenic plants were carried out by means of PCR, Southern blotting and field characterization. The results showed that the expression of rol genes greatly increased the rooting ability of the transgenic plants, and changed the plant development. Highly male-sterile plants with strong apical dominance and fertile plants with short internodes, stunted growth and improved economic characteristics were segregated from the T1 transgenic lines of wild rol B gene and the rol B gene driven by 35S promoter. The transgenic lines of rol ABC construct usually had normal boll setting and slow growth. Therefore we concluded that the rol genes, modified in suitable ways,could be used to create new cotton varieties with some highly valuable characteristics.

  5. Intragenome distribution of 5-methylcytosine in DNA of healthy and wilt-infected cotton plants (Gossypium hirsutum L.).

    Science.gov (United States)

    Guseinov, V A; Kiryanov, G I; Vanyushin, B F

    1975-03-01

    Fractionation of DNA of healthy and wilt-infected cotton plants has been carried out according to the reassociation kinetics and the content of GC and 5-methylcytosine in the resulting fractions has been studied. The genome of cotton plant was found to be methylated quite unevenly. The GC rich (GC equals 64.7 mole%) fraction of highly reiterated sequences (Cot equals 0-3.7 times 10- minus 2) has a high content of 5-methylcytosine (5.8 mole%), whereas the methylation degree of the fraction of unique sequences (Cot larger than or equal to 487) is very low (the 5-methylcytosine content is about 0.5 mole%). In plants being infected with wilt, the 5-methylcytosine content in DNA or cotton leaves decreases two-fold; no changes in the structure and molecular population of DNA has been found. The sharp change in the 5-methylcytosine content in DNA of infected plants takes place at the expense of the decrease in the 5-methylcytosine content in fractions of highly reiterated sequences. The methylation degree of unique sequences (structural genes) remains unchanged.

  6. Relationship Between Piercing-Sucking Insect Control and Internal Lint and Seed Rot in Southeastern Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Medrano, Enrique G; Bell, Alois A; Greene, Jeremy K; Roberts, Phillip M; Bacheler, Jack S; Marois, James J; Wright, David L; Esquivel, Jesus F; Nichols, Robert L; Duke, Sara

    2015-08-01

    In 1999, crop consultants scouting for stink bugs (Hemiptera spp.) in South Carolina discovered a formerly unobserved seed rot of cotton that caused yield losses ranging from 10 to 15% in certain fields. The disease has subsequently been reported in fields throughout the southeastern Cotton Belt. Externally, diseased bolls appeared undamaged; internally, green fruit contain pink to dark brown, damp, deformed lint, and necrotic seeds. In greenhouse experiments, we demonstrated transmission of the opportunistic bacterium Pantoea agglomerans by the southern green stink bug, Nezara viridula (L.). Here, green bolls were sampled from stink bug management plots (insecticide protected or nontreated) from four South Atlantic coast states (North Carolina, South Carolina, Georgia, and Florida) to determine disease incidence in the field and its association with piercing-sucking insects feeding. A logistic regression analysis of the boll damage data revealed that disease was 24 times more likely to occur (P = 0.004) in bolls collected from plots in Florida, where evidence of pest pressure was highest, than in bolls harvested in NC with the lowest detected insect pressure. Fruit from plots treated with insecticide, a treatment which reduced transmission agent numbers, were 4 times less likely to be diseased than bolls from unprotected sites (P = 0.002). Overall, punctured bolls were 125 times more likely to also have disease symptoms than nonpunctured bolls, irrespective of whether or not plots were protected with insecticides (P = 0.0001). Much of the damage to cotton bolls that is commonly attributed to stink bug feeding is likely the resulting effect of vectored pathogens. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  7. Development and Validation of a Fluorescent Multiplexed Immunoassay for Measurement of Transgenic Proteins in Cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yeaman, Grant R; Paul, Sudakshina; Nahirna, Iryna; Wang, Yongcheng; Deffenbaugh, Andrew E; Liu, Zi Lucy; Glenn, Kevin C

    2016-06-22

    In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.

  8. Identification and application of biocontrol agents against Cotton leaf curl virus disease in Gossypium hirsutum under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Memoona Ramzan

    2016-05-01

    Full Text Available Biological control is a novel approach in crop protection. Bacteria, such as Bacillus spp. and Pseudomonas spp., are reported for this purpose and some of their products are already commercially available. In this study, the rhizosphere and phyllosphere of healthy cotton plants were used as a source of bacterial isolates with properties of potential biocontrol agents. The isolates were screened for phosphate solubilization activity, indole acetic acid (IAA production and antifungal activity. Two isolates, S1HL3 and S1HL4, showed phosphate solubilization and IAA production simultaneously, while another two, JS2HR4 and JS3HR2, demonstrated potential to inhibit fungal pathogens. These bacteria were identified as Pseudomonas aeruginosa (S1HL3, Burkholderia sp. (S1HL4 and Bacillus sp. (JS2HR4 and JS3HR2 based on biochemical and molecular characteristics. The isolates were tested against Cotton leaf curl virus (CLCuV in greenhouse conditions, both as individual bacterial isolates and consortia. Treated plants were healthy as compared to control plants, where up to 74% of the plants were symptomatic for CLCuV infection. Maximum inhibition of CLCuV was observed in the plants treated with a mixture of bacterial isolates: the viral load in the treated plants was only 0.4% vs. up to 74% in controls. This treatment consortium included P. aeruginosa S1HL3, Burkholderia sp. S1HL4 and Bacillus spp. isolates, JS2HR4 and JS3HR2. The principal-component biplot showed a highly significant correlation between the viral load percentage and the disease incidence.

  9. Major Gene Identiifcation and Quantitative Trait Locus Mapping for Yield-Related Traits in Upland Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    XIA Zhe; ZHANG Xin; LIU Yang-yang; JIA Zi-fang; ZHAO Hai-hong; LI Cheng-qi; WANG Qing-lian

    2014-01-01

    Segregation analysis of the mixed genetic model of major gene plus polygene was used to identify the major genesfor cotton yield-related traits using six generations P1, P2, F1, B1, B2, and F2 generated from the cross of Baimian 1×TM-1. In addition to boll size and seed index, the major genes for the other ifve traits were detected:one each for seed yield, lint percentage, boll number, lint index; and two for lint yield. Quantitative trait locus/loci (QTL) mapping was performed in the F2 and F2:3 populations of above cross through molecular marker technology, and a total of 50 QTL (26 suggestive and 24 signiifcant) for yield-related traits were detected. Four common QTL were discovered: qLP-3b(F2)/qLP-3(F2:3)andqLP-19b (F2)/qLP-19(F2:3) for lint percentage, qBN-17(F2)/qBN-17(F2:3)for boll number, and qBS-26b(F2)/qBS-26(F2:3) for boll size. Especially, qLP-3b(F2)/qLP-3(F2:3), not only had LOD scores>3 but also exceeded the permutation threshold (5.13 and 5.29, respectively), correspondingly explaining 23.47 and 29.55% of phenotypic variation. This QTL should be considered preferentially in marker assisted selection (MAS). Segregation analysis and QTL mapping could mutually complement and verify, which provides a theoretical basis for genetic improvement of cotton yield-related traits by using major genes (QTL).

  10. Dynamics of soil diazotrophic community structure, diversity, and functioning during the cropping period of cotton (Gossypium hirsutum).

    Science.gov (United States)

    Rai, Sandhya; Singh, Dileep Kumar; Annapurna, Kannepalli

    2015-01-01

    The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site.

  11. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures.

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2005-10-01

    Highly reproducible and simple protocol for cotton somatic embryogenesis is described here by using different concentrations of maltose, glucose, sucrose and fructose. Maltose (30 g/l) is the best carbon source for embryogenic callus induction and glucose (30 g/l) was suitable for induction, maturation of embryoids and plant regeneration. Creamy white embryogenic calli of hypocotyl explants were formed on medium containing MS basal salts, myo-inositol (100 mg/l), thiamine HCI (0.3 mg/l), picloram (0.3 mg/l), Kin (0.1 mg/l) and maltose (30 g/l). During embryo induction and maturation, accelerated growth was observed in liquid medium containing NH3NO4 (1 g/l), picloram (2.0 mg/l), 2 ip (0.2 mg/l), Kin (0.1 mg/l) and glucose (30 g/l). Before embryoid induction, large clumps of embryogenic tissue were formed. These tissues only produced viable embryoids. Completely matured somatic embryos were germinated successfully on the medium fortified with MS salts, myo-inositol (50 mg/l), thiamine HCl (0.2 mg/l), GA3 (0.2 mg/l), BA (1.0 mg/l) and glucose (30 g/l). Compared with earlier reports, 65% of somatic embryo germination was observed. The abnormal embryo formation was highly reduced by using glucose (30 g/l) compared to other carbon sources. The regenerated plantlets were fertile but smaller in height than the seed derived control plants.

  12. Agrobacterium-meditated Genetic Transformation of an Upland Cotton (Gossypium hirsutum cv Coker 310) Using a Novel Bt Gene Cry 2Ac

    Institute of Scientific and Technical Information of China (English)

    THIRUVENGADAM V; RASHMI J A; UDYASURIAN V; BALASUBRAMANIAN P; RAVEENDRAN T S

    2008-01-01

    @@ The development of transgenic cotton varieties resistant to bollworms has been a major success of applying plant genetic engineering technology to agriculture,evidenced by phenomenal increase in the cultivable area under (B.thuringiensis) Bt cotton in recent years worldwide.Of late,there are reports of insects developing resistance against the most commonly used Bt toxin CrylAc.Hence,there is an urgent need to broaden the source of resistance by employing new genes in order to reduce the chances of insects developing Bt resistance.Keeping this objective in view,cotton (Gossypium hirsuturn cv Coker 310) plants expressing a novel insecticidal crystal protein Cry2Ac were developed in the present study.

  13. Comparative analysis of genome-wide divergence, domestication footprints and genome-wide association study of root traits for Gossypium hirsutum and Gossypium barbadense

    Science.gov (United States)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using genome-wide distributed SNPs, we examined ...

  14. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs

    Science.gov (United States)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we exami...

  15. Clustering, haplotype diversity and locations of MIC-3: a unique root-specific defense-related gene family in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Buriev, Zabardast T; Saha, Sukumar; Abdurakhmonov, Ibrokhim Y; Jenkins, Johnie N; Abdukarimov, Abdusattor; Scheffler, Brian E; Stelly, David M

    2010-02-01

    MIC-3 is a recently identified gene family shown to exhibit increased root-specific expression following nematode infection of cotton plants that are resistant to root-knot nematode. Here, we cloned and sequenced MIC-3 genes from selected diploid and tetraploid cotton species to reveal sequence differences at the molecular level and identify chromosomal locations of MIC-3 genes in Gossypium species. Detailed sequence analysis and phylogenetic clustering of MIC-3 genes indicated the presence of multiple MIC-3 gene members in Gossypium species. Haplotypes of a MIC-3 gene family member were discovered by comparative analysis among consensus sequences across genotypes within an individual clade in the phylogram to overcome the problem of duplicated loci in the tetraploid cotton. Deficiency tests of the SNPs delimited six A(t)-genome members of the MIC-3 family clustered to chromosome arm 4sh, and one D(t)-genome member to chromosome 19. Clustering was confirmed by long-PCR amplification of the intergenic regions using A(t)-genome-specific MIC-3 primer pairs. The clustered distribution may have been favored by selection for responsiveness to evolving disease and/or pest pressures, because large variants of the MIC-3 gene family may have been recovered from small physical areas by recombination. This could give a buffer against selection pressure from a broad range of pest and pathogens in the future. To our knowledge, these are the first results on the evolution of clustering and genome-specific haplotype members of a unique cotton gene family associated with resistant response against a major pathogen.

  16. The induction of microsomal NADPH:cytochrome P450 and NADH:cytochrome b(5) reductases by long-term salt treatment of cotton (Gossypium hirsutum L.) and bean (Phaseolus vulgaris L.) plants.

    Science.gov (United States)

    Brankova, Liliana; Ivanov, Sergei; Alexieva, Vera

    2007-09-01

    We studied the effect of salinity on the activity of microsomal NADPH:cytochrome P450 reductase (CPR, EC 1.6.2.4) and NADH:ferricytochrome b(5) oxidoreductase (B5R, EC 1.6.2.2) in two dicotyledonous plant species differing in their sensitivity to salt, cotton (Gossypium hirsutum L. cv Ogosta) and common bean (Phaseolus vulgaris L. cv Dobrujanski 7). A significant inhibition of fresh weight of salt-treated bean plants was observed, while cotton was affected to a much lesser degree. NaCl application resulted in a significant increase in the activity of both reductases, but was more pronounced in salt-tolerant cotton. We suppose that alterations in B5R and CPR activities may be targeted to the maintenance of membrane lipids. Most probably, plants use both enzymes (B5R and CPR) and their respective electron donors (NADH and NADPH) to reduce cytochrome b(5), which can donate reducing equivalents to a series of lipid-modification reactions such as desaturation and hydroxylation.

  17. Seed cotton yield, ionic and quality attributes of two cotton (Gossypium hirsutum L. varieties as influenced by various rates of K and Na under field conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Sohail

    2011-11-01

    Full Text Available Cotton is more sensitive to low K availability than most other major field crops, and often shows symptoms of K deficiency in soils not considered K deficient. Field investigation was conducted at Sahiwal to study the effect of different rates of K and Na application on seed cotton yield, ionic ratio and quality characteristics of two cotton varieties. Ten soil K: Na ratios were developed after considering indigenous K, Na status in soil. The treatments of K+Na in kg ha-1 to give K:Na ratios were as: 210+ 60 (3.5:1 i.e. control, 225 + 60 (3.75:1, 240 + 60 (4:1, 255 + 60 (4.25:1, 270 + 60 (4.5:1, 210 + 75 (2.8:1, 225 + 75 (3:1, 240 + 75 (3.2:1, 255 + 75 (3.4:1 and 270 + 75 (3.6:1. Control treatment represented indigenous K, Na status of soil. The experiment continued until maturity. Maximum seed cotton yield of NIBGE-2 was observed at K: Na ratio of 3.6:1. Variety NIBGE-2 manifested greater seed cotton yield than MNH-786. Leaf K: Na ratio of two cotton varieties differed significantly (p < 0.01 due to varieties, rates of K and Na and their interaction. Variety NIBGE-2 maintained higher K: Na ratio than MNH-786 and manifested good fiber quality. There was significant relationship (R2 = 0.55, n = 10 between K: Na ratio and fiber length and significant relationship (R2 = 0.65, n = 10 between K concentration and fiber length for NIBGE-2. There was also significant relationship (R2 = 0.91, 0.78, n = 10 between boll number and seed cotton yield for both varieties. The increase in yield was attributed to increased boll weight.

  18. Morphological, cytological and molecular analyses of a synthetic hexaploid derived from an interspecific hybrid between Gossypium hirsutum and Gossypium anomalum

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2014-10-01

    Full Text Available Gossypium anomalum represents an inestimable source of genes that could potentially be transferred into the gene pool of cultivated cotton. To resolve interspecific hybrid sterility problems, we previously treated triploid hybrids derived from a cross between Gossypium hirsutum and G. anomalum with 0.15% colchicine and obtained a putative fertile hexaploid. In this study, we performed morphological, molecular and cytological analyses to assess the hybridity and doubled status of putative interspecific hybrid plants. Most of the morphological characteristics of the putative hexaploid plants were intermediate between G. hirsutum and G. anomalum. Analysis of mitotic metaphase plates revealed 78 chromosomes, confirming the doubled hybrid status of the hexaploid. Genome-wide molecular analysis with different genome-derived SSR markers revealed a high level of polymorphism (96.6% between G. hirsutum and G. anomalum. The marker transferability rate from other species to G. anomalum was as high as 98.0%. The high percentage of polymorphic markers with additive banding profiles in the hexaploid indicates the hybridity of the hexaploid on a genome-wide level. A-genome-derived markers were more powerful for distinguishing the genomic differences between G. hirsutum and G. anomalum than D-genome-derived markers. This study demonstrates the hybridity and chromosomally doubled status of the (G. anomalum × G. hirsutum2 hexaploid using morphological, cytological and molecular marker methods. The informative SSR markers screened in the study will be useful marker resources for tracking the flow of G. anomalum genetic material among progenies that may be produced by future backcrosses to G. hirsutum.

  19. Morphological, cytological and molecular analyses of a synthetic hexaploid derived from an interspecific hybrid between Gossypium hirsutum and Gossypium anomalum

    Institute of Scientific and Technical Information of China (English)

    Xia; Zhang; Caijiao; Zhai; Linchi; He; Qi; Guo; Xianggui; Zhang; Peng; Xu; Hongmei; Su; Yuanyong; Gong; Wanchao; Ni; Xinlian; Shen

    2014-01-01

    Gossypium anomalum represents an inestimable source of genes that could potentially be transferred into the gene pool of cultivated cotton. To resolve interspecific hybrid sterility problems, we previously treated triploid hybrids derived from a cross between Gossypium hirsutum and G. anomalum with 0.15% colchicine and obtained a putative fertile hexaploid. In this study, we performed morphological, molecular and cytological analyses to assess the hybridity and doubled status of putative interspecific hybrid plants. Most of the morphological characteristics of the putative hexaploid plants were intermediate between G. hirsutum and G.anomalum. Analysis of mitotic metaphase plates revealed 78 chromosomes, confirming the doubled hybrid status of the hexaploid. Genome-wide molecular analysis with different genome-derived SSR markers revealed a high level of polymorphism(96.6%) between G. hirsutum and G. anomalum. The marker transferability rate from other species to G. anomalum was as high as 98.0%. The high percentage of polymorphic markers with additive banding profiles in the hexaploid indicates the hybridity of the hexaploid on a genome-wide level. A-genome-derived markers were more powerful for distinguishing the genomic differences between G. hirsutum and G. anomalum than D-genome-derived markers. This study demonstrates the hybridity and chromosomally doubled status of the(G. anomalum × G. hirsutum)2hexaploid using morphological, cytological and molecular marker methods. The informative SSR markers screened in the study will be useful marker resources for tracking the flow of G. anomalum genetic material among progenies that may be produced by future backcrosses to G. hirsutum.

  20. Global Annotation of Small RNA and MicroRNA Mature Sequences from Developing Ovules of Gossypium hirsutum L.

    Institute of Scientific and Technical Information of China (English)

    ABDURAKHMONOV Ibrokhim Y; DEVOR Eric J; HUANG Ling-yan; BURIEV Zabardast T; MAKAMOV Abdusalom; SHERMATOV Shukhrat E; ABDUKARIMOV Abdusattor

    2008-01-01

    @@ The involvement of small RNAs in cotton fiber development is under explored.The objective of this work was to directly clone,annotate,and analyze small RNAs of developing ovules to reveal the candidate small interfering RNA/microRNAs (siRNAs/miRNAs) involved in cotton ovule and fiber development.We cloned small RNA sequences from 0~10 days post anthesis (DPA) developing ovules of Gossypium hirsutum var.

  1. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat.

    Science.gov (United States)

    Gao, Shi-Qing; Chen, Ming; Xia, Lian-Qin; Xiu, Hui-Jun; Xu, Zhao-Shi; Li, Lian-Cheng; Zhao, Chang-Ping; Cheng, Xian-Guo; Ma, You-Zhi

    2009-02-01

    A cotton (G. hirsutum L.) dehydration responsive element binding protein gene, GhDREB, which encodes a 153 amino acid protein containing a conserved AP2/EREBP domain, was isolated from the cDNA library of cotton cv. Simian 3 by a yeast one-hybrid system. RNA blot analysis showed that the GhDREB gene was induced in cotton seedlings by drought, high salt and cold stresses. An electrophoretic mobility shift assay (EMSA) indicated that the GhDREB protein bound specifically to the DRE core element (A/GCCGAC) in vitro. Two expression vectors containing the GhDREB gene with either of the Ubiqutin or rd29A promoters were constructed and transferred into wheat (Triticum aestivum L.) by bombardment. Fifty-eight Ubi::GhDREB and 17 rd29A::GhDREB T(0) plants of Yangmai (36 plants) and Lumai (39 plants) were identified by PCR analysis, respectively. Southern blot and RT-PCR analyses showed that two or three copies of the GhDREB were integrated into the Yangmai 10 genome and were expressed at the transcriptional level, and three or four copies were integrated into the Lumai 23 genome. Functional analysis indicated that the transgenic plants had improved tolerance to drought, high salt, and freezing stresses through accumulating higher levels of soluble sugar and chlorophyll in leaves after stress treatments. No phenotype differences were observed between transgenic plants and their non-transgenic controls. These results indicated that GhDREB might be useful in improving wheat stress tolerance through genetic engineering.

  2. CORRELACIONES Y ANÁLISIS DE SENDERO EN ALGODÓN (Gossypium hirsutum L. EN EL CARIBE COLOMBIANO CORRELATIONS AND PATH ANALYSIS IN COTTON (Gossypium hirsutum L. IN THE COLOMBIAN CARIBBEAN

    Directory of Open Access Journals (Sweden)

    Miguel Mariano Espitia Camacho

    2008-06-01

    Full Text Available El cultivo del algodón es la principal actividad agrícola en la economía del Caribe colombiano en el segundo semestre del año y el principal abastecedor de fibra a la industria nacional desde hace aproximadamente 60 años. El objetivo de este trabajo fue estimar las correlaciones fenotípicas, genéticas y ambientales, entre 11 caracteres agronómicos y realizar un análisis de sendero para rendimiento de fibra. Se utilizaron los datos de la evaluación agronómica de 10 genotipos de algodón en ocho ambientes del Caribe colombiano. En cada ambiente se utilizó un diseño experimental de bloques completos al azar con cuatro repeticiones. Los resultados indicaron que las correlaciones genéticas fueron superiores a las fenotípicas y ambientales. El rendimiento de fibra (REF presentó las mayores correlaciones fenotípicas, genéticas y fenotipicas parciales con el porcentaje de fibra (PFI, el rendimiento de algodón - semilla (RAS y el peso de mota (PMO, con valores de r > 0,43 (PThe cotton crop is the main agricultural activity in the economy of the colombian Caribbean in the second semester of the year and the main supplier of fibre to national industry for about 60 years. The objective of this work was to estimate the phenotypic, genetic and environmental correlations, between 11 agronomic characters and to make a path analysis for fibre yield. Data of agronomic evaluation of 10 genotypes of cotton in eight environments of the colombian Caribbean were used. In each environment experimental design at random complete blocks with four repetitions were used. The results indicated that genetic correlations were superior to phenotypic and environmental correlations. Fibre yield (FIY presented the highest phenotypic, genetic and partial phenotypic correlations with ginning percentage (GP, seed-cotton yield (SCY and boll weight (BOW with values of r > 0,43 (P<0,01. The FIP (0,810 was the cause variable that showed the greatest direct effect on

  3. Morphogenesis Model-Based Virtual Growth System of Cotton (Gossypium hirsutum L.)%基于形态模型的棉花(Gossypium hirsutum L.)虚拟生长系统研究

    Institute of Scientific and Technical Information of China (English)

    周娟; 周治国; 陈兵林; 孟亚利

    2009-01-01

    [Objective] Modeling dynamics of each organ size in cotton growth process, then a virtual growth system for cotton was implemented to provide a technical basis for research of virtual farming. [Method] Based on the potted plant research of cotton variety, sowing date, nitrogen, water and DPC in a summer seasons of 2005 and 2006, with the systematic analysis principle and mathematical modeling technique applied to cotton morphogenesis, a morphological model, which includes several sub-models of leaf, stem, boll, and so on, was developed by the quantitative analyses of experimental data. And a virtual growth system for cotton was implemented with usage of OpenGL for 3D graphic and MFC for graphical user interface. [Result] The results showed that the dynamic change of each organ size could be characterized by logistic equation in relation to GDD, nitrogen, water and DPC. The model was validated by the data from 2006, and the mean RMSEs were 0.85, 0.82, 0.87, 0.57, 0.086, 0.65, 0.74, 0.8, 0.73, 0. 016, 0.36 and 0.4 cm for main stem leaf length and width, main stem leaf stalk length, main stem internode length and diameter, fruiting branch leaf length and width, fruiting branch leaf stalk length, fruiting node length and diameter, and boll length and width, respectively. Then NURBS was applied to simulate the shape of cotton leaf and boll, internode and petiole were treated as cylinder. Finally, a cotton growth system which comprises of models, database and interface was implemented with OpenGL on the platform of Microsoft Visual C++ 6.0. [Conclusion] The system can be used to simulate the real growth process of each organ, individual and group with some inputs.%[目的]基于棉花形态器官形成过程的定量描述,模拟棉花三维生长过程,为虚拟棉作研究提供技术基础.[方法]基于2005-2006年棉花品种、播期、氮素、水分和DPC化控试验,将系统分析方法和数学建模技术应用于棉花植株的形态建成,通过对棉花

  4. Submission to NCBI Sequence Read Archive (SRA): Raw read files from manuscript “RNA-seq transcriptome profiling of upland cotton (Gossypium hirsutum) root tissue under water deficit stress” NCBI SRA Accession No. PRJNA210770

    Science.gov (United States)

    Gossypium hirsutum L. cultivar Siokra L-23 was grown under rainfed and irrigated treatments in a field with very sandy soil. Root samples were collected for each treatment during the reproductive growth period. The RNA of all root tissues was used in an RNA-seq transcriptome profiling study with an ...

  5. Constructing a high-density linkage map for Gossypium hirsutum ? Gossypium barbadense and identifying QTLs for lint percentage

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Shi; Haihong Shang; Juwu Gong; Wankui Gong; Zemao Yang; Feiy Tang; Zhi Liu; Weiping Zhu; Jianxiong Jiang; Xiaonan Yu; Tao Wang; Wentan Li; Wei Wang; Tingting Chen; Kunbo Wang; Zhengsheng Zhang; Youlu Yuan; Aiguo Li; Ruihua Ge; Baocai Zhang; Junzhi Li; Guangping Liu; Junwen Li; Aiying Liu

    2015-01-01

    To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high‐density simple sequence repeat (SSR) genetic linkage map was developed from a BC1F1 population of Gossypium hirsutum ? Gossypium barbadense. The map com-prised 2,292 loci and covered 5115.16 centiMorgan (cM) of the cotton AD genome, with an average marker interval of 2.23 cM. Of the marker order for 1,577 common loci on this new map, 90.36% agrees well with the marker order on the D genome sequence genetic map. Compared with five pub-lished high‐density SSR genetic maps, 53.14% of marker loci were newly discovered in this map. Twenty‐six quantitative trait loci (QTLs) for lint percentage (LP) were identified on nine chromosomes. Nine stable or common QTLs could be used for marker‐assisted selection. Fifty percent of the QTLs were from G. barbadense and increased LP by 1.07%–2.41%. These results indicated that the map could be used for screening chromosome substitution segments from G. barbadense in the Upland cotton background, identifying QTLs or genes from G. barbadense, and further developing the gene pyramiding effect for improving fiber yield and quality.

  6. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense.

    Science.gov (United States)

    Li, Ao; Xia, Tao; Xu, Wen; Chen, Tingting; Li, Xianliang; Fan, Jian; Wang, Ruyi; Feng, Shengqiu; Wang, Yanting; Wang, Bingrui; Peng, Liangcai

    2013-06-01

    Cotton fiber is an excellent model system of cellulose biosynthesis; however, it has not been widely studied due to the lack of information about the cellulose synthase (CESA) family of genes in cotton. In this study, we initially identified six full-length CESA genes designated as GhCESA5-GhCESA10. Phylogenetic analysis and gene co-expression profiling revealed that CESA1, CESA2, CESA7, and CESA8 were the major isoforms for secondary cell wall biosynthesis, whereas CESA3, CESA5, CESA6, CESA9, and CESA10 should involve in primary cell wall formation for cotton fiber initiation and elongation. Using integrative analysis of gene expression patterns, CESA protein levels, and cellulose biosynthesis in vivo, we detected that CESA8 could play an enhancing role for rapid and massive cellulose accumulation in Gossypium hirsutum and Gossypium barbadense. We found that CESA2 displayed a major expression in non-fiber tissues and that CESA1, a housekeeping gene like, was predominantly expressed in all tissues. Further, a dynamic alteration was observed in cell wall composition and a significant discrepancy was observed between the cotton species during fiber elongation, suggesting that pectin accumulation and xyloglucan reduction might contribute to cell wall transition. In addition, we discussed that callose synthesis might be regulated in vivo for massive cellulose production during active secondary cell wall biosynthesis in cotton fibers.

  7. (Gossypium hirsutum L.) varieties from Azerbaijan in Southeast ...

    African Journals Online (AJOL)

    user1

    2013-08-14

    Aug 14, 2013 ... Australian bred cotton (five G. hirsutum L. and one G. barbadense L.) ... Cotton Development Board (CDB) varieties namely CB-1,. CB-5 and CB-9 at four .... temperature is 17.1°C, average rainfall is 369.3 mm and average ...... Meteorological Directorate of Şanliurfa, Monthly Weather Reports,. Şanliurfa.

  8. The Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes

    Science.gov (United States)

    Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping

    2013-01-01

    Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520

  9. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Directory of Open Access Journals (Sweden)

    Guozheng Liu

    Full Text Available BACKGROUND: Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L. is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt genome could be helpful for the evolution research of plant mt genomes. METHODOLOGY/PRINCIPAL FINDINGS: We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. CONCLUSION: The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  10. Isolation and Analysis of Expansins from the Gossypium barbadense Cotton Elongating Fiber

    Institute of Scientific and Technical Information of China (English)

    TU Li-li; DENG Feng-lin; TAN Jia-fu; LI Yang; ZHANG Xian-long

    2008-01-01

    @@ Gossypium barbadense L.is one of the most valuable cotton species due to its silkiness,luster,long staple,and high strength.Transferring the excellent fiber traits from G.barbadense as the secondary gene pool to the widely cultivated G.hirsutum via traditional and molecular-aided selection is an attractive aim of breeders.

  11. Fingerprinting Analysis of the Introgressed lines from Gossypium hirsutum L.× G.barbadense L.based on AFLP markers

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-hui; ZHANG Yong; DONG Shun-wen; WANG Jun

    2008-01-01

    @@ The main cultivated varieties in the world belong to the species of upland cotton (Gossypium hirsutum L.),and their genetic background is very narrow.However,the wild species and races in the genus of Gossypium have abundant genetic diversity and possess lots of excellent genes with potential high yield,fine and strong fiber,disease and insect resistance,drought and coldness resistance,male sterility,and so on.

  12. DNA sequences and composition from 12 BAC clones-derived MUSB SSR markers mapped to cotton (Gossypium Hirsutum L. x G. Barbadense L.)chromosomes 11 and 21

    Science.gov (United States)

    To discover resistance (R) and/or pathogen-induced (PR) genes involved in disease response, 12 bacterial artificial chromosome (BAC) clones from cv. Acala Maxxa (G. hirsutum) were sequenced at the Clemson University, Genomics Institute, Clemson, SC. These BACs derived MUSB single sequence repeat (SS...

  13. Chilling stress--the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L. leaf senescence.

    Directory of Open Access Journals (Sweden)

    Jingqing Zhao

    Full Text Available Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2-4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence.

  14. Yield and fiber quality of five pairs of near-isogenic cotton (Gossypium hirsutum L.) lines expressing the fuzzless/linted and fuzzy/linted seed phenotypes

    Science.gov (United States)

    Fuzzless cotton often has traits desirable to the cotton industry, including longer fibers, reduced short fiber content, fewer neps, and improved ginning efficiency. This two-year field study described yield and fiber properties of five pairs of fuzzy and fuzzless near-isogenic lines, developed from...

  15. Cottonseed protein, oil, and mineral status in near-isogenic cotton (Gossypium hirsutum) lines expressing fuzzy/linted and fuzzless/linted seed phenotypes

    Science.gov (United States)

    Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed composition constituents (protein, oil, and minerals) determine the quality of seeds. Therefore, maintaining optimum levels of cottonseed constituents is critical. Ph...

  16. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes

    Science.gov (United States)

    Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candi...

  17. Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne

    Science.gov (United States)

    Background: Individual fiber strength is an important quality attribute that greatly influences the strength of the yarn spun from cotton fibers. Fiber strength is usually measured from bundles of fibers due to the difficulty of reliably measuring strength from individual cotton fibers. However, bun...

  18. Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration.

    Science.gov (United States)

    Li, X; Wang, X D; Zhao, X; Dutt, Y

    2004-04-01

    A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene beta-glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.

  19. Correlation of Inhibitor Proteinase in Varieties and Lines of Cotton (Gossypium hirsutum L.) to Different Geographic Population of Verticillium dathliae Klebahn

    Institute of Scientific and Technical Information of China (English)

    KIM Robert; AMANTURDIEV Alisher; MEJLUMYAN Larisa; BABAYEV Yashen; KIM Michael

    2008-01-01

    @@ Breeding for wilt resistance and its theoretical basis are primarily responsible for increases in cotton yield and fiber quality.Breeding for immunity is the most efficient method in our struggle with infectious diseases.

  20. Correlation of Inhibitor Proteinase in Varieties and Lines of Cotton(Gossypium hirsutum L.) to Different Geographic Population of Verticillium dathliae Klebahn

    Institute of Scientific and Technical Information of China (English)

    KIM; Robert; AMANTURDIEV; Alisher; MEJLUMYAN; Larisa; BABAYEV; Yashen; KIM; Michael

    2008-01-01

    Breeding for wilt resistance and its theoretical basis are primarily responsible for increases in cotton yield and fiber quality. Breeding for immunity is the most efficient method in our struggle with infectious diseases.

  1. Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA

    National Research Council Canada - National Science Library

    Chen, Yong; Ale, Srinivasulu; Rajan, Nithya; Morgan, Cristine L. S; Park, Jongyoon

    2016-01-01

    The Southern High Plains ( SHP ) region of Texas in the United States, where cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass sorghum ( Sorghum bicolor...

  2. Cloning and Function Characteristic of GhDWF4,an Ortholog of Arabidopsis DWF4 from Upland Cotton(Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As one of the longest cells characterized in plant kingdom,cotton fibers were regarded as an ideal material for studying plant cell growth and development.In recent years,several reports revealed that

  3. Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers

    Directory of Open Access Journals (Sweden)

    Wenbo Shan

    2016-08-01

    Full Text Available Cotton is the world's most important natural fiber crop. It is also a model system for studying polyploidization, genomic organization, and genome-size variation. Integrating the cytological characterization of cotton with its genetic map will be essential for understanding its genome structure and evolution, as well as for performing further genetic-map based mapping and cloning. In this study, we isolated a complete set of bacterial artificial chromosome clones anchored to each of the 52 chromosome arms of the tetraploid cotton Gossypium hirsutum. Combining these with telomere and centromere markers, we constructed a standard karyotype for the G. hirsutum inbred line TM-1. We dissected the chromosome arm localizations of the 45S and 5S rDNA and suggest a centromere repositioning event in the homoeologous chromosomes AT09 and DT09. By integrating a systematic karyotype analysis with the genetic linkage map, we observed different genome sizes and chromosomal structures between the subgenomes of the tetraploid cotton and those of its diploid ancestors. Using evidence of conserved coding sequences, we suggest that the different evolutionary paths of non-coding retrotransposons account for most of the variation in size between the subgenomes of tetraploid cotton and its diploid ancestors. These results provide insights into the cotton genome and will facilitate further genome studies in G. hirsutum.

  4. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Andres, Ryan J; Coneva, Viktoriya; Frank, Margaret H; Tuttle, John R; Samayoa, Luis Fernando; Han, Sang-Won; Kaur, Baljinder; Zhu, Linglong; Fang, Hui; Bowman, Daryl T; Rojas-Pierce, Marcela; Haigler, Candace H; Jones, Don C; Holland, James B; Chitwood, Daniel H; Kuraparthy, Vasu

    2017-01-03

    Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D1), which is responsible for the major leaf shapes in cotton. The l-D1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.

  5. The immature fiber mutant phenotype of cotton (Gossypium hirsutum) is linked to a 22-bp frame-shift deletion in a mitochondria targeted pentatricopeptide repeat gene

    Science.gov (United States)

    Cotton seed trichomes are the globally most important source of natural fibers. The major fiber thickness properties influence the price of the raw material and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process...

  6. Effect of Methyl Jasmonate on Phytoalexins Biosynthesis and Induced Disease Resistance to Fusarium oxysporum f. sp. Vasinfectum in Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Yao Kouakou François Konan

    2014-01-01

    Full Text Available The effect of methyl jasmonate (MeJA sprayed on cotton healthy leaves was evaluated in terms of inherent bioactive chemicals induction. The total phenolic content significantly increased after MeJA 5.0 mM treatments compared to the other tested concentrations (0; 2.5; 10; 15; 20 mM. Among the eleven phenolic compounds which were found except for ferulic acid, gossypetin, gossypol, 3-p-coumaroylquinic acid, and piceatannol were identified as major phenolic constituents of cotton. Their content also significantly increased after the MeJA treatment. In addition, gossypol increased 64 times compared to the control, in the 5.0 mM MeJA treatment. Furthermore, cichoric acid, chlorogenic acid, and pterostilbene are synthesized de novo in leaves of MeJA-treated plant. Treatment of cotton leaves with MeJA 5.0 mM followed 72 h of incubation hampered the expression of Fusarium wilt caused by Fusarium oxysporium f. sp. vasinfectum (FOV. MeJA efficiency was concentration and incubation time dependent. Disease severity on MeJA-treated leaves was significantly lower as compared to the control. Therefore, the high content of gossypetin, gossypol, 3-p-coumaroylquinic acid, ferulic acid, and piceatannol and the presence of cichoric acid, chlorogenic acid, and pterostilbene in plants treated with MeJA, contrary to the control, are essential to equip the cotton compounds with defences or phytoalexins against FOV.

  7. Modifications to a LATE MERISTEM IDENTITY-1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Leaf shape varies spectacularly among plants. Leaves are the primary source of photo-assimilate in crop plants and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders ha...

  8. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    Science.gov (United States)

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications.

  9. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions.

    Science.gov (United States)

    Bellaloui, Nacer; Stetina, Salliana R; Turley, Rickie B

    2015-01-01

    Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals) determines the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait) effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a 2-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes) in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines). Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source) to seed (sink). This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for food and feed.

  10. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2015-03-01

    Full Text Available Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals determine the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a two-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines. Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source to seed (sink. This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for

  11. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    Directory of Open Access Journals (Sweden)

    Amarjeet Kumar Singh

    Full Text Available Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp, which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  12. Combining Ability and Heterosis Between High Strength Lines and Transgenic Bt (Bacillus thuringiensis) Bollworm-Resistant Lines in Upland Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zheng-sheng; LI Xian-bi; XIAO Yue-hua; LUO Ming; LIU Da-jun; HUANG Shun-li; ZHANG Feng-xin

    2003-01-01

    To analyse the combining ability and heterosis between high-strength lines and transgenic Btbollworm-resistant lines in upland cotton, 5 high-strength lines were crossed as female lines with 12 transgenicBt bollworm-resistant lines according to NCII design. It was demonstrated that the compositions of variance invarious traits were quite different. For seed cotton yield, lint yield, boll numbers per plant and boll weight,the dominant (special combining ability) effects were the major effects, accounting for 87.38, 84.40, 80.04and 64.46 % of the total phenotypic variances, respectively, while for fibre strength and micronaire value, theadditive (general combining ability) effects had the major effects, with a ratio of additive variance to pheno-typic variance of 78.85 and 43.80 %. As for lint percent and 2. 5 % span length, the dominant and additivevariances had similar effects, in phenotypic variances (54.94 and 40. 11% for lint percent, 45.76and42.49% for 2.5% span length, respectively). The mid-parent heterosis (Hpm), surpassing parent heterosis(Hpb) and competitive heterosis (Hck) for seed cotton yield and lint yield were both extremely significant.For fibre properties, the Hck and Hpm of 2.5 % fibre span length were extremely significant, the Hck of fibrestrength was significant, and the favorable negative Hck of micronaire was also extremely significant. The in-crements of hybrid over common variety were 17 % for lint yield and fibre strength, 7 % for fibre span length,and 4% for fineness.

  13. Expression of baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L. enhances tolerance to verticillium wilt.

    Directory of Open Access Journals (Sweden)

    Juan Tian

    Full Text Available BACKGROUND: Programmed cell death plays an important role in mediating plant adaptive responses to the environment such as the invasion of pathogens. Verticillium wilt, caused by the necrotrophic pathogen Verticillium dahliae, is a serious vascular disease responsible for great economic losses to cotton, but the molecular mechanisms of verticillium disease and effective, safe methods of resistance to verticillium wilt remain unexplored. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we introduced baculovirus apoptosis inhibitor genes p35 and op-iap into the genome of cotton via Agrobacterium-mediated transformation and analyzed the response of transgenic plants to verticillium wilt. Results showed that p35 and op-iap constructs were stably integrated into the cotton genome, expressed in the transgenic lines, and inherited through the T(3 generation. The transgenic lines had significantly increased tolerance to verticillium wilt throughout the developmental stages. The disease index of T(1-T(3 generation was lower than 19, significantly (P<0.05 better than the negative control line z99668. After treatment with 250 mg/L VD-toxins for 36 hours, DNA from negative control leaves was fragmented, whereas fragmentation in the transgenic leaf DNA did not occur. The percentage of cell death in transgenic lines increased by 7.11% after 60 mg/L VD-toxin treatment, which was less than that of the negative control lines's 21.27%. This indicates that p35 and op-iap gene expression partially protects cells from VD-toxin induced programmed cell death (PCD. CONCLUSION/SIGNIFICANCE: Verticillium dahliae can trigger plant cells to die through induction of a PCD mechanism involved in pathogenesis. This paper provides a potential strategy for engineering broad-spectrum necrotrophic disease resistance in plants.

  14. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    Science.gov (United States)

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources.

  15. RAPD and SCAR Markers for Dominant Glandless Gene in Gossypium hirsutum L.%陆地棉显性无腺体基因的RAPD和SCAR标记

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan JIANG; Kun-bo WANG; Guo-li SONG; Wen-sheng ZHANG; Rong-xia CUI

    2002-01-01

    @@ Glandless or gossypol free cottons are of great value to develop the utilizations of cottonseeds and cotton scientists have been interested in developing more applicable glandless cultivars.Common glandless cotton are generated by recessive genes, such as gl2 and gl3. A dominant glandless mutant has been discovered in Egyptian cotton (Gossypium barbadense L. )The gene was transformed into G. hirsutum and was proved as dominant single gene Gl2e( Xian-he Zhan, 1987 ), being attractive for many genetists and breeders to pay more attention to study on it including its genetic markers.

  16. Determinação do poder germinativo de sementes de variedades paulistas de algodoeiro (Gossypium hirsutum L. Studies on germination of cotton seeds

    Directory of Open Access Journals (Sweden)

    Eduardo Zink

    1969-01-01

    Full Text Available São relatados os resultados das determinações do poder germinativo de sementes de sete variedades paulistas de algodoeiro, provenientes de ensaios de competição de variedades instalados nos Estados de São Paulo e Paraná, no ano agrícola de 1966/67. Os testes de germinação foram efetuados simultaneamente no Laboratório de Sementes, do Instituto Agronômico do Estado de São Paulo, e no Laboratório Central, da Divisão de Sementes e Mudas, da Secretaria da Agricultura do Estado de São Paulo. Com referência a plântulas normais e plântulas anormais B (infetadas verificaram-se, conforme o caso, diferenças significativas entre localidades, entre variedades, entre laboratórios e entre substratos, bem como diversas interações envolvendo as variáveis mencionadas.Seeds of seven varieties of cotton produced at different regions of the States of São Paulo and Paraná (Brazil were submitted to germination tests at two laboratories: Instituto Agronômico de Campinas (IAC at 20 - 30°C and Divisão de Sementes e Mudas (DSM at 30°C. The substrata used for the tests were cotton towels desinfected differently at each laboratory. The statistical analysis for numbers of normal and abnormal plants (infected showed significant differences between regions, varieties, laboratories and substrata. Several significant interactions including these variables were also detected.

  17. Maize (Zea mays L.) and Cotton (Gossypium hirsutum L.) Straw Decomposition in Soil: Effect of Straw Placement, Mineral Nitrogen and Tillage

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the present understanding that decomposing straw may not only affect soil properties, but pos-sibly greenhouse gas emissions as well, focus among environmental researchers has gradually expanded toinclude understanding of decomposition rate and stability of straw of different plants in different soils underdifferent management conditions. Against such a background, a short-term (60 days) greenhouse simulationexperiment was carried out to study the effects of straw placement, external mineral N source and tillageon straw decomposition of maize and cotton in two contrasting soils, a red soil (Ferrasol) and a black soil(Acrisol). The treatments included straw addition only (T1); straw addition + mineral N (T2); and strawaddition + tillage (T3). Straw was either buried in the soil or placed on the surface. Sampling was doneevery 15 days. Placement, addition of external mineral N sources (urea, 46% N), straw type, soil type andexposure duration (15, 30, 45 and 60 days) affected straw decomposition. Decomposition was more in buriedstraw than in surface-placed straw at all sampling dates in red soil. The addition of an external N sourcesignificantly increased decomposition. The study could not, however, fully account for the effect of tillageon straw decomposition because of the limited effect of our tillage method due to the artificial barrier tomechanical interference supplied by the mesh bags.

  18. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L. mutant lines under well-watered and water stress conditions

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2013-12-01

    Full Text Available There is no information available on the effect of fuzzless seed trait on cottonseed nutrient composition (minerals, N, S, protein, and oil under drought stress. The objective of this research was to investigate the effect of the fuzzless seed trait on cottonseed nutrients using four sets of near-isogenic lines (NILs. Each set consists of two lines that share the same genetic background, but differ in seed fuzziness (fuzzy, F; fuzzless, N. The near isogenic lines will enable us to compare the effect of the trait without confounding the genotypic background effects. We hypothesized that since the fuzzless trait involved in fiber initiation development, and was reported to be involved in biochemical, molecular, and genetic processes, this trait may also alter cottonseed nutrient composition. Results showed that NIL sets accumulated different levels of minerals in seeds and leaves, and the fuzzless trait (NF in most of the lines altered seed and leaf mineral accumulations when compared with fuzzy lines (FN or the control line. For example, K, P, Mg, Cu, and Na concentrations in seeds were higher in MD N and STV N than in their equivalent MD F and STV F lines. Leaf concentrations of Ca, K, Mg, S, B, Cu, and Fe in MD N lines were higher than MD F line. Lower levels of nutrients in seeds and leaves were observed under water stress conditions, especially Ca, Mg, N, and B in seeds. Generally and with few exceptions, seed protein was higher in fuzzy lines that in fuzzless lines; however, seed oil was higher in fuzzless lines than in fuzzy lines. Our research demonstrated that fuzzless trait altered the composition and level of nutrients in seed and leaves in well watered and water stressed plants. Differences in protein and oil between fuzzy and fuzzless seeds may indicate alteration in nitrogen and carbon fixation and metabolism. The differential accumulation of seed nutrients in this germplasm could be used by cotton breeders to select for higher

  19. 陆地棉农杆菌介导茎尖的遗传转化的直接器官再生%Agrobacterium-mediated Transformation and Regeneration by Direct Shoot Organogenesis in Cotton (G. hirsutum

    Institute of Scientific and Technical Information of China (English)

    G. BALASUBRAMANI; J. AMUDHA; P. A. KUMAR; A. B.DONGRE; C. D. MAYEE

    2002-01-01

    @@ Genotype independent transformation and regeneration of Indian cotton ( Gossypium hirsutum L. ) cultivar was standardized with BtCry 1A (b ) gene by Agrobacterium-mediation.Apical meristem of elite G. hirsutum cultivar LRK-516 and LRA 5166 were co-cultivated with A. tumefaciens LBA 4404 carrying synthetic BtCry 1A (b) +npt-II genes.

  20. Identification of a novel drought tolerance gene in Gossypium hirsutum L. cv KC3

    Directory of Open Access Journals (Sweden)

    Jagadeesh N. Selvam

    2009-02-01

    Full Text Available Development of drought resistant cotton cultivars has long been a major breeding objective, since water stress limits fiber production and productivity. Recent advances in functional genomics can increase the efficiency of conventional breeding for genetic improvement of crop plants for improved abiotic stress resistance. To this end, a novel drought resistance gene was identified by comparing the gene expression profile of Gossypium hirsutum cv KC3 and MCU12 by employing a cDNA-RAPD approach. Physiological and biochemical studies showed that KC3 has relatively better drought tolerance than MCU12. Among 25 random primers, OPA15 has identified differentially expressed cDNA in KC3. Results of BLASTP algorithm have shown that this cDNA has significant homology with P-Glycoprotein, ACC oxidase2 and ABC transporter which are involved either directly, or indirectly, in stress tolerance in animals and plants. Hence, the cDNA sequence identified in this study may be a novel gene that confers drought resistance in cotton as KC3 is well adapted and is widely cultivated in rain-fed tracts of Tamil Nadu, India. Further characterization of this gene may show it has potential application for development of cotton with improved drought resistance, through genetic engineering and/or marker aided selection (MAS

  1. Gossypolhemiquinone, a dimeric sesquiterpenoid identified in cotton (Gossypium)

    Science.gov (United States)

    The report that the cotton leaf perforator, Bucculatrix thurberiella, is one of the few insect herbivores to attack Gossypium thurberi prompted an investigation of the terpenoids present in the leaves of this wild species of cotton. Members of Gossypium produce subepidermal pigment glands in their ...

  2. Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species

    Science.gov (United States)

    Nucleotide binding site (NBS) genes encode a large family of disease resistance (R) proteins in plants. The availability of genomic data of the two diploid cotton species, Gossypium arboreum and Gossypium raimondii, and the two allotetraploid cotton species, Gossypium hirsutum (TM-1) and Gossypium ...

  3. Association of AFLP and SSR markers with agronomic and fibre quality traits in Gossypium hirsutum L.

    Indian Academy of Sciences (India)

    Arunita Rakshit; S. Rakshit; J. Singh; S. K. Chopra; H. S. Balyan; P. K. Gupta; Shripad R. Bhat

    2010-08-01

    Molecular markers linked to QTL contributing to agronomic and fibre quality traits would be useful for cotton improvement. We have attempted to tag yield and fibre quality traits with AFLP and SSR markers using F2 and F3 populations of a cross between two Gossypium hirsutum varieties, PS56-4 and RS2013. Out of 50 AFLP primer combinations and 177 SSR primer pairs tested, 32 AFLP and four SSR primers were chosen for genotyping F2 individuals.Marker-trait associations were studied for eight agronomic and five fibre quality traits through simple and multiple regression analysis (MRA) using a set of 92 AFLP polymorphic loci and four SSR markers. Simple linear regression analysis (SLRA) identified 23 markers for eight different traits whereas multiple regression analysis identified 30 markers for at least one of the 13 traits. SSR marker BNL 3502 was consistently identified to be associated with fibre strength. While all the markers identified in SLRA were also detected in MRA, as many as 16 of the 30 markers were identified to be associated with respective traits in both F2 and F3 generations. The markers explained up to 41 per cent of phenotypic variation for individual traits. A number of markers were found to be associated with multiple traits suggesting clustering of QTLs for fibre quality traits in cotton.

  4. The cytogenetics and fiber properties of an allohexaploid between Gossypium hirsutum and G. somalense

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cytogenetics and fiber properties were studied on the Gossypium hirsutum×G. somalense F2 hybrid and later generations. The cytological analyses of pollen mother cells (PMCs) were made at meiotic metaphase Ⅰ. The results indicated that the hybrid was a new allohexaploid, its chro-mosome number determined as 2n=6x=78, and genome group as 2[(AD)1E2]. Chromosomal configurations of the hexaploid averaged 0.15Ⅰ+ 38.72Ⅱ+ 0.11Ⅲ + 0.02Ⅳ per cell, 85.09% PMCs having 39 bivalents, and only 11.84% PMCs having 1 to 2 multivalents, indicating that heteroge-netic recombinations of chromosomes occurs between (AD)1 and E2, nevertheless, the frequency is lower. The hexaploids are self-fertile and the progenies remain the hexaploids, whose fibers are light brown and have higher strength by measurement of HVI 900 system. The fiber strength in-creases 42% than that of upland cotton variety. Therefore, it is possible for the hexaploid to be an important germplasm resource to improve fiber strength of cotton.

  5. Using Genome-Referenced Expressed Sequence Tag Assembly to Analyze the Origin and Expression Patterns of Gossypium hirsutum Transcripts

    Institute of Scientific and Technical Information of China (English)

    Xiang Jin; Qin Li; Guanghui Xiao; Yu-Xian Zhu

    2013-01-01

    We assembled a total of 297,239 Gossypium hirsutum (Gh,a tetraploid cotton,AADD) expressed sequence tag (EST) sequences that were available in the National Center for Biotechnology Information database,with reference to the recently published G.raimondii (Gr,a diploid cotton,DD) genome,and obtained 49,125 UniGenes.The average lengths of the UniGenes were increased from 804 and 791 bp in two previous EST assemblies to 1,019 bp in the current analysis.The number of putative cotton UniGenes with lengths of 3 kb or more increased from 25 or 34 to 1,223.As a result,thousands of originally independent G.hirsutum ESTs were aligned to produce large contigs encoding transcripts with very long open reading frames,indicating that the G.raimondii genome sequence provided remarkable advantages to assemble the tetraploid cotton transcriptome.Significant different distribution patterns within several GO terms,including transcription factor activity,were observed between D-and A-derived assemblies.Transcriptome analysis showed that,in a tetraploid cotton cell,29,547 UniGenes were possibly derived from the D subgenome while another 19,578 may come from the A subgenome.Finally,some of the in silico data were confirmed by reverse transcription polymerase chain reaction experiments to show the changes in transcript levels for several gene families known to play key role in cotton fiber development.We believe that our work provides a useful platform for functional and evolutionary genomic studies in cotton.

  6. Analysis of [Gossypium capitis-viridis × (G.hirsutum × G.australe)2] Trispecific Hybrid and Selected Characteristics.

    Science.gov (United States)

    Chen, Di; Wu, Yuxiang; Zhang, Xiling; Li, Fuguang

    2015-01-01

    Speciation is always a contentious and challenging issue following with the presence of gene flow. In Gossypium, there are many valuable resources and wild diploid cotton especially C and B genome species possess some excellent traits which cultivated cotton always lacks. In order to explore character transferring rule from wild cotton to upland tetraploid cotton, the [G. capitis-viridis × (G. hirsutum × G. australe)2] triple hybrid was synthesized by interspecies hybridization and chromosome doubling. Morphology comparisons were measured among this hybrid and its parents. It showed that trispecific hybrid F1 had some intermediate morphological characters like leaf style between its parents and some different characters from its parents, like crawl growth characteristics and two kind flower color. It is highly resistant to insects comparing with other cotton species by four year field investigation. By cytogenetic analysis, triple hybrid was further confirmed by meiosis behavior of pollen mother cells. Comparing with regular meiosis of its three parents, it was distinguished by the occurrence of polyads with various numbers of unbalanced microspores and finally generating various abnormal pollen grains. All this phenomenon results in the sterility of this hybrid. This hybrid was further identified by SSR marker from DNA molecular level. It showed that 98 selected polymorphism primers amplified effective bands in this hybrids and its parents. The genetic proportion of three parents in this hybrid is 47.8% from G. hirsutum, 14.3% from G. australe, 7.0% from G. capitis-viridis, and 30.9% recombination bands respectively. It was testified that wild genetic material has been transferred into cultivated cotton and this new germplasm can be incorporated into cotton breeding program.

  7. Analysis of [Gossypium capitis-viridis × (G.hirsutum × G.australe2] Trispecific Hybrid and Selected Characteristics.

    Directory of Open Access Journals (Sweden)

    Di Chen

    Full Text Available Speciation is always a contentious and challenging issue following with the presence of gene flow. In Gossypium, there are many valuable resources and wild diploid cotton especially C and B genome species possess some excellent traits which cultivated cotton always lacks. In order to explore character transferring rule from wild cotton to upland tetraploid cotton, the [G. capitis-viridis × (G. hirsutum × G. australe2] triple hybrid was synthesized by interspecies hybridization and chromosome doubling. Morphology comparisons were measured among this hybrid and its parents. It showed that trispecific hybrid F1 had some intermediate morphological characters like leaf style between its parents and some different characters from its parents, like crawl growth characteristics and two kind flower color. It is highly resistant to insects comparing with other cotton species by four year field investigation. By cytogenetic analysis, triple hybrid was further confirmed by meiosis behavior of pollen mother cells. Comparing with regular meiosis of its three parents, it was distinguished by the occurrence of polyads with various numbers of unbalanced microspores and finally generating various abnormal pollen grains. All this phenomenon results in the sterility of this hybrid. This hybrid was further identified by SSR marker from DNA molecular level. It showed that 98 selected polymorphism primers amplified effective bands in this hybrids and its parents. The genetic proportion of three parents in this hybrid is 47.8% from G. hirsutum, 14.3% from G. australe, 7.0% from G. capitis-viridis, and 30.9% recombination bands respectively. It was testified that wild genetic material has been transferred into cultivated cotton and this new germplasm can be incorporated into cotton breeding program.

  8. CRITICAL COMPETITION PERIOD BETWEEN COTTON AND (Gossypium hirsutum L. HARMFUL WEED COMMUNITIES IN THE GOIÁS STATE PERÍODO CRÍTICO DE COMPETIÇÃO ENTRE COMUNIDADES DE PLANTAS DANINHAS E O ALGODOEIRO (Gossypium hirsutum L. NO ESTADO DE GOIÁS

    Directory of Open Access Journals (Sweden)

    Armando M. Macêdo

    2007-09-01

    Full Text Available

    In order to study the critical time that weeds compete with the cotton plant, five trial experiments were conducted from 1978-1981. Two of the trials were carried out in a dark red latosoil with 4.70% organic matter and 10.73% clay, at the Rio Verde Agricultural School in the state of Goiás, during the 1978—79 and 1979—80 planting seasons. The other three were carried out in dark red latosoil, with a loam clay texture, moderate acidity and a low proportion of organic matter, at the Experimental station in Goiânia, Goiás during the 1978—79, 1979—80 and 1980—81 planting seasons. The treatments designed were: weeding up to 2, 4, 6, 8 first weeks, and weeding during the whole cycle ,and weeding after the 2, 4, 6, 8 first weeks and no weeding at all during the cycle. The results showed that weed competition , when not controlled, determined a yield loss of 88.75% in Goiânia and 90.65% in Rio Verde. Regarding the group control, which was maintained without weed competition, the best yield was obtained when the cotton was maintained without competition during eight weeks after the emergence in Rio Verde and during 4, 6, 8 weeks in Goiânia. The critical competition period occurred between the fourth and sixth weeks after the emergence in Rio Verde and in the fourth week after the emergence in Goiânia.

    Com a finalidade de estudar as épocas críticas de competição de plantas daninhas com o algodoeiro (Gossipium hirsutum L. , foram instalados cinco ensaios em área do Colégio Agrícola de Rio Verde — Goiás, no período de 1978 a 1981, sendo dois ensaios nos anos agrícolas de 1978/79 e 1979/80 em latossolo vermelho—escuro com 4,71% de matéria orgânica e 10,73% de argila. Os outros três ensaios foram instalados nos anos agrícolas 1978/79, 1979/80 e 1980/81, em área da Estação Experimental de

  9. A comparative analysis of a fuzzless-lintless mutant of Gossypium hirsutum L. cv. Xu-142

    Institute of Scientific and Technical Information of China (English)

    于晓红; 朱勇清; 卢山; 张天真; 陈晓亚; 许智宏

    2000-01-01

    A fuzzless-lintless (fl) seed mutant of Gossypium hirsutum L. cv. Xu-142 was investigated to study cotton fiber development. Scanning electron microscopy revealed that fiber initials were virtually absent from fl ovules. RT-PCR analysis showed that the steady-state levels of transcripts of the fiber-specific E6 and Expansin genes were high in wild type (WT) ovules during the fiber initiation and elongation stages, and peaked around 15 days post anthesis (DPA), but only a trace amount of these transcripts was detectable in fl ovules of alt developmental stages investigated. CotmybA, a member of the Myb family, exhibited a clear expression in developing WT ovules, but the expression was abnormal in fl ovules. Application of GA3, or GA3 plus IAA, to the culture medium rescued in vitro fiber initiation and growth of fl ovules only partially. In addition, transcription of E6 and Expansin genes of in vitro cultured WT and fl ovules responded similarly to exogenous hormones. The hormones had less effect on Cot

  10. A comparative analysis of a fuzzless-lintless mutant of Gossypium hirsutum L. cv. Xu-142

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A fuzzless-lintless (fl) seed mutant of Gossypium hirsutum L. cv. Xu-142 was investigated to study cotton fiber development. Scanning electron microscopy revealed that fiber initials were virtually absent from fl ovules. RT-PCR analysis showed that the steady-state levels of transcripts of the fiber-specific E6 and Expansin genes were high in wild type (WT) ovules during the fiber initiation and elongation stages, and peaked around 15 days post anthesis (DPA), but only a trace amount of these transcripts was detectable in fl ovules of all developmental stages investigated. CotmybA, a member of the Myb family, exhibited a clear expression in developing WT ovules, but the expression was abnormal in fl ovules. Application of GA3, or GA3 plus IAA, to the culture medium rescued in vitro fiber initiation and growth of fl ovules only partially. In addition, transcription of E6 and Expansin genes of in vitro cultured WT and fl ovules responded similarly to exogenous hormones. The hormones had less effect on CotmybA transcription in ovules cultured in vitro, and again the WT and fl ovules showed a similar expression. These results suggest that the abnormal or extremely low level of expression of E6, Expansin and CotmybA genes in developing fl seeds is related to the absence of seed-hairs, and the mechanism underlying needs further investigation.

  11. Microarray-based large scale detection of single feature polymorphism in Gossypium hirsutum L.

    Indian Academy of Sciences (India)

    Anukool Srivastava; Samir V. Sawant; Satya Narayan Jena

    2015-12-01

    Microarrays offer an opportunity to explore the functional sequence polymorphism among different cultivars of many crop plants. The Affymetrix microarray expression data of five genotypes of Gossypium hirsutum L. at six different fibre developmental stages was used to identify single feature polymorphisms (SFPs). The background corrected and quantile-normalized log2 intensity values of all probes of triplicate data of each cotton variety were subjected to SFPs call by using SAM procedure in R language software. We detected a total of 37,473 SFPs among six pair genotype combinations of two superior (JKC777 and JKC725) and three inferior (JKC703, JKC737 and JKC783) using the expression data. The 224 SFPs covering 51 genes were randomly selected from the dataset of all six fibre developmental stages of JKC777 and JKC703 for validation by sequencing on a capillary sequencer. Of these 224 SFPs, 132 were found to be polymorphic and 92 monomorphic which indicate that the SFP prediction from the expression data in the present study confirmed a ∼ 58.92% of true SFPs. We further identified that most of the SFPs are associated with genes involved in fatty acid, flavonoid, auxin biosynthesis etc. indicating that these pathways significantly involved in fibre development.

  12. Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum

    Institute of Scientific and Technical Information of China (English)

    SHEN Fafu; YU Shuxun; HAN Xiulan; FAN Shuli

    2004-01-01

    A gene encoding a cysteine proteinase was isolated from senescent leave of cotton (Gossypium hirsutum) cv liaomian No. 9 by utilizing rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR), and a set of consensus oligonucleotide primers was designed to anneal the conserved sequences of plant cysteine protease genes. The cDNA, which designated Ghcysp gene, contained 1368 bp terminating in a poly(A)+ trail, and included a putative 5′(98 bp) and a 3′(235 bp) non-coding region. The opening reading frame (ORF) encodes polypeptide 344 amino acids with the predicted molecular mass of 37.88 kD and theoretical pI of 4.80. A comparison of the deduced amino acid sequence with the sequence in the GenBank database has shown considerable sequence similarity to a novel family of plant cysteine proteases. This putative cotton Ghcysp protein shows from 67% to 82% identity to the other plants. All of them share catalytic triad of residues, which are highly conserved in three regions. Hydropaths analysis of the amino acid sequence shows that the Ghcysp is a potential membrane protein and localizes to the vacuole, which has a transmembrane helix between resides 7-25. A characteristic feature of Ghcysp is the presence of a putative vacuole-targeting signal peptide of 19-amino acid residues at the N-terminal region. The expression of Ghcysp gene was determined using northern blot analysis. The Ghcysp mRNA levels are high in development senescent leaf but below the limit of detection in senescent root, hypocotyl, faded flower, 6 d post anthesis ovule, and young leaf.

  13. A draft physical map of a D-genome cotton species (Gossypium raimondii

    Directory of Open Access Journals (Sweden)

    Kudrna Dave

    2010-06-01

    Full Text Available Abstract Background Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. Results A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF. A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT and Vitis vinifera (VV whole genome sequences. Conclusion Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence.

  14. Development of one set of chromosome-specific microsatellite-containing BACs and their physical mapping in Gossypium hirsutum L.

    Science.gov (United States)

    Wang, Kai; Guo, Wangzhen; Zhang, Tianzhen

    2007-09-01

    Fluorescence in situ hybridization (FISH), using bacterial artificial chromosome (BAC) clone as probe, is a reliable cytological technique for chromosome identification. It has been used in many plants, especially in those containing numerous small chromosomes. We previously developed eight chromosome-specific BAC clones from tetraploid cotton, which were used as excellent cytological markers for chromosomes identification. Here, we isolated the other chromosome-specific BAC clones to make a complete set for the identification of all 26 chromosome-pairs by this technology in tetraploid cotton (Gossypium hirsutum L.). This set of BAC markers was demonstrated to be useful to assign each chromosome to a genetic linkage group unambiguously. In addition, these BAC clones also served as convenient and reliable landmarks for establishing physical linkage with unknown targeted sequences. Moreover, one BAC containing an EST, with high sequence similarity to a G. hirsutum ethylene-responsive element-binding factor was located physically on the long arm of chromosome A7 with the help of a chromosome-A7-specific BAC FISH marker. Comparative analysis of physical marker positions in the chromosomes by BAC-FISH and genetic linkage maps demonstrated that most of the 26 BAC clones were localized close to or at the ends of their respective chromosomes, and indicated that the recombination active regions of cotton chromosomes are primarily located in the distal regions. This technology also enables us to make associations between chromosomes and their genetic linkage groups and re-assign each chromosome according to the corresponding genetic linkage group. This BAC clones and BAC-FISH technology will be useful for us to evaluate grossly the degree to which a linkage map provides adequate coverage for developing a saturated genetic map, and provides a powerful resource for cotton genomic researches.

  15. Regulation of auxin on secondary cell wall cellulose biosynthesis in developing cotton fibers

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) fibers are unicellular trichomes that differentiate from epidermal cells of developing cotton ovules. Mature fibers exhibit thickened secondary walls composed of nearly pure cellulose. Cotton fiber development is divided into four overlapping phases, 1) initiation sta...

  16. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.

    Directory of Open Access Journals (Sweden)

    Abdukarimov Abdusattor

    2010-06-01

    Full Text Available Abstract Background Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp., including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii or allotetraploid (G. hirsutum, G. barbadense cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. Results We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2 in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA, before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. Conclusions Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for

  17. Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought

    National Research Council Canada - National Science Library

    H. Harish Ratnayaka; William T. Molin; Tracy M. Sterling

    2003-01-01

    ... (Gossypium hirsutum L. cv. Delta Pine 5415, and Gossypium barbadense L. cv. Pima S-7) and spurred anoda (Anoda cristata L. Schlecht.) of the Malvaceae. Without interference, cotton and spurred anoda had similar net photosynthesis...

  18. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum.

    Science.gov (United States)

    Su, Ying; Liang, Wei; Liu, Zhengjie; Wang, Yumei; Zhao, Yanpeng; Ijaz, Babar; Hua, Jinping

    2017-07-28

    A homologous GhDof1, which belongs to a large family of plant-specific transcription factor DOF, was isolated from Upland cotton (Gossypium hirsutum L.). GhDof1 protein was located in the nucleus of onion epidermal cells, the core domain of transcriptional activity existed in the C-terminal, and the activity elements of GhDof1 promoter existed in the regions of -645∼ -469bp and -286∼ -132bp of transcriptional start codon. GhDof1 constitutively expressed in leaves, roots and stems, accumulated highest in leaves. The salinity and cold treatments induced GhDof1 transcript accumulation. The GhDof1-overexpressed cotton showed significantly higher salt and cold tolerance over the wild-type plants. Under salt stress, the root growth of overexpressed GhDof1 lines was promoted. The expression levels of stress-responsive genes, GhP5CS, GhSOD and GhMYB, were differently up-regulated in transgenic lines. Oil contents increased in some transgenic plants, and protein contents reduced compared with transformed receptor. These results suggested that GhDof1 was a functional transcription factor for improving the abiotic tolerance and seed oil content in Upland cotton. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Cloning of Two Genes Related to Plant Defense Response of Sea Island Cotton (Gossypium barbadense L. )%两个与海岛棉防卫反应相关基因的克隆

    Institute of Scientific and Technical Information of China (English)

    Daolong DOU; Bingshan WANG; Yixiong TANG; Zhixing WANG; Jingsan SUN; Shirong JIA

    2002-01-01

    @@ Verticillium wilt, caused by V. dahaliae, is a serious fungus disease of cotton in China.Nearly all cultivated upland cotton (Gossypium hirsutum) varieties are sensitive to it. Some species of island cotton ( G. barbadense ),however, have a natural resistance to this pathogen. To investigate the mechanism of SAR signal transduction and response to pathogen,two genes, which play important roles in the development of SAR, are cloned by degenerated PCR.

  20. A New Synthetic Amphiploid (AADDAA between Gossypium hirsutum and G. arboreum Lays the Foundation for Transferring Resistances to Verticillium and Drought.

    Directory of Open Access Journals (Sweden)

    Yu Chen

    Full Text Available Gossypium arboreum, a cultivated cotton species (2n = 26, AA native to Asia, possesses invaluable characteristics unavailable in the tetraploid cultivated cotton gene pool, such as resistance to pests and diseases and tolerance to abiotic stresses. However, it is quite difficult to transfer favorable traits into Upland cotton through conventional methods due to the cross-incompatibility of G. hirsutum (2n = 52, AADD and G. arboreum. Here, we improved an embryo rescue technique to overcome the cross-incompatibility between these two parents for transferring favorable genes from G. arboreum into G. hirsutum. Our results indicate that MSB2K supplemented with 0.5 mg l(-1 kinetin and 250 mg(-1 casein hydrolysate is an efficient initial medium for rescuing early (3 d after pollination hybrid embryos. Eight putative hybrids were successfully obtained, which were further verified and characterized by cytology, molecular markers and morphological analysis. The putative hybrids were subsequently treated with different concentrations of colchicine solution to double their chromosomes. The results demonstrate that four putative hybrid plants were successfully chromosome-doubled by treatment with 0.1% colchicine for 24 h and become amphiploid, which were confirmed by cytological observation, self-fertilization and backcrossing. Preliminary assessments of resistance at seedling stage indicate that the synthetic amphiploid showed highly resistant to Verticillium and drought. The synthetic amphiploid between G. hirsutum × G. arboreum would lay the foundation for developing G. arboreum-introgressed lines with the uniform genetic background of G. hirsutum acc TM-1, which would greatly enhance and simplify the mining, isolation, characterization, cloning and use of G. arboreum-specific desirable genes in future cotton breeding programs.

  1. A New Synthetic Amphiploid (AADDAA) between Gossypium hirsutum and G. arboreum Lays the Foundation for Transferring Resistances to Verticillium and Drought.

    Science.gov (United States)

    Chen, Yu; Wang, Yingying; Zhao, Ting; Yang, Jianwei; Feng, Shouli; Nazeer, Wajad; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium arboreum, a cultivated cotton species (2n = 26, AA) native to Asia, possesses invaluable characteristics unavailable in the tetraploid cultivated cotton gene pool, such as resistance to pests and diseases and tolerance to abiotic stresses. However, it is quite difficult to transfer favorable traits into Upland cotton through conventional methods due to the cross-incompatibility of G. hirsutum (2n = 52, AADD) and G. arboreum. Here, we improved an embryo rescue technique to overcome the cross-incompatibility between these two parents for transferring favorable genes from G. arboreum into G. hirsutum. Our results indicate that MSB2K supplemented with 0.5 mg l(-1) kinetin and 250 mg(-1) casein hydrolysate is an efficient initial medium for rescuing early (3 d after pollination) hybrid embryos. Eight putative hybrids were successfully obtained, which were further verified and characterized by cytology, molecular markers and morphological analysis. The putative hybrids were subsequently treated with different concentrations of colchicine solution to double their chromosomes. The results demonstrate that four putative hybrid plants were successfully chromosome-doubled by treatment with 0.1% colchicine for 24 h and become amphiploid, which were confirmed by cytological observation, self-fertilization and backcrossing. Preliminary assessments of resistance at seedling stage indicate that the synthetic amphiploid showed highly resistant to Verticillium and drought. The synthetic amphiploid between G. hirsutum × G. arboreum would lay the foundation for developing G. arboreum-introgressed lines with the uniform genetic background of G. hirsutum acc TM-1, which would greatly enhance and simplify the mining, isolation, characterization, cloning and use of G. arboreum-specific desirable genes in future cotton breeding programs.

  2. Evolutionary Conservation and Divergence of Gene Coexpression Networks in Gossypium (Cotton) Seeds.

    Science.gov (United States)

    Hu, Guanjing; Hovav, Ran; Grover, Corrinne E; Faigenboim-Doron, Adi; Kadmon, Noa; Page, Justin T; Udall, Joshua A; Wendel, Jonathan F

    2016-12-01

    The cotton genus (Gossypium) provides a superior system for the study of diversification, genome evolution, polyploidization, and human-mediated selection. To gain insight into phenotypic diversification in cotton seeds, we conducted coexpression network analysis of developing seeds from diploid and allopolyploid cotton species and explored network properties. Key network modules and functional associations were identified related to seed oil content and seed weight. We compared species-specific networks to reveal topological changes, including rewired edges and differentially coexpressed genes, associated with speciation, polyploidy, and cotton domestication. Network comparisons among species indicate that topologies are altered in addition to gene expression profiles, indicating that changes in transcriptomic coexpression relationships play a role in the developmental architecture of cotton seed development. The global network topology of allopolyploids, especially for domesticated G. hirsutum, resembles the network of the A-genome diploid more than that of the D-genome parent, despite its D-like phenotype in oil content. Expression modifications associated with allopolyploidy include coexpression level dominance and transgressive expression, suggesting that the transcriptomic architecture in polyploids is to some extent a modular combination of that of its progenitor genomes. Among allopolyploids, intermodular relationships are more preserved between two different wild allopolyploid species than they are between wild and domesticated forms of a cultivated cotton, and regulatory connections of oil synthesis-related pathways are denser and more closely clustered in domesticated vs. wild G. hirsutum. These results demonstrate substantial modification of genic coexpression under domestication. Our work demonstrates how network inference informs our understanding of the transcriptomic architecture of phenotypic variation associated with temporal scales ranging from

  3. 异源四倍体棉花栽培品种分子连锁遗传图谱的构建%Construction of Molecular Linkage Map of Cultivated Allotetraploid Cotton (Gossypium hirsutum L.×G. Barbadense L. )with SSR and RAPD Markers

    Institute of Scientific and Technical Information of China (English)

    Jun ZHANG; Wang-zhen GUO; Tian-zhen ZHANG

    2002-01-01

      A permanent doubled haploid population from the crossing of G. hirsutum × G. barbadense were developed by means of Vsg, virescently marked semigamy line in sea island cotton,which was characterized by a cytological mechanism for developing haploids with certain convenience, and thus constructed an allotetraploid cotton molecular genetic linkage map with the high level polymorphic SSR and RAPD markers.……

  4. Molecular cloning and function analysis of two SQUAMOSA-Like MADS-box genes from Gossypium hirsutum L.

    Science.gov (United States)

    Zhang, Wenxiang; Fan, Shuli; Pang, Chaoyou; Wei, Hengling; Ma, Jianhui; Song, Meizhen; Yu, Shuxun

    2013-07-01

    The MADS-box genes encode a large family of transcription factors having diverse roles in plant development. The SQUAMOSA (SQUA)/APETALA1 (AP1)/FRUITFULL (FUL) subfamily genes are essential regulators of floral transition and floral organ identity. Here we cloned two MADS-box genes, GhMADS22 and GhMADS23, belonging to the SQUA/AP1/FUL subgroup from Gossypium hirsutum L. Phylogenetic analysis and sequence alignment showed that GhMADS22 and GhMADS23 belonged to the euFUL and euAP1 subclades, respectively. The two genes both had eight exons and seven introns from the start codon to the stop codon according to the alignment between the obtained cDNA sequence and the Gossypium raimondii L. genome sequence. Expression profile analysis showed that GhMADS22 and GhMADS23 were highly expressed in developing shoot apices, bracts, and sepals. Gibberellic acid promoted GhMADS22 and GhMADS23 expression in the shoot apex. Transgenic Arabidopsis lines overexpressing 35S::GhMADS22 had abnormal flowers and bolted earlier than wild type under long-day conditions (16 h light/8 h dark). Moreover, GhMADS22 overexpression delayed floral organ senescence and abscission and it could also respond to abscisic acid. In summary, GhMADS22 may have functions in promoting flowering, improving resistance and delaying senescence for cotton and thus it may be a candidate target for promoting early-maturation in cotton breeding.

  5. Molecular cloning and functional analysis of the FLOWERING LOCUS T (FT) homolog GhFT1 from Gossypium hirsutum

    Institute of Scientific and Technical Information of China (English)

    Danli Guo; Chao Li; Rui Dong; Xiaobo Li; Xiangwen Xiao; Xianzhong Huang

    2015-01-01

    FLOWERING LOCUS T (FT) encodes a member of the phosphatidylethanolamine-binding protein (PEBP) family that functions as the mobile floral signal, playing an important role in regulating the floral transition in angiosperms. We isolated an FT-homolog (GhFT1) from Gossypium hirsutum L. cultivar, Xinluzao 33 GhFT1 was predominantly expressed in stamens and sepals, and had a relatively higher expression level during the initiation stage of fiber development. GhFT1 mRNA displayed diurnal oscillations in both long-day and short-day condition, suggesting that the expression of this gene may be under the control of the circadian clock. Subcel ular analysis revealed that GhFT1 protein located in the cytoplasm and nucleus. Ectopic expression of GhFT1 in transgenic arabidopsis plants resulted in early flowering compared with wild-type plants. In addition, ectopic expression of GhFT1 in arabidopsis ft-10 mutants partial y rescued the extremely late flowering phenotype. Finally, several flowering related genes functioning downstream of AtFT were highly upregulated in the 35S::GhFT1 transgenic arabidopsis plants. In summary, GhFT1 is an FT-homologous gene in cotton that regulates flower transition similar to its orthologs in other plant species and thus it may be a candidate target for promoting early maturation in cotton breeding.

  6. Isolation, characterization and mapping of genes differentially expressed during fibre development between Gossypium hirsutum and G. barbadense by cDNA-SRAP

    Indian Academy of Sciences (India)

    Chuanxiang Liu; Daojun Yuan; Xianlong Zhang; Zhongxu Lin

    2013-08-01

    Gossypium hirsutum and G. barbadense are two cultivated tetraploid cotton species with differences in fibre quality. The fibre of G. barbadense is longer, stronger and finer than that of G. hirsutum. To isolate genes expressed differently between the two species during fibre development, cDNA-SRAP (sequence-related amplified polymorphism) was applied. This technique was used to analyse genes at different stages of fibre development in G. hirsutum cv. Emian22 and G. barbadense acc. 3-79, the parents of our interspecific mapping population. A total of 4096 SRAP primer combinations were used to screen polymorphism between the DNA of the parents, and 275 highly polymorphic primers were picked out to analyse DNA and RNA from leaves and fibres at different developmental stages of the parents. A total of 168 DNA fragments were isolated from gels and sequenced: 54, 30, 38 and 41 from fibres of 5, 10, 15 and 20 days post-anthesis, respectively, and five from multi stages. To genetically map these sequences, 104 sequence-specific primers were developed and were used to screened polymorphism between the mapping parents. Finally, six markers were mapped on six chromosomes of our backbone interspecific genetic map. This work can give us a primary knowledge of differences in mechanism of fibre development between G. hirsutum and G. barbadense.

  7. SENSIBILIDADE DE Rhizoctonia solani Kuhn, A FUNGICIDAS “IN VITRO” E EM PLÂNTULAS DE ALGODOEIRO (Gossypium hirsutum L., EM CONDIÇÕES DE CASA DE VEGETAÇÃO SENSIBILITY OF Rhizoctonia solani Kuhn TO FUNGICIDES “IN VITRO” AND IN COTTON PLANTULES (Gossypium hirsutum L AT GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Wilson Ferreira de Oliveira

    2007-09-01

    Full Text Available

    Foram instalados nas dependências do Departamento Fitossanitário da Escola de Agronomia - UFG, ensaio “in vitro”, em BDA2 e a nível de Casa de Vegetação, objetivando testar a eficiência de diferentes dosagens de Iprodione + Thiran (Rovrin em comparação com PCNB (Brassicol 75 BR, TMTD (Rhodiauran 70 e Captan + Pencycuron (Monceren para o controle de Rhizoctonia solani Kuhn, na cultura do algodoeiro, através do tratamento de sementes. Os resultados obtidos, nas condições de realização dos ensaios, permitem concluir que os fungicidas Rovrin - 320 g.i.a., Monceren - 210 g.i.a., Rovrin - 240 g.i.a., Rovrin - 200 g.i.a., PCNB - 450 g.i.a./100 litros de água ou 100 kg de sementes mostraram-se eficientes e não diferiram estatisticamente entre si no controle de R. solani, enquanto que o produto TMTD (Rhodiauran 70 na dosagem de 280 g.i.a./100 litros de água ou 100 kg de sementes de algodoeiro não se mostrou eficiente no controle deste agente causal.

    Aiming to test the efficiency of different dosages of Iprodione + Thiram (Rovrin in comparison with PCNB (Brassicol 75 BR, TMTD (Rhodiauran 70 and Captan + Pencycuron (Monceren for controlling Rhizoctonia solani Kuhn, in cotton plantation, through seeds treatment, was mounted essays “in vitro” at greenhouse level and BDA, in the Phytosanitary Department annexes of School of Agronomy-UFG. The results obtained, at essays conditions, permit to conclude that fungicides Rovrin - 320 g.i.a., Monceren - 210 g.i.a., Rovrin - 240 g.i.a., Rovrin - 200 g.i.a., PCNB - 450 g.i.a./l00 liters of water or 100kg of seeds, were efficient and statistically had no variation among them, in controlling R. solani, while chemical product TMTD (Rhodiauran 70, at dosage of 280 g.i.a./100 liters of water or 100 kg of cotton seeds, was not efficient in controlling this causal

  8. Genome-Wide Identification of the MIKC-Type MADS-Box Gene Family in Gossypium hirsutum L. Unravels Their Roles in Flowering

    Science.gov (United States)

    Ren, Zhongying; Yu, Daoqian; Yang, Zhaoen; Li, Changfeng; Qanmber, Ghulam; Li, Yi; Li, Jie; Liu, Zhao; Lu, Lili; Wang, Lingling; Zhang, Hua; Chen, Quanjia; Li, Fuguang; Yang, Zuoren

    2017-01-01

    Cotton is one of the major world oil crops. Cottonseed oil meets the increasing demand of fried food, ruminant feed, and renewable bio-fuels. MADS intervening keratin-like and C-terminal (MIKC)-type MADS-box genes encode transcription factors that have crucial roles in various plant developmental processes. Nevertheless, this gene family has not been characterized, nor its functions investigated, in cotton. Here, we performed a comprehensive analysis of MIKC-type MADS genes in the tetraploid Gossypium hirsutum L., which is the most widely cultivated cotton species. In total, 110 GhMIKC genes were identified and phylogenetically classified into 13 subfamilies. The Flowering locus C (FLC) subfamily was absent in the Gossypium hirsutum L. genome but is found in Arabidopsis and Vitis vinifera L. Among the genes, 108 were distributed across the 13 A and 12 of the D genome's chromosomes, while two were located in scaffolds. GhMIKCs within subfamilies displayed similar exon/intron characteristics and conserved motif compositions. According to RNA-sequencing, most MIKC genes exhibited high flowering-associated expression profiles. A quantitative real-time PCR analysis revealed that some crucial MIKC genes determined the identities of the five flower organs. Furthermore, the overexpression of GhAGL17.9 in Arabidopsis caused an early flowering phenotype. Meanwhile, the expression levels of the flowering-related genes CONSTANS (CO), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) were significantly increased in these lines. These results provide useful information for future studies of GhMIKCs' regulation of cotton flowering. PMID:28382045

  9. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum.

    Science.gov (United States)

    Huang, Yu; Wei, Xiaoyang; Zhou, Shiguang; Liu, Mingyong; Tu, Yuanyuan; Li, Ao; Chen, Peng; Wang, Yanting; Zhang, Xuewen; Tai, Hongzhong; Peng, Liangcai; Xia, Tao

    2015-04-01

    In this study, steam explosion pretreatment was performed in cotton stalks, leading to 5-6 folds enhancements on biomass enzymatic saccharification distinctive in Gossypium barbadense and Gossypium hirsutum species. Sequential 1% H2SO4 pretreatment could further increase biomass digestibility of the steam-exploded stalks, and also cause the highest sugar-ethanol conversion rates probably by releasing less inhibitor to yeast fermentation. By comparison, extremely high concentration alkali (16% NaOH) pretreatment with raw stalks resulted in the highest hexoses yields, but it had the lowest sugar-ethanol conversion rates. Characterization of wall polymer features indicated that biomass saccharification was enhanced with steam explosion by largely reducing cellulose DP and extracting hemicelluloses. It also showed that cellulose crystallinity and arabinose substitution degree of xylans were the major factors on biomass digestibility in cotton stalks. Hence, this study has provided the insights into cell wall modification and biomass process technology in cotton stalks and beyond.

  10. Sequencing the Cotton Genomes-Gossypium spp.

    Institute of Scientific and Technical Information of China (English)

    PATERSON Andrew H

    2008-01-01

    @@ The genomes of most major crops,including cotton,will be fully sequenced in the next fewyears.Cotton is unusual,although not unique,in that we will need to sequence not only cultivated(tetraploid) genotypes but their diploid progenitors,to understand how elite cottons have surpassedthe productivity and quality of their progenitors.

  11. Heat Stress Related Gene Expression in Gossypium hirsutum L.

    Institute of Scientific and Technical Information of China (English)

    DEMIREL Ufuk; G(U)R M Atilla; KARAKU Mehmet; MEMON Abdul Rezaque

    2008-01-01

    @@ Abiotic stress is a major limiting factor to crop productivity,and heat stress is one of the important elements for reduced crop production.Plants respond to heat stress at molecular and cellular levels as well as physiological level.Heat stress alters expression patterns of numerous genes in plants.At the molecular level,most of the information for heat stress response was obtained from model plants such as Arabidopsis thaliana,Medicago trancatula,and ,Oryza sativa,but little molecular research has focused on heat stress respones in cotton.

  12. 图位克隆法分离陆地棉Velvet绒毛基因%Isolate a Gene for Velvet Hairiness in Cotton (Gossypium hirsutum L. ) by Map-based Cloning

    Institute of Scientific and Technical Information of China (English)

    Mehboob-ur-RAHMAN; M. A. I. ALI; S. A. RANDNAWA; T. A. MALIK; K. A. MALIK; Y. ZAFAR

    2002-01-01

    @@ Cotton crop is prone to many insect pests.Finely dense pubescence (pilose/velvet hairy),one of the important elements of defense umbrella confers in built resistance against several insect pests. The present research was conducted to isolate DNA markers for velvet hairiness, which would be useful to launch mapbasedcloning.

  13. RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li1) and – 2 (Li2) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation

    Science.gov (United States)

    Cotton fiber is the most prevalent natural raw material used in the textile industry. The length of the fiber is one of the most important characteristics and affects spinning efficiency and the quality of the resulting yarn. The identification of the genes that control fiber elongation is importa...

  14. Exp2 polymorphisms associated with variation for fiber quality properties in cotton (Gossypium spp.

    Directory of Open Access Journals (Sweden)

    Daohua He

    2014-10-01

    Full Text Available Plant expansins are a group of extracellular proteins thought to affect the quality of cotton fibers. Previous expression profile analysis revealed that six Expansin A genes are present in cotton, of which two (GhExp1 and GhExp2 produce transcripts that are specific to the developing cotton fiber. To identify the phenotypic function of Exp2, and to determine whether nucleotide variation among alleles of Exp2 affects fiber quality, candidate gene association mapping was conducted. Gene-specific primers were designed to amplify the Exp2 gene. By amplicon sequencing, the nucleotide diversity of Exp2 was investigated across 92 accessions (including 7 Gossypium arboreum, 74 Gossypium hirsutum, and 11 Gossypium barbadense accessions with different fiber qualities. Twenty-six SNPs and seven InDels including 14 from the coding region of Exp2 were detected, forming twelve distinct haplotypes in the cotton collection. Among the 14 SNPs in the coding region, five were missense mutations and nine were synonymous nucleotide changes. The average SNP/InDel per nucleotide ratio was 2.61% (one SNP per 39 bp, with 1.81 and 3.87% occurring in coding and non-coding regions, respectively. Nucleotide and haplotype diversity across the entire Exp2 region was 0.00603 (π and 0.844, respectively, and diversity in non-coding regions was higher than that in coding regions. For linkage disequilibrium (LD, the mean r2 value for all polymorphism loci pairs was 0.48, and LD did not decay over 748 bp. Based on 132 simple sequence repeat (SSR loci evenly covering 26 chromosomes, the population structure was estimated, and the accessions were divided into seven groups that agreed well with their genomic origin and evolutionary history. A general linear model was used to calculate the Exp2-wide diversity–trait associations of 5 fiber quality traits, considering population structure (Q. Four SNPs in Exp2 were associated with at least one of the fiber quality traits, but not with

  15. QTL mapping in A-genome diploid Asiatic cotton and their congruence analysis with AD-genome tetraploid cotton in genus Gossypium.

    Science.gov (United States)

    Ma, Xuexia; Ding, Yezhang; Zhou, Baoliang; Guo, Wangzhen; Lv, Yanhui; Zhu, Xiefei; Zhang, Tianzhen

    2008-12-01

    Asiatic cotton (Gossypium arboreum L.) is an Old World cultivated cotton species. The sinense race was planted extensively in China. Due to the advances in spinning technology during the last century, the species was replaced by the New World allotetraploid cotton G. hirsutum L. Gossypium arboreum is still grown in India and Pakistan and also used as an elite in current cotton breeding programs. In addition, G. arboreum serves as a model for genomic research in Gossypium. In the present study, we generated an A-genome diploid cotton intraspecific genetic map including 264 SSR loci with three morphological markers mapped to 13 linkage groups. The map spans 2,508.71 cM with an average distance of 9.4 cM between adjacent loci. A population containing 176 F(2:3) families was used to perform quantitative trait loci (QTL) mapping for 17 phenotypes using Multiple QTL Model (MQM) of MapQTL ver 5.0. Overall, 108 QTLs were detected on 13 chromosomes. Thirty-one QTLs for yield and its components were detected in the F2 population. Forty-one QTLs for yield and its components were detected in the F(2:3) families with a total of 43 QTLs for fiber qualities. Two QTLs for seed cotton weight/plant and lint index and three QTLs for seed index were consistently detected both in F2 and F(2:3). Most QTLs for fiber qualities and yields were located at the same interval or neighboring intervals. These results indicated that the negative correlation between fiber qualities and yield traits may result from either pleiotropic effect of one gene or linkage effects of multiple closely linked genes.

  16. CMD: a Cotton Microsatellite Database resource for Gossypium genomics

    Directory of Open Access Journals (Sweden)

    Liu Shaolin

    2006-05-01

    Full Text Available Abstract Background The Cotton Microsatellite Database (CMD http://www.cottonssr.org is a curated and integrated web-based relational database providing centralized access to publicly available cotton microsatellites, an invaluable resource for basic and applied research in cotton breeding. Description At present CMD contains publication, sequence, primer, mapping and homology data for nine major cotton microsatellite projects, collectively representing 5,484 microsatellites. In addition, CMD displays data for three of the microsatellite projects that have been screened against a panel of core germplasm. The standardized panel consists of 12 diverse genotypes including genetic standards, mapping parents, BAC donors, subgenome representatives, unique breeding lines, exotic introgression sources, and contemporary Upland cottons with significant acreage. A suite of online microsatellite data mining tools are accessible at CMD. These include an SSR server which identifies microsatellites, primers, open reading frames, and GC-content of uploaded sequences; BLAST and FASTA servers providing sequence similarity searches against the existing cotton SSR sequences and primers, a CAP3 server to assemble EST sequences into longer transcripts prior to mining for SSRs, and CMap, a viewer for comparing cotton SSR maps. Conclusion The collection of publicly available cotton SSR markers in a centralized, readily accessible and curated web-enabled database provides a more efficient utilization of microsatellite resources and will help accelerate basic and applied research in molecular breeding and genetic mapping in Gossypium spp.

  17. 6-Benzyladenine enhancements of cotton yield

    Science.gov (United States)

    The influence of applied plant growth regulators (PGR) on growth, development and yield in cotton (Gossypium hirsutum L. and Gossypium barbadense L.) has been studied for over half a century. A recent study suggested that cytokinin treatment of young cotton seedlings may enhance overall performanc...

  18. Cytogenetic maps of homoeologous chromosomes A h01 and D h01 and their integration with the genome assembly in Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Yuling Liu

    2017-06-01

    Full Text Available Cytogenetic maps of Gossypium hirsutum (Linnaeus, 1753 homoeologous chromosomes Ah01 and Dh01 were constructed by fluorescence in situ hybridization (FISH, using eleven homoeologous-chromosomes-shared bacterial artificial chromosomes (BACs clones and one chromosome-specific BAC clone respectively. We compared the cytogenetic maps with the genetic linkage and draft genome assembly maps based on a standardized map unit, relative map position (RMP, which allowed a global view of the relationship of genetic and physical distances along each chromosome, and assembly quality of the draft genome assembly map. By integration of cytogenetic maps with sequence maps of the two chromosomes (Ah01 and Dh01, we inferred the locations of two scaffolds and speculated that some homologous sequences belonging to homoeologous chromosomes were removed as repetitiveness during the sequence assembly. The result offers molecular tools for cotton genomics research and also provides valuable information for the improvement of the draft genome assembly.

  19. Physiological Response of Cotton (Gossypium hirsutum L.) Seedling to Exog-enous Salicylic Acid under Low Temperature Stress%低温胁迫下棉花幼苗对外源水杨酸的生理响应

    Institute of Scientific and Technical Information of China (English)

    辛慧慧; 李防洲; 侯振安; 冶军; 康文晶; 罗建

    2014-01-01

    Alleviating effect of exogenous salicylic acid on the cotton seedling under low temperature stress was elucidated by foliar-sprayed with different concentrations of salicylic acid. The results showed that 0.6-0.8 mmol·L-1 salicylic acid pretreatment could signiifcantly reduce the accumulation of the relative conductivity (REC) and malondialdehyde (MDA) content in the cotton seedling, which alleviated the oxidative damage of low temperature on plasma membrane. And the salicylic acid pretreatment could improve the activities of su-peroxide dismutase (SOD), peroxidase (POD), catalase (CAT), and the contents of soluble sugar, soluble pro-tein, proline to adapt to low temperature environment.%以棉花幼苗为试材,通过叶面喷施不同浓度水杨酸的处理方法,研究外源水杨酸对低温胁迫下棉花幼苗的缓解效应。结果表明,0.6~0.8 mmol·L-1水杨酸预处理可以显著降低棉花幼苗叶片相对电导率(REC)和丙二醛(MDA)的积累量,从而缓解低温对质膜的过氧化伤害,并通过提高超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性和可溶性糖、可溶性蛋白、脯氨酸等渗透调节物质的含量来适应低温环境。

  20. Interactions between a cotton phytopathogen and the host using a genomics analysis

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) is an economic crop grown worldwide. Numerous G. hirsutum polyploids have been sequenced. Bacterial infections of cotton can cause major yield losses. Pantoea ananatis is a known bacterial pathogen of both cotton buds and bolls. Thus, we conducted a whole genome an...

  1. Elargissement de la base génétique de la principale espèce de cotonnier cultivé Gossypium hirsutum L. par la création et l'exploitation de lignées monosomiques d'addition

    Directory of Open Access Journals (Sweden)

    Sarr D.

    2009-01-01

    Full Text Available Genetic broadening of the main cultivated cotton species Gossypium hirsutum L. by creation and exploitation of monosomic alien addition lines. The genus Gossypium is composed of about forty wild diploïd species that constitute an important reservoir of interesting genes for the genetic improvement of Gossypium hirsutum L., the main cultivated cotton species. Creation of monosomic alien addition lines (MAAL, made up of plants having in addition to the chromosome set of the cultivated species one wild species' supernumerary chromosome, is an interesting way to exploit this diversity. Numerous constraints limit the creation of MAAL, among them the most important is doubtless the production of first generation derivatives from pentaploids obtained by backcrossing G. hirsutum with bispecific hexaploid hybrids made of the cultivated species tetraploid genome and the genome of a donor diploid species. Raising this impediment by appropriate techniques allows to develop MAAL offering the possibility to introgress finely traits of interest from diploid species and to better understand genomic relationships between species in the genus Gossypium. Identification and exploitation of these MAAL have been for a long time based on not very reliable morphological characteristics and on the use of classical cytogenetic techniques, very heavy to implement. Nowadays, the exploitation of MAAL benefits from the great advances registered in molecular biology through the development of DNA markers and molecular cytogenetics. These progresses make of MAAL a promising way for the genetic improvement of the main cultivated cotton species.

  2. A strategy for designing multi-taxa specific reference gene systems. example of application--ppi phosphofructokinase (ppi-PPF) used for the detection and quantification of three taxa: maize (Zea mays), cotton (Gossypium hirsutum) and rice (Oryza sativa).

    Science.gov (United States)

    Chaouachi, Maher; Giancola, Sandra; Romaniuk, Marcel; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2007-10-03

    In the first part of the paper, we report the description of a new strategy for the development of a plant reference gene system that can be used for genetically modified organism (GMO) analysis. On the basis of in silico research for candidate genes, the design of degenerate primers allowed the obtention of genomic sequences of the selected gene ppi-phosphofructokinase ( ppi-PPF) for nine taxa in which GMOs have been developed. The comparison and the analysis of inter- and intraspecies sequence variability were performed using a large number of species and cultivars. As an example of application following the detection of single nucleotide polymorphism, we designed specific conventional and real-time polymerase chain reaction tests for the detection and quantification of three taxa, namely, maize, cotton, and rice. This system was highly specific and sensitive. The gene copy number conservation among different cultivars was analyzed and confirmed with a sequencing step. This reference gene system is adequate for use in routine assays for the quantification of GMOs. We then explain briefly the constraints faced and propose recommendations when designing a reference gene system depending on the species to be targeted.

  3. System Optimization of Agrobacterium-mediated Transformation of Cotton(Gossypium Hirsutum L.) in Xinjiang%农杆菌介导转化新疆棉花体系的优化

    Institute of Scientific and Technical Information of China (English)

    王静; 聂祥祥; 李冠

    2013-01-01

    以新疆主栽棉花品种新陆早19号和新陆早23号下胚轴为外植体,以GUS基因为报告基因,通过检测GUS基因在转化后的棉花下胚轴中瞬时表达情况,分析了菌液浓度、浸染时间、乙酰丁香酮浓度、超声波辅助处理、共培养温度和共培养时间等因素对GUS瞬时表达的影响.实验结果表明:菌液浓度OD600=0.5,浸染时间15 min,乙酰丁香酮浓度100μmol/L,24°C共培养72 h的转化条件下GUS基因瞬时表达率最高.%The hypocotyls of Xinluzao19 and Xinluzao23 were used for the experiments.GUS gene as the report gene,the transient expression of GUS gene in the transformed hypocotyls of cotton were examined to analyze the influences of Agrobacterium density,infection time,acetosyringone (AS) concentration,sonication treatment,co-cultivation temperature and co-cultivation time on the expression of GUS gene.As the results,the optimal infection combination was Agrobacterium density at OD600=0.5 with 15 min infection.The perfect acetosyringone concentration was 100 μmol/L,the appropriate co-cultivation temperature and time were incubated at 24°C for 72 h.

  4. 棉花种仁含油量与主要经济性状相关分析%Correlation Analysis of Seed Kernel Oil Content and Major Economic Traits in Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    郭宝生; 刘素恩; 王凯辉; 耿香利; 张香云; 耿军义; 赵存鹏

    2013-01-01

    高油分棉花品种选育成为棉花育种一个新的研究方向,明确陆地棉棉子油分含量与其他主要经济性状的关系对高油品种选育具有重要指导意义.本研究利用DPS V3.01数据处理软件分析了108份不同种质的种仁油分含量与粗蛋白含量、皮棉产量、衣分、铃重、单株结铃数、纤维长度、比强度及马克隆值和枯萎病病情指数、黄萎病病情指数等主要农艺性状的相关性.研究发现棉花种仁油分含量与棉花的皮棉产量、单株成铃、铃重和衣分主要产量构成性状不存在显著相关;棉花种仁油分与纤维整齐度指数、伸长率呈显著正相关;与纤维上半部平均长度有一定的正相关,但是没有达到统计学意义上的显著水平;与纤维比强度和纤维细度间无相关性;棉花种仁油分与枯萎病抗性有微弱的负相关,与黄萎病抗性不存在相关性.但是棉花种仁蛋白含量与油分含量存在显著负相关.本研究表明育种中提高陆地棉油分含量不会影响其皮棉产量,对抗病性的影响也很微弱,并且对纤维品质的提高有一定的促进作用.因此,在保证棉花枯萎病和黄萎病抗性、皮棉产量和纤维品质的基础上,选育高油分含量的棉花新品种是切实可行的,但选育种仁油分和蛋白质含量均高的品种难度较大.%One of the new directions in cotton breeding is to develop varieties with high oil content.In this study,we analyzed the relationships between the oil content of cottonseed kemels and other selected major economic traits of cotton.We used the DPS V3.01 data processing system to calculate linear correlation coefficients using experimental data for cottonseed oil content and other agronomic characteristics obtained from 108 cotton lines.There were no significant correlations between oil content and lint yield,boll numbers per plant,boll weight,and lint percentage.There were significant positive

  5. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton

    Directory of Open Access Journals (Sweden)

    Caiping Cai

    2014-04-01

    Full Text Available WRKY proteins are members of a family of transcription factors in higher plants that function in plant responses to various physiological processes. We identified 120 candidate WRKY genes from Gossypium raimondii with corresponding expressed sequence tags in at least one of four cotton species, Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and G. raimondii. These WRKY members were anchored on 13 chromosomes in G. raimondii with uneven distribution. Phylogenetic analysis showed that WRKY candidate genes can be classified into three groups, with 20 members in group I, 88 in group II, and 12 in group III. The 88 genes in group II were further classified into five subgroups, groups IIa–e, containing 7, 16, 37, 15, and 13 members, respectively. We characterized diversity in amino acid residues in the WRKY domain and/or other zinc finger motif regions in the WRKY proteins. The expression patterns of WRKY genes revealed their important roles in diverse functions in cotton developmental stages of vegetative and reproductive growth and stress response. Structural and expression analyses show that WRKY proteins are a class of important regulators of growth and development and play key roles in response to stresses in cotton.

  6. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton

    Institute of Scientific and Technical Information of China (English)

    Caiping; Cai; Erli; Niu; Hao; Du; Liang; Zhao; Yue; Feng; Wangzhen; Guo

    2014-01-01

    WRKY proteins are members of a family of transcription factors in higher plants that function in plant responses to various physiological processes.We identified 120 candidate WRKY genes from Gossypium raimondii with corresponding expressed sequence tags in at least one of four cotton species,Gossypium hirsutum,Gossypium barbadense,Gossypium arboreum,and G.raimondii.These WRKY members were anchored on 13 chromosomes in G.raimondii with uneven distribution.Phylogenetic analysis showed that WRKY candidate genes can be classified into three groups,with 20 members in group I,88 in group II,and 12 in group III.The88 genes in group II were further classified into five subgroups,groups IIa–e,containing 7,16,37,15,and 13 members,respectively.We characterized diversity in amino acid residues in the WRKY domain and/or other zinc finger motif regions in the WRKY proteins.The expression patterns of WRKY genes revealed their important roles in diverse functions in cotton developmental stages of vegetative and reproductive growth and stress response.Structural and expression analyses show that WRKY proteins are a class of important regulators of growth and development and play key roles in response to stresses in cotton.

  7. Hibridação interespecífica entre Gossmum hirsutum L. var. latifolium e G. Herbaceum L. var. africanum Interespecific hybridization between Gossypium hirsutum var. latifolium and G. Herbaceum var. africanum

    Directory of Open Access Journals (Sweden)

    Ederaldo José Chiavegato

    1985-01-01

    Full Text Available Foi obtida, pelos autores, variabilidade genética para resistência da fibra do algodoeiro a partir da hibridação entre a espécie alotetraplóide cultivada Gossypium hirsutum L. var. latifolium Hutch. e a espécie diplóide selvagem G. herbaceum L. vai. africanum Hutch. A metodologia empregada e as características agronômicas e tecnológicas da fibra do híbrido são descritas e discutidas. Visando à duplicação do número de cromossomos da espécie diplóide, foram realizados nove tratamentos com o alcalóide colchicina, em solução aquosa e em adição com pasta de lanolina, com diferentes concentrações e tempo de ação para o tratamento de sementes, radicelas e gemas apicais: revelou-se mais eficiente o de gemas apicais com colchicina a 1%, em pasta de lanolina, durante 32 horas. Diversos cruzamentos das plantas duplicadas com variedades comerciais de algodoeiro levaram à obtenção de híbrido estéril. A seguir, dois retrocruzamentos foram realizados, sendo que, a partir do primeiro, a fertilidade foi restaurada. Estas plantas, com características agronômicas promissoras, possuem grande variabilidade para resistência da fibra, num nível superior ao de G. hirsutum.Genetic variability was obtained by the authors for fiber strenght in cotton, through hybridization between the cultivated alotetraploid species Gossypium hirsutum L. var. latifolium Hutch. and the wild diploid species G. herbaceum L. africanum Hutch. The underlying methods and the hybrid's characteristics are reported and described. As a first step, the number of chromosomes in the diploid species was duplicated. Nine treatments with aqueous colchicina or colchicina in lanolina paste were carried out, comprising several concentrations and times of application to seeds, radicles and apical buds of the main stem. Success was obtained by treating apical buds with lanolina paste containing 1% colchicina, during 32 hours. Two hundred fourty five crosses between the

  8. 6-Benzyladenine enhancement of cotton

    Science.gov (United States)

    The influence of applied plant growth regulators (PGR) on growth, development and yield in cotton (Gossypium hirsutum L. and Gossypium barbadense L.) has been studied for over half a century. Studies of PGR containing cytokinin alone or in combination with gibbererillins applied at the pinhead squa...

  9. Gossypolone and Gossypolhemiquinone: Biological activity of terpenoids found in cotton (Gossypium)

    Science.gov (United States)

    The wild cotton plant, Gossypium thurberi grows in the Sonoran Desert in northern Mexico and southern Arizona, and is attacked by few herbivorous insects (Korban, 1999). In general, members of Gossypium produce a rich assortment of sesquiterpenoid and sesterterpenoids in the subepidermal pigment gl...

  10. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis.

    Science.gov (United States)

    Chastain, Daryl R; Snider, John L; Collins, Guy D; Perry, Calvin D; Whitaker, Jared; Byrd, Seth A

    2014-11-01

    Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.

  11. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China; a simulation study.

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on insecticides against the cotton aphid in the past

  12. Identification and Analyses of miRNA Genes in Allotetraploid Gossypium hirsutum Fiber Cells Based on the Sequenced Diploid G.raimondii Genome

    Institute of Scientific and Technical Information of China (English)

    Qin Li; Xiang Jin; Yu-Xian Zhu

    2012-01-01

    The plant genome possesses a large number of microRNAs (miRNAs) mainly 21-24 nucleotides in length.They play a vital role in regulation of target gene expression at various stages throughout the whole plant life cycle.Here we sequenced and analyzed ~ 10 million non-coding RNAs (ncRNAs) derived from fiber tissue of the allotetraploid cotton (Gossypium hirsutum) 7 days post-anthesis using ncRNA-seq technology.In terms of distinct reads,24 nt ncRNA is by far the dominant species,followed by 21 nt and 23 nt ncRNAs.Using ab initio prediction,we identified and characterized a total of 562 candidate miRNA gene loci on the recently assembled D5 genome of the diploid cotton G.raimondii.Of all the 562 predicted miRNAs,22 were previously discovered in cotton species and 187 had sequence conservation and homology to homologous miRNAs of other plant species.Nucleotide bias analysis showed that the 9th and 1st positions were significantly conserved among different types of miRNA genes.Among the 463 putative miRNA target genes,most significant up/down-regulation occurred in 10-20 days post-anthesis,indicating that miRNAs played an important role during the elongation and secondary cell wall synthesis stages of cotton fiber developmem.The discovery of new miRNA genes will help understand the mechanisms of miRNA generation and regulation in cotton.

  13. Les cotonniers (Gossypium hirsutum L. génétiquement modifiés, Bt : quel avenir pour la petite agriculture familiale en Afrique francophone ?

    Directory of Open Access Journals (Sweden)

    Berti F.

    2006-01-01

    Full Text Available Gnetically modifi ed cotton (Gossypium hirsutum L. Bt.: what future for small family farms in French-speaking Africa?After a massive adoption in South Africa, genetically modifi ed cultivars are at the door step of francophone Africa. In order toanticipate the impact of Bt cotton on small-scale farming we propose a simple profi t analysis of the crop based on our resultsfound in South Africa and data collected by our colleagues in Mali. Whereas the introduction of Bt cotton can be justifi ed bya threat of the appearance of the bollworm resistance to insecticides, its profi tability seems to be uncertain. The farmer profi tmargin depends on yield level linked with climatic, agricultural and environmental conditions and with the technology feewhich the farmer must be charged for. With a 210 FCFA purchase price for raw cotton, a 25 USD fee per hectare seems to bethe upper limit for which the farmer wouldnʼt be exposed to fi nancial risk. Given the recent drop of the purchase price, theexistence of a technology fee supported by the small-scale farmer is very questionable. At a more general level of the cottonsector, the success of Bt adoption rests on several keys: 1 the prevention of the Bt-toxin resistance; 2 the strengthening of thecontrol of stinging pests; 3 the updating of the seed production sector and 4 the improvement of the extension and trainingnetwork. Bt cotton must be considered as a tool which is part of the integrated crop management but not as the solution of thepoverty alleviation.

  14. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons

    Science.gov (United States)

    Cotton domestication was achieved by converting perennial trees into annual crops. After ploidization, two allotetraploid species, Gossypium hirsutum and G. barbadense, were domesticated and are cultivated worldwide. However, the overall genetic diversity between and within the cultivated species is...

  15. Spectral discrimination of two pigweeds from cotton with different leaf colors

    Science.gov (United States)

    To implement strategies to control Palmer amaranth (Amaranthus palmeri S. Wats.) and redroot pigweed (Amaranthus retroflexus L.) infestations in cotton (Gossypium hirsutum L.) production systems, managers need effective techniques to identify the weeds. Leaf light reflectance measurements have shown...

  16. QTL Analysis of Fiber Yield and Quality and Resistance to Verticillium Wilt Using Gossypium hirsutum and G.barbadense Advanced Backcross Populations

    Institute of Scientific and Technical Information of China (English)

    LI Ai-guo; WANG Tao; YUAN You-lu; LIU Guang-ping; ZHANG Bao-cai; LI Jun-wen; SHI Yu-zhen; LIU Ai-ying; YANG Ze-mao; LIU Zhi; YU Xiao-nan

    2008-01-01

    @@ To introgress elite QTL alleles of Gossypium barbadense L.for fiber yield and quality and resistance to Verticillium wilt into G.hirsutum L.,enlarge the genetic base of G.hirsutum,and provide new germplasm resources for the variety development,the cultivars Zhongmiansuo 36,G.hirsutum,and Hai 1,G.barbadense,were used as recurrent and donor parent,respectively,to produce BC1 F1,BC1S1,and BC2F1 populations.QTL analyses of fiber quality,yield-related,Key words: interspecific backcrosss; AB-QTL; fiber quality; yield; Verticillium wilt resistance

  17. Generation and analysis of a large-scale expressed sequence Tag database from a full-length enriched cDNA library of developing leaves of Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Min Lin

    Full Text Available BACKGROUND: Cotton (Gossypium hirsutum L. is one of the world's most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. METHODOLOGY/PRINCIPAL FINDINGS: In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR, which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. CONCLUSIONS/SIGNIFICANCE: These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence

  18. Influência do citoplasma na determinação da posição do fruto em Gossypium hirsutum L Cytoplasmic influence on the determination of fruit position in Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Imre Lajos Gridi-Papp

    1968-01-01

    Full Text Available Um estudo genético do caráter "fruto pendente" em algodoeiros da espécie alotetraplóide Gossypium hirsutum revelou que êle é determinado pela ação de dois pares de fatores Ph e Pr, provenientes respectivamente das espécies diplóides ancestrais G. herbacenme G. raimondii.Os dados conduziram à conclusão de que existe uma interação entre cromossomos e citoplasma complicando a segregação nas populações híbridas obtidas com formas de fruto ereto. As fórmulas À, PhPhPrPr, e (0, phphprpr, são propostas para as formas de capulhos pendentes e eretos, respectivamente, c um mecanismo citogenético é sugerido para explicar o fenômeno.A genetic study of the "pendent fruit" character, carried out on varieties of the tetraploid species Gossypium hirsutum,revealed that its inheritance is determined by two pairs of factors, which came from the ancestors G. herbaceumand G. raimondii.Segregating hybrid populations obtained with "erect fruit" varieties showed that there is an interaction between chromosomes and cytoplasm interfering in the phenomenon. The quality of the cytoplasm in the "pendent fruit" phenotype was designated by À.The formulae PhPh and prpr are proposed for the ancestors G. herbaceumand G. raimondii,À, PhPhPrPr and (0, phphprpr for the pendent and erect fruit types of G. hirsutum,respectively. A cytogenetic mechanism is suggested to explain the inheritance of the character.

  19. UJI KETAHANAN BEBERAPA GALUR KAPAS (Gossypium hirsutum HASIL RADIASI TERHADAP SERANGGA HAMA PENGGEREK BUAH Helicoverpa armigera(Hǖbner

    Directory of Open Access Journals (Sweden)

    Dwi Sunarto

    2015-09-01

    Full Text Available Uji  ketahanan beberapa galur kapas (Gossypium hirsutum terhadap  penggerek buah Helicoverpa armigera (Hǖbner dilaksanakan di laboratorium Entomologi Balai Penelitian Tanaman Pemanis dan Serat Malang pada bulan Januari sampai dengan Mei 2011. Penelitian bertujuan untuk mengevaluasi ketahanan beberapa galur kapas hasil radiasi terhadap penggerek buah H. armigera.  Perlakuan disusun menggunakan Rancangan Acak Kelompok (RAK yang terdiri atas empat galur hasil radiasi yaitu galur IA, 2A, 4A, dan 2C, dua varietas hasil radiasi yaitu Karisma, NIAB, dan dua varietas hasil pemuliaan konvensional yaitu Kanesia 10 dan Kanesia 15.  Setiap perlakuan diulang 3 kali.  Pengujian dilakukan dengan cara uji pakan (feeding assay daun, kuncup daun, dan buah muda sesuai dengan perkembangan larva H. armigera.  Larva instar I, instar II-III, dan instar IV-V berturut-turut diberikan daun muda, kuncup bunga, dan buah muda. Hasil penelitian menunjukkan bahwa galur kapas nomor 1A, 2A, 4A, dan 4C merupakan galur yang toleran terhadap H. armigera.  Kata kunci : Gossypium hirsutum, Helicoverpa armigera,   ketahanan  varietas.

  20. High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils.

    Science.gov (United States)

    Snider, John L; Oosterhuis, Derrick M; Loka, Dimitra A; Kawakami, Eduardo M

    2011-07-15

    It has recently been reported that high temperature slows in vivo pollen tube growth rates in Gossypium hirsutum pistils under field conditions. Although numerous physical and biochemical pollen-pistil interactions are necessary for in vivo pollen tube growth to occur, studies investigating the influence of heat-induced changes in pistil biochemistry on in vivo pollen tube growth rates are lacking. We hypothesized that high temperature would alter diurnal pistil biochemistry and that pollen tube growth rates would be dependent upon the soluble carbohydrate content of the pistil during pollen tube growth. G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures but at the same developmental stage. Diurnal pistil measurements included carbohydrate balance, glutathione reductase (GR; EC 1.8.1.7), soluble protein, superoxide dismutase (SOD; EC 1.15.1.1), NADPH oxidase (NOX; EC 1.6.3.1), adenosine triphosphate (ATP), and water-soluble calcium. Soluble carbohydrate levels in cotton pistils were as much as 67.5% lower under high temperature conditions (34.6 °C maximum air temperature; August 4, 2009) than under cooler conditions (29.9 °C maximum air temperature; August 14, 2009). Regression analysis revealed that pollen tube growth rates were highly correlated with the soluble carbohydrate content of the pistil during pollen tube growth (r² = 0.932). Higher ambient temperature conditions on August 4 increased GR activity in the pistil only during periods not associated with in vivo pollen tube growth; pistil protein content declined earlier in the day under high temperatures; SOD and NOX were unaffected by either sample date or time of day; pistil ATP and water soluble calcium were unaffected by the warmer temperatures. We conclude that moderate heat stress significantly alters diurnal carbohydrate balance in the pistil and suggest that pollen tube growth rate through the style may be limited by soluble carbohydrate

  1. Comportamento do algodoeiro herbáceo (Gossypium hirsutum latifolium Hutch. e controle de plantas daninhas com o uso dos herbicidas diuron e sethoxydim The behavior of upland-type cotton (G. hirsutum latifolium Hutch. and the control of weeds after the use of diuron and sethoxydim herbicides

    Directory of Open Access Journals (Sweden)

    N.E. de M. Beltrão

    1983-06-01

    agressividade.To verify the behavior of the c. IAC -17, as well as, the control of weeds and competitive aspects of the infesting floristic complexes over the cotton culture under the presence of the herbicides, diuron and sethoxydium, atrial was contucted in Viçosa, Minas Gerais. The soil at the experimental site, Podzolic Red-yellow, had a clay texture wi th 1,38% of organic carbon an low natural fertility. Diuron was applied at pre -emergence time at the rates of 0, 0; 0, 8; 1,6 and 2,4 kg a.i. /ha and sethoxyd im at post-emergence at the rates of 0, 150, 300, 450 and 600 g a.i./ha. The trial was setup in a randomized blocks design with 2 1 treament sunder a factorial scheme (x 5 + 1 . Out of them, 20 composed all the combinations with different dosis of the two herbicides under study plus a relative control weeded with the aind of a mattock. Several traits concerning growth and plant development were evaluated, such as leaf area, leaf area in dex, seed -cotton yield, plant height, stem diameter. By means of syn ecological methods, th e population density, hydrated epigeous phytomase of dominant weed species, and the total of all species were evaluated. Diuron exerted a high control overlati foliates such as Galinsoga parviflora Cav . and Bidens pilosa L., at the rates of 1, 6 an d 2,4 kg a. i. /ha, seth oxydim, even using the lowvest tested rate (150 g. a. i. /h a fully controled Brachiaria plantaginea (Link. Hitch. None of th e herbicides was able to control Emilia sonchifolia DC. Th is species although being considered an important weed did not affect the normal crop development because of its low competition ability. The weeds showing highes trates of competition were G. parviflora (due to high population density an d B. plantaginea, because of its greater aggresivity.

  2. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  3. Molecular Cloning and Characterization of Three Novel Genes Related to Fatty Acid Degradation and Their Responses to Abiotic Stresses in Gossypium hirsutum L.

    Institute of Scientific and Technical Information of China (English)

    DONG Jia; WEI Li-bin; HU Yan; GUO Wang-zhen

    2013-01-01

    Fatty acid metabolism is responsible not only for oilseed metabolism but also for plant responses to abiotic stresses. In this study, three novel genes related to fatty acid degradation designated GhACX, Gh4CL, and GhMFP, respectively, were isolated from Gossypium hirsutum acc. TM-1. The phylogenetic analysis revealed that amino acid sequences of GhACX and GhMFP have the highest homology with those from Vitis vinifera, and Gh4CL has a closer genetic relationship with that from Camellia sinensis. Tissue-and organ-specific analysis showed that the three genes expressed widely in all the tested tissues, including ovules and fiber at different developing stages, with expressed preferentially in some organs. Among them, GhACX showed the most abundant transcripts in seeds at 25 d post anthesis (DPA), however, GhMFP and Gh4CL have the strongest expression level in ovules on the day of anthesis. Based on real-time quantitative RT-PCR, the three genes were differentially regulated when induced under wounding, methyl jasmonate (MeJA), cold, and abscisic acid (ABA) treatments. The characterization and expression pattern of three novel fatty acid degradation related genes will aid both to understand the roles of fatty acid degradation related genes as precursor in stress stimuli and to elucidate the physiological function in cotton oilseed metabolism.

  4. Collection,Evaluation,and Utilization of Cotton Germplasm in China

    Institute of Scientific and Technical Information of China (English)

    DU Xiong-ming; ZHOU Zhong-li; SUN Jun-Ling; PAN Zhao-e; JIA Yin-hua

    2008-01-01

    @@ A total of 8193 accessions,including 6822 Gossypium hirsutum,350 G.hirsutum race (sub-spe-cies),385 of G.barbadense,378 of G.arboreum,17 of G.herbaceum and 41 wild species,of cotton germplasm are now maintained in China.This germplasm is kept in Beijing National Long-term Genebank and Anyang Cotton Medium-term Genebank.Live plants of the wild species are kept in Cotton garden at Hainan Island.

  5. Insights into the Evolution of Cotton Diploids and Polyploids from Whole-Genome Re-sequencing

    OpenAIRE

    Page, Justin T.; Huynh, Mark D; Zach S Liechty; Grupp, Kara; Stelly, David; Hulse, Amanda M; Ashrafi, Hamid; Van Deynze, Allen; Wendel, Jonathan F.; Udall, Joshua A.

    2013-01-01

    Understanding the composition, evolution, and function of the Gossypium hirsutum (cotton) genome is complicated by the joint presence of two genomes in its nucleus (AT and DT genomes). These two genomes were derived from progenitor A-genome and D-genome diploids involved in ancestral allopolyploidization. To better understand the allopolyploid genome, we re-sequenced the genomes of extant diploid relatives that contain the A1 (Gossypium herbaceum), A2 (Gossypium arboreum), or D5 (Gossypium ra...

  6. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement

    OpenAIRE

    2013-01-01

    Background Verticillium wilt, caused by the fungal pathogen Verticillium dahliae, is the most severe disease in cotton (Gossypium spp.), causing great lint losses worldwide. Disease management could be achieved in the field if genetically improved, resistant plants were used. However, the interaction between V. dahliae and cotton is a complicated process, and its molecular mechanism remains obscure. To understand better the defense response to this pathogen as a means for obtaining more toler...

  7. RNA interference for functional genomics and improvement of cotton (Gossypium sp.)

    NARCIS (Netherlands)

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umidjon; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; Krol, van der Sander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of

  8. RNA interference for functional genomics and improvement of cotton (Gossypium sp.)

    NARCIS (Netherlands)

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umidjon; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; Krol, van der Sander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of functio

  9. New HPLC methods to quantitate terpenoid aldehydes in foliage of cotton (Gossypium)

    Science.gov (United States)

    The cotton plant (Gossypium) produces protective terpenoid aldehydes in lysigenous pigment glands. These terpenoids include hemigossypolone, hemigossypolone-6-methyl ether, gossypol, gossypol-6-methyl ether, gossypol-6,6'-dimethyl ether, heliocides H1, H2, H3 and H4, and heliocides B1, B2, B3 and B4...

  10. RNA interference for functional genomics and improvement of cotton (Gossypium species)

    Science.gov (United States)

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function ...

  11. BAC-end sequence-based SNP mining in Allotetraploid Cotton (Gossypium) utilizing re-sequencing data, phylogenetic inferences and perspectives for genetic mapping

    Science.gov (United States)

    A bacterial artificial chromosome (BAC) library and BAC-end sequences for Gossypium hirsutum L. have recently been developed. Here we report on genomic-based genome-wide SNP mining utilizing re-sequencing data with a BAC-end sequence reference for twelve G. hirsutum L. lines, one G. barbadense L. li...

  12. Taxonomy Icon Data: upland cotton [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Gossypium_hirsutum_S.png Gossypium_hirsutum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypi...um+hirsutum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+hirsutum&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Gossypium+hirsutum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+hirsutum&t=NS ...

  13. Meloidogyne incognita emigration from cotton roots may be induced by the resistance QTL qMi-C11

    Science.gov (United States)

    Upland cotton (Gossypium hirsutum) is one of the most widely grown crops in the southern US, and Meloidogyne incognita is the most significant pathogen of cotton in the US. Two QTLs, qMi-C11 and qMi-C14, conferring resistance to M. incognita have been identified in cotton. Previous research docume...

  14. Imazamox Tolerance in Mutation Derived Lines of Upland Cotton

    Science.gov (United States)

    Induction of genes conferring herbicide resistance by mutagenesis could facilitate use of imidazolinone herbicides in upland cotton (Gossypium hirsutum L.). In 1997 and 1998, seeds of eight High Plains cotton cultivars were treated with 2.45% v/v EMS (ethyl methane sulfonate). The resulting M3 and M...

  15. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To date,more and more transgenic varieties of upland cotton(Gossypium hirsutum L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct

  16. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    Science.gov (United States)

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

  17. RNA interference for functional genomics and improvement of cotton (Gossypium spp.

    Directory of Open Access Journals (Sweden)

    Ibrokhim Y. Abdurakhmonov

    2016-02-01

    Full Text Available RNA interference (RNAi, is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.. The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialisation.

  18. Incipient Genome Differentiation in Gossypium. III. Comparison of Chromosomes of G. HIRSUTUM and Asiatic Diploids Using Heterozygous Translocations.

    Science.gov (United States)

    Menzel, M Y; Hasenkampf, C A; Stewart, J M

    1982-01-01

    Hybrids between upland cotton (G. hirsutum, genome constitution 2A(h)D(h)) and either A-genome or D-genome diploid species exhibit 26 paired and 13 unpaired chromosomes at metaphase I. The A(h) and D(h) genomes are therefore considered homoeologous with those of the respective diploids. Previous studies, nevertheless, revealed a low level of ("incipient") differentiation between D(h) and various diploid D genomes. The diploid A genomes have been regarded as more closely homologous to A(h) on the basis of low preferential pairing and autotetraploid segregation ratios in allohexaploids.-The present study addressed the following questions: Are the diploid A genomes differentiated from A(h) in meiotic homology? If so, is the differentiation manifested equally by all 13 chromosomes or is it localized in certain chromosomes?-Three diploid A-genome lines representing G. herbaceum and G. arboreum were hybridized by in ovulo culture of embryos (1) with a standard line of G. hirsutum, which differs from G. herbaceum by two and from G. arboreum by three naturally occurring reciprocal translocations involving chromosomes 1-5, and (2) with six lines homozygous for experimental translocations involving chromosomes 6, 7, 10, 11, 12 and 13. Chiasma frequencies in hybrids were compared with those in appropriate G. hirsutum controls. In every comparison overall chiasma frequencies were slightly lower in the hybrids. Therefore A(h) appears to be differentiated from the diploid A genomes. No localized differentiation was detected in chromosomes marked by experimental translocations. The differentiation may be localized mainly in chromosomes 4 and 5.

  19. Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium

    Directory of Open Access Journals (Sweden)

    Mittler Ron

    2009-08-01

    Full Text Available Abstract Background Reactive oxygen species (ROS play a prominent role in signal transduction and cellular homeostasis in plants. However, imbalances between generation and elimination of ROS can give rise to oxidative stress in growing cells. Because ROS are important to cell growth, ROS modulation could be responsive to natural or human-mediated selection pressure in plants. To study the evolution of oxidative stress related genes in a single plant cell, we conducted comparative expression profiling analyses of the elongated seed trichomes ("fibers" of cotton (Gossypium, using a phylogenetic approach. Results We measured expression changes during diploid progenitor species divergence, allopolyploid formation and parallel domestication of diploid and allopolyploid species, using a microarray platform that interrogates 42,429 unigenes. The distribution of differentially expressed genes in progenitor diploid species revealed significant up-regulation of ROS scavenging and potential signaling processes in domesticated G. arboreum. Similarly, in two independently domesticated allopolyploid species (G. barbadense and G. hirsutum antioxidant genes were substantially up-regulated in comparison to antecedent wild forms. In contrast, analyses of three wild allopolyploid species indicate that genomic merger and ancient allopolyploid formation had no significant influences on regulation of ROS related genes. Remarkably, many of the ROS-related processes diagnosed as possible targets of selection were shared among diploid and allopolyploid cultigens, but involved different sets of antioxidant genes. Conclusion Our data suggests that parallel human selection for enhanced fiber growth in several geographically widely dispersed species of domesticated cotton resulted in similar and overlapping metabolic transformations of the manner in which cellular redox levels have become modulated.

  20. GhDET2,a Steroid 5alpha-reductase,Plays an Important Role in Cotton Fiber Cell Initiation and Elongation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cotton(Gossypium hirsutum L.) fibers,one of the most important natural raw materials for the textile industry,are highly elongated trichomes from epidermal cells of cotton ovules.Among the longest plant cells ever characterized,cotton fiber is an ideal system for studying plant cell elongation.

  1. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China; a simulation study.

    OpenAIRE

    Xia, J

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on insecticides against the cotton aphid in the past four decades has brought about a rapid development of insecticide resistance, serious outbreaks of key pests, resurgence of secondary pests, and risk for man and environment. Biological control of ...

  2. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes.

    Science.gov (United States)

    Richard C. Cronn; Randall L. Small; Tamara Hanselkorn; Jonathan F. Wendel

    2002-01-01

    Previous molecular phylogenetic studies have failed to resolve the branching order among the major cotton (Gossypium) lineages, and it has been unclear whether this reflects actual history (rapid radiation) or sampling properties of the genes evaluated. In this paper, we reconsider the phylogenetic relationships of diploid cotton genome groups using DNA sequences from...

  3. Sequencing of a Cultivated Diploid Cotton Genome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS; Thea; A

    2008-01-01

    Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high degree

  4. Somatic embryogenesis in wild relatives of cotton (Gossypium Spp.)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Wild cotton species can contribute a valuable gene pool for agronomically desirable cultivated tetraploid cultivars. In order to exploit diploid cotton a regeneration system is required to achieve transformation based goals. The present studies aimed at optimizing the conditions for regeneration of local varieties as well as wild species of cotton. Different callus induction media were tested with varying concentrations of hormones in which sucrose was used as nutritional source. Different explants (hypocotyls, cotyledon, root) were used to check the regeneration of both local cotton plants and wild relatives using T & G medium,BAP medium, CIM medium, EMMS medium, and cell suspension medium. Different stages of embryogenicity such as early torpedo stage, late torpedo stage, heart stage, globular stage and cotyledonary stage were observed in wild relatives of cotton. The results of this study pave the way for establishing future transformation methods.

  5. Response of cotton, alfalfa, and cantaloupe to foliar-deposited salt in an arid environment. [Gossypium hirsumtum L. ; Medicago sativa L. ; Cucumis melo L

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, W.C.; Karpiscak, M.M.; Bartels, P.G.

    The cooling towers at the Palo Verde Nuclear Generating Station (PVNGS), located 80 km west of Phoenix, AZ, will release as estimated 2.1 Mg/d of particulates (primarily salts) into the atmosphere when the station is in full operation. The saline drift will disperse and settle onto agricultural fields surrounding the station. Field studies were conducted in 1983 to investigate the influence of foliar-applied saline aerosol on crop growth, foliar injury, and tissue elemental concentration on cotton (Gossypium hirsutum L.), alfalfa (medicago sativa L.), and cantaloupe (Cucumis melo L.) in an arid environment. The treatment aerosol solutions simulated treated wastewater effluent and included all essential plant nutrients and other elements, including trace concentrations of heavy metals. The treatments included unsprayed plots, and plots sprayed with salt solutions at 0 (distilled water), 8, 83, and 415 kg/(ha yr). The alfalfa received an additional 829 kg/(ha yr) treatment. The species were evaluated in separate experiments on Mohave clay loam and Sonoita sandy loam soils (Typic Haplargid) near Marana, AZ. Cotton treated with 415 kg/(ha yr) had significantly less chlorosis and tended to be slightly taller than the cotton in the unsprayed plots. The alfalfa treated at a rate of 829 kg/(ha yr) showed significantly more leaf margin necrosis than did the unsprayed alfalfa. In the cantaloupe, there were no visually apparent differences among salt treatments. Hand-harvested cotton plots had a significant reduction is seed cotton yield at the 415 kg/(ha yr) treatment. A similar though nonsignificant, trend towards reduced yield with increased salt treatment was observed in machine-harvested cotton plots.

  6. Development of New lnterspecific Monosomic F1 Substitution Stocks for Investigations in Cotton Genome

    Institute of Scientific and Technical Information of China (English)

    SANAMYAN M F; PETLYAKOVA J E; SHARIPOVA E A; RAKHMATULLINA E M

    2008-01-01

    @@ As it is known a complete coverage of cotton (Gossypium hirsutum L.) genome with hypoaneuploids is not still realized.Therefore the detection of new types of aneuploids especially in different cytogenetic collections is very useful.In Uzbekistan,long-term investigations towards development of cytogenetic stocks that use different types of irradiation as a source of aberrations are carried out.As a result,many translocation lines and primary monosomics in cotton G.hirsutum were isolated.

  7. Evaluation of methods to detect the cotton wilt pathogen Fusarium oxysporum f. sp. vasinfectum race 4

    Science.gov (United States)

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is an economically significant disease of cultivated cottons (Gossypium hirsutum and G. barbadense). Fov race 4 has spread among soils planted to cotton in the San Joaquin Valley of California and has caused serious losses. Because ...

  8. Microscopic Methods to Evaluate Gland Initiation and Development in Cotton Ovules

    Science.gov (United States)

    Gossypol is a terpenoid aldehyde found in cotton (Gossypium hirsutum L.) glands that helps protect the seed from pests and pathogens. Cotton seed use is mainly limited to cattle feed, because gossypol is toxic to most animals, except ruminants. Lowering the gossypol content in the seed would increa...

  9. Impact of conservation systems on net returns to cotton production in Alabama

    Science.gov (United States)

    With lower commodity prices and higher production expenses, cotton (Gossypium hirsutum L.) producers are concerned with maximizing yields, while minimizing production expenses. The adoption of a conservation system, including a winter cover crop, may be a viable option for cotton producers in Alabam...

  10. Effects of Foliar Fertilizer and Mepiquat Penteborate on Early Planted Cotton Growth and Lint Production

    Science.gov (United States)

    Multiple growth regulators and foliar fertilizers are currently marketed for use in cotton (Gossypium hirsutum L.) with varying effectiveness in promoting yield improvement. This research addressed the effectiveness of these products in a cotton early planting production system with its higher yiel...

  11. Effects of 1,1-Dimethylpiperidinium Chloride on the Pests and Allelochemicals of Cotton and Pecan.

    Science.gov (United States)

    P. A. Hedin; J. N. Jenkins; J. C. McCarty; J. E. Mulrooney; W. L. Parrott; A. Borazjani; C. H. Graves; T. H. Filer

    1984-01-01

    The growth regulator, PIX (mepiquat chloride - 1,1-dimethyl-piperdinium chloride), when applied to cotton (Gossypium hirsutum L.) and pecan (Carya illinoensis Koch), caused internode shortening. PIX did not elicit an increase in resistance in cotton to the tobacco budworm (Heliothis virescens (Fab.)], or in pecan...

  12. Genetic Analysis of a Novel Dwarf Mutant,AISHENG98,from Upland Cotton

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cotton(Gossypium hirsutum L.) is the most important textile fiber and the second most important oil seed source in the world.To control excessive growth of cotton plant height,which may result in shading and lodging,farmers and researchers have used plant growth regulators that increased

  13. Cotton flowers: Pollen and petal humidity sensitivities determine reproductive competitiveness in diverse environments

    Science.gov (United States)

    This study investigated the abiotic stress tolerance of mature cotton [Gossypium hirsutum (L.)] pollen and identified genetic variability among the six cotton lines studied. Genetic diversity in pollen viability was observed following a 6.5 h exposure to 25% relative humidity (RH). NM67, DP565, and...

  14. Interactions among irrigation and nitrogen fertility regimes on Mid-South cotton production

    Science.gov (United States)

    Increasing costs for irrigation and nitrogen fertilization has led to the desire from cotton (Gossypium hirsutum L.) producers to make the most efficient use of these inputs. Objectives for this research were to determine how cotton responded to varying levels of irrigation and nitrogen fertilizati...

  15. Trivial Sources of Heterosis in Cotton?

    Institute of Scientific and Technical Information of China (English)

    CAMPBELL B T; BOWMAN D T; WEAVER D B

    2008-01-01

    @@ Historically,re-selection,pedigree,and mass selection breeding methods have been used to develop open-pollinated cultivars of Upland cotton (Gossypium hirsutum L.).Due to the predominance of these breeding methods,we hypothesize that modern cultivars,as opposed to obsolete cultivars,have accumulated additive genetic effects over time.

  16. Molecular tools for contemporary cotton breeding

    Science.gov (United States)

    Among approximately 50 Gossypium (cotton) species are two tetraploids (G. hirsutum, G. barbadense) and two diploids (G. arboreum, and G. herbaceum) that are domesticated to produce raw materials for global textile and oilseed industries with an increasing demand for high-yield and high-quality of co...

  17. Sequencing of a Cultivated Diploid CottonGenome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS Thea A

    2008-01-01

    @@ Sequencing the genomes of crop species and model systems contributes significantly to our under-standing of the organization,structure and function of plant genomes.In a "white paper" published in2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated up-land cotton that initially targets less complex diploid genomes.This strategy banks on the high degreeof conservation between diploid progenitors and AD species that will allow information derived fromdiploid genomes to be directly applied to the tetraploids.

  18. Genetic transformation of cry1EC gene into cotton (Gossypium ...

    African Journals Online (AJOL)

    welcome

    2013-04-10

    Apr 10, 2013 ... sp is not susceptible to Bt cotton containing Cry1Ac toxin so, there is ... encodes an insecticidal protein Cry1EC, (ii) 35S promoter from cauliflower ... the embryogenic calli were treated with the bacterial suspension by shaking ...

  19. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.

    Science.gov (United States)

    Bilger, W; Björkman, O

    1991-05-01

    The temperature dependence of the rate of de-epoxidation of violaxanthin to zeaxanthin was determined in leaves of chilling-sensitive Gossypium hirsutum L. (cotton) and chilling-resistant Malva parviflora L. by measurements of the increase in absorbance at 505 nm (ΔA 505) and in the contents of antheraxanthin and zeaxanthin that occur upon exposure of predarkened leaves to excessive light. A linear relationship between ΔA 505 and the decrease in the epoxidation state of the xanthophyll-cycle pigment pool was obtained over the range 10-40° C. The maximal rate of de-epoxidation was strongly temperature dependent; Q10 measured around the temperature at which the leaf had developed was 2.1-2.3 in both species. In field-grown Malva the rate of de-epoxidation at any given measurement temperature was two to three times higher in leaves developed at a relatively low temperature in the early spring than in those developed in summer. Q10 measured around 15° C was in the range 2.2-2.6 in both kinds of Malva leaves, whereas it was as high as 4.6 in cotton leaves developed at a daytime temperature of 30° C. Whereas the maximum (initial) rate of de-epoxidation showed a strong decrease with decreased temperature the degree of de-epoxidation reached in cotton leaves after a 1-2 · h exposure to a constant photon flux density increased with decreased temperature as the rate of photosynthesis decrease. The zeaxanthin content rose from 2 mmol · (mol chlorophyll)(-1) at 30° C to 61 mmol · (mol Chl)(-1) at 10° C, corresponding to a de-epoxidation of 70% of the violaxanthin pool at 10° C. The degree of de-epoxidation at each temperature was clearly related to the amount of excessive light present at that temperature. The relationship between non-photochemical quenching of chlorophyll fluorescence and zeaxanthin formation at different temperatures was determined for both untreated control leaves and for leaves in which zeaxanthin formation was prevented by dithiothreitol

  20. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres

    Science.gov (United States)

    Yuan, Daojun; Tang, Zhonghui; Wang, Maojun; Gao, Wenhui; Tu, Lili; Jin, Xin; Chen, Lingling; He, Yonghui; Zhang, Lin; Zhu, Longfu; Li, Yang; Liang, Qiqi; Lin, Zhongxu; Yang, Xiyan; Liu, Nian; Jin, Shuangxia; Lei, Yang; Ding, Yuanhao; Li, Guoliang; Ruan, Xiaoan; Ruan, Yijun; Zhang, Xianlong

    2015-01-01

    Gossypium hirsutum contributes the most production of cotton fibre, but G. barbadense is valued for its better comprehensive resistance and superior fibre properties. However, the allotetraploid genome of G. barbadense has not been comprehensively analysed. Here we present a high-quality assembly of the 2.57 gigabase genome of G. barbadense, including 80,876 protein-coding genes. The double-sized genome of the A (or At) (1.50 Gb) against D (or Dt) (853 Mb) primarily resulted from the expansion of Gypsy elements, including Peabody and Retrosat2 subclades in the Del clade, and the Athila subclade in the Athila/Tat clade. Substantial gene expansion and contraction were observed and rich homoeologous gene pairs with biased expression patterns were identified, suggesting abundant gene sub-functionalization occurred by allopolyploidization. More specifically, the CesA gene family has adapted differentially temporal expression patterns, suggesting an integrated regulatory mechanism of CesA genes from At and Dt subgenomes for the primary and secondary cellulose biosynthesis of cotton fibre in a “relay race”-like fashion. We anticipate that the G. barbadense genome sequence will advance our understanding the mechanism of genome polyploidization and underpin genome-wide comparison research in this genus. PMID:26634818

  1. Expression Profile Analysis of Genes Involved in Brassinosteroid Biosynthesis Pathway in Cotton Fiber Development

    Institute of Scientific and Technical Information of China (English)

    LUO Ming; XIAO Zhong-yi; TAN Kun-ling; HU Ming-yu; LIAO Peng

    2008-01-01

    @@ Cotton (Gossypium hirsutum L.) is the leading fiber crop and one of the mainstays of the economy in the world.Cotton fibers,as the main product of cotton plants,are unicellular,linear structures derived from the epidermis of the ovule.Cotton fiber development consists of four discrete yet overlapping developmental stages: initiation,elongation,secondary wall deposition,and maturation.

  2. Cover crop management practices-implications for early season weed control in conservation tillage corn cotton rotation

    Science.gov (United States)

    Use of the winter cover crops is an integral component of the conservation systems in corn (Zea mays L.) and cotton (Gossypium hirsutum L.). A field experiment was initiated in 2004 to evaluate weed suppression provided by winter cover crops in a conservation tillage corn and cotton rotation. Rotati...

  3. Chromosome Substitution Lines in Cotton Improvement%用于棉花改良的染色体置换系

    Institute of Scientific and Technical Information of China (English)

    Sukumar SAHA; Dwaine A. RASKA; Osman A. GUTIéRREZ; Johnie N. JENKINS; Jack C. McCARTY, Jr.; Roy G. CANTRELL; Richard G. PERCY; David M. STELLY

    2002-01-01

    @@ Presently cotton breeders are confronting serious challenges due to the extensive use of narrow genetic base in Upland cotton, Gossypium hirsutum. Unique germplasm that incorporates new alleles must be developed to provide improved genetic potential for yield, pest and disease resistance.

  4. Assessing the Economic Impact of inversion tillage, cover crops, and herbicide regimes in palmer amaranth (Amaranthus palmeri) infested cotton

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) producers in Alabama and across the Cotton Belt are faced with a rapidly expanding problem that decreases yields and increases production costs: herbicide-resistant weeds. Producers are increasingly relying on production methods that raise production costs, such as add...

  5. Isolation of a cotton CAP gene: a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation.

    Science.gov (United States)

    Kawai, M; Aotsuka, S; Uchimiya, H

    1998-12-01

    The cDNA encoding CAP (adenylyl cyclase-associated protein) was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA (GhCAP) contained an open reading frame that encoded 471 amino acid residues. RNA blot analysis showed that the cotton CAP gene was expressed mainly in young fibers.

  6. Transcriptome Profiling and Analysis during Cotton Fiber Cell Development

    Institute of Scientific and Technical Information of China (English)

    ZHU Yu-xian

    2008-01-01

    @@ In this project,we aim to elucidate the molecular mechanism controlling initiation and elongation of tetraploid Gossypium hirsutum fiber cells by setting up a high throughput custom-designed cDNA microarray and a systematic gene expression profiling during cotton fiber development.We first constructed a microarray consisting of more than 28,000 cotton UniESTs that we obtained by deep-sequencing of several cotton ovule cDNA libraries.

  7. Cloning and Induced Expression Analysis of GhSAMDC2/3/4 in Cotton(Gossypium hirsutum L.)%棉花S-腺苷蛋氨酸脱羧酶基因(GhSAMDC2/3/4)的克隆及其诱导表达分析

    Institute of Scientific and Technical Information of China (English)

    王凡龙; 朱华国; 程文翰; 刘永昌; 成新琪; 孙杰

    2015-01-01

    利用电子克隆结合RT-PCR技术克隆获得陆地棉(Gossvpium hirsutum L.)S-腺苷蛋氨酸脱羧酶(S-adenosylmethionine decarboxylase,SAMDC)基因家族3个基因,分别命名为GhSAMDC2、GhSAMDC3和GhSAMDC4.序列分析显示,该基因cDNA包含的upstream ORF(uORF)和main ORF(mORF)为植物SA MDC基因特征ORF,其中mORF长度分别为1068 bp、1110 bp和1032 bp,分别编码355、369和343个氨基酸.聚类分析表明,GhSAMDC2/3蛋白与可可树(Theobroma cacao) SAMDC聚为一类,且GhSAMDC2与Gh-SAMDC3蛋白亲缘关系最近;GhSAMDC4与拟南芥AtSAMDC4聚为一类.实时荧光定量PCR分析表明,GhSAMDC2在茎中表达相对较高,随着纤维发育其表达量不断增加,在纤维发育后期其表达量达到最高;GhSAMDC2/3/4在不同的胁迫条件下表现出不同的表达模式,GhSAMDC2受低温和干旱胁迫诱导最强烈,GhSAMDC3响应盐胁迫显著,GhSAMDC4受ABA诱导强烈.上述结果为进一步研究棉花SAMDC基因功能奠定了一定基础.

  8. Somatic Embryogenesis and Plant Regeneration from Two Recalcitrant Genotypes of Gossypium hirsutum L.

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-xia; WANG Xing-fen; MA Zhi-ying; ZHANG Gui-yin; HAN Gai-ying

    2006-01-01

    An improved protocol has been developed for somatic embryogenesis and plant regeneration of recalcitrant cotton cultivars. High callus frequencies and embryogenic tissue were developed in MSB medium supplemented with gradient concentrations of KT and 2,4-D, their concentration decreasing from 0.1 to 0.01 mg L-1. Somatic embryos were successfully incubated in 1/2 macronutrient MSB suspension supplemented with 0.5 g L-1 glutamine and 0.5 g L-1 asparagine. Decrease in macronutrient concentration of MSB significantly alleviated browning and was beneficial to suspension cells.Transformation of somatic embryos into plants was induced in MSB medium supplemented with 3% sucrose, 0.5 g L-1 glutamine, 0.5 g L-1 asparagine, and 6.0 g L-1 agar. The effect of sucrose as carbohydrate was better than that of glucose for plant germination. Using this protocol, regenerated plantlets from the CCRI521 and Zhongzhi86-6 reached to as much as 19.6 and 18.5% somatic embryos, respectively.

  9. Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens

    Science.gov (United States)

    Genetic and physical framework mapping in cotton (Gossypium spp.) were used to discover putative gene sequences involved in resistance to common soil-borne pathogens. Chromosome (Chr) 11 and its homoeologous Chr 21 of Upland cotton (G. hirsutum) is a focus for discovery of resistance (R) or pathoge...

  10. Cu/Zn superoxide dismutases in developing cotton fibers

    Science.gov (United States)

    Hydrogen peroxide (H2O2) and other reactive oxygen species (ROS) are important signaling molecules in diverse physiological processes. Previously, we discovered superoxide dismutase (SOD) activity in extracellular protein preparations from fiber-bearing cotton (Gossypium hirsutum L.) seeds. We sho...

  11. Detecting cotton boll rot with an electronic nose

    Science.gov (United States)

    South Carolina Boll Rot is an emerging disease of cotton, Gossypium hirsutum L., caused by the opportunistic bacteria, Pantoea agglomerans (Ewing and Fife). Unlike typical fungal diseases, bolls infected with P. agglomerans continue to appear normal externally, complicating early and rapid detectio...

  12. Application of Gibberellic Acid on Diploid and Tetraploid Cotton Hybridization

    Institute of Scientific and Technical Information of China (English)

    AJAFARI-MOFIDABADI; A; RANJBERAN; F; SOLTANLOO; H

    2008-01-01

    Gibberellic acid growth regulator was used to develop interspecific hybrids between tetraploid and diploid species to increase the genetic variability in cotton.In order to retain bolls and seed set in triploid hybrids,emasculated flowers of two Gossypium hirsutum commercial varieties(Sahel and Sephid)

  13. Nitrogen fertilizer response of cotton in rotation with summer legumes

    Science.gov (United States)

    The potential of using summer legumes as N sources in corn and vegetable rotations has recently been documented. The objective of this study was to evaluate the potential of using summer legumes [Crotolaria juncea and cowpeas (Vigna unguiculata)] as an N source for cotton (Gossypium hirsutum L.) pro...

  14. SNP Marker Discovery in Pima Cotton (Gossypium barbadense L.) Leaf Transcriptomes

    Science.gov (United States)

    Kottapalli, Pratibha; Ulloa, Mauricio; Kottapalli, Kameswara Rao; Payton, Paxton; Burke, John

    2016-01-01

    The objective of this study was to explore the known narrow genetic diversity and discover single-nucleotide polymorphic (SNP) markers for marker-assisted breeding within Pima cotton (Gossypium barbadense L.) leaf transcriptomes. cDNA from 25-day plants of three diverse cotton genotypes [Pima S6 (PS6), Pima S7 (PS7), and Pima 3-79 (P3-79)] was sequenced on Illumina sequencing platform. A total of 28.9 million reads (average read length of 138 bp) were generated by sequencing cDNA libraries of these three genotypes. The de novo assembly of reads generated transcriptome sets of 26,369 contigs for PS6, 25,870 contigs for PS7, and 24,796 contigs for P3-79. A Pima leaf reference transcriptome was generated consisting of 42,695 contigs. More than 10,000 single-nucleotide polymorphisms (SNPs) were identified between the genotypes, with 100% SNP frequency and a minimum of eight sequencing reads. The most prevalent SNP substitutions were C—T and A—G in these cotton genotypes. The putative SNPs identified can be utilized for characterizing genetic diversity, genotyping, and eventually in Pima cotton breeding through marker-assisted selection.

  15. Breeding and Identification of Herbicide-resistant Genic Male-sterile Line Yu98-8A1 of Cotton(Gossypium hirsutum L.)%新型抗除草剂棉花不育系Yu98-8A1的培育及鉴定

    Institute of Scientific and Technical Information of China (English)

    杨晓杰; 谢德意; 赵元明; 李武; 赵付安; 段铮铮; 祝水金; 房卫平

    2013-01-01

    通过连续回交,将抗除草剂基因EPSPS-G6转育花粉败育彻底(无微量花粉,不育度达100%)的棉花单基因隐性控制的核不育系Yu98-8A,进而培育成抗除草剂核不育系Yu98-8A1.对该转育不育系花冠表型测量观察表明,与同质系正常可育株比较,不育株花冠较小,不育株子房直径略大于可育株,花柱长和花柱外露长度均明显高于同质系正常可育株,花柱头外露为其最显著的表型特征;显微观察显示,不育系Yu98-8A1小孢子败育主要是在四分体形成后的小孢子发育期.小孢子败育特征表现为花粉粒无内含物、无刺突产生,最后解体、退化.PCR分子鉴定表明,抗除草剂基因EPSPS-G6转育入Yu98-8A,除草剂抗性试验表明,该转育不育系可抗质量百分比浓度达0.3%的草甘膦.该抗除草剂核不育系的培育在棉花杂种优势利用方面有重大利用价值.%Yu98-8A1,a herbicide-resistant cotton genic male-sterile line,was developed from a genic malesterile line Yu98-8A by successive backcrossing cotton line EHC09-002 which possessed the herbicide-resistant gene EPSPS-G6.Compared with homogeneity normal fertile plants,its significant characteristics included smaller corolla,bigger Ovary diameter,style length,and exposed stigmas by corolla phenotype observation.Among theses characteristics,exposed stigmas was the most significant one.Cytological observation showed that the anther abortion of Yu98-8A1 occurred during the stage of microspore development,which displayed without inclusion in pollen grain and spinescent protuberance on the pollen wall,and the microspore appeared abnormal and break down gradually.PCR identification and glyphosate resistance test indicated that herbicide-resistant gene EPSPS-G6 had been successfully aggregated into Yu98-8A,and the anti-herbicide concentration reached up to 0.3%.The cultivation of herbicide-resistant sterile line made Yu98-8A1 have significant value in the utilization of

  16. Cloning and Expression of the Chloroplast Copper/Zinc-Superoxide Dismutase Gene in Upland Cotton (Gossypium hirsutum L.)%陆地棉叶绿体铜锌超氧化物歧化酶基因的克隆与表达

    Institute of Scientific and Technical Information of China (English)

    胡根海; 喻树迅; 范术丽; 宋美珍

    2007-01-01

    A full-length 1043-base-pair cDNA clone encoding a chloroplast copper/zinc superoxide dismutase (Cu/Zn-SOD) of upland cotton was first isolated by rapid amplification of cDNA ends (RACE) from the leaves of Nucleotide sequence analysis of the clone revealed that it contained the complete coding sequence of the mature SOD isozyme subunit, along with a 60-amino acid transit peptide at N-terminal. The amino acid sequence predicted from the full-length clone showed 66%-74% homology with the amino acid sequences of Cu/Zn-SOD from several other plants. This gene was found to be expressed in the leaves and stems, but not in roots, flowers,and hypocotyls, indicating that the gene was expressed only in green tissues. Also, its expression was found to be most active at seedling stage and declined gradually in later development stages. Expression of this cotton Cu/Zn-SOD gene by using the pET-21a (+) expression vector in E. coli BL21 (DE3) led to the production of a novel 29 kD polypeptide with SOD enzyme activity, confirming that the cloned cotton Cu/Zn-SOD cDNA was indeed encoding a functioning SOD enzyme.%以陆地棉'CRI36'的叶片为材料,使用RACE技术克隆到了棉花叶绿体Cu/Zn-SOD酶基因.基因序列全长共1 043 bp,含有完整的开放阅读框.推导的氨基酸序列分析显示含有叶绿体信号肽,和已知植物的叶绿体Cu/Zn-SOD酶蛋白的氨基酸残基的同源性在66%~74%之间.基因的表达谱分析显示:棉花叶绿体Cu/Zn-SOD酶基因主要在叶片、茎中表达,根、花和下胚轴中没有检测到信号,即基因的表达主要在棉花的绿色组织.不同生育期的表达谱结果证实:该基因主要在苗期表达,以后表达逐渐减少.用pET-21a(+)构建了原核表达载体,在大肠杆菌BL21(DE3)的表达结果显示:表达后得到一个29.0 kD的新蛋白,其分子量与预期目标一致.对SOD酶活性的分析证实,重组菌的酶活性显著增加,证明克隆的基因具有活性.

  17. Aplicação de misturas de diuron com MSMA, e com paraquat, no controle de plantas daninhas de folhas largas em cultura de algodão (Gossypium hirsutum L. Mixture of diuron whit MSMA and with paraquat for broadleaved weeds control in cotton

    Directory of Open Access Journals (Sweden)

    L. S. P. Cruz

    1978-01-01

    Full Text Available Em ensaio de campo conduzido em 1975/76 procurou-se avaliar a ação de misturas de MSMA com diuron e de paraquat com diuron, aplicadas em pós-emergência, em jato dirigido, em duas épocas diferentes, no controle de algumas plantas daninhas de folhas largas em algodão: carrapicho- do-campo (Acanthospermum australe (Loef O. Kuntze , falsa-poaia (Borreria ala ta (Aubl DC, poaia-branca (Richardia brasiliensis Gomez e guanxuma (Sida spp . A vegetação natural da área do ensaio era formada ainda pela gramínea capim-de-colchão (Digitaria sanguinalis (L. Scop . Os resultados mostraram que as misturas de 2,00 kg e 2,70 kg/ha de MSMA com, respectivamente 0,30 kg e 0,40 kg/ha de diuron, e a mistura de 0.60 kg/ha de paraquat com 0,60 kg/ ha de diuron, foram eficientes no co ntro le daquelas dicotiledôneas, e também no da gramínea. Todos os tratamentos provocaram leves sintomas de fitotoxicidade nos algodoeiros, mas desapareceram depois e não prejudicaram o desenvolvimento vegetativo das plantas, assim como a produção de algodão em caroço.In a field trial carried out in 1975/76, a diuron mixtu re with MSMA and another with paraquat was tested on broadleaved weeds in cotton crops. The applications were done in postemergence, directed-spray, in two different periods. The broadleaved weeds observed in the trial were Acanthospermum australe , Borreria alata, Richardia brasiliensis, and Sida spp, also the grass Digitaria sanguinalis. Best results were obtained with the mixture of 0,60 kg/ha of paraquat with 0,60 kg/ha of diuron, and 2,70 kg/ha of MSMA with 0,40 kg/ ha of diuron, or 2,00 kg/ha of MSMA with 0,30 kg/ha of diuron. All the treatments caused sl ight symptons of toxic ity in cotton, which disappeared later and did not damage the production.

  18. Cytogenetics and the Utilization of Gossypium Germplasm%棉属种质资源的细胞遗传学研究和利用

    Institute of Scientific and Technical Information of China (English)

    David STELLY

    2002-01-01

    @@ Interspecific introgression contributes significantly to genetic improvement of cotton ( Gossypium hirsutum L. ). Cytogenetics has figured prominently in the creation of interspecific hybrids, synthetic polyploids,backcrosses, and other stocks essential to earlyand mid-stage manipulation of germplasm at genome-wide and chromosome-specific levels.

  19. GhCPS and GhKS Encoding Gibberellin Biosynthesis Enzymes Involve in Inhibition of Leaf Growth by Mepiquat Chloride in Cotton (Gossypium hirsutum L.)%赤霉素生物合成酶基因GhCPS和GhKS参与甲哌鎓对棉花幼苗叶片生长的控制

    Institute of Scientific and Technical Information of China (English)

    王丽; 张明才; 杜明伟; 田晓莉; 李召虎

    2014-01-01

    室内盆栽欣抗4,在棉花幼苗第3片真叶完全展平时(第4叶未展开)鎓叶面喷施甲哌(DPC),研究DPC对棉花幼苗叶片生长的控制与赤霉素(GA)合成早期关键酶柯巴基焦磷酸合酶(CPS)和内根-贝壳杉烯合酶(KS)基因表达的关系。结果表明, DPC处理显著减小棉花幼苗第3和第4叶的叶面积,第4叶叶面积受控制程度较第3叶大;80 mg L-1 DPC处理的棉花幼苗第3和第4叶中GA4含量分别于处理后4 d和4~6 d显著低于对照;与对照相比,80 mg L-1 DPC处理的棉花幼苗第3叶中GhCPS和GhKS表达在处理后1~4 d显著降低,而第4叶中GhCPS和GhKS的表达在处理后1~6 d显著降低。由此可见, DPC通过影响GhCPS和GhKS的表达,降低内源活性GA4的含量,控制棉花幼苗叶片生长,且较幼嫩叶片对DPC较敏感。%Ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) are the key enzymes involved in the early steps of gibberellin (GA) biosynthesis. This paper aimed at elucidating whether the action of mepiquat chloride (DPC) on leaf growth was related to the expression levels of GhCPS and GhKS in cotton seedlings. DPC was foliar applied to seedlings at the 3rd leaf expanded stage of cotton cultivar Xinkang 4 by pot culture. The results showed that DPC significantly decreased the leaf area, and the area of the 4th leaf was decreased more than that of the 3rd leaf. DPC at 80 mg L-1 markedly reduced GA4 content in the 3rd leaf at four days after treatment and in the 4th leaf from four to six days after treatment. The expression levels of GhCPS and GhKS in the 3rd leaf were decreased by DPC from one to four days after treatment, and similar trends were observed in the 4th leaf from one to six days after treatment. All the results suggested that DPC could reduce endogenous GA4 content by downregu-lating GhCPS and GhKS expressions, leading to a smaller leaf size. Otherwise, the younger leaf was more sensitive to DPC.

  20. Genetic diversity of sea-island cotton (Gossypium barbadense) revealed by mapped SSRs.

    Science.gov (United States)

    Wang, X Q; Feng, C H; Lin, Z X; Zhang, X L

    2011-12-08

    In order to evaluate the genetic diversity of sea-island cotton (Gossypium barbadense), 237 commonly mapped SSR markers covering the cotton genome were used to genotype 56 sea-island cotton accessions. A total of 218 polymorphic primer pairs (91.98%) amplified 361 loci, with a mean of 1.66 loci. Polymorphism information content values of the SSR primers ranged from 0.035 to 0.862, with a mean of 0.320. The highest mean polymorphism information content value for the SSR motifs was from a compound motif (0.402), and for the chromosomes it was Chr10 (0.589); the highest ratio of polymorphic primers in Xinjiang accessions was from Chr21 (83.33%). Genetic diversity was high in Xinjiang accessions. AMOVA showed that variation was 8 and 92% among populations and within populations, respectively. The 56 sea-island accessions were divided into three groups in the UPGMA dendrogram: Xinhai5 was in the first group; accessions from Xinjiang, except the five main ones, were in the second group, and the other 34 accessions were in the third group. Accessions from the former Soviet Union and Xinjiang main accessions were closely related. Both PCA and UPGMA confirmed that Xinhai5 was distinct from the other accessions, and accessions from Xinjiang were in an independent group. Given the differences between principal components analysis and UPGMA results, it is necessary to combine molecular markers and pedigree information so that genetic diversity can be objectively analyzed.

  1. Study on the Mitochondrial Genome of Sea Island Cotton (Gossypium barbadense) by BAC Library Screening

    Institute of Scientific and Technical Information of China (English)

    SU Ai-guo; LI Shuang-shuang; LIU Guo-zheng; LEI Bin-bin; KANG Ding-ming; LI Zhao-hu; MA Zhi-ying; HUA Jin-ping

    2014-01-01

    The plant mitochondrial genome displays complex features, particularly in terms of cytoplasmic male sterility (CMS). Therefore, research on the cotton mitochondrial genome may provide important information for analyzing genome evolution and exploring the molecular mechanism of CMS. In this paper, we present a preliminary study on the mitochondrial genome of sea island cotton (Gossypium barbadense) based on positive clones from the bacterial artiifcial chromosome (BAC) library. Thirty-ifve primers designed with the conserved sequences of functional genes and exons of mitochondria were used to screen positive clones in the genome library of the sea island cotton variety called Pima 90-53. Ten BAC clones were obtained and veriifed for further study. A contig was obtained based on six overlapping clones and subsequently laid out primarily on the mitochondrial genome. One BAC clone, clone 6 harbored with the inserter of approximate 115 kb mtDNA sequence, in which more than 10 primers fragments could be ampliifed, was sequenced and assembled using the Solexa strategy. Fifteen mitochondrial functional genes were revealed in clone 6 by gene annotation. The characteristics of the syntenic gene/exon of the sequences and RNA editing were preliminarily predicted.

  2. Development and characterization of genomic and expressed SSRs for levant cotton (Gossypium herbaceum L.).

    Science.gov (United States)

    Jena, Satya Narayan; Srivastava, Anukool; Rai, Krishan Mohan; Ranjan, Alok; Singh, Sunil K; Nisar, Tarannum; Srivastava, Meenal; Bag, Sumit K; Mantri, Shrikant; Asif, Mehar Hasan; Yadav, Hemant Kumar; Tuli, Rakesh; Sawant, Samir V

    2012-02-01

    Four microsatellite-enriched genomic libraries for CA(15), GA(15), AAG(8) and ATG(8) repeats and transcriptome sequences of five cDNA libraries of Gossypium herbaceum were explored to develop simple sequence repeat (SSR) markers. A total of 428 unique clones from repeat enriched genomic libraries were mined for 584 genomic SSRs (gSSRs). In addition, 99,780 unigenes from transcriptome sequencing were explored for 8,900 SSR containing sequences with 12,471 expressed SSRs. The present study adds 1,970 expressed SSRs and 263 gSSRs to the public domain for the use of genetic studies of cotton. When 150 gSSRs and 50 expressed SSRs were tested on a panel of four species of cotton, 68 gSSRs and 12 expressed SSRs revealed polymorphism. These 200 SSRs were further deployed on 15 genotypes of levant cotton for the genetic diversity assessment. This is the first report on the successful use of repeat enriched genomic library and expressed sequence database for microsatellite markers development in G. herbaceum.

  3. Analysis of the Cotton E6 Promoter

    Institute of Scientific and Technical Information of China (English)

    WU Aimin; LIU Jinyuan

    2005-01-01

    An E6 gene from sea island cotton (Gossypium barbadense) was expressed specifically in cotton fiber cells to transfer functions to cultivated species for better transgenic engineering. The regulatory activity of the E6 promoter region was then studied by isolating a 614-bp fragment of the 5'-flanking region from upland cotton (Gossypium hirsutum CRI-12) to produce a green fluorescent protein (GFP) reporter construct for analysis of tissue-specific expression in transgenic tobacco seedlings. Fluorescent analyses indicate that the relatively short E6 promoter is sufficient to direct green fluorescent protein expression specifically in the leaf trichomes (hair cells) of the transgenic tobacco plants. As cotton fibers are also unicellular trichomes that differentiate from epidermal cells of developing cotton ovules, the result suggests that the relatively short E6 promoter can serve as a fiber-specific expression promoter for genetic engineering to improve cotton fiber quality.

  4. 棉花纤维和衣分等基因系的收集和遗传学研究%Genetics and the Genetic Collection of Isogenic Lines of Seed Lint Type and Fiber Output in Cotton

    Institute of Scientific and Technical Information of China (English)

    D. A. MUSAEV; M. F. ABZALOV; A. S. ALMATOV; T. TURABEKOV; S. T. MUSAEVA; G. N. FATKHULLAEVA; N. G. GUBANOVA; Kh. A. AKHMEDOV

    2002-01-01

    @@ As a result of long standing investigation on urgent problems of amphidiploid cotton species Gossypium hirsutum genetics, for the first time genetic determination of the most important traits has been established, and the unique genetic collection of homozygous isogenic lines has been developed. A scientifically wellfounded theory about combined types of polygene interaction in genetic determination of tracts in cotton, has been developed.

  5. Genetic Analysis of a Novel Dwarf Mutant,AISHENG98,from Upland Cotton

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao; WANG Jie; JIA Yin-hua; DU Xiong-ming

    2008-01-01

    @@ Cotton (Gossypium hirsutum L.) is the most important textile fiber and the second most important oil seed source in the world.To control excessive growth of cotton plant height,which may result in shading and lodging,farmers and researchers have used plant growth regulators that increased the production costs.So the breeding for dwarf plant is the best way to solve this problem.In the past,some dwarf mutants of cotton with recessive gene controlled were reported.

  6. Effects of Early Fruiting Branch Removal on Growth, Development and Senescence Processes in Transgenic Bt Cotton(Gossypium hirsutum L.)%去早果枝对转基因抗虫棉生长发育与衰老进程的调控效应

    Institute of Scientific and Technical Information of China (English)

    翟立超; 张永江; 刘连涛; 孙红春; 朱秀金; 李存东

    2012-01-01

    Bt-transgenic cotton plants with two different sowing dates were treated normally (CK), or by removing one(Rl), two (R2) or three basal fruiting branches(R3) to study the effects of early fruiting branch removal on growth, development and senescence processes in a two-year experiment. The results showed that the removal of early fruiting branches delayed the process of growth and development there was no difference between R1 and CK in the total number of fruiting branches, but R2 and R3 were significantly lower than CK), but had no obvious effects on the total fruiting nodes. Early fruiting branch removal significantly increased the LAI and dry matter accumulation in plants of the first sowing date over two years(R1, R2 and R3 increased the dry matter weight on average by 13.5%, 17.5% and 19.0%, respectively, compared with CK), but there was no significant difference in plants of the second sowing date. For plants of the first sowing date, early fruiting branch removal significantly decreased the abscission and rotten boll rates and promoted seed yield over the two year period. Rl, R2 and R3 decreased the abscission rate by 5.9%, 6.4% and 9.5%, respectively, and rotten boll rate by 3.8%, 3.1% and 4.3%, and the Rl and R2 treatments enhanced the seed cotton yield by 9.6% and 8.1%, respectively. There was no significant yield increase in plants of the second sowing date; there was even a decrease for some treatments.%以转基因抗虫棉品种为材料,设置了2个播期和4种去早果枝方式(去基部1个、2个、3个果枝及不去果枝的对照)处理,研究去除早期果枝对棉花生长发育及衰老进程的影响.2年结果表明,去早果枝推迟了棉花的生育进程;去掉1个早果枝处理总果枝数与对照无差异,但去掉2个、3个果枝后明显低于对照,总果节数差异不显著;去早果枝显著提高了第1播期棉花叶面积指数和干物质积累量,去1个、2个和3个果枝处理的干物质积累量在2

  7. Extensive and biased intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid genome, Gossypium (cotton).

    Science.gov (United States)

    Guo, Hui; Wang, Xiyin; Gundlach, Heidrun; Mayer, Klaus F X; Peterson, Daniel G; Scheffler, Brian E; Chee, Peng W; Paterson, Andrew H

    2014-08-01

    Genome duplication is thought to be central to the evolution of morphological complexity, and some polyploids enjoy a variety of capabilities that transgress those of their diploid progenitors. Comparison of genomic sequences from several tetraploid (AtDt) Gossypium species and genotypes with putative diploid A- and D-genome progenitor species revealed that unidirectional DNA exchanges between homeologous chromosomes were the predominant mechanism responsible for allelic differences between the Gossypium tetraploids and their diploid progenitors. Homeologous gene conversion events (HeGCEs) gradually subsided, declining to rates similar to random mutation during radiation of the polyploid into multiple clades and species. Despite occurring in a common nucleus, preservation of HeGCE is asymmetric in the two tetraploid subgenomes. At-to-Dt conversion is far more abundant than the reciprocal, is enriched in heterochromatin, is highly correlated with GC content and transposon distribution, and may silence abundant A-genome-derived retrotransposons. Dt-to-At conversion is abundant in euchromatin and genes, frequently reversing losses of gene function. The long-standing observation that the nonspinnable-fibered D-genome contributes to the superior yield and quality of tetraploid cotton fibers may be explained by accelerated Dt to At conversion during cotton domestication and improvement, increasing dosage of alleles from the spinnable-fibered A-genome. HeGCE may provide an alternative to (rare) reciprocal DNA exchanges between chromosomes in heterochromatin, where genes have approximately five times greater abundance of Dt-to-At conversion than does adjacent intergenic DNA. Spanning exon-to-gene-sized regions, HeGCE is a natural noninvasive means of gene transfer with the precision of transformation, potentially important in genetic improvement of many crop plants.

  8. QTL Analysis in Tetraploid Cotton

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    QTL analyses were performed in tetraploid cotton.An interspecific F2 population consisting of 69 plants,which was developed from the cross between Gossypium hirsutum L.,cv.Handan 208(characterized as high fiber yield) and G.barbadense L.,cv.Pima 90(characterized as excellent fiber quality),was genotyped with SSR,RAPD,SRAP,and REMAP markers.A 1029-locus linkage map was

  9. Selección y caracterización de rizobacterias promotoras de crecimiento vegetal (RPCV asociadas al cultivo de algodón (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Andrés Guzmán

    2012-04-01

    Full Text Available Normal 0 21 false false false ES-CO X-NONE X-NONE MicrosoftInternetExplorer4 Título en ingles: Selection and characterization of plant growth promoting rhizobacteria (PGPR’s associated with cotton crop (Gossypium hirsutum Resumen: Como parte de las estrategias de una agricultura sostenible, se hace necesario disminuir el uso de fertilizantes nitrogenados de síntesis, mediante la utilización de los biofertilizantes. En particular, los géneros Azotobacter y Azospirillum son utilizados como agentes promotores de crecimiento vegetal debido a su capacidad para fijar nitrógeno atmosférico y producir hormonas de tipo indólico. Por tal razón, en este estudio se aislaron bacterias diazotróficas de los géneros Azotobacter y Azospirillum a partir de la rizósfera de cultivos de algodón en el Espinal (Tolima. Las poblaciones microbianas se caracterizaron fenotípicamente en los medios de cultivo semiespecíficos: Ashby y LG (Azotobacter sp. y NFb, LGI y Batata (Azospirillum sp.. La promoción de crecimiento vegetal se determinó mediante la actividad de la enzima nitrogenasa por medio de la técnica de reducción de acetileno y producción de índoles por el método colorimétrico de Salkowsky. Se obtuvieron 9 aislamientos tentativos de Azotobacter sp. y 4 de Azospirillum sp. Se presentaron diferencias significativas en la prueba de reducción de acetileno con las cepas presuntivas de Azotobacter sp.: NAT 9 (206.43 nmol C2H2 mL-1.h-1, NAT 4, (292.77 nmol C2H2 mL-1.h-1, y NAT 6 (460.60 nmol C2H2 mL-1.h-1 y en la producción de índoles de las cepas NAT 19 (19.87 μg.mL-1 y NAT 13 (20.08 μg.mL-1. Por su eficiencia in vitro en la promoción de crecimiento vegetal se seleccionaron las cepas NAT9, NAT4, NAT6, NAT19 y NAT13 para ser evaluadas como principio activo en futuros inoculantes para el algodón en esta zona del departamento del Tolima. Palabras clave: fijación biológica de nitrógeno; producción de índoles; promoción del crecimiento

  10. Cotton Flowers: Pollen and Petal Humidity Sensitivities Determine Reproductive Competitiveness in Diverse Environments

    Science.gov (United States)

    Genetic diversity in reproductive abiotic stress tolerance has been reported for cotton [Gossypium hirsutum (L.)] based upon the percentage of anther dehiscence of mature pollen in adverse environments. This study investigated the abiotic stress tolerance of mature pollen and identified genetic vari...

  11. Nitrogen fertilizer sources and tillage effects on cotton growth, yield, and fiber quality

    Science.gov (United States)

    Interest in urea-ammonium sulfate (UAS) as a N fertilizer is increasing due, in part, to increased restriction on ammonium nitrate. This has resulted in UAS being marketed as an alternative fertilizer source; however, UAS has not been widely tested. A cotton (Gossypium hirsutum L.) field study was c...

  12. The Utilization of HB-red Flower in Hybrid Cotton Breeding

    Institute of Scientific and Technical Information of China (English)

    WANG Liu-ming; WANG Jia-bao

    2008-01-01

    @@ The HB-red flower trait came from the filial generation of the interspecific cross of upland cotton (Gossypium hirsutum L.) and G.bickii.It exhibits pink petals and filaments,with a large purplish red spot in the petal base,and it showed single dominant gene inheritance.Backcrossing since 2000 was used to produce HB near-isogenic lines.

  13. Development of New Interspecific Monosomic F_1 Substitution Stocks for Investigations in Cotton Genome

    Institute of Scientific and Technical Information of China (English)

    SANAMYAN; M; F; PETLYAKOVA; J; E; SHARIPOVA; E; A; RAKHMATULLINA; E; M

    2008-01-01

    As it is known a complete coverage of cotton(Gossypium hirsutum L.) genome with hypoaneuploids is not still realized.Therefore the detection of new types of aneuploids especially in different cytogenetic collections is very useful.In Uzbekistan,long-term investigations towards development of

  14. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas

    Science.gov (United States)

    Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US. Problems with these systems arise when nutrients are transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of tillage...

  15. Employing broadband spectra and cluster analysis to assess thermal defoliation of cotton

    Science.gov (United States)

    Growers and field scouts need assistance in surveying cotton (Gossypium hirsutum L.) fields subjected to thermal defoliation to reap the benefits provided by this nonchemical defoliation method. A study was conducted to evaluate broadband spectral data and unsupervised classification as tools for s...

  16. Evaluation of Variable Rate Application of Nematicides in Cotton According to Nematode Risk Zones

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) lint yield losses by southern root-knot nematode [Meloidogyne incognita] (RKN) have increased during the last 20 years. Site-specific management (SSM) of nematicides is a promising method to reduce yield losses, increase profitability and reduce adverse environmental i...

  17. Cotton Yield Response to Variable Rate Nematicides According to Risk Zones

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) lint yield losses by southern root-knot nematode [Meloidogyne incognita] (RKN) have increased during the last 20 years. Site-specific management (SSM) of nematicides is a promising method to reduce yield losses, increase profitability and reduce adverse environmental i...

  18. Developing hybrid cotton (Gossypium spp.) using honey bees as pollinators and the Roundup Ready® Phenotype as the selection trait

    Science.gov (United States)

    Cotton (Gossypium spp.) is the most important textile fiber crop in the United States (US). Hybrid cotton is grown in several countries but the use of hybrids in the US has been limited due to seed production costs. The objective of this study was to investigate a novel method for the production of ...

  19. GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is ...

    African Journals Online (AJOL)

    EVANS

    group of putative cis-acting elements especially, the light and stress responsive elements, indicating that it may have a .... synthesized from 2 µg of RNA in a 20 reaction volume using .... photosynthetic efficiency and enhanced water retention.

  20. Sampling nucleotide diversity in cotton

    Directory of Open Access Journals (Sweden)

    Yu John Z

    2009-10-01

    Full Text Available Abstract Background Cultivated cotton is an annual fiber crop derived mainly from two perennial species, Gossypium hirsutum L. or upland cotton, and G. barbadense L., extra long-staple fiber Pima or Egyptian cotton. These two cultivated species are among five allotetraploid species presumably derived monophyletically between G. arboreum and G. raimondii. Genomic-based approaches have been hindered by the limited variation within species. Yet, population-based methods are being used for genome-wide introgression of novel alleles from G. mustelinum and G. tomentosum into G. hirsutum using combinations of backcrossing, selfing, and inter-mating. Recombinant inbred line populations between genetics standards TM-1, (G. hirsutum × 3-79 (G. barbadense have been developed to allow high-density genetic mapping of traits. Results This paper describes a strategy to efficiently characterize genomic variation (SNPs and indels within and among cotton species. Over 1000 SNPs from 270 loci and 279 indels from 92 loci segregating in G. hirsutum and G. barbadense were genotyped across a standard panel of 24 lines, 16 of which are elite cotton breeding lines and 8 mapping parents of populations from six cotton species. Over 200 loci were genetically mapped in a core mapping population derived from TM-1 and 3-79 and in G. hirsutum breeding germplasm. Conclusion In this research, SNP and indel diversity is characterized for 270 single-copy polymorphic loci in cotton. A strategy for SNP discovery is defined to pre-screen loci for copy number and polymorphism. Our data indicate that the A and D genomes in both diploid and tetraploid cotton remain distinct from each such that paralogs can be distinguished. This research provides mapped DNA markers for intra-specific crosses and introgression of exotic germplasm in cotton.

  1. Cloning and expression of two sterol C-24 methyltransferase genes from upland cotton (Gossypium hirsuturm L.)

    Institute of Scientific and Technical Information of China (English)

    Ming Luo; Kunling Tan; Zhongyi Xiao; Mingyu Hu; Peng Liao; Kuijun Chen

    2008-01-01

    Brassinosteroids (BRs) are an important class of plant steroidal hormones that are essential in a wide variety of physiological processes. Two kinds of intermediates, sitosterol and campesterol, play a crucial role in cell elongation, cellulose biosynthesis, and accumulation. To illuminate the effects of sitosterol and campesterol on the development of cotton (Gossypium hirsuturm L.) fibers through screening cotton fiber EST database and contigging the candidate ESTs, two key genes GhSMT2-1 and GhSMT2-2 controlling the sitosterol biosynthesis were cloned from developing fibers of upland cotton cv. Xuzhou 142. The full length of GhSMT2-1 was 1, 151bp, including an 8bp 5'-untranslated region (UTR), a 1, 086bp open reading frame (ORF), and a 57bp 3'-UTR. GhSMT2-1 gene encoded a polypeptide of 361 amino acid residues with a predicted molecular mass of 40kDa. The full length of GhSMT2-2 was 1, 166bp, including an 18bp 5'-UTR, a 1, 086bp ORF, and a 62bp 3'-UTR. GhSMT2-2 gene encoded a polypeptide of 361 amino acid residues with a predicted molecular mass of 40kDa. The two deduced amino acid sequences had high homology with the SMT2 from Arabidopsis thaliana and Nicotiana tabacum. Furthermore, the typical conserved structures characterized by the sterol C-24 methyltransferase, such as region I (LDVGCGVGGPIVIRAI), region Ⅱ (IEATCHAP), and region Ⅲ (YEWGWGQSFHF), were present in both deduced proteins. Southern blotting analysis indicated that GhSMT2-1 or GhSMT2-2 was a single copy in upland cotton genome. Quantitative real-time RT-PCR analysis revealed that the highest expression levels of both genes were detected in 10 DPA (day post anthesis) fibers, while the lowest levels were observed in cotyledon and leaves. The expression level of GhSMT2-1 was 10 times higher than that of GhSMT2-2 in all the organs and tissues detected. These results indicate that the homologue of sterol C-24 methyltransferase gene was cloned from upland cotton and both GhSMT2 genes play a crucial

  2. Precision mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton

    Science.gov (United States)

    The resistant line Auburn 623RNR and a number of elite breeding lines derived from it remain the most important source of root-knot nematode (RKN) resistance because they exhibit the highest level of resistance to RKN known to date in Upland cotton (Gossypium hirsutum L). Prior genetic mapping analy...

  3. The effect of phytohormones on the dynamics of protein biosynthesis and enzyme activity in linted and naked cotton seed

    Science.gov (United States)

    We determined the effect of exogenous indole-3-acetic acid, a-naphthylene-3-acetic acid and gibberellic acid (GA3) on the enzymatic activity of glucansynthase, peroxidase and cellulase in ovule development of naked L-70 and linted AN-Bayaut-2 cotton (Gossypium hirsutum L.) seeds. We isolated a prote...

  4. Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping

    Science.gov (United States)

    Expressed sequence tags (ESTs) were analyzed in silico in order to identify single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels) in cotton. A total of 1349 EST-based SNP and InDel markers were developed by comparing ESTs between Gossypium hirsutum and G. barbadense, m...

  5. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    OpenAIRE

    2011-01-01

    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was c...

  6. GhDET2,a Steroid 5alpha-reductase,Plays an Important Role in Cotton Fiber Cell Initiation and Elongation

    Institute of Scientific and Technical Information of China (English)

    LUO Ming; XIAO Yue-hua; LI Xian-bi; LI De-mou; HOU Lei; HU Ming-yu; PEI Yan

    2008-01-01

    @@ Cotton (Gossypium hirsutum L.) fibers,one of the most important natural raw materials for the textile industry,are highly elongated trichomes from epidermal cells of cotton ovules.Among the longest plant cells ever characterized,cotton fiber is an ideal system for studying plant cell elongation.Brassinosteroids (BRs),a class of steroidal phytohormone,play an important role in plant cell division and elongation.

  7. Fine mapping of the dominant glandless Gene Gle2 in Sea-island cotton (Gossypium barbadense L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gle2 is a mutant gene that controls glandless trait in cotton plants and seeds. It is an important gene resource to gossypol-free cottonseed breeding. The objective of this research was to develop SSR markers tightly linked with Gle2 by using the F2 segregating population containing 1599 plants derived from the cross of G. hirsutum genetic standard line TM-1 and G. barbadense glandless mutant line Hai-1. Genetic analysis suggested that the Gle2 was an incomplete dominant gene. Based on the backbone of genetic linkage map from G. hirsutum × G. barbadense BC1 published by our laboratory, Gle2 was located between CIR362 and NAU2251b, NAU3860b, STV033, with a genetic distance 9.27 and 0.96 cM, respectively. This result is useful for cloning Gle2 gene by map-based cloning method.

  8. Genetical Genomics Dissection of Cotton Fiber Quality

    Institute of Scientific and Technical Information of China (English)

    LACAPE J M; JACOBS J; LLEWELLYN D

    2008-01-01

    @@ Cotton fiber is a commodity of key economic importance in both developed and developing countries.The two cultivated species,Gossypium hirsutum and G.barbadense,are tetraploid (2n=4x=52,2.3 Gb).Cotton fibers are single-celled trichomes of the outermost epidermal layer of the ovule and elongate extensively to 25-50 mm.The final quality of the fiber results from complex developmental processes and improvement of cotton fiber quality remains a challenge for many research groups worldwide.

  9. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda) and cotton boll weevil (Anthonomus grandis)

    OpenAIRE

    Raquel Sampaio Oliveira; Osmundo Brilhante Oliveira-Neto; Hudson Fernando Moura; Leonardo Lima Pepino de Macedo; Fabricio Barbosa Monteiro Arraes; Wagner Alexandre Lucena; Isabela Tristan Lourenço-Tessuti; Aulus Estevão Anjos de Deus Barbosa; Maria Cristina Mattar Silva; Maria Fátima eGrossi de Sá

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (throu...

  10. Transformation and evaluation of Cry1Ac+Cry2A and GTGene in Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Agung Nugroho Puspito

    2015-11-01

    Full Text Available More than 50 countries around the globe cultivate cotton on a large scale. It is a major cash crop of Pakistan and is considered white gold because it is highly important to the economy of Pakistan. In addition to its importance, cotton cultivation faces several problems, such as insect pests, weeds, and viruses. In the past, insects have been controlled by insecticides, but this method caused a severe loss to the economy. However, conventional breeding methods have provided considerable breakthroughs in the improvement of cotton, but it also has several limitations. In comparison with conventional methods, biotechnology has the potential to create genetically modified plants that are environmentally safe and economically viable. In this study, a local cotton variety VH 289 was transformed with two Bt genes (Cry1Ac and Cry2A and a herbicide resistant gene (cp4 EPSPS using the Agrobacterium mediated transformation method. The constitutive CaMV 35S promoter was attached to the genes taken from Bacillus thuringiensis (Bt and to an herbicide resistant gene during cloning, and this promoter was used for the expression of the genes in cotton plants. This construct was used to develop the Glyphosate Tolerance Gene (GTGene for herbicide tolerance and insecticidal gene (Cry1Ac and Cry2A for insect tolerance in the cotton variety VH 289. The transgenic cotton variety performed 85% better compared with the non-transgenic variety. The study results suggest that farmers should use the transgenic cotton variety for general cultivation to improve the production of cotton.

  11. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    NARCIS (Netherlands)

    Cui, J.J.; Luo, J.Y.; Werf, van der W.; Ma, Y.; Xia, J.Y.

    2011-01-01

    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in confe

  12. Increased Helicoverpa zea (Boddie) larval feeding on a RNAi construct CYP82D109 that blocks gossypol-related terpenoid synthesis in cotton plants

    Science.gov (United States)

    Glandled cotton plants, Gossypium hirsutum L., have long been known to be more resistant to insect pests compared to their glandless counterparts. This resistance has been mainly attributed to the presence of terpenoid aldehydes such as gossypol, hemigossypolone, and heliocides in the glands. We p...

  13. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    NARCIS (Netherlands)

    Cui, J.J.; Luo, J.Y.; Werf, van der W.; Ma, Y.; Xia, J.Y.

    2011-01-01

    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in

  14. Interspecific Associations between Cycloneda sanguinea and Two Aphid Species (Aphis gossypii and Hyadaphis foeniculi) in Sole-Crop and Fennel-Cotton Intercropping Systems

    OpenAIRE

    Francisco S Fernandes; Ramalho, Francisco S.; Malaquias,José B.; Godoy, Wesley A. C.; Santos, Bárbara Davis B.

    2015-01-01

    Aphids cause significant damage to crop plants. Studies regarding predator-prey relationships in fennel (Foeniculum vulgare Mill.) and cotton (Gossypium hirsutum L.) crops are important for understanding essential ecological interactions in the context of intercropping and for establishing pest management programs for aphids. This study evaluated the association among Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae), Aphis gossypii Glover (Hemiptera: Aphididae) and Cycloneda sanguinea (...

  15. An evaluation of eco-friendly naturally coloured cottons regarding seed cotton yield, yield components and major lint quality traits under conditions of East Mediterranean region of Turkey.

    Science.gov (United States)

    Efe, Lale; Killi, Fatih; Mustafayev, Sefer A

    2009-10-15

    In the study carried out in 2002-2003 in the East Mediterranean region of Turkey (in Kahramanmaras Province), four different naturally coloured cotton (Gossypium hirsutum L.) (dark brown, light brown, cream and green) lines from Azerbaijan and two white linted cotton varieties (Maras-92 and Sayar-314 (G. hirsutum L.)) of the region were used as material. The aim of this study was to determine seed cotton yield and yield components and major lint quality traits of investigated coloured cotton lines comprising white linted local standard cotton varieties. Field trials were established in randomized block design with four blocks. According to two year's results, it was determined that naturally coloured cottons were found similar to both white linted standard cotton varieties for sympodia number and seed cotton yield. For boll number per plant, except green cotton line all coloured cotton lines were similar to standard varieties or even some of them were better than standards. For ginning outturn, dark brown, cream and green cotton lines were found statistically similar to standard Maras-92. But all naturally coloured cotton lines had lower seed cotton weight per boll and generally lower fiber quality than white linted standard varieties. For fiber length and fiber strength cream cotton line was the best coloured cotton. And for fiber fineness only green cotton line was better than both standards. It can be said that naturally coloured cotton lines need to be improved especially for fiber quality characters in the East Mediterranean region of Turkey.

  16. Density responses and spatial distribution of cotton yield and yield components in jujube (Zizyphus jujube)/cotton (Gossypium hirsutum) agroforestry

    NARCIS (Netherlands)

    Wang, Qi; Han, Shuo; Zhang, Lizhen; Zhang, Dongsheng; Werf, van der Wopke; Evers, Jochem B.; Sun, Hongquan; Su, Zhicheng; Zhang, Siping

    2016-01-01

    Trees are the dominant species in agroforestry systems, profoundly affecting the performance of understory crops. Proximity to trees is a key factor in crop performance, but rather little information is available on the spatial distribution of yield and yield components of crop species under the

  17. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species.

    Science.gov (United States)

    Ulloa, M; Wang, C; Saha, S; Hutmacher, R B; Stelly, D M; Jenkins, J N; Burke, J; Roberts, P A

    2016-04-01

    Chromosome substitution (CS) lines in plants are a powerful genetic resource for analyzing the contribution of chromosome segments to phenotypic variance. In this study, a series of interspecific cotton (Gossypium spp.) CS lines were used to identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode or fungal disease resistance traits. The CS lines were developed in the G. hirsutum L. TM-1 background with chromosome or chromosome segment substitutions from G. barbadense L. Pima 3-79 or G. tomentosum. Root-knot nematode (Meloidogyne incognita) and fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) (races 1 and 4) resistance alleles and quantitative trait loci (QTL) previously placed on cotton chromosomes using SSR markers in two interspecific recombinant inbred line populations were chosen for testing. Phenotypic responses of increased resistance or susceptibility in controlled inoculation and infested field assays confirmed the resistance QTLs, based on substitution with the positive or negative allele for resistance. Lines CS-B22Lo, CS-B04, and CS-B18 showed high resistance to nematode root-galling, confirming QTLs on chromosomes 4 and 22 (long arm) with resistance alleles from Pima 3-79. Line CS-B16 had less fusarium race 1-induced vascular root staining and higher percent survival than the TM-1 parent, confirming a major resistance QTL on chromosome 16. Lines CS-B(17-11) and CS-B17 had high fusarium race 4 vascular symptoms and low survival due to susceptible alleles introgressed from Pima 3-79, confirming the localization on chromosome 17 of an identified QTL with resistance alleles from TM1 and other resistant lines. Analyses validated regions on chromosomes 11, 16, and 17 harboring nematode and fusarium wilt resistance genes and demonstrated the value of CS lines as both a germplasm resource for breeding programs and as a powerful genetic analysis tool for determining QTL effects for disease

  18. Mapping of QTL for Fiber Length Using Interspecific Gossypium hirsutum × G.barbadense F_2 Population

    Institute of Scientific and Technical Information of China (English)

    PREETHA; S; RAVEENDRAN; T; S

    2008-01-01

    Cotton occupies a pre-eminent place among cash crops as it guides the destiny of a large section of the farming community as well as that of a flourishing textile industry.As the yarn manufacturing industry has undergone a technological revolution,more emphasis is given to quality of the raw material

  19. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species

    Science.gov (United States)

    To Identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode and fungal disease resistance traits, a series of interspecific cotton (Gossypium spp.) chromosome substitution (CS) lines were used in this study. The CS lines were developed in ...

  20. The cotton centromere contains a Ty3-gypsy-like LTR retroelement.

    Directory of Open Access Journals (Sweden)

    Song Luo

    Full Text Available The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species.

  1. Cotton GhACT1 Gene Is Preferentially Expressed in Fiber and Required for Fiber Elongation%棉纤维发育优势表达及伸长必需的基因GhACT1

    Institute of Scientific and Technical Information of China (English)

    Xue-bao LI; Lin CAI; Xiao-ping FAN; Ning-hui CHEN; Jian-wei LIU; Wei-cai YANG

    2002-01-01

    @@ Each fiber of cotton (Gossypium hirsutum) is a single epidermal cell that rapidly elongates to 2.5 ~3.0 cm from ovule surface within about 16days after anthesis. A large number of genes are required for fiber differentiation and development, but it is unknown how these genes control and regulate the process of fiber development.

  2. Genetic Effects and Heterosis of Yield and Yield Component Traits Based on Gossypium Barbadense Chromosome Segment Substitution Lines in Two Gossypium Hirsutum Backgrounds.

    Directory of Open Access Journals (Sweden)

    Botao Li

    Full Text Available We hybridized 10 chromosome segment substitution lines (CSSLs each from two CSSL populations and produced 50 F1 hybrids according to North Carolina Design II. We analyzed the genetic effects and heterosis of yield and yield components in the F1 hybrids and parents in four environments via the additive-dominance genetic model. Yield and yield components of the CSSLs were controlled by combined additive and dominance effects, and lint percentage was mainly controlled by additive effects, but boll weight, boll number, seedcotton yield and lint yield were mainly controlled by dominance effects. We detected significant interaction effects between genetics and the environment for all yields traits. Similar interactions were detected between two CSSL populations (Pop CCRI 36 and Pop CCRI 45. Significant positive mid-parent heterosis was detected for all yield traits in both populations, and significant positive better-parent heterosis was also detected for all yield traits except lint percentage. The differences among parents were relatively small, but significant heterosis was detected for yield and yield components. Therefore, the relationship between heterosis and genetic distance for yield traits is complicated and requires further study. These CSSLs represent useful tools for improving yield and yield components in cotton.

  3. Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches

    Directory of Open Access Journals (Sweden)

    Changwei Bi

    2016-01-01

    Full Text Available Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants.

  4. Comparative Transmission Genetics of Introgressed Chromatin in Gossypium Species

    Institute of Scientific and Technical Information of China (English)

    WAGHMARE Vijay N; RONG Jun-kang; ROGERS Carl J; BOWERS John E; PATERSON Andrew H

    2008-01-01

    @@ Wild relatives and un-adapted germplasm of crop species harbors several adaptive traits.Introgression of genes for economic and adaptive traits brings in novel genetic variation into the gene pools of many crops including cotton.We compared patterns of introgression into polyploid Gossypium hirsuture from its sister G.tomentosum,and from G.barbadense representing a different clade tracing to the same polyploidization.Advanced-generation populations,resulting from recurrent backcrossing to G.hirsutum,show a paucity of G.tomentosum alleles and severe deficiencies of homozygotes.

  5. Mapping of QTL for Fiber Length Using Interspecific Gossypium hirsutum × G.barbadense F2 Population

    Institute of Scientific and Technical Information of China (English)

    PREETHA S; RAVEENDRAN T S

    2008-01-01

    @@ Cotton occupies a pre-eminent place among cash crops as it guides the destiny of a large section of the farming community as well as that of a flourishing textile industry.As the yarn manufacturing industry has undergone a technological revolution,more emphasis is given to quality of the raw material in order to overcome high speed spinning.Though different yarn manufacturing technologies have various requirements in terms of basic fiber properties,fiber length has a premier role in deciding the spinning efficiency.

  6. Molecular Cloning and Characterization of Genes Involved in Cotton (Gossypium barbadense L.) Response to Verticillium dahliae

    Institute of Scientific and Technical Information of China (English)

    XU Li; ZHANG Xian-long; ZHU Long-fu; TU Li-li

    2008-01-01

    @@ Verticillium dahliae Kleb.is a necrotrophic plant pathogen which causes serious soil borne vascular disease in cotton.The molecular basis the defense response of cotton to this pathogen is poorly understood.

  7. Genome-Wide Identification and Expression Analysis of the Biotin Carboxyl Carrier Subunits of Heteromeric Acetyl-CoA Carboxylase in Gossypium

    Science.gov (United States)

    Cui, Yupeng; Zhao, Yanpeng; Wang, Yumei; Liu, Zhengjie; Ijaz, Babar; Huang, Yi; Hua, Jinping

    2017-01-01

    Acetyl-CoA carboxylase is an important enzyme, which catalyzes acetyl-CoA’s carboxylation to produce malonyl-CoA and to serve as a committed step for de novo fatty acid biosynthesis in plastids. In this study, 24 putative cotton BCCP genes were identified based on the lately published genome data in Gossypium. Among them, 4, 4, 8, and 8 BCCP homologs were identified in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. These genes were divided into two classes based on a phylogenetic analysis. In each class, these homologs were relatively conserved in gene structure and motifs. The chromosomal distribution pattern revealed that all the BCCP genes were distributed equally on corresponding chromosomes or scaffold in the four cotton species. Segmental duplication was a predominant duplication event in both of G. hirsutum and G. barbadense. The analysis of the expression profile showed that 8 GhBCCP genes expressed in all the tested tissues with changed expression levels, and GhBCCP genes belonging to class II were predominantly expressed in developing ovules. Meanwhile, the expression analysis for the 16 cotton BCCP genes from G. raimondii, G. arboreum and G. hirsutum showed that they were induced or suppressed by cold or salt stress, and their expression patterns varied among different tissues. These findings will help to determine the functional and evolutionary characteristics of the BCCP genes in Gossypium species. PMID:28507552

  8. Genome-Wide Identification and Expression Analysis of the Biotin Carboxyl Carrier Subunits of Heteromeric Acetyl-CoA Carboxylase in Gossypium

    Directory of Open Access Journals (Sweden)

    Jinping Hua

    2017-05-01

    Full Text Available Acetyl-CoA carboxylase is an important enzyme, which catalyzes acetyl-CoA’s carboxylation to produce malonyl-CoA and to serve as a committed step for de novo fatty acid biosynthesis in plastids. In this study, 24 putative cotton BCCP genes were identified based on the lately published genome data in Gossypium. Among them, 4, 4, 8, and 8 BCCP homologs were identified in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. These genes were divided into two classes based on a phylogenetic analysis. In each class, these homologs were relatively conserved in gene structure and motifs. The chromosomal distribution pattern revealed that all the BCCP genes were distributed equally on corresponding chromosomes or scaffold in the four cotton species. Segmental duplication was a predominant duplication event in both of G. hirsutum and G. barbadense. The analysis of the expression profile showed that 8 GhBCCP genes expressed in all the tested tissues with changed expression levels, and GhBCCP genes belonging to class II were predominantly expressed in developing ovules. Meanwhile, the expression analysis for the 16 cotton BCCP genes from G. raimondii, G. arboreum and G. hirsutum showed that they were induced or suppressed by cold or salt stress, and their expression patterns varied among different tissues. These findings will help to determine the functional and evolutionary characteristics of the BCCP genes in Gossypium species.

  9. QTL Analysis in Tetraploid Cotton

    Institute of Scientific and Technical Information of China (English)

    LIN Zhong-xu; HE Dao-hua; WANG Hong-mei

    2008-01-01

    @@ QTL analyses were performed in tetraploid cotton.An interspecific F2population consisting of 69 plants,which was developed from the cross between Gossypium hirsutum L.,cv.Handan 208 (characterized as high fiber yield) and G.barbadense L.,cv.Pima 90 (characterized as excellent fiber quality),was genotyped with SSR,RAPD,SRAP,and REMAP markers.A 1029-1ocus linkage map was constructed covering 5472.3 cM with an average distance of 5.32 cM between two markers.

  10. The natural refuge policy for Bt cotton (Gossypium L. in Pakistan – a situation analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad Ali

    2013-07-01

    Full Text Available Bt cotton (event Cry1Ac was formally commercialized in Pakistan in 2010. However, there has been an increasing trend of planting unauthorized Bt cotton germplasm in farmers' fields since 2003 with a high rate of adoption in the core cotton areas especially in the province Punjab. The transgenic cotton technology has provided the growers with substantial economic benefits and has reduced their dependence on pesticides for pest control, especially against Helicoverpa armigera (Hubner. However, keeping in view the capacity of this insect to develop resistance against novel chemical formulations, it is easily speculated that Bt toxin, too, is no exception. Refuge crop policy for mono transgenic crop events has helped in delaying the rate of resistance evolution in the target pests. Thus, in Pakistan, where planting of structured refuge crops along Bt cotton fields is not mandatory, the effectiveness and durability of Bt cotton technology may decrease due to a number of factors which are discussed in this review.

  11. Genetic Dissection of Net Effects Between Yield and Its Components in Sea Island Cotton (Gossypium barbadense L.)

    Institute of Scientific and Technical Information of China (English)

    YE Zi-hong; MEI Yong-jun; ZOU Ke-qin; FU Xian-shu; JIANG Lin-shu

    2008-01-01

    The number of bolls,individual boll weight,and lint percentage are three important yield components of lint yield of cotton.In the present study,nine parents,twenty F1,and twenty F2 crosses of intraspecific hybrids of sea island cotton (Gossypium barbadense L.) were grown at Tarim University,Alar,Xinjiang,China,in 2000 and 2001.Lint yield and its three component traits were measured and analyzed by an extended conditional mixed linear model approach.Lint percentage made the largest contribution to additive,additive x environment,and dominance x environment variations for lint yield.The contribution ratios of number of bolls,individual boll weight,and combined contribution of these two traits to additive x environment and dominance x environment variations for lint yield were not statistically significant.Lint yield of different parents could be affected differently by lint percentage.Lint yield of some parents was closely correlated with lint percentage,whereas for other parents,the behavior of individual boll weight and number of bolls played much more important roles on lint yield than that of lint percentage.It was shown by the conditional and conventional predicted additive x environment interaction effects of parents that the environment condition could influence different parents with varied effects.

  12. Effects of Vegetated Field Borders on Arthropods in Cotton Fields in Eastern North Carolina

    OpenAIRE

    Outward, Randy; Sorenson, Clyde E.; Bradley, J. R.

    2008-01-01

    The influence, if any, of 5m wide, feral, herbaceous field borders on pest and beneficial arthropods in commercial cotton, Gossypium hirsutum (L.) (Malvales: Malvaceae), fields was measured through a variety of sampling techniques over three years. In each year, 5 fields with managed, feral vegetation borders and five fields without such borders were examined. Sampling was stratified from the field border or edge in each field in an attempt to elucidate any edge effects that might have occurr...

  13. Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L..

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR. The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 ±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE and adjusted MFE (AMFE and high MFE index (MFEI. Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton.

  14. Small RNA regulation of ovule development in the cotton plant, G. hirsutum L

    Directory of Open Access Journals (Sweden)

    Mavlonov Gafurjon T

    2008-09-01

    Full Text Available Abstract Background The involvement of small RNAs in cotton fiber development is under explored. The objective of this work was to directly clone, annotate, and analyze small RNAs of developing ovules to reveal the candidate small interfering RNA/microRNAs involved in cotton ovule and fiber development. Results We cloned small RNA sequences from 0–10 days post anthesis (DPA developing cotton ovules. A total of 6691 individual colonies were sequenced from 11 ovule small RNA libraries that yielded 2482 candidate small RNAs with a total of 583 unique sequence signatures. The majority (362, 62.1% of these 583 sequences were 24 nt long with an additional 145 sequences (24.9% in the 21 nt to 23 nt size range. Among all small RNA sequence signatures only three mirBase-confirmed plant microRNAs (miR172, miR390 and ath-miR853-like were identified and only two miRNA-containing clones were recovered beyond 4 DPA. Further, among all of the small RNA sequences obtained from the small RNA pools in developing ovules, only 15 groups of sequences were observed in more than one DPA period. Of these, only five were present in more than two DPA periods. Two of these were miR-172 and miR-390 and a third was identified as 5.8S rRNA sequence. Thus, the vast majority of sequence signatures were expressed in only one DPA period and this included nearly all of the 24 nt sequences. Finally, we observed a distinct DPA-specific expression pattern among our clones based upon sequence abundance. Sequences occurring only once were far more likely to be seen in the 0 to 2 DPA periods while those occurring five or more times were the majority in later periods. Conclusion This initial survey of small RNA sequences present in developing ovules in cotton indicates that fiber development is under complex small RNA regulation. Taken together, the results of this initial small RNA screen of developing cotton ovules is most consistent with a model, proposed by Baulcombe, that there

  15. Goosegrass (Eleusine indica) density effects on cottonGossypium hirsutum)

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-yan[1; WU Han-wen[2; JIANG Wei-li[1; MA Ya-jie[1; MA Yan[1

    2015-01-01

    Goosegrass is one of the worst agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. Field experiments were conducted during 2010-2012 to determine the influence of goosegrass density on cotton growth at the weed densities of 0, 0.125, 0.25, 0.5, 1, 2, and 4 plants m-1 of row. Seed cotton yield tended to decrease with the increase in weed density, and goosegrass at a density of 4 plants m-1 of row significantly reduced cotton yields by 20 to 27%. A density of 11.6-19.2 goosegrass plant m-1 of row would result in a 50% cotton yield loss from the maximum yield according to the hyperbolic decay regression model. Boll production was not affected in the early growing season. But boll numbers per plant were reduced about 25% at the den- sity of 4 plants m-1 of row in the late growing season. Both cotton boll weight and seed numbers per boll were significantly reduced (8%) at 4 goosegrass plants m-~ of row. Cotton plant height, stem diameter and sympodial branch number were not affected as much as cotton yields by goosegrass competition. Seed index, lint percentage and lint fiber properties were unaffected by weed competition. Intraspecific competition resulted in density-dependent effects on weed biomass per plant, 142-387 g dry weight by harvest. Goosegrass biomass m-2 tended to increase with increasing weed density as indicated by a quadratic response. The adverse impact of goosegrass on cotton yield identified in this study has indicated the need of effective goosegrass management.

  16. [Major-polygene effect analysis of super quality fiber properties in upland cotton (G. hirsutum L.)].

    Science.gov (United States)

    Yuan, You-Lu; Zhang, Tian-Zhen; Guo, Wang-Zhen; Yu, John; Kohel, Russell J

    2002-09-01

    The modern textile industry depends on the improvement of fiber quality, especially strength to meet the needs of higher spinning speed. Inheritance of super quality fiber properties in Upland cotton was conducted in the present paper. P1, P2, F1, B1, B2 and F2 of eight crosses from five parents with different fiber strength, i.e. 7235 x TM1, TM1 x 7235, HS42 x TM1, PD69 x TM1, MD51 x TM1, 7235 x HS42, 7235 x PD69 and HS42 x PD69, and F2:3 for 7235 x TM1, were used in the study. The materials were planted in Nanjing or Hainan in 1998 and 1999, the individual plant fiber samples were tested with HVI system in Cotton Research Institute of CAAS at Anyang. The segregation analysis methods for major genes plus polygene mixed inheritance model developed by Gai were used to identify the genetic system of fiber qualities. The results from joint analyses of multiple segregating generations as well as single segregating generations, especially for F2:3, showed one major gene plus polygene mixed inheritance model in all fiber quality characters. The heritability values of major gene in F2 of 7235 x TM1 with great parent difference were estimated as 19.6% for fiber strength, 32.0% for micronaire and 13.9% for fiber length, but little in B1 and B2 for fiber qualities. The fiber length showed high and positive dominant effect, but negative value or zero of major or polygene dominant effects for other fiber qualities. Therefore, Mid-parent value or tendency to lower parent in F1 for most of fiber qualities lead to low selection efficiency, which suggests that molecular assisted selection should be considered at first in the improvement of fiber qualities.

  17. Degradation of Cry1Ac protein from Bacillus thuringiensis by soil bacteria from transgenic and conventional cotton (Gossypium hirsutum) culture.

    OpenAIRE

    João Paulo Leite Tozzi

    2009-01-01

    Bt é uma bactéria formadora da proteína Cry1Ac, tóxica a lepidópteros. Plantas geneticamente modificadas expressam essa toxina. O objetivo deste trabalho foi isolamento e identificação de bactérias do solo de algodão transgênico e convencional potencialmente biodegradadoras dessa proteína. Estudou-se a dinâmica de crescimento das bactérias em meios com a proteína Cry1Ac ou glucose, a biodegradação, os genes apr, npr e sub. Em solo de algodão convencional a contagem foi menor; para algodão tra...

  18. STUDY OF GENE FLOW FROM GM COTTON (Gossypium hirsutum VARIETIES IN “EL ESPINAL” (TOLIMA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    LEIDY YANIRA RACHE CARDENAL

    2013-01-01

    Full Text Available En el 2009 se plantaron 4088 hectáreas de algodón genéticamente modificado en el departamento de Tolima (Colombia, sin embargo, hay ciertas incertidumbres acerca de las medidas de contención necesarias para impedir el movimiento de polen y semillas desde los campos GM regulados, hacia los campos adyacentes de cultivos convencionales. En este estudio se evaluó el flujo de genes mediado por polen y semillas desde variedades GM hacia variedades convencionales o individuos ferales, en el cultivo del algodón. Para detectar el flujo de genes se utilizaron ImmunostripTM, PCR y ELISA. Cincuenta y seis refugios, 27 campos con algodón convencional y cuatro individuos ferales de la empresa “Remolinos S.A.” localizada en El Espinal (Tolima fueron analizados en el primer semestre de 2010. Los resultados indicaron presencia de plantas GM en 45 refugios (80,4 % y 26 campos de algodón convencional (96 %, además de un flujo génico mediado por polen en un campo de algodón convencional y nueve refugios. En todos los campos cultivados con algodón convencional se evidenció flujo de genes desde algodón GM. Solo en dos refugios y en dos individuos ferales no se evidenció flujo de genes desde algodón GM.

  19. Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought.

    Science.gov (United States)

    Ratnayaka, H Harish; Molin, William T; Sterling, Tracy M

    2003-10-01

    The influence of plant interference and a mild drought on gas exchange and oxidative stress was investigated using potted plants of two cotton species (Gossypium hirsutum L. cv. Delta Pine 5415, and Gossypium barbadense L. cv. Pima S-7) and spurred anoda (Anoda cristata L. Schlecht.) of the Malvaceae. Without interference, cotton and spurred anoda had similar net photosynthesis (Pnet) but different pigment profiles. Stomatal conductance (gs) and transpiration rate (E) were greater in spurred anoda than cotton. Net photosynthesis and biomass in cotton were reduced more by spurred anoda interference than by intraspecific interference. With interference, the xanthophyll cycle conversion state and alpha-tocopherol levels increased in cotton, but remained unchanged in spurred anoda. Catalase, ascorbate peroxidase (APX) and glutathione reductase (GR) activities were not influenced by plant interference. Without interference, spurred anoda had lower APX, and similar catalase and GR activities compared with cotton. Mild drought increased APX activity more than 40% in cotton, and 26% in spurred anoda. Upon drought recovery, drought-induced APX activity was still higher in cotton, and GR activity was higher in previously drought-stressed cotton and spurred anoda plants compared with well-watered plants. The greater impact of spurred anoda interference than intraspecific interference on cotton biomass is due mainly to reduced carbon gain in cotton.

  20. Modeling cotton (Gossypium spp) leaves and canopy using computer aided geometric design (CAGD)

    Science.gov (United States)

    The goal of this research is to develop a geometrically accurate model of cotton crop canopies for exploring changes in canopy microenvironment and physiological function with leaf structure. We develop an accurate representation of the leaves, including changes in three-dimensional folding and orie...

  1. The draft genome of a diploid cotton Gossypium raimondii

    DEFF Research Database (Denmark)

    Wang, Kunbo; Wang, Zhiwen; Li, Fuguang

    2012-01-01

    identified 2,355 syntenic blocks in the G. raimondii genome, and we found that approximately 40% of the paralogous genes were present in more than 1 block, which suggests that this genome has undergone substantial chromosome rearrangement during its evolution. Cotton, and probably Theobroma cacao...

  2. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments.

    Science.gov (United States)

    Fang, Lei; Tian, Ruiping; Chen, Jiedan; Wang, Sen; Li, Xinghe; Wang, Peng; Zhang, Tianzhen

    2014-01-01

    Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs) that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs) were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes), glycolysis/gluconeogenesis (122 genes), phenylpropanoid biosynthesis (101 genes), and oxidative phosphorylation (87 genes), etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.

  3. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments.

    Directory of Open Access Journals (Sweden)

    Lei Fang

    Full Text Available Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes, glycolysis/gluconeogenesis (122 genes, phenylpropanoid biosynthesis (101 genes, and oxidative phosphorylation (87 genes, etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.

  4. Identification and Characterization of miRNA Transcriptome in Asiatic Cotton (Gossypium arboreum Using High Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq

    2017-06-01

    Full Text Available MicroRNAs (miRNAs are small 20–24nt molecules that have been well studied over the past decade due to their important regulatory roles in different cellular processes. The mature sequences are more conserved across vast phylogenetic scales than their precursors and some are conserved within entire kingdoms, hence, their loci and function can be predicted by homology searches. Different studies have been performed to elucidate miRNAs using de novo prediction methods but due to complex regulatory mechanisms or false positive in silico predictions, not all of them express in reality and sometimes computationally predicted mature transcripts differ from the actual expressed ones. With the availability of a complete genome sequence of Gossypium arboreum, it is important to annotate the genome for both coding and non-coding regions using high confidence transcript evidence, for this cotton species that is highly resistant to various biotic and abiotic stresses. Here we have analyzed the small RNA transcriptome of G. arboreum leaves and provided genome annotation of miRNAs with evidence from miRNA/miRNA∗ transcripts. A total of 446 miRNAs clustered into 224 miRNA families were found, among which 48 families are conserved in other plants and 176 are novel. Four short RNA libraries were used to shortlist best predictions based on high reads per million. The size, origin, copy numbers and transcript depth of all miRNAs along with their isoforms and targets has been reported. The highest gene copy number was observed for gar-miR7504 followed by gar-miR166, gar-miR8771, gar-miR156, and gar-miR7484. Altogether, 1274 target genes were found in G. arboreum that are enriched for 216 KEGG pathways. The resultant genomic annotations are provided in UCSC, BED format.

  5. Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids

    Science.gov (United States)

    Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

    2012-01-01

    Background Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA). Conclusion Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in

  6. Isolation and characterization of resistance and defense gene analogs in cotton (Gossypium barbadense L.)

    Institute of Scientific and Technical Information of China (English)

    GAO; Yulong; GUO; Wangzhen; WANG; Lei

    2006-01-01

    Plant disease resistance gene (R gene) and defense response gene encode some conserved motifs. In the present work, a PCR strategy was used to clone resistance gene analogs (RGAs) and defense gene analogs (DGAs) from Sea-island cotton variety Hai7124 using oligonucleotide primers based on the nucleotide-binding site (NBS) and serine/threonine kinase (STK) in the R-gene and pathogenesis-related proteins of class 2 (PR2) of defense response gene. 79 NBS sequences, 21 STK sequences and 11 DGAs were cloned from disease-resistance cotton. Phylogenic analysis of 79 NBS-RGAs and NBS-RGAs nucleotide sequences of cotton already deposited in GenBank identified one new sub-cluster. The deduced amino acid sequences of NBS-RGAs and STK-RGAs were divided into two distinct groups respectively: Toll/Interleukin-1 receptor (TIR) group and non-TIR group, A group and B group. The expression of RGAs and DGAs having consecutive open reading frame (ORF) was also investigated and it was found that 6 NBS-RGAs and 1 STK-RGA were induced, and 1 DGA was up-regulated by infection of Verticillium dahliae strain VD8. 4 TIR-NBS-RGAs and 4 non-TIR- NBS-RGAs were arbitrarily used as probes for Southern-blotting. There existed 2-10 blotted bands. In addition, since three non-TIR-NBS-RGAs have the same hybridization pattern, we conjecture that these three RGAs form a cluster distribution in the genome.

  7. Uma nova espécie para o gênero Gossypium L. A new tetraploid species of the genus Gossypium

    Directory of Open Access Journals (Sweden)

    Condorcet Aranha

    1969-01-01

    Full Text Available Uma nova espécie é descrita, pertencente ao gênero Gossypium L. O material procede da Serra da Formiga, município de Caicó, Estado do Rio Grande do Norte, onde foi colhido em meio da vegetação natural pela equipe da Seção de Algodão, do Instituto Agronômico, em setembro de 1963 ². Foi denominado Gossypium caicoense, Condorcet, Hermógenes et Imre. Possui 52 cromossomos, como as espécies tetraplóides do gênero. Seu estudo posterior em casa de vegetação permitiu diferenciá-lo das demais espécies tetraplóides e das descrições existentes de algodoeiros indígenas do Brasil. Os dados de um estudo comparativo são discutidos a fim de apontar as diferenças dessa espécie para com as espécies G. hirsutum L. e G. barbadense L. var. brasiliense.A new species of tetraploid cotton, Gossypium caicoense, Condorcet, Hermógenes et Imre, is described. It was collected as a wild component of the natural vegetation in the "Serra da Formiga", near Caicó, State of Rio Grande do Norte, Brazil, by research workers of the Cotton Section of the "Instituto Agronômico do Estado de São Paulo", in September of 1963. Its chromosome number is 2n = 52. It was cultivated and studied in greenhouse conditions at the referred Institute and showed significant morphological differences when compared to the known tetraploid species of the Genus as well as to existing descriptions of Brazilian native types of cotton. A discussion of the data obtained by a comparative study establishes the main morphological differences between G. caicoense and the cultivated species G. hirsutum and G. barbadense var. brasiliense.

  8. A melting pot of Old World begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Shah Nawaz-ul-Rehman

    Full Text Available CLCuD in southern Asia is caused by a complex of multiple begomoviruses (whitefly transmitted, single-stranded [ss]DNA viruses in association with a specific ssDNA satellite; Cotton leaf curl Multan betasatellite (CLCuMuB. A further single ssDNA molecule, for which the collective name alphasatellites has been proposed, is also frequently associated with begomovirus-betasatellite complexes. Multan is in the center of the cotton growing area of Pakistan and has seen some of the worst problems caused by CLCuD. An exhaustive analysis of the diversity of begomoviruses and their satellites occurring in 15 Gossypium species (including G. hirsutum, the mainstay of Pakistan's cotton production that are maintained in an orchard in the vicinity of Multan has been conducted using φ29 DNA polymerase-mediated rolling-circle amplification, cloning and sequence analysis. The non-cultivated Gossypium species, including non-symptomatic plants, were found to harbor a much greater diversity of begomoviruses and satellites than found in the cultivated G. hirsutum. Furthermore an African cassava mosaic virus (a virus previously only identified in Africa DNA-A component and a Jatropha curcas mosaic virus (a virus occurring only in southern India DNA-B component were identified. Consistent with earlier studies of cotton in southern Asia, only a single species of betasatellite, CLCuMuB, was identified. The diversity of alphasatellites was much greater, with many previously unknown species, in the non-cultivated cotton species than in G. hirsutum. Inoculation of newly identified components showed them to be competent for symptomatic infection of Nicotiana benthamiana plants. The significance of the findings with respect to our understanding of the role of host selection in virus diversity in crops and the geographical spread of viruses by human activity are discussed.

  9. A melting pot of Old World begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan.

    Science.gov (United States)

    Nawaz-ul-Rehman, Muhammad Shah; Briddon, Rob W; Fauquet, Claude M

    2012-01-01

    CLCuD in southern Asia is caused by a complex of multiple begomoviruses (whitefly transmitted, single-stranded [ss]DNA viruses) in association with a specific ssDNA satellite; Cotton leaf curl Multan betasatellite (CLCuMuB). A further single ssDNA molecule, for which the collective name alphasatellites has been proposed, is also frequently associated with begomovirus-betasatellite complexes. Multan is in the center of the cotton growing area of Pakistan and has seen some of the worst problems caused by CLCuD. An exhaustive analysis of the diversity of begomoviruses and their satellites occurring in 15 Gossypium species (including G. hirsutum, the mainstay of Pakistan's cotton production) that are maintained in an orchard in the vicinity of Multan has been conducted using φ29 DNA polymerase-mediated rolling-circle amplification, cloning and sequence analysis. The non-cultivated Gossypium species, including non-symptomatic plants, were found to harbor a much greater diversity of begomoviruses and satellites than found in the cultivated G. hirsutum. Furthermore an African cassava mosaic virus (a virus previously only identified in Africa) DNA-A component and a Jatropha curcas mosaic virus (a virus occurring only in southern India) DNA-B component were identified. Consistent with earlier studies of cotton in southern Asia, only a single species of betasatellite, CLCuMuB, was identified. The diversity of alphasatellites was much greater, with many previously unknown species, in the non-cultivated cotton species than in G. hirsutum. Inoculation of newly identified components showed them to be competent for symptomatic infection of Nicotiana benthamiana plants. The significance of the findings with respect to our understanding of the role of host selection in virus diversity in crops and the geographical spread of viruses by human activity are discussed.

  10. Simple Sequence Repeat Genetic Linkage Maps of A-genome Diploid Cotton (Gossypium arboreum)

    Institute of Scientific and Technical Information of China (English)

    Xue-Xia Ma; Bao-Liang Zhou; Yan-Hui Lü; Wang-Zhen Guo; Tian-Zhen Zhang

    2008-01-01

    This study introduces the construction of the first intraspacific genetic linkage map of the A-genome diploid cotton with newly developed simple sequence repeat (SSR) markers using 189 F2 plants derived from the cross of two Asiatic parents were detected using 6 092 pairs of SSR primers. Two-hundred and sixty-eight pairs of SSR pdmers with better polymorphisms were picked out to analyze the F2 population. In total, 320 polymorphic bands were generated and used to construct a linkage map with JoinMap3.0. Two-hundred and sixty-seven loci, Including three phenotypic traits were mapped at a logarithms of odds ratio (LOD) ≥ 3.0 on 13 linkage groups. The total length of the map was 2 508.71 cM, and the average distance between adjacent markers was 9.40 cM. Chromosome assignments were according to the association of linkages with our backbone tetraploid specific map using the 89 similar SSR loci. Comparisons among the 13 suites of orthologous linkage groups revealed that the A-genome chromosomes are largely collinear with the At and Dt sub-genome chromosomes. Chromosomes associated with inversions suggested that allopolyploidization was accompanied by homologous chromosomal rearrangement. The inter-chromosomal duplicated loci supply molecular evidence that the A-genome diploid Asiatic cotton is paleopolyploid.

  11. Cloning, Expression, and Functional Analysis of GhMYB0 Gene from Cotton (Gossypium hirsumtum L.)%棉花GhMYB0基因的克隆、表达分析及功能鉴定

    Institute of Scientific and Technical Information of China (English)

    王诺菡; 喻树迅; 于霁雯; 吴嫚; 马启峰; 李兴丽; 裴文锋; 李海晶; 黄双领; 张金发

    2014-01-01

    MYB类转录因子是植物转录因子最大的家族之一,参与控制植物腺毛细胞的模式和形态建成。本研究利用雷蒙德氏棉(Gossypium raimondii) D5基因组数据库以 AtMYB0(GL1, NM_113708)蛋白为参比序列获得同源基因GrMYB0,从徐州142中克隆了陆地棉的GhMYB0,其开放阅读框长度为843 bp,编码280个氨基酸。经过保守结构域分析和亚细胞定位确定GhMYB0为R2R3-MYB转录因子。qRT-PCR的结果表明, GhMYB0在徐州142开花当天开始高调表达,开花后20 d表达量达高峰;在所有的组织器官中,花中表达量最高,其次为胚珠。转基因功能分析结果表明,在野生型拟南芥(Columbia)中过表达 GhMYB0,使其叶片表皮毛与野生型相比明显减少;该基因在拟南芥突变体 gl-1中过表达,能恢复表皮毛缺失型突变体的表型,说明该基因可能对拟南芥表皮毛的形态建成发挥一定作用,本试验为研究R2R3-MYB转录因子在棉纤维起始和伸长过程中的调控作用提供有力证据。%MYB transcription factor, one of the most important protein families in plants, is involved in the regulation of secon-dary metabolism, morphogenesis of plant, responding to environment stress and plant hormone. In this study, we used D5 genomic bank of Gossypium raimondii as the reference to AtMYB0 (GL1, NM_113708) protein, and cloned the full-length cDNA of a new MYB transcription factor gene GhMYB0 from cotton (Gossypium hirsutum L.). The open reading frame of GhMYB0 is 843 bp in length, which encodes 280 amino acid residues. GhMYB0 was confirmed as R2R3-MYB transcription factor via conserved struc-ture analysis and subcellular localization. The qRT-PCR result indicated that GhMYB0 was highly expressed at the blossom day, its expresssion amount reached the peak after 20 days, with the most amount in flower, then in ovules. Transgenic funtion analysis indicated that GhMYB0 over-expressed in Arabidopsis lines, showing fewer trichomes in leaf

  12. Molecular evolution and phylogenetic analysis of eight COL superfamily genes in group I related to photoperiodic regulation of flowering time in wild and domesticated cotton (Gossypium) species.

    Science.gov (United States)

    Zhang, Rui; Ding, Jian; Liu, Chunxiao; Cai, Caiping; Zhou, Baoliang; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T) module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL) in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson's correlation coefficient (r) of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes/traits during cotton

  13. Resistência de espécies e cultivares de algodão (Gossypium spp. ao herbicida diuron Resistance of cotton species and cultivars to the herbicide diuron

    Directory of Open Access Journals (Sweden)

    N. E. de M. Beltrão

    1983-06-01

    algodão, deve-se levar em consideração, além dos demais fatores já sabidos, o cultivar a ser plantado.To determine the resistance of cotton species and cultivars to the herbicide diuron, a green house test was conducted in Viçosa, Minas Gerais. Genotypes of the species Gossypium: hirsutum latifolium Hutch. ( cv IAC 17 and BR 1 , G. hirsutum marie galante Hutch. (cv Veludo C 17 , and G. barbadense brasiliense Hutch. (cv rim-de-boi were studied . A split plot in a randomized complete block design was utilized in this experiment. The main plots were the herbicid e dosage (0,0 0, 0,0 48, 0,0 96, 0, 35 7, 0, 71 4 an d 1, 42 8 kg a. i. /h a applied to the sand subs trat when the plants had one or two true leaves, and the subplot were the genotypes. Each plot was represented by a wood bos (3 7 x 47 x 11/cm filled with washed sand. The seeds were acid deslinted before planting. To measure the resistance several parameters were observed such as: Phitotoxicity level 15 days after application, plant height, fresh and dry weight of plants, rate of stem elongation and rate of relative growth of aerial part. The results showed that cv IAC 17 and BR -1 were the most resistant to the chemical stress of the herbicide, the cv Veludo C 71 had in termediate resistance being the cv Rim de Boi the kg a . i . /ha was ha rmful to the plants of this cultivar. The results indicates that one should consider the specie and cultivar, before recommend ingthe application of diuron to a cotton field.

  14. Impact of cotton planting date and nitrogen fertilization on Bemisia argentifolii populations

    Institute of Scientific and Technical Information of China (English)

    JIAN-LONGBI; DONG-MEILIN; KEH-SHENLII; NICKC.TOSCANO

    2005-01-01

    The silverleaf whitefly (Bemisia argentifolii Bellows and Perring) is a widely distributed pest of cotton (Gossypium hirsutum L.) and the population levels may be affected by rates of nitrogen fertilization and planting date. Field experiments were conducted to investigate the impact of cotton planting date and nitrogen fertilization on silverleaf whitefly population dynamics. Cotton was planted on 26 April and 8 June, for the early and late plantings, respectively. Nitrogen treatments consisted of soil applications of 0, 112, 168 and 224 kg of nitrogen per hectare. The population levels of adult whiteflies were much higher on early-planted cotton than on late planting. Also, increased numbers of adult whiteflies on both early and late plantings occurred with increasing amounts of applied nitrogen.Applied nitrogen increased seed cotton yields of early plantings but had no effect on the yields of late plantings.

  15. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  16. Molecular Cloning and Characterization of the Actin-depolymerizing Factor Gene in Gossypium barbadense

    Institute of Scientific and Technical Information of China (English)

    MA Zhi-ying; CHI Ji-na; WANG Xing fen; ZHOU Hong-mei; ZHANG Gui-yin

    2008-01-01

    @@ Sea Island cotton (Gossypium barbadense L.) has been highly valued in Verticillium wilt resistance and many fiber qualities including fiber length,strength,and fineness.To identify whether it had some special genes in fiber development in comparison with the upland cotton (G.hirsutum L.),an actin-depolymerizing factor (ADF) gene was cloned and characterized in this research.A 420 bp open reading frame of the cloned gene,termed GbADF1,encoded a protein of 139 amino acids,which included39.57% nonpolar amino acids,17.27% acidic amino acids,15.83% basic amino acids,and 31.92% hydrophobic amino aids.

  17. Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosum

    Indian Academy of Sciences (India)

    Meiying Hou; Caiping Cai; Shuwen Zhang; Wangzhen Guo; Tianzhen Zhang; Baoliang Zhou

    2013-12-01

    Gossypium tomentosum, a wild tetraploid cotton species with AD genomes, possesses genes conferring strong fibers and high heat tolerance. To effectively transfer these genes into Gossypium hirsutum, an entire microsatellite (simple sequence repeat, SSR)-based genetic map was constructed using the interspecific cross of G. hirsutum × G. tomentosum (HT). We detected 1800 loci from 1347 pairs of polymorphic primers. Of these, 1204 loci were grouped into 35 linkage groups at LOD ≥4. The map covers 3320.8 cM, with a mean density of 2.76 cM per locus. We detected 420 common loci (186 in the At subgenome and 234 in Dt) between the HT map and the map of TM-1 (G. hirsutum) and Hai 7124 (G. barbadense; HB map). The linkage groups were assigned chromosome numbers based on location of common loci and the HB map as reference. A comparison of common markers revealed that no significant chromosomal rearrangement exist between G. tomentosum and G. barbadense. Interestingly, however, we detected numerous (33.7%) segregation loci deviating from 3:1 ratio ($P \\lt 0.05$) in HT, mostly clustering on eight chromosomes in the Dt subgenome, with some on three chromosomes in At. Two morphological traits, leaf hairiness and leaf nectarilessness were mapped on chromosomes 6 (A6) and 26 (D12), respectively. The SSR-based map constructed in this study will be useful for further genetic studies on cotton breeding, including mapping loci controlling quantitative traits associated with fiber quality, stress tolerance and developing chromosome segment specific introgression lines from G. tomentosum into G. hirsutum using marker-assisted selection.

  18. Cloning and Expression Analysis of Argininosuccinate Synthetase Gene GhASS1 from Gossypium hirsutum%棉花精氨琥珀酸合成酶基因GhASS1的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    王慧飞; 孙艳香; 冯雪; 张一名; 杨江涛; 马梅芳; 陈光

    2016-01-01

    达的融合蛋白分子量约108 kD,与预期相符,在体外具有精氨琥珀酸合成酶活性;与对照菌相比,pCold-GhASS1工程菌中游离L-Cit含量下降,L-Arg含量上升,且在生长周期中较快进入对数生长期;在含高浓度NaCl的培养基中pCold-GhASS1工程菌表现出更强的生长活力和较高的L-Arg/L-Cit值,显示了其具有较强的L-Cit向L-Arg的代谢流。【结论】从棉花中克隆了植物精氨琥珀酸合成酶基因 cDNA 序列GhASS1,推测其在植物体内可参与植物的生长和耐盐能力的调控。%[Objective]This research was conducted to clone argininosuccinate synthetase gene from Gossypium hirsutum, obtain the fusion protein by prokaryotic expression system, detect the argininosuccinate synthetase activity of the fusion protein, and identify its effects on the growth, salt tolerance, L-citrulline (L-Cit) and L-arginine (L-Arg) content of engineering bacteria, aiming to lay a foundation for this gene’s function and mechanism. [Method]The homologous cDNA fragment, named as GhASS1, was obtained from young leaves of cotton by the querying probe, a putative argininosuccinate synthetase cDNA sequence from Arabidopsis thaliana, in silico cloning and RT-PCR reaction. This fragment’s information was acquired by T/A cloning and sequencing. The genomic DNA and putative protein structure, function domain and homology were analyzed by bioinformatics software, and the phylogenetic tree was built. Its expression responses to salt tolerance were investigated by qRT-PCR. After the open reading frame of GhASS1 was linked to pCold-TF, the fusion expression vector, pCold-GhASS1, was constructed, and then transformed into the bacterial strain of Rosetta(DE3)plysS for expressing the recombination protein under the induction of IPTG. The molecular weight of recombination protein was tested by SDS-PAGE. The enzyme activities and specific activities were determinated by the method of pyrophosphoric

  19. Araneofauna (Arachnida: Araneae en cultivos de algodón (Gossypium hirsutum transgénicos y convencionales en el norte de Santa Fe, Argentina

    Directory of Open Access Journals (Sweden)

    Melina Soledad Almada

    2012-06-01

    Full Text Available Las arañas tienen un valor potencial considerable por su rol depredador de insectos, estas son plagas de la agricultura. Durante la campaña agrícola 2005/06, en INTA Reconquista, Santa Fe (Argentina se estudio la composición de arañas presentes en cultivos de algodón transgénico y convencional, mediante un diseño experimental de bloques completos al azar, con tres repeticiones y tres tratamientos: algodón transgénico Bt (ALBt, algodón convencional sin control químico (ALCSC y con control químico (ALCCC. Semanalmente, se capturaron arañas, con una red entomológica de arrastre, paño vertical de 1m y trampas de caída. Asimismo se recolectaron 1 255 ejemplares (16 familias y 32 especies. Siete familias se presentaron en los tres tratamientos, donde predomino Thomisidae (n=1 051, 84.04% y Araneidae (n=83, 6.64%. El gremio cazadoras por emboscada (n=1 053, 83.91%, “Tejedoras de telas orbiculares” (n=85, 6.77% y “Cazadoras al acecho” (n=53, 4.22% fueron las más abundantes. No hubo diferencias significativas en los índices de diversidad entre tratamientos. Las arañas se presentaron durante todo el ciclo del cultivo, con picos en las semanas de floración y madurez de las capsulas, además la mayor abundancia la encontramos en el ALBt. Este trabajo constituye el primer registro sobre la comunidad de arañas en cultivos de algodón para Argentina.Arachnofauna (Araneae: Araneae in transgenic and conventional cotton crops (Gossypiumhirsutum in the North of Santa Fe, Argentina. Spiders have considerable potential importance for their role as predators to some pests in agricultural systems. The composition of spiders in transgenic and conventional cotton at the Research Station of INTA Reconquista (Santa Fe was studied during the 2005-2006 season. The experiment was a complete randomized block design with three replications and three treatments: transgenic Bt cotton (ALBt, conventional cotton without chemical control (ALCSC, and

  20. Molecular evolution and phylogenetic analysis of eight COL superfamily genes in group I related to photoperiodic regulation of flowering time in wild and domesticated cotton (Gossypium species.

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    Full Text Available Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson's correlation coefficient (r of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes

  1. 棉花微管结合蛋白基因GhCLASP1的克隆与表达分析%Cloning and Expression Analysis of GhCLASP1 Gene in Gossypium hirsutum L.

    Institute of Scientific and Technical Information of China (English)

    朱守鸿; 薛飞; 赵兰杰; 刘永昌; 李艳军; 熊显鹏; 孙杰

    2015-01-01

    CLASP蛋白(CLASPs)是一种能够特异地与微管结合,参与调节微管结构与功能的微管结合蛋白(MAPs),在植物细胞形成、细胞伸长等方面起着关键作用.该研究利用电子克隆结合RT-PCR技术从陆地棉(Gossypium hirsutumL.)中克隆获得1个CLASP基因,命名为GhCLASP1(NCBI登录号为KP742966).序列分析显示,GhCLASP1属于CLASP基因家族,开放阅读框长度为4 188 bp,编码含1 395个氨基酸残基的蛋白;Gh-CLASP1蛋白含有1个HEAT重复结构域和2个CLASP-N端结构域.进化分析表明,GhCLASP1与可可树(Theobroma cacao)CLASP蛋白的亲缘关系最近.qRT-PCR分析表明,GhCLASP1在棉花的根、茎、叶、花及纤维发育的不同时期均有表达,且GhCLASP1基因表达量最大值出现在纤维发育次生壁加厚期(开花后27 d),推测GhCLASP1基因可能对棉花纤维次生壁的形成起着重要的作用.利用本氏烟草(Nicotiana benthamiana)叶片瞬时表达系统对GhCLASP1基因编码的蛋白进行亚细胞定位结果显示,GhCLASP1蛋白定位在细胞膜上.上述结果为进一步研究CLASP基因在棉花中的功能奠定了基础.

  2. The promoter structure differentiation of a MYB transcription factor RLC1 causes red leaf coloration in Empire Red Leaf Cotton under light.

    Science.gov (United States)

    Gao, Zhenrui; Liu, Chuanliang; Zhang, Yanzhao; Li, Ying; Yi, Keke; Zhao, Xinhua; Cui, Min-Long

    2013-01-01

    The red leaf coloration of Empire Red Leaf Cotton (ERLC) (Gossypium hirsutum L.), resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (Gossypium hirsutum L.). Introduction of R2R3-MYB transcription factor Rosea1, the master regulator anthocyanin biosynthesis in Antirrhinum majus, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor RLC1 (Red Leaf Cotton 1) which encodes the ortholog of PAP1/Rosea1 was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of RLC1 from ERLC and CCRI 24 in hairy roots of Antirrhinum majus and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of RLC1 promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced RLC1 expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.

  3. Development of Transgenic Restorer of Cytoplasmic Male Sterility in Upland Cotton

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-de; LI Yue-you

    2002-01-01

    A glutathione S-transferase gene (gst) has been introduced into restorers of cytoplasmic male sterility in upland cotton ( Gossypium hirsutum L. ) using Agrobacterium-mediated transformation. A transviable pollens of hybrid (sterile line×restorer) F1. The hybrid gave 3.6 more bolls per plant, 10.1% less aborted seeds and 10.6% more lint yield when ‘Zheda strong restorer’ was used as male parent than when ‘DES-HAF277’ was. Southern and Northern bloting analysis showed that the foreign gst gene was detectable and highly expressed in ‘Zheda strong restorer’.

  4. RNAi construct of a cytochrome P450 gene CYP82D109 blocks an early step in the biosynthesis of hemigossypolone and gossypol in transgenic cotton plants.

    Science.gov (United States)

    Wagner, Tanya A; Liu, Jinggao; Puckhaber, Lorraine S; Bell, Alois A; Williams, Howard; Stipanovic, Robert D

    2015-07-01

    Naturally occurring terpenoid aldehydes from cotton, such as hemigossypol, gossypol, hemigossypolone, and the heliocides, are important components of disease and herbivory resistance in cotton. These terpenoids are predominantly found in the glands. Differential screening identified a cytochrome P450 cDNA clone (CYP82D109) from a Gossypium hirsutum cultivar that hybridized to mRNA from glanded cotton but not glandless cotton. Both the D genome cotton Gossypium raimondii and A genome cotton Gossypium arboreum possessed three additional paralogs of the gene. G. hirsutum was transformed with a RNAi construct specific to this gene family and eight transgenic plants were generated stemming from at least five independent transformation events. HPLC analysis showed that RNAi plants, when compared to wild-type Coker 312 (WT) plants, had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels in the terminal leaves, respectively. Analysis of volatile terpenes by GC-MS established presence of an additional terpene (MW: 218) from the RNAi leaf extracts. The (1)H and (13)C NMR spectroscopic analyses showed this compound was δ-cadinen-2-one. Double bond rearrangement of this compound gives 7-hydroxycalamenene, a lacinilene C pathway intermediate. δ-Cadinen-2-one could be derived from δ-cadinene via a yet to be identified intermediate, δ-cadinen-2-ol. The RNAi construct of CYP82D109 blocks the synthesis of desoxyhemigossypol and increases the induction of lacinilene C pathway, showing that these pathways are interconnected. Lacinilene C precursors are not constitutively expressed in cotton leaves, and blocking the gossypol pathway by the RNAi construct resulted in a greater induction of the lacinilene C pathway compounds when challenged by pathogens.

  5. Genome-Wide Analysis of the Sus Gene Family in Cotton

    Institute of Scientific and Technical Information of China (English)

    Changsong Zou; Cairui Lu; Haihong Shang; Xinrui Jing; Hailiang Cheng; Youping Zhang; Guoli Song

    2013-01-01

    Sucrose synthase (Sus) is a key enzyme in plant sucrose metabolism.In cotton,Sus (EC 2.4.1.13) is the main enzyme that degrades sucrose imported into cotton fibers from the phloem of the seed coat.This study demonstrated that the genomes of Gossypium arboreum L.,G.raimondii Ulbr.,and G.hirsutum L.,contained 8,8,and 15 Sus genes,respectively.Their structural organizations,phylogenetic relationships,and expression profiles were characterized.Comparisons of genomic and coding sequences identified multiple introns,the number and positions of which were highly conserved between diploid and allotetraploid cotton species.Most of the phylogenetic clades contained sequences from all three species,suggesting that the Sus genes of tetraploid G.hirsutum derived from those of its diploid ancestors.One Sus group (Sus I) underwent expansion during cotton evolution.Expression analyses indicated that most Sus genes were differentially expressed in various tissues and had development-dependent expression profiles in cotton fiber cells.Members of the same orthologous group had very similar expression patterns in all three species.These results provide new insights into the evolution of the cotton Sus gene family,and insight into its members' physiological functions during fiber growth and development.

  6. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton.

    Science.gov (United States)

    Xu, Jun; Xu, Xiaoyang; Tian, Liangliang; Wang, Guilin; Zhang, Xueying; Wang, Xinyu; Guo, Wangzhen

    2016-06-29

    Verticillium dahliae, a destructive and soil-borne fungal pathogen, causes massive losses in cotton yields. However, the resistance mechanism to V. dahilae in cotton is still poorly understood. Accumulating evidence indicates that chitinases are crucial hydrolytic enzymes, which attack fungal pathogens by catalyzing the fungal cell wall degradation. As a large gene family, to date, the chitinase genes (Chis) have not been systematically analyzed and effectively utilized in cotton. Here, we identified 47, 49, 92, and 116 Chis from four sequenced cotton species, diploid Gossypium raimondii (D5), G. arboreum (A2), tetraploid G. hirsutum acc. TM-1 (AD1), and G. barbadense acc. 3-79 (AD2), respectively. The orthologous genes were not one-to-one correspondence in the diploid and tetraploid cotton species, implying changes in the number of Chis in different cotton species during the evolution of Gossypium. Phylogenetic classification indicated that these Chis could be classified into six groups, with distinguishable structural characteristics. The expression patterns of Chis indicated their various expressions in different organs and tissues, and in the V. dahliae response. Silencing of Chi23, Chi32, or Chi47 in cotton significantly impaired the resistance to V. dahliae, suggesting these genes might act as positive regulators in disease resistance to V. dahliae.

  7. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm.

    Science.gov (United States)

    Abdurakhmonov, I Y; Kohel, R J; Yu, J Z; Pepper, A E; Abdullaev, A A; Kushanov, F N; Salakhutdinov, I B; Buriev, Z T; Saha, S; Scheffler, B E; Jenkins, J N; Abdukarimov, A

    2008-12-01

    The narrow genetic base of cultivated cotton germplasm is hindering the cotton productivity worldwide. Although potential genetic diversity exists in Gossypium genus, it is largely 'underutilized' due to photoperiodism and the lack of innovative tools to overcome such challenges. The application of linkage disequilibrium (LD)-based association mapping is an alternative powerful molecular tool to dissect and exploit the natural genetic diversity conserved within cotton germplasm collections, greatly accelerating still 'lagging' cotton marker-assisted selection (MAS) programs. However, the extent of genome-wide linkage disequilibrium (LD) has not been determined in cotton. We report the extent of genome-wide LD and association mapping of fiber quality traits by using a 95 core set of microsatellite markers in a total of 285 exotic Gossypium hirsutum accessions, comprising of 208 landrace stocks and 77 photoperiodic variety accessions. We demonstrated the existence of useful genetic diversity within exotic cotton germplasm. In this germplasm set, 11-12% of SSR loci pairs revealed a significant LD. At the significance threshold (r(2)>/=0.1), a genome-wide average of LD declines within the genetic distance at 30 cM in variety germplasm. Genome wide LD at r(2)>/=0.2 was reduced on average to approximately 1-2 cM in the landrace stock germplasm and 6-8 cM in variety germplasm, providing evidence of the potential for association mapping of agronomically important traits in cotton. We observed significant population structure and relatedness in assayed germplasm. Consequently, the application of the mixed liner model (MLM), considering both kinship (K) and population structure (Q) detected between 6% and 13% of SSR markers associated with the main fiber quality traits in cotton. Our results highlight for the first time the feasibility and potential of association mapping, with consideration of the population structure and stratification existing in cotton germplasm

  8. Primary investigation on GISH-NOR in cotton

    Institute of Scientific and Technical Information of China (English)

    LIU Sanhong; WANG Kunbo; SONG Guoli; WANG Chunying; LIU Fang; LI Shaohui; ZHANG Xiangdi; WANG Yuhong

    2005-01-01

    Six loci of nucleolar organizer region (NOR) were detected in genomic in situ hybridization (GISH) of cotton (Gossypium). NOR was the characteristic of 45S rDNA but could be generated by genomic DNA (gDNA) extracted from Gossypium species as probe. With twice FISH to the same mitotic cell of G. herbaceum or G. hirsutum, number, position and size for NORs generated from 45S rDNA and gDNA were identified largely similar or even the same. The NORs with gDNA as probe were therefore permanently defined as GISH-NORs. GISH-NORs from G. hirsutum and G. raimondii mitotic images were all terminal types. Four and two GISH-NORs from G. herbaceum (var. africanum) were terminal and centromere types, respectively. Six GISH-NORs in G. hirsutum were chromosome mapped with two in A- and four in D-subgenomes. There were also GISH-NORs in mitotic image of G. raimondii with its own gDNA as probe. From mitotic image of G. herbaceum with its own gDNA as probe, GISH-NOR could not be observed but non-whole- recovery of hybridized signals was distinguished. These non-whole-recovery of hybridized signals were detected on long arm terminals of most chromosomes and especially existed in nearly half long arm of a pair of chromosomes in G. herbaceum gDNA probed itself GISH image, which may be possibly induced by low copy genes within the regions rather than inter-subgenomic segment translocations. GISH-NORs in G. hirsutum mitotic images were dominantly observed when gDNAs from D and A genome species were used as probes and block, respectively, but not when the reverse probe and block gDNA from the two diploid progenitor genomes were designed. There may be two speculations to this special phenomenon: rDNA concerted evolution; content of rDNA in genome D more than genome A.

  9. Overexpression of a Foreign Bt Gene in Cotton Affects the Low-Molecular-Weight Components in Root Exudates

    Institute of Scientific and Technical Information of China (English)

    YAN Wei-Dong; SHI Wei-Ming; LI Bao-Hai; ZHANG Min

    2007-01-01

    Most research in the past using genetically modified crops (GM crops) has focused on the ecological safety of foreign gene (i.e., the gene flow), gene products (for example, Bt (Bacillus thuringiensis) protein), and the safety of transgenic food for humans. In this study, changes in both the species and amounts of low-molecular-weight components in cotton (Gossypium hirsutum L.) root exudates after foreign Bt gene overexpression were investigated under different nutritional conditions. Transgenic cotton containing Bt (Bt-cotton), supplemented with all the mineral nutrients, secreted more organic acids than the wild-type cotton (WT). When nitrogen was removed from the full-nutrient solution, the amount of organic acids secretion of Bt-cotton was lesser than that of WT. The roots of the transgenic cotton secreted lesser amounts of amino acids and soluble sugars than the WT roots in the full-nutrient solution. Deficiencies of P and K caused a large increase in the total amino acid and soluble sugar secretions of both Bt-cotton and WT, with larger increases observed in Bt-cotton. Because transferring the foreign Bt gene into cotton can result in alterations in the components of the root exudates, with the effect varying depending on the nutritional status, the cultivation of genetically modified crops, such as Bt-cotton, in soil environments should be more carefully assessed, and the possible effects as a result of the alterations in the root exudate components should be considered.

  10. Survey of cotton (Gossypium sp.) for non-polar, extractable hydrocarbons for use as petrochemicals and liquid fuels

    Science.gov (United States)

    An ontogenetic study of a commercial cotton cultivar (FiberMax 1320), grown dryland, revealed that the dry weight (DW) of leaves reached a maximum at the 1st flower stage, and then declined as bolls opened. However, % pentane soluble hydrocarbon (HC) yield continued to increase throughout the growi...

  11. Genomics-enabled analysis of the emergent disease cotton bacterial blight.

    Directory of Open Access Journals (Sweden)

    Anne Z Phillips

    2017-09-01

    Full Text Available Cotton bacterial blight (CBB, an important disease of (Gossypium hirsutum in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars.

  12. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  13. An optimized gossypol high-performance liquid chromatography assay and its application in evaluation of different gland genotypes of cotton

    Indian Academy of Sciences (India)

    Yingfan Cai; Hong Zhang; Yu Zeng; Jianchuan Mo; Jinku Bao; Chen Miao; Jie Bai; Fang Yan; Fang Chen

    2004-03-01

    A comparative study on gossypol content of various genetic types of pigment glands of cotton varieties was conducted through an optimized high-performance liquid chromatography (HPLC) on a C18 column (4.6 mm × 250 mm, 5 m particle) with methanol–0.5% acetic acid aqueous solution, 90 : 10 (v/v), as mobile phase, at a flow rate of 0.8 ml/min and UV detection at 254 nm. The method was shown to be highly reproducible, with precision [as relative standard deviation (RSD)] and accuracy [as relative mean error (RME)] < 10%, both intra-day and inter-day. Absolute recoveries were > 94%. The results revealed major differences among the different gland varieties or species of cotton, including the special and ordinary glandless and glanded Gossypium hirsutum, G. barbadense, and displayed the precious resources of different glands of extraordinary cotton.

  14. Devil's-claw (Proboscidea louisianica), essential oil and its components : Potential allelochemical agents on cotton and wheat.

    Science.gov (United States)

    Riffle, M S; Waller, G R; Murray, D S; Sgaramello, R P

    1990-06-01

    The potential allelopathic activity of devil's-claw [Proboscidea louisianica (Mill.) Thellung] essential oil and a few of the compounds it contains on the elongation of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) radicles was studied using a Petri dish bioassay. Essential oil was collected by steam distillation using an all-glass-Teflon assembly. Ether extracts of the steam distillates from fresh devil's-claw were inhibitory to cotton and wheat radicle elongation. The following six components of devil's-claw essential oil identified by CGC-MS-DS were inhibitory to cotton and/or wheat at a concentration of 1 mM: vanillin, piperitenone, δ-cadinene,p-cymen-9-ol, α-bisabolol, and phenethyl alcohol.

  15. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton.

    Science.gov (United States)

    Irizarry, I; White, J F

    2017-04-01

    Cotton seeds are frequently treated with acid to remove fibres and reduce seed-transmitted diseases. This process also eliminates beneficial bacteria on the seed surface. The goal of this research was to seek and apply beneficial bacteria to acid delinted cotton seeds to evaluate their growth-promoting and salt stress alleviating effects in seedlings. Bacteria were isolated from non-cultivated plants in the Malvaceae. Seeds were collected from Portia tree (Thespesia populnea) and wild cotton (Gossypium hirsutum) from coastal and arid areas of Puerto Rico. Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans were inoculated onto acid delinted cotton seeds. Bacteria increased cotton seed germination and length of emerging seedling radicles. Cotton seeds were inoculated with B. amyloliquefaciens to evaluate growth and root architecture of non-stressed and salt stressed seedlings. Inoculating cotton seeds with B. amyloliquefaciens led to a greater percentage of seedlings with expanded cotyledons after 8 days, enhanced primary and lateral root growth, and altered root architecture. Similar results were obtained when okra seeds were inoculated with B. amyloliquefaciens. The data supported the hypothesis that non-cultivated plants in the Malvaceae growing in stressful environments possess bacteria that promote growth, alter root architecture and alleviate salt stress of cotton and okra seedlings. This study demonstrated the effects of applying beneficial bacteria on acid delinted cotton seeds. Inoculating seeds with salt stress alleviating bacteria could improve the growth of crop seedlings that are vulnerable to soil salinization. © 2017 The Society for Applied Microbiology.

  16. Identification of differentially expressed genes associated with semigamy in Pima cotton (Gossypium barbadense L. through comparative microarray analysis

    Directory of Open Access Journals (Sweden)

    Stewart J McD

    2011-03-01

    Full Text Available Abstract Background Semigamy in cotton is a type of facultative apomixis controlled by an incompletely dominant autosomal gene (Se. During semigamy, the sperm and egg cells undergo cellular fusion, but the sperm and egg nucleus fail to fuse in the embryo sac, giving rise to diploid, haploid, or chimeric embryos composed of sectors of paternal and maternal origin. In this study we sought to identify differentially expressed genes related to the semigamy genotype by implementing a comparative microarray analysis of anthers and ovules between a non-semigametic Pima S-1 cotton and its doubled haploid natural isogenic mutant semigametic 57-4. Selected differentially expressed genes identified by the microarray results were then confirmed using quantitative reverse transcription PCR (qRT-PCR. Results The comparative analysis between isogenic 57-4 and Pima S-1 identified 284 genes in anthers and 1,864 genes in ovules as being differentially expressed in the semigametic genotype 57-4. Based on gene functions, 127 differentially expressed genes were common to both semigametic anthers and ovules, with 115 being consistently differentially expressed in both tissues. Nine of those genes were selected for qRT-PCR analysis, seven of which were confirmed. Furthermore, several well characterized metabolic pathways including glycolysis/gluconeogenesis, carbon fixation in photosynthetic organisms, sesquiterpenoid biosynthesis, and the biosynthesis of and response to plant hormones were shown to be affected by differentially expressed genes in the semigametic tissues. Conclusion As the first report using microarray analysis, several important metabolic pathways affected by differentially expressed genes in the semigametic cotton genotype have been identified and described in detail. While these genes are unlikely to be the semigamy gene itself, the effects associated with expression changes in those genes do mimic phenotypic traits observed in semigametic plants

  17. ADAPTABILIDADE E ESTABILIDADE FENOTÍPICA DE CULTIVARES DE ALGODOEIRO NO ESTADO DO MATO GROSSO, BRASIL PHENOTYPIC ADAPTABILITY AND STABILITY OF COTTON CULTIVARS IN THE MATO GROSSO STATE, BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristina Schetino Bastos

    2007-09-01

    Full Text Available

    O objetivo deste trabalho foi o de avaliar a adaptabilidade e a estabilidade de cultivares de algodão (Gossypium hirsutum L., utilizando a metodologia proposta por Eberhart & Russell (1966. Para tanto, onze variedades de algodão foram avaliadas em sete locais do Estado do Mato Grosso, Brasil, em dois anos agrícolas (2002/2003 e 2003/2004. O delineamento experimental empregado foi o de blocos casualizados com quatro repetições e as características avaliadas foram a produtividade de algodão em caroço e a porcentagem de fibra. Com relação à produção de algodão em caroço, as cultivares BRS Aroeira, BRS Ipê, BRS Cedro, BRS Jatobá e Delta Opal demonstraram ampla adaptabilidade e estabilidade para as regiões produtoras do Estado. Entretanto, considerando a porcentagem de fibra, não foram encontradas cultivares de algodão com ampla adaptabilidade e estabilidade nos ambientes estudados.

    PALAVRAS-CHAVE: Gossypium hirsutum; fibra; estabilidade.

    The objective of this work was to evaluate the stability and adaptability of cotton (Gossypium hirsutum L. cultivars using the method of Eberhart & Russell (1966. Eleven varieties of cotton were tested at seven locations in Mato Grosso State, Brazil, in two growing seasons (2002/2003 and 2003/2004. The experimental design was the randomized complete blocks with four replications and the evaluated traits were lint percentage and seed cotton yield. For seed cotton yield, BRS Aroeira, BRS Ipê, BRS Cedro, BRS Jatobá and Delta Opal showed broad adaptability and stability in Mato Grosso State. However, for lint percentage there were not found cotton cultivars with both broad adaptability and stability for the studied environments.

  18. Molecular Cloning and Characterization of an Allene Oxide Cyclase Gene Associated with Fiber Strength in Cotton

    Institute of Scientific and Technical Information of China (English)

    WANG Li-man; ZHU You-min; TONG Xiang-chao; HU Wen-jing; CAI Cai-ping; GUO Wang-zhen

    2014-01-01

    Allene oxide cyclase (AOC) is one of the most important enzymes in the biosynthetic pathway of the plant hormone jasmonic acid (JA). AOC catalyzes the conversion of allene oxide into 12-oxo-phytodienoic acid (OPDA), a precursor of JA. Using 28K cotton genome array hybridization, an expressed sequence tag (EST;GenBank accession no. ES792958) was investigated that exhibited signiifcant expression differences between lintless-fuzzless XinWX and linted-fuzzless XinFLM isogenic lines during ifber initiation stages. The EST was used to search the Gossypium EST database (http://www.ncbi.nlm.nih.gov/) for corresponding cDNA sequences encoding full-length open reading frames (ORFs). Identiifed ORFs were conifrmed using transcriptional and genomic data. As a result, a novel gene encoding AOC in cotton (Gossypium hirsutum AOC;GenBank accession no. KF383427) was cloned and characterized. The 741-bp GhAOC gene comprises three exons and two introns and encodes a polypeptide of 246 amino acids. Two homologous copies were identiifed in the tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, and one copy in the diploid cotton species G. herbaceum and G. raimondii. qRT-PCR showed that the GhAOC transcript was abundant in cotton ifber tissues from 8 to 23 days post anthesis (DPA), and the expression proifles were similar in the two cultivated tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, with a higher level of transcription in the former. One copy of GhAOC in tetraploid cotton was localized to chromosome 24 (Chr. D8) using the subgenome-speciifc single nucleotide polymorphism (SNP) marker analysis, which co-localized GhAOC to within 10 cM of a ifber strength quantitative trait locus (QTL) reported previously. GhAOC was highly correlated with ifber quality and strength (P=0.014) in an association analysis, suggesting a possible role in cotton ifber development, especially in secondary cell wall thickening.

  19. 棉花遗传作图用SSR标记的开发%Development of SSR Markers towards Genetic Mapping in Cotton (GossyPium hirsutum L. )

    Institute of Scientific and Technical Information of China (English)

    Siva P. KUMPATLA; Erin C. HORNE; Manali R. SHAH; Manju GUPTA; Steven A. THOMPSON

    2002-01-01

    @@ Availability of informative molecular markers is a prerequisite for genetic mapping and marker assisted selection projects. Micro-satellites or Simple Sequence Repeat (SSR) markers are PCR-based and currently the most widely used marker system in the plant molecular genetics community due to their high degree of polymorphism, random distribution throughout the genome and their suitability for high throughput genotyping formats.

  20. High residue cover crops alone or with strategic tillage to manage glyphosate-resistant palmer amaranth (amaranthus palmeri) in Southeastern cotton (gossypium hirsutum)

    Science.gov (United States)

    Glyphosate-resistant (GR) Palmer amaranth (Amaranthus palmeri S. Wats) is redefining row crop weed management in the Southeast due to its widespread distribution, high competitive ability, copious seed production, and resilience to standard weed management programs. Herbicides alone are failing to p...

  1. Quantification of the effects of management factors on maize(Zea mays L. ) and cotton (Gossypium hirsutum L. ) residues decomposition rate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Efforts to quantify management effects on decomposition rate of added substrates to the soil is important especially where such information is to be used for prediction in mathematical or simulation models. Using data from a short-term (60 days) greenhouse simulation study, a procedure for quantdying effects of management on SOM and substrate decomposition is presented. Using microbial growth rate u ( q ),microbial efficiency in substrate utilization e (q), specific decomposition rates for added plant residues to two contrasting soils, red earth (Ferrasol) and black earth (Acrisol) were estimated. The treatments included straw addition + buried, (T1); straw addition + mineral N (T2); and straw addition + tillage, (T3). Sampling was done every 15 days. Straw decomposition rate was affected by external mineral N sources (Urea 46% N). Addition of an external N source significantly increased decomposition rates. The study could not, however, fully account for the effect of tillage on residues because of the limited effect of the tillage method due to the artificial barrier to mechanical interference supplied by the mesh bags. It is concluded that using few decomposer parameters, decomposition rates and consequently SOM trends in a soil system can be monitored and quantification of the influence of perturbations on decomposition rate of added substrates possible.

  2. Analyzing blends of herbivore-induced volatile organic compounds with factor analysis: revisiting "cotton plant, Gossypium hirsutum L., defense in response to nitrogen fertilization".

    Science.gov (United States)

    Chen, Yigen

    2013-04-01

    Many herbivorous, predaceous, and parasitic insects use constitutive and herbivore-induced volatile organic compounds (VOCs) to locate their respective host plant, prey, and hosts. Multivariate statistical tools (e.g., factor analysis) are recognized increasingly as an appropriate approach for analyzing intercorrelated data such as presence/absence or quantities of VOCs. One challenge of implementing factor analysis is determining how many new variables (factors) to retain in the final analysis. I demonstrate a method proposed by Johnson and Wichern to mitigate this problem by using VOC data published in Chen et al. The advantage of using loading (or weight) transformation in interpretation of new variables was also illustrated in the example. Factor analysis found similar nitrogen fertilization effects on VOC production as those in Chen et al. Similarities were 1) nitrogen fertilization interacted with herbivore damage status on VOC production: at low nitrogen (42 ppm) level, beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), damage elicited increases in VOC production, whereas at high nitrogen (196 ppm) VOC production was suppressed; 2) nitrogen fertilization did not affect limonene, alpha-pinene, and beta-pinene production. The seven individual VOCs significantly affected by nitrogen fertilization in Chen et al. were (Z)-3-hexenal, (E)-2-hexenal, (E)-beta-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), alpha-bergamotene, gamma-bisabolene, and bisabolol, of which only three ((E)-beta-farnesene, gamma-bisabolene, and bisabolol) weighed heavily on factor 1 in the current study.

  3. Isolation and characterization of gene sequences expressed in cotton fiber

    Directory of Open Access Journals (Sweden)

    Taciana de Carvalho Coutinho

    2016-06-01

    Full Text Available ABSTRACT Cotton fiber are tubular cells which develop from the differentiation of ovule epidermis. In addition to being one of the most important natural fiber of the textile group, cotton fiber afford an excellent experimental system for studying the cell wall. The aim of this work was to isolate and characterise the genes expressed in cotton fiber (Gossypium hirsutum L. to be used in future work in cotton breeding. Fiber of the cotton cultivar CNPA ITA 90 II were used to extract RNA for the subsequent generation of a cDNA library. Seventeen sequences were obtained, of which 14 were already described in the NCBI database (National Centre for Biotechnology Information, such as those encoding the lipid transfer proteins (LTPs and arabinogalactans (AGP. However, other cDNAs such as the B05 clone, which displays homology with the glycosyltransferases, have still not been described for this crop. Nevertheless, results showed that several clones obtained in this study are associated with cell wall proteins, wall-modifying enzymes and lipid transfer proteins directly involved in fiber development.

  4. Resistance allele frequency to bt cotton in field populations of helicoverpa armigera (Lepidoptera: Noctuidae) in China.

    Science.gov (United States)

    Liu, Fengyi; Xu, Zhiping; Chang, Juhua; Chen, Jin; Meng, Fengxia; Zhu, Yu Cheng; Shen, Jinliang

    2008-06-01

    Resistance evolution in target insects to Bacillus thurningiensis (Bt) cotton, Gossypium hirsutum L., is a main threat to Bt cotton technology. An increasing trend of population density of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) has been observed since 2001 in Qiuxian County (Hebei, China), where Bt cotton has been planted dominantly since 1998. This region was selected in 2006 and 2007 for estimating frequency of gene alleles conferring resistance to Bt cotton by screening the F1 progeny from single-pair cross between field-collected male and laboratory female of the Bt-resistant strain of H. armigera (F1 screen). F1 offspring from each single-pair line were screened for resistance alleles based on larval growth, development, and survival on Bt cotton leaves for 5 d. Two-year results indicated that approximately equal to 20% of field-collected males carried resistance alleles. The conservative estimate of the resistance allele frequency was 0.094 (95% CI, 0.044-0.145) for 2006 and 0.107 (95% CI, 0.055-0.159) for 2007. This is the first report of resistance allele frequency increase to such a high level in the field in China. Long-term adoption of Bt sprays, dominant planting of single-toxin-producing Bt cotton, and lack of conventional cotton refuge system might accelerate the resistance evolution in the region.

  5. Quantitative Trait Loci Mapping of Leaf Morphological Traits and Chlorophyll Content in Cultivated Tetraploid Cotton

    Institute of Scientific and Technical Information of China (English)

    Xian-Liang SONG; Wang-Zhen GUO; Zhi-Guo HAN; Tian-Zhen ZHANG

    2005-01-01

    Genetic mapping provides a powerful tool for quantitative trait loci (QTL) analysis at the molecular level. A simple sequence repeat (SSR) genetic map containing 590 markers and a BC1 population from two cultivated tetraploid cotton (Gossypium hirsutum L.) cultivars, namely TM-1 and Hai 7124 (G.barbadense L.), were used to map and analyze QTL using the composite interval mapping (CIM) method.Thirty one QTLs, 10 for lobe length, 13 for lobe width, six for lobe angle, and two for leaf chlorophyll content,were detected on 15 chromosomes or linkage groups at logarithm of odds (LOD) ≥ 2.0, of which 15 were found for leaf morphology at LOD ≥.3.0. The genetic effects of the QTL were estimated. These results are fundamental for marker-assisted selection (MAS) of these traits in tetraploid cotton breeding.

  6. [Effects of fertilization on cotton growth and nitrogen use efficiency under salinity stress].

    Science.gov (United States)

    Dai, Jian-Long; Lu, He-Quan; Li, Zhen-Huai; Duan, Liu-Sheng; Dong, He-Zhong

    2013-12-01

    Cotton (Gossypium hirsutum) was raised at different salinity levels (0, 0.15% and 0.30%) by irrigating with fresh- or sea-water. The effects of fertilization (N, NK, NP and NPK) on plant growth, nitrogen (N) uptake and N use efficiency were studied. The results showed that salinity and fertilization both affected the biomass, agronomic N use efficiency, N bioavailability and nitrogen accumulation of plants, and significant interaction was observed between the two factors. Fertilization could improve N use efficiency and nitrogen accumulation of plants under salinity stress, and significantly promoted the cotton yield. Among the fertilization treatments, N combined with P and K had the best effect. The benefit of fertilization was better under low salinity (0.15%) than under moderate salinity (0.3%).

  7. Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress.

    Science.gov (United States)

    Guo, Jinyan; Shi, Gongyao; Guo, Xiaoyan; Zhang, Liwei; Xu, Wenying; Wang, Yumei; Su, Zhen; Hua, Jinping

    2015-09-01

    Salinity stress is one of the most devastating abiotic stresses in crop plants. As a moderately salt-tolerant crop, upland cotton (Gossypium hirsutum L.) is a major cash crop in saline areas and a suitable model for salt stress tolerance research. In this study, we compared the transcriptome changes between the salt-tolerant upland cotton cultivar Zhong 07 and salt-sensitive cultivar Zhong G5 in response to NaCl treatments. Transcriptional regulation, signal transduction and secondary metabolism in two varieties showed significant differences, all of which might be related to mechanisms underlying salt stress tolerance. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying salt tolerance. Based on our findings, we proposed several candidate genes that might be used to improve salt tolerance in upland cotton. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Activity of the truncated promoter of pollen-specific G9 gene of cotton and the transgenic recessive nuclei-sterile tobacco

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A 557 bp fragment from the translation initiation site of the G9 gene expressed in maturing pollens of cotton was isolated from genomic DNA of upland cotton (Gossypium hirsutum L.) cv. “Zhongkang 17”, and two expression vectors for plant transformation were constructed via fusing this fragment with β-glucuronidase gene (Gus) and cytotoxin gene Barnase. The promoter activity of this fragment was demonstrated via transient expression of Gus gene in cotton and by the integrated expression of Barnase gene in tobacco. This promoter can initiate the expression of exogenous gene specifically and efficiently in plant pollen. The transgenic tobacco plant containing G9-Barnase fusion gene showed the characteristics of recessive nuclei-sterility.

  9. Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton.

    Science.gov (United States)

    Zhao, Ge; Song, Yun; Wang, Caixiang; Butt, Hamama Islam; Wang, Qianhua; Zhang, Chaojun; Yang, Zuoren; Liu, Zhao; Chen, Eryong; Zhang, Xueyan; Li, Fuguang

    2016-12-01

    Jasmonates control many aspects of plant biological processes. They are important for regulating plant responses to various biotic and abiotic stresses, including drought, which is one of the most serious threats to sustainable agricultural production. However, little is known regarding how jasmonate ZIM-domain (JAZ) proteins mediate jasmonic acid signals to improve stress tolerance in cotton. This represents the first comprehensive comparative study of TIFY transcription factors in both diploid A, D and tetraploid AD cotton species. In this study, we identified 21 TIFY family members in the genome of Gossypium arboretum, 28 members from Gossypium raimondii and 50 TIFY genes in Gossypium hirsutum. The phylogenetic analyses indicated the TIFY gene family could be divided into the following four subfamilies: TIFY, PPD, ZML, and JAZ subfamilies. The cotton TIFY genes have expanded through tandem duplications and segmental duplications compared with other plant species. Gene expression profile revealed temporal and tissue specificities for TIFY genes under simulated drought conditions in Gossypium arboretum. The JAZ subfamily members were the most highly expressed genes, suggesting that they have a vital role in responses to drought stress. Over-expression of GaJAZ5 gene decreased water loss, stomatal openings, and the accumulation of H2O2 in Arabidopsis thaliana. Additionally, the results of drought tolerance assays suggested that this subfamily might be involved in increasing drought tolerance. Our study provides new data regarding the genome-wide analysis of TIFY gene families and their important roles in drought tolerance in cotton species. These data may form the basis of future studies regarding the relationship between drought and jasmonic acid.

  10. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Shen-Jie; Peng, Yi-Shu; Liu, Rui-Na; Chen, Xi; Zhao, Ping; Xu, Ping; Zhu, Jian-Bo; Jiao, Gai-Li; Pei, Yan; Xiang, Cheng-Bin

    2016-01-01

    Drought and salinity are two major environmental factors limiting crop production worldwide. Improvement of drought and salt tolerance of crops with transgenic approach is an effective strategy to meet the demand of the ever-growing world population. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor, has been demonstrated to significantly improve drought tolerance in Arabidopsis, tobacco, tall fescue and rice. Here we report that AtHDG11 also confers drought and salt tolerance in upland cotton (Gossypium hirsutum) and woody plant poplar (Populus tomentosa Carr.). Our results showed that both the transgenic cotton and poplar exhibited significantly enhanced tolerance to drought and salt stress with well-developed root system. In the leaves of the transgenic cotton plants, proline content, soluble sugar content and activities of reactive oxygen species-scavenging enzymes were significantly increased after drought and salt stress compared with wild type. Leaf stomatal density was significantly reduced, whereas stomatal and leaf epidermal cell size were significantly increased in both the transgenic cotton and poplar plants. More importantly, the transgenic cotton showed significantly improved drought tolerance and better agronomic performance with higher cotton yield in the field both under normal and drought conditions. These results demonstrate that AtHDG11 is not only a promising candidate for crops improvement but also for woody plants.

  11. A new synthetic allotetraploid (A1A1G2G2 between Gossypium herbaceum and G. australe: bridging for simultaneously transferring favorable genes from these two diploid species into upland cotton.

    Directory of Open Access Journals (Sweden)

    Quan Liu

    Full Text Available Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1, has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2, possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization.

  12. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH.

    Science.gov (United States)

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution.

  13. Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton.

    Directory of Open Access Journals (Sweden)

    Liping Ke

    Full Text Available Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel. In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L and bentazon (4.2 µmol. A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.

  14. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis).

    Science.gov (United States)

    de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  15. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda and cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Raquel Sampaio Oliveira

    2016-02-01

    Full Text Available Gossypium hirsutum (commercial cooton is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized with PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold. Also, a significant reduction of Anthonomus grandis emerging adults (up to 60% was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda and the Coleopteran (A. grandis insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  16. Effects of nematicides on cotton root mycobiota.

    Science.gov (United States)

    Baird, R E; Carling, D E; Watson, C E; Scruggs, M L; Hightower, P

    2004-02-01

    Baseline information on the diversity and population densities of fungi collected from soil debris and cotton (Gossypium hirsutum L.) roots was determined. Samples were collected from Tifton, GA, and Starkville, MS containing cotton field soil treated with the nematicides 1,3-dichloroproprene (fumigant) and aldicarb (granules). A total of 10,550 and 13,450 fungal isolates were collected from these two study sites, respectively. Of this total, 34 genera of plant pathogenic or saprophytic species were identified. Pathogenic root fungi included Fusarium spp. (40% of all isolations), Macrophomina, Pythium, Rhizoctonia, and Sclerotium. Fusarium and Rhizoctonia were the most common fungal species identified and included F. oxysporum, F. verticillioides and F. solani, the three Fusarium species pathogenic on cotton plants. Population densities of Fusarium were not significantly different among locations or tissue types sampled. Macrophomina was isolated at greater numbers near the end of the growing seasons. Anastomosis groups of R. solani isolated from roots and soil debris included AG-3, -4, -7, 2-2, and -13 and anastomosis groups of binucleate Rhizoctonia included CAG-2, -3, and -5. Occurrences and frequency of isolations among sampling dates were not consistent. Fluctuations in the frequency of isolation of Rhizoctonia did not correspond with changes in frequency of isolation of the biological control fungus, Trichoderma. When individual or pooled frequencies of the mycobiota were compared to nematicide treatments, no specific trends occurred between treatments, application methods or rates. Results from this study show that use of 1,3-D and aldicarb in cotton fields does not significantly impact plant pathogenic fungi or saprophytic fungal populations. Thus cotton producers need not adjust seedling disease control measures when these two nematicides are used.

  17. The promoter structure differentiation of a MYB transcription factor RLC1 causes red leaf coloration in Empire Red Leaf Cotton under light.

    Directory of Open Access Journals (Sweden)

    Zhenrui Gao

    Full Text Available The red leaf coloration of Empire Red Leaf Cotton (ERLC (Gossypium hirsutum L., resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (Gossypium hirsutum L.. Introduction of R2R3-MYB transcription factor Rosea1, the master regulator anthocyanin biosynthesis in Antirrhinum majus, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor RLC1 (Red Leaf Cotton 1 which encodes the ortholog of PAP1/Rosea1 was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of RLC1 from ERLC and CCRI 24 in hairy roots of Antirrhinum majus and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of RLC1 promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced RLC1 expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.

  18. Biological traits and Life table parameters A and B biotype of Bemisia tabaci (Genn. on cotton and rapeseed

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Samih

    2014-06-01

    Full Text Available The aim of this work was to construct life table of Bemisia tabaci (Gen. A and B (silverleaf whitefly B. argentifolii Bellows and Perring biotype (Hem.: Aleyrodidae on two host plants; cotton, (Gossypium hirsutum L. and rapeseed, (Brassica napus L.. Experiments were conducted in a growth chamber under 24 ± 2ºC, 55±3% RH and 16:8 (L:D h photoperiod on caged plants of cotton G. hirsutum L. (Varamin 76 variety and rapeseed B. napus L. (global variety. The intrinsic rate of natural increase (r m, net reproductive rate (R0 and mean generation time (T for B. tabaci A biotype was 0.1010 females per female per day, 18.4075 females per female and 30.079 day (d on cotton; 0.1286, 30.6760 and 26.77 d on rapeseed; and for B biotype (B. argentifolii those above respective parameters averaged 0.1033, 27.8426 and 32.74 d on cotton and 0.1750, 40.75 and 21.27 d on rapeseed. The total survival of A and B biotype from the egg to adult on cotton was 22.08 and 22.25, respectively. The results showed significant differences between the two biotype reared on either host plant for gross reproductive rate (GRR, net reproductive rate (R0 or NRR, intrinsic rates of increase (r m, finite rate of increase (λ, doubling time (DT and mean generation times (Tc. To obtain a better understanding of the biology of these biotypes, Stable age distribution (Cx and some other aspects of life history related to their hosts were also studied. Based upon the results, both biotypes showed a greater reproduction capacity on rapeseed than on cotton. Thus, rapeseed was more suitable host than cotton for two biotypes and this was an important factor in host plant selection for optimizing the control strategies of these major pests.

  19. [Homologous simple sequence repeats (SSRs) analysis in tetraploid (AD1) and diploid (A₂, D₅) genomes of Gossypium].

    Science.gov (United States)

    Gaofei, Sun; Shoupu, He; Zhaoe, Pan; Xiongming, Du

    2015-02-01

    Simple sequence repeats (SSRs)are a class of repetitive DNA sequences, which are commonly used for genome analysis. Comparison of the homologous SSRs among different genomes is helpful to understand the evolutionary process in relative species. In this study, SSR scanning was performed to investigate their distribution and length variation among the genomes of G. raimondii (D₅), G. arboretum (A₂) and G. hirsutum (AD₁). The results demonstrated that the distribution of SSRs in A genome was very similar with that in D genome, while the length variation of homologous SSRs between A and AD genome was more conserved than that between D and AD genome. Compared with SSRs in AD genome, the number of SSRs with longer motif length in A genome was about five times of those with shorter motif length, while it was about three times in D genome. This implied that the length variation rates of homologous SSRs between diploid cotton and tetraploid cotton were different during the parallel evolution due to the subgenome fusion, and the motif length of most SSRs in tetraoploid genome tended to become shorter than homologous SSRs in diploid genome during the process of evolution. This study comprehensively compared the SSRs in three cotton genomes and revealed the significant difference among them, providing a foundation for further evolutionary study of Gossypium genome.

  20. Molecular and Biochemical Evidence for Phenylpropanoid Synthesis and Presence of Wall-linked Phenolics in Cotton Fibers

    Institute of Scientific and Technical Information of China (English)

    Ling Fan; Wei-Jun Shi; Wen-Ran Hu; Xiao-Yan Hao; Dong-Mei Wang; Hui Yuan; Hong-Ying Yan

    2009-01-01

    The mature cotton (Gossypium hirsutum L.) fiber is a single cell with a typically thickened secondary cell wall. The aim of this research was to use molecular, spectroscopic and chemical techniques to investigate the possible occurrence of previously overlooked accumulation of phenolics during secondary cell wall formation in cotton fibers. Relative quantitative reverse transcription-polymerase chain reaction analysis showed that GhCAD6 and GhCAD1 were predominantly expressed among seven gene homologs, only GhCAD6 was up-regulated during secondary wall formation in cotton fibers. Phylogenic analysis revealed that GhCAD6 belonged to Class I and was proposed to have a major role in monolignol biosynthesis, and GhCADI belonged to Class III and was proposed to have a compensatory mechanism for monolignol biosynthesis. Amino acid sequence comparison showed that the cofactor binding sites of GhCADs were highly conserved with high similarity and identity to bona fide cinnamyl alcohol dehydrogenases. The substrate binding site of GhCADI is different from GhCAD6. This difference was confirmed by the different catalytic activities observed with the enzymes. Cell wall auto-fluorescence, Fourier transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) and chemical analyses confirmed that phenolic compounds were bound to the cell walls of mature cotton fibers. Our findings may suggest a potential for genetic manipulation of cotton fiber properties, which are of central importance to agricultural, cotton processing and textile industries.

  1. Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress.

    Science.gov (United States)

    Wu, Zhansheng; Yue, Haitao; Lu, Jianjiang; Li, Chun

    2012-06-01

    A plant growth-promoting rhizobacterial strain Rs-2 with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was isolated from salinized soils using ACC as the sole nitrogen source. Based on its physiological and biochemical properties and 16S rDNA sequence analysis, this strain was identified as Raoultella planticola. The maximum value of nitrogen fixation, dissolved phosphorus and dissolved potassium of Rs-2 were 148.8 μg/ml, 205.0 and 4.31 mg/l, respectively within 192 h liquid culture. The germination rate of cotton seeds (Gossypium hirsutum L.) inoculated with Rs-2 (Rs-2-S) was enhanced by 29.5 % in pot experiments compared with that of the control (CK-S). Subsequently, individual plant height, fresh weight and dry weight of cotton seedlings in Rs-2-S treatment increased by 15.0, 33.7 and 33.3 %, respectively, compared with those in CK-S treatment. Statistical analysis showed that the inoculums of Rs-2 promoted significantly (P growth. Further analysis showed that Rs-2 reduced the quantities of ethylene and abscisic acid in cotton seedlings, and increased indole acetic acid content in cotton seedlings under salinity stress. The accumulation of N, P, K(+), Ca(2+) and Fe(2+) in the cotton plants was increased significantly (P promoting cotton growth and alleviating salinity stress.

  2. Screening cotton genotypes for seedling drought tolerance

    Directory of Open Access Journals (Sweden)

    Penna Julio C. Viglioni

    1998-01-01

    Full Text Available The objectives of this study were to adapt a screening method previously used to assess seedling drought tolerance in cereals for use in cotton (Gossypium hirsutum L. and to identify tolerant accessions among a wide range of genotypes. Ninety genotypes were screened in seven growth chamber experiments. Fifteen-day-old seedlings were subjected to four 4-day drought cycles, and plant survival was evaluated after each cycle. Three cycles are probably the minimum required in cotton work. Significant differences (at the 0.05 level or lower among entries were obtained in four of the seven experiments. A "confirmation test" with entries previously evaluated as "tolerant" (high survival and "susceptible" (low survival was run. A number of entries duplicated their earlier performance, but others did not, which indicates the need to reevaluate selections. Germplasms considered tolerant included: `IAC-13-1', `IAC-RM4-SM5', `Minas Sertaneja', `Acala 1517E-1' and `4521'. In general, the technique is simple, though time-consuming, with practical value for screening a large number of genotypes. Results from the screening tests generally agreed with field information. The screening procedure is suitable to select tolerant accessions from among a large number of entries in germplasm collections as a preliminary step in breeding for drought tolerance. This research also demonstrated the need to characterize the internal lack of uniformity in growth chambers to allow for adequate designs of experiments.

  3. Flight attraction of Spodoptera littoralis (Lepidoptera, Noctuidae to cotton headspace and synthetic volatile blends

    Directory of Open Access Journals (Sweden)

    Felipe eBorrero-Echeverry

    2015-06-01

    Full Text Available The insect olfactory system discriminates odor signals of different biological relevance, which drive innate behavior. Identification of stimuli that trigger upwind flight attraction towards host plants is a current challenge, and is essential in developing new, sustainable plant protection methods, and for furthering our understanding of plant-insect interactions. Using behavioral, analytical and electrophysiological studies, we here show that both females and males of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera, Noctuidae, use blends of volatile compounds to locate their host plant, cotton, Gossypium hirsutum (Malvales, Malvaceae. Female S. littoralis were engaged in upwind orientation flight in a wind tunnel when headspace collected from cotton plants was delivered through a piezoelectric sprayer. Although males took off towards cotton headspace significantly fewer males than females flew upwind towards the sprayed headspace. Subsequent assays with antennally active synthetic compounds revealed that a blend of nonanal, (Z-3 hexenyl acetate, (E-β-ocimene, and (R-(+-limonene was as attractive as cotton headspace to females and more attractive to males. DMNT and (R-(--linalool, both known plant defense compounds may have reduced the flight attraction of both females and males; more moths were attracted to blends without these two compounds. Our findings provide a platform for further investigations on host plant signals mediating innate behavior, and for the development of novel insect plant protection strategies against S. littoralis.

  4. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure.

    Science.gov (United States)

    Tabashnik, Bruce E; Fabrick, Jeffrey A; Henderson, Scottie; Biggs, Robert W; Yafuso, Christine M; Nyboer, Megan E; Manhardt, Nancy M; Coughlin, Laura A; Sollome, James; Carrière, Yves; Dennehy, Timothy J; Morin, Shai

    2006-10-01

    Transgenic crops producing toxins from the bacterium Bacillus thuringiensis (Bt) kill insect pests and can reduce reliance on insecticide sprays. Although Bt cotton (Gossypium hirsutum L.) and Bt corn (Zea mays L.) covered 26 million ha worldwide in 2005, their success could be cut short by evolution of pest resistance. Monitoring the early phases of pest resistance to Bt crops is crucial, but it has been extremely difficult because bioassays usually cannot detect heterozygotes harboring one allele for resistance. We report here monitoring of resistance to Bt cotton with DNA-based screening, which detects single resistance alleles in heterozygotes. We used polymerase chain reaction primers that specifically amplify three mutant alleles of a cadherin gene linked with resistance to Bt cotton in pink bollworm, Pectinophora gossypiella (Saunders), a major pest. We screened DNA of 5,571 insects derived from 59 cotton fields in Arizona, California, and Texas during 2001-2005. No resistance alleles were detected despite a decade of exposure to Bt cotton. In conjunction with data from bioassays and field efficacy tests, the results reported here contradict predictions of rapid pest resistance to Bt crops.

  5. Efficacy of Fumigant Nematicides to Control Hoplolaimus columbus on Cotton.

    Science.gov (United States)

    Noe, J P

    1990-10-01

    Four rates of methyl bromide (Mbr) (16.8, 33.6, 67,2, and 134.4 kg a.i./ha) and one rate of 1,3-dichloropropene (1,3-D) (28.1 liters a.i./ha) were evaluated over 2 years for control of Hoplolaimus columbus on cotton. All nematicide treatments were applied through a tarpless subsoiler-bedder prior to planting cotton, Gossypium hirsutum cv. Dehapine 90. Nematode population densities were monitored before and after treatment, at midseason, and at harvest, and yields were measured at maturity. Soil fertility variables (pH, P, K, Ca, Mg) were measured for each plot. Cotton yields were significantly increased by treatment with 1,3-D in 1988 and by all nematicidal treatments in 1989. Levels of nematode control varied from year to year among treatments. The responses of H. columbus numbers to rate of Mbr were best described by quadratic regression models. Levels of soil calcium and magnesium were significant factors in a multiple regression model relating a measure of control efficacy to rates of Mbr.

  6. Effect of Crude Brassinosteroid Extract on Growth and Biochemical Changes of Gosssypium hirsutum L. and Vigna mungo L.

    Directory of Open Access Journals (Sweden)

    Syed Ali Fathima M

    2011-12-01

    Full Text Available The present study was aimed to examine the influence of BRs on seed germination and seedling growth in Gossypium hirsutum L. Var Svpr 2 and Vigna mungo (L. Hepper Var T9. The application of BRs on seed germination of Gossypium hirsutum increased the rate of germination considerably with varied percentage from 60.4 to 99. Vigna mungo seed also showed the varied percentage of germination from 56.8 to 80.1. Both the plants exhibited high percentage of vegetative growth such as shoot length, fresh weight, dry weight and leaf area on 3% of BR supplementation. The amount of chlorophyll a, b and total chlorophyll increased under BR treatments. Among the concentration, 3% BRs caused maximum effect than the other tested concentrations. High percentage of starch 53% and 31 % was observed in Gossypium and Vigna mungo respectively. The results of the present study shows that 3% BRs promotes the growth rate of Gossypium hirsutum L. Var Svpr 2 and Vigna mungo (L. Hepper Var. T9. The results of the present study supplemented to the previous observations and practical utilization of the new steroidal group of phytohormones for large scale production of the economically important crops Gossypium hirsutum L. Var Svpr 2 and Vigna mungo (L. Hepper Var. T9.

  7. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense.

    Directory of Open Access Journals (Sweden)

    Jinhuan Pang

    Full Text Available Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species. These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.

  8. Isolation of a cotton NADP(H oxidase homologue induced by drought stress

    Directory of Open Access Journals (Sweden)

    NEPOMUCENO ALEXANDRE LIMA

    2000-01-01

    Full Text Available The aim of this study was to identify and isolate genes that are differentially expressed in four selected cotton (Gossypium hirsutum L. genotypes contrasting according to their tolerance to water deficit. The genotypes studied were Siokra L-23, Stoneville 506, CS 50 and T-1521. Physiological, morphological and developmental changes that confer drought tolerance in plants must have a molecular genetic basis. To identify and isolate the genes, the mRNA Differential Display (DD technique was used. Messenger RNAs differentially expressed during water deficit were identified, isolated, cloned and sequenced. The cloned transcript A12B15-5, a NADP(H oxidase homologue, was up regulated only during the water deficit stress and only in Siokra L-23, a drought tolerant genotype. Ribonuclease protection assay confirmed that transcription.

  9. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Science.gov (United States)

    Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A

    2014-01-01

    The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these

  10. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  11. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields.

    Directory of Open Access Journals (Sweden)

    Shannon Heuberger

    Full Text Available BACKGROUND: Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt cotton is planted on millions of hectares annually and is a potential source of transgene flow. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L. seed production fields (some transgenic for herbicide resistance, some not for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. CONCLUSIONS/SIGNIFICANCE: A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow.

  12. Spatiotemporal patterns and dispersal of stink bugs (Heteroptera: Pentatomidae) in peanut-cotton farmscapes.

    Science.gov (United States)

    Tillman, P G; Northfield, T D; Mizell, R F; Riddle, T C

    2009-08-01

    In the southeast United States, a field of peanuts, Arachis hypogaea L., is often closely associated with a field of cotton, Gossypium hirsutum L. The objective of this 4-yr on-farm study was to examine and compare the spatiotemporal patterns and dispersal of the southern green stink bug, Nezara viridula L., and the brown stink bug, Euschistus servus (Say), in six of these peanut-cotton farmscapes. GS(+) Version 9 was used to generate interpolated estimates of stink bug density by inverse distance weighting. Interpolated stink bug population raster maps were constructed using ArcMap Version 9.2. This technique was used to show any change in distribution of stink bugs in the farmscape over time. SADIE (spatial analysis by distance indices) methodology was used to examine spatial aggregation of individual stink bug species and spatial association of the two stink bug species in the individual crops. Altogether, the spatiotemporal analyses for the farmscapes showed that some N. viridula and E. servus nymphs and adults that develop in peanuts disperse into cotton. When these stink bugs disperse from peanuts into cotton, they aggregate in cotton at the interface, or common boundary, of the two crops while feeding on cotton bolls. Therefore, there is a pronounced edge effect observed in the distribution of stink bugs as they colonize the new crop, cotton. The driving force for the spatiotemporal distribution and dispersal of both stink bug species in peanut-cotton farmscapes seems to be availability of food in time and space mitigated by landscape structure. Thus, an understanding of farmscape ecology of stink bugs and their natural enemies is necessary to strategically place, in time and space, biologically based management strategies that control stink bug populations while conserving natural enemies and the environment and reducing off-farm inputs.

  13. The role of induced mutation in conversion of photoperiod dependence in cotton.

    Science.gov (United States)

    Abdurakhmonov, Ibrokhim Y; Kushanov, Fakhriddin N; Djaniqulov, Fayzulla; Buriev, Zabardast T; Pepper, Alan E; Fayzieva, Nilufar; Mavlonov, Gafurjon T; Saha, Sukumar; Jenkins, Jonnie N; Abdukarimov, Abdusattor

    2007-01-01

    Wild cotton germplasm resources are largely underutilized because of photoperiod-dependent flowering of "exotic" cottons. The objectives of this work were to explore the genome-wide effect of induced mutation in photoperiod-converted induced cotton mutants, estimating the genetic change between mutant and wild-type cottons using simple sequence repeats (SSRs) as well as understand the pattern of SSR mutation in induced mutagenesis. Three groups of photoperiod-converted radiomutants ((32)P) including their wild-type parental lines, A- and D-genome diploids, and typically grown cotton cultivars were screened with 250 cotton SSR primer pairs. Forty SSRs revealed the same SSR mutation profile in, at least, 2 independent mutant lines that were different from the original wild types. Induced mutagenesis both increased and decreased the allele sizes of SSRs in mutants with the higher mutation rate in SSRs containing dinucleotide motifs. Genetic distance obtained based on 141 informative SSR alleles ranged from 0.09 to 0.60 in all studied cotton genotypes. Genetic distance within all photoperiod-converted induced mutants was in a 0.09-0.25 range. The genetic distance among photoperiod-converted mutants and their originals ranged from 0.28 to 0.50, revealing significant modification of mutants from their original wild types. Typical Gossypium hirsutum cultivar, Namangan-77, revealed mutational pattern similar to induced radiomutants in 40 mutated SSR loci, implying possible pressure to these SSR loci not only in radiomutagenesis but also during common breeding process. Outcomes of the research should be useful in understanding the photoperiod-related mutations, and markers might help in mapping photoperiodic flowering genes in cotton.

  14. Novo algodoeiro de origem interespecífica New cotton of interspecific origin

    Directory of Open Access Journals (Sweden)

    Imre Lajos Gridi-Papp

    1975-01-01

    Full Text Available Um novo tipo de algodoeiro foi isolado de uma população híbrida originada por cruzamento entre as espécies alotetraplóides Gossypium hirsutum L. v. latifolium Hutch, e G. barbadense L. v. brasiliense Hutch. A metodologia empregada e as principais características econômicas e morfológicas do novo algodoeiro são descritas e discutidas. Um ciclo de cruzamentos "intra", realizados na segunda geração após o retrocruzamento, seguido de seleção individual nas progenies desses cruzamentos, levou à obtenção de heptalobatum. O material não apresentou sinais de esterilidade, nem tendência a degenerar na descendência. Seu nome se deve às folhas, que, no estádio de completo desenvolvimento, apresentam sete lóbulos delgados. £ intermediário entre os pais para vários caracteres, aproxima-se de um ou outro ou representa um caso de segregação transgressiva para os demais.The selection of a new type of cotton in a population originated by crossing Gossypium hirsutum L. v. latifoliumHutch, and G. barbadenseL. v. brasiliense Hutch., is reported and the underlying methods and procedures described. One backcross to hirsutumfollowed by one cycle of crossing plants within populations and individual selection, led to the obterition of heptalobatum.Its fully developped leaves normally have seven narrow lobes. It is fully fertile and no sign of degeneration was observed in subsequent generations. The means of several economical and morphological characters are presented and discussed. The new cotton showed to be intermediary between the parental types for various characters, to be like one of the parents or a case of transgression for the others.

  15. Effect of urea fertilizer application on soluble protein and free amino acid content of cotton petioles in relation to silverleaf whitefly (Bemisia argentifolii) populations.

    Science.gov (United States)

    Bi, J L; Toscano, N C; Madore, M A

    2003-03-01

    The impact of urea nitrogen fertilization on silverleaf whitefly, Bemisia argentifolii Bellows & Perring, population dynamics was examined in field-grown cotton (Gossypium hirsutum L.). Five urea nitrogen treatments were tested, consisting of soil applications of 0, 112, 168, and 224 kg nitrogen per hectare, and acombined soil-foliar application of 112:17 kg nitrogen per hectare. A positive response was observed between N application rates and the measured levels of nitrate N in petioles from mature cotton leaves. Similarly, a positive response was observed between N application rates and the numbers of adult and immature whiteflies appearing during population peaks. To determine whether these positive responses were related, we measured the levels of dietary N compounds (proteins and free amino acids) that would be available for insect nutrition in cotton petioles at the different N application rates. Sampling dates and N application treatments affected levels of soluble proteins in cotton petioles, and interactions between sampling dates and treatments were significant. Across all sampling dates, the relationship between N application rates and levels of soluble proteins was linear. Sampling dates also affected levels of total and individual free amino acids. Fertilizer treatments only affected levels of total amino acids, aspartate, asparagine, and arginine plus threonine. Levels of aspartate or asparagine and the N application rates were linearly correlated. No significant correlations were observed between levels of dietary N compounds in cotton petioles and numbers of whiteflies, either adults or immatures, on the cotton plants.

  16. Uniqueness of the Gossypium mustelinum Genome Revealed by GISH and 45S rDNA FISH

    Institute of Scientific and Technical Information of China (English)

    WU Qiong; STELLY David; SONG Guo-li; WANG Kun-bo; WANG Chun-ying; LIU Fang; LI Shao-hui; ZHANG Xiang-di; WANG Yu-hong; LIU San-hong

    2008-01-01

    @@ Gossypium mustelinum [-(AD)4"] is one of five tetraploid species in Gossypium.Three pairs of nucleolar organizer regions (NOR) in (AD)4 were detected by FISH with 45S rDNA as a probe,they also were observed with genomic DNA (gDNA) from Gossypium D genome species as probes.Of the three NORs or GISH-NORs,one was super-major and other two were minor,which was distinctly different from other tetraploid cottons.

  17. Lipid metabolites in seeds of diverse Gossypium accessions: Molecular identification of a high oleic mutant allele

    Science.gov (United States)

    The domestication and breeding of cotton for elite, high-fiber cultivars has led to reduced genetic variation of seed constituents within currently cultivated upland Cotton genotypes. However, a recent screen of the genetically diverse U.S. National Cotton Germplasm Collection identified Gossypium ...

  18. Polymorphism analysis of multi-parent advanced generation inter-cross (MAGIC) populations of upland cotton developed in China.

    Science.gov (United States)

    Li, D G; Li, Z X; Hu, J S; Lin, Z X; Li, X F

    2016-12-19

    Upland cotton (Gossypium hirsutum L.) is an important cash crop that provides renewable natural fiber worldwide. Currently limited genetic base leads to a decrease in upland cotton genetic diversity. Multi-parent advance generation inter-cross (MAGIC) populations can be used to evaluate complex agronomic traits in crops. In this study, we developed an upland cotton MAGIC population. A total of 258 MAGIC population lines and their twelve founder lines were analyzed, using 432 pairs of simple sequence repeat (SSR) markers. Gene diversity indices and the polymorphism information content were calculated using polymorphism analyses. Our genotype analysis showed that 258 inbred lines could be divided into 158 genotypes. Among these, we identified 17 pairs of specific SSR primers on the A chromosome subgroups and 24 pairs of specific SSR primers on the B chromosome subgroups of upland cotton. These were related to 77 and 128 genotypes, respectively. Our results suggest that the upland cotton MAGIC population contained abundant genetic diversity and may provide enormous resources for future genetic breeding.

  19. Effects of potato-cotton cropping systems and nematicides on plant-parasitic nematodes and crop yields.

    Science.gov (United States)

    Crow, W T; Weingartner, D P; Dickson, D W

    2000-09-01

    Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used.

  20. Functional analysis of a reproductive organ predominant expressing promoter in cotton plants

    Institute of Scientific and Technical Information of China (English)

    REN Maozhi; CHEN Quanjia; LI Li; ZHANG Rui; GUO Sandui

    2005-01-01

    Transgenic Bt insect-resistant cotton plants have high insect resistance in the early stage of development, but relatively low resistance in the late stage. Substituting a reproductive organ-specific promoter for the CaMV35S promoter presently being used could be an ideal solution. For the first time, the promoter sequence of ADP-ribosylation factor 1 (arf1) gene was isolated from Gossypium hirsutumY18 by means of inverse PCR. The sequencing result discovered the unique structure of the arf1 promoter, including four promoter-specific elements, the initiator, TATA box, CAAT box and GC box, and also an intron in 5′-untranslation region. Four plant expression vectors were constructed for functional analysis of the promoter. Based on the pBI121 plant expression vector, four truncated arf1 promoters took the place of the CaMV35S promoter. These vectors were different only in their promoter regions. They were introduced into cotton plants via pollen tube pathway. Histochemical GUS staining and fluorescence quantitative analyses were performed to examine the expression patterns of the GUS gene driven by the 4 arf1 truncated promoters in transgenic cotton plants respectively. The results showed that the arf1 promoter was a typical reproductive organ-specific promoter. Hopefully, the arf1 promoter can be a regulatory element for designing cotton reproductive organs with desired characteristics.

  1. Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton.

    Directory of Open Access Journals (Sweden)

    Hongjie Feng

    Full Text Available BACKGROUND: As a result of changing consumer preferences, cotton (Gossypium Hirsutum L. from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. EXPERIMENTAL DESIGN: Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3'H, and GhF3'5'H were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. RESULT: The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL. The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. CONCLUSIONS: Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers.

  2. Modeling branching effects on source-sink relationships of the cotton plant

    CERN Document Server

    Li, Dong; Guo, Yan; De Reffye, P; Zhan, Zhigang

    2010-01-01

    Compared with classical process-based models, the functional-structural plant models provide more efficient tools to explore the impact of changes in plant structures on plant functioning. In this paper we investigated the effects of branches on the sourcesink interaction for the cotton plant (Gossypium hirsutum L.) based on a two-treatment experiment conducted on cotton grown in the field: the singlestem plants and the plants with only two vegetative branches. It was observed that the branched cotton had more organs for the whole plant but the organs on the trunk were smaller than those on the single-stem cotton. The phytomer production of the branches was four or five growth cycles delayed compared with the main stem. The organs on the trunk had similar dynamics of expansion for both treatments. Effects of branches were evaluated by using the functionalstructural model GREENLAB. It allowed estimating the coefficients of sink strength to differentiate the biomass acquisition abilities of organs between diffe...

  3. Functional analysis of a reproductive organ predominant expressing promoter in cotton plants.

    Science.gov (United States)

    Ren, Maozhi; Chen, Quanjia; Li, Li; Zhang, Rui; Guo, Sandui

    2005-10-01

    Transgenic Bt insect-resistant cotton plants have high insect resistance in the early stage of development, but relatively low resistance in the late stage. Substituting a reproductive organ-specific promoter for the CaMV35S promoter presently being used could be an ideal solution. For the first time, the promoter sequence of ADP-ribosylation factor 1 (arf1) gene was isolated from Gossypium hirsutumY18 by means of inverse PCR. The sequencing result discovered the unique structure of the arf1 promoter, including four promoter-specific elements, the initiator, TATA box, CAAT box and GC box, and also an intron in 5'-untranslation region. Four plant expression vectors were constructed for functional analysis of the promoter. Based on the pBl121 plant expression vector, four truncated arf1 promoters took the place of the CaMV35S promoter. These vectors were different only in their promoter regions. They were introduced into cotton plants via pollen tube pathway. Histochemical GUS staining and fluorescence quantitative analyses were performed to examine the expression patterns of the GUS gene driven by the 4 arf1 truncated promoters in transgenic cotton plants respectively. The results showed that the arf1 promoter was a typical reproductive organ-specific promoter. Hopefully, the arf1 promoter can be a regulatory element for designing cotton reproductive organs with desired characteristics.

  4. Cloning and characterization of cotton heteromeric acetyl-CoA carboxylase genes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Heteromeric acetyl-coanzyme A(CoA)carboxylese(ACCase)catalyzes the formation of malonyl-CoA from acetyl-CoA.It plays an essential role in fatty acid synthesis in prokaryotes and most of plants.The heteromeric ACCase is composed of four subunits:biotin carboxylase (BC),biotin carboxyl carrier protein (BCCP),and α-and β-subunits of carboxyltransferese(α-andβ-CT).In this study,we cloned five novel genes encoding the subunits of heteromeric ACCese(one BC,BCCP and β-CT,and two α-CTs) from cotton (Gossypium hirsutum cv.zhongmian 35)by RACE-PCR.The deduced amino acid sequence of these cDNAs shares high similarity with other reported heteromeric ACCese subunits.The phylogenetic analysis indicated that the different subunits of heteromeric ACCase were grouped in a similar pattern.Southern blot analysis revealed the milti-copy patterns of these heteromeric ACCase genes in cotton genome.Semi-quantitative RT-PCR demonstrated that heteromeric ACCese genes were constitutively expressed in all of the cotton tissues,but the transcripts accumulated at a relatively low level in roots.To our knowledge,this is the first report about characterization of the heteromeric ACCase genes in cotton.

  5. Specific expression of a β-tubulin gene (GhTub1) in developing cotton fibers

    Institute of Scientific and Technical Information of China (English)

    LI; Yuanli; (李园莉); SUN; Jie; (孙杰); LI; Chunhong; (李春红); ZHU; Yongqing; (朱勇清); XIA; Guixian; (夏桂先)

    2003-01-01

    A cDNA library was constructed using poly (A)+ RNA isolated from -1-15 DPA fibers of upland cotton (Gossypium hirsutum). The cDNA encoding a β-tubulin isoform (designated as GhTub1) was identified through EST search. Northern blot analysis using 3′-UTR of the cDNA as a gene-specific probe was performed to investigate the expression levels of GhTub1 in various organs and in the developing fibers. The results showed that GhTub1 gene was specifically expressed in cotton fiber cells. During fiber development, GhTub1 transcripts accumulated highlyat the stage of cell rapid elongation with the highest expression appearing at the time when fiber expansion reaches the peak rate. To probe the in vivo function of GhTub1, its cDNA was cloned in the yeast expression vector pREP1 and transformed into the fission yeast Schizosaccharomyces pombe. Overexpression of GhTub1 in yeast cells caused severe changes in the cell morphology. These results suggest that GhTub1 may play a role in the polar elongation of cotton fibers. To our knowledge, this is the first report on the fiber-specific transcript accumulation of a cotton β-tubulin gene.

  6. Potassium supply to cotton roots as affected by potassium fertilization and liming

    Directory of Open Access Journals (Sweden)

    Rosolem Ciro Antonio

    2003-01-01

    Full Text Available Cotton (Gossypium hirsutum is known to have a high requirement for K and to be very sensitive to low soil pH. Most of K reaches plant roots by diffusion in the soil. As K interacts with Ca and Mg, liming can interfere in K movement in the soil, affecting eventually the plant nutrition. The objective of this work was to study the effect of dolomitic lime and 0, 15, 30, 45 and 60 g kg-1 of K on the supply of K to cotton roots. Cotton plants were grown up to 40 days in 5 L pots containing a Dark Red Latosol (Typic Haplusthox with 68% and 16% of sand and clay, respectively. There was an increase in dry matter yields and in K accumulation due to K fertilization. Root interception of soil K was also increased by K application, but was not affected by lime. Mass flow and diffusion increased linearly with K levels up to 60 mg kg-1, in pots with lime. In pots without lime the amount of K reaching the roots by diffusion increased up to 45 mg kg-1, but decreased at the highest K level. Accordingly, there was more K reaching the roots through mass flow at the highest K level. This happened because there were more fine roots in pots without lime, at the highest K level. As the roots grew closer, there was a stronger root competition leading to a decrease in the amount of K diffused to cotton roots.

  7. Effect of Age of Explant on Transgenic Cotton (Gossypium Plant Due to Expression of Mannose-Binding Lectin Gene from Allium sativum

    Directory of Open Access Journals (Sweden)

    Lynelle van Emmenes

    2011-09-01

    Full Text Available Cotton is the most important textile plant in the world and is one of the most important crops for the production of oilseed. Because of its worldwide economic importance, new cultivars are constantly being released in the world. Although great improvements have been achieved through traditional breeding methods, cotton breeders are facing many problems, i.e., narrow genetic base, inability to use alien genes and difficulty in breaking gene linkages. Genetic transformations analyses are main tools used by breeders to overcome these problems. The aim of the study reported in this paper is to determine the effect of age of explant on regeneration response of apical shoot for tissue culture and gene transfer systems of cotton. This enabled us evaluate it effects on cotton transformation. The age of explants was observed to have significant effect on shoot tip elongation. The elongation rates of the three varieties studied were not significantly different from each other (p = 0.1573 and was observed to be affected by the size of isolated tips. It was observed that if the starting size of the apex was less than 1 mm, the tips would not grow at all. Insecticidal lectin gene from Allium sativum was transferred into the transgenic cotton plants via Agrobacterium-mediated transformation using shoot apices as explants. Putative transgenic plants were confirmed by leaf GUS assay, kanamycin leaf test and molecular analysis of plantlet.

  8. Identification and expression profile of GbAGL2, a C-class gene from Gossypium barbadense

    Indian Academy of Sciences (India)

    Xiang Liu; Kaijing Zuo; Fei Zhang; Ying Li; Jieting Xu; Lida Zhang; Xiaofen Sun; Kexuan Tang

    2009-12-01

    An AGAMOUS (AG)-like gene, GbAGL2, was isolated from Gossypium barbadense and characterized. Alignment and phylogenetic analysis indicated that GbAGL2 shared high homology with AG-subfamily genes and belonged to a C-class gene family. DNA gel blot analysis showed that GbAGL2 belonged to a low-copy gene family. Reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qPCR) revealed that GbAGL2 was highly expressed in reproductive tissues including ovules and carpels, but barely expressed in vegetative tissues. In addition, GbAGL2 expression in a cotton cultivar XuZhou142 (wt) (XZ142, G. hirsutum L.) and its fibreless mutant XZ142 (fl) was examined. RNA in situ hybridization analysis indicated that GbAGL2 transcripts were preferentially restricted to outer ovule integuments, carpels and fibres. These expression patterns implied that GbAGL2 might participate in the development of the carpel and ovule. Furthermore, Arabidopsis transformation was performed and modifications occurred in flowers, and the silique length of transgenic plants also increased slightly, suggesting that the GbAGL2 gene may have a positive effect on the development of the ovary or ovule. Our findings suggest that GbAGL2 might not only specify the identity of floral organs but also play a potential key role in ovary or fibre development in cotton.

  9. Toward cotton molecular breeding: challenges and opportunities

    Science.gov (United States)

    Cotton (Gossypium spp) is the leading natural fiber in the global textile market, but progress in the development and applications of molecular tools to improve cotton lags behind other major crop plants. The slow progress is in part due to cotton's large complex allotetraploid genome of 26 partial...

  10. Establishment of a Multi-color Genomic in situ Hybridization Technique to Simultaneously Discriminate the Three Interspecific Hybrid Genomes in Gossypium

    Institute of Scientific and Technical Information of China (English)

    Bing Guan; Kai Wang; Bao-Liang Zhou; Wang-Zhen Guo; Tian-Zhen Zhang

    2008-01-01

    To identify alien chromosomes in recipient progenies and to analyze genome components in polyploidy, a genomic In situ hybridization (GISH) technique that is suitable for cotton was developed using increased stringency conditions. The increased stringency conditions were a combination of the four factors in the following optimized state: 100:1 ratio of blocking DNA to probe, 60% formamide wash solution, 43 =C temperature wash and a 13 min wash. Under these specific conditions using gDNA from Gossypium sturtianurn (C1C1) as a probe, strong hybridization signals were only observed on chromosomes from the C1 genome in somatic cells of the hybrid F1 (G. hirsutum×G. sturtianum) (AtDtC1). Therefore, GISH was able to discriminate parental chromosomes in the hybrid. Further, we developed a multi-color GISH to simultaneously discriminate the three genomes of the above hybrid. The results repeatedly displayed the three genomes, At, Dt, and C1, and each set of chromosomes with a unique color, making them easy to identify. The power of the multi-color GISH was proven by analysis of the hexaploid hybrid F1 (G. hirsutum × G. australe) (AtAtDtDtG2G2). We believe that the powerful multi-color GISH technique could be applied extensively to analyze the genome component in polyploidy and to identify alien chromosomes in the recipient progenies.

  11. Functional divergence of GhCFE5 homoeologs revealed in cotton fiber and Arabidopsis root cell development.

    Science.gov (United States)

    Lv, Fenni; Li, Peng; Zhang, Rui; Li, Nina; Guo, Wangzhen

    2016-04-01

    In GhCFE5 homoeologs, GhCFE5D interacted with more actin homologs and stronger interaction activity than GhCFE5A. GhCFE5D - but not GhCFE5A -overexpression severely disrupted actin cytoskeleton organization and significantly suppressed cell elongation. Homoeologous genes are common in polyploid plants; however, their functional divergence is poorly elucidated. Allotetraploid Upland cotton (Gossypium hirsutum, AADD) is the most widely cultivated cotton; accounting for more than 90 % of the world's cotton production. Here, we characterized GhCFE5A and GhCFE5D homoeologs from G. hirsutum acc TM-1. GhCFE5 homoeologs are expressed preferentially in fiber cells; and a significantly greater accumulation of GhCFE5A mRNA than GhCFE5D mRNA was found in all tested tissues. Overexpression of GhCFE5D but not GhCFE5A seriously inhibits the Arabidopsis hypocotyl and root cell elongation. Yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) analysis showed that compared with GhCFE5A, GhCFE5D interacts with more actin homologs and has a stronger interaction activity both from Arabidopsis and Upland cotton. Interestingly, subcellular localization showed that GhCFE5 resides on the cortical endoplasmic reticulum (ER) network and is colocalized with actin cables. The interaction activities between GhCFE5 homoeologs and actin differ in their effects on F-actin structure in transgenic Arabidopsis root cells. The F-actin changed direction from vertical to lateral, and the actin cytoskeleton organization was severely disrupted in GhCFE5D-overexpressing root cells. These data support the functional divergence of GhCFE5 homoeologs in the actin cytoskeleton structure and cell elongation, implying an important role for GhCFE5 in the evolution and selection of cotton fiber.

  12. What Will We Do with a Cotton Genome Sequence?

    Institute of Scientific and Technical Information of China (English)

    BRUBAKER Curt

    2008-01-01

    @@ With the publication of "Toward Sequencing Cotton (Gossypium) Genomes" [Chen et al.PlantPhysiology,2007,145:1303-1310-] a clear consensus emerged from the cotton genomics community not only that cotton genome sequences were a critical resource for research and commercial innovationin cotton genomics,but that there was a logical means of achieving this goal.

  13. The Use of Green Fluorescent Protein Gene in Cotton Transformation%GFP基因在棉花转化中的应用

    Institute of Scientific and Technical Information of China (English)

    黄国存; 朱生伟; 孙敬三; 张寒霜; 高鹏; 李俊兰

    2001-01-01

    With the Green Fluorescent Protein gene (GFP) as a reporter gene, the transgenic embryos, seedlings and calli of cotton(Gossypium hirsutum L.) were obtained by the method of pollen tube pathway and Agrobacterium-mediated techniques separately. The GFP gene under the control of the 35s Cauliflower Mosaic Virus promoter produced bright–green fluorescence easily detectable and screenable in cotton tissue by fluorescence microscopy and a hand-held ultraviolet lamp. The screenable marker aided and facilated the rapid segregation of individual transformation events, drastically reduced the quantity of tissue to be handled. The GFP can be screened in vivo without destroying the materials, so it is more practical and useful than GUS. The use of GFP could advance the development of cotton gene engineering.%以绿色荧光蛋白GFP基因为报道基因,用花粉管通道和农杆菌介导的转化方法将外源基因导入棉花(Gossypium hirsutum L.),分别获得转化幼胚、幼苗和转化愈伤组织。用手持紫外灯结合显微镜检术能够快速地对转化子进行活体筛选鉴定,比用GUS检测方法有明显的优越性。本研究不但为花粉管通道转化法的可行性提供了新的证据,同时也建立了GFP用于棉花基因工程研究的检测技术体系。

  14. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions

    Science.gov (United States)

    Huang, Jian; Ji, Feng

    2015-07-01

    Understanding the effects of climatic change on phenological phases of cotton ( Gossypium hirsutum L.) in oasis of arid regions may help optimize management schemes to increase productivity. This study assessed the impacts of climatic changes on the phenological phases and productivity of spring cotton. The results showed that climatic warming led the dates of sowing seed, seeding emergence, three-leaf, five-leaf, budding, anthesis, full bloom, cleft boll, boll-opening, boll-opening filling, and stop-growing become earlier by 24.42, 26.19, 24.75, 23.28, 22.62, 15.75, 14.58, 5.37, 2.85, 8.04, and 2.16 days during the period of 1981-2010, respectively. The growth period lengths from sowing seed to seeding emergence and from boll-opening to boll-opening filling were shortened by 1.76 and 5.19 days, respectively. The other growth period lengths were prolonged by 2-9.71 days. The whole growth period length was prolonged by 22.26 days. The stop-growing date was delayed by 2.49-3.46 days for every 1 °C rise in minimum, maximum, and mean temperatures; however, other development dates emerged earlier by 2.17-4.76 days. Rising temperatures during the stage from seeding emergence to three-leaf reduced seed cotton yields. However, rising temperatures increased seed cotton yields in the two stages from anthesis to cleft boll and from boll-opening filling to the stop-growing. Increasing accumulated temperatures (AT) had different impacts on different development stages. During the vegetative phase, rising AT led to reduced seed cotton yields, but rising AT during reproductive stage increased seed cotton yields. In conclusion, climatic warming helpfully obtained more seed cotton yields in oasis of arid regions in northwest China. Changing the sowing date is another way to enhance yields for climate change in the future.

  15. Simple sequence repeat marker associated with a natural leaf defoliation trait in tetraploid cotton.

    Science.gov (United States)

    Abdurakhmonov, I Y; Abdullaev, A A; Saha, S; Buriev, Z T; Arslanov, D; Kuryazov, Z; Mavlonov, G T; Rizaeva, S M; Reddy, U K; Jenkins, J N; Abdullaev, A; Abdukarimov, A

    2005-01-01

    Cotton (Gossypium hirsutum L.) leaf defoliation has a significant ecological and economical impact on cotton production. Thus the utilization of a natural leaf defoliation trait, which exists in wild diploid cotton species, in the development of tetraploid cultivated cotton will not only be cost effective, but will also facilitate production of very high-grade fiber. The primary goal of our research was to tag loci associated with natural leaf defoliation using microsatellite markers in Upland cotton. The F2 populations developed from reciprocal crosses between the two parental cotton lines--AN-Boyovut-2 (2n = 52), a late leaf defoliating type, and Listopad Beliy (2n = 52), a naturally early leaf defoliating type--demonstrated that the naturally early leaf defoliation trait has heritability values of 0.74 and 0.84 in the reciprocal F2 population. The observed phenotypic segregation difference in reciprocal crosses suggested a minor cytoplasmic effect in the phenotypic expression of the naturally early leaf defoliation trait. Results from the Kruskal-Wallis (KW) nonparametric test revealed that JESPR-13 (KW = 6.17), JESPR-153 (KW = 9.97), and JESPR-178 (KW = 13.45) Simple sequence repeat (SSR) markers are significantly associated with natural leaf defoliation in the mapping population having stable estimates at empirically obtained critical thresholds (P < .05-.0001). JESPR-178 revealed the highest estimates (P < .0001) for association with the natural leaf defoliation trait, exceeding maximum empirical threshold values. JESPR-178 was assigned to the short arm of chromosome 18, suggesting indirectly that genes associated with natural leaf defoliation might be located on this chromosome. This microsatellite marker may have the potential for use to introgress the naturally early leaf defoliation quantitative trait loci (QTL) from the donor line Listopad Beliy to commercial varieties of cotton through marker-assisted selection programs.

  16. [Estimation of efficiency of seed irradiation by thermal neutrons for inducing chromosomal aberration in M2 of cotton Gossipium hirsutum L].

    Science.gov (United States)

    Rakhmatullina, E M; Sanam'ian, M F

    2007-05-01

    Cytogenetic analysis of M2 plants after irradiation of cotton by thermal neutrons was performed in 56 families. In 40 plants of 27 M2 families, different abnormalities of chromosome pairing were found. These abnormalities were caused by primary monosomy, chromosomal interchange, and desynapsis. The presence of chromosome aberrations in some cases decreased meiotic index and pollen fertility. Comparison of the results of cytogenetics analysis, performed in M1 and M2 after irradiation, showed a nearly two-fold decrease in the number of plants with chromosomal aberrations in M2, as well as narrowing of the spectrum of these aberrations. The latter result is explained by the fact that some mutations are impossible to detect in subsequent generations because of complete or partial sterility of aberrant M1 plants. It was established that the most efficient radiation doses for inducing chromosomal aberrations in the present study were 15 and 25 Gy, since they affected survival and fertility of altered plant to a lesser extent.

  17. Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region.

    Science.gov (United States)

    An, Jingjie; Gao, Yulin; Wu, Kongming; Gould, Fred; Gao, Jianhua; Shen, Zhicheng; Lei, Chaoliang

    2010-12-01

    Transgenic cotton, Gossypium hirsutum L., that expresses the Bacillus thuringiensis (Bt) Cry1Ac toxin, holds great promise in controlling target insect pests. Evolution of resistance by target pests is the primary threat to the continued efficacy of Bt cotton. To thwart pest resistance evolution, a transgenic cotton culitvar that produces two different Bt toxins, cry1Ac and vip3A genes, was proposed as a successor of cry1Ac cotton. This article reports on levels of Vip3Aa tolerance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from the Cry1Ac cotton planting region in China based on bioassays of the F1 generation of isofemale lines. In total, 80 isofemale families of H. armigera from Xiajin county of Shandong Province (an intensive Bt cotton planting area) and 93 families from Anci county of Hebei Province (a multiple-crop system including corn [Zea mays L.] , soybean [Glycine max (L.) Merr.], peanut (Arachis hypogaea L.), and Bt cotton) were screened with a discriminating concentration of both Cry1Ac- and Vip3A-containing diets in 2009. From data on the relative average development rates and percentage of larval weight inhibition of F1 full-sib families tested simultaneously on Cry1Ac and Vip3Aa, results indicate that responses to Cry1Ac and Vip3Aa were not genetically correlated in field population ofH. armigera. This indicates that the threat of cross-resistance between Cry1Ac and Vip3A is low in field populations of H. armigera. Thus, the introduction of Vip3Aa/Cry1Ac-producing lines could delay resistance evolution in H. armigera in Bt cotton planting area of China.

  18. Geminivirus-mediated delivery of florigen promotes determinate growth in aerial organs and uncouples flowering from photoperiod in cotton.

    Directory of Open Access Journals (Sweden)

    Roisin C McGarry

    Full Text Available BACKGROUND: Plant architecture and the timing and distribution of reproductive structures are fundamental agronomic traits shaped by patterns of determinate and indeterminate growth. Florigen, encoded by FLOWERING LOCUS T (FT in Arabidopsis and SINGLE FLOWER TRUSS (SFT in tomato, acts as a general growth hormone, advancing determinate growth. Domestication of upland cotton (Gossypium hirsutum converted it from a lanky photoperiodic perennial to a highly inbred, compact day-neutral plant that is managed as an annual row-crop. This dramatic change in plant architecture provides a unique opportunity to analyze the transition from perennial to annual growth. METHODOLOGY/PRINCIPAL FINDINGS: To explore these architectural changes, we addressed the role of day-length upon flowering in an ancestral, perennial accession and in a domesticated variety of cotton. Using a disarmed Cotton leaf crumple virus (CLCrV as a transient expression system, we delivered FT to both cotton accessions. Ectopic expression of FT in ancestral cotton mimicked the effects of day-length, promoting photoperiod-independent flowering, precocious determinate architecture, and lanceolate leaf shape. Domesticated cotton infected with FT demonstrated more synchronized fruiting and enhanced "annualization". Transient expression of FT also facilitated simple crosses between wild photoperiodic and domesticated day-neutral accessions, effectively demonstrating a mechanism to increase genetic diversity among cultivated lines of cotton. Virus was not detected in the F(1 progeny, indicating that crosses made by this approach do not harbor recombinant DNA molecules. CONCLUSIONS: These findings extend our understanding of FT as a general growth hormone that regulates shoot architecture by advancing organ-specific and age-related determinate growth. Judicious manipulation of FT could benefit cotton architecture to improve crop management.

  19. Molecular cloning and characterization of a cotton glucuronosyltranferase gene.

    Science.gov (United States)

    Wu, Yao-Ting; Liu, Jin-Yuan

    2005-05-01

    A glucuronosyltranferase gene has been isolated from cotton (Gossypium hirsutum) fiber cells using rapid amplification of the cDNA ends. The full-length cDNA, designated GhGlcAT1, is 1400 bp in length (AY346330) and contains an open reading frame of 1107 bp encoding a protein of 368 amino acids. Alignment of the GhGlcAT1 predicted amino acid sequence was shown to have high sequence similarity with animal glucuronosyltranferases. A phylogenic tree generated by the PHYLIP program package showed that GhGlcAT1 is clustered into the plant glucuronosyltranferase proteins and is distinct from those of other species. Homology modeling of the GhGlcAT1 structure using Homo sapiens native glucuronosyltranferase (1 kws and 1 fgg) structure as a template strongly suggests that the main-chain conformation and the folding patterns were similar to structural features characteristic of animal glucuronosyltranferases. Northern blot analysis showed that the transcripts of GhGlcAT1 were abundant in fiber cells, moderate in stem, but not detected in ovule, flower, seed, root and leaf. Transcripts were most abundant at 15dpa fiber. The transcription occurred at both the primary wall elongation stage and former stage of secondary cell thickening, suggesting that GhGLcAT1 may be involved in non-cellulose polysacchrides biosynthesis of the cotton cell wall.

  20. Interspecific Associations between Cycloneda sanguinea and Two Aphid Species (Aphis gossypii and Hyadaphis foeniculi) in Sole-Crop and Fennel-Cotton Intercropping Systems.

    Science.gov (United States)

    Fernandes, Francisco S; Ramalho, Francisco S; Malaquias, José B; Godoy, Wesley A C; Santos, Bárbara Davis B

    2015-01-01

    Aphids cause significant damage to crop plants. Studies regarding predator-prey relationships in fennel (Foeniculum vulgare Mill.) and cotton (Gossypium hirsutum L.) crops are important for understanding essential ecological interactions in the context of intercropping and for establishing pest management programs for aphids. This study evaluated the association among Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae), Aphis gossypii Glover (Hemiptera: Aphididae) and Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) in cotton with coloured fibres, fennel and cotton intercropped with fennel. Association analysis was used to investigate whether the presence or absence of prey and predator species can indicate possible interactions between aphids and ladybugs. Significant associations among both apterous and alate H. foeniculi and C. sanguinea were observed in both the fennel and fennel-cotton intercropping systems. The similarity analysis showed that the presence of aphids and ladybugs in the same system is significantly dependent on the type of crop. A substantial amount of evidence indicates that the presence of the ladybug C. sanguinea, is associated with apterous or alate A. gossypii and H. foeniculi in fennel-cotton intercropping system. We recommend that future research vising integrated aphid management taking into account these associations for take decisions.

  1. Structure of Exogenous Gene Integration and Event-Specific Detection in the Glyphosate-Tolerant Transgenic Cotton Line BG2-7

    Science.gov (United States)

    Wang, Xujing; Wang, Zhixing

    2016-01-01

    In this study, the flanking sequence of an inserted fragment conferring glyphosate tolerance on transgenic cotton line BG2-7 was analyzed by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) and standard PCR. The results showed apparent insertion of the exogenous gene into chromosome D10 of the Gossypium hirsutum L. genome, as the left and right borders of the inserted fragment are nucleotides 61,962,952 and 61,962,921 of chromosome D10, respectively. In addition, a 31-bp cotton microsatellite sequence was noted between the genome sequence and the 5' end of the exogenous gene. In total, 84 and 298 bp were deleted from the left and right borders of the exogenous gene, respectively, with 30 bp deleted from the cotton chromosome at the insertion site. According to the flanking sequence obtained, several pairs of event-specific detection primers were designed to amplify sequence between the 5' end of the exogenous gene and the cotton genome junction region as well as between the 3' end and the cotton genome junction region. Based on screening tests, the 5'-end primers GTCATAACGTGACTCCCTTAATTCTCC/CCTATTACACGGCTATGC and 3'-end primers TCCTTTCGCTTTCTTCCCTT/ACACTTACATGGCGTCTTCT were used to detect the respective BG2-7 event-specific primers. The limit of detection of the former primers reached 44 copies, and that of the latter primers reached 88 copies. The results of this study provide useful data for assessment of BG2-7 safety and for accelerating its industrialization. PMID:27379683

  2. Interspecific Associations between Cycloneda sanguinea and Two Aphid Species (Aphis gossypii and Hyadaphis foeniculi in Sole-Crop and Fennel-Cotton Intercropping Systems.

    Directory of Open Access Journals (Sweden)

    Francisco S Fernandes

    Full Text Available Aphids cause significant damage to crop plants. Studies regarding predator-prey relationships in fennel (Foeniculum vulgare Mill. and cotton (Gossypium hirsutum L. crops are important for understanding essential ecological interactions in the context of intercropping and for establishing pest management programs for aphids. This study evaluated the association among Hyadaphis foeniculi (Passerini (Hemiptera: Aphididae, Aphis gossypii Glover (Hemiptera: Aphididae and Cycloneda sanguinea (L. (Coleoptera: Coccinellidae in cotton with coloured fibres, fennel and cotton intercropped with fennel. Association analysis was used to investigate whether the presence or absence of prey and predator species can indicate possible interactions between aphids and ladybugs. Significant associations among both apterous and alate H. foeniculi and C. sanguinea were observed in both the fennel and fennel-cotton intercropping systems. The similarity analysis showed that the presence of aphids and ladybugs in the same system is significantly dependent on the type of crop. A substantial amount of evidence indicates that the presence of the ladybug C. sanguinea, is associated with apterous or alate A. gossypii and H. foeniculi in fennel-cotton intercropping system. We recommend that future research vising integrated aphid management taking into account these associations for take decisions.

  3. Within-plant distribution of cotton aphid (Hemiptera: Aphididae in cotton cultivars with colored fibers

    Directory of Open Access Journals (Sweden)

    Francisco S. Fernandes

    2012-09-01

    Full Text Available We describe the vertical and horizontal distribution of the cotton aphid Aphis gossypii Glover within a cotton plant in two cotton (Gossypium hirsutum Linnaeus cultivars (BRS Safira and BRS Rubí with colored fiber over the time. Measurements of aphid population dynamics and distribution in the cotton plants were recorded in intervals of seven days. The number of apterous or alate aphids and their specific locations were recorded, using as a reference point the location of nodes on the mainstem of the plant and also those on the leaves present on branches and fruit structures. The number of apterous aphids found on the cultivar BRS Safira (56,515 aphids was greater than that found on BRS Rubí (50,537 aphids. There was no significant difference between the number of alate aphids found on the cultivars BRS Safira (365 aphids/plant and BRS Rubí (477 aphids/plant. There were interactions between cotton cultivar and plant age, between plant region and plant age, and between cultivar and plant region for apterous aphids. The results of this study are of great importance in improving control strategies for A. gossypii in the naturally-colored cotton cultivars BRS Safira and BRS Rubí.Nós descrevemos a distribuição vertical e horizontal do pulgão do algodoeiro Aphis gossypii Glover dentro da planta de algodão (Gossypium hirsutum Linnaeus, em dois cultivares com fibras coloridas (BRS Safira and BRS Rubí ao longo do seu desenvolvimento. Medidas de dinâmicas de populações e distribuição de A. gossypii nas plantas de algodão foram registradas em intervalos de sete dias. O número de afídeos ápteros ou alados e suas localizações específicas foram registrados, usando-se como ponto de referência a localização do nó no caule principal da planta e também aqueles presentes nas folhas de ramos e estruturas frutíferas. O número de afídeos ápteros encontrados na cultivar BRS Safira (56.515 afídeos foi maior do que o encontrado na BRS Rub

  4. Transcriptome Profiling Reveals Auxin and Cytokinin Regulating Somatic Embryogenesis in Different Sister Lines of Cotton Cultivar CCR124

    Institute of Scientific and Technical Information of China (English)

    Zhenzhen Xu; Chaojun Zhang; Xueyan Zhang; Chuanliang Liu; Zhixia Wu; Zuoren Yang; Kehai Zhou

    2013-01-01

    To get a broader view on the molecular mechanisms underlying somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.),global analysis of cotton transcriptome dynamics during SE in different sister lines was performed using RNA-Seq.A total of 204 349 unigenes were detected by de novo assembly of the 214 977 462 Illumina reads.The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) measurements were positively correlated with the RNA-Seq results for almost all the tested genes (R2 =0.841,correlation was significant at the 0.01 level).Different phytohormone (auxin and cytokinin) concentration ratios in medium and the endogenous content changes of these two phytohormones at two stages in different sister lines suggested the roles of auxin and cytokinin during cotton SE.On the basis of global gene regulation of phytohormone-related genes,numerous genes from all the differentially expressed transcripts were involved in auxin and cytokinin biosynthesis and signal transduction pathways.Analyses of differentially expressed genes that were involved in these pathways revealed the substantial changes in gene type and abundance between two sister lines.Isolation,cloning and silencing/ overexpressing the genes that revealed remarkable up-or down-expression during cotton SE were important.Furthermore,auxin and cytokinin play a primary role in SE,but potential cross-talk with each other or other factors remains unclear.

  5. Functional Analysis of Nodulin-like Promoter in Transgenic Cotton Plants

    Institute of Scientific and Technical Information of China (English)

    Mao-Zhi REN; Quan-Jia CHEN; Li LI; Rui ZHANG; San-Dui GUO

    2005-01-01

    For the first time, a nodulin-like gene promoter was isolated from Gossypium hirsutum L. Guo Y18 by means of inverse PCR. Three plant expression vectors were constructed for functional identification of the promoter. These vectors were different only in promoter regions; three truncations of the nodulinlike promoter took the place of the CaMV35S promoter in the pBI121 plant expression vector. Then, the three vectors were introduced into cotton plants via the pollen tube pathway. The expression patterns of the gus gene driven by nodulin-like promoter truncations were investigated in the offspring of transgenic cotton plants. Histochemical GUS staining and fluorescence quantitative analysis were performed to achieve this goal. The results showed that the nodulin-like promoter was a strong, highly reproductive organspecific promoter, which demonstrated a much higher driver activity than the CaMV35S promoter did in cotton reproductive organs, but relatively lower activity in vegetation. Identification of the speciality and strength-determining regions of the nodulin-like promoter was also undertaken.

  6. Salt-induced hydrogen peroxide is involved in modulation of antioxidant enzymes in cotton

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Xiangqian Li; Jinyao Li; Qian Bao; Fuchun Zhang; Gulinuer Tulaxi; Zhicai Wang

    2016-01-01

    Salt severely restricts cotton (Gossypium hirsutum) growth and production. The present study was undertaken to study the effect of salt-induced hydrogen peroxide (H2O2) on antioxidant enzymes in cotton. NaCl treatment or exogenous H2O2 was used to investigate the relationship between H2O2 content and levels of antioxidant enzymes including superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT), as well as the transcriptional levels of corresponding genes. H2O2 content increased within 24 h following 200 mmol L–1 NaCl treatment. Both NaCl-induced and exogenous H2O2 increased the activity of antioxidant enzymes including APX and SOD and upregulated the transcriptional levels of GhcAPX1, GhFeSOD, and GhchlCSD. These increased activities and upregulated transcriptional levels were inhibited when the salt-induced H2O2 was scavenged by NAC. These results indicate that salt-induced H2O2 as a second signaling messenger modulates APX and SOD activities by regulating the transcription levels of corresponding genes, alleviating oxidative stress, and increasing salt tolerance in cotton.

  7. Growing season carbon dioxide exchange in flooded non-mulching and non-flooded mulching cotton.

    Directory of Open Access Journals (Sweden)

    Zhi-guo Li

    Full Text Available There is much interest in the role that agricultural practices might play in sequestering carbon to help offset rising atmospheric CO₂ concentrations. However, limited information exists regarding the potential for increased carbon sequestration of different management strategies. The objective of this study was to quantify and contrast carbon dioxide exchange in traditional non-mulching with flooding irrigation (TF and plastic film mulching with drip irrigation (PM cotton (Gossypium hirsutum L. fields in northwest China. Net primary productivity (NPP, soil heterotrophic respiration (R(h and net ecosystem productivity (NEP were measured during the growing seasons in 2009 and 2010. As compared with TF, PM significantly increased the aboveground and belowground biomass and the NPP (340 g C m⁻² season⁻¹ of cotton, and decreased the R(h (89 g C m⁻² season⁻¹ (p<0.05. In a growing season, PM had a higher carbon sequestration in terms of NEP of ∼ 429 g C m⁻² season⁻¹ than the TF. These results demonstrate that conversion of this type of land use to mulching practices is an effective way to increase carbon sequestration in the short term in cotton systems of arid areas.

  8. Cotton Water Use Efficiency under Two Different Deficit Irrigation Scheduling Methods

    Directory of Open Access Journals (Sweden)

    Jeffrey T. Baker

    2015-08-01

    Full Text Available Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE of cotton (Gossypium hirsutum L. In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST method with irrigation triggers set at 5.5 (ST_5.5 and 8.5 h (ST_8.5 and the Crop Water Stress Index (CWSI method with irrigation triggers set at 0.3 (CWSI_0.3 and 0.6 (CWSI_0.6. When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW control irrigated at 110% of potential evapotranspiration and a dry land (DL treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ≤ 0.05 peak near 3.6 to 3.7 kg ha−1 mm−1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield.

  9. Mapping and Quantitative Trait Loci Analysis of Verticillium Wilt Resistance Genes in Cotton

    Institute of Scientific and Technical Information of China (English)

    Hong-Mei Wang; Zhong-Xu Lin; Xian-Long Zhang; Wei Chen; Xiao-Ping Guo; Yi-Chun Nie; Yun-Hai Li

    2008-01-01

    Verticillium wilt is one of the most serious constraints to cotton production in almost all of the cotton-growing countries. In this study, "XinLuZao1" (XLZ1), a susceptible cultivar Gossypium hirsutum L. and "Hai7124" (H7124), a resistant line G. barbadense, and their F2:3 families were used to map and study the disease Index induced by verticillium wilt. A total of 430 SSR loci were mapped into 41 linkage groups; the map spanned 3 745.9 cM and the average distance between adjacent loci was 8.71 cM. Four and five quantitative trait loci (QTLs) were detected based on the disease index investigated on July 22 and August 24 in 2004, respectively. These nine QTLs explained 10.63-28.83% of the phenotypic variance, six of them were located on the D sub-genome. Two QTLs located In the same marker intervals may partly explain the significant correlation of the two traits. QTLs explaining large phenotypic variation were identified in this study, which may be quite useful in cotton anti-disease breeding.

  10. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    Science.gov (United States)

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations

  11. [Determination of protein and gossypol content in cotton kernel powder with near infrared reflectance spectroscopy].

    Science.gov (United States)

    Qin, Li; Shen, Xiao-Jia; Chen, Jin-Hong; Zhu, Shui-Jin

    2010-03-01

    Near-infrared reflectance spectroscopy (NIRS) was used as a rapid and nondestructive method to determine the protein content and gossypol content in cotton kernel powder samples, using 49 upland cotton (Gossypium hirsutum L.) germplasms and 188 recombinant inbred lines (RILs). The cottonseed samples harvested from the upland cotton germplasms and RILs grown in different cotton growing regions in different years were analyzed chemically for protein and gossypol contents, as well as scanned in the reflectance mode of a scanning monochromator. Using ISI software for scanning and data analysis, protein and gossypol calibration equations were obtained with a standard normal variate + detrending scatter correction and a 2, 4, 4, 1 math treatment and modified partial least square (MPLS) as the regression method. The protein content calibration results revealed that the multiple correlation coefficients (RSQ) and statistic 1--variance ratio (1-VR) for the determination of protein content in cottonseed kernels were 0.933 and 0.929, respectively, and its standard error of calibration (SEC) and standard error of cross validation (SECV) were 0.623 and 0.638, respectively. As the calibration equations were judged by the calibration RSQ (or 1-VR) and SEC (or SECV), the results indicated that NIRS is comparable to chemical methods in both accuracy and prediction and is reliable in the determination of protein content in cottonseed kernels. However, the RSQ, SEC, 1-VR and SECV for gossypol content determination of NIRS were 0.836, 0.811, 0.074 and 0.079, respectively. Although it was weaker than that of protein content, the NIRS method is still good enough for the determination and prediction of the gossypol content in cottonseed kernels. Therefore, NIRS models were successfully developed for protein content and gossypol content analysis of cotton kernel powder sample in the present study and they could be introduced into the cotton germplasm evaluation and breeding program for

  12. Genetic mapping and comparative expression analysis of transcription factors in cotton.

    Science.gov (United States)

    Chen, Xuemei; Jin, Xin; Li, Ximei; Lin, Zhongxu

    2015-01-01

    Transcription factors (TFs) play an important role in the regulation of plant growth and development. The study of the structure and function of TFs represents a research frontier in plant molecular biology. The findings of these studies will provide significant information regarding genetic improvement traits in crops. Currently, a large number of TFs have been cloned, and their function has been verified. However, relatively few studies that genetically map TFs in cotton are available. To genetically map TFs in cotton in this study, specific primers were designed for TF genes that were published in the Plant Transcription Factor Database. A total of 977 TF primers were obtained, and 31 TF polymorphic loci were mapped on 15 cotton chromosomes. These polymorphic loci were clearly preferentially distributed on chromosomes 5, 11, 19 and 20; and TFs from the same family mapped to homologous cotton chromosomes. In-silico mapping verified that many mapped TFs were mapped on their corresponding chromosomes or their homologous chromosomes' corresponding chromosomes in the diploid genomes. QTL mapping for fiber quality revealed that TF-Ghi005602-2 mapped on Chr19 was associated with fiber length. Eighty-five TF genes were selected for RT-PCR analysis, and 4 TFs were selected for qRT-PCR analysis, revealing unique expression patterns across different stages of fiber development between the mapping parents. Our data offer an overview of the chromosomal distribution of TFs in cotton, and the comparative expression analysis between Gossypium hirsutum and G. barbadense provides a rough understanding of the regulation of TFs during cotton fiber development.

  13. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1.

    Science.gov (United States)

    Walford, Sally-Ann; Wu, Yingru; Llewellyn, Danny J; Dennis, Elizabeth S

    2012-08-01

    Gossypium hirsutum L. (cotton) fibres are specialized trichomes a few centimetres in length that grow from the seed coat. Few genes directly involved in the differentiation of these epidermal cells have been identified. These include GhMYB25-like and GhMYB25, two related MYB transcription factors that regulate fibre cell initiation and expansion. We have also identified a putative homeodomain leucine zipper (HD-ZIP) transcription factor, GhHD-1, expressed in trichomes and early fibres that might play a role in cotton fibre initiation. Here, we characterize GhHD-1 homoeologues from tetraploid G. hirsutum and show, using reporter constructs and quantitative real-time PCR (qRT-PCR), that they are expressed predominantly in epidermal tissues during early fibre development, and in other tissues bearing epidermal trichomes. Silencing of GhHD-1 reduced trichome formation and delayed the timing of fibre initiation. Constitutive overexpression of GhHD-1 increased the number of fibres initiating on the seed, but did not affect leaf trichomes. Expression of GhHD-1 in cotton silenced for different fibre MYBs suggest that in ovules it acts downstream of GhMYB25-like, but is unaffected in GhMYB25- or GhMYB109-silenced plants. Microarray analysis of silencing and overexpression lines of GhHD-1 indicated that it potentially regulates the levels of ethylene and reactive oxidation species (ROS) through a WRKY transcription factor and calcium-signalling pathway genes to activate downstream genes necessary for cell expansion and elongation. © 2012 CSIRO. The Plant Journal © 2012 Blackwell Publishing Ltd.

  14. Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems.

    Science.gov (United States)

    Yi, Xiao-Ping; Zhang, Ya-Li; Yao, He-Sheng; Luo, Hong-Hai; Gou, Ling; Chow, Wah Soon; Zhang, Wang-Feng

    2016-05-01

    The responses of gas exchange, chlorophyll fluorescence and the anti-oxidative system of cotton leaves were studied during water deficit and recovery. The results show that water deficit led to a reversible reduction in the photosynthetic rate. This reduction was mainly accompanied by stomatal limitation. The activity of photosystem II (PSII) and photosystem I (PSI) was relatively stable during water deficit and recovery. Water deficit caused an enhanced production of reactive oxygen species (ROS) and increased lipid peroxidation. Proline accumulation and the anti-oxidative enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), along with the antioxidant ascorbate (AsA), increased during water deficit. On re-watering, the ROS generation rate, anti-oxidative enzymes activities and the extent of the lipid peroxidation returned to near control values. Overall, rapid recovery of the photosynthetic rate is related to the stability of the photosystems which appears to be a critical mechanism allowing cotton plants to withstand and survive drought environments.

  15. Molecular Cloning and Characterization of a β-Galactosidase Gene Expressed Preferentially in Cotton Fibers

    Institute of Scientific and Technical Information of China (English)

    Heng-Mu ZHANG; Jin-Yuan LIU

    2005-01-01

    β-galactosidases (EC 3.2.1.23) constitute a widespread family of enzymes in plants that is thought to be involved in metabolism of cell wall polysaccharides. We reported herein the isolation of a fulllength cDNA encoding a typical β-galactosidase protein, designated GhGal1 (Gossypium hirsutum L.galactosidase), of 843 amino acids with a predicted molecular mass of nearly 94.8 kDa. In addition to a glycosyl hydrolase family 35 domain and a putative signal peptide, an unusual characteristic of GhGal 1 is that, at the C-terminus of the enzyme, a domain was found that is structurally related to a sea urchin egg lectin (SUEL-lectin) with D-galactose- and L-rhamnose-binding domains. Based on results from Southern blot, we estimated that there would be two copies of the GhGal1 gene per haploid genome of G. hirsutum.The transcripts of GhGal1 were regulated spatially and temporally and were present in very high abundance at the elongation stage of the cotton fiber. The expression pattern suggests that the GhGal1 gene could be involved in metabolism of the primary cell wall.

  16. Ocorrência de nova doença do algodoeiro irrigado, no Brasil, causada por Sclerotinia sclerotiorum Occurrence of a new disease of irrigated cotton, in Brazil, caused by Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Maria José D´avila Charchar

    1999-06-01

    Full Text Available Em 1996, uma nova doença causada pelo fungo Sclerotinia sclerotiorum (Lib. de Bary foi observada em algodoeiro (Gossypium hirsutum L., cultivar Deltapine, irrigado sob pivô central, em Paracatu, MG. Os sintomas apresentados foram murcha e podridão da haste, do pecíolo da folha e da maçã, além de serem observados no interior do capulho micélio branco e escleródios escuros do patógeno. O teste de patogenicidade foi efetuado em algodoeiro, nas cultivares Deltapine e IAC 22, e em feijoeiro e quiabeiro, aos 14 dias de idade. As plantas foram incubadas em alta umidade durante 48 horas, a 25ºC. Três dias após a inoculação, verificaram-se sintomas severos de murcha e necrose dos tecidos, de onde o patógeno foi reisolado, completando-se, assim, os postulados de Koch. Este é o primeiro relato da ocorrência natural de S. sclerotiorum em algodoeiro no Brasil.In 1996, a new disease caused by Sclerotinia sclerotiorum (Lib. de Bary was observed on cotton (Gossypium hirsutum L. Deltapine cultivar irrigated under central pivot at Paracatu, MG, in the Savana region of Central Brazil. The symptoms were wilt, necrosis and rot. White mycelium and black sclerotia developed inside the boll. The pathogenicity test was done with two-week old cotton seedling cultivars Deltapine and IAC 22 and bean and okra seedlings. The plants were incubated at high humidity for 48 hours at 25ºC. Three days after inoculation, severe symptoms of wilt and necrosis were observed. S. sclerotiorum was reisolated from the damaged plant tissues, and Koch´s postulates were completed. This is the first report of S. sclerotiorum natural occurrence on cotton in Brazil.

  17. Survivorship of Helicoverpa zea and Heliothis virescens on cotton plant structures expressing a Bacillus thuringiensis vegetative insecticidal protein.

    Science.gov (United States)

    Bommireddy, P L; Leonard, B R

    2008-08-01

    A series of tests quantified bollworm, Helicoverpa zea (Boddie), and tobacco budworm, Heliothis virescens (F.), larval survival on plant structures of a nontransgenic cotton (Gossypium hirsutum L.), 'Coker 312', and two transgenic cottons expressing Vip3A protein or both Vip3A + CrylAb proteins (VipCot). Vegetative and reproductive structures including terminal leaves, flower bud (square) bracts, whole debracted squares, flower petals, flower anthers, and intact capsules (bolls) were harvested from plants in field plots. Each structure was infested with 2-d-old larvae from one of the two heliothine species. Larvae were allowed to feed for 96 h on fresh tissue. Survivorship at 96 h after infestation was significantly lower on all structures of Vip3A and VipCot cotton lines compared with similar structures of Coker 312. VipCot plant structures generally resulted in lower larval survivorship compared with similar structures of the Vip3A cotton line. H. zea survivorship ranged from 4 to 28% and from 1 to 18% on Vip3A and VipCot plant structures, respectively. H. virescens survivorship ranged from 10 to 43% and from 2 to 12% on Vip3A and VipCot plant structures, respectively. H. virescens survivorship was higher on VIP3A plant structures compared with that for H. zea on similar structures. These differences between species were not observed on plants from the cotton line expressing VipCot proteins. The results for these plant structures demonstrate that the combination of proteins expressed in VipCot cotton lines are more effective than Vip3A cotton lines against this heliothine complex.

  18. Estimation of heterosis and dominance deviation for seed cotton yield, its components characters in upland cotton

    Directory of Open Access Journals (Sweden)

    B. N. Patel, S. S. Jaiwar, N. A. Patel, V. R. Akbari and P. B. Dave

    2014-12-01

    Full Text Available A line x tester analysis was undertaken to estimates the magnitude of heterosis and dominance deviation in Gossypium hirsutum L. for yield, its components and other matricate characters in 60 test entries including (44 F1s along with 15 parents and 1 standard check hybrid. Analysis of variance indicated the significant difference among the parents and hybrids for all 12 characters studied which revealed existence of variability among the genotypes. Studies revealed that out of 44 cross combinations, only 3 hybrids viz., BC-68-2 x MCU 11, BC-68-2 x AC 738 and BN 1 x Reba-B-50 depicted significant and positive heterosis over standard check hybrid G. Cot. Hy. 12. The hybrid BC-68-2 x MCU 11 exhibited significant positive standard heterosis for seed cotton yield per plant and other attributing characters i.e. total number of bolls per plant, average boll weight, lint yield per plant and lint index. The mean values of potence ratio in all twelve characters suggested that degree of dominance was governed by over dominance genes for the expression of all the characters under study.

  19. CottonDB Enhancement

    Institute of Scientific and Technical Information of China (English)

    YU Jing; KOHEL Russell; HINZE Lori; FRELICHOWSKI James; XU Zhan-you; YU John Z; PERCY Richard

    2008-01-01

    @@ CottonDB (www.cottondb,org) was initiated in 1995.It is a database that contains genomic,genetic,and taxonomic information for cotton (Gossypium spp.).It serves both as an archival database and as a dynamic database,which incorporates new data and user resources.CottonDB is maintained at the Southern Plains Agricultural Research Center in College Station,TX.The project includes a website and database creating a repository of information for over 450,000 gene,EST,and conting sequences; genetic and physical map data; nearly 10,000 DNA primers; and 9,000 germplasm accessions.

  20. Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata).

    Science.gov (United States)

    Gouinguené, Sandrine; Pickett, John A; Wadhams, Lester J; Birkett, Michael A; Turlings, Ted C J

    2005-05-01

    Many parasitic wasps are attracted to volatiles that are released by plants when attacked by potential hosts. The attractiveness of these semiochemicals from damaged plants has been demonstrated in many tritrophic systems, but the physiological mechanisms underlying the insect responses are poorly understood. We recorded the antennal perception by three parasitoids (Cotesia marginiventris, Microplitis rufiventris, and Campoletis sonorensis) to volatiles emitted by maize, cowpea, and cotton plants after attack by the common caterpillar pest Spodoptera littoralis. Gas chromatography-electroantennography (GC-EAG) recordings showed that wasps responded to many, but not all, of the compounds present at the physiologically relevant levels tested. Interestingly, some minor compounds, still unidentified, elicited strong responses from the wasps. These results indicate that wasps are able to detect many odorant compounds released by the plants. It remains to be determined how this information is processed and leads to the specific behavior of the parasitoids.

  1. Cloning and bioinformatics analysis of CDPK1 gene in Gossypium hirsutum and Sasussured involucrata from two different habitats%两种不同生境植物棉花与雪莲 CDPK1基因的克隆及生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    田晓涵; 刘玉玲; 李永梅; 李锦; 庞学兵; 祝建波; 朱新霞

    2016-01-01

    为了研究两种不同生境植物钙依赖性蛋白激酶基因1( CDPK1)的差异,分别从冷敏感作物陆地棉和高耐寒植物天山雪莲中克隆得到GhCDPK1和SikCDPK1基因。通过生物信息学分析发现,GhCDPK1和SikCDPK1的开放阅读框长度分别为1764 bp和1716 bp,各编码587和571个氨基酸。蛋白质表现为弱酸性,且不稳定,亲水;二级结构中以无规则卷曲和α⁃螺旋为主,三级结构同源建模成功;无跨膜结构域和信号肽,有多个磷酸化位点,但数量存在差异;均具有典型的CDPK保守结构域。 GhCDPK1和SikCDPK1氨基酸序列同源性为79�9%,二者明显的区别在于GhCDPK1含有4个EF⁃hand基序,但SikCDPK1只存在2个EF⁃hand基序。进化分析结果表明,GhCD⁃PK1与可可CDPK1亲缘关系最近,SikCDPK1与菊花CDPK2亲缘关系最近。%To study the functional differences of calcium⁃dependent protein kinase gene 1 ( CDPK1 ) in different habitats, 2 calcium⁃dependent protein kinase genes GhCDPK1 and SikCDPK1 were obtained from coldness⁃sensitive crop Gossypium hirsutum and hardy plant Sasussured involucrata Kar. et Kir, respectively. GhCDPK1 gene contains a 1 764⁃bp open reading frame encoding 587 amino acids, and SikCDPK1 contains a 1 716⁃bp open reading frame encoding 571 amino acids. The corresponding proteins are unstable, hydrophilic and mildly acidic, with random coil andα⁃helix dominating the secondary structure. Two deduced proteins have no transmembrane region and signal peptide. The protein sequences of Gh⁃CDPK1 and SikCDPK1 include multiple phosphorylation sites with different numbers, and contain a typical CDPK con⁃served domain. The GhCDPK1 and SikCDPK1 shared amino acid sequence homology of 79�9%. There are four conservative EF⁃hands in GhCDPK1 but only two EF⁃hands in SikCDPK1. Phylogenic analysis revealed that the GhCDPK1 protein was the closest to Theobroma cacao CDPK1, and the SikCDPK1 protein

  2. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    Directory of Open Access Journals (Sweden)

    Hongtao Hu

    Full Text Available MicroRNAs (miRNAs and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs are two distinct subfamilies of small RNAs (sRNAs that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs are processed from longer RNA precursors by DICER-LIKE proteins (DCLs. Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs and 108 novel lineage-specific miRNAs (ls-miRNAs. Along with miRNAs, 2,033 miRNA variants (isomiRNAs were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers

  3. Heat Stress Related Gene Expression in Gossypium hirsutum L.

    Institute of Scientific and Technical Information of China (English)

    DEMIREL; Ufuk; GR; M; Atilla; KARAKU; Mehmet; MEMON; Abdul; Rezaque

    2008-01-01

    Abiotic stress is a major limiting factor to crop productivity,and heat stress is one of the important elements for reduced crop production.Plants respond to heat stress at molecular and cellular levels as well as physiological level.Heat stress alters expression patterns of numerous genes in plants.

  4. Determining the major Bt refuge crops for cotton bollworm in North China.

    Science.gov (United States)

    Ye, Le-Fu; Fu, Xue; Ouyang, Fang; Xie, Bao-Yu; Ge, Feng

    2015-12-01

    Evaluation of the effectiveness of refuge strategies involved in cotton bollworm Bt resistance management would be aided by technologies that allow monitoring and quantification of key factors that affect the process under field conditions. We hypothesized that characterization of stable carbon and nitrogen isotopes in adult bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) moths may aid in determining the larval host that they developed upon. We found moths reared from larvae fed on peanut, soybean or cotton, respectively, could be differentiated using isotopic analyses that also corresponded to their respective larval host origins. These techniques were then used to classify feral second-generation bollworm moths caught in Bt cotton (Gossypium hirsutum) fields into different populations based on their isotopic signatures. In 2006-2007 feral moths captured in Bt cotton fields predominantly correlated with the peanut (Arachis hypogea) having served as their larval host, indicating this is the most important refuge crop for Bt-susceptible bollworm individuals (providing 58%-64% individuals) during independent moth peaks for the second generation in North China. The remaining feral moths correlated with soybean (Glycine max) (0-10%); other C3 plant (20%-22%) and non-C3 plant (12%-14%) host types also provided some Bt-sensitive moths. Field observations showed that peanut constitutes the primary refuge crop contributing to sustaining Bt-susceptible moths dispersing into cotton in North China. These results suggest that peanut may be a more effective refuge to sustain Bt-susceptible bollworm individuals and reduce the risk of development of a Bt-resistant biotype.

  5. Toxicity to cotton boll weevil Anthonomus grandis of a trypsin inhibitor from chickpea seeds.

    Science.gov (United States)

    de P G Gomes, Angélica; Dias, Simoni C; Bloch, Carlos; Melo, Francislete R; Furtado, José R; Monnerat, Rose G; Grossi-de-Sá, Maria F; Franco, Octávio L

    2005-02-01

    Cotton (Gossypium hirsutum L.) is an important agricultural commodity, which is attacked by several pests such as the cotton boll weevil Anthonomus grandis. Adult A. grandis feed on fruits and leaf petioles, reducing drastically the crop production. The predominance of boll weevil digestive serine proteinases has motivated inhibitor screenings in order to discover new ones with the capability to reduce the digestion process. The present study describes a novel proteinase inhibitor from chickpea seeds (Cicer arietinum L.) and its effects against A. grandis. This inhibitor, named CaTI, was purified by using affinity Red-Sepharose Cl-6B chromatography, followed by reversed-phase HPLC (Vydac C18-TP). SDS-PAGE and MALDI-TOF analyses, showed a unique monomeric protein with a mass of 12,877 Da. Purified CaTI showed significant inhibitory activity against larval cotton boll weevil serine proteinases (78%) and against bovine pancreatic trypsin (73%), when analyzed by fluorimetric assays. Although the molecular mass of CaTI corresponded to alpha-amylase/trypsin bifunctional inhibitors masses, no inhibitory activity against insect and mammalian alpha-amylases was observed. In order to observe CaTI in vivo effects, an inhibitor rich fraction was added to an artificial diet at different concentrations. At 1.5% (w/w), CaTI caused severe development delay, several deformities and a mortality rate of approximately 45%. These results suggested that CaTI could be useful in the production of transgenic cotton plants with enhanced resistance toward cotton boll weevil.

  6. Physiological Response to Salt (NaCl Stress in Selected Cultivated Tetraploid Cottons

    Directory of Open Access Journals (Sweden)

    Sarah M. Higbie

    2010-01-01

    Full Text Available In the southwestern and western Cotton Belt of the U.S. soil salinity can reduce cotton productivity and quality. This study was conducted to determine the physiological responses of six genotypes including five Upland cotton (Gossypium hirsutum L. cultivars and one Pima cotton line (G. barbadense L. to NaCl under greenhouse conditions. Seeds were germinated and grown for 14 days prior to salt treatment (daily 100 ml of 200 mM NaCl for 21 days. Compared with the control (daily 100 ml tap water, the NaCl treatment significantly reduced plant height, leaf area, fresh weight, and dry weight. The NaCl stress also significantly increased leaf chlorophyll content, but did not affect leaf fluorescence. Of the six genotypes, Pima 57-4 and SG 747 had the most growth reduction, and were most sensitive to NaCl; DP 33B, JinR 422 and Acala Phy 72 had the least growth reduction and were most NaCl tolerant. Although all the six genotypes under the salt treatment had significantly higher Na and Cl accumulation in leaves, SG 747 and Pima 57-4 accumulated more Na and Cl than DP 33B. Increases in leaf N, Zn, and Mn concentrations were also observed in the NaCl-treated plants. While leaf P, Ca, and S concentrations remained unchanged overall in the genotypes tested, leaf K, Mg, Fe, and Cu concentrations significantly decreased during salt stress. Reduction in plant height is a simple, easy, sensitive, non-destructive measurement to evaluate salt tolerance in cotton.

  7. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  8. Assessing the Economic Impact of Inversion Tillage, Cover Crops, and Herbicide Regimes in Palmer Amaranth (Amaranthus palmeri Infested Cotton

    Directory of Open Access Journals (Sweden)

    Leah M. Duzy

    2016-01-01

    Full Text Available Cotton (Gossypium hirsutum L. producers in Alabama are faced with a rapidly expanding problem that decreases yields and increases production costs: herbicide-resistant weeds. Producers increasingly rely on integrated weed management strategies that raise production costs. This analysis evaluated how tillage, cover crops, and herbicide regime affected net returns above variable treatment costs (net returns for cotton production in Alabama from 2009 to 2011 under pressure from Palmer amaranth (Amaranthus palmeri S. Wats.. Annual net returns were compared for two tillage treatments (inversion and noninversion tillage, three cover crops (crimson clover [Trifolium incarnatum L.], cereal rye [Secale cereal L.], and winter fallow, and three herbicide regimes (PRE, POST, and PRE+POST. Results indicate that under heavy Palmer amaranth population densities one year of inversion tillage followed by two years of noninversion tillage, along with a POST or PRE+POST herbicide application had the highest net returns in the first year; however, the economic benefit of inversion tillage, across all herbicide treatments, was nonexistent in 2010 and 2011. Cotton producers with Palmer amaranth infestations would likely benefit from cultural controls, in conjunction with herbicide applications, as part of their weed management system to increase net returns.

  9. [The structural characteristics, alternative splicing and genetic experession analysis of ADP-ribosylation-factor 1 (arf1) in cotton].

    Science.gov (United States)

    Ren, Mao-Zhi; Chen, Quan-Jia; Zhang, Rui; Guo, San-Dui

    2004-08-01

    The full-length cDNA,DNA and promoter of ADP-ribosylation-factor 1 (arf1) was isolated from Gossypium hirsutum Y18 by means of isocaudarner inverse PCR (II-PCR) and rapid isolating cDNA 5' unknown sequence and promoter (RICUP) established in our lab. Results indicated that the gene is 4 360 bp in size, including seven exons and six introns. Interestingly, alterative splicing occurs at intron I. Differential processing of intron 1 yields three different transcripts with 1 026 bp, 1103 bp and 1 544 bp in sizes, respectively. Arf1 encodes 181 amino acids. Sequence analysis indicated that sequence upstream transcription initiation site of arf1 includes typical initiator, TATA box, CCAAT box, GC box and several forward and reverse repeat sequences. And typical promoter structures, such as AT-rich sequence and palindrome structure have been detected in the sequence downstream transcription initiation site. Southern blot analysis indicated that the gene has two copies in the genome of cotton. Northern blot confirmed the predominate expression of arf1 in reproductive organs of cotton, including bud, flower, fiber and boll. Also, the feature and character of arf1 and its promoter have been studied. This study will lay foundation for the other research on function of arf1 in the development of reproductive organs in cotton.

  10. Functional characterization of a strong bi-directional constitutive plant promoter isolated from cotton leaf curl Burewala virus.

    Directory of Open Access Journals (Sweden)

    Zainul A Khan

    Full Text Available Cotton leaf curl Burewala virus (CLCuBuV, belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV were fused with β-glucuronidase (GUS and green fluorescent protein (GFP reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells.

  11. Comparative Genetics of Floral Morphology in Diploid and Allotetraploid Gossypium

    Institute of Scientific and Technical Information of China (English)

    CHEE Peng W

    2008-01-01

    @@ The cultivated Gossypium A genome diploid species G.arboreum and G.herbaceum and the allotetraploid species G.hirsutum and G.barbadense share common morphology for various floral traits,which offers an ideal system in which to investigate genetic mechanisms that differentiate diploid and tetraploid genomes.For example,knowing how a single phenotype behaves in the diploids,and comparing the same trait with different dosage effects in the tetraploids,may provide a means to study inter- and intra-genomic interactions in the polyploid genome.

  12. Functional Characterization of a Bidirectional Plant Promoter from Cotton Leaf Curl Burewala Virus Using an Agrobacterium-Mediated Transient Assay

    Directory of Open Access Journals (Sweden)

    Muhammad Aleem Ashraf

    2014-01-01

    Full Text Available The C1 promoter expressing the AC1 gene, and V1 promoter expressing the AV1 gene are located in opposite orientations in the large intergenic region of the Cotton leaf curl Burewala virus (CLCuBuV genome. Agro-infiltration was used to transiently express putative promoter constructs in Nicotiana tabacum and Gossypium hirsutum leaves, which was monitored by a GUS reporter gene, and revealed that the bidirectional promoter of CLCuBuV transcriptionally regulates both the AC1 and AV1 genes. The CLCuBuV C1 gene promoter showed a strong, consistent transient expression of the reporter gene (GUS in N. tabacum and G. hirsutum leaves and exhibited GUS activity two- to three-fold higher than the CaMV 35S promoter. The CLCuBuV bidirectional gene promoter is a nearly constitutive promoter that contains basic conserved elements. Many cis-regulatory elements (CREs were also analyzed within the bidirectional plant promoters of CLCuBuV and closely related geminiviruses, which may be helpful in understanding the transcriptional regulation of both the virus and host plant.

  13. Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.

    Science.gov (United States)

    Griffin, T W; Zapata, S D

    2016-08-01

    The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the

  14. Application of SNAC1 Gene as a Selection Marker Gene for Cotton (Gossypium hirsutum L.)Transformation%SNAC1基因作为筛选标记基因用于棉花的遗传转化

    Institute of Scientific and Technical Information of China (English)

    李雪林; 刘冠泽; 聂以春; 郭小平; 张献龙

    2010-01-01

    以SNAC1基因作为筛选标记基因,NaC1作为筛选剂,通过农杆菌介导法将SNAC1和GUS基因导入棉花细胞并得到胚性愈伤组织.经过PCR检测证实,外源基因已经整合到棉花基因组中,GUS染色证明GUS基因得到表达.研究了NaC1作为棉花转化细胞的筛选剂在农杆菌介导转化中的应用浓度及方法,即NaC1的筛选浓度在1.1%~1.5%(W/V)之间,在愈伤组织诱导初期适当低一点,随着愈伤组织的生长而加大筛选浓度.由于NaC1不利于胚的分化,经过2~3次继代筛选后要及时去除NaC1以促进胚的分化.

  15. 两个新疆棉花品种体细胞胚胎发生的比较研究%Comparative Studies of Somatic Embryogenesis of Two Cotton Cultivars (Gossypium hirsutum L.) in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    李鹏飞; 程文翰; 王凡龙; 张新宇; 朱华国; 孙杰

    2013-01-01

      以新疆棉区主栽品种新陆早33号和新彩棉7号为实验材料,比较不同激素组合对两者体细胞胚胎发生过程的影响,以建立高效再生体系。结果表明,新陆早33号和新彩棉7号在2,4-D+KT的激素组合下出愈率均为100%,降低2,4-D浓度有利于胚性愈伤组织的分化,分化率分别达到60.0%和7.5%;在IBA+KT的激素组合下出愈情况相对较差,分别为72.5%和85.0%;继代几次后,两个品种的胚性愈伤组织分化率可分别达到45%和55%,新陆早33号和新彩棉7号分别在DK和IK激素组合下更有利于体细胞胚胎发生过程。进一步观察发现,新彩棉7号分化形成胚状体的能力比新陆早33号更强,两品种均能在6个月内获得再生植株。再生体系的建